
NAL ADVISORY ~ ~ M M I ~ ~ ~  
R ~ E R O N ~ U T ~ ~ S  

TECHNICAL M E ~ ~ R A N ~ ~  1374 

ATURATED VAPORS 

cker and W. D6ring 

en 
nysik, Folge 5, Band 24, 1935. 

I 



1M 

. 
NATIONAL ADVISORY C0MMI"EE FOR AERONAUTICS 

TECHNICAL MEMORANDUM 1374 

K I N E T I C  TREATMENT OF THE NUCLEATION 

I N  SUPERSATURATED VAPORS* 

By R . Becker and W. Doring 

INTRODUCTION AND S Y N O P S I S  

The 'hucleat ion i n  supersaturated systems'' (such a s  the  formation of 
fog i n  supersaturated water vapor, f o r  example) w a s  o r ig ina l ly  made amen- 
able t o  quant i ta t ive treatment by Volmer and Weber ( r e f .  1). 
saturat ion there  corresponds a certain c r i t i c a l  droplet  s i z e  of the new 
phase of such a type, that the vapor i s  supersaturated only w i t h  respect  
t o  those droplets  which a re  bigger than the  c r i t i c a l  droplet ,  but not t o  
those which a re  smaller. The formation of fog is  therefore  contingent 
upon the  or ig in  of "kernels" or  nuclei, i.e., droplets  of precisely t h a t  
c r i t i c a l  s i ze  by a typ ica l  phenomenon of f luc tua t ion .  
such processes is, according t o  the relat ionship between entropy and prob- 

a b i l i t y ,  proportional t o  e - *, where Acri t .  i s  the  energy required 

To every 

The frequency of 

.l f o r  the  reversible  creat ion of such droplet .  
b r i e f l y  reviewed i n  section 1. The proportionali ty fac tor  K, as ye t  
indeterminate ( in  our equation (?)), w a s  calculated by Farkas ( re f .  2) f o r  
the  case of droplet  formation by a kinetic treatment, the  results of which 
are f u l l y  confirmed ( i n  sect ion 2) by a more luc id  method of calculat ion.  
The drawback of Farkas' calculations,  as w e l l  as the  arguments advanced 
by Stranski and Kaischew i n  connection with it ( r e f .  3 ) ,  is  tha t  these 
wr i te rs '  first convert the elementary equations of the k ine t ic  theorem, 
each of which r e fe r s  t o  the  evaporation and condensation of a s ingle  mole- 
cule, i n  a d i f f e r e n t i a l  equation which, when integrated,  produce new and 
not always lucid constants. 
r i sky  becwse  the  ensuing functions o f  the  molecule nmber n a r e  a t  
f i r s t  de r - i ed  only for  in tegra l  values of n and a t  the t r ans i t i on  from 
n t o  n f 1 change frequently so much t h a t  the  d i f f e r e n t i a l  quotient 
loses i t s  significance.  By disregarding t h i s  r i s k  Kaischew and Stranski 
oPtained an incorrect  r e s u t  which d i f f e r s  from that of Farkas. On the 
other hand, the change in to  d i f f e ren t i a l  equation i s  en t i r e ly  unnecessary 
(as w i l l  be shown i n  section 2 ) .  The algebraic  equations f o r  the indi-  
vidual processes give the  wanted resu l t  by a simple, purely algebraic 
process of elimination. This method i s  shorter  and l e s s  subject t o  e r ro r s  
than that of Farkas. FuTthermore, the appearance of indeterminate 

Volmer's treatment i s  

The change t o  the  d i f f e r e n t i a l  equation is  

- 
"Kinetische Behandlung der Keimbildung i n  ubersat t igten Dbpf en, I t  

* 
Annalen der Physik, Folge 5, Band 24, 1935, pp. 719-752. 
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integration constants is completely avoided. Thus Farkas' final for- 
mula, for example, still contains a constant which he himself designates 
as indeterminate, while in reality, an accurately estimable value cor- 
responds to it, which is in optimum agreement with the Volmer and Flood 
measurements. 

The next three sections deal with the origin of critical nuclei, to 
which the general thermodynamic analysis of section 1 is applicable as 
for the droplets.' The first kinetic calculation of the thermodynami- 
cally indeterminate quantity for crystals was made by Kaischew and 
Stranski (ref. 4). This important investigation prompted the present 
study. With regard to the highly idealized crystal model, use is made 
of the simple cubic lattice, utilized by Kossel as well as by Stranski, 
which consists of nothing but cubic basic elements, which are in ener- 
getic reciprocal action only with its six nearest neighbors. However, 
our results are largely independent of this special model conception. 
The kinetic analysis, like that of Stranski and Kaischew, results in a 
confirmation of Volmer's formula. On top of that, we succeeded in 
defining the absolute value of K for this case too. 

K 

Our algebraic method of eliminating the intermediate states not of 
direct interest affords an instructive representation suitable for 
the discussion of the particular nucleation process on the passage of 
an electric current through a network of wires of specific electric poten- 
tial differences at the ends of the network and given ohmic resistances 
of the individual wires forming the network. 2 * 

The whole discussion of the system of algebraic equations is then 
equivalent to an investigation of the conductivity properties of this 
network. 
and clear calculation of nucleation frequency for two- and three- 
dimensional nuclei. 

This method produces in sections 4 and 5 a comparatively simple 

lKossel's contrary opinion (Ann. d. Phys. (5), 21, p. 457, 1934) 
stems from a misconstrued conception of the nature of thermodynamic 
considerations, which never refer to individual molecules but to those 
average values which in technically feasible experiments, come under 
observation. the work of separation of the single molecules 
in a lattice plane may jump back and forth arbitrarily; but in the evap- 
oration of the total lattice plane, only the mean separation work enters 
the balance of the thermodynamic process as heat of evaporation. 

R. Landshoff in a conversation. Another, even more instructive repre- 
sentation is that of a diffusion process. (Cf. Volmer, Z. f. E., 35, 
p. 555, 1929.) But for the purposes of a quantitative treatment, our 
electrical pattern should be superior to the diffusion pattern, especially 
when a change from droplet to crystal is involved. 

For example: 

*The possibility of such a representation was originally voiced by 
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. 
A s  an example fo r  the application of the obtained r e su l t s ,  the  expla- 

nation and limits of va l id i ty  of Ostwald's s tep  r u l e  a r e  discussed i n  sec- 
t i on  6, Lastly (section 7) ,  mention i s  made of the unusual and ra ther  
general f a c t  that i n  our e l e c t r i c a l  representation of the process of 
growth the resis tances  of a l l  separate w i r e s ,  which start from a spec-ific 

A 
s t a t e  i n  the d i rec t ion  of growth, are given exact by Constant x e + E  
where A 
i n i t i a l  state (vapor, fo r  instance) .  
Volmer's formula ( 5 )  amounts then t o  indicat ing that the  t o t a l  res i s tance  
of the network i s  dependent so le ly  on those pieces of w i r e  which l i e  i n  
the  region of the point r e l a t ed  t o  the c r i t i c a l  droplet  or  c rys t a l .  

i s  +,hermodyr,aic potent ia l  of t n i s  s t a t e  with respect t o  the-  
The k ine t ic  i n t e rp re t a t ion  of 

1. THERMODYNAMICS OF NUI=L;EATION 

If n denotes the number of molecules contained i n  a droplet ,  F 
i t s  surface and 0 i t s  surface tension, the re la t ionship  between i t s  
vapor pressure pn and that of a f l a t  f l u i d  surface (pa) reads 

where 
the  surface increase dF. With the  radius rn of the  droplet  f o r  spher- 
i c a l  shape 

dn. i s  the  increase i n  the number of molecules corresponding t o  

hence 

r n  is  the c r i t i c a l  droplet  radius  corresponding t o  the  pressure Pn. 
A t  given pressure, droplets with smaller radius  evaporate, those with 
la rger  radius grow. A droplet  which i s  exactly i n  equilibrium with a 
given pressure, according t o  equation ( 2 ) ,  is  hereinaf ter  a l s o  designated 
a s  c r i t i c a l  droplet  or  as nucleus corresponding t o  the par t icu lar  pres- 
sure.  A condensation of the supersaturated vapor can therefore  take 
place only when a nucleus or iginates  as a r e s u l t  of a f luc tua t ion  phe- 
nomenon associated with entropy decrease. 

According t o  the Boltwnann relat ionship between entropy and proba- 
b i l i t y ,  the  probabi l i ty  f o r  the  appearance of such a droplet  i s  
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- s  
proportional t o  e k, where S i s  the entropy decrease associated with 
t h e  formation of a droplet  of radius  r n  from a vapor of pressure Pn 
a t  constant volume and constant e n e r a .  If the  number of molecules con- 
ta ined i n  the  vapor space i s  excessively great with respect  t o  n, t h i s  
entropy decrease i s  equal t o  1 / T  times t h e  work A that must be per- 
formed i n  order t o  produce such a droplet  i n  the vapor space isothermally 
and reversibly.  This work can be determined, according t o  Volmer, by the  
following process: 

1. Removal of n molecules from t h e  vapor space 

2. Expansion of Pn t o  pm 

3. Condensation on a f l a t  f l u i d  surface 

4.  Formation of droplet  from the  f l u i d  

The sum of these four operations must give t h e  wanted quantity A; 
but (1) and (2) compensate one another, which leaves 

A = -nkT I n  % + aF 
Pm 

Hence, with equation (1) borne i n  mind 

2/3, it follows that - n a F  - - - - that i s  
F dn 3' 

Since F = Constant x n 

For the number of fog droplets  produced per second, denoted hereaf ter  
by the  l e t t e r  J, we therefore  expect 

where i s  t h e  surface of t he  c r i t i c a l  droplet  corresponding t o  the  
given pressure p. The f a c t o r  K s t i l l  remains indeterminate i n  the 
thermodynamic study, and must be defined by k ine t i c  analysis  as o r ig i -  
n a l l y  made by Farkas. The subsequently chosen method of computing K 

Fn 



NACA '1M 1374 5 

i s  c learer  from the  methodical point of view. 
of c r y s t a l  nuclei  i s  t o  be t rea ted  also f o r  which th i s  equation ( 5 )  must, 
natural ly ,  be applicable too. It w i l l  be seen t h a t  the f ac to r  K f o r  
f l u i d  nuclei  and c rys t a l  nuclei  of equal order of magnitude i s  given by 
the gas kinet ic  co l l i s ion  factor .  

Aside from that, the  or ig in  

Regarding the d i f f e r e n t i a l  quotient dF/dn in  equations (3)  and (l), 
it should be noted t h a t  
opment of a molecule. dn 
s t i l l  must always contain a mult ipl ic i ty  of molecules, although the  equa- 
t i on  is  inapplicable a s  ye t  t o  single molecules. If t h i s  averaging of 
surface growth per molecule i s  not carried out over a greater  number of 
molecules, the surpr is ing r e s u l t  i s  that the concept of vapor pressure 
loses  i t s  simple meaning fo r  crystals,  a s  shown by Kossel ( re f .  5 ) ,  
because the increase of c rys t a l s  i n  the growth of a molecule i s  mostly 
zero, but now and again very great  too. 

dF/dn i s  the mean growth of surface i n  the devel- 
For i n  the  thermodynamic equation (l), 

2. FLUID NUCLEI 

Consider the following quasi-stationary condensation process. The 
i n  a very large tank i s  kept constant by addition of 
Droplets axe then produced continuously which would 

vapor pressure p 
s ing le  molecules. 
increase i n f i n i t e l y  without outside interference.  To prevent t h i s ,  each 
droplet ,  as soon a s  a ce r t a in  number s of molecules i s  reached, shall 
be removed from the tank and counted. 

With regard t o  s it i s  simply s t ipulated that it shall be greater  
than the  c r i t i c a l  number n. The number of droplets per second counted 
under these conditions is  termed "nucleation frequency. "3 I n  t h i s  pro- 
cedure, a steady d is t r ibu t ion  of d r o p l e t s  of various s izes  w i l l  occur 
within the tank, which must be examined a l i t t l e  c loser .  
Zv i s  the number of droplets containing exactly v molecules. The num- 
ber of f r e e  vapor molecules kept constant i n  our tank by addition i s  
then Z1, while Zs is  held t o  zero. If J is  the number of droplets 
counted per second, 
through a l l  Z. 

Suppose that 

J may be regarded as a constant current that passes 

Next, assume that: 

qvdt i s  the probabi l i ty  that i n  time in t e rva l  d t ,  one molecule w i l l  
leave 1 cm2 of the  surface of a drop of v molecules, aodt on the 

3This term coined i n  the  l i t e r a tu re  i s  somewhat misleading insofar 
as the ac tua l  number of nuclei  formed per second i s  exactly twice as =eat  
because there  i s  precisely a 50 percent probabi l i ty  f o r  each nucleus t o  
continue t o  grow or  t o  evaporate. 
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other  hand i s  the  probabi l i ty  that one molecule from the  vapor space 
condenses on a surface of  1 cm2, F, i s  t h e  surface of a droplet  with 
v molecules, and 2,' = ZvFV i s  t h e  t o t a l  surface of a l l  droplets  with 
v molecules. 4 

Applied t o  the  constant current  w e  get  

J = agZv-l' - qvZv'  ( for  a l l  v )  . 

Indicating 

80 Pv = - 
qv 

the  i n i t i a l  conditions read then 

The fac to r s  p introduced by equation (6) increase monotonic with 
increasing Y .  For the  c r i t i c a l  molecule number v = n, pn = 1. If 
rv denotes the  radius  of t he  droplet  with v molecules, then, by 
equation (2) 

The fac tor  occurring i n  the  exponent i s  indicated by 

2 uM 
PRT 

a = -  

4Unfortunately, t he  notat ion Zv' and Z, i n  the  Stranski and 
Kaischew a r t i c l e  are enterchanged r e l a t i v e  t o  Farkas' repor t .  We follow 
Farkas' notation. 
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In  order t o  eliminate from the equations u ZV+l' = ZV'PV+l - - io Pv+l 

ZV+2' = ZV+l1PV+2 - 6 Pv+2 
. . . . . . . . . . . . .  

J 
ZS' = zs-l'Ps - &o Ps 

the fac tors  %+1', Zv+2', . . . Zs- l ' ,  the f irst  i s  divided by p v + l ,  the  
second by pV+lpv+2, etc . ,  the last one by pv+lpv+2 . . . ps. When a l l  
the  thus obtained equations are added up, a l l  the Z' values lying between 
Zv' and ZS' cancel out leaving 

+ .  . . +  =Zv' - ;f + - 1 

PV+lPV+2 - * ps Pv+l PV+lPV+2 

) 
1 

PV+lPV+2 ps-1 

With it the nucleation frequency 
of Z '  i s  given. In  view of the calculations f o r  the c r y s t a l  nucleus t h i s  
method of solution i s  somewhat modified as follows: 
p l ica t ions  equation (7a) takes the form 

J i s  known as soon as one of the values 

Through the multi- 

w i t h  

The quantity Oi a r i s e s  from the corresponding Z '  values by d iv i -  
s ion by the  product of a l l  the  p values which occur during the succes- 
s ive  growth of the droplet  characterized by subscript  
molecules. (By th i s  method the  equations a r e  divided by the  common fac-  
t o r  p2p3 . . . p,.) 

i from single  

The s t y l e  of writing (equation (9)) of the equation 
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system indicates t h a t  the  current  J flows from point  i toward point 
i + 1 under the  influence of t he  voltage difference @i - @i+1 by over- 
coming the ohmic res i s tance  R i .  Visualizing a s e r i e s  connection of 
res is tances  Rl, R2, e tc . ,  t he  e n t i r e  nucleation current  J can be 
regarded as a current  driven by a given po ten t i a l  difference through t h i s  
Chain 

J(Rv + R v + l  + . . - + R s + l )  = a v  - 0 s  

Now 0 1  is d i r e c t l y  equal t o  21' and O s  equal t o  zero. The whole 
problem therefore cons is t s  i n  adding the  separate p a r t i a l  res i s tances .  
Now it i s  seen t h a t  t he  individual pv values increase i n  such a way 
that i s  exactly equal t o  unity, while the  preceding ones a r e  a l l  
smaller and those t h a t  follow a l l  greater than unity.  
Rn the  p a r t i a l  res is tances  consis t ,  therefore,  of a product of i n t eg ra l  
f ac to r s  which a r e  greater  than unity; on above Rn the  addi t ive  f ac to r s  
appearing a r e  a l l  less than uni ty .  A s  a r e s u l t  t he  R i  values p lo t ted  
aga ins t  i have a d i s t i n c t  maximum a t  i = n. Owing t o  the  importance 
(8) of the quant i t ies  f3 t he  exact t e r m  f o r  a p a r t i a l  res i s tance  R i  
reads 

pn 
Up t o  the  value 

The sum of the  reciprocal  r a d i i  occurring here i n  the  exponent is  
replaced by an in t eg ra l  with respect  t o  the  quant i ty  

The integrat ion var iable  x indicates ,  therefore ,  t he  r a t i o  of a 
par t icu lar  droplet  radius  t o  the  c r i t i c a l  radius .  
t i o n  (10) with respect t o  

By so lu t ion  of equa- 
v 

v = , ( x ~ ) ~ ,  d v  = 3nx2dx 

hence 
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I n  addition 

9 
a 

i - 1 = n(xi3 - x13) 

Indicating fo r  abbreviation 

the  term for  p a r t i a l  res is tance R i  reads 

Replacing the summation over the p a r t i a l  res is tances  a l s o  by an 
integrat ion,  leaves 

c A t  x = 1 the integrand has a steep maximum of the order of eA'. There- 
fo re  w e  put x = 1 + 5 ,  
i n t eg ra l  

i . e . ,  3x2 - 2x3 = 1 - 3E2 - 2k3, and get  t he  

The var ia t ion of the  integrand is represented i n  f igu re  1. The 
fac tor  A'  i s  f a i r l y  high, say about equal t o  20 t o  50,  i n  p rac t i ca l  
cases, a s  w i l l  be shown l a t e r .  So, without appreciable e r ro r  the  above 
in t eg ra l  can be replaced by 

J -m 

Then, the t o t a l  res is tance ( 3 X i 2  - 2x13 
garded i n  the exponent) reads 

compared t o  unity being d is re -  
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With this the thermodynamically obtained expression for the nucleation 
frequency of the indeterminate constant K is defined. 

The final result is 

Against this calculation the objection might be raised that the 
formula (1) had been applied to droplets of as low as two or three mole- 
cules, for which the concept of surface tension is certainly perfectly 
meaningless. But, when considering the curve of the partial resistances 
in figure.1, it is clear that the resultant total resistance is definitely 
defined by the partial resistance in the neighborhood of There- 
fore it is practically immaterial whether the partial resistances at the 
start of the chain had been chosen by a factor 100 too great or too small. 
Equation (13) is exactly identical with Farkas' formula (ref. 2), when 
bearing in mind that his constant C on the basis of its introduction 
(p. 239)  has the significance Since Farkas did not notice that 
the extrapolation of his formula to droplets of only two or three mole- 
cules is positively unobjectionable, he failed to recognize the signifi- 
cance of this constant. 

v = n. 

Zl'. 

In comparison, the calculation of Kaischew and Stranski (ref. 3 )  does 
dZv ' 

by dv' not seem to be entirely acceptable. They replace Zv-l' - 2,' - 

which serves no useful purpose in the subsequent calculation, since no 
integration along this differential quotient is ever made. 
obscures the significance of their constant C which simply is -Zl'. 
But, contrary to Farkas, they use the calculating method of logarithms 
and subsequent substitution of the differential quotient for the differ- 
ence quotient for great v also. This certainly is inadmissible in 
the range of small - I ,  where the logarithmic term changes rather con- 

siderable even at minor changes in -. 

It merely 

dZ, ' 
dv 

dv 

The formula obtained for J is now compared with the Volmer-Flood 
measurements on fog formation at adiabatic expansion of water vapor. 
The factor Zl' is, by assumption, equal to the total surface of the 
free molecules; aoZl' signifies thus twice the number of gas kinetic 
collisions per second between the Z1 vapor molecules. From the mean 
free path length 2 and the mean molecular velocity v the number of 
collisions per cm3-of vapor space follows at 

aoZl' = N 
1. 
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Since 2 i s  inversely proportional t o  the concentration N, we get  - 

where 

N 

L Lo s chmid t number 

number of vapor molecules per cm3 

P vapor pressure m'Hg 

f r e e  path length a t  Oo C and standard pressure 40 
For t he  number of molecules i n  the c r i t i c a l  droplet  we ge t  

whereby I n  - E) = X. 
Pa 

For water (p = 1 g/cm3; u = 75 dyn/cm) 

For the a t t a inab le  supersaturations (x 1.5) n amounts t o  about 
100 molecules. 
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Curve 1 275.2 
Curve 2 261.0 
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Pn 
X Pm 

- 
u(ddcm) calculated 

calculated measured 
~. --- 

75 - 23 1.46 4.30 4.21 
1.64 5.14 5.03 ~- -- 77.28 

._ 

f o r  A '  t he  formula f o r  J reads 

This result i s  then cmpared with the  Volmer-Flood measurements on 
water a t  temperatures T of 260° and 275O. All measurements a t  
I = 270°, pa = 4 Hg, - 2 = 10-5 cm, u = 75 dyn/cm are entered below 
the logarithm. Hence 

The curves obtained f o r  I n  J are shown p lo t ted  against  x i n  
f igure  2 fo r  T 1  = 275.2' and T2 = 261.0~.  But there  i s  a c e r t a i n  
uncertainty as t o  which value of J 
According t o  the graph the curves i n t e r s e c t  t he  x a x i s  a t  such a slope 
that it i s  p r a c t i c a l l y  immaterial, when defining the c r i t i c a l  supersatu- 
r a t ion ,  whether J = l(ln J = 0) or  J = l O ( l n  J = 2.3) i s  p la in  fog. 
Choice of t h e  intersect ion.point  of t he  curves with the  s t r a i g h t  l i n e  
In J = 1, gives the  following values fo r  t he  c r i t i c a l  supersaturation, 
which can be compared with the  measurements 

i s  t o  be designated as condensation. 



Since a l l  fur ther  meas-memerits on other substances i n  the Voher-  
Flood report  have been compared with those measurements on water and 
gave a good confirmation of Farkas' formula, it i s  concluded t h a t  the 
present formula (13) reproduces the  whole avai lable  t e s t  mater ia l  very 
sa t i s f ac to r i ly .  

Preparatory t o  the  problems of the ac tua l  c rys t a l  growkh, the fo l -  
lowing process is  analyzed: 
i s  the base of a simple cubic crystal ,  on which a6 the beginning of' a 
new surface, a layer of edge lengths z and 2 i s  avai lable  and on which 
the ( 2  + 1 ) t h  chain of length z i s  included i n  the growth. The growth 
of t h i s  new chain is analyzed. Figure 3 represents the  stage i n  which 
exact ly  k = 3 atoms of the  ( 2  + 1)th chain a r e  condensed. The d i f f i -  
m l t y  of forming nuclei  here i s  due to the f a c t  t h a t  during the start of 
a new chain the f i r s t  and possibly also the second and th i rd  atom are 
l e s s  so l id ly  bound than those following, which are a l l  bound with the 
same energy (repeatable steps,  according t o  Kossel, bond a t  "half c rys ta l"  
according t o  Stranski) .  So, unless there i s  too much supersaturation 
a f t e r  a complete chain has formed, there i s  a considerable lapse of time 
before - as the start  of a new chain - a l i nea r  nucleus capable of growing 
has formed. The energies, with which the s ingle  atoms a re  bound i n  the 
successive formation of the chain, are indicated with v i ,  92, . . . 
Q, . . .. Then the  poss ib i l i t y  qkdt t h a t  the k-th atom evaporates 
a s  a r e s u l t  of the thermal motion i n  time in te rva l  d t  on a chain con- 
s i s t i n g  of k atoms, i s  given by 

It is  assumed t h a t  thc rectangular area ABCD 

On the  other hand, t he  poss ib i l i t y  adt, t h a t  a fur ther  atom s e t t l e s  on 
the chain, i s  independent of k and solely given by the external  vapor 
pressure. 
surface. I n  tha t  event a i s  essent ia l ly  equal t o  the number of vapor 
atoms per second ar r iv ing  a t  the  surface of a single c rys t a l  atom. The 
quantity a introduced here follows from the a0 ' (of section 2)  by 
mult ipl icat ion with the surface atom. 

It i s  assumed t h a t  there  is no s l i p  of atoms a t  the  c r y s t a l  

We put 

- L 
a = F(T)e kT 
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hence, where the  enerQy JI 
pressure.5 

i s  t he  measure of t he  ex terna l  vapor 
The whole mechanism of growth i s  governed by the  fac tors  

($""k - 
p k = - = e  a kT 

qk 

which for  normal growth a t  the  beginning of t he  chain (k  = 1) are sub- 
s t a n t i a l l y  smaller and f o r  greater  k a l i t t l e  above unity.  I n  conjunc- 
t i o n  w i t h  Stranski and Kossel, t h i s  behavior i s  then schematized so that 
p 1  i s  regarded as very small compared t o  uni ty  and a l l  other p values 
as equivalent and greater  than unity. For the  invest igat ion of t he  growth 
of a chain the  following steady process i s  analyzed: A space under con- 
s t a n t  vapor pressure contains a very la rge  number of c rys t a l s  which a r e  
i n  the  stage of growth represented i n  f igure  3. But t he  new chain i n  
the  process of formation may be of any possible length and assume any 
possible posi t ion 
c rys t a l s  on which 
spec i f ic  posi t ion 
ingly,  the number 
due t o  deposition 
cated by nk+l. 

on the  ra i sed  s ide  of t he  rectangle .  The number of 
the  new chain has exact ly  t h e  length k and i s  a t  a 
a t  the  growing edge i s  indicated with nk; correspond- 
of c rys t a l s  a r i s ing  from the  c rys t a l s  of t he  type nk 
of an atom a t  a ce r t a in  end of t he  chain k, i s  ind i -  

By p a r t i a l  current  J' i s  meant t he  excess of t h e  growth process 
per second which lead from the  nk c rys t a l s  t o  those of t he  type nk+l, 
through the evaporation processes, which lead from nk+l t o  nk. For 
t h i s  specif ic  p a r t i a l  current  

- 

Each chain has then two p o s s i b i l i t i e s  of adding an atom corresponding 
t o  i t s  two free ends. In  the  two posi t ions of chain k i n  which one end 
coincides with one end of t h e  base, there  i s  only one p o s s i b i l i t y  of 
build-up. 
t ions  possible, there  a r e  a l together  
currents 
of length k t o  those with chains of length k + 1. But i n  the  case 
of t rans i t ion  from no t o  n l  there  a r e  only z p a r t i a l  currents  
corresponding t o  the  
the  new chain. 
f o r  z = 6. 

Since, f o r  t he  chain k, there  a r e  (z  - k + 1) various posi-  

J ' ,  which co l lec t ive ly  lead from a l l  t he  c r y s t a l s  with chains 
2 ( z  - k + 1) - 2 = 2(z  - k)  p a r t i a l  

z deposit ion p o s s i b i l i t i e s  of t he  f i r s t  atom of 
This branching of t he  current  is  represented i n  f igure  4 

Now t he  not e n t i r e l y  exact assumption i s  made that a l l  p a r t i a l  CUI"- 
r en t s  leading from k toward k + 1 a r e  equivalent. Since t h e i r  sum 

~~ 

'At absolute zero point  t he  heat of vaporization would have t o  be 
used. As a rule ,  JI s ign i f i e s  a thermodynamic po ten t i a l .  



NACA 'IM 1374 
. 

gives the  t o t a l  current J, each i s  equal t o  

J 
2(2 - k )  

J' = 

It i s  readi ly  apparent from figure 4 that t h i s  assumption cannot be 
rigorously correct  on account of the  equations of continuity between the 
p a r t i a l  currents.  Owing t o  equation (1.7) t h i s  assumption corresponds t o  
the assumption that a l l  posit ions of the chafn 
frequent. 

k a r e  ident ica l ly  

Thus, on t h i s  premise the steady s t a t e  i s  described by the  equations 

n1 = nOPl - - - 

. . . . . . . . . . . .  * I  

. . . . . . . . . . . . .  

J 
2a n, = "z-1Pz - - Pz 

These equations a r e  t rea ted  the same way a s  those of the droplet  forma- 
t i o n  ( i n  sect ion 2) ,  by regarding then as equations fo r  the passage of 
current through a se r i e s  of specified p a r t i a l  res is tances .  By divis ion 
of the  k-th equation by the produce pk+l = p i p 2  . . .  pk+l, they take 
the form 

where t h e  individual potent ia ls  and p a r t i a l  res is tances  indicate 
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Thus, i n  f igure  4 the  e l e c t r i c  po ten t i a l  of a spec i f ic  state i s  
represented by the  quotient of t he  number nk o f  c rys t a l s  i n  state k 
and the  product Q = P i p 2  . . . Bk of the  p values of a l l  atoms bound 
i n  t h i s  s t a t e .  Specific experimental interogatory forms are synonymous 
with the  corresponding statements regarding the  e l e c t r i c  po ten t i a l  d i f -  
ference placed a t  the  ends. However, it i s  t o  be noted t h a t ,  i n  cont ras t  
t o  t he  e l e c t r i c a l  picture ,  t h e  absolute value of the  po ten t i a l  i n  the  
growth process i t s e l f  has a w e l l  defined meaning 

respect ively @k and - @k 

Rk Rk-l 
- 

namely are the  number of individual  processes taking place i n  un i t  time 
from k t o  k + 1 and k t o  k - 1. 

A s  application of (19) the  a c t u a l  l i nea r  nucleation as well  as the  
growth of t he  rectangle layer  about a whole chain i s  now analyzed. 

A. Linear Nucleation 

The procedure f o r  defining the  nucleation frequency i s  the  same as 
for t he  droplet  formation. A l l  t he  c r y s t a l s  fo r  which the  chain has 
reached a ce r t a in  a r b i t r a r i l y  chosen length s a r e  removed; s i s  t o  
be very small compared t o  the  length z of the  edge. The number of 
c rys t a l s  removed per second i s  ca l led  l i nea r  nucleation frequency. 
Hence we put  as = 0 and f ind  

1 J = Oo, with Oo = no 

and 
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With the specialization p2 = p3 = . . . = p and because s << z 

R = L F +  (p"-2 + ps-3 + . . . + 1) 
2a z P l P 2  

is applicable also. 

Disregarding the 1 next to p s - l  and the 2 next to l/p1, leaves 
, hence the frequency of the linear nucleation at one 

of the no edges, independent of s 

1 P R = -  
2az ( P  - UP1 

The factor 2 - - PI, small compared to unity, is regarded as a 
P 

probability that one of the atoms striking the edge (their number per 
second amounting to az) grows up to a new chain. 

B. Deposition of a Whole Chain of Length z 

In this event all the partial resistances from RO to R Z - l  must 
be added up 

J(Ro + R 1  + . . . + R z - l )  = @O - oz 

or 

The first partial resistance 2/z in comparison with 1 
(2  - U P 1  

can always be disregarded. Putting p2 = . . . = pz  = p, we get with 
the abbreviation 
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S n =  ( 2 3  R + B + k + .  . . + 0Z-l) 
L \ r 2  3 z - 1) 

\ 

The sum Sz does not lend i t s e l f  t o  elementary evaluation. The 
approximate value 

used i n  the following i s  obtained by t h e  following consideration: 
Replacing the sum (21) by an i n t e g r a l  gives 

hence, with the  subs t i tu t ion  x = z - -X- 
I n B  

which i s  Y The approximate value i s  obtained by disregarding 
Z h P  

small compared t o  unity, which, however, presents only a rough approxi- 
mation near the  upper l i m i t  of t he  in t eg ra l .  Equation (22) enables the  
deposition of a whole chain z t o  be t r ea t ed  as an elementary process. 
The equation (l7a), val id  fo r  t h e  a c t u a l  elementary process, i s  SFmPlY 
replaced by the r e l a t i o n  

J = n&lz - n,Bz 
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whereby 

2a BZ = - 2 2az In pp-z 
S Z  i 

J 
Az i s  s l i g h t l y  dependent on z, while BZ decreases exponentially with 
z. 
i s  denoted by m, and i s  defined by 

Both quant i t ies  become equivalent a t  a c r i t i c a l  value of z, which 

m i s  t h a t  chain length which is  precisely i n  equilibrium with the  exter-  
na l  pressure. According t o  (16) the  def in i t ion  (24) of m i s  equivalent 
t o  

The mean evaporation enerQy of the " c r i t i c a l  chain mrr i s  equal t o  
the energy * characterizing the external vapor pressure. 

Equation (22) makes it possible to  analyze a chain of length 
an element, through whose deposition o r  evaporation the growth of plane 
nuclei  or  of whole rectangular p la tes  is  controlled.  I n  t h i s  instance 
the growth of a plane nucleus on a given base of edge lengths i and 
k i s  involved. A specif ic  stage of t h i s  growth i s  represented i n  f i g -  
ure 3. The bonding energy of a single atom on the smooth base ("bond t o  
one neighbor") i s  denoted with cpo; 'p1 and cp have the same meaning 
as  i n  sect ion 3. Accordingly, there  are  

z as 

The energy required t o  detach the whole p l a t e  (i, k) from the  base 
i s  then 

'po + (i + k - 2)cpl + (i - l)(k - l ) c p  

%n t h i s  calculat ion it i s  assumed that a t  no time two nuclei  a r e  
simultaneously ex is ten t  on the same chain and then grow together t o  one 
chain. When z i s  not extremely great, t h i s  assumption i s  w e l l  j u s t i f i e d .  
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From the  assumption that p2 = p3 = . . . = P are a l l  equivalent 
and independent of t he  posi t ion of t he  deposited molecule on the  base, 
inevitably follows the  condition 

hence a l so  

The t o t a l  bonding energy of a s t ruc tu re  must be independent of t he  
manner i n  which the  growth takes  place.  Applied spec i f i ca l ly  t o  a system 
of 3 atoms on the base as i n  f igure  5, t h e  binding e n e r a  f o r  growth i n  
the  order of 1, 2, 3 ,  i s  cpo + cpo + cp, but  f o r  t he  sequence 1, 3, 2, it 
i s  'po + 'pl + 'pl. The equal i ty  y i e lds  the  above re la t ionship .  The evap- 
ora t ion  energy of the  whole p l a t e  (i, k) i s  therefore  

Visulize a column of cross  sect ion i x k consis t ing of 2 whole 
( 2  + 1 ) t h  atom layers,  t h e  deposi t  of t he  

rectangle s x z .  I n  analyzing t h e  f u l l  growth of t h i s  deposit  i n t o  a 
whole layer t he  procedure is  the  same as i n  sect ion 3 .  A mul t ip l i c i ty  
of columns and rectangles  of every possible  s i z e  and pos i t ion  i s  assumed, 
with ns,z denoting t h e  number of those a t  which the nucleus (s,z) has 
a specif ic  posi t ion on the  base. 
i s ,  obviously (i - s + 1) (k - z + 1). of the  
columns with a p l a t e  ( s , z )  would then be 
it i s  assumed, as i n  sect ion 3, that each posi t ion of t h e  rectangle  (s,z) 
on t h e  base occurs with the  same frequency. For t h e  current  Js,z, 
leading from s,z t o  s + 1,z, there  a r e  a l together  2 ( i  - s ) ( k  - z + 1) 
poss ib i l i t i e s ,  namely, two each f o r  each spec i f ic  posi t ion of t he  rec- 
tangle  ( s ,z ) ,  with exception of those posi t ions a t  which it l i e s  t o  
the  l e f t  or r i g h t  a t  the  edge. In  these cases the re  i s  only one possi-  
b i l i t y  for  deposit ing a new chain. It i s  assumed again that these 
2 ( i  - s)(k - z + 1) p a r t i a l  currents ,  a l l  of which lead from 
s + l , z ,  a r e  equivalent.  

layer  being located on a 

The number of t he  possible  posi t ions 
The t o t a l  number Zs, 

ns , z ( i  - s + l ) ( k  - z + l), i f  

s,z t o  

Now, i n  order t o  describe the  
foregoing arguments with the  above 

growth of t he  plane c r y s t a l  a f t e r  t he  
equation (22), n, i s  replaced by 

T 

Js, z , while Jsz' i s  
2 ( i  - s ) ( k  - z + 1) 
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t o  denote the current from (s, ) t o  (s, z + 1). 
plane growth i s  then governed by the equations 

I n  the  stead: 

c 

21 

s t a t e  the 
7 

Js ,z  
%+l, z = ns, zPIPz-l - 4a(i  - s ) ( k  - z + 1) SZ 

Js,z' 
SS 

4 a ( i  - s + l ) ( k  - z )  
ns,z+1 = ns,zPIPS-l - 

On the  other hand J 
rill = WOPO - J Po ( 2 6 4  

i s  applicable.  

Now the  content of these equations is  described by a discussion i n  
the s-z plane ( f ig .  6 ) :  

Suppose t h a t  a ce r t a in  l a t t i c e  point s ,z  represents t he  c r y s t a l l i t e  
defined by the edges s and z.  'IFnus, i n  f igure  6, for  example, the 
point A corresponds t o  the c r y s t a l l i t e s  3 x 2. The current J 
flows then horizontally from s ,z  toward s + 1, z, Js,z', but v e r t i c a l l y  
upward from s , z  toward s,z + 1. The whole l a t t i c e  extends t o  s = i 
and z = k. The problem then consists i n  computing a t o t a l  current J 
that en ters  a t  (0.0) and branches off i n  p a r t i a l  currents JsYz and 
Js, Z '  , according t o  equation (26). The obvious method is  t o  regard the 
e n t i r e  f igure  6 a s  the image of a material network through which passes 
a current J under the e f f ec t  of a cer ta in  e l e c t r i c a l  d i r ec t  current 
voltage.  
expressed i n  the form of O h m ' s  l a w  

s ,  z 

To complete the  picture,  the several  equations of (26) must be 

@ S + l , Z  = @s,z - J S , Z R S , Z  

@ S , Z + 1  = os ,z  - J S , Z ' R S , Z '  

which describes the  current i n  the  separate pieces of wire of t he  network 
i n  figure 6. 
(26) by the  product P of a l l  t he  p values occurring i n  the build-up 
of the plane (s + l , z ) ,  t ha t  i s ,  

It can be accomplished by dividing the f i r s t  equation of 

(s+z-1) ps (z-1) PS+l,Z = pop1 
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The potent ia l  os,z and the  p a r t i a l  res i s tances  Rs,z and RS,Z' 
become then 

ns,z 
i 00,o = w,o ns.z - - - ps,z - (s+z-2)p(s-1) (2-1) 

p o p 1  
ps, z 

1 - Rs,z - 4a(i  - s ) ( k  - z + 1) Ps+l,z 

s= J 1 
RS,Z' = 

4 a ( i  - s + l ) ( k  - z )  Ps,z+l 

The whole problem now cons is t s  i n  the  discussion of t he  e l e c t r i c a l  
propert ies  of t h e  network b u i l t  up of p a r t i a l  res i s tances  (27b). 

Introduction of t he  approximate value (2 la )  for S, gives 

- 1 1 
Rs,z - s+z-lPsz-s-z p o p 1  4 a ( i  - s ) ( k  - z + 1). In P 

Introduction of the  c r i t i c a l  edge length m defined by equation (24) 
and with the r e l a t ion  - - - -  - - pm following from equation (25a), the 

Po P 1  
second factor  of the  above RsJz b ec one s 

With a system of axes turned through 45O ( a  along the diagonal, 
r i g h t  angle t o  it) 

( at 

1 s = a + [  

z = a  - t ;  

becomes 
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. 

hence the f ac to r  of Rs,z i n  question 

The re la t ionship  of 5 implies: i f  the p a r t i a l  res i s tances  Rs ,Z ,  
which a r e  met by a normal t o  the diagonal, a r e  examined, they a r e  seen 
t o  have a sharp minimum on the  diagonal i t s e l f  (at One, two, 
th ree  l a t t i c e  points  away from the diagonal, the res i s tances  increase by 

of t h i s  l a t t i c e  i s  conductive, while along the diagonal (change of 
a t  
a t  the  c r i t i c a l  edge length.  
the  d is tance  from t h i s  point t o  the  p-1, p-4, p-9-th f rac t ion ,  when 
the dis tance from u = m amounts t o  one, two, th ree  l a t t i c e  poin ts .  
Therefore, the  e n t i r e  current  must flow along the diagonal i n  a narrow 
gorge, characterized by the  fac tor  
s teep "pass" a t  

5 = 0 ) .  

the  f ac to r s  p, p4, p 9 , e tc .  Thus p rac t i ca l ly  only the diagonal s 2 z 
u 

There the p a r t i a l  res i s tances  drop with 
5 = 0) ,  t he  res i s tance  has the  same sharp maximum a t  u = m, i . e . ,  

$ 2 ,  which i n  tu rn  leads over a very 
(T = m. 

The over-al l  res i s tance  R of the e n t i r e  network i s  p rac t i ca l ly  
concentrated on the  res i s tance  

R = Rm,m - - 1 pm+m2 
4 a ( i  - m ) ( k  - m + 1 ) m  I n  P 

(29)  

a t  the height of the  pass. Naturally, it is  assumed then t h a t  the  spot 
s = z = m s t i l l  l i e s  subs tan t ia l ly  within the  l a t t i c e .  A fu r the r  discus- 
s ion of the  branching conditions i n  the immediate v i c i n i t y  of the  spot 
m,m could contr ibute  t o  the  expression R no more than a f a c t o r  c lose  
t o  unity,  which, however, would be useless f o r  the  purposes involved here.  
Now the  two questions concerning the  frequency of plane nucleations, as 
wel l  as the  growth of the  rectangular column i x k around a whole layer,  
can be answered exact ly  as f o r  the chain i n  sect ion 3 .  

A. The Formation of Plane Nuclei on a Rectangle Base 

To determine the  nucleation frequency, a l l  the  columns for  which 
the  sum of the  edges has reached an a r b i t r a r i l y  specif ied value 
s + z = n are withdrawn from the  vapor space and counted, t h a t  is, the 
l a t t i c e  points  lying on the s t r a igh t  l i n e  s + z = n a r e  grounded. The 
saddle point  s = z = m i s  found t o  be located s t i l l  within the  thus 
out-off t r i ang le  and a l s o  t h a t  n and hence m i t s e l f  should be very 
small with respect  t o  the edges i and k of the  base. The r e s u l t  i s  

s + z 

pm+2, hence, t he  nucleation 1 
4 a i h  ~n B 

the  sa t i s f ac to ry  approximation: R = 
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current for a single one of the no c rys ta l s  i s  

The two factors  p and m s t i l l  remaining a r e  t i e d  t o  one another 

pm = e kT , according t o  equation (24), with the a id  of 
'P- 

by the re la t ion  
which one of the two can then be eliminated from equation ( 3 0 ) .  

Elimination of p leaves 

m( 'P -01)  'P-01 
- -  - 4aik 'P - 'P1 e- kT e kT 

kT 

Here, as  it should be, 

half  the free-edge e n e r a  
kT 

i s  i n  the f i r s t  e power, because l ( c p  - cpl) i s  the free-edge energy 

per atom, 4rnL((p - 91) is, therefore,  the  t o t a l  free-edge energy. The 

plane energy accompanying the formation of the chain ( a t  both of i t s  
ends!) i s  i n  the second e power. The fac tor  before the  already thermo- 
dynamically required e function i s  extremely simple: i t s  order of 
magnitude i s  defined by the number 

impinging upon the p l a t e  i k .  

2 

2 

a i k  of the vapor atoms per second 
4('P - 91) The then s t i l l  remaining fac tor  

kT 
. It has no significance fo r  the evaporation heat i s  nearly equal t o  

D m  
I\ I 

only interest ing order of magnitude of J. 

On the other hand, when m subs t i tu tes  f o r  m + 1, the elimination 
of m from equation (30)  gives 

.- ((P-(P# 

J = 4aik  e 'PI e (kT);! In p 
kT 

This equation gives the dependence of current J on the  experimen- 
t a l l y  d i rec t ly  defined supersaturation 13. 
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c 

B. A t  t he  formation of a whole plane 
lyze the  e n t i r e  rectangular network on which the  current  J is  introduced 
a t  point ( 0 , O )  and channeled off a t  ( i ,k )  

i X k it is  necessary t o  ana- 

- 
where Ri,k i s  the  over-al l  res is tance of t he  e n t i r e  rectangular network. 

Here, a l so ,  the  only case of i n t e re s t  i s  that where the  point (m,m) 
Fi ,k,  therefore, according t o  equation (29), l i e s  s t i l l  within the  net; 

may be replaced by Rm,m. If use i s  made of t he  r e l a t ions  Pop = p12 

# and 1 = pm i n  the  product Ps,z, Ps,z then bee ome s 
P 1  

Thus, by equations (27) and (29) 

On the  bas i s  of t h i s  equation (31), t h e  accumulation of a whole 
The equation plane can henceforth be t rea ted  a s  elementary process. 

appl icable  t o  it reads 

where 

I Ai,k = 4a(i  - m ) ( k  - m)m In pj3-m-m2 

pm2- ( i - m )  (k-m) 
Bi ,k  = Ai,k  

J 
Both quant i t ies  are equivalent a t  m2 - (i - m)(k - m )  = 0 o r  

i k  = (i + k)m. For square plates ,  which are p r a c t i c a l l y  the  only ones 

7Multiple nucleation i s  excluded again.  A t  very great i and k 
the  foregoing i s  therefore  no longer applicable.  
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occurring a t  t he  subsequent growth of the s p a t i a l  c rys ta l ,  it r e s u l t s  i n  
i = k = 2m. 
be ident ica l ly  great u n t i l  t he  edge length of the  plane i s  twice as great  
as the  c r i t i c a l  chain length m. Naturally, t h i s  r e s u l t  w a s  t o  be fore-  
seen by reason of the  f a c t  that the  equilibrium vapor pressure i s  defined 
by t h e  mean evaporation energy, as already predicted by Stranski and 
Kaischew. It is  t o  be noted t h a t  Ai,k i s  very s l i g h t l y  dependent on 
i and k, while Bi,k decreases rapidly with increasing s i z e  of the  
plane. 

The probabi l i ty  f o r  evaporation and condensation w i l l  not 

5 .  THE CRYSTAL NUCL;EUS 

After these preparations the  quant i ta t ive  treatment of t he  nucleation 
frequency for s p a t i a l  c rys t a l s  i s  easy. Again v isua l ize  i n  a vapor space 
a Large number of box-like c r y s t a l s  of a l l  possible edge lengths 
2 i n  steady d i s t r ibu t ion  so that the  vapor pressure remains constant 
and t h a t  a l l  c rys ta l s ,  as soon as they have reached a ce r t a in  s ize ,  a r e  
removed from t h e  space and counted. The number of c rys t a l s  with the  edge 
lengths i, k, Z i s  assumed a t  Zi,k,z. They may, for example, change 
t o  c rys ta l s  (i + 1, k, 
plane can be deposited on two d i f f e ren t  s ides  of t he  l i t t l e  box. The l a w  
f o r  t h i s  process w a s  defined i n  equation (31). Replacing ni,k by 
Zi+l,k,Z, %,O by Zi,k,Z, i , k  by k,Z and J by 1/2Ji,k,z r e s u l t s  
i n  

i, k, 

2 )  by gathering of a plane (k,Z), that is, t h i s  

m+ (k-m) ( Z -m) 
(33 ) (k-m) ( 2  -m) -rn2 - Ji,k,Zp 

8a(k - m ) ( Z  - m ) m  In p 'i+l,k,Z = 'i,k72p 

where J i , k , ~  indicates  t h e  p a r t i a l  current  t h a t  leads from i,k,Z t o  

i + l,k,Z. 
can again be put i n  the  f o r m  

By the  method previously used several  times, equation (33) 

'i+l,k,2 = 'i,k,Z - Ji,k,Z R i,k,Z (34 ) 

and ident i fy  it as  the  e l e c t r i c a l  current  i n  a s p a t i a l  network whose la t -  
t i c e  points have t h e  po ten t i a l  @i,k,z and in  which Ri k 2 i s  the  ohmic 
resis tance of the  piece of wire t h a t  leads f r o m  i,k,Z t o  i + l ,k,Z. 
The t r ans i t i on  from (33) t o  (34) is  accomplished again by divis ion of (33) 
by t h e  product Pi+l,k,z of a l l  t he  p values which occur during the  suc- 

The factor for  Zi,k,2 i n  equation (33)  is  prec ise ly  the  product %,I 

? ,  

cessive development of t h e  state (i + l ,k ,2)  from (i + l )k ,2  s ing le  atoms. 4 
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of the  
t i c u l a r  react ion.  The product Pi,k,Z can be constructed as follows: 
On a s ingle  atom f r e e  columns of i - 1, k - 1, 2 - 1 atoms are depos- 
i t e d  along the  coordinate axes, each of which gives t h e  f ac to r  PO. The 
spread-out rectangle  s ides  are then f i l l e d  out .  It y ie lds  
(k - 1) ( 2  - 1) + ( 2  - l)(i - 1) times t h e  f ac to r  p 1  and, i n  addi t ion,  
(i - 1) (k - 1) ( 2  - 1) times the  fectcr  Benze, a l together  

p values f o r  that plane (k, 2 )  which i s  newly added i n  the  par- 

(i - l ) ( k  - 1) + 
E .  

i+k+2 -3p1(i-1) (k-1)+ (k-1) ( 2  -l)+( 2 -1) (i-1) p (i-1) (k-1) ( 2 - 1 )  Pi,k,2 = PO 

f o r  which the  r e l a t ions  - ' 0  = - ' 0  - - pm give 
E 1  P 

- B-m( ik+k2+2i)+ik2+3m-l 
'i,k,2 - 

and 

(k-m) ( 2 -m) -m2 'i+l,k,Z = 'i,k,ZP 

By div is ion  with t h i s  quantity, we obtain i n  equation (34) as f ac to r  
of J i ,k , J  the  f i n a l  term f o r  t he  p a r t i a l  res i s tance  

B m(ik+k2+2i) -ik2+m2-2m+l ( 3 5 )  1 
8a(k  - m ) ( 2  - m)m I n  B 

*i,k,2 = 

To c l a r i f y  the  behavior of the  exponent v i sua l ize  a perpendicular 
l i n e  dropped from the  point 
u ,u ,u  

i ,k,2 of t h e  network on the  space diagonal, 
t o  ind ica te  t h e  foot  of t h i s  perpendicular. 

Put t ing 

i = a + r l  

k = u + r 2  

2 = u + r  3 I 
t he  construction given then 

r y  + r2 + r3 = 0 
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along w i t h  

BY ( 3 6 )  and (36a) 

and 

1 ikZ = a3 - -01-2 + rlrF3 
2 

With t h i s  the exponent of equation (35) reads 

m(ik + k2 + Z i )  - ikZ = 3u 2 m - a3 + -(a 1 - m ) r 2  - r l r93 
2 

Disregarding the  p rac t i ca l ly  nonessential  term rlrs3 ( the  sur- 
rounding of the diagonals being considered), t he  conditions f o r  Ri,k,z 
are t h e  same as before i n  sect ion 4 f o r  the plane l a t t i c e .  The f ac to r  
g( 1 u-m)r2 

i n  t he  region u > m so le ly  considered here, e f f e c t s  such a - 
rapid r i s e  of the  res i s tance  on leaving the  diagonal, t h a t  the  current 
can flow p rac t i ca l ly  only on t h e  diagonal On the  diagonal i tsel f  
t h e  factors  p3u2m-U3 has such an enormously s teep maximum a t  (T = 2m, 
that the  e n t i r e  voltage drop along the  diagonal i s  p rac t i ca l ly  defined 
so le ly  by t h e  p a r t i a l  res i s tance  

r = 0. 

%I.,% = 1 p 4 ~ 3 + m 2 - ~ + l  

8am3 Ln p 

the  nucleation frequency i s  therefore  Owing to %,l,l = Z l , l , l  
defined a t  

Elimination of p by means of 
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leaves 

. 

c 

The fac tors  deciding the  order of magnitude of J are a Z 1  1 1  and 
9 ,  

t he  f i r s t  of the  three e-functions; 
fac tor  aOZl' 
k ine t ic  co l l i s ions  per second. 

a Z 1 , 1 , 1  i s  e s sen t i a l ly  ( l i k e  the 
i n  equation (13) f o r  droplet  formation) the number of gas 

The f i r s t  e-power is  synonymous with the  

1 
2 

- 0 F n  
f ac to r  e 3kT of the thermodynamic formula ( 5 ) .  I n  f ac t ,  - (cp - cp1)  
is the surface energy per atom; the  t o t a l  surface energy of the  cube of 
c r i t i c a l  edge length 2m, therefore, is  equal t o  

12m2((p - cpl); t he  th i rd  portion of it stands, a s  it should be, i n  the 
exponent. The exponent of the second e-function indicates,  a s  shown i n  

(&)2 x 6 x $9 - 91) = 

1 edge energy 
2 > k T  

sec t ion  4, - f o r  a c r i t i c a l  plane nucleus. This fac tor  

occurs i n  s imilar  manner i n  the  report by Stranski and Kaischew too. 
Admittedly, i t s  appearance hinges on t he  exact knowledge of the  fac tor  
m, as i s  apparent from the f a c t  that i n  equation (37) the term with m2 
can be made t o  disappear completely, i f  m i s  replaced by m - A. For 

the  problem involving the c r i t i c a l  supersaturation the second and th i rd  
e-functions a r e  ignored. 

12 

6 .  TIIE OSTWALD LAW OF STAGES 

This l a w  s t a t e s  that i n  the formation of nuclei  from supersaturated 
vapor the  l iqu id  phase is separated f i r s t ,  a s  a rule, even when the t e m -  
perature of the  vapor i s  considerably below the freezing point.  Our 
r e s u l t s  on the  nucleation of l iqu id  (13) and solid (37) nuclei  enable a 
theo re t i ca l  foundation and a quantitative improvement of this l a w  t o  be 
made. 

Omitting the  last two e-functions i n  (37a) and introducing the  rela- 
t i o n  f o r  Voher 's  exponent of equation ( 5 )  
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we get by equation (37a) on the c r y s t a l  nucleus 

Crystal  : Jcrystal = 2aZ1,1, lA"e-A" 

while equation (13) produced 

The factor Zl l  w a s ,  according t o  sect ion 2, t he  number of vapor 
molecules multiplied by i t s  surface.  Since, according t o  sect ion 3, a 
a r i s e s  f rom a. by mult ipl icat ion with the  atom surface, a Z 1 , 1 , 1  and 

aoZll a r e  i den t i ca l  i n  order of magnitude. Thus, t he  fac tor  K of 
equation ( 5 )  for the  formation of droplets  appears smaller by 
f o r  the formation of the  c rys ta l ,  where n denotes the  molecule number 
of the nucleus. Although n i s  the  order of magnitude of 100, t h i s  
fac tor  i s  not decis ive i n  the problem involving the  c r i t i c a l  supersatura- 

l / n  than 

t i on .  Moreover, it would be considerably overbalanced by the  f ac to r  

p-m2 omitted a t  Jcrystal. The fac tor  A" and E matter even l e s s .  

A s  long as no d i r e c t  measurements of J a r e  planned, but  merely the  order 
of magnitude of the  critical'supersaturation, t he  simple r e s u l t  i s :  The 
fac tor  K i n  Volmer's nucleation formula i s  simply equal t o  the  number 
of gas kinet ic  co l l i s ions ,  f o r  t he  droplet  as fo r  the  c rys t a l .  This 
s ta tementappl ies ,  as seen i n  sect ion 3 and sect ion 4, t o  l i nea r  and plane 
nuclei; naturally,  involved here i s  so le ly  the  number of co l l i s ions  per 
second a t  the  base. 

The decisive reason fo r  t he  v a l i d i t y  of t h e  l a w  of s tages  remains 
then solely t h e  f a c t  t h a t  i n  the  quant i ty  - uF the  surface F of t h e  

3kT 
nucleus corresponding t o  a ce r t a in  supersaturation i s  greater  on the  cube 
than on the sphere. The difference i n  shape i s  the  deciding fac tor ,  not  
t he  c rys ta l l ine  s t ruc ture .  I t s  e f f ec t  i s  computed on the  assumption t h a t  
the  molecular volume v and the  surface tension u f o r  f l u i d  and c r y s t a l  
are equivalent. 

I 

If F = Cn2h i s  the  surface corresponding t o  the  molecule number 
Pn n, then by equation (l), with x denoting t h e  abbreviation of In - 
PCD' 



hence the  surface corresponding t o  x 

The nucleus volume V f o r  the  sphere (radius r )  i s  

v = nv = kr3; thus, F = ~II(&)"~V%~/J 
3 

fo r  t h e  cube (edge length a ) :  

V = nv = a3, hence, F = 6v2/3n2/3 

Hence, f o r  the  sphere 

c3 = 365rv2 

and f o r  the  cube 

The c r i t i c a l  area corresponding t o  the  sane x i s  - - - 1.91 times 
3I 

grea ter  f o r  t h e  cube than the  droplet .  
frequency, hence, equal values of F, it must 

To assure iden t i ca l  nucleation 

Xcube = ( ci:;::er/2 = mi = 1.38 
Xsphere 

For t h e  c r i t i c a l  supersaturations themselves the  condition would be 

A s  an i l l u s t r a t i o n  f o r  applying t h i s  re la t ionship,  t he  supercooling 
a t  which c r y s t a l l i n e  and f l u i d  nuclei occur with comparable frequency 
i s  analyzed. The saturat ion vapor pressure of t he  l iqu id  phase i s  denoted 
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by p1, that  of the  s o l i d  phase by p2. By equation (38) t he  condition 
for  comparable nucleation frequency reads 

o r  

(The factor  2.6 i s  equal t o  1: (1.38 - 1). 
sure curves I n  p1 and In p2 p lo t t ed  against  T. Accordifig t o  equa- 
t i o n  (39)  t he  curve f o r  
indicated by the  broken curve. 
l i n e  nuclei, above it, more f l u i d  nuclei  a r e  t o  be expected. 
t h i s  theore t ica l ly  in t e re s t ing  so lu t ion  i s  meaningless i n  prac t ice  as 
long as t h e  nucleation frequency l ies  below a l i m i t  amenable t o  observa- 
t ion .  For that reason it i s  necessary t o  determine, i n  the  same manner 
as i n  section 2, the  curve of that pressure a t  which a formation of f l u i d  
nuclei  occurs a t  a l l  i n  observable amounts (dotted curve).  The in te rsec-  
t i o n  point A of t h e  two curves character izes  the  temperature TA a t  
which an isothermal pressure r ise would r e s u l t  i n  a simultaneous separa- 
t i o n  of f l u i d  and c rys t a l l i ne  nuclei .  Below TA only solid, above TA 
only f l u i d  nuclei  would be observed. 

Figure 7 shows the  vapor pres- 

In p would then have about t he  shape of t.hat 
Below t h i s  l imi t ing  curve, more c rys t a l -  

However, 

Naturally, it may a l so  happen that no in te rsec t ion  point appears. 
8 In  t h a t  event, t he  l a w  of s tages  holds unrestr ic tedly.  

7 .  THE GENERAL RESISTANCE ANALOGY 

A s  already s t a t ed  several  times i n  t h e  foregoing, t h e  equations (l'j'), 
(23), and (32), applicable t o  the  elementary process, can be so  t rans-  
formed by extension with a su i t ab le  f ac to r  t h a t  they could be in te rpre ted  
as the  Kirchhoff equations of a su i tab ly  chosen network of wires. It can 
be proved that t h i s  e lectrotechnical  analogy i s  possible  i n  complete 
generali ty f o r  t he  condensation and d isso lu t ion  process of any s t ruc tu re  
consisting of atoms. 
of a substance, some f rac t ions  of another phase are present i n  a con- 
t a ine r .  
way infringing upon the  general  character .  An uninterrupted input O r  

t ransport  of vapor and removal or addi t ion of c rys t a l s  of random specif ic  
s i z e  assures the  steady d i s t r ibu t ion  of t he  c rys t a l s  of various s i zes  and 
shapes. 

Again it i s  assumed tha t ,  besides the  vapor phase 

These f rac t ions  a re  here inaf te r  ca l led  c rys ta l s ,  without i n  any 

L 
8Such a case seems t o  e x i s t  i n  t he  theo re t i ca l  case t r ea t ed  by 

Stranski and Totomanow (Z .  f .  phy. Chem. ( A ) ,  163, p. 399, 1933).  
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Next, we consider any random specified type of c rys t a l s ,  say, of 
the  shape represented i n  f igure 8, f o r  example. For a f u l l  descr ipt ion 
of such a c rys ta l ,  a greater number of parameters a r e  usually advantageous, 
a s ing le  one of which is ,  say, t he  number v of atoms i n  t h i s  c rys t a l .  
By deposit ion of an atom a t  a w e l l  defined spot of t h i s  c rys t a l ,  a crys- 
t a l  of type I1 with v + 1 atoms i s  produced. J i s  the  excess per sec- 
ond of t he  growth processes which lead from I t o  11, through the  evapora- 
t i o n  processes whicn lead from I1 t o  I. Then, i f  n I  and n I I  are 
the  number of c rys t a l s  of kype I and I1 i n  the  steady s t a t e ,  t h e  equation 
for  t h i s  spec i f ic  t r a n s i t i o n  process reads 

where a and qv+l a r e  t h e  repeatedly employed deposi t ion and evapora- 
t i o n  p robab i l i t i e s  of the  atom at  that  pa r t i cu la r  spot .  With the  abbre- 
v ia t ion  p v + l  = - a the  r e s u l t  i s  again 

qv+1 

- Jr cpv+l 
kT - -  

Again qv+l = F(T)e and a = F ( T > ~  kT, are introduced, hence, 
%J+l - Jr 

The energy of separation 'p,,+l depends, as a rule, on a l l  t he  param- 
e t e r s  of state of t he  states I and 11, ra the r  than on v alone. 

Now, v i sua l ize  the  c r y s t a l  I1 b u i l t  up successively from s ingle  
atoms. To ea,ch one of t he  v + 1 single processes, t he re  corresponds 
a spec i f ic  p i .  The individual p i  s t i l l  w i l l  be dependent upon the  
sequence i n  which the  atoms of t he  c rys t a l  are Joined together.  But the  
product P(IJ-) of a l l  p i  

v+l 

gFactor p1, which by i t s e l f  corresponds t o  no growth process, i s  
put equal t o  1; hence c p 1  = ~ r .  
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is solely dependent upon the configuration 

total work of growth >vi can no longer 

which the growth took place. 

v + l  

i =1 

Dividing equation (41) by PII gives 
v + l  

where, for abbreviation 

and 
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of crystal 11, because the 

depend upon the manner in 

1 1  R = - -  
I a %(I) 

Every possible form of crystal can now be characterized by a point 
in the space of the parameters, which define this form. 
transition, 1-11, we then correlate a wire connection between the 
points of state I and 11, to which the resistance given by equation (41b) 
is allocated. 
equations of this wire netting and 
the nodes in this net. This interpretation is possible, because 0 is 
merely dependent upon the state, but not the manner in which a crystal 
is built up. 

To every possible 

The equation (42) can then be regarded as the Kirchhoff 
GI as the corresponding potential of 

Obviously, this network of wires does not have to be multidimensional. 
Since the number of possible forms is finite, theoretically one parameter 
that counts the possible forms, may be sufficient. But for the represen- 
tation the use of two or three parameters, as in sections 4 and 5, is more 
convenient so that the net becomes two or three dimensional. 

This network itself is rather complicated even in simple cases. In 
the networks treated in sections 4 and 5, a large number of wires were 
consistently ignored because of their high resistance and complete wire 
systems combined into one resistance. For the actual calculation, this 
general analogy is therefore of little help. 
tative distribution of the resistances will be indicated. 

However, the purely quali- 
G 
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L 

The res i s tance  of a wire depends so le ly  upon i t s  i n i t i a l  point  and 
has the  form 

V 

W -  2 ~ i  
kT 
- - 

1 
a 

R = - e  

V 

where t h e  quant i ty  i n  t h e  exponent i s  the  work t o  be per- 

formed t o  produce t h e  system corresponding t o  the  i n i t i a l  point of t he  
wire by revers ib le  process from the  vapor. O f  a l l  t h e  w i r e  j o i n t s  which 
lead from c r y s t a l s  with v atoms t o  those with v + 1 atoms, the w i r e s  
proceeding from t h e  c rys t a l s  with the l e a s t  work of growth a r e  therefore  
the  wires of t he  smallest  res is tance.  Whether this  minimum is always as 
sharp i n  more general cases a s  on the model used above, requires  fu r the r  
study. 
smaller t o  l a rge r  c rys t a l s ,  t he  work of growth must, a t  some time, reach 
a maximum value, because, while f o r  very small systems it ce r t a in ly  
increases  w i t h  v, it must, a t  very great v become proportional with 
v negatively a r b i t r a r i l y  great ,  so f a r  as t h e  vapor i s  supersaturated 
a t  a l l  with respect  t o  the  very large c rys t a l s .  
the  res i s tance  reaches i t s  (absolute) maximum with regard t o  advancing 
with v and a minimum i n  comparison t o  t h e  other  wires with the  same v, 
i s  ca l led  the  Volmer nucleus. The resis tance a t  t h i s  point i s  

v$ - ZCpi 
i =1 

During the  advance along the  road of minimum res i s tance  from 

The c r y s t a l  on which 

with AK the  work of nucleation. As i s  seen, t h e  saddle-like character  
of t h e  res i s tance  d i s t r ibu t ion  near the nucleus i s  completely independent 
of t he  model. 
about the number of p a r a l l e l  wires of equal res i s tance  i n  the saddle 
point,  t h e  d i s t i n c t  character of t h e  saddle, and the  extent  t o  which any 
secondary maximums i n  the  otherwise very jagged curve of t he  res i s tance  
become evident.  The order of magnitude of the t o t a l  res i s tance  between 
two points  with very small and very great v is ,  however, so le ly  defined 
by Rnucleus. 

The spec i f ic  model representations merely y ie ld  information 

Translated by J. Vanier 
National Advisory Committee 
f o r  Aeronautics 
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3 x i  -zXi3 
Ri t Ex!onent 
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Figure 1.- Resistance Ri plotted against droplet radius xi 
(case . A' = 10 and n = 100). - - -: Curve of exponent 
3xi2 - 2xi 3 . 
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t InJ  T= 275.2O T=26f.0° 

Figure 2.- In J plotted against x = In 2 at two temperatures, 
P, 

computed for water by equation (1 3a). 

. 
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Figure 3.- A specific state of crystal growth. 

Figure 4. C h a i n .  
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2 Figure 5. - Derivation of the relation P@ = P 1 . 
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I 1 I I I . *s 
1 2 3 4  5 6 I 

Figure 6.- Current network for growth of the plane. 
Rectangle: 3 x 2. Size of base: 8 x 7. 

Point A: 
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Figure 7.- Ostwald's law of stages. - - -. . Curve of equal frequency 
of critical crystalline and fluid nuclei. Above OA: Excess of fluid 
nuclei. Below OA: Excess of crystalline nuclei. . . . . Curve of 
nucleation frequency 1. 
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State I 

0 .  

State II 
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Figure 8.- The most elementary process of crystal growth. Deposi- 
tion of one atom at the emphasized spot of state I leads to state II. 
Evaporation of raised atom on cr37staJ I1 leads to crystal I. 
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