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KINETIC TREATMENT OF THE NUCLEATION
IN SUPERSATURATED VAPORS*

By R. Becker and W. Doring
INTRODUCTION AND SYNOPSIS

The "nucleation in supersaturated systems" (such as the formation of
fog in supersaturated water vapor, for example) was originally made amen-
able to quantitative treatment by Volmer and Weber (ref. 1). To every
saturation there corresponds a certain critical droplet size of the new
phase of such a type, that the vapor is supersaturated only with respect
to those droplets which are bigger than the critical droplet, but not to
those which are smaller. The formation of fog is therefore contingent
upon the origin of "kernels" or nuclei, i.e., droplets of precisely that
critical size by a typical phenomenon of fluctuation. The frequency of
such processes is, according to the relationship between entropy and prob-

T
ability, proportional to e , where Aqrit. 1s the energy required
for the reversible creation of such droplet. Volmer's treatment is
briefly reviewed in section 1. The proportionality factor X, as yet
indeterminate (in our equation (5)), was calculated by Farkas (ref. 2) for
the case of droplet formation by a kinetic treatment, the results of which
are fully confirmed (in section 2) by a more lucid method of calculation.
The drawback of Farkas' calculations, as well as the arguments advanced
by Stranski and Kaischew in connection with it (ref. 3), is that these
writers' first convert the elementary equations of the kinetic theorem,
each of which refers to the evaporation and condensation of a single mole-
cule, in a differential equation which, when integrated, produce new and
not always lucid constants. The change to the differential equation is
risky because the ensuing functions of the molecule number n are at
first def. 1ed only for integral values of n and at the transition from
n to n + 1 change frequently so much that the differential quotient
loses its significance. By disregarding this risk Kaischew and Stranski
obtained an incorrect resutt which differs from that of Farkas. On the
other hand, the change into differential equation is entirely unnecessary
(as will be shown in section 2). The algebraic equations for the indi-
vidual processes give the wanted result by a simple, purely algebraic
process of elimination. This method is shorter and less subject to errors
than that of Farkas. Furthermore, the appearance of indeterminate

*"Kinetische Behandlung der Keimbildung in Ubersattigten Dampfen,"

Annalen der Physik, Folge 5, Band 24k, 1935, pp. T19-752.
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integration constants is completely avoided. Thus Farkas' final for-
mula, for example, still contains a constant which he himself designates
as indeterminate, while in reality, an accurately estimable value cor-
responds to it, which is in optimum agreement with the Volmer and Flood
measurements.

The next three sections deal with the origin of critical nuclei, to
which the general thermodynamic analysis of section 1 is applicable as

for the droplets.l The first kinetic calculation of the thermodynami-
cally indeterminate quantity K for crystals was made by Kaischew and
Stranski (ref. 4). This important investigation prompted the present
study. With regard to the highly idealized crystal model, use is made
of the simple cubic lattice, utilized by Kossel as well as by Stranski,
which consists of nothing but cubic basic elements, which are in ener-
getic reciprocal action only with its six nearest neighbors. However,
our results are largely independent of this special model conception.
The kinetic analysis, like that of Stranski and Kaischew, results in a
confirmation of Volmer's formula. On top of that, we succeeded in
defining the absolute value of K for this case too.

Our algebraic method of eliminating the intermediate states not of
direct interest affords an instructive representation suitable for
the discussion of the particular nucleation process on the passage of
an eleciric current through a network of wires of specific electric poten-
tial differences at the ends of the network and given ohmic resistances

of the individual wires forming the network.?

The whole discussion of the system of algebraic equations is then
equivalent to an investigation of the conductivity properties of this .
network. This method produces in sections 4 and 5 a comparatively simple
and clear calculation of nucleation frequency for two- and three-
dimensional nuclei.

lxossel's contrary opinion (Ann. 4. Phys. (5), 21, p. 457, 193k4)
stems from a misconstrued conception of the nature of thermodynamic
considerations, which never refer to individual molecules but to those
average values which in technically feasible experiments, come under
observation. For example: the work of separation of the single molecules
in a lattice plane may Jjump back and forth arbitrarily; but in the evap-
oration of the total lattice plane, only the mean separation work enters
the balance of the thermodynamic process as heat of evaporation.

2The possibility of such a representation was originally voiced by
R. Landshoff in a conversation. Another, even more instructive repre-
sentation is that of a diffusion process. (Cf. Volmer, Z. f. E., 35,
p. 555, 1929.) But for the purposes of a quantitative treatment, our
electrical pattern should be superior to the diffusion pattern, especially .
when a change from droplet to crystal is involved.
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As an example for the application of the obtained results, the expla-
nation and limits of wvalidity of Ostwald's step rule are discussed in sec-
tion 6 Lastly (section 7), mention is made of the unusual and rather
general fact that in our electrical representation of the process of
growth the resistances of all separate wires, which start from a specific

+ ==
state 1n the direction of growth, are given exact by Constant X e kT,
where A 1is thermodynamic potential of this state with respect to the
initial state (vapor, for instance). The kinetic interpretation of
Volmer's formula (5) amounts then to indicating that the total resistance
of the network is dependent solely on those pieces of wire which lie in
the region of the point related to the critical droplet or crystal.

1. THERMODYNAMICS OF NUCLEATION

If n denotes the number of molecules contained in a droplet, F
its surface and ¢ 1its surface tension, the relationship between its
vapor pressure pp and that of a flat fluid surface (pe) reads

Pn
dnkT In — = o 4F (1)

Do

where dn- is the increase in the number of molecules corresponding to
the surface increase dF. With the radius rp of the droplet for spher-
ical shape

n=in rnd B and F = bxrp®
3 m
hence
in 2_.= 2om 1 (2)
P kTp I'n

rn, 1s the critical droplet radlus corresponding to the pressure pp.

At given pressure, droplets with smaller radius evaporate, those with
larger radius grow. A droplet which is exactly in equilibrium with a
given pressure, according to equation (2), is hereinafter also designated
as critical droplet or as nucleus corresponding to the particular pres-
sure. A condensation of the supersaturated vapor can therefore take
Place only when a nucleus originates as a result of a fluctuation phe-
nomenon associated with entropy decrease.

According to the Boltzmann relationship between entropy and proba-
bility, the probability for the appearance of such a droplet is
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-2
proportiocnal to e k, where S 1is the entropy decrease associated with
the formation of a droplet of radius rp from a vapor of pressure bpp
at constant volume and constant energy. If the number of molecules con-
tained in the vapor space 1s excessively great with respect to n, this
entropy decrease is equal to l/T times the work A that must be per-
formed in order to produce such a droplet in the vapor space isothermally

and reversibly. This work can be determined, according to Volmer, by the
following process:

1. Removal of n molecules from the vapor space
2. Expansion of py to Pw
5. Condensation on a flat fluid surface
L. Formation of droplet from the fluid
The sum of these four operations must give the wanted quantity A;
but (1) and (2) compensate one another, which leaves
A = -nkT In En + oF
Poo

Hence, with equation (1) borne in mind

A= GF(l - %%nﬁ) (3)

Since F = Constant X n2/3, it follows that

=1
A = 3 Fo (h)

For the number of fog droplets produced per second, denoted hereafter
by the letter J, we therefore expect

_ UFn

where Ty is the surface of the critical droplet corresponding to the
given pressure p. The factor K still remains indeterminate in the
thermodynamic study, and must be defined by kinetic analysis as origi-
nally made by Farkas. The subsequently chosen method of computing X
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is clearer from the methodical point of view. Aside from that, the origin
of crystal nuclei is to be treated also for which this equation (5) must,
naturally, be applicable too. It will be seen that the factor K for
fluid nuclei and crystal nuclei of equal order of magnitude is given by
the gas kinetic collision factor.

Regarding the differential quotient dF/dn in equations (3) and (1),
it should be noted that dF/dn 1is the mean growth of surface in the devel-
opment of a molecule. For in the thermodynamic equation (1), dn
still must always contain a multiplicity of molecules, although the equa-
tion is inapplicable as yet to single molecules. If this averaging of
surface growth per molecule is not carried out over a greater number of
molecules, the surprising result is that the concept of vapor pressure
loses its simple meaning for crystals, as shown by Kossel (ref. 5),
because the increase of crystals in the growth of a molecule is mostly
zero, but now and again very great too.

2. FLUID NUCLEI

Consider the following quasi-stationary condensation process. The
vapor pressure p 1in a very large tank is kept constant by addition of
single molecules. Droplets are then produced continuously which would
increase infinitely without outside interference. To prevent this, each
droplet, as soon as a certain number s of molecules is reached, shall
be removed from the tank and counted.

With regard to s 1t is simply stipulated that it shall be greater
than the critical number n. The number of droplets per second counted
under these conditions is termed "nucleation frequency."3 In this pro-
cedure, a steady distribution of droplets of various sizes will occur
within the tank, which must be examined a little closer. Suppose that
Zy 1is the number of droplets containing exactly v molecules. The num-
ber of free vapor molecules kept constant in our tank by addition is
then Z;, while Zg 1is held to zero. If J 1s the number of droplets
counted per second, J may be regarded as a constant current that passes
through all 2.

Next, assume that:

qydt 1is the probability that in time interval dt, one molecule will
leave 1 cm? of the surface of a drop of v molecules, apdt on the

3This term coined in the literature is somewhat misleading insofar
as the actual number of nuclei formed per second is exactly twice as great

because there is precisely a 50 percent probability for each nucleus to
continue to grow or to evaporate.
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other hand is the probability that one molecule from the vapor space
condenses on a surface of 1 cm@, F, 1is the surface of a droplet with
v molecules, and Z,' = ZyFy, 1is the total surface of all droplets with
v molecules.

Applied to the constant current we get

J =apgZy_1' - qyZ,' (for all v).
Indicating
a
By = =0 (6)

the initial conditions read then

Zy' = Zy_1' By - fo— By (7)

The factors B introduced by equation (6) increase monotonic with
increasing v. TFor the critical molecule number v =n, B8, = 1. If

r, denotes the radius of the droplet with v molecules, then, by

equation (2)
D 2oMfl _ 1
By = 52 = ePRT\I'n Ty (8)

v

The factor occurring in the exponent is indicated by

- 2oM
a = BT (8a)

hUhfortunately, the notation Zy' and Z, in the Stranski and

Kaischew article are enterchanged relative to Farkas' report. We follow
Farkas' notation.
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In order to eliminate from the equations

|

Zy+l' = Zy'By+l - -,55 Byl

Zys2' = Zyy1 "By - é% Bu+2

J
Zg' = Zg-1'Bg - ig Bs

N

the factors Zyyy', Zysp', - . . Zg.1', the first is divided by By4+1, the

second by By41By4+p, etc., the last one by By41Bysn - - . Bg. When all
the thus obtained equations are added up, all the Z' values lying between
Zy' and Zg' cancel out leaving

Z 1
2 =Zy' - Jl-1-+ L + L + .. .+
Bv+1By+2 - - - Bg ap By+1 By+1Bv+2

1
By+1Byso ¢ - - Bg1

With it the nucleation frequency J 1is known as soon as one of the values
of Z' 1is given. In view of the calculations for the crystal nucleus this
method of solution is somewhat modified as follows: Through the multi-
plications equation (7a) takes the form

Q)i_,_l = (Di - J‘Ri (9)
with

Z T
L and Ry = 1 (%)

- Bobs - - - By aoBoB3 - - - By

o4

The quantity ¢; arises from the corresponding Z' values by divi-
sion by the product of all the B values which occur during the succes-
sive growth of the droplet characterized by subscript i from single
molecules. (By this method the equations are divided by the common fac-
tor BoBz . . . B,.) The style of writing (equation (9)) of the equation
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system indicates that the current J flows from point i +toward point

i + 1 under the influence of the voltage difference ¢4 - ¢i47 Dby over-
coming the ohmic resistance Rj. Visualizing a series connection of
resistances Rj, Rp, etc., the entire nucleation current J can be
regarded as a current driven by a given potential difference through this
chain

J(Ry + Ry+l + . . . + Rst1) =0y - 05

Now &7 is directly equal to Z;' and ¢g equal to zero. The whole
problem therefore consists in adding the separate partial resistances.
Now it is seen that the individual By values increase in such a way
that B, 1s exactly equal to unity, while the preceding ones are all
smaller and those that follow all greater than unity. Up to the value
Rp the partial resistances consist, therefore, of a product of integral
factors which are greater than unity; on above Ry the additive factors
appearing are all less than unity. As a result the Rji values plotted
against i have a distinct maximum at 1 = n. Owing to the importance
(8) of the quantities P the exact term for a partial resistance Ry
reads

1 1 1 i-
N e
Ry =aLeG'<r2 T3 i rn>
0

The sum of the reciprocal radii occurring here in the exponent is
replaced by an integral with respect to the quantity

xy = T (g)l/ ’ (10)

n

The integration variable x 1indicates, therefore, the ratio of a
particular droplet radius to the critical radius. By solution of equa-
tion (10) with respect to v

v = n(xy)?, dv = 3nx2dx

hence

i .
1 1 1 1 dv _ 3n > nn 2 2
— =, L+ =) = = = xdx = < =-(x4° - x
<%2 rz r%> =TIy x/2=l Xy Ty \/n 21, T 17)
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In addition

Indicating for abbreviation
AY = _ -1
ar
the term for partial resistance Rj reads

Ry = 58 eA'{33x12—2x13)-(5X12-2X15i} (11)

Replacing the sumation over the partial resistances also by an
integration, leaves

3 Xsg Xg

f R,dv = 3n f R(x)x2dx = 2B e-A' (3x12-2x77) eA' (3x2-2x7) x4
1 X ao X1 '

At x =1 the integrand has a steep maximum of the order of eA'. There-

fore we put x =1+ ¢, 1i.e., 3x2 - 2x5 =1 - 352 - 2§3, and get the
integral

eA'f e-A'(5§2+2§3) (1 + £)°ae

The variation of the integrand is represented in figure 1. The
factor A' is fairly high, say about equal to 20 to 50, in practical
cases, as will be shown later. So, without appreciable error the above

integral can be replaced by
+o00
JF eﬁAfgdg

-=00

Then, the total resistance (5x12 - 2xl3 compared to unity being disre-
garded in the exponent) reads

R =28 [ L oA’ (12)
aq 3A
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With this the thermodynamically obtained expression for the nucleation
frequency of the indeterminate constant X is defined.

The final result is

anZq ' 1 '
J=Ol\/§:ﬁe_A,A'='c—Fn (13)

n 3kT

Against this calculation the obJjection might be raised that the
formula (1) had been applied to droplets of as low as two or three mole-
cules, for which the concept of surface tension is certainly perfectly
meaningless. But, when considering the curve of the partial resistances
in figure-l, it is clear that the resultant total resistance is definitely
defined by the partial resistance in the neighborhood of v = n. There-
fore it is practically immaterial whether the partial resistances at the
start of the chain had been chosen by a factor 100 too great or too small.
Equation (13) is exactly identical with Farkas' formula (ref. 2), when
bearing in mind that his constant C on the basis of its introduction
(p. 239) has the significance Zl'. Since Farkas did not notice that
the extrapolation of his formula to droplets of only two or three mole-
cules is positively unobjectionable, he failed to recognize the signifi-
cance of this constant.

In comparison, the calculation of Kaischew and Stranski (ref. 3) does
azy'
dv
which serves no useful purpose in the subsequent calculation, since no
integration along this differential quotient is ever made. It merely
obscures the significance of their constant C which simply is -Zl'.

But, contrary to Farkas, they use the calculating method of logarithms
and subsequent substitution of the differential quotient for the differ-

ence quotient for great v also. This certainly is inadmissible in
dazy'

not seem to be entirely acceptable. They replace Z,_1' - Z,' by

)

the range of small P where the logarithmic term changes rather con-
v
dz,'
siderable even at minor changes in y_.
dv

The formula obtained for J is now compared with the Volmer-Flood
measurements on fog formation at adiabatic expansion of water vapor.
The factor Z;' 1s, by assumption, equal to the total surface of the
free molecules; aOZl' signifies thus twice the number of gas kinetic

collisions per second between the 27 vapor molecules. From the mean

free path length 1 and the mean molecular velocity v the number of
collisions per cmd of vapor space follows at

aOZl' = N

|~
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Since 1 1is inversely proportional to the concentration N, we get
= N2 Y
aOZl' = N
oo
=1 32..331_ iL..lfi
R poly VM TVE
2
=5 x 1022 1 _B°
LW TNT
where
N number of vapor molecules per cmd
L Loschmidt number
P vapor pressure mm Hg
176 free path length at 0° C and standard pressure
For the number of molecules in the critical droplet we get
n = Eﬂ-rnB 21
M
_ bfooM 1\3 p o
3 \PRT x/ M
whereby 1n £ x
0
For water (p = 1 g/em?; o = 75 dyn/cm)

(T 3
240 _é> L
T/ x>

For the attainable supersaturations (x =~ 1.5) n amounts to about

100 molecules.
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Posting

" 3 RT\pRT x

x1Q
=1 ]
&

, U1 Ly Lo<20M 1)2
A=-5-

for A' the formula for J reads

Do

21
+2x+ 2 1nx - 17.7 2\ = (13a)
P/l 6
—DM5 d o in mm Hg

This result is then compared with the Volmer-Flood measurements on
water at temperatures T of 260° and 2750 All measurements at

= 270°% Do = 4 mm Hg, 1 = 10-5 cm, = 75 dyn/cm are entered below
the logarithm. Hence

InJ =49 + In —=

InJ=52.5+2¢+21nx - 5.4 x 105<%>3.;_
T) 2

The curves obtained for 1n J are shown plotted against =x in
figure 2 for Ty = 275.2° and Tp = 261.0°. But there is a certain

uncertainty as to which value of J 1is to be designated as condensation.
According to the graph the curves intersect the x axis at such a slope
that it is practically immaterial, when defining the critical supersatu-
ration, whether J =1(In J =0) or J =10(ln J = 2.3) 1is plain fog.
Choice of the intersection:point of the curves with the straight line

In J =1, gives the following values for the critical supersaturation,
which can be compared with the measurements

Pn
X P
T a(dyn/cm) calculated
calculated megsured
Curve 1 275.2 75.23 1.46 4 .30 .21
Curve 2 261.0 77.28 1.6k 5.14 5.03

A' amounts to 55 to 56

Worthy of note is the insensitivity of the theoretically computed factors
to errors in the calculation of aOZl'. Even a factor 10 would change

the constant 52.4% only by 2, i.e., practically no change at all in the
result.
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Since all further measurements on other substances in the Volmer-
Flood report have been compared with those measurements on water and
gave a good confirmation of Farkas' formula, it is concluded that the
present formula (13) reproduces the whole availasble test material very
satisfactorily.

3. THE LINEAR CHAIN

Preparatory to the problems of the actual crystal growth, the fol-
lowing process is analyzed: It is assumed that the rectangular area ABCD
is the base of a simple cubic crystal, on which as the beginning of a
new surface, a layer of edge lengths 2z and 1 1is available and on which
the (1 + 1)th chain of length 2z is included in the growth. The growth
of this new chain is analyzed. Figure 3 represents the stage in which
exactly k =3 atoms of the (1 + 1)th chain are condensed. The diffi-
culty of forming nuclei here is due to the fact that during the start of
a new chain the first and possibly also the second and third atom are
less solidly bound than those following, which are all bound with the
same energy (repeatable steps, according to Kossel, bond at "half crystal"
according to Stranski). So, unless there is too much supersaturation
after a complete chain has formed, there is a considerable lapse of time
before - as the start of a new chain - a linear nucleus capable of growing
has formed. The energies, with which the single atoms are bound in the
successive formation of the chain, are indicated with @1, @2, . . .

Pky - . .. Then the possibility qrdt that the k-th atom evaporates
as a result of the thermal motion in time interval dt on a chain con-
sisting of k atoms, is given by

Pk
ax = F(T)e™ kT (14)

On the other hand, the possibility adt, that a further atom settles on
the chain, 1s independent of k and solely given by the external vapor
pressure. It is assumed that there is no slip of atoms at the crystal
surface., In that event a 1is essentially equal to the number of vapor
atoms per second arriving at the surface of a single crystal atom. The
quantity a introduced here follows from the ag * (of section 2) by
multiplication with the surface atom.

We put

-y
a = F(T)e XT (15)
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hence, where the energy V¥ 1is the measure of the external vapor

pressure.5 The whole mechanism of growth is governed by the factors
Px-V

Bx = = e KT (16)

2
Ak

which for normal growth at the beginning of the chain (k = 1) are sub-
stantially smaller and for greater k a little above unity. In conjunc-
tion with Stranski and Kossel, this behavior is then schematized so that
f1 1is regarded as very small compared to unity and all other B values
as equivalent and greater than unity. For the investigation of the growth
of a chain the following steady process is analyzed: A space under con-
stant vapor pressure contains a very large number of crystals which are
in the stage of growth represented in figure 3. But the new chain in

the process of formation may be of any possible length and assume any
possible position on the raised side of the rectangle. The number of
crystals on which the new chain has exactly the length k and is at a
specific position at the growing edge is indicated with nyk; correspond-
ingly, the number of crystals arising from the crystals of the type ny
due to deposition of an atom at a certain end of the chain k, is indi-
cated by ny4).

By partial current J' is meant the excess of the growth process
per second which lead from the ny crystals to those of the type ny43,
through the evaporation processes, which lead from mnk4] to nx. For
this specific partial current

J' = ma - Dy Qg (7)

Each chain has then two possibilities of adding an atom corresponding
to its two free ends. In the two positions of chain k in which one end
coincides with one end of the base, there is only one possibility of
build-up. Since, for the chain X, there are (z - X + 1) various posi-
tions possible, there are altogether 2(z -k +1) -2 = 2(z - k) partial
currents J', which collectively lead from all the crystals with chains
of length Xk +to those with chains of length k + 1. DBut in the case
of transition from ny to n3 there are only =z partial currents
corresponding to the 2z deposition possibilities of the first atom of
the new chain. This branching of the current is represented in figure 4
for z =6,

Now the not entirely exact assumption is made that all partial cur-
rents leading from k toward k + 1 are equivalent. Since their sum

5A_t,absolute zero point the heat of vaporization would have to be
used. As a rule, V¥ signifies a thermodynamic potential.
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gives the total current J, each is equal to

J

J = —_—
2(z - k)

It is readily apparent from figure 4 that this assumption cannot be
rigorously correct on account of the equations of continuity between the
partial currents. Owing to equation (17) this assumption corresponds to
the assumption that all positions of the chafn k are identically
frequent.

Thus, on this premise the steady state is described by the equations

~
J B1
S Y
_ J Bo
Do  =mby - -7
L (18)
_ J Bkl
O R
J
n, =N, 18, - > Bz
—

These equations are treated the same way as those of the droplet forma-
tion (in section 2), by regarding them as equations for the passage of
current through a series of specified partial resistances. By division

of the k-th equation by the produce Pk4l = Bif2 . . . Bx+l, they take
the form

Ok+l = Ok - JRy (19)

where the individual potentials and partial resistances indicate
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by = ny Ry = 1 B
- b4 - >
B1Bs - - - By ca(z - kK)By - . . Bk
} (19a)
but Q0 = no, RO = a]‘-_z J

Thus, in figure 4 the electric potential of a specific state is
represented by the quotient of the number ni of crystals in state k
and the product Pk = BB, . . . Px of the B values of all atoms bound

in this state. Specific experimental interogatory forms are synonymous
with the corresponding statements regarding the electric potential dif-
ference placed at the ends. However, it is to be noted that, in contrast
to the electrical picture, the absolute value of the potential in the
growth process itself has a well defined meaning

respectively

namely are the number of individual processes taking place in unit time
from k to k+1 and k to k - 1.

As application of (19) the actual linear nucleation as well as the
growth of the rectangle layer about a whole chain is now analyzed.

A. Linear Nucleation

The procedure for defining the nucleation frequency is the same as
for the droplet formation. All the crystals for which the chain has
reached a certain arbitrarily chosen length s are removed; s 1is to
be very small compared to the length 2z of the edge. The number of
crystals removed per second is called linear nucleation frequency.
Hence we put &, = O and find

&
0
el N o

0p, with ¢y = ng

and

=
I

R1+R2+. . '+RS-1

L SN EE S 1 )
2a\z  (z ~1)B; (z - 2)B1Bo (z -s+1)By . . . Bg-1
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With the specialization Bp = g3 = .. . =8 and because s << z
R=—l—2+——-l——-([35"2+ ps=> 4+ . . .+l)]
2az BlBS—g

—].—2+ ﬁs-l_L >
2az\ (g - 1)pyp°2

is applicable also.

Disrega%?ing the 1 next to pS-1 and the 2 next to 1/By, leaves
1

~2az (B - 1)By
of the ng edges, independent of s

, hence the frequency of the linear nucleation at one

L _paz Bl (20)
ng B8

The factor 2 B—%

By, small compared to unity, is regarded as a

probability that one of the atoms striking the edge (their number per
second amounting to az) grows up to a new chain.
B. Deposition of a Whole Chain of Length =z

In this event all the partial resistances from Ry to Rg-1 must
be added up

J(RO + Rl + . . %+ RZ—l) = ®O - QZ
or
n
d (2, 1 + 1 ... 1 >=no- 2
2a\z  (z - 1)By (z - 2)pyB, BiBo « - - Byl B1Bo « - - Bg
The first partial resistance 2/z in comparison with
(z - 1)py
can always be disregarded. Putting fo = . . . = By = B, we get with

the abbreviation
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2 -
S=<;3+ +1£+...+—§——Zl> (o1)
Z
2 3 z -1
ng = nph1p%t - L 5, (22)

The sum S, does not lend itself to elementary evaluation. The
approximate value

S,(8) = —B— (21a)
z 1ln B

used in the following is obtained by the following consideration:
Replacing the sum (21) by an integral gives

21X
S, ~ L/ﬁ EC ax
=J x
hence, with the substitution x = 2z - EEXE
BZ 1n B(Z-l) e~y
Sy = ———— — dy
z1Iln B 0 y

z 1ln B

-~
yA
small compared to unity, which, however, presents only a rough approxi-
mation near the upper limit of the integral. Equation (22) enables the
deposition of a whole chain 2z to be treated as an elementary process.

The equation (l7a), valid for the actual elementary process, is simply
replaced by the relation

The approximate value is obtained by disregarding which is

J = npA, - n,B, ‘ (23)
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whereby
A, = QaBIBZ—l T 22z 1n B 51
z = &g = -
Sz
5 (23a)0
By = 5%'; 2az 1n pp-2 ‘[

Az 1is slightly dependent on =z, while Bz decreases exponentially with
2. Both quantities become equivalent at a critical value of 2, which
is denoted by m, and is defined by

Al =1 or 2o pm (24)

B1

m is that chain length which is precisely in equilibrium with the exter-

nal pressure. According to (16) the definition (24) of m is equivalent
to

1L + (m - 1)9 = my
or (24a)
cp—\v=nll(cp-<o1)

The mean evaporation energy of the "critical chain m" is equal to
the energy V¥ characterizing the external vapor pressure.

Equation (22) makes it possible to analyze a chain of length 2z as
an element, through whose deposition or evaporation the growth of plane
nuclei or of whole rectangular plates is controlled. In this instance
the growth of a plane nucleus on a given base of edge lengths i and
k is involved. A specific stage of this growth is represented in fig-
ure 3. The bonding energy of a single atom on the smooth base ("bond to
one neighbor") is denoted with ®@p; ¢ and @ have the same meaning
as in section 3. Accordingly, there are

PQ-¥ 2k @y
Bo=e XL | py =e kT | g - o kT (25)

The energy required to detach the whole plate (i, k) from the base
is then

Po+ (1 +k-2)1 + (i - 1)(k - 1o

6In this calculation it is assumed that at no time two nuclei are
simultaneously existent on the same chain and then grow together to one
chain. When 2z is not extremely great, this assumption is well Jjustified.
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From the assumption that po = Bz = . . . = B are all equivalent

and independent of the position of the deposited molecule on the base,
inevitably follows the condition

0 + @ = 291

hence also

BoB = B2 (25a)

The total bonding energy of a structure must be independent of the
manner in which the growth takes place. Applied specifically to a system
of 5 atoms on the base as in figure 5, the binding energy for growth in
the order of 1, 2, 3, is Qg + Qg + @, but for the sequence 1, 3, 2, it
is 99+ @} + 9. The equality yields the above relationship. The evap~

oration energy of the whole plate (i, k) is therefore

ikp - (i + k) (9 - @1)

Visulize a columm of cross section 1 X k consisting of 1 whole
atom layers, the deposit of the (1 + 1)th layer being located on a
rectangle s X z. In analyzing the full growth of this deposit into a
whole layer the procedure is the same as in section 3. A multiplicity
of columns and rectangles of every possible size and position is assumed,
with ng ; denoting the number of those at which the nucleus (s,z) has
a specific position on the base. The number of the possible positions
is, obviously (i - s + 1)(k - z + 1). The total number Zg ; of the
columns with a plate (s,z) would then be ns’z(i -s+ 1) (k -z + 1), if
it is assumed, as in section 3, that each position of the rectangle (s,2z)
on the base occurs with the same frequency. For the current Jg o,
leading from s,z to s + 1,z, there are altogether 2(i - s) (X' -z + 1)
possibilities, namely, two each for each specific position of the rec-
tangle (s,z), with exception of those positions at which it lies to
the left or right at the edge. In these cases there is only one possi-
bility for depositing a new chain. It is assumed again that these
2(1 - s)(k - z + 1) partial currents, all of which lead from s,z to
s + 1,2z, are equivalent.

Now, in order to describe the growth of the plane crystal after the
foregoing arguments with the above equation (22), n is replaced by

Js,z
2(i - s)(k - z + 1)

Z

, while J.,' is

D41, 27 ny by Ug,z and J by sz
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to denote the current from (s,z) to (s,z + 1). In the steady state the
plane growth is then governed by the equations

- Z~-1 JS,Z
Ng+l,z = Ng,zB1B " ha(i - 5)(k -z + 1) Sg
s,z =1, 2, . . .>(26)
B~ BS 1l JSJZ' g
n =n -1 s
s,2+1 5,271 ba(i - s + 1)(k - 2)
On the other hand <
n11 = npoBp - E%E Bo (262)

is applicable.

Now the content of these equations is described by a discussion in
the s-z plane (fig. 6):

Suppose that a certain lattice point s,z represents the crystallite
defined by the edges s and z. Thus, in figure 6, for example, the
point A corresponds to the crystallites 3 X 2. The current Js,z
flows then horizontally from s,z toward s + 1, z, Js,z", but vertically
upward from s,z toward s,z + 1. The whole lattice extends to s =i
and 2z = k. The problem then consists in computing a total current J
that enters at (0.0) and branches off in partial currents Js,z and
Js,z', according to equation (26). The obvious method is to regard the
entire figure 6 as the image of a material network through which passes
a current J under the effect of a certain electrical direct current
voltage. To complete the picture, the several equations of (26) must be
expressed in the form of Ohm's law

Os+1,z = 0s,z - Jg,2Rs, 2

(27)

0s,z+1 = ®s,z - Js,z2'Rg,z

which describes the current in the separate pieces of wire of the network
in figure 6. It can be accomplished by dividing the first equation of
(26) by the product P of all the B values occurring in the build-up
of the plane (s + 1,z), that is,

Pst1,z = BoBl(s+z'l)BS(z'l)
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The potential ¢s,z and the partial resistances Rg z and Rs,z'
become then

n
Ng,z _ S,2Z

dg.z = = 35 90,0 = (27a)
S,z Ps,z BOBl(s+z—2)B(s-1)(z—l) 0,0 = 10,0
~
R _ 1 Sz .
5,2 ba(i - s)(k - z + 1) Ps+1,z,
? (27b)
R Vo 1 Sz
% ha(i - s+ 1)(k - 2) P pp

The whole problem now consists in the discussion of the electrical
properties of the network built up of partial resistances (27b).

Introduction of the approximate value (21a) for S, gives

= 1 1
%92 " ha(i - s)(k - 2z + 1)z 1n B BoppSFe-1psz-s-2

Introduction of the critical edge length m defined by equation (2k)

and with the relation gl = E_ = pl  following from equation (25a), the
0] 1
second factor of the above Rg ; becomes

BmBm(s+z)-sz = Bm+m2-(s-m)(z—m)

With a system of axes turned through 45° (o along the diagonal, { at
right angle to it)

s =0+ ¢ (28)

z =0 -t

becomes

(s -m)(z - m) = (o -m)? - ¢2
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hence the factor of Rs,z in question

Bm+m28—(a_m)2B§2

The relationship of ¢ implies: if the partial resistances Rs,z;
which are met by a normal to the diagonal, are examined, they are seen
to have a sharp minimum on the diagonal itself (at ¢ = 0). One, two,
three lattice points away from the diagonal, the resistances increase by

the factors 8, Bu, 69, etc. Thus practically only the diagonal s x> 2
of this lattice is conductive, while along the diagonal (change of o

at ¢ = 0), the resistance has the same sharp maximum at o = m, i.e.,

at the critical edge length. There the partial resistances drop with

the distance from this point to the pg-1, B'A, p-9-th fraction, when
the distance from o = m amounts to one, two, three lattice points.
Therefore, the entire current must flow along the diagonal in a narrow
gorge, characterized by the factor BC2, which in turn leads over a very
steep "pass" at o = m.

The over-all resistance R of the entire network is practically
concentrated on the resistance

R~Rpyp = = pr (29)
? ba(i -m)(k - m + 1)m 1n B

at the height of the pass. Naturally, it is assumed then that the spot

5 =z =m still lies substantially within the lattice. A further discus-
sion of the branching conditions in the immediate vicinity of the spot
m,m could contribute to the expression R no more than a factor close

to unity, which, however, would be useless for the purposes involved here.
Now the two questions concerning the frequency of plane nucleations, as
well as the growth of the rectangular column 1 X kK around a whole layer,
can be answered exactly as for the chain in section 3.

A. The Formation of Plane Nuclei on a Rectangle Base

To determine the nucleation frequency, all the columns for which
the sum of the edges s + z has reached an arbitrarily specified value
§ + 2 = n are withdrawn from the vapor space and counted, that is, the
lattice points lying on the straight line s + 2z = n are grounded. The
saddle point s = z = m 1is found to be located still within the thus
out-off triangle and also that n and hence m itself should be very
small with respect to the edges i1 and k of the base. The result is

the satisfactory approximation: R = S Bm+2, hence, the nucleation
baikm 1n B
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current for a single one of the ngy crystals is
J m-me
< - bailm 1n pp-m-m (30)
n
0
The two factors B@_gnd m still remaining are tied to one another
1
by the relation po = e KT | according to equation (24), with the aid of

which one of the two can then be eliminated from equation (30).

Elimination of B leaves

m(p-p1) Al

L - haik E—iégl e KT ¢ KT (30a)

Bo
Here, as it should be,

half the free-edge energy
kT

is in the first e power, because %{@ - Ql) is the free-edge energy
per atom, hm%(w - ¢1) is, therefore, the total free-edge energy. The

plane energy accompanying the formation of the chain (at both of its

ends!) is in the second e power. The factor before the already thermo-

dynamically required e function is extremely simple: 1its order of

magnitude is defined by the number aik of the vapor atoms per second

4o - 91)
kT

It has no significance for the

impinging upon the plate ik. The then still remaining factor

evaporation heat

RT
only interesting order of magnitude of J.

is nearly equal to

On the other hand, when m substitutes for m + 1, the elimination
of m from equation (30) gives

(kT)2 1n B (30b)

J = haik ?—:£2£ e

This equation gives the dependence of current J on the experimen-
tally directly defined supersaturation B.
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B. At the formation of a whole plane i X k it is necessary to ana-
lyze the entire rectangular network on which the current J is introduced
at point (0,0) and channeled off at (i,k)

®0,0 - ®i,k = JRy x

where ﬁi,k is the over-all resistance of the entire rectangular network.

Here, also, the only case of interest is that where the point (m,m)
lies still within the net; Ri,k: therefore, according to equation (29),

may be replaced by Rm}m. If use is made of the relations BoB = 812
and éi = " in the product Pg 4, Pg,z then beeomes

P,z = BOBls+z—2B(s—l)(z-1) - B(s-m)(z-m)-m2

Thus, by equations (27) and (29)

-m) (k-m)-m? _ . Bm+(i—m)(k-m)

31
ba(i - m)(k - m)m 1In B (52)

nj = ng, o8 (1

On the basis of this equation (31), the accumulation of a whole
Plane can henceforth be treated as elementary process. The equation
applicable to it reads

J =ng ofi k - Pi,xBi,k (32)
where

ba(i - m)(k - m)m 1n pp-m-m2

Ai’kBm2-(i-m)(k—m) \J'

Both quantities are equivalent at me - (i - m)(k -m) =0 or
ik = (i + k)m. For square plates, which are practically the only ones

"

A,
1,k (32a)7

[

B; x

7Multiple nucleation is excluded again. At very great i and k
the foregoing is therefore no longer applicable.
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occurring at the subsequent growth of the spatial crystal, it results in
i =k = 2m. The probability for evaporation and condensation will not
be identically great until the edge length of the plane is twice as great
as the critical chain length m. Naturally, this result was to be fore-
seen by reason of the fact that the equilibrium vapor pressure is defined
by the mean evaporation energy, as already predicted by Stranski and
Kaischew. It is to be noted that Ai,k is very slightly dependent on

i and k, while Bj x decreases rapidly with increasing size of the
plane.

5. THE CRYSTAL NUCLEUS

After these preparations the quantitative treatment of the nucleation
frequency for spatial crystals is easy. Again visualize in a vapor space
a large number of box-like crystals of all possible edge lengths i, Kk,

1 1in steady distribution so that the vapor pressure remains constant

and that all crystals, as soon as they have reached a certain size, are
removed from the space and counted. The number of crystals with the edge
lengths i, k, 1 1is assumed at Z1 k,1° They may, for example, change
to crystals (i +1, k, 1) by gathering of a plane (k,1), that is, this
plane can be deposited on two different sides of the little box. The law
for this process was defined in equation (31). Replacing 0y k by

Zi+1,k,1, ng,0 by Zi,k,l! i,k by k,1 and J by 1/2J1 ') results
in
K ZBm+(k—m)(l-m)

(k-m) (1-m) -m? (33)

7. =7 B
1+l,k,7: i,k,l 8a(k - m)('I, - m)m ln B

where Ji,k,l indicates the partial current that leads from 1i,k,1 +to

i + 1,k,l. By the method previously used several times, equation (33)
can again be put in the form

%i+41,k,1 = %1,k,1 - Ji,k,1R1,k,1 (34)

and identify it as the electrical current in a spatial network whose lat-
tice points have the potential ¢i,k,1 and in which Ri,k,l is the ohmic

resistance of the piece of wire that leads from 1i,k,7 to i + 1,k,1.

The transition from (33) to (34) 1s accomplished again by division of (33)
by the product Pi+l K,1 of all the B values which occur during the suc-
cessive development of the state (1 + 1,k,1) from (i + 1)k,1 single atoms.
The factor for 2Zj x ; in equation (35) is precisely the product Py 3
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of the B values for that plane (k,1) which is newly added in the par-
ticular reaction. The product Py K,1 can be constructed as follows:
b4

On a single atom free columns of i -1, k-1, 1 -1 atoms are depos-
ited along the coordinate axes, each of which gives the factor Bg. The
spread-out rectangle sides are then filled out. It yields (i - 1)(k - 1) +
(k -1)(2 -1) + (1 - 1)(i - 1) times the factor B and, in addition,

(1 -1)(x - 1)(2 - 1) times the factor p. Hence, altogether

Pi 1 = B+t -3, (1-1) (k-1)+(k-1) (2-1)+(2-1) (1-1)p(3-1) (k-1) (2-1)

Bo

B
for which the relations —2 = =2 = M give

By B

B—m(ik+k1+1i)+ik2+5m—l

i}

Py k,1

and

N (7 ) 2
Pi+l,k,1 = Pi,k,zB(k m) (1-m) -m

By division with this quantity, we obtain in equation (34) as factor
of Jj x,1 the final term for the partial resistance

Ry 11 = 1 g (1k+kl+11) ~ikl4mZ-2me] (35)
7 8a(k - m)(1 - m)m In B

To clarify the behavior of the exponent visualize a perpendicular
line dropped from the point 1i,k,1 of the network on the space diagonal,
0,0,0 to indicate the foot of this perpendicular.

Putting
1=0'+I‘l
k=0+rT, s (36)
1 =0+ I‘3
J

the construction given then

ry +Trp+rz =0 (368)
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along with

= -1 (r.2 2 2y = - L2
T)Tp + Ttz + TaTy = > (r 2 + r e + rz ) = 5T

By (36) and (36a)

ik + kI + 11 = 302 - %rE
and

ikl = o3 - L2
ikl = & Evr + rlrer5
With this the exponent of equation (3%) reads
s S\ g _ 2. _ 1 _ 2 _
m(ik + k1 + 1i) - ikl = 3¢°m - o + 2(0 m)r ryTors

Disregarding the practically nonessential term r.r (the sur-
rounding of the diagonals being considered), the conditions for Ri,k,l

are the same as before in section 4 for the plane lattice. The factor

1 2
BQ(U m)r in the region o > m solely considered here, effects such a

rapid rise of the resistance on leaving the diagonal, that the current
can flow practically only on the dilagonal r = 0. On the diagonal itself

the factors B3U2m-05 has such an enormously steep maximum at o = 2m,
that the entire voltage drop along the diagonal is practically defined
solely by the partial resistance

1 B1+m.3+m2—2m+l

Rom,2m = 5
8am” 1n B

Owing to o1 1.1 = Zl 1.1 the nucleation frequency is therefore
2= )=
defined at

Jd = 8aZ]_’l,lm5 In BB-th—m2+2m-1 (57)

Elimination of B by means of

s §
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leaves

o -on - hmg((P'(Pl) _n(e-91) ) q>-<pl<2 l)
J =87 ; m° ——=e KI e K ¢ KT\"" @) (37a)

The factors deciding the order of magnitude of J are aZl,l,l and
the first of the three e-functions; azl,l,l is essentially (like the

factor aOZ1' in equation (13) for droplet formation) the number of gas

kinetic collisions per second. The first e-power is synonymous with the
- 9

factor e JKT of the thermodynamic formula (5). In fact, %-(m - P1)

is the surface energy per atom; the total surface energy of the cube of
critical edge length 2m, therefore, is equal to (2m)2 x 6 x %(¢ -Q1) =

12me (p - wl); the third portion of it stands, as it should be, in the

exponent. The exponent of the second e-function indicates, as shown in

1
section 4, = edge energy for a critical plane nucleus. This factor

2 = kT
occurs in similar manner in the report by Stranski and Kaischew too.
Admittedly, its appearance hinges on the exact knowledge of the factor
m, as 1s apparent from the fact that in equation (37) the term with m2
can be made to disappear completely, if m is replaced by m - fz. For
the problem involving the critical supersaturation the second and third
e-functions are ignored.

6. THE OSTWALD LAW OF STAGES

This law states that in the formation of nuclei from supersaturated
vapor the liquid phase is separated first, as a rule, even when the tem-
perature of the vapor is considerably below the freezing point. Our
results on the nucleation of liquid (13) and solid (37) nuclei enable a
theoretical foundation and a quantitative improvement of this law to be
made.

Omitting the last two e-functions in (37a) and introducing the rela-
tion for Volmer's exponent of equation (5)

oF - h‘m2(q’ = q)l)
3kT kT

A" =
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we get by equation (37a) on the crystal nucleus

"
Crystal: Jopystal = 28%1,1,1A"e7A

while equation (13) produced

aOZl'-‘ ot _-ar
Droplet: Jgroplet = —p — g; €

The factor Z;' was, according to section 2, the number of vapor

molecules multiplied by its surface. Since, according to section 3, a
arises from an by multiplication with the atom surface, aZl,l,l and

aOZl' are identical in order of magnitude. Thus, the factor K of

equation (5) for the formation of droplets appears smaller by l/n than
for the formation of the crystal, where n denotes the molecule number
of the nucleus. Although n 1is the order of magnitude of 100, this
factor is not decisive in the problem involving the critical supersatura-
tion. Moreover, it would be considerably overbalanced by the factor

-m2 .
B omitted at J

crystal: The factor A" and A matter even less.

A

As long as no direct measurements of J are planned, but merely the order
of magnitude of the critical ‘'supersaturation, the simple result is: The
factor X 1in Volmer's nucleation formula is simply equal to the number

of gas kinetic collisions, for the droplet as for the crystal. This
statement applies, as seen in section 3 and section 4, to linear and plane
nuclei; naturally, involved here is solely the number of collisions per
second at the base.

The decisive reason for the validity of the law of stages remains
then solely the fact that in the quantity % the surface F of the
nucleus corresponding to a certain supersaturation is greater on the cube
than on the sphere. The difference in shape is the deciding factor, not
the crystalline structure. Its effect is computed on the assumption that

the molecular volume v and the surface tension o for fluid and crystal
are equivalent.

If F = Cn2/5 is the surface corresponding to the molecule number

S
n, then by equation (l), with x denoting the abbreviation of 1n —2,
e o]

2
ka:gd_Fz_E_OC_B/_
dn 3 g1/2
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hence the surface corresponding to x

The nucleus volume V for the sphere (radius r) is
V=nv= %?r55 thus, F = hn(é%)2/3v2/3n2/5
for the cube (edge length a):
V=nv=ad, hence, F = 6v2/3n2/3

Hence, for the sphere

3 = 56nv2
and for the cube

c3 = 63v2

6

The critical area corresponding to the same x is " =1.91 times

greater for the cube than the droplet. To assure identical nucleation
frequency, hence, equal values of F, it must

Xcube =< CBcube >1/2 ={1.91 = 1.38

For the critical supersaturations themselves the condition would be

<Z>P;>cube - (f;)l'% (38)

sphere

As an illustration for applying this relationship, the supercooling
at which crystalline and fluid nuclei occur with comparable frequency
is analyzed. The saturation vapor pressure of the liquid phase is denoted
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by p), that of the solid phase by po. By equation (38) the condition
for comparable nucleation frequency reads

2 _[Dp)\-38
Pp 51

In p = 1n p3 + 2.6(1n py - 1n py) (39)

or

(The factor 2.6 is equal to 1:(1.38 - 1). Figure 7 shows the vapor pres-
sure curves In p; and 1n p, plotted against T. According to equa-
tion (39) the curve for 1n p would then have about the shape of that
indicated by the broken curve. Below this limiting curve, more crystal-
line nuclei, above it, more fluid nuclei are to be expected. However,
this theoretically interesting solution is meaningless in practice as
long as the nucleation frequency lies below a limit amenable to observa-
tion. For that reason it is necessary to determine, in the same manner
as in section 2, the curve of that pressure at which a formation of fluid
nuclei occurs at all in observable amounts (dotted curve). The intersec-
tion point A of the two curves characterizes the temperature Tp at
which an isothermal pressure rise would result in a simultaneous separa-
tion of fluid and crystalline nuclei. Below Tp only solid, above Tjp
only fluid nuclei would be observed.

Naturally, it may also happen that no intersection point appears.
In that event, the law of stages helds unrestrictedly.8

7. THE GENERAL RESISTANCE ANATOGY

As already stated several times in the foregoing, the equatioms (17),
(23), and (32), applicable to the elementary process, can be so trans-
formed by extension with a suitable factor that they could be interpreted
as the Kirchhoff equations of a suitably chosen network of wires. It can
be proved that this electrotechnical analogy is possible in complete
generality for the condensation and dissolution process of any structure
consisting of atoms. Again it is assumed that, besides the vapor phase
of a substance, some fractions of another phase are present in a con-
tainer. These fractions are hereinafter called crystals, without in any
way infringing upon the general character. An uninterrupted input or
transport of vapor and removal or addition of crystals of random specific
size assures the steady distribution of the crystals of various sizes and
shapes.

8Such a case seems to exist in the theoretical case treated by
Stranski and Totomanow (Z. f. phy. Chem. (A), 163, p. 399, 1933).
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Next, we consider any random specified type of crystals, say, of
the shape represented in figure 8, for example. For a full description
of such a crystal, a greater number of parameters are usually advantageous,
a single one of which is, say, the number v of atoms in this crystal.
By deposition of an atom at a well defined spot of this crystal, a crys-
tal of type II with v + 1 atoms is produced. J 1is the excess per sec-
ond of the growth processes which lead from I to II, through the evapora-
tion processes which lead from II to I. Then, if ny and njy7 are

the number of crystals of type I and IT in the steady state, the equation
for this specific transition process reads

J = nya - n11Gy4 (40)

where a and qy4]1 are the repeatedly employed deposition and evapora-
tion probabilities of the atom at that particular spot. With the abbre-
viation By41 =

the result is again

v+l

3 |

DT = DIBy+l - 7 Bysl (41) \

\

_ Puil ¥
Again qy41 = F(T)e kT and a = F(T)e kT, are introduced, hence,

Pyl =V
Bv+1l = € kT,

The energy of separation @,;3; depends, as a rule, on all the param-
eters of state of the states I and II, rather than on v alone.

Now, visualize the crystal II built up successively from single
atoms. To each one of the v + 1 single processes, there corresponds
a specific Bj. The individual pB; still will be dependent upon the -

sequence in which the atoms of the crystal are Jjoined together. But the
product P(11) of all B3

v+1

v+1 9
2 0i-(v+l)y
v+l i=1

P(rr) = [ [B1 =e  XT
v+1 i=

IFactor By, which by itself corresponds to no growth process, 1is
put equal to 1; hence ©7 = V.
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is solely dependent upon the configuration of crystal II, because the
v+l

total work of growth :E:wi can no longer depend upon the manner in
i=1

which the growth took place.

Dividing equation (41) by Pry egives
v+l

o1 - o171 = JRy (¥2)
where, for abbreviation
n n
o = —L—, 077 = —LL (42a)
I=5 IT =%
v(I) y+1(11)
and
1 1
R, = = (42b)
I a Pv(I)

Every possible form of crystal can now be characterized by a point
in the space of the parameters, which define this form. To every possible
transition, I—=II, we then correlate a wire connection between the
points of state I and II, to which the resistance given by equation (41b)
is allocated. The equation (42) can then be regarded as the Kirchhoff
equations of this wire netting and ¢ as the corresponding potential of
the nodes in this net. This interpretation is possible, because ¢ is

merely dependent upon the state, but not the manner in which a crystal
is built up.

Obviously, this network of wires does not have to be multidimensional.
Since the number of possible forms is finite, theoretically one parameter
that counts the possible forms, may be sufficient. But for the represen-
tation the use of two or three parameters, as in sections 4 and 5, is more
convenient so that the net becomes two or three dimensional.

This network itself is rather complicated even in simple cases. 1In
the networks treated in sections 4 and 5, a large number of wires were
consistently ignored because of their high resistance and complete wire
systems combined into one resistance. For the actual calculation, this
general analogy is therefore of 1little help. However, the purely quali-
tative distribution of the resistances will be indicated.
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The resistance of a wire depends solely upon its initial point and
has the form

1%

W-> 01

R=21e K (43)

o

\
where the quantity vy - :E:mi in the exponent is the work to be per-
i=1
formed to produce the system corresponding to the initial point of the
wire by reversible process from the vapor. Of all the wire joints which
lead from crystals with v atoms to those with v + 1 atoms, the wires
proceeding from the crystals with the least work of growth are therefore
the wires of the smallest resistance. Whether this minimum is always as
sharp in more general cases as on the model used above, requires further
study. During the advance along the road of minimum resistance from
smaller to larger crystals, the work of growth must, at some time, reach
a maximum value, because, while for very small systems it certainly
increases with v, it must, at very great v become proportional with
v negatively arbitrarily great, so far as the vapor is supersaturated
at all with respect to the very large crystals. The crystal on which
the resistance reaches its (absolute) maximum with regard to advancing
with v and a minimum in comparison to the other wires with the same v,
is called the Volmer nucleus. The resistance at this point is

- k
Rnucleus = 3 € T (43a)

with Ax the work of nucleation. As is seen, the saddle-like character
of the resistance distribution near the nucleus is completely independent
of the model. The specific model representations merely yield information
about the number of parallel wires of equal resistance in the saddle
point, the distinct character of the saddle, and the extent to which any
secondary maximums in the otherwise very jagged curve of the resistance
become evident. The order of magnitude of the total resistance between
two points with very small and very great v 1s, however, solely defined

by Rpucleus.

Translated by J. Vanier
National Advisory Committee
for Aeronautics
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Figure 1.- Resistance R4 plotted against droplet radius X
(case A'=10 and n=100). - - -: Curve of exponent
3Xi2 - 2x13.
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computed for water by equation (13a).
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Figure 3.~ A specific state of crystal growth,

k=0 123 z-12

Figure 4.- Network of partial currents for the growth of the linear chain.
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Figure 5.- Derivation of the relation Bp = 812.
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Figure 6.- Current network for growth of the plane. Point A:
Rectangle: 3 x 2. Size of base: 8 x 1,

L1
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Figure 7.- Ostwald’s law of stages. - - -: Curve of equal frequency
of critical crystalline and fluid nuclei. Above OA: Excess of fluid
nuclei, Below OA: Excess of crystalline nuclei. .... Curve of
nucleation frequency 1.
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Figure 8.- The most elementary process of crystal growth., Deposi-
tion of one atom at the emphasized spot of state I leads to state II.
Evaporation of raised atom on erysta] II leads to crystal I,
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