[ e |

| |

NACA TM 1369

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL MEMORANDUM 1369

FLAT PLATE CASCADES AT SUPERSONIC SPEED

By Rashad M. El Badrawy

Translation of “Ebene Plattengitter bei Uberschallgeschwindigkeit.”
Mitteilungen aus dem Institut fiir Aerodynamik
an der E.T.H., no. 19, 1952

Washington
May 1956







CONTENTS

PREFACE .
INTRODUCTION

CHAPTER I. THE FLAT PLATE s
General Considerations - Stlpulatlons
. Conditions at Expansion Around a Corner
. Conditions of Oblique Compression Shock

Lift and Drag of an Infinitely Thin Plate (Exact Solutlon)
. Lift and Drag at High Mach Numbers . TR T
Calculation of Lift and Drag by Linearlzed Theory
Comparison of the Results of the Linearized Theory

With Those of the Exact Method . Sl s et G

~ O\\J1 W O

CHAPTER II. INTERSECTION, OVERTAKING AND REFLECTION OF
COMPRESSION SHOCKS AND EXPANSION WAVES ’

s intreduction . A0S SRR e S

. Small Variations . ;

Overtaking of Compres51on Shock and Expansion Wave 5

Intersection of Compression Shock and Expansion Wave .

. Crossing of Expansion Waves - .

Reflection of Compression Shocks and Expans1on Waves :

O\ =W O

CHAPTER III. THE CASCADE PROBLEM .
1. Problem - S el
2. Method of Calculatlon
3. Example it - .
4. Calculation of Thrust Tangentlal Force and Eff1c1ency -

CHAPTER IV. LINEARIZED CASCADE THEORY
1. Assumptions -
2. Linearization of Cascade Problem e
5. tCaleuniation of Lift and Drag .

4. Numerical Example e .
5. Comparison With Exact Method -

CHAPTER V. SCHLIEREN PHOTOGRAPHS OF CASCADE FLOW .
1. Cascade Geometry . s - -
2. Experimental Setup .

3. Schlieren Photographs

CHAPTER VI. THE FLAT PLATE CASCADE AT SUDDEN ANGLE-OF-ATTACK

CHANGE o e SR I el S S e Al €

ils. Probilem :
2. The Unsteady Source

Page

S kbl

g
SIS DoVE &

18




Page

3. Pressure and Velocity of a Periodically Arising -
Source Distribution . . . 3o o Ol 0 52
4. Single Flat Plate in a Vertlcal Gust (Blot l9h5) Sl Ay e B

5. The Straight Cascade . . . : : et R PR B -
SR I RN o o e s s e e e o AR e
CHAPTER VII. EFFICIENCY OF A SUPERSONIC PROPELLER . . . . . . . . T
S Intreoduction’™ . « . o P e alie | SE ool Tk
2. Effect of Friction on Cascade Eff1c1ency SRR il ol RS s
5. Effect: off\Thickness: ..« . . o 5 olhd o 15
4. Appraisal of the EfflClency of a Supersonlc Propeller s1 Usliie s T4
N A Gt T T s T e PO P U8 i MR i ¢
B RIFEHR N E TS faie Mot o Moton e By s ol b e el e Yo L ol Sl R o b B 78
TEATRILTS U0 & ha oy i ok S RTINS TRt el S SRS B TR T9
TTHERIIETIS ot o F o o g ik oy el U e T - R S pe R S 0 O 91

stat




PREFACE

The work on the present report was carried out at the Institute for
Aerodynamics of the E.T.H., Zurich, under the direction of Prof.
Dr. Ackeret, during the time from December 1949 to June 1951.

I want to express here my deep gratitude to Prof. Ackeret for his
suggestions and for the great interest he took in my work.

I am very grateful to Dipl.-Eng. B. Chaix, scientific assistant at
the Institute, and to Mr. E. Hurlimann, precision mechanic, for their
indispensable help in taking the schlieren pictures.

T should like to acknowledge that the "Faruk University", Alexandria
(Egypt) made my studies in Zurick possible.

atslal



1.
o
!




NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1369

FLAT PLATE CASCADES AT SUPERSONIC SPEED¥

By Rashad M. El Badrawy
INTRODUCTION

The cascade problem in the subsonic range can be analyzed under
certain assumptions either by mapping or substitution of the blades by
singularities - sources, sinks and bound vortices - where the separation
of flow from the blades can cause various departures from the obtained
results.

Raising the flow velocity to a given value is accompanied by sonic
velocity within the cascade, which usually renders the solution of the
problem even more difficult. The same complication exists on the cascade
in flow at supersonic speed, in which the velocity is retarded to sub-
sonic by shocks.

But when the cascade operates entirely in the supersonic range, the
conditions become clearer. All disturbances act downstream only from the
sources of disturbance, so that the pressures and velocities at the sur-

face of a sufficiently thin airfoil in the stream can be readily determined.

The present report deals exclusively with problems of cascade flow
in the supersonic range. As is known the flat infinitely thin plate is
the best airfoil with respect to wave resistance in supersonic flows;
hence it is logical to start with the cascade of flat plates. The last
chapter deals with the case of finite thickness.

Lift and wave resistance of an isolated plate are computed first
since the cascade problem can often be reduced to this special case.
The well-known theories of two-dimensional supersonic flow are applied -
that is, the laws of oblique compression shocks and the expansion around
& corner.

The air forces are then calculated again and compared with the pre-
viously obtained exact values by means of Ackeret's formulas of linearized

theory.

*'"Ibene Plattengitter bei Uberschallgeschwindigkeit."' Mitteilungen
aus dem Institut fur Aerodynamik an der E.T.H., no. 19, 1952.
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The cascade problem was to be solved in such a way as to be free
from the inevitable inaccuracies of the graphical method. For this reason
the cases of overtaking, crossing and reflection of compression shocks and
expansion waves frequently occurring on supersonic cascade flows, which
usually are solved by graphical method, are analyzed in chapter II.

In chapter III the cascade problem is discussed and its solution
described in the light of the results obtained in chapter II. A numerical
example is also given. The same chapter gives further a definition of
the efficiency of the simple supersonic cascade and an evaluation for
several angles of stagger and attack.

The small angles of attack involved justified the use of a linearized
cascade theory.l This is done in chapter IV. The numerical example of
chapter III is thus linearized and the results compared with those of the
exact solution. The supersonic cascade flow at various angles of attack
was recorded by schlieren photographs of the flow between two parallel
plates, in the high-speed wind tunnel of the Institute (chapter V).

Chapter VI deals with the specific case of unsteady flow through
the cascade, caused by abrupt angle-of-attack changes.

lAccording to Ackert's linearized theory, the 1lift and drag of a
double-wedge profile of thickness d and chord 1 at angle V in super-
sonic flow M 1is, in the presence of friction (cg)

\p2 + <-1—>2 + 2cp —\—M/_i;

Cg Cw =

For the best drag-lift ratio € = %K, put %%-= 0. This means that
a

the wave resistance should be equal to the sum of friction drag and thick-
ness effect. 1In that event

2 2
a\ ME < 1
Vopt =\ /! =] + 2cp —u-—
= \t/ .
’ I
c = 8w0pt = < d\g + 2c M - 2
W = 5 SR AR e
oPt 2 - 1 \/Me v L

2
B d\ M2 - 1
eOp"C = 2\ljopt = 2 (7/ Gy 2Cf I

Assuming possible values for d/Z and cg results in comparatively
small optimum angles Vopt-
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In chapter VII the effect of friction and thickness in a special
case on the cascade efficiency is analyzed. Since there might be a
possible application of the supersonic cascade to the supersonic pro-
peller, a simple evaluation of the efficiency of such a propeller is
. made. A parallel steady two-dimensional flow is - with exception of
chapter VI - postulated.

The conventional notation is used unless specifically stated other
wise in the text.
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CHAPTER I. THE FLAT PLATE

1. General Considerations - Stipulations

The general equation of continuity of any compressible flow is

S , 9(pw) | 3(pv) . 3pw) _ (1)
ot ox dy dz

The rate of propagation of a small disturbance, that is, the sonic
velocity, is, as is known

where R = —

In flows, in which a flow potential ¢ exists, the continuity equa-

tion can be written as

o, o 3\, do, do du_
o Y TR it e
pa2 T X OX Ao V4 V4 axe aye 822
The momentum theorem gives the following relations
!2 \
1 Fo e, b ,» %
P ax: ot ox 32 dy Ox Oy OJz Ox Oz
1 % D N, w S (1)
PAdy Oy ot Ox dy ox Oy Bye dz dy Oz
2 e 2 2
_1l%_9%9 , X %9 X O L Xy
® dz

0z 0t Ox 0z Ox Oy Oz dy Oz BZ2J
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In two-dimensional flow the potential must therefore satisfy the
equation

2 2} 2 2 2 2
L T o RN A - O e S TR T
De® aa\on ) | dy2 a2\0y gl Ox 9y ax dy 52 Ox Ox ot

2 2
2
_g_é’i TR T (5)

The velocity of sound is then

2 2
e SR el X
20 ( ) 2 <8x> . (?y) I ot (6)

where ag = velocity of sound in state of rest.

For the steady case, the equation is reduced to

2

Sol, 1(@)"’ +3_221_L<§£> 2nx O _

|
O
—~~

—{ ()
32 52\0x d3y2 a2\ 0y g2 Ox Oy Ox Oy

and the flow is completely identified, if the function ¢(x,y), which
is to satisfy the boundary conditions, is determined.

This equation is either elliptic, parabolic, or hyperbolic, depending
upon

(1-M2) S0
where
M = %lgradlw (8)

is the local Mach number.
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The use of this equation is difficult if its type in the particular
range, as in the transonic range, is changed. However, the flows analyzed
here, are of identical character everywhere, that is, the flow is of the
hyperbolic type.

One of the known solutions is the expansion around a corner, developed
by Prandtl and Meyer (ref. 1).
2. Conditions at Expansion Around a Corner

The two-dimensional flow past the wall AE at a Mach number My

(fig. 1) is deflected by a convex bend at E through an angle @, through
which an expansion is initiated. The disturbance proceeding from E
spreads out solely in the range lying downstream of the Mach line EB,,

where

¥ B1EA' = Mach angle Hy = sin—+ &i (9)

and stops at the Mach line EBp, where

¥ BoED = pp = sin-1 e
Mo

In it Mp is the Mach number of the flow after the expansion.

The streamlines in range BjEBp are curved similarly and run
parallel to the wall ED downstream of this range.

It can be proved that the Mach lines in this flow are the character-
istics of the differential equation which define the potential.

When the expansion proceeds from a Mach number M; = 1, (“1 = g),

the following relations can be proved (ref. 2):

tan po = A cot Mo (10)




NACA ™ 1369 T

K

Py K+ 1 k-1 i
By 2 coseh\w i

(py = stagnation pressure)
& 2
gy (e + 1) - 2 cos=A\ (12)
(k - 1)cosAw
Obviously
=+ po - 2 (13)
As function of Mo (ref. 3)
e = cos"lb-%-+%)\ cos™ 1 - K"'i (14)

This equation gives a maximum angle of expansion Opgx, which cor-
responds to a Mach number Mp = = after expansion (k = 1.400)

If the Mach number before the expansion M; is assumed other than 1,

the maximum angle of expansion becomes obviously

Omax My = Omax - V

where v is the angle of expansion from M =1 to M;. The values for
various Mach numbers of the inflow (M1) are

My 100l 1.50 ) 2,001 2.50405 8 10 |

Omax M;° 15045 111.8.55]104.07{91.32153.55|34 .55 | 28. 14} ©
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5. Conditions of Oblique Compression Shock

The discontinuities that may appear in supersonic flows and across
which velocity, pressure, density, temperature, and entropy undergo a
discontinuity, while the total energy, thermic and mechanical, remains
constant, were predicted by Riemann (1860) and Rankine and Hugoniot (1887)
as normal compression shocks.

In oblique shocks (Prandtl-Meyer) only the velocity component normal
to the shock front is modified.

In figure 2 the supersonic flow past the wall AE 1is deflected at E
by an angle 8. A compression shock is produced and the shock front ES
is inclined at an angle ¢y - the shock angle - toward the air flow
direction.

With subscript 1 denoting the state before the shock and subscript 2
that after the shock it can be proved that (refs. 3 and 4)

1
b2 2K - SO R i
— = ———|M,“sin~y - 1t
Py K + l< 1 7 2K ( 5)
L { a k-1
1
o s . /Py y s atnly - ALV g i sinEly . i
(16)
P1 2 s kK -~ 1
pg M, “sin“y 2
2
M
SOl B e [ 3 & - 1lltan vy (18)
e Mlzsinay =1
u 1
i wiBE (19)
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tan(y - 8) Py . 1 (20,21)
X )

tan 8 B el & Rl
2 M2251n2(7 - 8) 2

A direct relation between the Mach numbers before and after the
shock can be established

1 1
My cos ¥ Po [E; (22)

M;  cos(y - B) Pg'/Pl

The relation for the change of the static pressure by the shock is
the same as for the normal shock when it is applied to the velocity com-
ponent perpendicular to the shock front. Consequently

R

.k %
.. ) 2 s
K S K -

M, "sin =
£+ 1 1 7 kK + 2

: 4 A M1251n27

(23)

Po gy =l
1 T % M-2sin?
2 1 y

From these equations it follows that the shock angle 7 is greater
than the Mach angle, that is, the speed of propagation of a finite dis-
turbance is greater than the sonic velocity. When the angle of deflec-
tion ® approaches zero, 7y = p and the shock changes to a Mach wave.

Also of interest is the shock angle at which the Mach number after
the minimum shock becomes equal to unity. Denoting this angle by 7g

it can be proved (the weak stable compression shock is always allowed
for) (ref. 3, p. 47) that

(l - Sin27s> 2 Sin27s - —}E == Sin275 - _.]_'_. I (o= ._2__.. Sin27s o _;L__

2 K+ 1 2
My My My

(2k)
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This equation is used to determine the maximum shock angle which
corresponds to a Mach number before the shock M} = ©» and a Mach num-

ber Mp' = 1 after the shock. The result is

. K + 1
sinlyy = (25)
2K
hence
75 == 67.80

at k = 1.400 (air).

By equation (18) the corresponding deflection angle 5 1is

Bg = 45.58°

2

Table 1 and figure 3 represent the values of 75 and Bg at

various Mach numbers M;j.

4. Lift and Drag of an Infinitely Thin Plate (Exact Solution)

An infinitely thin plate ab in parallel flow at supersonic veloc-
ity Uy 4is placed at the angle . It is assumed that the width of the

plate transverse to the flow direction is «, so that the problem is two
dimensional.

The streamlines above oa (fig. 4) experience a deflection which
is associated with an expansion. So the state at the upper side of the
plate can be defined by equations (10) to (14). But below the plate a
compression shock ad occurs. The state of the flow on the lower side
of the plate is accordingly determined from the formulas (16) to (21).

The force on the plate per unit area is

= (pg' - p2> (26)

> :
The weak stable shock is always taken into account. See Richter,
ZAMM, 1948 and Thomas, Proc. N.A. Sc., Nov. 1948.
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where po' and p, represent the pressure on the lower and upper side
of the plate.

Obviously, the 1ift A and the drag W per unit width are
A = K cos VL o)
W =X sin VL (28)

To compute a 1ift coefficient, a reference dynamic pressure of the
inflow

g = = gy
e
or
q = 2 P (29)

s utilized.

As function of the Mach number M;, the ratio of dynamic to airstream

pressure is

M12

g e
g
i
YRS

that of dynamic to stagnation pressure 1is

K

q D ol
i 1 sl
——f-—-M12=5M12"———M12+1 (%0)
Po. o2 Bo 2 2

The results are represented in table 1 and figure 5.
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Lift and drag coefficients are herewith

5
1
Py - P
Ca = AZ = 2 cOs \I;
q3 1
> (31)
w [P’ - P
Cy = 1 = sin V¥
9, 947

or, if all pressures are referred to stagnation pressure Pg»

i == = |
o' P2> <P2' Pa)
Po - By Po Do
cg, = 2 0/l cos ¥ ey = b L g P v (32)
qy q4
o ks Bgel
The drag/lift ratio is
Cw
e=X=tany (33)
a

Table 2 gives the values of cg, cy, and € up to M; = 10 as
computed by the formulas (32) and (33).

In the calculation of the Mach numbers up to M; = 4, the tables

by Keenan and Kaye (ref. 6) as well as those by Ferri (ref. 3) were used
to define pg/po and pzv/pl (k = 1.400).

For higher Mach numbers, the formulas of sections 2 and 3 were
employed. At each Mach number, the angle of attack was varied up to

Vg lMp' = 1),

Figures 6 and 7 show the variation of c, and cg over the angle

of attack V; figure 8 shows the polars cg plotted against cy-
The boundary curves show the maximum 1ift and drag coefficients that
can be expected without getting in the transonic range.
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Other values for the boundary curve are given in table 3. Since the
pressure distribution on the upper and lower side is constant, the result-
ant force is applied at plate center and is normal to the plate. There is
no suction force as in subsonic flow.

5. Lift and Drag at High Mach Numbers

At high Mach numbers the angle of attack of the plate can exceed
the maximum expansion angle @poy (section 2) corresponding to the Mach

number of the airstream ©Omax = Vg at M; 2 6.4). Hence, when assuming

continuous flow, an empty wedge-shaped zone between plate and flow appears.
This zone is largest at constant angle of attack when M; = «». In that

event, no deflection of flow is possible.

~ Owing to this vacuum space, the pressure at the upper side is zero.
The resultant force K 1is obtained then from the pressure on the lower
gside, behind the compression shock. Hence, per unit area

K = p2' (31‘“)

or, when referred to the dynamic pressure of the airstream,

LR (35)

B U PP

Introducing pg'/pl from equation (15) gives

K i lp) KE=rl 2
—_ A=y =

where the term containing l/Ml2 can be disregarded without great error.

K L

Sl s ek

siny (36)
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So the 1ift and drag coefficient are

~

J

|

|

|

|

|

Cq = 4 sin27 cos ¥ f

K+ 1 |

§ (37) |

r

Cy = S sin27 sin ;
K+ 1

o) |

Both formulas are dependent on ¥ and V only. Between these there
exist the relation given in equation (18), which can be written as
follows (8 = V):

cot ¥ = = lban 'y

where the term £X can be disregarded again. Then
My

sin27

cot ¥ = (ﬁjglu-%tm1r (38)
2

The values and curves designated with M = « 1in table 2 and figures 6,
7 and 8 were defined by equations (37) and (38). For comparison the 1lift
and drag was also computed by Newton's formula (the normal component)

cg = 2 sin2y cos ¥

(39)

Cy = 2 sin5w

I
J
J
\
|
|
|
|
/‘
; The corresponding values and curves carry the subscript N. «
|
|
{
|
|
J
|
\
|
|
|
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6. Calculation of Lift and Drag by Linearized Theory
According to Ackert's linearized theory, the members of higher order

in 22 can be disregarded without great error in the potential equation
Vi

o £4 1.(?3)2 y % 4 ; ].(§£>2 2 3 30 _ "

| Aol | e

=1

for slender bodies at small angles of attack, because the interference
flows are small compared to that of the airstream.

The equation reads accordingly

2 2 2
a__(al_iée +_a_9_=o
2| a2\ex 352

Inserting

2
L@ = M2
a2 ox
and observing that M is greater than unity, the equation reads

X X
LGV Pk O (40)

v oy
The general solution of this equation is

Q= f(x - yVM2 - l) (1)

It indicates, as stated in section 2, that the lines of constant
potential are the Mach lines of flow, and their slope has the Mach angle
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This solution shows further that the flow velocities

and = éﬁ
dy

satisfy the condition

At the surface of a body in the stream

ale
4.5

is applicable.

The pressure variation by the momentum equation reads

%p-=—UAU=—Uu

where U is flow velocity and u 1is interference flow in stream direc-

Llon,

Accordingly

NACA T™ 1369

(43)

(k)
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The pressure difference between both sides of a flat plate is

&p L dy
Y ™ (45)
‘/Me _ 1 ax
The 1ift and drag coefficients at the angles in question are
)
Ca = -_).I.Y—___
M2 - 1
> (46)
2
Cy = IJ-\P
M2 - 1
The drag/lift ratio according to this theory is
Cw
g & === (47)
Ca

Instead of the expansion wave and the compression shock at the
leading edge, it has simple Mach lines as interference lines (fig. 9),
in contrast to the exact theory.

The values given in table 4 and plotted in figures 10 and 11 were
computed by these formulas. The calculations were carried out at each
Mach number up to angle of attack Vg - from the exact theory. The cor-

responding cg and cy values lie on the curve G'.

At sonic velocity on the lower side of the plate pe'/po = 0,5283.
This value, introduced in the following directly obtainable relation

. 2yq
2 —pl=-:2L—Ap=——l— (48)
M2 - 1
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and

pp'fop - Pafeo oy

% /Po V2 -1

gives the angle of attack (Wsz) corresponding to M2' = 1, which in gen-

eral is greater than Vg.

7. Comparison of the Results of the Linearized Theory With
Those of the Exact Method

In table 5, the difference is (CG - cL), where cg is the coef-
ficient of the exact method and cj, is that of the linearized theory
at Mach numbers Mj = 1.4%0 and M; = 5.00.

It follows that the linearized theory is a very good approximation
for small angles (up to about 10°). For greater angles the values of

and ¢, are too small.

In figures 6 and 7, the cg5 and c, curves by linearized theory
marked A' and A are included for comparison.

(&

a
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CHAPTER II. INTERSECTION, OVERTAKING AND REFLECTION
OF COMPRESSION SHOCKS AND EXPANSION WAVES
1. Introduction
Overtaking of expansion waves and compression shocks in supersonic
flows occurs when the marginal streamlines - or boundary walls - change
their direction twice in the opposite sense (fig. 12(a)).

If expansion waves or compression shocks strike a fixed wall and
their slope toward the wall does not exceed a given angle, they are

reflected as expansion waves or compression shocks (fig. 12(c)). Crossings

occur in flows through channels and free jets (fig. 12(b)). All these
events can occur in cascade flows (fig. 12(d)).

2. Small Variations

(a) Suppose that a small expansion occurs at B in the supersonic
flow Ml, Py, 21, p; past the wall AB (fig. 13). The angle of

expansion is 29. If [© is sufficiently small, differential considera-
tiens are permissible.

Bernoulli's equation gives

where U is the magnitude of the velocity and AU its variation; Ap is
the pressure variation.

Since the vectorial velocity variation is normal to the interference
Eine S the variation of U is

U, A8
alu| = Uy tan py 28 = (50)

M2 - 1

J
e e e e e Sl
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hence

2
plUl 29
O R g (51)
Mlz -1

But, as the dynamic pressure q 1s given by

2

K
Il
n [+

01U12_ & % Kp1My

the pressure variation can be written as

2
kP M, “AB
Ap:—__l_l.—. (52)

W

The variation of the Mach number M follows at (ref. 3, p. 26)

1
M = b by M;°) 20 (53)
M© - 1

The Mach line BEq forms with flow direction AB the Mach angle My
the Mach line BE, at the end of the expansion the Mach line pp. Now

it may be assumed that this small expansion takes place on the inter-
ference line BE', whereby

Pa + s - AG
X A'BE' = L 22 (54)

(b) A simple differentiation gives the change of the shock angle 7y
as well as the pressure change pg' after the shock, due to a small vari-

ation of the angle of deflection &, for the compression shock AB
(fig. Ak).
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Between 9y and & the relation (eq. 18)

K+ 1

exists, and therefore

D = 4 sin28 sec 7(%-— 1) - Mlesingy g% Ay =N E ey (55)
B
where
e A B
N M
> 1
B = (Mlgsingy ¢ 1)
and

@
|

= - 5in®% se027 i - Mlesin27 &
B B2

The pressure p,' after the shock is {eq. 15)

1 2K 2 kK + 1
= M, “sin=y - 6
P, p1<n+l 1 e (56)

and the result for a small variation of the shock intensity is

Dpo' = le12 sin 2y Ay {57)

K + 1
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%. Overtaking of Compression Shock and Expansion Wave

(a) The supersonic flow Mj, Py, Py Dpast the wall AR (fig. 15(a))

|

|

| undergoes a directional change & at E. The compression shock EF and

{ the flow direction form the shock angle Gl in zone (1). At C an expan-
;
|
|
|

sion takes place about an angle ©, and the expansion wave FCG overtakes
the compression shock at F. To simplify the calculation, the continuous
expression 1s replaced by a given number of expansion waves of finite
intensity, whereby a successive expansion through these waves is assured.
| If n 1is the number of waves, the expansion due to a wave is 8/n = Ae.
The number n must be so chosen that A® is sufficiently small.

Now consider the intersecting of wave CFl(Afb and compression
shock EFq(3), figure 15(b).

From Fy the compression shock advances with weaker intensity in
direction Gp, that is, it deflects the flow less - say by 8&'. F1G; forms

with the flow direction the angle 7' at (1). Indicating the various zones
by (1), (2), (3), and (%), the streamline through Fy splits the zone (%)

into the portions (L4y) and (4;). The flow in (2) and (3) is fully known,
because the angles ® and A® are known.

To define the conditions in (4), the streamlines Sy, 8o, and 83

are examined. The directional change of S, amounts to (5 - A6). But
along 83 the flow experiences the directional change &'. To maintain

equilibrium in (4), the pressure as well as the velocity direction above
and below the streamline S; must be equal.

In general, the pressure change from (1) toward (3) is not the same
as from (1) to (4), so that a reflected expansion wave - possibly a small
compression too - must appear between (3) and (L4), say along a line PiHy.

Supposing that this reflected wave is an expansion wave of inten-
sity 2®'. By "intensity" of an expansion wave or a compression shock is
meant the deflection, which the flow experiences in the process.

The pressure in (4,) is, (according to section 2)

RM32 {
Py, = P31l ~ ——=— 1@ (58)
\/M52 e |
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The difference of the deflection angles amounts to (' - 8) = &5. In
general, this intensity decrease is small, because the compression shock
is much stronger than the expansion wave. The corresponding change in
shock angle y is Ay.

The pressure in (Y4o) follows from the change in shock intensity.
Hence we can say that

B = Py’ - Lpy' (59)

This is again the equation for small variations derived for shocks from
equation (57). Accordingly

2K ’
Py, = Py - le12 —5tn 2y Ay (60)
Posting puo = puu, gives

KM32

2
/8') = pp' - pyMy

2l K
M3 -1

P51 - f sin 2y Ay (61)
3

For the velocity direction in zone (4) to be unequivocal, it must

M0 =05 + 18 (62)

The relation between shock intensity variation and angle of shock
(eq. (55)) together with the two previous equations gives

of
M = g (63)

(=8
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Lo (64)

with the constants

2 Mp? M;%sin 2y

KM ®M
e e
\,MBE -1 \’M22 % 4 <M12s1n27 - EE:—£>
K

The condition for equality of static pressures is not identical with
that for equality of velocity magnitude above and below the streamline 5;.

As the shock losses on either side of the intersection point F are
unlike, the stagnation pressures in the wake above and below streamline Sy

are different, hence there is a small vortex layer along this streamline.

Figure 16 represents the graphical solution of the problem by means
of the characteristics and the shock polars. The condition for equality
through equality of velocity magnitude in the entire zone (4) is
approximated.

(b) The reflected wave is disregarded:

In general, the angle of deflection AB' - intensity of the reflected
wave -~ is very small (compare numerical example). Thus the pressure in
(3) is not much unlike that in (4), so that this reflected wave FiHy can

be discounted.

In this event the flow directions in zones (3) and (4) are identical,
or in other words

2O = 1D (65)

With equation (55) A5 can be defined and from it the new direction 7'
of the compression shock. The velocities in (3) and (4) have then obvi-
ously the same direction but not the same magnitude by reason of the small
vortex layer developing between (3) and (4).
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Numerical Example

. Free stream:
Py /pg = 0.12780 My
7 Before overtaking:
shock intensity d
shock angle Y
hence the state in zone (2)
p2/PO =EREST Mp
intensity of the expansion wave A8

state in zone (3):
p3/pg = 0.1693 M3

Determination of constants:
()
F
G
Q
: Inserted in equation (63) and (64) gives:
avi

By equation (62)

i

Il

2.000

60
35.24°

ilae
lO

1.818

1.078

3.0k

i DAL

5175

intehsity of the reflected wave

0.89°
0.06°
AO - A@' = 0.94°
5.04°

y = Ly = B55Y

CMA=Ca9= 1.078°
50

25
Therefore the shock intensity after overtaking is
®
The new shock angle is
y'!
The reflected wave disregarded, leaves
Ay
shock intensity 5!
angle of shock v

3h.16°

It is readily apparent that the reflected wave is very small, hence

- scarcely affects the pressure in zone (3)



NACA TM 1369

4. Intersection of Compression Shock and Expansion Wave
Figure 18(a) represents an expansion wave AG of intensity @
proceeding from the corner A. At F +this wave crosses a compression

shock of intensity & emanating from the corner B.

As before, the continued expansion is replaced again by n expansion
waves between which the flow is straight. The deflection by each wave is

20 =

Bl@

After crossing (fig. 18(b)) the compression shock has an intensity &'
and a shock angle y'. Now the expansion wave has the intensity 20'.

The zones produced this way are numbered (1), (2), (3), and: (4).
The streamline F38 splits the zone (4) into (Lg) and (k).

Looked for now is the shock intensity ©', shock angle 7', and
expansion angle /B' after crossing, and the state of flow in (4), when
the state of flow in (1) ®, y and 29 are known.

According to chapter I the state of flow in (2) and (3) can be
determined directly.

The pressure in (M) follows through a small expansion /0 according
to the laws in chapter II at

Py, = P2(l - ——— @' (66)

where A® is still unknown.
The method of solution consists in first msking an assumption for
the shock intensity after intersecting, which is

5;i = (5 - AB) (67)

The corresponding angle of shock would be Y1+
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The state after this shock, indicated by ho', can again be defined
according to chapter II. The pressure in (4,') is

; e, 1
Ms2sinfy, - z == (68)

i 2K
pho p3 K 4+ 1

Now the flows in (Y4g) and (2) have identical directions, but the
pressures and the magnitudes of the velocity are different.

To assure equilibrium within (4), the pressures and velocity direc-
tions in (Ly) and (L4yy) must be equal. And to satisfy this condition the

assumed shock must be intensified by A5;.
Obviously it shall
LD; = ey (69)
The new pressure in (4y) is (according to section 2b)

By, = By |+ p5M52 sin 2y; Ay (70)

K + 1

where Ay; is the change in shock angle 7; and is computed by
equation (55)

(For the calculation of C see section 2b)

Posting Py = Py equations (66), (68), (70), and (71) give

2
kM 2 : —
Py i = ____E____ M = p5 ———EEjM32sinzyi - E s +
,Mge et it
s L 20"
phs? —— sin 2y (72)

This equation is linear in A@'.
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Now the quantities &' and 7y' can be defined

' = 8f + MDy = 81 + /O’ (73)
1
7'=7i+A7i=7i+A—fz— (Th)

The pressure in (L) can be obtained directly from equation (T70).
The Mach number Muo itself can be determined according to chapter I,
if ®' and 9y' are known. That in (k4,) is likewise directly obtainable
from Mz by the isentropic expansion 2A8'.

The slight discrepancy between the values Mho and Muu is due,

as stated in section 3, to the fact that the condition for pressure
equality, owing to the change in static pressure after both shocks, does
not require equal magnitude of velocity. So a small vortex layer along
streamline F;S 1is to be expected.

Before intersecting the expansion wave forms with the flow direction
in zone (1) the angle (section 2)

2

After intersecting the angle with the stream direction in zone (2)
is

p.2 + u)_‘. = A@l
2

But there is a difference & between the flow directions in (1)
and (2), so that the looked-for directional change is

My + pz - A® Mo + My - A9
T e 23 ey = g (75)
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The directional change of the shock front is
xe=19-(y +10) (76)

A negative angle b and a positive angle c¢ indicates that the
expansion wave or shock front after crossing is in more downstream
direction.

For illustrative and comparative purposes, the graphical solution

in figure 19 was made with the aid of the characteristics and shock polar.

Here also the condition for pressure equality was replaced by velocity
equality.

The described mode of calculation is used in the following numerical
example for illustration.

Numerical Example

The flow in zone (1) is:

Py /po = 0.22905 My = 1.435 by = 44.18° (See cascade
example of the following chapter III, zone (3)).

Data before crossing:

intensity of expansion wave 20 = 19

intensity of compression shock 5 = 3.03°

shock angle of compression shock y = 47.91°
With it the states in zone (3) become:

D3 /Po; = 0.28478 M = 1.469 by = 42.89°
Therefore

pp/p1 = 1.157

pe/pol = 0.34560 Mo = 1.332 po = b7.75°

Assumed shock intensity

8y = 5 - AB= 3.03 - 1 = 2,0%°
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corresponding angle of shock

45,29°

N
=
]

pressure after shock p40>/POl = 0.3153

Determination of the constants

aA=5E1 M2 2500
g
B = (Mz2sinly; - 1) = 0.092
\
E=— singsi sec271<é = i) = sineyiMl2 =l 0.750k
B 32

Equality of pressure in (4p) and (4,;) gives

2

RM—Z__ NCH
\‘] M22 -1 3

Py, = Poil -

. - ' ole 2k H
_puo_pl‘_o +p§M§ R+lSln27i_C—

which inserted gives

48 = /By = 0.89°
Nyy = o 2 1.19%
c
After the crossing:
shock intensity 8' = 8; + M3 = 2.05 + 0.8 = 2.92°
shock angle ' = y; + Ay = 45.29 + 1.19 = 46.48° .
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Hence

P)_;/PO = 0.3303 My = 7 .082
Mhu = 1.3643
M = 1.3%640

The comparison of the two Mach numbers indicates that the difference is
quite small and lies within the calculation accuracy.

Directional changes:

Il

43.036 + 3.034 - L7.47 = - 1.4°

Expansion Wave 4 b

Shock front J c=47.91 - 46.48 + 1 = + 0.43°

5. Crossing of Expansion Waves

Each expansion wave is again replaced by n small waves. In fig-
ure 20(a), two waves of intensity /29 and 9, cross each other in F.

After crossing, the intensities are Aal' and Aa2'. In this case, only

one stream direction is obtained in zone (4), when

AT Bl = ﬁ@l' it mg' )
Application of the relations of section 2 results in
19 = P5 = AP5 = Poii= ﬁPg

that is
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Since all other quantities are known, ASy' and AB;' can be com-

puted from these two equations.

The directional change of the Mach lines is like that in the pre-
ceding section

My + Hz - Mn + Wy, - .
e Z ml+AQL-2 2 e (79)
a4 [y - /18 pz + W), - 285"
- ik 2 2 ¥ 205 = 5 L 2 (80)
2 2

Since all changes follow the same adiabatic curve, the condition for
pressure equality yields equal velocity values at both sides of the
streamline FS. Hence, no vortex layer will appear. Figure 20(Db)
represents the graphical solution.

Numerical Example

Airstream:

47.050

pl/po = 0.3295 M = 1.366 iy

The intensity of the first expansion wave is: A@l = 0.999. Therefore

PQ/PO = 0.3134 Mo = 1.k02 ws = 145.50°
The second expansion wave intensity is: A@b = 1.06°
The conditions in zone (3) are then

p?/po = 0.31245 My = L.kokl bg = U5.453°

The two equations defining A®;' and AG,' are:

o) + M0, = 0.03579 = 28, + 18,

2 2
5 RPB_I{} ml‘ i P2 Al K'ngg mel

Vus® - 1 V2 - 1

19h = P3
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hence

0.0184 = 1.054°

]

A@ll

1l

&8' = 0.01Th = 0.997°

after which the conditions in zone (4) become:

pu/po = 0.29722 My = 1.h4 W, = 4b.01°

X b=+ 0.5 and X c=-0.020

6. Reflection of Compression Shocks and Expansion Waves

\

\

|

|

|

|

\

|

|

|

|

|

|

|

‘

By equation (79) and (80) the directional changes of the waves are |

|

|

J

|

|

)

|

I

|

|

\

|

No difficulties occur in the determination-of the conditions existing t
behind the reflected compression shock FB (fig. 21). Those in zone (2)
can be defined according to chapter I, if the state of the airstream and

the intensity & of shock AF are known. Obviously the reflected shock |

is of the same intensity as the impinging shock, so that the shock angle 7 !

of the reflected shock and the conditions in zone (3) can be defined. |

|

The same holds true for the reflection of expansion waves, when the
intensity of the expansion waves and their slope with respect to the wall
are known.



3 NACA TM 1369

CHAPTER III. THE CASCADE PROBLEM

1. Problem

Visualize a cascade of infinitely many and infinitely thin flat
plates, of which two adjacent plates AB and A'B' are represented in
figure 22. The angle of stagger is 90.- B, the spacing t and the
blade chord L. This cascade is exposed at angle of attack ¢ to a
supersonic flow M;, pj3, Py-

It is assumed that the flow is the same in all planes perpendicular
to the plates and determines the force, that is, 1lift and drag as well
as the pressure variation along the plate (blade).

2. Method of Calculation

To each plate there correspond interference lines (chapter I), that
is, the expansion wave issuing from the leading edge and compression
shock (fig. 22).

At wide spacing, the separate blades of the cascade will not affect
each other and the problem reduces to the single plate.

Now if the spacing decreases for constant chord, the interference
lines of one plate intersect those of the other, without, however, any
force being exerted on the plates themselves for the time being. In
this event, the force on each plate is the same as on the single plate,
sxcept that the wake flow is slightly disturbed.

The values of t/L, below which the interference line of a plate
begins to exert an effect on the adjacent one, are called (t/L)crit

"eritical chord-spacing ratio."

At t/L < (t/Lcrit) the interference lines are reflected on the

plates. After the crossings and reflections, new zones appear on both
sides of the plate where the pressure as well as the velocities are
unlike the uniform pressures and velocities to be found at either side
of the plate. As a result, there is a change in the total force as well
as the 1lift and drag on each plate.

The mode of calculation consists in defining each intersection and
reflection with the laws of chapter II and from it determining the con-
ditions in the several zones. Integration of the various pressures on
both sides of the plate gives then the total force, that is, the 1lift
and drag.
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The resultant force still is perpendicular to the plate, but no
longer through the plate center, hence produces a moment with respect
to the center. The position of the force is defined by statistical
methods.

This method is illustrated in the following example.

5. Example
The cascade ABA'B' (fig. 23) with 30° angle of stagger, that is,

B = 60°, and at angle of attack of ¥ = 3° is placed in a stream with
My = 1.400k (corresponding to v = 9°).

The blade spacing was assumed at the beginning, while the plate

chord was so chosen after completion of the calculation that the expansion

wave was reflected exactly once on the bottom side of the upper plate.
It was found that t/L = 0.547.

The flow experiences a compression shock starting at the leading
edge A'. The shock angle ¥ = M9.57° is read from the shock tables
and the shock front A'a can be plotted.

Proceeding from the leading edge A, an expansion wave spreads out
between the Mach lines Ax and Ay. The first forms with the airstream
direction the angle py = 45.56°. The characteristics tables give

M7 = 1.503, that is, the Mach number which is obtained at an expansion

by 3° from the Mach number 1.4004. The corresponding Mach angle, that
is, the angle which direction Ay forms with the plate, would be
Bl S hl.?Oo. Instead of the continuous expansion, assume an expansion

in three stages, each corresponding to a 1© deflection. The conditions
in zones 1, 2, 3, and 4 are obtained from the characteristics tables,
after which the directions Aa, Ab, and Ac can be defined.

By applying the methods of chapter II to the calculation of the
goBcele e b, c, e, £, g, 1, m n; py G, B a#d the Terloes
tions 4, h, i, k, o, r, u, the static pressures, the Mach numbers
(table 6), and the intensities of the expansion waves and compression
shocks, as well as their directional changes (see table 7 and fig. 24)
in the several zones, can be determined.

The static pressures were referred to the standard stagnation pres-
sure pol'

The stagnation pressure changes were disregarded in the determina-

tion of the Mach number. This change is rather small according to table 6,
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so that no appreciable advantage was to be gained by including it. (For
calculation of pq/pol, compare eq. (23).)

The pressure distribution past the plate is obtained immediately and
represented in figure 25. There the passage of compression shocks and
expansion waves is accompanied by a sudden pressure variation. Since the
actual expansion is continuous, the serrated line is replaced by a smooth

curve, such that the areas decisive for the force calculation are identical.

Note that the pressures on both sides of the plate cancel out over a
large portion of the chord. The resultant force can be determined by
integration of the various pressures; the various spacings 1 are read
directly from figure 23.

The plate width was assumed at b l. The result is

Il

1
(@)

i : = 0.2963 upper side
Pol L

= 0.2896 1lower side

Downward resultant force

—— = 0.0067
POlL
1ift coefficient
1Y
K 0
Cy = ——— e | eog Ve=80100552
PolL q
drag coefficient
P
K 0
By = R e sin ¥ = 0.00082
Pg Jo e
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4. Calculation of Thrust, Tangential Force and Efficiency
- (a) The resultant force on the blade is resolved into two components.
One - the thrust S - is normal to the plane of the cascade, the other -
the tangential force T - parallel to it (fig. 26).

If

=
]

resultant force per unit of area

(90° - B) = cascade stagger angle

then

n
]

K cos B (61)

H
]

K sin B

As functions of 1lift and drag

(
€3]
Il

A cos(B - ¥) - Wsin(B - V)

=
1

A sin(B - V) + W cos(B - V)

Referring the force to the dynamic pressure gqp of the airstream,
gives the coefficients

$ (82)

c.=—s5in B

similar to the 1lift and drag coefficients, which can be obtained directly
from cz and cy.
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At fixed blade chord and fixed angle of attack the resultant force
reaches its maximum value when adjacent blades do not affect each other,

that is, when t/L > (t/L).p4¢- In this event

-

where pp' 1is pressure at lower side (behind compression shock) and

Pp 1is pressure at upper side (behind expansion wave).

For a given Mach number of flow and angle of attack the thrust and
tangential force is maximum at B = 0° and B = 90°, respectively.

At a given angle B and a given Mach number, T and S increase
with increasing {. Owing to our assumptions V¥ may not exceed Vg, in

order to prevent subsonic flows on the bottom side of the plate.
(b) Definition of efficiency (no friction):

It is supposed that the air enters normal to the plane of the cascade
at a speed v (fig. 26). The cascade moves with the tangential velocity 1
and finds itself accordingly in a relative flow with an angle of attack V,
whereby tan(B - V) = v/u. As a result of this flow, the two forces S
and T normal and parallel to the plane of the cascade act on the plate;
S and T are defined according to previous considerations. An efficiency “
is defined as on a propeller, by visualizing the blade being driven at
speed u with respect to force T and so producing a force S in axial
direction on the flowing air. Then the power input is T X u, the power
output S X v and the efficiency is

Sv
Tu

Il
|

(83)

(OF 4

tan W>
e )
_ tan(B - V) _ (» tan B

tan B 1+ tan ¥ tan B

1

The efficiency is seen to be dependent on y and B only. At
constant B it decreases with increasing V. At = constant, 17 has
a maximum, if

81 _ ¢ (8u)

5B
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that is, when

tan B = tan ¥ + \/(tan Ve + 1

which approximately gives

B =14+ 2y (85)

The maximum efficiency is then

1l - tan

(86)

max
¥ = Constant 1+ tan

o e e

At small values of V¢, tan ¢ = ¢ and We is negligibly small, hence

at B = U45° + % v

-2 (87)

Mmax

The efficiency for various $ and V¢ is represented in table 8 and
fiigure 21
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CHAPTER IV. LINEARIZED CASCADE THEORY

1. Assumptions

The theory is based upon the following:

(a) All disturbances are small in the sense that all interference
lines may be regarded as Mach lines. The expansions are simply concen-
trated in a Mach line and the compression shocks replaced by Mach com-
pression waves.

(b) Intensity and direction of waves are not changed by intersection
of expansion and compression waves. The justification of this assumption
is indicated in the preceding numerical example, where it was shown that
the directional changes of the wave fronts are small, as a rule.

On these premises, the interference lines AA' and AA" parallel
to BB' and BB" start from the small disturbances A and B
(fig. 28(a)). At the intersection in a the directions of the waves AA'
and BB' as well as their intensities remain unchanged. The pressure
and the velocities in the zones (2), (3), and (4) are defined by the laws
of chapter II. In the hodograph these assumptions imply that the char-
acteristics network in the applied zone is replaced by a parallelogram
(fig. 28(b)).

2. Linearization of Cascade Problem

The application of these simplifications to the solution of the
cascade problem produces parallel Mach lines within the cascade, which
remain parallel after crossings or reflections (fig. 29(a)). (L = plate
chord, t = spacing and V = angle of attack.) The Mach lines Aa
and A'a emanate from the leading edges A and A'; the angles aA'X'
and aAX are Mach angles and both equal to p,. On passing through A's;

the flow experiences a compression and a directional change 1V, along Aa
an expansion with the same directional change.

The pressure in (2) and (3) can be defined by the laws of isentropic
expansion and compression (chapter I); that of zone (4) is computed the
same way from the pressure in (2) and is obviously equal to Py, as seen

in the hodograph (fig. 29(b)). But the flow direction in (4) differs
from that in (1) by an angle 2y.

The Mach line aC' intersects the plate at C' and is reflected
along C'E, whereby C'E is parallel to A'a. The pressure in zone (5)
is again equal to that in (3) and the flow is obviously parallel again
to the plate.
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On passing through DE' +the flow from (4) and (6) is compressed -
the reflected wave DE' - so that in (7) the direction and the velocity
of f%ow are the same as in (1); the same applies to the flows in (6)
and (2).

Thus it is seen that the corresponding zones repeat themselves, hence
that the further conditions are completely known without new calculations.
3. Calculation of Lift and Drag

The pressure variation on either side of the plate can be plotted
(figs. 29(c) and 29(d)). The pressure remains constant over the lengths

AG, €, DB, EF and FB and over A'C', C'D', D'E', E'F' and ¥F'B' -

where the interference lines strike the plate.

Along CD +the pressures on both sides are equal and cancel out,
whereas a downward pressure difference P3 - Po, obviously perpendicular

to the plate, acts on AC and EF, and an identical upward pressure dif-
ference on DE.

The pressure pattern in figure 29(e) repeats itself in length direc-
tion of the plate over the period I;. If the plate chord is chosen

exactly like Ly or a multiple of it, there is no resultant force, that
is, a plate of this length has neither 1lift nor wave resistance.

For the values of L, which satisfy the inequality
Lo < (L - nl3) < (I1 - Lo)

whereby n can be = 0, 1, 2, . . ., the resultant force reaches its
maximum value, and then

K= (P3 - Po)lg (88)

Hence it serves no useful purpose to make the plate longer than L,
because there is no more lift increase anyhow. On the other hand, a
moment occurs and, in the presence of friction, the drag would increase
unnecessarily. The boundary Lo(= AC) is the plate length not touched
by interference lines of the other plate and can be defined geometrically
in terms of cascade spacing t and angles B, V¥, and u.
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sin[ﬁ - (g + ‘l/)]

sinl:B + (g + \Lr)]
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Ig=% Iy =2lg+ t (89)
sin(py + V) sin(py - V)
Accordingly the best ratio of spacing/chord is
5 1 Sin(p-l + \U) (90)
L 1o sin[B - (b + \@
Now cg and ¢, can be determined when
1. L =nl,y then Cg = Cy =0
2. Lg < (L - nLj) < (11 - Lg), the boundary values are
Pz - D
K
Cq = —— COS ¥ = > F cos ¥
q,L ay
(91)
Pz - D
cwz—K-—s:‘Ln\y=5 2Fsin¢
4t 43
where
i sin[ﬁ - (g + \p)]
& L 51n(ul + \lf)
3. Lg> (L - nlj)
.
P3 = P2
cg = ———(L - nLj)cos V¥
a-L
< (92)
Bz =iDBo
Garie 2————(L - ghy)eia
q;L
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it (L ~ nig) > (11 '~ Lo)

N

_Pj‘Pgr
cg = ———|(L - nlq) - (L3 - Log)|cos ¥
qlL L

f (93)

EL - nlp) - (L1 - Loﬂ sin v

/

The linearization can be extended to the pressures po and P3;

admittedly then only when the angle of attack is sufficiently small.’

The pressures can be defined by the laws of small variations
(chapter II). Thus

(9%)

Inserting these values in the above formulas for c¢, and cy, while
expressing the dynamic pressure with

L
Q=i kpM

and the values 1 and ¢ for cos y and sin §, gives as for the
isolated plate,

3In the following table the pressures after expansion of pg = 0. 31404

(corresponding to M; = 1.4004) are represented in terms of the expansion
angle:
pp = pressure according to isentropic law of expansion

= pressure according to the laws of small variations (chapter II)

Por,
0
e 1 2 3 4 6
po/Po 0.29906 0.28478 0.2711% 0.25809 0.23363
po1,/P0 0.29865 0.28335 0.26718 0.25266 0.22196
(p2 - ppp)/pp percent 0.1 0.5 145 £l 5.0
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g
Cqg = )-HV F E
M2 - 1
} : (95) .
)_‘_2
CW=-——\II—-——F
Me - i

J

The factor F approaches 1 when t/L = t/Lo. The theory is now illus-
trated on the following numerical example.

4. Numerical Example

The cascade of the numerical example in chapter III is applied again
with the same airstream as by linearized theory, figure 30.

It was

t/L = 0.547 B = 60°
M; = 1.40O0k ¥ = 3° )
p1/py = 0-3140%  py = 45.56°

The Mach lines within the cascade can now be plotted. By equation (89)

Lo = 0.144L

Geometrically defined are

]

(L1 - Lg) = 0.778L

so that

(k= 1) = 0.008L
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The tables of characteristics give

PE/POl = 0.2711 (expansion by 3° starting from pl/pol)

p5/pol = 0.3640 (isentropic compression by 3°)

Assuming the plate width at one cm, gives:

Pz - P
Pegultant force —— = (1 = L1} S-Z—i) = 0.3436
PO
1 Po,
resultant force per unit length = 0.0067

1ift coefficient cg = 0.0156

0.0008

drag coefficient cy

The pressure distribution on both sides and the resultant pressure

are shown in figure 31.

5. Comparison With Exact Method

Instead of the lengthy calculations of all crossings and reflections,
the linearized theory affords a quick and simple solution of the cascade
problem. At small angles the results are reliable and the errors small,
as seen from the comparison with the numerical examples in section Dy

chapter III and the preceding section.

ca(exact) - ca(linearized) _ -2 percent

Ca(exact)

The interference lines of the linearized solution within the cascade -

the Mach lines - are included in figure 23 for comparison.

It is seen

that the zones governing the resultant pressure are smaller by linearized

theory.

The pressure distribution of the linearized example is also shown

in figure 25.
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CHAPTER V. SCHLIEREN PHOTOGRAPHS OF CASCADE FLOW

1. Cascade Geometry

A disturbance in supersonic flow is known to spread out only down-
stream of the source of disturbance. So the pressures and velocities
on one of the sides of a profile, stipulated by the form of the surface,
are not influenced by the other side.

This property is used to represent the flow through a cascade con-
sisting of a number of infinitely thin plates. Two profiles with a flat
surface on one side are so assembled that their flat sides face each
other and are parallel. The flow between the parallel sides is exactly
the same as that between two adjacent plates of the cascades.

The two profiles can be moved apart or shifted relative to one
another, so that any desired ratio t/L and any stagger angle can be
obtained.

The experimental cascade was patterned after the cascade in the
numerical example of chapter III, which had the same angle of stagger
of 30°. The Mach number of flow was - as in previous calculations -
M = 1.40; the spacing ratio was t/L = 0.517. The angle of attack
ranged from 0°, 1.5°, 3° to 4.50.

The maximum profile thickness was so chosen that no blocking of the
tunnel (section 2) was produced at the selected Mach number and that the
deflection of the profiles at maximum angle of attack is small.

Now at M = 1.40 the deflection due to compression shock, which
exactly leads to sonic velocity, is 85 = 9°. As there is to be no sub-
sonic flow in the test section and since the angle of attack was assumed
at 4.5°, the leading edge of the profile may at most form an angle of
about 4°, which corresponds to the constructed profile.

The compression shock is not separated at the leading edge of an
infinitely thin plate or an infinitely sharp wedge of sufficiently small
included angle. Therefore the leading edge shall be as sharp as possible.
It succeeded in attaining a thickness of 0.05 = 0.07 mm* so that the

distance of the separated shock from the edge is scarcely visible.

The profile chord L was 118 mm, so that the cascade lies within
the tunnel window. Since the tunnel itself was 400 mm wide, the width
of the profile was limited to 398 mm, figure 32.

Yfurit Co., Affoltern, Zurich. .
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2. Experimental Setup

The previously described profiles were mounted in the test section
of the supersonic tunnel of the Institute? on four supports (Piz. " 55).

The compression shock issuing from the leading edge of the top
profile could not be reflected at the upper tunnel wall at maximum Y,
because the deflection to be made retrogressive at the wall was too great
for the Mach number prevailing behind the shock. To avoid blocking in
this region, a bend had to be made in the upper nozzle wall Ceag. 'S
The position of the bend was so chosen that the fan of expansions emanating
from it hits the cascade downstream from the entering edge. This adjusts
the wall to the flow direction after the shock to some extent as well as
raises the Mach number between the upper plate and the nozzle wall.

The Mach number in the test section before the cascade was deter-
mined by pressure measurements at the upper, lateral, and lower walls.
The investigation was carried out at a moisture content of air of about
)5 A water/kg air.

9l sehiltderen Photographs6

The schlieren photographs illustrating the flow through the plate
cascade at ¥ = 0°, 1.5° and 3° are represented in figures 36, 37,
and 38. Since a conical jet regime is involved, the photographs appear
as shadows of the profiles. Figure 35 shows the position of the optical
axis with respect to the cascade; it is seen that the shadows of the pro-
files are distorted on the mirror. At the top profile the perspective
effect is more obvious, because the optical axis is closer to the bottom
preitfalier

The equality of Mach's angle in figure 37 (y = 0°) is indicative
of an unchanged Mach number in the cascade. The visible disturbances
within the cascade may be due to the fact that the plate surfaces do not
exactly agree with the flow direction, or to thickening of the leading
edges by a boundary layer.

In figure 38 (W = 1.50) the interference lines inside the cascade
are almost parallel, as stipulated by the linearized theory.

5See Report No. 8 of the Institute for Aerodynamics, at the E.T.H,
red. .

6For description of schlieren apparatus see Report No. SLof BB,
Institute.
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At v = 3° (fig. 39) the deflection of the shock front at crossing
of the expansion wave emanating from the top leading edge is plainly
visible. Figure 4O represents an enlargement of the crossing to illus-
trate the numerical example in chapter III. The interference lines inside
the cascade for this example are again shown in figure 41 at smaller scale
(compare also fig. 23), whereby the perspective effect is indicated.

In the majority of photographs the retardation of the flow near the
tunnel wall leads to separation of the head waves.

The flow in all photographs is from left to right.
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CHAPTER VI. THE FLAT PLATE CASCADE AT SUDDEN

ANGLE-OF-ATTACK CHANGE

i o Prob

Visualize a cascade of flat plat

lem

es in a flow with relative velocity W

at an angle of attack V. A supersonic flow which may be regarded as two-

dimensional prevails throughout the c
of attack of the airstream changes fr
short time interval. The transition
for a period, is analyzed.

Such a change in the angle of at
moves in an absolute flow which has n
or when one of the velocity component
to the plane of the cascade, varies w

ascade. At a given moment the angle
om ¢ to ¥' within an infinitely
to the new state, which is to last

tack takes place when the cascade
ot the same speed at every point,
s of the flow, normal or parallel
ith respect to time.

Resolving the velocity W in two components V and U (fig. 42)
normal and parallel to the plates, the change of the angle of attack,

small in itself, can be regarded as a
in V 1is obtained by superposition o

direction as V and is obviously sma

change of component V. This change
f a velocity vp, which has the same

11 compared to V and consequently

smaller than sonic velocity. From the assumption of a small angle of
attack, it follows that velocity component U remains greater than sonic
velocity. Besides, an eventual variation of this component U is

disregarded.

The problem therefore reduces to

the study of the new forces on the

cascade, resulting from a gust vj T which, together with the velocity U

enters perpendicular to the plates.

Biot (ref. 5) solved the problem

of an isolated plate by means of

"unsteady sources."” This method is applied to the cascade problem. But
first the unsteady source is described in more detail. Since the plates
are to be partly replaced by such sources, the pressures and velocities

originating from a source distribution are analyzed. Then Biot's results

for the isolated plate are correlated

and extended to the cascade. The

special case of straight cascade (nonstaggered) is examined.

7By "gust" is meant a continued,
bution VQ-

uniform vertical velocity distri-




50 NACA ™ 1369

2. The Unsteady Source

According to linearized theory, the general potential equation (5)
for two-dimensional unsteady flow can be simplified to

2 7 2 =

e Rl e ISR e R O S (96)
2 2 a0 ot g2 < 2

ox oy ot

¢ = flow potential.

For a system of coordinates moving with velocity U(U/a = M), that
is, air at rest at infinity, this equation gives the acoustic wave equa-
tion for two-dimensional motion

0, 2D BT (97)

One solution for a linear sound source is

o =k cosh™1 %; (98)

where r = \/xe S5 y2 and K = constant with dimensional length times

velocity.

This solution is rewritten in the form

242
R R |
re
= k loge _<?t + \[a2t2 - r2> ’ (99)
1
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It represents a cylindrical wave varying in time rate. At t = r/a,

@ =20, that is, if such a singularity appears in the zero point of the
coordinate system, its effect is diffused inside a circle of radius
BESHE T

If such a source appears at the point (x,0) - on the x-axis - at
period t;, the potential in a point P(x,y) of the surroundings of this

source at a given period (fig. 43) is

@ = k loge 3 (100)

a4y} & \/ag(t - £3)€ - r®

In this case

o\

and the following velocity components are obtained by simple differentiation

B sl il (101a)
or : k/éz(t - £7)2 - r2
b = B 5 5 =8ty (101b)
Ox re \/aZ(t Sy ye L e
G T alt B (101c)
Sy re \/;,2(13 s pa )2 Tyl

When y is small compared to alt - tl) - near the source - the for-
mula (10la) becomes
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the same as that of a steady wave in incompressible flow, hence with Q
denoting the strength of the source (dimensional length X speed)

Rleo

The pressure in the same point is computed by

i g_"i < 8a8 - (102)
b B \a2(t - 17)2 - r2

It will be noted that vy always equals zero for y = 0, exceptiab "y =20

in the source itself. It means that such a source delivers at no other
place on the x-axis a velocity component parallel to the y-axis.

3. Pressure and Velocity of a Periodically
Arising Source Distribution

Consider a continuous distribution of infinitely small sources over
the length OA (fig. L4k4) along the negative x-axis. The distance OA
increases linearly with the time: OA = Ut, where U 1is a constant
velocity and the sources on the x-axis appear momentarily at the point
where A arrives at the moment. The strength of this source distri-
bution per unit length of OA is assumed equal to q (dimension of a
velocity) and remains constant in time.

(a) Pressure

At point P(x,y) (fig. 44) the pressure p of the source distri-
bution at time T is, by equation (102)

_ pag b g

i R R R

(103)

t, the time of origin of the source in point x;. 7
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With the following variable transformation

2 ¢ at 1 at

> (104)

X3 a g il

= e— — = S1n i

f1 e = il

we get
0
1 a
— ——-\jﬁ : (105)
peg  2n J

1/sin u \/<1 + by sin w2 - (€ - )2 - 12

The boundaries should be defined before the integral is evaluated.
For the function in the denominator is real only in the zone affected
by the source distribution; this is bound by the Mach line AM and the
circle with center O and radius a-t. Hence the integration must be
made between the zero places of the function where it is real.

Posting

(Low By ein 1) - (6 - E)C = 2 =0 (106)

the new boundaries are found at

§1(l)]\ 1 “fF st ) \/(1 + sin u)2 - n2cos?y
Cl(E)J -cos?u

To get an idea of the integrating process as function of the posi-

(107)

tion of point P, t1(1) ana ¢;(2) are plotted in terms of §. It

results in two curves of the second degree, which cross in point
q Q(¢,61) (fig. 45(a)) whereby
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sin p San i cosi
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(108)

The shaded area represents the runge in which the integration should
be made. At small ¢ values up to. § = \}l - n2, integrate between gl(l)

and Ql(g) and then between Cj(l) and the ¢ axis. In figure 45(b)

the integral limits are shown p ;ted in the x,y-plane for explanation.
The reason for not integrating over positive {7 values is the absence

of sources in the right-hand half plane.

Two integration cases are differentiated

\
-(.l_lc_ﬁ_ﬁ%u-'l-nz WY peae B PR

sin p

that is

e neos 1 )
_—__m—)at<x<— acte - y°

and

—\/a2t2-y2<x<+ a2t2-y2
In the first instance the pressure integral is

(2) .

P 1 jfgl
paq 2n

(1)
St Vu+clﬂnm2-(g-qﬁ

n

? (109)

(110)
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But as gl(l) and Cl(E) are the solutions of the expression below
the root, it can be rewritten as

2
523 " B Jy (1) (111)
1 (1) (2)
&y = €3 \6 -Ca
With the substitution
gl = gl(l) it (gl(g) - Cl(l)> singe (112)
this integra18 gives
D
S - 2 (113)
paq 2 cesiit
a formula that is independent of 10 = y/at.
In the second case, if point P 1is so situated that
-\/1—n2< ¢ < + \/1- n2
itiiresults in
0
LS f 52! (11%)
(1 + & sinp)” - (€ -8)° -1

8As long as the function in the denominator can be brought, with
the aid of the integral limits, into the form of equation (111), the
integral gives the same value.
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which after evaluation gives

p + sin
y = l COS-l . (C “)

pegERSTERCaaNL (115) k

2 2 2
(1 + ¢ sin p)” = 3 cos

The ensuing pressure pattern along a line y = Constant is repre-
sented in figure 46. For each y +the pattern consists of two pieces.
In the first piece the pressure is constant and equal to p,, that is,

along the length EF between the points where the Mach line emanating
from A and the circle with center 0O and radius a-t intersects the
line y = Constant. The second piece is composed of length

FO' = -\/a2t2 - y2 and 0'G = +\/a?t2 - y2, where the pressure is vari-
able; at G the pressure is zero. At y = y, the constant portion

disappears and wherever 7y = at, the pressure becomes zero.

At y = 0 it represents Biot's case with the integral limits

[

f - - sy and Sl <t <+ 1

j sim >
; that is ? (116)
|

; - ?t < < = Al and ~-at < x <+ 8t

r sin p

(

/

|

J

I

The pressure p, has the same value as before

P
paqd 2 cos
but the second piece of the pressure distribution becomes
X :
P 0 g}E‘ 4+ 8an K
R cos~4 (118) h
1+ X sin L
at

9q corresponds to Biot's 2vy-

L R R N L | 1 T i e o v S o e I S S S o T LS B ] SRy« oo = SRR | S s R e e — =
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It should be noted that a pressure effect appears also outside the
area in which the sources are distributed, because the source in O
affects the area inside the circle a-t as mentioned before.

(b) Velocity Calculation
In general, the velocity component is defined by the integration

of the portions stemming from a single source (eq. (101)). In our problem
the velocity vy is of particular interest.

It becomes

q le=O a(t - %))y dx3
Vy = E—
T Uxy=-Ut
. [(x - xl)2 - yg]\/;@(t - tl)2 - Ex - xl)2 + y2:]
2 - :
T, 2= (x - x1)< + y2 is small compared to alt = t1), that is,

for the places close to the x-axis, this equation simplifies to

(119)

<X

x1=0 y dx
vy = 8 JF = = éL tan'l<?i¥t—§> - tan~t
21 S Tt ]
& i Bx - xl)2 + ygjl

Letting y approach O, positive y, the results for negative values
ef X" Ere

o

vy = = (120)

n

which may be designated by v, (as in Biot's report).

For positive x wvalues, Wi = 0.

It indicates that such a source distribution gives a uniform vertical
velocity vy over the distance of the x-axis where the sources are. (For
negative 1y, inverse velocities result.)
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Biot mentioned this fact in his report and used it to calculate the
pressure distribution over a plate in a vertical gust (compare next sec-
tdon) .

The same variable change as in the pressure calculation gives

o v“,c?) fgl(l)
(6 - )2+ w2 \ﬂl sty sim w2 - (¢ - 42+ o]

(121)

Cl(z) (1 + €1 sin p)dagy

The arguments for the integral limit are the same as for the pres-

sure integral and Cl(l); C1(2) is given by equation (107). Integrating

between Ql(l) and Ql(g), that is, when

. 1 - COS :
_____.ll__.__“<g< l—T]2
sin u

it is seen that the integral gives the value E, so that v, has the
M

]

constant vy for this range of €.

For the second case (i\/l ~on8 < flg +V 3 —1ﬁ2> the integration

between §l(l) and O indicates thatl®

v T1\/1 - (62 + 12)
Ny i =0 T - tan'l

(122)
B sin u(62 + n2) - ¢

This identifies the velocity distribution on the lines y = Constant

CPim 7).

105¢e note on p. 66.
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From the calculation of the pressure and velocity distribution over
the lines y = Constant, it is apparent that the flow outside the circle
of radius a-t is steady. This is true from the physical standpoint too,
since the gust front does not affect this area.

k. Single Flat Plate in a Vertical Gust
(Biot 1945)

The flat plate AB of length 1 at supersonic velocity U enters
a gust with the transverse velocity vy (fig. 48(a)). Since the trans-

verse velocity on the plate must be zero (no flow through plate) an equal
and opposite velocity is superposed on the gust velocity vp 1in place

of the plate. This velocity can be visualized as reflection of the gust
on the plate (fig. 48(b)).

Since velocity U is greater than the sonic velocity, the sides of
the plates are not affected by one another, so that one side of the plate
can be analyzed separately. The pressure acting on one side is exactly
the same as on the other, except with inverse prefix. As the interference
velocity vy is much smaller than velocity U, the linearized potential

equation can be applied to the stream potential. Selecting a system of
coordinates that moves with the velocity U, (eq. (97)) according to
which the disturbances are diffused with sonic velocity, can be applied

to the flow potential.

Biot's method replaces the part AO of the plate struck by the
gust, by unsteady sources. This source distribution, which increases
in time, yields a uniform velocity vy mnormal to the plate, hence sat-

isfies the boundary condition on the bottom side of the plate.

If the plate enters the gust at time +t = O, the distance at time ¢
is AO = -Ut, the origin of the coordinate system being located in the

gust front.

The results of section 3 can be applied directly, and the pressure
variation along the plate defined (fig. 49(a)). As it is dependent
solely on x/at the patterns are like those for the different Mach num-
bers. The total force on the plate - the 1lift - is obtained by integra-
tion of the pressure pattern. Three phases are involved here (fig. 49):

giHus &t = 2

that is, the trailing edge is outside the effective range of the gust
front;
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T (U = 15 (B --a)t

that is, the trailing edge is inside the effective range of the gust
front;

186 (o= ahoz 1

front, hence is no longer exposed to any unsteady effect.

|

\

\

\

|

|

|

5

| that is, the entire plate is outside the effective range of the gust
\

|

{ The integration gives the following 1lift values of the three phases:lj
|

|

\

\

\

\

|

A
ST T TR (123)
2pavgl [/ sin p
A \
- = il g L HE cos2ul| + e -tin L jalen 1) + L
2pavol NNBOSSL sin p 1 nl sin p\Ut / 2
(124)

£ ag
=
/(c kgl SAE

r

r

/

(

|

|

|

J

!

\

|

|

| Llrpe integral
| .

[

|

[

|

/

/

|

i appears in the calculation of Ay and Agy. With no boundary, the solu-
|
J
|
\
|
|
r
|

tion is
2k
I = sin"1¢ - 2 sin-1 et
Wt g LR
which gives
I=xf- A
|

between the limits -1 and +l.



NACA T™™ 1369 61

(The sin~!l to be taken between - % nt and + % n.)

Spprds raa

= (125)
2pavgl  cos

In phase I and II the 1ift increases continuously with the time and

reaches a maximum in phase ITII, where it becomes independent of the time.

In the last phase the lift is the same as on a plate at angle vo/U in
steady flow.

5. The Straight Cascade

The cascade problem is unlike that of the plate to the extent that
the plates mutually interfere. The sources replacing the portion of the
plate struck by the gust create a pressure on the adjacent plates. They
also produce a velocity vy, which in order to satisfy the boundary con-
dition of no through flow of the plate, makes a change in that source
distribution necessary.

Since the disturbances are small the solution of the single plate
can be superposed in the sense of the linearized theory of the adjacent
plate effect.

As shown in sections 2 and 3, the unsteady source - and the source
distribution - which lies on the x-axis, produces no vertical velocity
component along this axis, outside the distance, where it is.

This characteristic enables the velocity component Vy to be

replaced by an additive source distribution along the particular parts
of the plate, which gives the velocity at each point. The new sources
create a further pressure on the plate itself - and in general react on
the adjacent plates.

The total force - the 1lift - on each plate consists then of the
1ift of the undisturbed plate (Au), the 1ift from the pressure Py of

the sources of the adjacent plates (Aj) and the 1lift (Ay) of the new
source distribution due to velocity vy.

Suppose that h is the plate spacing and L the plate chord of
the straight cascade ff (fig. 50). The lines AM . . . represent the
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Mach lines emanating from the leading edge, where angle MAB 1is the
Mach angle p = sin™t Ufa.

Then the following approximation is made: the relative flow and

the plate form in reality the angle V = tan‘l(vo/U)- But as vp is

small compared to U, this ¢ 1is negligibly small with respect to p,
and it can be assumed that the Mach line itself rather than the relative
flow direction forms the angle p. In this event, the Mach lines form
the same angle with both sides of the plate. The Mach lines emerging
from the leading edge strike both sides of the plate at the same distance
AE from the leading edge. At (h/Z) > tan yu the points are not located
on the plates, and the plates do not influence each other. Consequently
the cases where (h/l) < tan p are examined.

At time %t = O the cascade is directly in front of the gust; the
origin of the coordinates is placed in the gust front. In the first
time intervals of the phenomenon the disturbances have not spread out
enough to be able to influence the adjacent plates. As in figure 51,
the distance is a.t < h, so that the circles with center O and
radius a-t do not touch the plates. Lift and pressure distribution
are the same as on the single plate.

As soon as t > h/a, the plate AB comes within the effective range
of its adjacent plates. On EFG (fig. 52) the source distributions A'O'
create an additional pressure which can be computed according
to section 3. The points F and G are then the points of intersection
of both circles with center 0O' and 0" and radius a.t with plate AB.
It is readily apparent that the additive pressure on EF 1is constant and,
according to equation (113), has the value

De 2 il (126)

pavg cos p

If 1 = h/at is inserted (y
on FG follows at

h) in equation (115), the pressure

— —

= + sin
at H

2 2
D h 2
1l + — sin - cos
( at “> 242 i

P
B L cos-1

pavg T COS p

(127)

a=t

= —

The ensuing additive pressure is represented in figure 52.
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In addition, the following condition must be satisfied: The normal

velocities v, = h created by the source distribution 20 andi A"

are reflected on KO, so that at that point the gust is partly compen-
sated. The source distribution to be applied is to compensate the veloc-

1ty (vo - vy). The velocity Vy is computed as in section 3, and the
pressure Dy - aloﬁg the particular plate - is obtained by integration

of the pressure contribution of each source. Assuming the local veloc-
ity vy on a small distance dx1 to be constant, the yield of the source

distribution per unit length on this small distance is then q = 2vy.

Along this area of the plate the source distribution produces the pres-
sure (compare section 2)

4 |
it 1 (128)
T AmEts SRt

Apyz_o =

hence

(2)

Xl 0

E a vy dx1
=0 il 1t
o xp (1) \/az(t - 1)2 - 2

(129)

with vy periodically and locally variable. It is best to solve the

integral graphically for each particular case. The arguments for the
integral limit are the same as before. The 1lift contribution Ay at

any instant is obtained by integration of the ensuing pressure plot.

To obtain the resultant pressure, this pressure is superimposed on
the two previous pressure distributions.

In the following, the pressure contribution due to the additive
pressure pp 1is calculated. Three phases, depending on time and

ratio h/1, are involved:




an NACA T™M 1369

I. When 12 (Ut + \[a%t2 - ) (fig. 52), the lift is

acte_ h2 4 a2t2 h2
=2 Do dot 4 2
R carve [
by (—Ut e Dol > |/ a2t2-h2
tan p

with the previously employed variable change and with y = h

P-\in? b/‘+\/3?5§

AyI Zatk/ Vbt ftan Pe 4f + 2at

~ l-n2 +\/1-12 f+\/l-q2
= 2 =
Ol e S el 5 c(
at
By equation (127)
dp,  pavy (L+ ¢ sinp) - 78

at i [El + ¢t sin p)?@ - ngcoseg]\/l =~ 6B« e

hence the integral

+ V117 (L+ ¢ sinp - n2)¢

- \[l—n2 Wi- 12 g2 El + ¢ sin p)2 - n20082uJ

a‘g‘)“
(130)
(131)
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Its evaluation gives

I:______n—_(cos“_l)l_'_n(cosu-’-l) (132)
gin g Cos p fl.# Co8
consequently
; (
Yy = & i(l - 5 cos p) + (cos p = 1)}l #+ n(cos p + 1)
gpaeuo sin p cos u | (cos p + 1)
\
(133)
g1 But 17 (fig. 5%)
(Ut + \/a2t2 +§—é> o (Ut i \/a2t2 - y2)
\
the evaluation of the integral gives the formula
AyTT = 2P LA Ug\ + idd® 1-~7% -
e = at / cos W
2pav,
- b n|sin-1s - i gined S .__fl___x p
o 'sin-w cos b A S o) vc;;t—*)
(’q - COS p,) s]’_n"lS ) _._.B—_ sin-1 :-l.'__i._BS. 4 .g_ Tk B
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where

1 - Ut

5=

1+ 1 cos pu AR B = 1l ~-'n cos p

T
sin puy/1 - 12 sin w/1 - 92

A=

The pressure p, is obtained from equation (127), when x = (1 - Ut)
is inserted, at

y . ik
L5 1 o <-_EET—'+ sin p)

(135)

pavg T COs

" 2 2
(l ALY ST T py - . cos2y
\ at a2t2
\

—

WG R (N = at), Py = Pc along the entire distance EB, so
that the additive 1lift

!
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[
|
|

2pavy Cos p tan p

reaches a value that is independent of the time.

Note on the Velocity Integral

By a simple transformation the integral can be rewritten in the
following form:

(2) (A + Bgp)aty

81
L= “/;l(l) (ng + a) aglE Bl o o
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This integral can be solved by means of tables (Integral table,
Part I, by Grobner and Hofreiter, Springer Co., Wien). Although the
general solution is quite complicated, the result is found to be inde-
pendent of {;, once the limits have been inserted.

Bearing in mind that the integration limits are the solutions of
the function below the root, the integral is rewritten as function of
the limits '

(1 - & sin p)dg
C1(2) i il

S fcl(l) [(1 - ¢ sin u)2 - cos2u<§l = Cl(l)> (ﬁl(g) = El‘)} R/(El i 51(1)> (51(2) i gl>°°s' &

The following substitutions are made consecutively:

- 1y Etny

The limits are thus X; and X, (Xp > X;)

2X4X
e L X2
X X3 +Xo
DRz = Y(X2 + Xl)/(X2 - Xl)
L., t = 2°
2
5 8 1 A’ o L‘-XlXE - COSQH(X]— + X2)
A' + ¢ cos®u(Xy - X2)2
6. Numerical Example
Dimensions of cascade h/l =105
Mach number of flow M= 1.414 (= \/2) corresponding to a

450

Mach angle vl
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The period te wup to the end of the phenomenon is determined by

(.- a)ts =4

whence

[

&~ B.hlks

All time intervals are referred to y/a in order to obtain a dimen-
sionless ratio (= 1/n). Then

*_-438 (y=h

The three pressure contributions p,, pp, and p, are defined by

the formulas of the preceding section at various time intervals indicated
Jo5i7 i a=ielnlies e s LA BURST A T IE ORI 10.12 The time intervals were chosen as
followss The time intervel denoted by 3 represents the end of the first
phase of the undisturbed plate (compare section 4). At n =1 (period: 4)
the influence of the adjacent plates begins and ends at 1 = 0.24k

(period: 9). At n = 0.707 (period: 6), the Mach line emerging from the
leading edge of the plate strikes the adjacent plate.

Figure 54 represents the position of the gust front and the area
disturbed by it at the different time intervals.

Figure 55 illustrates the pressure of the undisturbed plate p,-.
Figure 56 illustrates the pressure contribution py.

The pressure contribution p, 1is computed graphically, the velocity
distributions vy/vo required for it are obtained by equation (122) for

the time intervals 5, 6, 7, 8 and reproduced in figure 57.

127he corresponding curves in figures 55, 56, 57, 60, and 61 are
denoted by the same digits.
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Since the integrand

becomes infinite at the two limits Cl(l) and §2(2) which are, as
known, the solution of the function below the root, the graphical solu-
tion is continued to (Cl(l) = e) and <§1(2) - e') where €, €' are small

real values in comparison to gl.

.

Figure 58 represents several of the functions f for different time
intervals.

The integration over € and €' is made analytically, by putting
vy/vo = .constant mean value.

The relation for tl/t at m < 0.707, that is, when the additional
source distribution is bound by a Mach line, is

tl/t =necos p+ Ly sin p

If the source distribution is limited by the circle of radius R = at,
a similar relation

tl/t =ncos B+ & sinp

is applicable (fig. 59).

Figure 60 represents the pressure contribution p,, figure 61 the

resultant pressure distributions.

The 1ift of the plate (fig. 62) is obtained by graphical integration
over the resultant pressures. At the appearance of the adjacent plate
effect the 1ift decreases with the time interval; A' represents the
steady 1lift of the undisturbed plate.
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M plotted against plate
Here the moment increases with

Figure 63 shows the moment distribution

center; Mgy represents its steady value.

the time because of the built-up negative pressure from t = h/a.
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CHAPTER VII. EFFICIENCY OF A SUPERSONIC PROPELLER

1. [ntreduetion

The cascade efficiency defined from thrust and tangential force is
suitable also for the propeller. But in the preceding arguments the flow
was assumed parallel and the blades as infinitely thin plates, which now
must be modified. The friction at the plates must be allowed for and
the infinitely thin plates replaced by profiles of finite thickness.

Then the results are used to calculate the efficiency of a real propeller
in order to obtain an approximate picture of the efficiency to be expected.

2. Effect of Friction on Cascade Efficienecy

When the friction at the plate surfaces is taken into account, the
resultant force K without friction defined in chapters IIT and IV, is
supplemented by an additional resistance F, so that X' is the total
force acting on the plate (fig. 64).

The frictional force is parallel to the plate. But since its com-
ponent normal to the airstream direction is small at the angles of attack
in question, the total frictional force can be assumed to be in the flow
direction.

The drag coefficient is expressed by

Gy = s (137)
Tl
cp = —E;- is coefficient of friction of one side of the plate and q;

is dynamic pressure of inflow.

The 1ift coefficient remains

A e (138)

as for parallel flow.
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According to the definition introduced in chapter III, the cascade
efficieney is

S'v
1

N = (139)

H
e

where S' and T' are the thrust and tangential force corresponding
to the new force K'.

In terms of angles B, v and o (fig. 64) the efficiency is

N = tan a tan(p - V)

where

1
R T (1k0)
Tl
Introducing the drag/lift ratio
/ g
1 2
o Sl (w # SEQIEL_:_E (141)
Gl T 2y
the efficiency 'n becomes
i = felidt -
N = € an(B ‘4’) (142)
1+ e'/tan(p - V)

Hence it is apparent that, contrary to the earlier results, the
efficiency is now dependent on the Mach number.
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With the assumption of a turbulent boundary layer

0.4
ap 552 - (143)
logyg Re i

according to Schlichting, where Re 1is the Reynolds number based upon
chord 1 and relative velocity w.

The values plotted in table 9 and figure 65 as functions of the
angle of stagger were calculated with the Mach numbers M = 1.40 and
M = 2.50, then at an angle v = 3° and the optimum anglesl y = 2.65°
(M = 1.40) and ¢ = 4.11° (M = 2.50). The Reynolds number assumed at
Re = 106 corresponds to cf = 0.0045.

]

The effect of friction is illustrated in figure 65, along with the
efficiency curve for V = 30 with friction discounted.

3. Effect of Thickness

To assure minimum wave resistance the contour of a supersonic profile
must consist of straight lines and its maximum thickness lie in the center,
hence a double-wedge profile is recommended (fig. 66).

By linearized airfoil theory (ref. 1) the thickness causes a drag
which increases quadratically with the thickness ratio d/l, and which
can be directly superposed on the 1lift coefficient and the frictional

drag of the plate.

Hence the drag coefficient of a profile of finite thickness ratio
with “fedetion is

2 \J
! e
cw'=——l—‘———¢2+<‘-1-> +cf——M—2——l (144)
M - 1
But the 1lift coefficient remains unchanged
by
Cg =
M2 - 1

1%
A y A & o M2 - 1
As stated in the introduction, Wopt = (d/l) + cp T i for

the plate, obviously d/l = O.
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and the drag/lift ratio to be inserted in equation (141) in place of ¢
is

(145)

Table 10 shows the efficiencies of two cascades of double-wedge
profiles and the relative maximum thickness ratio

d/t = 0.05 and 0.10 - with friction
at M= 1.40
v=3°
ce = 0.0045

These values are also shown in figure 67 together with those for
d/1 = 0 (the plate) for comparison.

The angle of stagger B - with friction and finite thickness -
for maximum efficiency at fixed angle of attack and fixed Mach number is
found by simple differentiation at

BTlmax

tan‘l<- e t \[e? + l> (146)

459 + <W - % tan'le)

4. Appraisal of the Efficiency of a Supersonic Propeller

On a supersonic propeller the blades are struck at a relative speed
which at every point of the blade is greater than the sonic velocity.
Two types of propellers are differentiated. The one moves forward at

supersonic speed, so that supersonic speed occurs at every rpm and every B.
On the other the supersonic speed is reached without it having to move for-

werd withisupersonic speed. The efficiency of the first type propeiler
is ealeulated.



NACA ™ 1369 75

The propeller has a forward speed v of about 406 m/sec (M = 1.20 -
sonic velocity a = 338 m/sec); it has four blades of 2m outside diameter
and 1m inside diameter and 0.5 hub ratio. The cross section of the blade
is a double-wedge profile, with maximum thickness ratio of d/l =" 00T
at the hub, and tapering to d/Z = 005 L astthelGip.

The maximum efficiency of a profile is reached with B = L5090,
according to chapter III. At the blade tip where the thrust is highest,
this condition gives a tip speed of 40O m/sec; that corresponds to
3,820 rpm. For reasons of strength the blade chord tapers from Ly = 4o cm

gt thefllub to Lg = 30 cm at the tip.

In each coaxial cylindrical section - with respect to the propeller
axis - the angle between the relative flow direction and the profile axis -
the angle of attack - was assumed at Wopt (compare introduction). To

satisfy this condition, the angle of stagger in each section, that is,
the angle between profile axis and direction of peripheral speed U must
be varied. The relation

tan(p - ¥) = v/u

must be satisfied.

With reference to a system of coordinates fixed in space, each point
of the propeller moves on a helical line. Disturbances issue from each
point which at the assumed pressure conditions and angles of attack can
be regarded only as sound disturbances. The zone disturbed by each blade
is then limited by the enveloping curve of all spheres whose centers lie
on the various helical lines and whose radii at the same time are equal
to sonic velocity x time. Figure 68 represents the disturbed zone of
an edge OA, which, for example, moves at a forward speed of 1.2 X a
and whose maximum tip speed equals the sonic velocity; 0'A' represents
the position of the same edge after a time interval At, which corresponds
to a fourth of a revolution.

Considering that the blades are twisted, that the disturbances of
different sections can influence one another and be reflected on propeller
hub, it is readily apparent that an exact calculation of the forces on
each blade represents a difficult problem. When each blade is outside
the zone of disturbance of the other blade, the blade can be examined
separately. Assuming homogeneous flow and coaxial cylindrical areas,
that is, radial equilibrium, the blade forces can be determined from a
two-dimensional consideration of the developed blade (fig. 69), by com-
puting the 1ift and drag and from it the thrust and tangential force in
each cross section by linearized theory.
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At the velocities selected the boundary effect is confined to a
moderately large zone compared to blade area, so that its effect within
the framework of the intended appraisal on the total forces can be
disregarded.

The thrust of the whole blade is then

\/ﬁtip as

S = — ar (147)
bl

as PR

The integration is made by graphical method (fig. 71l(a)) with

iy ol f COS[(B - ¥) + 7]

(148)
VGQZ Ly 2 cos Y

88
dr

computed for five sections (fig. 69).

The corresponding Reynolds number for all sections was assumed at
cp = 0.004 (turbulent boundary layer).

The torque D of a blade is defined the same way as the thrust
by integration (fig. 71(b)). The following relation applies:

(149)

The characteristics for the five sections are correlated in table 2.
The integration gives

Spblade = 425 kg

Dpilade = 600 kg/m
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hence for the propeller

n
]

1700 kg

D

]

2400 kgm

The efficiency of the propeller is given by

N = (150)

with the wvalues inserted gives

n = T71.8 percent

A quick and close estimate of the efficiency is obtainable directly

from the calculation of =) and o8 , Where these values are appli-
dr dr
M M
cable to the whole blade.
SUMMARY

1. Lift and drag coefficients for the flat plate at various Mach
nunbers, ranging from 1.20 to 10, and for different angles of incidence
are calculated, account being taken of the exact flow over both sides of
the plate. These values are tabulated and also given in the form of
charts. The same coefficients are also calculated under the assumptions
of linearized flow over the plate, according to the Ackeret theory. A
comparison of both methods shows reasonable agreement between the lin-
earized theory and the exact method within the usual range of angles of
incidence (max lOO) and for the usual Mach numbers. Special formulas
for calculating the 1lift and drag coefficients for very high Mach num-

bers are derived.

2. An analytical solution of the problem of the interaction between
shock waves and expansion waves has been established.

3. A method for calculating the 1lift and drag coefficients for a
cascade of flat plates is described and applied to an example, with the
aid of the formulas derived in the foregoing item. A definition for the
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efficiency of the cascade - without friction - is introduced and the
efficiency is evaluated for two Mach numbers and different angles of
blading. ‘

|

|

L, A linearized theory for supersaic flow through a cascade of flat « 4
plates is established and applied to the example already treated. Com-

parison of the 1lift coefficients shows reasonable agreement. r

/

|

5. For demonstration purposes, schlieren photographs were made showing
the flow between two flat surfaces. They serve to confirm the established
linearized theory for small angles of incidence and show clearly the inter-
action between shock and expansion waves.

6. Under the assumption that the flow through the cascade of flat
plates undergoes a small sudden change of direction, that is, a small
change in the angle of incidence, the nonstationary flow in the cascade
is discussed to show the kind of forces which act on the plates during
the transition period. An example has been calculated in detail.

7. The definition of the efficiency mentioned in 3, is especially
suitable for application to a supersonic propeller. The effect of fric-
tion and blade thickness on that efficiency is shown. A rough estimation
of the efficiency of a supersonic propeller is then made.

Translated by J. Vanier
National Advisory Committee
for Aeronautics
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TABLE 1
|
|
M; 8so 7so PJ_/Po Q/Po Cl/Pl J‘
|
1.00 0 90 0.52830 0.36981 0.700
8.0 1.0 73.68 46835 . 39704 847
1.20 3.70 68.08 .41238 11567 1.008
1.30 6.%2 65.12 . 36092 42689 1.183
1.40 9.03 63.3%3 . 31424 L3110 1.578
40 11.67 62.25 .27240 .43050 1:575
1.60 14.24 61.65 25587 42182 1.192
1.70 16.63% 61.37 .20259 .40995 2.025
1.80 18.84 61.28 . 1740k 39472 2.268 |
1.90 20.87 61.35 .14924 - 3TT1h 2.527
2.00 22:71 61.48 .12780 <3750 2.800
2.20 25.90 61.90 .09352 . 31684 3.%88
2.50 29.67 62.40 .05853 .25610 4.375
5,00 34.01 63.77 .02722 JAT143 6.300
4.00 38.75 65.25 .00658 073575 11.20
5.00 B e 66.20 .00189 .03306 17.50
6.00 42, 4l 6675 .00063 .01588 25.20
8.00 43.79 67.00 .00010 .00L448 L. 80 |
10.00 bl 43 67.12 .00002 .00165 70.00
m 45.58 67.70 0 0 ®
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
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LIFT AND DRAG COEFFICIENTS
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L Lmro | W v ea| vy | ca Cw ;
2204 "L 0.39145| 58.75( 1.056 | 0.43527 | 0.1054 | 0.0018 | 0.0175
2 A7elp | 61.30 | 1.120 46187 .2158| .0075| .0349
| 3 <BH405 | 6L 3T 1.199 Aol b 033731 L0177 | .0524
; BT #3595 168.081 1.271 .52681 | .4011 | .0259 | .o0641
| 1380 | 1 .29910 | 46.87] 1.051 33027 | Q723 1 0815 017>
| 2 28480 | 48.19| 1.10k4 34692 | .14k0 | .0050 | .0349
| 3 27114 | 49.57 | 1.159 .36420 | .2156| .0113| .052k4
| L 25820 | 51.15] 1.219 .38306 | .2888 | .0202 | .0699
| 6 .23376 | 54.62| 1.353 L2517 | W15 | .okeh | L1052
| 8 .21130 | 59.36 | 1.527 | . .47984 | .6168| .0867 | .1406
} 9.03| .20050| 63.17| 1.655 H2007T | .T521% 23159 | 1584
| 5 5027 22374 | 39.67| 1.060 .24939 1 .0608| .0011{ .0175
/ 2 .21269 | 40.73| 1.104 259781 .1116| .0039 | .0349
| 3 202 RN 280l 61, .27300 | .1679 | .0088| .0524
| L .19191 | 42.93| 1.219 28679 | .224k4 | .0157 | .0699
| 6 17280 | 45.36] 1.345 31637 | .338 | .0356 | .1051
| 8 .15525 | 48.04 | 1.484 34938 | 4557 | .0641 | .1Lk06
| 10 13910 | 51.14 | 1.644 .38685| .5783| .1019| .1762
| 12 .12438 | 54.89 1.832 43301 .7ilo | S.As13Y .@1es
| .24 | .11022| 61.65| 2.143 50418 | .9052 | .2532 | .2532
\
* 1.801 1 .16503 | 34.64 | 1.054 .18352 | .0468 | .0008| .0175
2 .15640 | 35.53( 1.110 .19318 | .0931( .0033| .0349
| 3 .148131 36.48} 1.270 203631 -.1ho%'|{ .00Th | .052h
| b .14019 1 37.44 ] 1.230 21407 ! .1867| .0131 | .0699
} 6 Jd2pplsisg Lol 260 23704 | .2814 | .0296 | .1051
| 8 «Q1X7H | 41.69] 1.505 .26193| .3768| .05%0 | .1406
‘ 10 .09935 | 44.06| 1.661 .28908 | L4734 | .0834 | .1763
| 12 .08806 | 46.70| 1.835 .319%6 | .57%32 | .1218| .2126
}
| 15 0730351 51.35] 2.139 et 1. 1325 | Ag6R L8070
\ 18 .06011 | 58.00| 2.551 44398 | L9249 | L3005 | .3249
| 18.84 | .05788| 61.28| 2.740 L7687 | 1.0045 | .3427 | 3412
\
’ B0t 1 .12076 | 30.82( 1.058 3521 | .O4Ok | 0007 | LOYTS
| 2 .11%01| 31.65( 1.118 | .14288| .0807| .0028| .0349
| 3 10757 | 32,58 1.181 | 1.15093 | .1212 | .06% .0523%
Ly S AOMERSs s ShoiE 12l .15937| .1618| .0113| .0699
{ 6 0894 | 35.24| 1.377 7726 11 J2h29 ) 025s | 105l
} 8 07949 | 37.22] 1.539 .19668 | .3246 | .0456| .1406
\ 10 07005 |F 59.32| 1.707 21815 | .408 L0719 | .1763
l 12 .06149 | 41.59| 1.889 CRuh [ Shgaz S TNO0E A anas
} 15 L0502k | 45.34| 2.195 20052 | .6222 | 1667 | - 2679
| 18 .0k070| 49.78| 2.555 .32653 | 7604 | .2471| .32L9
| 21 .0%3265| 55.67| 3.01L <3051 SO201 | IR 5554 [ 5858
| 22.71| .02886( 61.48( 3.460 L2219 1.0659 | Jui62 | 4187
1
|
\
\
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TABLE 2.- Concluded
LIFT AND DRAG COEFFICIENTS
My ¥° Pp/Pp %y p,' /by pp' /pg ca Cw €
2.50 1t 0.05296 24 .35 1.068 0.06251 0.0373 0.0006 0.0175
2 <@5113 25.05 1.143 .06678 .0611 .Q021 .0349
3 .ok772 25.82 1216 .07117 .091% .0048 .052k
I .0kL50 26.62 1.296 .07585 <1257 .0085 .0699
6 .03857 28.27 Al llspe) .08498 .1826 .0189 .1051
8 03455 30.00 1.658 09704 .2416 .0340 1406
10 .02859 31, 1.865 .10916 .3098 .0536 .1763
g .024h5 33.81 2.091 .12232 .3738 .0795 .2126
15 .01917 36.95 2.467 . 14439 4723 L1266 .2679
18 .0148% 40.%0 2.895 .16949 <5k .1865 .3249
22 .01035 45.62 2.557 .20816 L7162 .2893% .koko
28 .00575 56.35 L. 885 .28592 .9659 .5136 <5317
29.67 .ook82 62.65 5.602 L4220 1.0960 .6240 .5695
5-00 3.60 .00118 14 1.541 .00291 .0523 .0033 .0627
6207 .00084 16 2.051 .00388 .091% .0098 .1076
10.68 .00043 20 el .00614 .1698 .0319 .1879
16.60 .00018 26 5.436 .01027 .2926 .0869 .2972
20.21 .00009 30 7.129 .01347 . 3800 .1393 . 3666
26.78 .00002 38 10.893 .02059 .5557 .2792 5024
S2] .000009 Ll 13.913 .02629 .6805 .40o88 .6000
36.29 .000003 52 17.953 .03392 . 8284 .6048 L7301
S BY .000001 66 24206 04575 1.0k27 .9098 . 8726
10.00 S52 8 2.091 .0228 .0013 .0560
7.65 12 4.877 L0614 .0082 .1340
13.31 18 10.981 .1549 .0365 .2356
18.53 2l 19.135 .2613 L0877 3351
23.47 30 29.018 .3828 .1662 RIT S
28. 17 36 4o. 316k .5079 .2726 .5366
32.59 Lo 52.080 .6288 .ho17 .6393
36.64 48 6L4.263 . 7488 .5565 LT437
40.18 54 76.213 . 86k, .7292 L8441
42.90 60 87.361 .9529 . 8862 .9293
44 .43 612 98.713 1.0125 .9925 .9803
© 8.37 10 .0kg7 .0073 AT
16.57 20 .1873 .0558 .2973
2k.50 30 -3795 -1731 4557
28.31 35 LhTha .2559 .5386
32.05 40 .5843 . 3662 .6261
35.55 45 .6812 4846 .T146
38.81 50 . 7840 .6121 .80k2
k1.6 55 .8735 - TT54 . 8876
43.9 60 L9452 .9123 .9623
45.58 67-8 1.0001 1.020% 1.0200
N 5 .0152 .0013 .0875
10 L0594 .0105 L1763
45 .1294 L0347 L2679
20 .2198 .0801 . 3640
25 .3238 .1509 4663
30 4330 -2500 S5TTh
35 -5388 3772 .7002
Lo .6331 <5310 .8391
L5 . 7068 . 7068 1.0000
50 STl . 8992 1.1918
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TABLE 3
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LIFT AND DRAG COEFFICIENTS OF THE BOUNDARY CURVE

My V" P2 /Pg 7s | P2'/P1| Pp' /Ry ca Cy €
[e) t

1.10] 1.4 Joe.43110 | 95 1| 1.130( 0.52924{ 0.2471} 0.010% | ©.0248
Hoo0h B0 | fEhoaga el 5 1.2771 .52681] @ Lol 0259 Ri.Gekl
i.30k 6.32 ] 26668 | 65 7 1.457| :.52586| .60%35| (0668| 1107
10 907 14 20050 |68 10| -1.656] H2009] ¢ .T3214 " .1159: LAS0E
00 e I Misoa e - 15+ 1.890 . 51595) - .85591 .L17ch .2068 4
1ienlahiohle 1002 |61 F9| B.akz)l 50418 90%52) 22971 @ .2H32
1.70 | 16.63| .07918 | 61 22| 2.439| .hkoki2| .9697| .2897| .2988
180 1688y 05788 | 61 7t 2.7h1l| .47687| 1.0085] .BUET | w3M1Z A
oot 20871 .ohob el 61 21| . 3.09TF .lW6220| 1.0849{ .3905 1 3818
2,00 | 22.71 ], .02886 | 61 29| 3.460| .4h219| 1.0665| 4465 4167
2i20 | 25000 F u0Bha T | 61 sh) "ho2sof .387u61 1.0683 | i528% b iGEs
2.50 [ 29.67 | .00482 | 62 39| 5.602| .44221| 1.0960| .6242 | .5695
3.00 | 34.01| .00073 | 63 46| 8.385| .22824| 1.0735| .7243| .6T4T
ool 38775, 00001k 65 15| 15.25 .100601 1.0650( .8551( .8025
5.00 { 41.11 | .000001| 66 12| 24.40 0k612| 21.0515| .9107 | G52
6.00 | k2.4k | O 66 45| 35.25 022311 1.0362| o432 | 9156
8.00 | 43.79 |0 BT M0 L6311 .00630| 1.0171| .9692 | .9601
10.00 | 44.43 | 0 67 T4l'98.90 .00233( 1.0121( .9895{ .9803

® 45.58 | 0 67 X 1.0050 | 1.0185 | 1.0200
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TABLE 4 '
( 0 LIFT AND DRAG COEFFICIENTS ACCORDING TO THE LINEARIZED THEORY
\
} & My ¥ cg cy €
‘ 1.20 2 %) 0.10!
5 .10553 0.00018 0.01
| 2 .210k6 L0073k .o;ZS
[ 3 . 31600 .01655 .052k
} 3.7 . 38957 .02516 .0646
‘ 1.40 1 .071kk4 .00125 .0’
‘ g 14248 .00497 : o;ng
| 3 .21392 .01121 .05k
i 4 -28496 .01989 -0638
| : £ £ i
. 5 13
| 9.03 .6k259 .10112 1574
[
J 1.60 1 05604 00089
‘ 5 .0175
{ § ié_;g .003’9{0 L0349
. .00879 052k
| 2 .22353 .01560 .0698
‘ 33530 .03458 .1047
13 .huggz .06240 1396
.55 .09752 L7k
1 12 .67060 .mguo .2391?
\ 1h.2L 79582 .19772 2485
| 1.80 1l .04k676 .00082 L0175
[ 2 .09325 .00326 .0349
\ 3 .14001 .00734 .0524
’ L .18650 .01302 .0698
V 6 27976 .02932 L1047 .
8 .37301 -05205 1396
| 10 .h6626 .08135 1745
| e 12 .55952 L1173k 2094
15 .69953 .18314 .2618
18.84 . 87855 .28884 3288
\ 2.00 il .0kok2 .00070 .0175
\ § 2 .08060 .00281 L0349
\ 3 .12102 00634 .052k
[ It .16120 .01125 .0698
“ 6 24180 .02532 L1047
8 .322k0 .0l4995 .1396
10 40301 .07030 L1745
12 48361 .10125 2094
\ 15 60463 .15829 .2618
i 18 72564 .22802 23142
21 . 84643 .31040 3665
22.71 .91502 . 36259 .3962
| 2.50 ; .ggggl{ oogl;; .033:15
. -0021. -0349
3 .09145 .00479 L0524
I .12181 .00851 0698
; s ‘03100 556
| : .0 35
f 10 . 3045k .05318 - A7k
% iz Eggg .07620 .22914
5 . .11962 .2618
| 5 ot 257 Tl
25742 3
| 28 ’ %ggg tész‘g 4887
’ 29.67 90 467 5178
| i : e =
.08549 .00 - 1047
| 12 -17097 .03579 -209k
[ 18 25654 .08061 -3142
| 2l 34203 14321 1189
| 20 k252 22385 k112
| o A 2035 -
$ v <5 . ) <775
|
| 10.00 4 02806 .00196 .0698
6 04209 . 00441 .10k7
? i 12 .08418 .01762 2094
18 12631 .03969 312
E 2y 16840 .07051 1189
30 21049 .11022 712
36 25258 .15800 .5760
L2 29467 -21600 7330
4. 43 31172 .ehatr -T155
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TABLE 5
My y© (CaG - caL) .0 (ch - ch> CuG
1.40 1l 0.00084 0.07228 0 0.0013
2 .00151 .14399 0 .0050
3 .00163% S21558 .0001 .0115
4 .00385 .28881 .0002 .0202
6 .01408 44152 .0010 .O46L
| - .04690 .61682 .0072 .0867 .
9.03 .08950 .73209 .0148 .1159
5.00 4 .0005 0523 .0009 .0033
6 .0030 .0914 .0010 .0098
iz .0255 .1698 .0063 .0319
18 .0696 .2996 .0246 .0869
24 +1393 . 3800 L0341 .1393%
30 .1846 . 555 hes .2792
36 3972 .6805 .2698 .4088
431.31 . 4669 . 8284 4895 .6048
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TABLE 6
Region P /P01 M u Po /Poq
1 0.31404 1.4004 h5.5 i
2 . 3645 1.293 50.6 .9996
3 .2991 1.435 .2 1
L4 <3455 1.332 48.8 .9997
5 .2848 1.469 42.9 1
6 . 3304 1.36k4 47.1 -9997
¢ T LR 1.503 1.7 &
8 .3139 1.401 k5.7 .9998
9 . 3285 1.3%68 k7.0 .9997
10 .313%9 1.401 45.6 .9997
33 .2985 1.436 i .1 .9997
12 .2999 1.433 Lh.2 .9997
5 .2850 1.468 42.9 .9997
14 .2708 1.504 W1.7 - 9997
15 .3624 1.154 50.1 .9982
16 L3445 1.334 48.6 .9997
iy .3295 1.366 47.0 .9997
18 .3124 1.40k4 L5.4 .9997
19 .3276 1.370 6.9 .9998
20 .3134 1.402 45.5 .9997
21 .2972 1.439 4.0 .9997
22 .2996 1.434 44.8 .9997
23 2842 1.483 42.8 .9997
2L .2696 1.507 41.6 .9997
25 .3610
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TABLE 7

(a) Angle of deflection and shock angle of the
shocks between the zones

|

|

|

|

|

j Reglons Angle ofdgeflection Shock angle
| ® i

\

| 10 3.00 49.57

| g 3.03 k7.91

| 5-6 2.93 46.48

| 7-8 2.93 45.13

| 8-15 2.93 49.43

| 11-16 2.92 47.78

| 13-17 2.90 46.40

| 14-18 2.93 45.03

| 18-25 2.95 49.30

|

/

|

|

|

|

|

|

|

|

\

|

¥ (v) Intensity of expansion waves

| between the zones

|

j Regions i Intzgglty Regions Intzggity
| o3 1.00 13-14 1.02
| 2-4 1.03 15-16 1.00
f 3-5 1.00 16-17 .88
| k-6 .89 16-19 1.00
\ 4-9 1.03 -3 1.06
| 5-7 1.00 17-20 .99
‘ 6-8 160 18-21 1.00
/ 8-11 1.01 19-20 .89
| 9-10 o 20-23 1.05
\ 1011 1.00 PRIE .89
| 10-12 .92 go-0% 1.05
J 131-15 <91 23-24 1.05
; 12-1% 1.02

l

l

\

|
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