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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL MEMORANDUM 1366 

HEAT TRANSFER BY FREE CONVECTION FROM HORIZONTAL 

CYLINDERS IN DIATOMIC GASES* 

By R. Hermann 

I. DETERMINATION OF HEAT-TRANSFER LAW FOR HORIZONTAL CYLINDER FROM 

TESTS WITH PARTICULAR ACCOUNT TAKEN OF THE 

TEMPERATURE CHARACTERISTIC Tel 

1 . Introductory Remarks 

The case of the horizontal cylinder is of particular importance in 
the study of heat transfer by free convection for the following reasons: 
in the first place} next to the rectangular plate it represents the 
simplest two -dimensional case; and second} a very wide range of measure­
ments is possible} from the finest electrically heated glow lamp wires 
to pipes heated by liquids or gases flowing through them. 

To investigate free-convection flow from the point of view of 
similarity considerations} it is convenient to consider the case of 
small temperature differences between the heated body and the surround­
ings; in this case all the properties of the medium} even the density 
(ref.' l) p. 429)} in the entire temperature field may be assumed 
constant. The case of large temperature differences} for which the 
variation in properties over the temperature range can no longer be 

"Warmeiibergang bei freier Stromung am wagrechten Zylinder in 
zweiatomigen Gasen . " VDI Forschungsheft} No . 379} 1936} pp. 1-24. 

lAccepted as dissertation by the Technical High School at Aachen 
with the approval of Prof. Dr.-lng. C. Wieselsberger and Prof. Dr. 
W. Muller. The tests were carried out in the division for applied 
mechanics and thermodynamics of the Physical Institute at the University 
of Leipzig. The author takes this occasion to thank Prof. Dr. L. 
Schiller for the interest which he took in this work and for his valua­
ble advice . 
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neglected] is treated separately. As first pointed out by W. Nusselt 
(ref. 2)] it follows from the differential equations of free convection] 
together with the uniquely determining boundary values (ref. 1] p. 428) 
for the case of small temperature differences] that the nondimensional 
heat-transfer parameter Nu (Nusselt number2 ) is determined by the lift 
coefficient Gr (Grashof number) and the characteristic Pr (Prandt1 
number) for the molecular constitution of the gas 3 ; 

Nu = F(Gr] Pr) (1) 

where 

Nu = ail/A] Gr = d3 g 13 e /v 2 Pr = v /a (2) 

~ is the heat-transfer coefficient (cal/cm2 )(sec)(OC)] d is the cylin­
der diameter (cm)] g is acceleration of gravity (cm/sec2)] A is the 
heat conductivity (cal/(cm)(sec)(OC))] v is the kinematic viscosity 
(cm2/sec)] a is the temperature conductivity (cm2/sec)] 13 is the coef­
ficient of' expansion (OC- l )] and e is the temperature difference {OC) 
between body (tw) and medium (t~). 

The case of large temperatuTe difference between the body and the 
surroundings] for which the gas properties vary over the field] was 
similarly first considered by W. Nusselt (ref. 2). The following ex­
pression is obtained for the heat transfer under the restricting con­
dition that the temperature dependence on v and a may be repre­
sented by exponential laws in the absolute temperature] the exponents 
of which for gases of the same substance must be equa14; 

Nu = F(Gr] Pr] Te) 

The form here chosen for the temperature characteristic5 

2In the notation of the characteristic numbers] the proposals of 
the Heat Conference at Koln in 1931 are followed. See Forschg. Ing.-Wes.] 
Bd. 2] p. 380] 1931. 

3See eq. (5). 

4This is approximately the case] for example] for air] oxygen] and 
hydrogen; see reference 1] p. 433. 

5The abbreviation Te is chosen to conform to the other abbrevia­
tions for the characteristic numbers and to remind the reader that it 
refers to a temperature relation. 
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Te = 8/T., (4 ) 

(Tw' T~,(~) = absolute temperatures of the body and the surroundings, 

respectively) differs inessentially from the nondimensional ratio 
Tw/Tm chosen by Nusselt, namely by the constant -1. Equality of Gr, 

Pr, and Te in two different cases means complete similarity, that is, 
similarity of the velocity field, the temperature field, and the field 
of all the coefficients characteristic of the substance (ref. 1, p. 434), 
and therefore also equality of the Nu number. The possibility still 
remains, however, that similarity may exist at the same time that the 
previously mentioned condition of the power law is not satisfied. 

In the present report the characteristics represented in equa-
tion (3) will be computed for the heat transfer from heated wires and 
pipes in air) hydrogen) and oxygen; and from these values the most 
probable form of the heat-transfer law) obtainable at present, will be 
determined for the case of the horizontal cylinder in diatomic gases 
(Pr = 0.74).5a The dependence of Nu on the temperature characteris­
tic Te) which follows from the similarity theory and is illustrated by 
an example (ref. 1, fig. 1) as a third independent variable, will be ver­
ified for several tests in the range of Gr from 10-4 to 10. For the 
smallest values of Gr, the effect of Te considerably outweighs that 
of Gr. In the region of large Gr from 104 to 107, on the contrary, 
Te is practically without effect. The large scatter of the test points 
in the nondimensional representation of the test results of Nusselt 
(ref. 2) and Davis (ref. 3) (±32 percent in the case of Nusselt) is due 
to the fact that the parameter Te is not taken into account in accord­
ance with equation (1). The dependence of Nu on Gr, Pr, and Te 
will be theoretically clarified heleinafter. The effect of Te for 
small Gr may also be correctly estimated quantitatively. 

From the tests conducted by various investigators for different 
finite Te values) the limiting law of small temperature difference is 
determined in each case by extrapolation to Te = O. This is of 
primary theoretical and practical significance since it is identical 
with the theoretically simpler case (1) and is thus free from the pre­
viously mentioned restrictive assumption with regard to the temperature 
dependence of the constants defining the properties of the substance. 

5aFor the values of A and v required for computing the char­
acteristics) values are assumed for the temperature tw (in agreement 

with E. Schmidt). The similarity consideration leaves the choice of 
the reference temperature free . 
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2. Radiation 

From the measured over-all heat losses directly determined in the 
tests, the amount due to radiation must be subtracted. For this pur­
pose, a well known equation (ref. 4, eq . 38, p. 232) was employed; the 
best mean values at present known were substituted as radiation con­
stants for the metal cylinder surfaces, as follows: for platinum, nickel, 
silver, and tantalum, the values given by H. Schmidt (ref. 5); and for 
copper and iron, the values given by Grober (ref. 6, p . 196). Small 
deviations as compared with the values used by the investigators them­
selves are without significance in the range of small values of Gr 
because the radiation component in the case of thin wires amounts to 
only a few percent of the heat of convection. For the tests of Wamsler 
and of Koch on thick pipes, however, for which the radiation losses are 
up to 60 percent, an accurate knowledge of the radiation coefficients 
is required. These coefficients were obtained by Wamsler (ref. 13) 
through his own radiation tests. After correction6 of computations of 
reference 13, the values obtained herein for the radiation heat are 
0.2 to 2 percent larger. 

3. Property-Determining Constants of Gases 

In order to compute Nu, Gr, and Pr, values of the following 
properties are required: density p, dynamic viscosity ~, heat con­
ductivity A, and specific heat c for air, hydrogen, and oxygen. 

(a) Constants for air. - The density was computed throughout the 
temperature and pressure range according to the ideal gas law7 . 

The true specific heat for constant pressure was obtained from an 
equation given by Holborn and Jakob8 for the mean specific heat. 

The temperature dependence of the dynamic viscosity was determined 
by graphical adjustment of the values given by Erk9. These values 

Swamsler (ref. 13) computes incorrectly with the previously men­
tioned radiation equation without the factor of the area ratio in the 
denominator. 

7Landolt -Bornstein: 5th ed. , vol. I, p. 43. 

8Landolt -Bornstein : 5th ed. , vol. II, p. 1274. 

9Landolt -Bornstein: 5th ed. , vol. I, pp. 177 -181, Eg. I, pp. 143-
144, Eg. IIa, pp. 138-141. 
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differ only slightly (at most, 4 percent) from the graphical mean 
values given by Erk from 00 to 7000 C10 . 

The heat conductivity at high temperatures was obtained by a gas 
kinetic extrapolation, since the test values collected by Jakobll lie 
only between 00 and 2120 C. The Nusselt formula (ref. 1, p. 491; 
ref. 6, p. 192), which deviates from the available test values by at 
most 2.8 percent, is employed herein . 

From the gas kinetic relation12 

Pr = ~ c / A = (n + 2 ) / (n + 4. 5 ) (5) 

where n is the number of degrees of freedom of the molecular motion 
according to which the Pr number of a gas is independent of the tem­
perature (and moreover is the same for all gases with the same number 
of atoms); there is obtained for air a small decrease of Pr = 0.739 
for 00 C to 0.721 at 200 0 C and 0 . 679 at 10000 C (value obtained from 
formula for n = 5 is Pr = 0.737), which, however, is of no signifi­
cance because it lies within the uncertainty limits of the ~ and A 
values. The same holds for the differences in the Pr numbers among 
air, hydrogen, and oxygen . 

(b) Constants for hydrogen and oxygen. - For the kinematic vis­
cosity and heat conductivity the values given by Davis (ref. 3) are 
employed, which also for air are in good agreement (deviation, at most 
2.7 percent) with the chosen values. A knowledge of the specific heat 
is unnecessary if the Pr value for 00 C is satisfactory; the values 
are 0.717 for hydrogen and 0 . 731 for oxygen13 

5 

(c) Gas constants for high pressures. - From the tests of Petavel, 
which extend up to 160 atmospheres, only those up to 40 atmospheres 
were computed in order that reliable gas constants would be available. 
In this pressure range and up to 10000 C, the computation was conducted 

lOwien-Harms : Handb. d . Exp . Phys ' J IVJ 4J p. 531. 

llLandolt -Bornstein : 5th ed. ) vol . II, p . 1304. 

12A. Busemann in Wien-Harms : Handb . d . Exp. PhYd., IV, 1, p. 359. 
This relation may be obtained from an equation given by Eucken (Physik 
Z., vol. 14 (1913), p. 324 . 

13A. Busemann in Wien-Harms : Handb . d . Exp. Phys., IV, 1, p. 362. 
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with the normal values since the dependence on the pressure of A and 
~ and the deviations of p from the ideal gas law are either not known 
at all or are only partly known, and the known deviations amount to only 
a few percent14 . 

4. Individual Investigations15 

(a) General. - The nondimensional representation of the results is 
effected according to equation (3) by l ogarithmic graphs with Nu as 
a function of Gr and with Te as the only parameter, since Pr 
(according to sec. 3a) may be considered as constant. Even if the 
slight variation of Pr there indicated is considered as real, there 
would, according to a test result of Da vis (ref. 3) on the effect of 
the Pr number, be obtained only displacements of the curves of the 
order of magnitude of 1/100 of those which can actually be observed. 

In table I are summarized the test objects and test conditions of 
the individual investigators and the r ange of Te used. In order to 
judge to what extent the condition of infinite extension of the fluid 
was satisfied, the ratio of the height H of the surrounding space t o 
the cylinder diameter d is shown. I n figures 1 to 7, approximately 
equal Te values are indicated by the same symbols. The decrease in 
Nu with increasing Te is particularly evident in the individual 
point groups (because of the same wire), whereas the va lues for different 
wires naturally show larger scattering as compared with one another. 
The curves Te = constant were obtained by a graphical adjustment pro­
cess and, similarly, the extrapolation points and curves for Te = 0 
and the dependence of Nu on Te (relative decrease i n Nu for 
6Te = 1) . The indicated minimum and maximum values hold f or the indi­
vidual wires (point groups); the indicated mean values, f or the individ­
ual investigators. 

(b) Results of Ayrton and Kilgour (ref . 1), figure 1. - The authors 
of reference 1 give in the form of diagrams for each wire the t otal heat ­
transfer coefficient as a function of t he wire temperature; two wires 
(0 . 0206 and 0 . 0282 cm diam . ) because of the very large scattering and a 
third wire (0 . 0102 cm diam . ) because of its strong deviation in position 
and inclination were excluded from the evaluation of the tests . The 

14Landolt -Bornstein: 5th ed . , Eg . I, p . 64 ff, Eg. I Ia, p . 144 . 

15Acknowledgement is made to Dr . K. Winkler, Leipzig, for his 
as s istance with the computations. 
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points computed from the low temperatures of 400 to 800 C were simi­
larly not used on account of the large scattering. 

7 

(c) Results of Langmuir (ref. 8), figure 2. - Langmuir gives in a 
table the adjusted values of the total energy losses as a function of 
the absolute wire temperature increasing in stages of 2000 C. Only 
the tests up to 13000 K were computed herein in order to have reliable 
values available for v and A. The convergence of the curves 
Te = 1.33 and Te = 3.33 shows that the dependence of Nu on Te 
decreases with increasing Gr, the decrease independently determined 
for the individual wires being: 

log Gr 0.1-4 0 . 8-4 0 . 6-3 0.5-2 0.4-1 
Decrease, percent 7.2 7.5 5 .4 3.2 2.2 

This experimental confirmation of the results following from theore­
tical considerations (sec . 6b ) acquires significance in that the tests 
of Langmuir are characterized by a large change of the Te number and 
smallest scattering. The extrapolation from Te = 1 to Te = 0, on 
account of the absence of test points for this value, was effected with 
the mean value of 13.2 percent taken from reference 7. 

Langmuir (ref. 9) also discusses his own tests at various air 
pressures (10 to 760 mm Hg) and variable room temperature (~ = -1900 C 
to 6000 C) which on account of the strong change in the expansion coef­
ficient (~ = l/T~) would be of great interest and the only tests of 
their kind. Unfortunately, these tests have not as yet been published, 
and the test data are not available in a form in which they may be 
evaluated16 . 

(d) Results of Bijlevelt (ref. 10), figure 3. - Since the tests of 
Bijlevelt were primarily for the purpose of investigating forced con­
vection, the experimental setup was designed for the sensitivity re­
quirements of this flow. This explains the greater scatter of the test 
points of reference 10 as compared with those of other investigators. 
For each individual wire (with the exception of the Ta and Ni wire), 
a grouping is nevertheless observed with respect to Te in the usual 
sense. 

(e) Results of Kennelly, Wright, and Bijlevelt (ref. 11), fig-
ure 4. - The investigation of reference 11 is noteworthy in that through 
the pressure (p,v) changes, even for constant wire diameter and constant 
surrounding temperature, a change is effected in the Gr number so that 

16For these data the author is indebted to a personal communication 
from Dr. I. Langmuir. 
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curves of Te = constant are here obtained from tests on a single 
wire. The nondimensional representation of these tests (fig . 4) has 
been given previously (ref. 1). The authors give for each wire a dia­
gram with the heating current as a function of the pressure for three 
or four different temperature differences, as parameter of which the 
values for five different pressures were computed in terms of the 
characteristics and were connected by the curves Te = constant . The 
extrapolation to Te = 0 shows extremely good agreement for both wires . 
The values of the wire of medium diameter (d = 0 . 02616 cm) were not 
plotted because of the irregularities obtained. 

(f) Results of Petavel (ref . 12 ), figure 5. - From the over- all 
heat - transfer coefficients given for constant pressure as a function 
of the temperature difference, values were computed for 2000 , 4000 , 

6000 , 8000 , and 10000 C temperature differences up to pressures of 
40 atmospheres. For the sake of clarity, however, only the curves for 
the extreme Te values are plotted in figure 5. Since the heat con­
ductivity and density of hydrogen differ from the values of air by the 
factors 6 and 14, respectively, these tests would have been particu­
larly suitable for checking the similarity law . Unfortunately, however, 
these tests are evidently unreli able because of the far too small 
jacket pipe (Hi d = 18 . 6 as the smallest value of all i nvestigators ). 
The similarity law for the three gases is confirmed only for Te = 0.69 
and Gr > 102 . In the case of air and oxygen, there is a splitting 
with respect to the dependence on Te, but in the reverse sense from 
that observed for all wires of the other investigators. In the case 
of hydrogen, a dependence on Te in the correct sense is observable 
only at the smallest values of Gr. Finally, the Nu values also for 
small Gr lie too high as compared with the values of all other in­
vestigators and the rise in the Nu with increasing Gr has too great 
a lag. For these reasons, the results of Petavel for determining the 
heat-transfer law were not used . 

(g) Results of Wamsler (ref. 13), figure 6 . - Wamsler's curve, 
which was obtained on the basis of correctly computed radiation loss 
(sec. 2), shows a dependence on Te such that the mean values for 
Te = 0 . 60 lie about 5 percent higher than those for Te = 0 . 20 . This 
small splitting of the effect of Te which occurs in the opposite 
sense to that in the case of small Gr, however, in all probability 
does not contradict the facts but may be explained by the consideration 
that the radiation coefficients in the entire temperature range from 
500 to 2700 C were assumed constant, whereas in general for metals there 
has been established an increase of the radiation coefficient with the 
temperature . If in the previously mentioned temperature range a rise 
in the radiation coefficients of about 5 percent is assumed, as follows 
for cast iron from Wamsler's determination of the radiation coefficient 
and for wrought iron from the determination of Nusselt (ref. 14), the 
observed splitting of the effect of Te is neutralized and the curve 
shown, valid for all Te values, is obtained . The test values of the 
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copper pipe and of a wrought iron pipe (of 5.9-cm diam.) were not em­
ployed in figure 6 because of the obvious irregularities indicated by 
the scattering. 

(h) Results of Koch (ref . 15), figure 7. - The nondimensional 
characteristics were redetermined herein with the values A. and \I 

9 

for wall temperature, since the characteristics given by Koch were com­
puted for a mean temperature of the substances. The test results show 
an unusually small s~attering which is to be ascribed a careful account­
ing for various factors (e.g . , determination of the temperature of the 
air in the room and at the walls, and also the end effect of the pipes). 
For the two intermediate pipes, after graphical adjustment, a decrease 
of Nu for Te = 0 . 07 to 0 . 52 by about 2 . 5 percent is observed, where­
as in the case of the smallest pipe no ordering is observed and in the 
case of the largest pipe there is a partial decrease and a partial 
scattering. In agreement with the results of Wamsler, the dependence 
on Te is thus practically zero also for large Gr (104 to 107 ). 

5. Summary of Test Results 

The results of the different investigators as regards their agree­
ment may be compared in two groups . In the region of small Gr 
(10-4 to 10), the tests of Ayrton and Kilgour, Langmuir, Bijlevelt, and 
Kennelly and coworkers are in agreement. From these investigations are 
determined, on the one hand, the curves Te = 0 for the limiting law 
of small temperature difference (fig . 8) and, on the other hand, the 
curves Te = 0.65 corresponding to an intermediate test range (fig. 9). 
For Te = 0 the maximum scatter of the results of the four _investigators 
is 10 .5 percent, the minimum 5 percent, the corresponding values for 
Te = 0 . 65 being 22 and 8.5 percent, respectively . The middle curves 
of figures 8 and 9 obtained for Te = 0 and Te = 0 . 65 give for this 
change in Te an average change in Nu of 14.7 percent (fig. 10). 
A relative decrease in the Nu number by 22 percent with increase of 
Te from 0 to 1 is thus obtained as the experimental mean value of the 
effect of Te for small Gr . 

In the region of large Gr (104 to 107 ), the test values of 
Wamsler and Koch from energy measureme~ts and the values obtained from 
the temperature field measurements of Jodlbauer (ref. 16) by integrat­
ing over the cylinder perimeter are shown in figure 10. As follows 
from the discussion of the results of Wamsler and Koch, the values of 
Koch must be considered as more reliable . There is nevertheless an 
uncertainty in the values due to the uncertainty in the radiation com­
ponents which lie between 40 and 60 percent. On the other hand, the 
temperature field measurements of J odlbauer are free from this source 
of error. Since, moreover, the results of reference 16 are in good 

J 
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agreement (mean deviation, 4 percent) with the theoretical solution 
given in Part II they were assigned a greater weight in the evaluation. 
Jodlbauer himself, however, considers his energy measurements, which 
are about 10 percent higher and lie near the values of Koch, to be 
correct and his field measurements in error because of the introduction 
of the thermocouple. The test points of Wamsler are, on the average, 
18 percent higher than the theoretical values, and those of Koch, 
11 percent higher. The interpolation curve is not everywhere satis­
factory as regards its slope and curvature and could be determined only 
with a partial deviation from the test values. 

The differences still existing, after extensive adjustment, among 
the individual investigators and the difficulty of interpolation show 
that the heat-transfer curve is still not conclusively determined with 
the desirable accuracy of several percent, but that, on the contrary, 
further tests are required. The given interpolation curve nevertheless 
represents the most probable curve of the heat-transfer law, obtainable 
at the present time, for diatomic gases with account taken of the de­
pendence on Te in the range of Gr from 10-4 to 107 . The numerical 
values of this curve are given in table II. 

6. Qualitative Theoretical Interpretation of Heat-Transfer Law 

(a) Streamlines. - It is necessary to explain theoretically the 
dependence of the Nu number on Gr and Te, determined experimentally 
in sections 4 and 5 (fig. 10), and also the dependence on Pr as ob­
tained by A. H. Davis (ref. 3) for liquids. A solution of the differ­
ential equations under the assumption of a thin (as compared with the 
cylinder diam.) heated laminar layer is given in Part II for diatomic 
gases (Pr = 0.74) and small temperature differences (i.e., approximately 
constant properties, Te "" 0) and is valid for mean values of Gr of 
about 104 to 3 XI08 . On the basis of these theoretical results and with 
the aid of suitable assumptions, the dependence of Nu on small and 
large Gr and also on Pr and Te will be discussed theoretically 
without any necessary implications of finality in the conclusions. 

The streamline plot (fig. 11) obtained from the solution and the 
isotherms of figure 12 show that cold air streams from the bottom and 
sides of the cylinder with increasing velocity in laminar flow upwards 
along its surface, is deflected away from the surface in the region of 
the upper stagnation point, and forms a rising current of warm air. 
With increasing Gr of the cylinder, the thickness of the streaming 
layer relative to the cylinder diameter decreases. Since the velocities 
increase at a higher rate, however, the Reynolds number Re of the 
boundary layer increases so that the boundary layer finally becomes 
turbulent. According to the schlieren photographs of figure 23, this 
occurs in the neighborhood of the upper stagnation point at Gr = 3.5xl08 . 

-l 
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With further increasing Gr, the point of turbulence transition travels 
upstream (fig. 26) and reaches the equatorial region at Gr = 3XI09 . 
With decreasing Gr of the cylinder, the Re of the boundary layer 
likewise decreases, and at the same time the thickness of the layer in 
relation to the cylinder diameter increases so that the given solution 
of the differential equations finally (below Gr = 104 ) becomes in­
valid. At very small Gr (very small Re), the isothermal picture of 
the free flow in the neighborhood of the body becomes increasingly 
similar to the concentric -isothermal picture of the pure heat con­
duction17 so that almost ~atic heat-conduction relations may here be 
supposed. An estimate of the Te effect made under this assumpiion 
at small Gr likewise gi~es good agreement with the measurements (see 
following section b) . Th~ following fundamental difference is never ­
theless to be observed. ~or initially given cylinder temperature and 
heat transfer, the solut~ of the heat - conduction equation has as the 
potential function at inflnity a singular point (negatively infinite 
temperature). That is, even at a very large distance from the cylinder 
the room temperature continues to decrease, whereas actually in the 
case of free flow the room temperature at large distance from the body 
very soon becomes constant. 

(b) Heat transfer. - TIependence on Gr. For the dependence of Nu 
on Gr, the solution of the differential equations under the familiar 
assumptions of the Prandtl boundary- layer theory gives 

Nu • Grl / 4 (6) 

as is also approximately shown by th~ tests of Wamsler and Koch ( fig. 10 ) . 
At very large Gr with at least partial turbulent flow, the heat trans ­
fer must rise more strongly on account of the increased mixing. With 
increaSing turbulent mixing the dependence of the heat-transfer coef­
ficient on the position must also decrease . The assumption that u is 
independent of the position (or on the cylinder diam.), as is obtained 
from the tests of Griffiths and Davi s (ref . 17) for a vertical plate, 
gives on the basis of dimensional consider ations 

(7 ) 

Above Gr = 3 . 5xI08, the proportionality of the Nu number to the 
fourth root of Gr corresponding to the upstr eam travel of the point 
of transition to turbu lence must graduall y become a proportionality t o 
the cube root . Experiments of W. Ki ng (ref. 18 ) on vertical cyli nders, 

17See photographs by R. B. Kennard; Bur . Stand . J . Res . , vol. 8 
(1932), p. 787. Report on this by M. J akob : Fors chg. Ing.-Wes. , vol. 4 
( 19 33 ), p. 45 . 
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plates, and blocks at Gr up t o 1012 confirm the cube - root law as 
already pointed out by M. Jakob and W. Linke (ref. 19). For very small 
Gr, for which the amount of heat transferred by convection is always 
below that transferred by conduction, the Nu number in accordance 
with its definition must graduall y become constant, as may be seen from 
the discussion of data below Gr = 10- 3 (fig . 10) . 

Dependence on Pr . The dependence of Nu on Pr for 
Gr = constant and Te = constant may be understood by assuming a 
change in X with all the remaining magnitudes kept constant . The 
increase in Pr, through a decrease in X, gives in the region of 
predominant heat conduction ( very small Gr ) a proportional decrease 
in the quantity of heat transferred, that is, Nu = constant . In the 
region of large Gr, a decrease in A. (on account of the small er con­
duction component as compared with the convection component ) gives a 
relatively smaller decrease in a, that is, an increase in '~u . In 
agreement, investigations by Davis (refs . 3 and 20) on liquids of very 
different Pr (Pr = 0.74 to 7940) for small Gr give the limiting 
value of Nu which is independent of Gr and also of Pro For medium 
and large values of Gr, an increase of Nu with Pr was obtained. 

Dependence on Te. The dependence of Nu on Te for 
Gr = constant and Pr = constant for diatomic gases is determined by 
the temperature dependence on A, v, a, and also by the temperature 
chosen in computing the characteristics Gr and Nu (Pr is independ­
ent of the temperature) for the fluid properties X and v (~ = l/Too 
is constant in the entire field, ref . 1); the wall temperature tw or 
Tw was chosen herein . 

An increase of Te = (Tw/Tm) - l is considered to be due to a de ­

crease in Too with Tw constant so that the values of A and v 

employed for the computation of Nu and Gr remain unchanged . The 
associated increase of ~ and e is compensated by a decrease in the 
gravity field g so that g~ e, that is, the lift acceleration and Gr 
remain constant . Hence colder outer layers with smaller X and v 
but larger p now take part in the heat t ransfer . In the region of 
very small Gr with predominating heat conduction X, the magnitude 
a, and hence Nu, must therefore decrease with increasing Te . This 
is also shown by the data discussed previously between Gr = 10-4 and 
10 (see fig . 10). For the region of very large Gr with smaller vis ­
cosity and heat - conduction effect as compared with the turbulent momen­
tum and heat mixing, it also follows 18 from the momentum equation, 

18Under the reasonable assumption that with the change of Te the 
profiles of the velocity and temperature to a first approximation under­
go affine variations. The 'standard velocity W' may thus be taken for 
example as the maximum value of the tangential velocity at the equa­
torial region of the cylinder . 
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because of the constancy of the lift acceleration, that the standard 
velocity W is constant . The participation of colder layers with in­
creased value of p in the heat transfer here means an increase in the 
heat-transfer coefficient ~,which is proportional to cpW, and there­
fore in Nu . 

The decrease of Nu with increasing Te for very small Gr 
contrasts, therefore, with an increase for very large Gr. The effect 
of Te for small Gr values must therefore, in agreement with the 
test results of Langmuir, first decrease with increasing Gr values 
and finally, somewhere in the range of medium Gr, must practically 
vanish, as is evidently the case according to the experiments between 
Gr = 104 and 107 (fig . 10) . 

For the range of very small Gr, the order of magnitude of the 
dependence of Nu on Te under the approximating assumption of purely 
static heat conduction may be estimated when a mean conductivity is 
used, 

>.. 
m (8) 

the following expression is obtained for the 
to two different Te values Tel and Te2 

Nu numbers corresponding 
for equal wall temperature 

Tw Tw : 
1 2 

The value Tel ::: 0 

or TWl ::: T..; and 

dependence of A, 
used19 

with n::: 0.73820 

is 

Te2 

the 

Nu(Tel) Am (Tel) 

Nu(Te2) =X m(Te2) 
(9) 

chosen, that is, vanishing temperature difference 

::: 1, that is, Tw IT. = 2 . For the temperature 
2 2 

previously (ref. 1) given exponential form is 

(10) 

19>"0 is the value of A for the arbitrarily chosen temperature 

20Determined from the previously given exponent for a of 1.738 
neglecting the temperature dependence on c . 
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From 

" 

with TO Tw TW2 1 

m(Te2) 
1 

= 
TW2 -T.. 

2 

in equation (10) 

1:W2 

2 

and by 

T., 
2 
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A dT 

integration: 

Since "m(Tel) = A(Tw ), the following expression results after sub-
1 

stitution of the numerical values: 

"m(Te2) 

x;nCTel ) 
2 

1. 738 0.81 (11) 

The decrease of Nu for Gr = constant with increase from Te = 0 
to Te = 1 is thus theoretically obtained as 19 percent. The pre­
viously discussed tests of the four investigators between Gr = 10-4 
and 10 gave values between 13 percent and 26 percent with a mean 
value of 22 percent (see fig. 5). This good agreement justifies the 
assumption of approximately static conducting conditions at small Gr. 

II. THEORETICAL SOLUTION OF THE BOUNDARY EQUATIONS FOR THE 

HORIZONTAL CYLINDER (CASE OF STEADY MOTION) 

1. Abstract 

The large number of experimental investigations of heat transfer 
in free convection correspond to onl y a singl e physicall y satisfactory 
theoretical solution of the differential equations, namely the solution 
for the vertical plate (two-dimensional steady- flow case) for moderate 
temperature differences, which was given by Schmidt and Beckmann 
(ref . · 21 ) with the help of Pohlhausen. The solution is based on the 
approximation of the Prandtl boundary - layer theory (laminar flow in a 
layer which is thin as compared with the distance from the lower edge; 
velocity normal t o the wall small as compared with that in the direction 
of the principal flow along the wall). The results of the theory as 
regards the velocity and temperature fields and therefore the heat 
transfer agree very well with the corresponding measurements . 
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For the case of the horizontal cylinder, schlieren photographs in 
air (see ref. 22 and figs. 23 and 25) show that, for Grashof character­
istics (Gr = d3~elv2) of about 104 and above, the heating of the air 
extends to only a relatively thin layer around the cylinder, a fact 
which permits the mathematical simplification of the problem. On the 
assumption that the heat-transfer and the flow processes are restricted 
to a thin film, as compared with the cylinder diameter, with laminar 
flow (boundary-layer assumption) the differential equations (ref. 23) 
for moderate temperature differences can be solved approximately for 
the velocity and temperature fields; and therefore the heat transfer 
can be computed which, in the range of Gr 104 to 3Xl08, within which 
the initial assumptions are satisfied, is in good agreement with 
experiment. 

2. Setting up of Differential Equations 

To start, the hydrodynamic differential equations are used in a 
form previously given (ref. 1)21 which shows a "lift term", charac­
terizing the free convection, that arises from the combining of the 
gravity term and the hydrostatic component of the pressure drop, so 
that only the gradient of the dynamic pressure p* remains as the 
pressure force. This dynamic pressure is equal to zero where there 
is no motion and no temperature difference with respect to the medium 
at a large distance. As was indicated in detail in reference 1 (p. 
429), the density and other characteristics of the substance in the 
entire field may be considered as constant (case of small temperature 
difference) and the equations will continue to describe the free­
convection problem. The equations in vector form are then22 

wO grad w = - lip grad p* - v rot rot w - g~e 

div w = 0 (12) 

wO grad e = a 6 e 

with the boundary conditions: w = 0, e = e on the cylinder surface; and 
w = 0, e = 0, p* = 0 at infinity. (w, velocity; e, temperature differ­
ence with respect to temperature at infinity; p*, dynamic pressure; 
p, densityj v, kinematic viscosity; ~, expansion coefficient; ~, temper­
ature conductivity; g, gravity acceleration vector; g, its absolute 
value; r, cylinder radius.) 

21In equation (3c) in reference 1 a minus sign mistakenly appears 
on the right side. 

22In place of 6w the invariant form is written grad div w -
rot rot w. 
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For treating the two - dimensional flow about the cylinder, these 
equations are conveniently written in arc length coordinates with the 
arc length s on the cylinder perimeter (taken in clockwise direction 
with the lower stagnation point as origin) and the normal distance n 
from the cylinder surface, and the velocity components u and v 
parallel and normal to t he wall, respectively . There is then obtained, 
without neglecting any terms23 . 

r dU dU 
r+nud'S+ \l dri+ 

u · v ---r + n 
1 · 1 f, .11 e l ·f, 

{ 02u 1 dU r2 
\I -- + --- -- + 

+ n)2 dn2 r + n dn (r 
e2 1/e 2 lie 

r dV dV u 2 
u - + v ~ -r + n dS r + n 
1. f, e .1 1 

{02V 1 dV r2 
\I -- + --- - - + 

dn2 r + n dn (r + n)2 

e 2 lie 1 

r dU dV 

1 dP* r 
P ds r + n + gl3e 

d2U u 
dS 2 (r + n)2 

+ 

1 1 

sin ~ + 
r 

(r 
2r Ov } 
+ n ) 2 dS 

2 . e 

1 dp* 
- gl3e cos 

s 
= Pdn - + 

r 

d2v v 2r OU } 
ds 2 - (r + n)2 (r + n )2 dS 

e e 2 1 

v 
0 (13) --- d'S+dn+ ---r + n r + n 

1 1 e 

r de v 08 ~ a{ 0
2
8 1 de r2 d2e } . --- u d'S + + dn+ 

(r + n)2 r + n dn d 2 r + n 
ds 2 

1 · 1 e . lie e2 l/c, 2 lie 1 

The approximations made according to the boundary- layer theory are now 
introduced . The cylinder radius r and hence also s (with the ex­
ception of the lower stagnation point ) and u are assumed to be of the 
order of magnitude 1 ; n is assumed to be of the order of magnitude of 

2~he hydrodynamic equations agree, except for the dynamic pres ­
sure and lift terms, with the equations (10), (11), and (12 ) for 
r = constant of W. Tollmien: in Wien-Harms, Handb . d . Exp . Phys . , IV, 
1, p . 248 . 
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the boundary- layer thickness & « 1 , so that n + r may be re-
placed by r. The estimate of the order of magnitude of the individual 
terms according to the method given by Prandtl and his coworkers then 
gives the results written underneath the individual terms. In order 
that the friction and inertia forces may be of equal effect, it is 
necessary that v (and correspondingly ~) be of the order of magnitude 
of &2. In order that the lift f orces f or the motion in the direction 
of the main stream be of significance as compared "ith the inertia and 
friction forces) that is, in order that ' free convection ' exist at all) 
it is necessary that g08 . 1. From the two momentum equations it 
then f ollows that the pressure terms are at most '" 1. Since p* is 
zero at the outer edge of the boundary layer) it follows from 

1 dP* • 1 Pdn 
by integration from the outer edge of the boundary layer to the cylinder 
surface over the length e that r! / p in the boundary layer can at 
most be of the order of magni tude f:) that is, so that 1/ p dP* /ds = f:. 

Since in what follows only the terms of the order 1 are retained, 
the following result, important for simplifying the mathematical treat ­
ment, is obtained : The tangential drop of the dynamic pressure is to 
be neglected as compared with the tangential lift, inertia) and friction 
forces. The term p * alone is contained in the equation of the normal 
momentum. Hence, u, v, and e are to be computed from the equation of 
the tangentia l momentum) the continuity equation, and the heat-transfer 
equation (eq. (14)). Thereafter p * may) if desired, be computed from 
equation (15) of the normal momentum. Hence) the boundary-layer equa­
tions f or the horizontal cylinder for free convection are 

dU dU d
2

U 
u d'S + v dn = v dn2 + g0e sin ~ 

dU dV 
d'S + dri == 0 (14) 

de de d
2
e 

u d'S + vdn a - -
dn2 

u2 1 dp* - g0e cos 
s - - - p dU r r 

(15) 
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A corresponding estimate of equations (13), first rendered non­
dimensional, gives the two corresponding conditions: 

1 - . 
Re 

For a maximum &, in the sense of the approximations, of 0.1 (approxi­
mation to about 10 percent), this gives Re = 100 and Gr = 104 as 
lower limits of the computations. The approximation is therefore better 
the larger Gr, that is, the smaller the boundary-layer thickness e. 
The upper limit is then attained if the boundary layer becomes turbu­
lent, which (according to part IV) is the case for Gr = 3.5xI08 at 
the upper stagnation point, for Gr = 3xl09 at the equator. The range 
of applicability of the laminar-boundary-layer computations therefore 
lies between Gr = 104 and Gr = 109 . 

3. Reduction to Ordinary Differential Equations 

The usual introduction of the stream function ~ 

o~ 
u = dn v = 

eliminates the continuity equation. By introducing nondimensional 
magnitudes with Gr' = r3g~8/v2 by means of the transformation24 : 

x 
s 
r 

y = ~ Gr,l/4 
r 

!= 1 Gr,-1/4 
v 

8 
't=-e 

(16) 

(17 ) 

there remain of the five constants (v, g~, ~; 
equations (14) only two in the nondimensional 

8, r) of differential 
combination of the Prandtl 

characteristic Pr = v /~. 

o Y 02 'f 
dy dXdy 

oYo-. oYo-. -- -
oy ox ox oy 

't sin x 

(18) 

Equation (17) is not an arbitrary transformation which carries 
equation (14) over into equation (18), but a definitely determined 
transformation with the aid of which it is possible to eliminate Gr 

24Gr , referred to r is more convenient for the computation than 
Gr referred to d. In the final result, the more usual Gr is again 
introduced. 

.. 
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so that it no longer occurs in equation (18). The solution of equa­
tion (18) therefore likewise no longer contains Gr. It is therefore 
unnecessary to know the solution of equation (18) if it is of interest 
to know only how the solution (e.g., velocity, temperature, boundary­
layer thickness, heat-transfer coefficient) of the initial equation (14) 
depends on the Gr number. This dependence of Gr is already COm­
pletely represented by the transformation (17), whereas equation (18) 
contains the further dependence on Pr and on the space coordinates . 
In other words, the solution of equation (18), obtained for a definite 
Pr value24a gives, by means of equation (17), at the same time the 
velocity and temperature fields for all Gr values. On the other hand, 
the transformation (17) without the solution of equation (18) already 
gives important general information on the flow condition and the heat 
transfer for free convection with respect to the dependence on Gr. 
From equation (17) there follows, if the following expression is set up, 

that 

n 
r 

ur 
~ 

u 

vr 
~ 

v (19) 

r de 
9dn 

d~ Gr,1/4 
dy 

(20) 

That is, the relative boundary-layer thicknesses/decrease with Gr-l / 4 ; 
the nondimensional velocities increase with Grl 2; and the non-
dimensional temperature drop increases with Grl / 4 , from which there 
follows directly the well-known 1/4-power law of heat transfer in free 
convection: 

(21) 

These theoretical results agree with those for the rectangular 
plate and are not restricted to the latter and the horizontal cylinder 
alone, but depend on more general assumptions (ref. 19). They are 
valid, in general, for all two - dimensional cases of free flow with a 
boundary-layer character (ref. 23), that is, where the thickness of the 
heated laminar layer is small compared with the distance from the inci­
dence edge and the radius of curvature of the wall, and the latter does 
not change discontinuously in the flow direction . The existence of 
sharp edges about which the flow occurs is therefore excluded. In this 
more general case, there are on the right side of equation (13) addi­
tional terms which are determined by the radius of curvature and which 

24alt is here assumed as self evident from physical considerations 
that one and one only such solution exists . On the mathematical side 
of these existence and uniqueness proofs, see the discussion in refer­
ence 1 (p. 428). 
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vary with the arc length (dr/ds) but which drop out in the estimate 
made under the i nitial assumptions . Furthermore, in place of the sine 
and cosine of the lift term there appear functions which determine the 
direction of the surface element with respect to the hor izontal and 
vertical but which similarly do not change anything in the transfor ­
mations (17) and the conclusions from equations (20) and (21 ) based on 
these transformations . 

In agreement with these theoretical conclusions equation (21 ) has 
alread~ been confirmed for vertical plates (ref . 21), horizontal cyl­
inders 5, and cylindrical layers (ref . 24 ), and even for the heat 
transfer from the two sides of a square horizontal thick plate with 
edges (ref . 25) and for the heat transfer 'vi th evaporation at a verti ­
cal cylinder in water and car bon tetrachloride (ref . 26) for which the 
previously mentioned assumptions are not all satisfied. 

A reduction of the partial differential system (18) to systems of 
ordinary differential equations is attempted by setting 

f or example, 

q y g (x ) 

I(x , y) = p (q)f( x ) 

~ (x,y) = t (q) 

df 
U = d:Y = f(x)g(x)pl(q) 

(22a) 

(22b) 

( 22c ) 

( 22d) 

based on the notion that all the profiles of the stream funct i on *(y), 
tangential velocity U(y), and temperature ~ (y) for the different 
azimuths x of the cylinder are produced by affine distortions by 
means of the azimuth functions f (x) and g(x) from a single "base 
profile" of the stream function p (q) or the velocity p l( q ) and one 
base profile of the temperature t (q ) (q = normal coordinate of the 
base profile). Substitution of equation (22) in equation (18 ) gives 
(primes of p and t denote differentiation with respect to qj primes 
of f and g denote differentiation with respect t o x ) : 

( 23 ) 

25See Part I, section 5, figure 10 . 



NACA TM 1366 21 

A separation into functions of the two independent variables x 
and q, that is, a successful application of the assumed expression 
(eq. (22)) for solving the equations, is possible only if the two func­
tions f(x) and g (x ) can be uniquely determined from the four ordinary 
differential equations 

f I (x) = ag (x) 

f (x)f '(x)g2 (x ) = c sin x 

f2(x )g (x)g ' (x) = b sin x 

f (x)g3(x) = d sin x 

(24a ) 

(24b) 

(24c ) 

(24d) 

(where a,b,c , d are initially undetermined constants) in spite of the 
redundancy of the equations26 . The possibility of such unique determi­
nation, which is the necessary assumption for the applicability of 
equation (22), will be discussed in more detail after equation (29) is 
considered. If such determination is possible, there remain for p(q) 
and t (q) two ordinary differential equations : 

(b + c) p ' 2 ( q) - cp(q)p" (q) = dp '" (q) + t(q) 

t" ( q) + a Pr p ( q) t I (q) = 0 } (25) 

In section 4, equation ( 24) will be solved and in section 5 equation (25) 
will be discussed . 

4. Determination of the Azimuth Funct ions F(x) and G(x) 

(a) Setting up of the two differential equations for F x). - The 
boundary values of f x and g x which are required for solving equa­
tion (24) are determined from physical considerations. From 

it follows that 

d~ dt ( q) () 
dy==~gx 

g(x == 0) (26a) 

26The author is indebted to Dr . A. Naumann, Leipzig, for several 
mathematical suggestions . 
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otherwise, the temperature of the cylinder surface would also be the 
temperature in the field along the entire normal at the lower stagna­
tion point, which cannot be the case. From equation (24a) there is 
then obtained 

f' (x = 0) = ago (26b) 

Since the tangential velocity at the lower stagnation point must, for 
reasons of symmetry, be different, there follows from equation (22d): 

f(x 0) = 0 (26c) 

The system of equation (24) with the boundary conditions (26a), (26b), 
and (26c) thus contains five free available constants a,b,c,d, and go, 

which are determined in subsequent computation. 

By introducing the normed functions 27 : 

(27) 

equation (24) may be transformed to: 

F' G (28a) 

(28b) 

(28c) 

d sin x 
ag04 

(28d) 

with the boundary conditions 

F (x = 0) = 0 F'(x = 0) = 1 G(x = 0) = 1 (29) 

A necessary assumption for the applicability of the expressions of 
equation ( 22) for solving the equations is that the two functions F 
and G can be uniquely determined from the four equations (28a) to 
(28d ). This would be the case if it could be proven that the four 

27By normed is meant fully determined also with respect to a 
factor . 
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equations are not independent of one another, but that two equations 
follow from the other two . This proof is partly possible only inso­
far as one equation (for suitable choice of the constants) is a con­
sequence of the remaining equations . Thus, elimination of G with 
the aid of equation (28a) gives 

23 

F2 F' F" b sin x = a2g 4 
(3Ga) 

0 

F F,3 c sin x 
a2g 4 

0 
(30b) 

F F,3 d 
sin x = 

ag 4 
0 

(30c) 

Equation (30c) is thus a consequence of equation (3Gb) in the case that 
the following first condition for the constants is satisfied : 

d = cia 
Setting for briefness 

there then remain for the determination of F the two equations 

F F,3 = a. sin x 

F2 F' Fit = 13 sin x 

(31) 

(32a) 

(32b) 

(331) 

(33II) 

with freely available values of a. and 13 . As a necessary assumption 
for the applicability of equation (22 ) , there remains the further con­
dition that the two equat ions I and II possess two equal (or at least 
approximately equal ) solutions . 

This proof will be obtained by solving equations I and II by a 
power-series development above and belovr the equator x = rc/2 . For 
this purpose, with ~ = x - rc/2 , I and I I are transformed into 

F (~) F , 3 (~ ) = a. cos ~ 

F2 (~) F ' ( ~) F"(~) = 13 cos <p 

where the pr imes now denote differentia t i on with r espect to ~ . 

(341 ) 

( 34II ) 
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(b) Solution of differential equation (I) for F. - The value of 
~, by the boundary values of equation (29), is first determined as 

~ = 1 (32c) 

as is seen from the first term of the power - series development of 
equation (331) about the point x = O. From the expression for solving 
equation (34I): 

(35 ) 

there follows 

(36a) 

and by substituting in equation (341) 

(36b) 

Substitution of expression (35) in differential equation (341) 
gives the unknown coefficients , which are taken up to the fifth, in­
clusive, and which can be successively determined in terms of cl : 

The boundary condition FI( ~ = -~/ 2) = 0 according to equation ( 29 ) 
gives for the value of cl the solution of an algebraic equation of 

the fifth degree which is solved by trial 

cl = 0 . 581 (38) 

Of the five possible real roots it is necessary to choose that one for 
which no further zero of FI is obtained between ~ = 0 and , = -~/2 . 
The coefficients then assume , according to equation (37), the values 

cl = + 0 .581 c2 0 . 05626 c3 = - 0 . 01412 

} (39 ) 
c4 = - 0 . 00165 c5 0.00066 

According to equations (36a) , and (36b ), there is obtained 

FI ( , = 0) = aO = 1.504 FI , ( ,, = 0) = aO cl = 0 . 874 (40) 

I 
I 
I 
I 
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and the numerical solution of FI (~) is thereby completely given (see 
table III). 

It may be remarked27a that for equation (331) a solution was also 
obtained by a power- series expansion at the point x = 0 in powers of 
sin (x/2) which, because of the fact that the curvature of F at that 
point is zero, converges with particular rapidity: 

F*() 2 . x ( 1 1 1 . 2 x 4 4 x ) x = Sln '2 \ + 10 Sln '2 + 100 sin '2 +. . . (41) 

This solution assumes at the equator the values 

F*(x = rr/2) = 1 . 500 F*'(x = rr/2) = 0.874 (e) 

which are in good agreement with the values of equation (40) of the 
series expansion at the equator. I n this way, the sufficient conver­
gence of FI(~) with the five computed terms is assured, and a good 
check is obtained against computation errors . The solution F* will 
not be used in what follows ; this is because of the singular behavior 
of equation (33II) at the poi nt x = 0 , and the identity proof m'lst 
therefore be carried out by the series expansion at the equator. 

c) Solution of differential equation II for F. - For equa-
tion 3411, corresponding to equation 35 the following expression 
is assumed: 

( 42) 

Substitution in the differential equation gives the following values 
for the constants : bO and dl are arbitrary 

l3 d 2 = --'---
2b0

4dl 

dl d
3 

= - % (d1
2d2 + d2

2) 

where, on account of the length of the expreSSions, d4 
not given as functions of dl and d2 . The function 

(43) 

and d5 are 

FIr thus depends 

27aAcknowledgment is made to Prof. W. Muller, Aachen, for the 
suggestion that the solution of equation (331) may be reduced to two 
quadratures by separation of the variables . One of the quadratures is 
not in closed form, however, but can be carried out only by a series 
expansion so that this method would not be essentially different from 
the one employed. 
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on t he as yet freely available val ues of bO' dl , and ~ . The solu­

tions FI and FI I are equal if the corresponding coefficients of the 
s eries are e qual. Therefore , t he as yet undetermined coefficients are 
equated a s follows : 

(44 ) 

The condi tion d2 c2 gives 

(f) 

or wi th equations (36b) and (44 ) 

~ = - 1/ 3 ~ = - 1/3 (45) 

All t he coefficients may now be expressed in terms of dl : 

Compar ison of the coefficients of the two series for FI and FII 
gi ves 

b O ao == 0 dl 0 d2 c2 == 0 d3 
1 - - cl == - - c3 = 18 cl 

d4 
1 2 d5 

1 1 3 - c4 = - 216 cl - c5 = + 360 cl + 405 cl 

(46) 

(47) 

This result states that the solutions of the two different differen­
tial equations (341) and (3411) agree at the equator in the value of the 
function, in the tangent, and in the curvature, but not in the higher 
derivatives in which they differ fundamentally to a small degree . FI 
and FII are approximately, but not rigorously, equal. The system ( 24 ) 
is, strictly speaking, overdetermined and has only approximately unique 
solution . This solution of expression ( 22) is not rigorously, but 
only approximately, valid. Because of the agreement of F~ and FII 
at the equator up to and including the curvature, however, these differ ­
ences become more appreciable in the neighborhood of the lower and 
upper s t agnation points where the initially assumed boundary- layer 
assumptions are not satisfied. The method that has here been employed 
thus gives an approximate solution of the boundary- layer equations with­
i n the accuracy limits determined by the physical approximations of the 
boundary- layer assumptions. 
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The numerical computation of equations (44) and (46) with aO 

and cl according to equations (40 ) and ( 39) gives : 

bO = 1.504 0 . 581 0 . 05626 + 0 . 01816 

27 

d4 = -0 . 00321 d5 = + 0 . 00144 (48 ) 

Table III shows the values of the functions FI (~) and FII (~) computed 
according to equations ( 39 ) ) (40 ) ) and (48 ) ) with sufficient agreement 
between x = 30°, 1500 and even at 1650 (graphically interpolated for 
FII ). The negative value of FI I for x = 0 has no significance 
since) on account of the singular behavior of equation (3411 ) for 
F = 0) the series (42) beyond this singul ar point no longer represents 
the solution of the differential equation . For the further equations) 
FI is employed because only this funct i on possesses the required 
property of vanishing at the lower stagnation point. 

d) Determination of G. - The t erm G is determined according 
to equation 28d where ) accordi ng to equation (49 ) ) d = ag0

4 . 

Table III shows the computed values based on Fl . 

5. Determinat i on of Basic Profi les p(q) and t(q) 

The constants b) c) d which occur in equation (25) can now) with 
the aid of equations ( 31)) (32a ) ) to (32c) ) and (45 ) be expressed in 
terms of a and gO : 

b = - 1/3 a 2 g04 c a 2 g04 d a g04 (49 ) 

Equation (25) then becomes 

2/ 3 a 2 g04 p l 2 _ a 2 g04 p p " = a g04 p "1 + t 

} t il + a Pr p t l 0 
(50) 

with the boundary conditions : 

q :;: 0 : p = 0 p I = 0 t = 1 

q= _ : p l:;: O t :;: 0 (g ) 

Equation (50) for a 1 and go = 1 may now be numerically integrated . 

The f ollowing values were chosen for the as yet free remaining constants 
a and go 
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a 3 go yl/4 (51) 

e quat ion ( 50 ) becomes 

p ilI + 3 P p" - 2 p l 2 + t 0 

} til + 3 Pr p t' = 0 
(52) 

This system with the same boundary conditions and for Pr = 0 .7 33 
(diatomic gases) has already previously been numerically integrated by 
E. Pohlhausen for the vertical plate so that ) because of the i ntroduc ­
tion of the normed functions F and G and the consequent availability 
of the constants) a new numerical integration is unnecessary . The 
stream function p(q) and temperature function t(q) correspond to the 
functions ~ (~) and e (~) of Pohlhausen . Their values are given in 
reference 21 in tabular form (ref. 4) p . 187 ). Graphical representa­
tions of the velocity profile p l (q) and of the temperature profile 
t(q) are given in figures 13 to 16 (continuous curves ). 

6 . Complete Solution for Velocity and Temperature Fields 

With the values of equations (51) for a and gO) the azimuth 

functions f ex ) and g(x) according to equation ( 27) are now uniquely 
determined . For 

2 . 280 (53) 

there is obtained 

f(x) = 2 . 280 F(x) g(x) = 0 . 760 G(x) (54) 

Table IV shows the values of f(x)) g (x)) and f (x).g (x) computed from 
F I and G of table III . Figure 17 shows these values graphically . 

With the values f(x) and g (x ) from table IV) the values p(q) 
and t (q) from the table of Pohlhausen and the transformations (16 ) ) 
(17)) and ( 22) there is obtained the complete solution of the boundary­
layer equations (14) for the velocity (u and v) and temperature 
fie lds (e) obtained vli thout any empirical value . Collecting results 
yields ( see also eq . (E) and (20) for simultaneous passa.ge from Gr ' 
to Gr (Gr = 8Gr') : 

- I 
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u(s,n) 

v( s, n ) 

e(s,n} 

with x == 

\I Gr1/ 2 
r ~ f (x )g (x ) pl(q) 

8 

v Gr
l

/
4 

{ r--;;T4 fl(x)p(q) f (x)g ' (x) I ( )} 

+ g (x ) q p q 

et(q) de dn (s,n) 
e Grl / 4 
r 81/ 4 g(x)t l (q) 

~ and n Grl / 4 
q - 81/ 4 g (x) r r 

29 

(55a-
55d) 

For the determination of the normal velocity v it is required to 
know f'(x ) and g'(x). The term f'ex) is, according to equation (24), 
determined by means of g (x ); g ' (x ) was determined by graphical differ­
entiation of g(x)28. Here the qualitative description of the normal 
velocity obtained from the streamline picture is sufficient. It can be 
shown that the boundary conditions of u, v, e for q = 0 are cor­
rectly assumed . I f the as sumption n «r which was made with respect 
to the solution of equation (14) is applied for very large q, there 
are obtained for u and e the correct value zero; but for v, in 
contradiction to the boundary condi tions (12), a finite value is ob ­
tained which is related to the fact that the cylinder curvature was 
neglected. 

The boundar y -layer thi ckness, tangential velocity, temperature, 
and heat-transfer coefficients according to equation (55) behave as 
follows. With regard to the dependence of these magnitudes on Gr, 
there hold first of all the considerations of section 3 in connection 
with equations ( 20) and (21). The dependence on the cylinder azimuth 
is such that all profi les of the tangential velocity and temperature 
are obtained by affine distortions from the basic profiles p'(q) and 
t (q) . 

The value l /g(x) (fig . 17) represents the 'extension' of the tem­
perature and velocity profiles normal to the surface with increasing 
azimuth, that is, the development of any characteristic distance from 
the wall, for example, of the place of maximum velocity (q = 0.95) or 
of the b oundary-layer thickness to be defined later (q = 2.18). In 
accordance with this, the b oundary-layer thickness at the lower stag­
nation point possesses a finite approximately constant value over a 

2~he values are not given here . 
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lar ge azimuth range but increases at £irst gradually then more and more 
rapidly and attains at the upper stagnation point a theoretically in­
f i nitely large value (upward current of warm air ). The function g (x), 
since it is proport i onal to the temperature drop, likewise represents 
the variation of the local heat - transfer coefficient with the cylinder 
azimuth . At the lower stagnation point , g (x) is constant and with 
constant slope connects with the values of the other side of the cyl­
inder . At the upper stagnation point (x = rt) this is no longer the 
case ; g(x) has a sharp peak which is associated with the fact that the 
boundary- layer assumptions at this point strongly deviate from the 
actual conditions (normal velocity large as compared with the tangen­
tial velocity) . Under actual conditions this peak is balanced out by 
a very sharp minimum value as is shown by the value of Nu along the 
cylinder perimeter computed from the schlieren pictures of E . Schmidt 
(ref . 22 )29 . No quantitative comparison of this experimental curve 
of g (x ) "lvith the theoretical curve given herein can be given because 
the conditions of the two - dimensional problem are so little satisfied 
for the schlieren pictures (pipe length = 2 times cylinder diam.) that 
the computed heat - transfer coefficient is 40 percent greater than that 
of the tests of Koch (ref. 22) . 

The development of the tangential velocity with the azimuth, that 
is, the incr ease of any characterizing velocity, for example the max­
imum velocity, is described by f (x) , g (x ) ( see fig . 17) . The velocity 
increases from the value zero at the lower stagnation point {up to 600 
approximately linearly) to a maximum at about 128° and, on approaching 
the upper stagnation point (convergence of the flow on eitner side) 
rapidly decreases to zero . This physically correct behavior of the 
solution at the upper stagnation point is not introduced as a boundary 
condition but is obtained as a necessary consequence of the theory . 

An over-all picture of the velocity and temperature fields is 
given by the streamlines and isotherms ( figs . 11 and 12 ). They are 
computed from the equations 

'ir(x, nLr) f (x)Gr , 1/ 4 p [~ Gr , 1/4 g (x)] const } v 

B{x,nLr) t [~ Gr , 1/4 g (x)] 
(55e,f) 

= const e 

for various values of the constants 3O . The scale of the representation 

29See figure 13 for maximum Gr = 16xl06 . 

30The streamline picture f or azimuth intervals of 150 and in addi ­
tion £or 50 , 100 , 170°, 1750 ; the isotherm picture for azimuth intervals 
of 30° and in addition for 1650, 1700 , 175° . 
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holds for Gr = 104; for Gr = 106 the distances from the cylinder 
surface should be reduced by a factor of 3 . 16 and for Gr = 108 , by 10. 
At the lower and equatorial neighborhood of the cylinder up to an azi­
muth of about 1050 , the flow near the wall is directed toward the sur­
face, while above it is directed away from the surface upwards. In 
this respect the theoretical solution for the cylinder differs funda ­
mentally from that for the vertical plate, which gives only a flow 
toward the plate . The isotherms at the lower part form almost con­
centric circles . At the upper stagnation point (upward warm current) 
the isotherms theoretically go toward infinity, wher eas actually (corre­
sponding to the gradual dissolution and spreading out of the warm up­
streaming air) they cl ose at a relatively large distance over the 
cylinder. The isotherm 0.53 gives at the same time the place of the 
maximum tangential velocity . 

7 . Heat-Transfer Law 

From the expression for the quantity of heat dQ passing from 
an element of area df, 

dQ = A ( - ~ [n = OJ) df 

the value of the temperature gradient at the wall obtained from 
equation (55c) 

~ (n = 0 ) = ~ Gr,1/4 g (x )t ' o 

(t'o = t'(q = 0) = -0 . 508), and the defining equation for locally 

variable heat - transfer coefficient a (x ) 

1 dQ 
a,(x) = e df 

there is obtained 

(56) 

(57) 

(58) 

(59) 

From this there is obtained for the dependence of the nondimensional 
local heat-transfer coefficient on the cylinder azimuth x and the 
Gr number (Grd = 8Gr ,) 30a : 

30aSince several formulas of this section will be used later in 
Part III, and in order to avoid misunderstandings, i ndices (e.g., d,h,H) 
for the characteristics Gr and Nu are written which indicate the 
lengths with which these magnitudes are formed . 

__ J 
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( 60 ) 

To compute the mean heat - transfer coeffi cient aver aged over the 
cyli nder per imet er} 

( 61 ) 

t here i s r equired the mean value 

g -:;1 roll " Jo g (x ) dx ( 62 ) 

which} by planimetering g (x ) (fig . 17 ) } is found t o be 

g = 0 . 616 ( 63 ) 

I t may also be computed by the following relation f r om equat i on ( 24a ) 
with a = 3 according t o equat i on (51 ) 

3 II g = f ell) (64 ) 

which gives g = 0 . 620 . However } the value 0 . 616 is pr efer able because 
this value take s i nto a ccount the tota l curve g (x ) and does not depend 
on the end point of the series expansion f (x ) . From equat ion ( 60 ) the 
following i s then obtained for the mean heat - transfer coef fic i ent as a 
function of Gr f or free flow at a horizonta l cylinder 

am · d 1/ 4 -- = NUd = 0 . 372 Grd 
A 

( 65 ) 

A comparison of this theoretical heat - transfer coefficient for diatomic 
gases (Pr = 0 . 74 ) with test r esults i s given in Part I} sect i on 5 ; see 
a lso figure 10 . 

8 . Compari son of Theor etical Velocity and Temperature 

Fields with Available Measurements 

The comparison of the computed velocity and temperature f i elds is 
carried out with the measurements of Jodlbauer (ref . 16 ) whi ch are the 
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only ones thus far available31 . Of the fields measured for six differ -
ent Gr values, the following ones were computed : 

2r 9 cm, tw = 99 . 20 , t = 0 lB .l , Gr 3.76X106 (figs. 13, 14 ) 
2r 5 cm, tw 104 . 60 , t 0 lB . l , Gr 6 .54X105 (figs . 15, 16) 

The best agreement with theory is to be expected for the maximum Gr. 
On the basis of the theory it would be desirable to have measurements 
for the largest possible laminar Gr, that is (see Part IV) values of 
about 3.5xlOB, which could be realized in air at 200 C at a surface 
temperature of 1000 C with cylinders of 42 centimeters diameter. 

The comparison with the theor y was carried out in such manner that 
all velocity profiles u(s,n ) and temperature profiles e(s,n) corre ­
sponding to a value of Gr were, with the aid of equation (55), re ­
computed for the theoretical basic profiles p t( q) and t(q) in the 
representation of which they must all coincide. 

In the case of the velocity profiles (figs . 13 and 14), there is 
a regular deviation in that the measured velocities are greater than 
the computed ones , the deviation from the theory in the maximum velocity 
amounting on the average to 22 percent for the smaller and 17 percent 
for the larger value of Gr . A part of the deviations occurring for 
large distances from the wall beyond the maximum value should be 
ascribed to the uncertainties in the difficult measurements of such 
small air velocities, as can be seen from the follow"ing discrepancies . 
The measured velocities at the az imuth 600 for Gr = 3.76xl06 lie 
considerably above the theoretical curve, l.Jhereas for Gr = 6 . 54xl05 
they lie on the theoretical curve . On the other hand, the velocities 
measured at x = 300 for Gr = 6.54 xl05 show strong deviations upward, 
whereas for Gr = 3 . 76 xl06 they are in agreement with the theory . The 
measured distance from the wall of the maximum value of the velocity is 
everywhere in ve-..'Y good agreement vTi th the theory . 

The measured temperature profiles show very good agreement with 
the theory even for the azimuth of 1650 • A small regular deviation is 
noted for all azimuths and Gr numbers for medium distances from the 
wall. The small deviations at small distance from the wall can be 
ascribed partly to the fact that the condition for the isothermal sur­
face was not quite satisfied in the tests . The measured temperature 

31Acknowledgment is made to Prof . E . Schmidt and Dr . K. Jodelbauer 
for their aid i n providing the data . 
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drops at the wall for Gr = 6.54 xl05 
smaller than the values given by the 
they are 1 percent higher32 . 

are on the average 3 percent 
theory, while for Gr = 3.76XL06 

It is likewise of interest to compare the solution based on the 
boundary- layer theory for the vertical plate with the corresponding 
test r esults . Reference 21 (figs . 20 to 23) also shows the velocity 
fields t o have stronger deviations than the temperature fields . For 
the small plate with smaller deviations, the measured velocities also 
lie somewhat higher than the theoretical values; but for the l arger 
plate with larger deviations the contrary is true . For the temperature 
fields , particularly for the large plate) no regular deviation can be 
established between theory and experiment. The deviations occurring 
for the plate are clearly smaller in comparison with those for the 
cylinder . This is to be ascribed to the fact that i n the case of the 
plate only the boundary- layer terms of the order e2 « 1 (rectilinear 
flow) were neglected, whereas for the case of the cylinder there were, 
in addition) neglected terms of the order el «1 that were related 
to the curvature . 

III . HYDRODYNAMIC AND THERMAL COMPARISON BETWEEN VERTICAL 

PLATE AND HORIZONTAL CYLINDER FOR FREE CONVECTION 

AND FOR PLATE IN PARALLEL FLOW 

1. Abstract 

Now that the theoretical boundary- layer solutions for the vertical 
plate and the horizontal cyli nder for free convection have been obtained) 
it is of advantage to compar~ these two standard bodies of two ­
dimensional free flow with regard t o the shape of the stream and the 
heat transfer. Similarly, a comparison of the boundary- layer develop ­
ment between the vertical plate for free convection and for the plate 
in parallel flow (Blasius solution of the boundary- layer equations) is 
of interest. The following features are characteristic for the three 
types of flow . 

32The fact that the values of the heat -transfer coefficient ob ­
tained froln the field measurements of J odlbauer through integration of 
the temperature gradients at the wall over the cylinder perimeter lie, 
on the average, 4 percent higher than the theoretical values (see 
fig . 10) is due to the deviation between the theoretical and the actual 
conditions in the neighborhood of the upper stagnation point . 
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The boundary-layer thickness of the plate in parallel flow in­
creases with the square root of the distance from the incidence edge; 
that of the vertical plate in free convection increases, however, as 
the fourth root of the height above the lower edge (cf. eqs. (69) and 
(71)). Both start with the thickness zero, which for the plate in 
parallel flow results in infinitely large velocity gradients, and for 
the free plate results in an infinitely large temperature drop and an 
infinitely large local heat-transfer coefficient at the lower edge. 

35 

In the case of the cylinder, on the contrary, the boundary layer starts 
at the lower stagnation point of the horizontal cylinder with a finite 
thickness and thereafter with finite velocity and temperature gradients 
and a finite local heat - transfer coefficient (fig. 17). It increases 
according to a complex law (l/g(x), see eqs. (70) and (82)) and at the 
upper stagnation point reaches a theoretically infinite thickness, with 
vanishing velocity and temperature drops normal t o the surface (upward 
stream of warm air ) and with a vanishing heat-transfer coefficient . 

In spite of these fundamental differences it is possible to set 
up a number of relations between the three cases . These show on the 
one hand a close hydrodynamic and thermal kinship which is due to the 
boundary-layer character of the differential equations underlying the 
theoretical solutions . On the other hand, they give practical view­
points with regard to the application of rectangular plates or hori­
zontal cylinders for the heat transfer. For this purpose it is first 
of all necessary to represent the Reynolds numbers of the characteristic 
length, of the boundary-layer thickness, and of the nondimensional local 
and average heat - transfer coefficients as functions of the Grashof 
numbers of the plate and cylinder, which in turn requires the introduc ­
tion of a boundary- layer thickness (flow discharge thickness) for the 
velocity profile of the free convection. A knowledge of the dependence 
of Re of the boundary-layer thickness on Gr of the plate, as well 
as of the azimuth and Gr of the cylinder, is in addition required 
for the later evaluation of the tests as regards the occurrence of 
turbulence (Part IV) for free convection at the plate and the cylinder . 

2. Boundary-Layer Thickness for Free Convection 

It is first necessary to determine the magnitude to be associated 
with the boundary-layer thickness . For the velocity profile u (y) of 
the plate in parallel flow (U = maximum velocity), Prandtl and his 
coworkers, as is known, introduced the displacement thickness 0*, 
defined as 

u) dy (66) 

which is a measure of the decrease in the flow discharge as a result 
of the friction. 
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For the velocity profile of the free convection u(y ) ) a flow 
discharge thickness 5 is introduced which is hydrodynamically equiv­
alent to the displacement thickness) being like the latter character ­
i stic of the development of the friction layer) which in this case 
takes up the entire flow : 

(67) 

or expressed in words : Through the flow discharge thickness 5 would 
flow the same fluid mass with the maximum velocity as actually flows 
with the total stream . 

In the nondimensional velocity profile pl (q) (q == nondimensional 
distance from the wall) p == stream function) which occurs in the theo ­
retical solution) the discharge flow thickness is denoted by ~) the 
maximum velocity by p~ax . From equation (67) there is then obtained: 

%p~x = l~ p' (q)dq = p (~ ) - pta) 

and with the numerical values : 

P I =: 0 . 275 
max 

p(o) == 0 

the value of ~ is obtained as 

~ == 2 . 18 (68) 

For orientation purposes34 ) it is assumed that the velocity maximum 
lies at q == 0 . 95 and the point of inflection of the profile at 
q == 1. 85 . 

With the values of q5 for the plate and cylinder fr om equa ­
tions (72) and (82)) respectively) there is obtained for the vertical 
plate) where h is the distance from the lower edge : 

3~xtrapolation from last computed value p (6 . 0) 0 . 5928 . 

34See continuous curves in figures 13 and 15 . 

l 
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o 21/ 2 1/4 
11 - 2- Grh = 2 . 18 (69) 

and for the horizontal cylinder of diameter d at azimuth x 

(70) 

3. Nondimensional Representation of Theory for Vertical Plate 

(a) Reynolds numbers . - From the theoretical solution for the 
vertical plate given by Schmidt and Pohlhausen (ref. 21) the following 
expression is obtained according to their equations (23)J (24)J and 
(3l)35J since c4 = Grh/4h3J for the velocity u and the distance 

from the wall y : 

(71) 

For the flow discharge thickness y 
u = UJ there is then obtained 

o and the maximum velocity 

U (72) 

or 

U·h 2 I G 1/2 -V- = Pmax rh (73) 

and using the abbreviations Rh = U.h/v and Ro = U.o/v and substi-

tuting the numerical values for Prhax and q 

Ro 1.695 Gr 1/4 h (74 ) 

(75 ) 

Elimination of Grh from the last two equations gives the following 

expression as the relation between Re of the flow thickness and the 
height of the plate for a vertical plate in free flow: 

35The distance from the lower edge is denoted by h 
the nondimensional distance from the wall .; by qJ the 
stream function t by p. 

instead of x J 
nondimensional 
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(76 ) 

characteristics . - For the local heat - transfer coef­

a h at the height h above the lower edge, the following 

equation holds (ref . 21 )*: 

_lh ( Gr4h\ 1/
4 

a (h) = A (- to ') \ 7 (77 ) 

(to ' = - 0 . 508 is the value of the derivative of the nondimensional 

temperature function t(q) for q = 0) or, in nondimensional form, the 

numerical values may be substituted: 

(78) 

The variation of the heat - transfer coefficient along the variable 

height h of a plate of total height H is most conveniently obtained 

by introducing a local heat - transfer coefficient which has been made 

nondimensional by dividing through by E 

~ = NUH (h) = 0 . 359 GrHl/4 ( ~rl/4 (79) 

The heat - transfer coefficient (fig . 18) at the lower edge of the plate 

with zero boundary- layer thickness is theoretically infinitely large 

and then continuously drops with the reciprocal of the f ourth root of 

the height. 

The mean heat - transfer coefficient corresponding to a plate of 

height H 

(j) 

is obtained from equation (77) as 

(80) 

or, nondimensionalized and with numerical values substituted (fig . 18), 

as 

arnE 1/4 
~ = NUH = 0.479 GrE (81) 

* Extrapolation . 
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4. Nondimensional Representation of Theory for Horizontal Cylinder 

(a) Reynolds numbers. - The theoretical solution given previously 
for the tangential velocity u (eq. (55a)) and the distance n from 
the wall (eq. (55d)) for the azimuth x of a horizontal cylinder, 
with the values n = 5 and the maximum velocity u = U, may be trans­
formed to 

(82) 

For the upper stagnation point x = rr, because g(rr) = 0 and 
f(rr) = 5.84, the boundary-layer thickness becomes infinite and the 
tangential velocity zero. The quantity flowing through UO and there­
fore the Re of the boundary layer UO/v, however, remain finite. To 
introduce Re for the characteristic length results in no simplication 
for the cylinder because, in addition to the characteristic length, the 
cylinder radius occurs as an additional characteristic length of the 
system. From equation (82), 

Uo/v f(x )p' q Gr 1/4 
max 5 r (83) 

Substituting the numerical values and using Grd result in the follow­

ing expression for Re of the boundary layer at azimuth x: 

and for Re of the boundary layer at the upper stagnation point 
(with f(rr) = 5.84) : 

_ 1/4 Ro - 2 .08 Grd 

(84) 

(85) 

where R5 is written for R5 (rr). Although the theoretical solution 

for x = rr is no longer valid, equation (85) because of the small 
change of f(x) gives the correct relations in the region of the upper 
stagnation point (up to about 1650 ), so that for the sake of simplic­
ity the formula will be used in the following discussion. 

(b) Nusselt characteristics . - Figure 18 shows the variation of 
the nondimensional local heat -transfer coefficient according to equa­
tion (60) over the developed semicircumference of the cylinder. In 
the region of the lower stagnation point, it has a finite, practically 
constant value; and at the upper stagnation point, it drops rapidly to 
zero in accordance with the upstreaming warm air at that point. In the 
same figure the mean heat-transfer coefficient NUd for a cylinder 

is plotted according to equation (65). 
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5 . Hydrodynamic Comparison 

(a) Between vertical plate and horizontal cylinder in free con­
vection . - Although the boundar y - layer growth for a vertical plate and 
a horizontal cylinder, as already remarked (Part III, sec . 1) and as 
seen from equations (72) and (82 ) , differ fundamentally in character, 
it is nevertheless of interest to compare the flow condition (always 
characterized in what follows by Re) at the upper edge of the plate 

and in the region of the upper stagnation point of the cylinder . The 
following three questions will here be considered : 

1 . The behavior of the flow at the upper edge of the plate and at 
the upper stagnation point of the cylinder for the case that the height 
of the plate is equal to the cylinder diameter . 

2 . The behavior of the flow at the upper edge of the plate and at 
the upper stagnation point of the cylinder for the case that the height 
of the plate is equal to the developed semicircumference of the cyl­
inder, that is, the characteristic lengths are equal . 

3 . The relation of the height of a plate whose flow condition at 
the upper edge is equal to that of the upper stagnation point of a 
cylinder to the diameter of the cylinder. 

Before each of these questions is considered, the ratio of the 
b oundary- layer Re numbers at the upper stagnation point of the cyl­
inder Re(Z) and at the upper edge of the plate Re(P) are written, 

with the aid of equations (74) and (85) : 

(86) 

where Re(Z ) and Grd refer to the cylinder, and Re(P) and Grh 

refer to the plate . The coefficient 1 . 226 has the following signifi ­
cance (cf . eqs . (85) and (83) for the cylinder, eqs . (74) and (73) for 
the plate) : 

gives 

1. 226 2 . 08 
1 . 695 = 

1 . For equal Gr of plate and cylinder, ' Grd 

(87 ) 

Grh' equation (86) 

(88) 
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that is, for equal Gr of plate and cylinder, for example, for a plate 
of the height of the . cylinder diameter h = d under otherwise equal 
conditions (with regard to temperatures and materials), Re at the 
upper stagnation point of the cylinder is 22 percent greater than that 
of the upper edge of the plate (fig . 19 ). This result states nothing 
about the hydrodynamic relation between the two, since the comparison 
refers to different characteristic lengths . It is useful only for the 
rapid comparison of plate ~nd cylinder for the usual values of Gr. 
It is then known that for~qual Gr the cylinder possesses the more 
developed flow, so that th~ flow at the cylinder may be turbulent while 
that of the plate is st i ll laminar . 

2. For equal characteristic length h = rt/2d there is obtained 
from equation (S6 ) 

(S9) 

The boundary- layer Re at the upper stagnation point of a cylinder is 
thus 13 percent smaller than that of a plate of the height of the 
developed semicircumference of the cylinder (fig . 19) . This retar ­
dation of the boundary-lay~r development as compared with the vertical 
plate is due to the fact that the boundary layer at the lower stagnation 
point of the cylinder already has a finite thickness, whereas in the 
case of the plate the thickness must increase from zero. 

3. For equal boundary-layer Re values f or the plate and cylinder, 
equation (S6) gives 

(90) 

At the upper stagnation point of the cylinder, there is therefore the 
same flow condition as at the upper edge of the plate if Gr of the 
cylinder is 0.44 times that of the plate . This permits a rapid con­
version of the flow data for the plate into those for the cylinder and 
vice versa. If, for example , it is known from heat - transfer experiments 
on a plate that the departure from the laminar Grl / 4 law occurs at 
(Grh)kr = SX10S, then it can be concluded without experiment from equa-

tion (90) that this must be the case for the horizontal cylinder for 
(Grd)kr = 3.5xlOS. If the plate and cylinder are under otherwise equal 

conditions, it is possible from equation (90) to derive a simple rela­
tion for the height of a plate ha which is hydrodynamically equivalent 

to a cylinder: 

1 . 311 (91) 
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In the neighborhood of the upper stagnation point of a horizontal cyl­
i nder} the same flow condition prevails (Re) as under otherwise equal 

conditions at a vertical plate of height 1.31 times that of the cylin­
der diameter (fig . 19). As was to be concluded from the answers to 
questions 1 and 2} this height must lie between the cylinder diameter 
and the developed semicircumference . 

The answer to the three questions on the flow condition at a 
cylinder and at plates of various heights is shown in figure 19 (Re 

of the cylinder set equal to 1) . 

(b) Hydrodynamic comparison between a vertical plate in free con­
vection and a plate in a parallel flow . - The relation (7 6 ) between Re 
of the boundary-layer thickness and that of the height of the plate 
(characteristic length) Rh for the vertical plate in free convection 

is strongly analogous to the corresponding relation (92) between Re 
of the boundary-layer thickness Re* (referred to the displacement 

thickness e*) and the characteristic length Rx for a plate in a 

stream parallel to its plane (Blasius solution of the boundary- layer 
equations) : 

(92) 

In spite of the already mentioned entirely different rate of growth of 
the boundary- layer thickness} in the case of the parallel flow as the 
square root of the distance from the incident edge and in the case of 
the free convection as the fourth root of distance from the lower edge} 
the development of the Reynolds number of the boundary-layer thickness 
as a function of the Reynolds number of the characteristic length in 
the case of these two very different types of flow follows the same 
exponential law and with approximately equal magnitude. 

6 . Thermal Comparison between Vertical Plate and Horizontal Cylinder 

(a) Mean heat - transfer coefficients . - For equal Gr of plate and 
cylinder (GrH = Grd)} there is obtained from equations (81 ) and (65) the 

following ratio of the nondimensional heat - transfer coefficients of the 
horizontal cylinder NUd and of the vertical plate NUH 

(93) 

Under otherwise equal conditions} therefore} the mean heat - transfer 
coefficient of a cylinder is only 78 percent of that of a plate of the 
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height of the cylinder diameter (fig. 18) . In agreement with this, the 
comparison given by M. Jakob and W. Linke (ref. 19) of convection tests 
on vertical plates and horizontal cylinders in a single Nu-Gr diagram 
(with Hand d denoting the length dimension) gives a lower position 
of the cylinder tests . The modified determination of the critical num­
ber, which follows from these results, will be discussed later (Part IV, 
sec. 5). 

For equal mean heat-transfer coefficient ~ of plate and cylinder 

under otherwise equal conditions, there is obtained from equations (81) 
and (65) 

H/d = 2 . 76 (94 ) 

The mean heat -transfer coefficient of a cylinder is therefore, under 
otherwise equal conditions, equal to that of a plate of height 2.76 
times that of the cyli nder diameter. On account of the small decrease 
of the local heat -transfer coefficient at large plate heights, this 
factor of 2 .7 6 is not very sharply determined. Thus Jodlbauer (ref. 29) 
found i~possible, without cons idering the previously given theoretical 
solution for the cylinder, to represent the mean heat-transfer coef­
ficients for cylinders from tests by Koch by the formulas for the ver­
tical plate if H is replaced by 2d (instead of theoretically by 
2.76d). As a matter of fact, the ~ values thus determined for the 

cylinder lie only 8 .3 percent above the values given by the theory 
according to equation (65 ), as can be seen by replacing H by 2d in 
equation (81). 

(b) Total heat transfer. - The total heat transfer Q(Z) of a 
cylinder of diameter d along the entire circumference and the total 
heat transfer Q(p) along the two sides of a plate of the height H, 
under otherwise equal conditions , are in the ratio 

Q(Z) ~(Z)~d ~ NUd(Z) 
QtPT = amCP)2H = 2 NUHCP) 

and from equations (81) and (65 ), 

Q(Z)/Q(p) = 1 . 221 Grdl/4/GrHl/ 4 (95) 

where the significance of the factor 1 . 221 is as follows (cf. eqs. (81), 
( 80), ( 65 ), and (59) ): 

1 221 = ~ 0 .372 
. 2 0 .479 (96) 

~---.. --- ----- - ----- - .. -
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A comparison of this factor 1.221 with the factor 1 . 226 occurring in 
the ratio of the boundary-layer Re of cylinder and plate (eq. ( 86 )) 
according to equation (87) shows that both are identical) since accord­
ing to the theoretical solution) the following relation holds as an 
immediate consequence of the validity of the heat - transfer equation : 

(97) 

The small di fference of 1/2 percent is explained by the fact that (as 
mentioned i n connection with eq . (64) ) g was computed not according 
to equation (97) but was obtained by planimetering . 

For equal Grd and GrH values in equations (86) and (95)) the 

fol l owing is thus obtained : 

(98) 

that is) the total heat transfer of a horizontal cylinder and that of 
the two sides of a vertical plate under otherwise equal conditions are 
in the same ratio as the boundary- layer Re values at the upper stag­
nation point of the cylinder and at the upper edge of the plate, 
respectively. 

On the basis of relation (98) it is now possible, without further 
computation, to answer the three questions on the total heat transfer 
of a cylinder and plates of different height, analogous to the questions 
referring to the hydrodynamic comparison (see fig . 19; the heat transfer 
of the cylinder has been set equal to 1) . 

Corresponding to equation (88 ), 

Q(Z) = 1 . 22 Q(p) (99 ) 

The total heat transfer of a cylinder is thus 22 percent greater than 
that for the two sides of a plate of a height equal t o the cylinder 
diameter under otherwise equal conditions (fig. 18) . 

Corresponding to equation (89), 

Q(Z) = 0 . 87 Q(p) (100) 

The total heat transfer of a cylinder is 13 percent smaller than that 
of the two sides of a plate of height equal t o the developed semi ­
circumference of the cylinder (equal characteristic length ) under other ­
wise equal conditions. 
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Corresponding to equation (91) for 

Q(Z) = Q(p) 

there is obtained the height of a plate 

a cylinder : 
H" a thermally equivalent to 

45 

Ha : d = 1 . 31 (101) 

The t otal heat transfer of a cylinder under otherwise equal conditions 
is therefore as great as for the two sides of a vertical plate of 
height 1.31 times that of the cylinder diameter. In summary it may 
therefore be stated that a horizontal cylinder and a vertical plate, 
which transfers heat on both its sides, of a height equal 1.31 times 
the cylinder diameter are equivalent both thermally (with reference to 
the total heat transfer) and hydrodynamically (with reference to the 
boundary-layer development at the upper stagnation point and at the 
upper edge, respectively). 

IV. THE OCCURRENCE OF TURBULENCE IN FREE FLOW ABOUT A HORIZONTAL 

CYLINDER AND ALONG A VERTICAL PLATE 

1. Introductory Observations 

For the determination of the transition from laminar to turbulent 
flow in the case of free convection, tests were carried out on a verti­
cal plate and a horizontal cylinder of sufficient size. Two main 
reasons underlay the investigation . In the first place, it was desired 
to determine the upper limit of the validity of the laminar boundary­
layer theories f or plate and cylinder and therefore the upper limit of 
applicability of the heat - transfer f ormulas developed from these theo­
ries for practical application . The second reason was of a more 
theoretical nature . The numerous turbulence investigations, both ex­
perimental and theoretical, undertaken in recent decades have been 
concerned almost exclusively either with the flow between two parallel 
walls with linear velocity distribution (Couette flOW) or with the flow 
in pipes, channels , about rotating cylinders, along plates, cylinders, 
or other resistance bodies which have in common a velocity profile which 
rises uniformly from the value zero at the wall up to a maximum value . 
Differing essentially from these profiles are evidently velocity pro­
files for which the velocity rises from the value zero at the wall to 
a maximum value and then, after passing through a point of inflection, 
again drops to the value zero at a large distance from the wall. Such 
profiles are typical in the case of heat transfer by free convection . 
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Some further observations on the setting up of turbulence in free con­

vection will be made later in connection with the discussion of results 

(sec . 5 ). 

2 . Test Procedure 

For the i nvestigation, the schlieren method developed by E. Schmidt 

was applied; which as an optical method provides the possibility of an 

instant aneou s vi ew of the entire field, and is therefore of advantage 

for determining the critical number . 

The schlieren method has been described in detail by E . Schmidt 

(ref . 22 ) so that only the essential points will be given here . I t is 

based on the deflection suffered by a light ray in passing through a 

field with density stratification (i . e . , variation of the index of 

refract ion ) normal to its direction of propagation toward the colder 

layer . In the test, a parallel light beam is allowed to pass tangen­

tially along the surface of the heated body . The rays in the neighbor ­

hood of the wall, because of the maximum temperature drop at that place, 

are most strongly deflected from their initial direction; those farther 

away from the wall are less deflected, while those rays which are out ­

side the temperature field undergo no deflection . On a screen which 

is set up at a sufficient distance behind the heated body, the rays 

near the wall appear the farthest from the wall . The following picture 

is obtained: the heated body throws a completely dark shadow which, as 

compared with that of the cold body, is increased by the thickness of 

the temperature boundary layer . This shadow is bounded by a first 

"interior caustic curve" adjacent to which is formed a medium-bright 

region (rays which have passed through the temperature field ) , which in 

turn is bounded toward the outside by a second "external caustic curve" 

originating from the tangential rays in the neighborhood of the heated 

surface . Still farther tmvard the outside is the uniformly bright field 

of the undisturbed illumination . 

For an accurate evaluation, the method is suitable only for bodies 

having one of its length dimensions (two - dimensional problem), so that 

the effect of the temperature fields at the ends on the path of the 

light ray is small compared with the deflection undergone in passing 

through the distance along the length . On the other hand, the length 

should be chosen only large enough so that the light ray at the end of 

the body still is approximately at the same distance from the wall as 

at the initial point of the body . 
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3 . Test Setup and Procedure36 

(a) Plate. - The plate was 100 by 100 centimeters and 1.0 centi­
meter thick. It consisted of two zinc sheet plates 1 millimeter thick 
which by interposing a frame of 8-millimeter U-brass were soldered onto 
each other. In the interspace there was placed a heating coil, insu­
lated by asbestos boards, which consisted of 36 meters of chrome - nickel 
wire of l-millimeter diameter with a total resistance of 51 ohms. In 
air of room temperature, the plate could be kept at 1000 C surface tem­
perature with 5 . 6 amperes . The plate was suspended on two bicycle 
wheel spokes which were attached to the upper strip of the frame. 
Through the latter the current was also conducted to the interior. For 
measuring the surface temperature a silver- constantan thermocouple was 
used which was flatly soldered on about 5 centimeters from the upper 
rim of the plate and the wires of which extended a few more centimeters 
quite close to the plate. This simple temperature measurement could be 
applied because extreme accuracy was not required . Figure 20 shows 
the plate suspended with the curr ent - supplying wires, and the thermo ­
couple and two pendulums each with two spheres which served to determine 
the vertical and made possible the mutual comparison of the different 
photographs. 

(b) Cylinder. - The cylinder consisted of two layers of 0.7-
millimeter-thick zinc sheet which was rolled over two bicycle wheel 
rims and soldered to their upper sheathing strip . Between the sheets 
there was placed the heating coil insulated by asbestos board, the coil 
being of 54 meters of chrome -nickel wire of l -millimeter diameter with 
a total resistance of 77 ohms, which brought the cylinder in air of 
room temperature to 1000 C surface temperature with a current of 4.1 
amperes. The cylinder was suspended on two bicycle wheel spokes. The 
current leads and thermocouple were similarly located on the upper 
sheathing strip. The mean length of the cylinder was 100.2 centimeters, 
and its mean outer diameter 58 . 45 centimeters (fluctuating between 
58.35 in the horizontal and 58 . 75 over the soldered seam). The frontal 
surfaces were closed off with asbestos board. Figure 21 shows a view 
with the suspension, current leads, and the two pendulums. 

(c) Setup. - Since it is ver y difficult to produce a parallel 
bundle of rays of the diameter of the body here employed by means of 
lenses, such a beam was replaced by the light from a strongly screened 
(as a rule of 3-mm aperture ) arc lamp 32 meters from the heated body . 
The distance between the body and the screen was 8 meters. The appa­
ratus was set up on the largest floor, of 42 -meter length, of the 

36Acknowledgment is made to Herr Dr . R. Weise and Dr. H. Kurzweg, 
Leipzig. For the test setup, acknowledgment is made to Master Mechanic 
G. Hentsch, Leipzig . 
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Institute . Because of the windovT in one of the walls and the connec ­
tion to the staircase halls, it was not possible to exclude entirely 
currents· of the room air so that only at high temperature differences 
(above 500 C) could useful schlieren photographs be obtained . The 
existing dissymmetry of the critical points on the two sides of the 
bodies, both for the plate and cylinder (see table V) was due to a 
unilateral convection flow from the wi ndow Ivall . The horizontal 
adjustment of the test bodies was effected by means of a water balance ; 
the adjustment parallel to the light cone, by measuring the shadow of 
the cold body . 

(d) Photography37. - The schlieren pictures were obtained by two 
methods . In one method the shadow pictures were taken on the screen 
by means of a lens and camera (13 x18 m, Zeiss -Tessar 1 : 2 . 7) . In spite 
of highly sensitive plates (Agfa-Superpan 16/10 DIN), exposure time s 
of 5 to 25 seconds were required on account of the low brightness, be ­
cause of the strong screening and large distance from the arc lamp. 
For determining a time mean value of the fluctuating critical points , 
these time pictures were, however , particularly well suited. The 
photograph was taken either somewhat from the side (plate ) or , in order 
to avoid distortions, exactly central (partly i n the case of the cyl­
inder) j the camera lvaS set up i n the shadow of the cylinder so that the 
legs of the tripod threw an additional shadow (f ig . 23 ) . The second 
method consisted of a direct illumination of one or severa l photoplates 
simultaneously (Agfa- Isochron 13/10 DIN, 10 x15 cm ), which were brought 
to the position of the screen . The greater brightness obtained in this 
way made possible instantaneous photographs (thr ough light flashes from 
the arc lamp), which i n connection with their greater scale provided 
a view in instantaneous detail of the transition from laminar t o turbu ­
lent flow. 

4 . Evaluation of the Schlieren Pictures 

Figures 22 and 23 show time exposures of the plate and cylinder 
taken by means of lens and camer a . I n the center the magnified shadow 
of the body by the thickness of the temperature boundary layer, the 
"inner caustic curve" surrounding it, and further toward the outside 
the "outer caustic curve" arising from the rays near the wall. The 
dissymmetry of the lower edge of the plate is due to the disturbances 
of the room air that were mentioned previously . The upper edge of the 
plate is immediately below the frame of the picture in the "necking" 
of the central shadow . I n the upper stagnation point of the cylinder 
are seen the shadows of the suspension wires, current leads, and thermo ­
couple wires ; below are seen the three tripod legs for the central 

37 For valuable advice in connection with the photography, ac ­
knowledgment is made to Herr Dr . A. Naumann, Leipz ig. 
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photograph. Figure 24 shows for simultaneously obtained instantaneous 
photographs of the left38 side of the plate (in the case of direct 
illumination about 25 cm from the lower edge starting with small inter­
spaces of about 1 cm) ) a regi on of about 50 - centimeter height: at 24(a) 
and the lower part of 24 (b ) ) laminar; in the upper part of) 25(b)) a 
transition; 24(c) and 24(d)) turbulent . Figure 25 shows three simul­
taneously taken instantaneous pictures of the cylinder with direct 
illumination : 25 (a) at the 10\-l"er stagnation point) laminar; 25(b) at 
the left azimuth of 1200 ) turbulent ; 25(c) at the upper stagnation 
point) warm air stream. 

As shown by figures 22 to 25) the outer caustic curve of the rays 
near the wall is particularly suitable for determining the critical 
location. If this line is broken up) then turbulence certainly exists ; 
whereas the flow regions farther from the vTall are more easily disrupted 
through external disturbances . In the laminar (lower) region) the 
caustic curve is sharp and is completely stationary; in the turbulent 
(upper) region it is torn into several pieces and in disordered motion . 
In the time photographs) this means complete washing out . The critical 
position itself fluctuates upwards and downwards) at one time very 
rapidly and at another slowly . For evaluating the time photographs 
there was taken as the "time mean value of the critical position" the 
end of the region in which the exist ence of an outer caustic curve 
through differences in brightness could still be determined outwards 
and inwards (arrows) . Above the critical position the heated layer 
rises as a whole outwards as broad) uniformly bright strips. Comparison 
of the photographic observation thus determined with the mean critical 
position estimated from naked eye observation over a period of time 
showed good agreement and therefore the justification of this procedure. 

The critical positions obtained by this procedure are collected 
together with the remaining test values in table V. Each critical point 
is the mean value of four determinations two of which were made with 
direct illumjnation) and two with a magnified projection picture. The 
Gr values are formed in the case of the cylinder with the diameter) in 
the case of the plate with the critical height as characteristic length . 
By means of equation (74) for the plate and) with f(xkr)) equation (84) 

for the cylinder) the critical Reynolds numbers of the boundary appear ­
ing in the last column were computed . Their mean values of 303 for the 
plate and 285 for the cylinder are weighted according to the different 
illimination times of the individual pictures . From the mean value 
R5 = 303 the value 1 . Oxl09 is obtained for the mean critical Gr 

kr 
for the plate. 

380n the right of the figure ; the pictures with direct illumination 
are laterally interchanged. 
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5 . Discussion of Results 

The mean value of 303 for the critical Reynolds number of the 
boundary later for the plate and 2S5 for the cylinder can be regarded 
in agreement, in view of the accuracy of determination of a critical 
number in general and the small number of the schlieren pictures and 
disturbances of the room air in particular . This is understandable 
from the fact that the velocity profiles of both flow processes at any 
distance from the lower edge or lower stagnation point are affine to 
each other . The development along the initial stretch occurs in a 
different manner, but this should have only a higher - order effect . As 
was to be expected, the critical number of the free profile Ro .. 300 

kr 
lies considerably below the critical number of the profile in the case 
of forced flow (plate), which, referred t o the displacement thickness 
of Burgers and Hansen, amounts to 950 in the wind tunnel, and accord­
ing to more recent tests in the Gottingen water tunnel for very quiet 
approach, it amounts to about 1400 . It would be of interest to know 
whether a theoretical stability investigation for the free profile, the 
analog of the familiar computations in the forced- flow case) would have 
to be conducted in order to gi ve this increased instability. 

With the determination of the critical number for the vertical 
plate and the horizontal cylinder and reduction to the critical Reynolds 
number of the boundary layer) the data of other investigators will be 
compared vTi th regard to the transition from laminar to turbulent flow . 

E . Schmidt (ref. 26) notes that according to tests in air, the flow 
at about 1000 C plate temperature remains laminar up to a plate depth 
of about 50 centimeters) corresponding to a critical Gr of SX10S) in 
good agreement with the values obtained herein . 

M. Jakob and W. Linke (ref . 19) determined from a combination of 
the measurements of various investigators on vertical plates) vertical 
and horiz onta~ cylinders) block) and sphere , as the transition point 
from the Grl j4 to the Grl / 3 law) the critical number of 
(Gr.Pr)kr 3 . 0 xl07) that is) for diatomic gases Grkr " 4 . 0 xl07 . The 

difference as compared with the present determinations should in large 
part be .ascribed to the fact that hydrodynamically unequivalent bodies 
(Reynolds number of the b oundary) see Part III) sec . 5a) eq . (SS) ) were 
here treated t ogether. If account is taken only of the tests on the 
vertical plates and vertical cylinders (Part III) sec . 6a )) which for 
large cylinder diameters and large Gr (thin boundary layer ) are at 
least approximately equivalent hydrodynamically, there is obtained a 
critical Gr of 4xlOS) which is therefore quite close to the present 
determinations . 

- - -- --_. - -- ---
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E. Griffith and A. H. Davis (ref . 17 ) investigated the local 
distribution of the heat transfer on a 270 - centimeter-high wall, which 
consisted of 25 individual elements . They obtained a minimum value of 
the heat transfer at about 38- centi meter height (their own determina­
tion) which they regarded as the transition from the laminar to the 
turbulent condition . This agrees i n or der of magnitude with the pr es ­
ent values (columns between the individual elements ), where i t should be 
further clarified which point of their curve is to be regarded as the 
"critical point" proper . 

6. Travel of the Critical Azimuth for the Horizontal Cylinder 

On the basis of the given theoretical solution of the flow about 
the horizontal cylinder and the point of transition experimentally 
determined for a Gr ~ 109 , the travel of the critical azimuth for a 
variable Gr can be computed if it is assumed that the turbulence 
always occurs if the boundary- layer Re has the same value of 285 . 
This reasonable assumption will corr espond all the more to fact Since, 
as has just been shown, even for the vertical plate with a quite differ­
ent boundary- layer development , the turbulence is set up at the same 
critical number of the boundary layer. 

From equation (84 ) , the following relation is obtained, with the 
value Ro = 285: 

kr 

(102 ) 

which is evaluated in table VI and plotted on semilogarithmic grid in 
figure 26. In accordance with the basic consider ations, for a Gr = 109 
the start of turbulence occurs for an azimuth of about 1200 • Complete ­
ly laminar flow about the cylinder, for extension of the theory up to 
the upper stagnation point, occurs for Gr < 3 xl08 . The transition point 
reaches the equator for Gr = 3X109 . 

For greater clarity, the Gr wil l be expressed for cylinders of 
varying d:i.ameters, which are in air of 200 C wit h a su rface temperature 
of 1000 C. From the definition of Gr , fo r e = 80 (OC), 
~ = 1/293 (OC - l ), v( lOOO ) = 0 . 231 ( cm2/ sec ) , the following relation 
obtains: 

(103 ) 

which with the aid of the critical Grd values f r om equation (102 ) has 

similarly been evaluated in table VI and p l otted i n figure 27 . Corre ­
sponding to the basic conSi der ations, the cr itical az i muth for the 

-~---~~ .. - - - --
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relations considered for a cylinder of 60- centimeter diameter is 1200 . 

For cylinders below 41 centimeters, no turbulence occurs at all . The 
transition point reaches the equator for a cylinder of 84 - centimeter 
diameter . 

For practical applications, the result is thus obtained that for 
heated horizontal conducting pipes up to 40 centimeters in diameter and 
surface temperatures of 1000 C in room- temperature air the previously 
given formulas are valid for the heat transfer in air (in particular, 
eqs . (60 ) and (65 )). For accurate computation, the nondimensional 
formulation of figure 26 is naturally to be applied . The formulas can, 
in the absence of other suitable data, still be applied up diameters of 
60 centimeters, because two thirds of the cylinder periphery is still 
in laminar flow . There should not likewise be much of a change for 
considerably higher surface temperatures (2000 or 3000 C). 

The experimental determination of the variation of the critical 
azimuth for the cylinder with the Gr, through varying the temperature, 
remained unsuccessful . For temperature difference up to about 500 C 
the outer caustic curve is still not sufficiently far from the central 
shadow in order to be perceived separately from the latter, as is re ­
quired for determining the critical number . For this, the distance 
between the cylinder and the screen would have to be considerably in­
creased, which is not possible on account of space requirements . Going 
beyond the usually employed temperature differences of 800 C, because 
of the strong increase in v, no longer gives an increase in Gr and 
moreover gives increasingly stronger deviations from the assumption of 
moderate temperature differences, which is at the basis of the theory. 
The travel of the critical azimuth with Gr is best determi ned by 
varying the cylinder diameter, as follows from figure 27 . 

v . SUMMARY 

From the numerous tests already available on the heat transfer 
from horizontal pipes and wires in diatomic gases, the dependence of 
the nondimensional heat - transfer number Nu on the Grashof number Gr 
and the temperature coefficient Te, which enters as a further non­
dimensional factor at large temperature differences, is determined. The 
effect of Te on the heat transfer is quantitatively determined for the 
first time . It is particularly large in the region of small Gr (10-4 

to 10), \-I·here on the average a decrease in Nu by 22 percent for in­
crease of Te from Te = 0 to Te = 1 is obtained. The experimentally 
found dependence of Nu on Gr, Pr, and Te can then obtain a qualita­
tive theoretical explanation. 
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For the region of Gr (about 104 to 3X10B) in which the heat trans­
fer is limited to a thin ( in comparison with the cylinder diameter), 
heated layer with laminar flow, the velocity and temperature fields and 
the heat transfer are quantitatively computed from the boundary-layer 
differential equations without any additional empirical values; these 
computations are found in good agreement with the available measure­
ments. In particular, the one - fourth po~er law of the heat transfer is 
obtained theoreticall y as Nu = 0 . 37 Grl j 4. 

The flow and heat - transfer relations thus computed (Re of the 
boundary-layer flow, variation of the local heat - transfer coefficient 
along the cylinder peri phery, mean heat - transfer coefficient, and total 
heat given off by the cylinder) are compared with the already known 
relations for the vertical plate . Among other results, the depth of a 
vertical plate is determined which for free convection shows equal flow 
condition and equal total heat transfer at a given cylinder, so that a 
simple computation is made possible for converting the heat - transfer 
data for a plate to those of a cylinder and conversely. 

In order to know the upper limit of validity of the laminar-flow 
and heat-transfer computations and the laminar heat - transfer formulas, 
the start of turbulence was determined by schlieren photographs on a 
vertical plate and a horizontal cylinder of sufficient size . This 
occurs for different values of Gr, namely, Gr = 1 . OX109 for the plate 
and Gr = 3 . 5 xl08 for the cylinder, but for equal Re of the boundary­
layer flow, namely, for Re ~ 300 . In this way, the critical Reynolds 
number of the velocity profile of the free flow was determined for the 
first time; as compared with other velocity profiles, this profile is 
marked by the presence of a maximum value and a point of inflection . 
Likewise computed with the Grashof number was the 'critical azimuth' on 
the cylinder at whi ch the laminar flow passes into the turbulent flow. 
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TABLE I . - SUMMARY OF TESTS BY DIFFERENT INVESTIGATORS 

Investigator Ayrton, Langmuir Bi jlevelt Kennelly, Petavel Wemsler Koch 
Kilgour Wright, 

Bylevelt 

Substance 9 pt wires 5 pt wires 6 wires : 3 Cu wires 1 pt wire Pipes: 4 steel 
Ta, pt, Fe, 6 wrought pipes 
Cu, Ag, Ni Fe ; 6 Cu; 

1 cast Fe 

Cylinder di em. , 0.0031- 0 . 00404- 0.0043- 0 . 01143- 0 .1106 2.05- 8.9 1.4-
cm 0.0356 0 . 0510 0.1000 0 . 06907 5.9 10.05 

5.9 

Temperature of 40- 300 227-1027 46- 239 - - --- - - ------ --- 27 . 6-188 . 6 
body, t,.., °c 

Excess tempera- ---- - - ---- -- -- ------ 15- 180 200-1000 36- 243 13- 174 . 4 
ture , e , °c 

Room tempera- 10 . 5- 15 . 9 27 17- 22 20 (approx ) 16 10- 29 14 . 2- 22 
ture, t~, °c 

Medium Air Air Air Air Air, Hz, Air Air 
O2 

Pressure} 750 750 750 120-1900 0 .12- 715 715.7 - 722 . 3 
mmHg 160 atm 

Cylinder length , 32.5 100 35 150 (approx) 45 300 138- 198 
cm 

Surrounding Horizontal Base, 100>< He i ght, Vertical Horizontal Base, 7.35 Height, 
spa ce pipe: 15 em2; 300 em tanle pipe; sq meters ; 400 em 

length, height , length , length, height, 
32 . 5 cm; 30 cm 152 cm; 45 cmj 210 em 
diam. height, diem . 
5 .08 cm 660 cm 2 . 06 cm 

Ratio of space 1640:143 7430:588 70,000: 3000 58,200:9640 18.6 102:24 286:40 
height to 
cyl inder diam . 

Te number 0 . 30-1.00 0.67 - 3.33 0 . 097- 0.758 0 . 052 - 0.61 0 . 69- 3 . 46 0 .13-0 . 82 0 . 045-
0 . 606 

Relative 7 . 6-16 . 8 7 . 2- 2.2 8 . 4- 45 . 6 25 . 2 Irregular None None 
decr ea se of 
Nu for 
~e = I, 
per cent 

Mean value 13.2 Systematic 25 . 6 25 . 2 ------- - - ---- - ---
of Nu for 
~e = I, 
percent 

Figure 1 2 3 4 5 6 7 
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0 . 65 

L_ 

CH-8 

TABLE II. - VALUES FOR THE MOST PROBABLE HEAT- TRANSFER LAW IN DI ATOMI C GASES 

[ Nu as f unction of Gr with Te as parameter f or Pr = 0 . 74 .] 

l og Gr -4 -3 - 2 -1 0 1 2 3 4 5 6 7 8 

Gr 10- 4 10- 3 10- 2 10- 1 1 101 102 103 104 105 106 107 108 

l og Nu 0 .685 -1 0 . 716-1 0 . 787- 1 0 . 908-1 0 . 040 0 .176 0 .321 0 .476 0 . 650 0 .850 1. 094 1.344 1.594 
Nu . 484 . 520 . 612 .809 1 . 10 1 . 50 2.18 2.99 4 . 47 7. 08 12 .4 

l og Nu 0 . 618 - 1 0 . 649-1 0 . 719 - 1 0 . 838 - 1 0 .985-1 0 . 134 0 . 290 0 . 458 0 . 645 Same a s for 
Nu . 415 . 446 . 524 . 688 . 966 1.86 1 . 95 2 . 87 4 . 42 

'. ' "~ 7-:U z ·: .--<.' -I :' 
TABLE III . - NORMED AZIMUTH FUNCTIONS F(x) AND G( x) AS SOLUTION OF DIFFERENTIAL 

EQUATION SYSTEM (28) WITH BOUNDARY CONDITIONS AC CORDING TO EQUATION (29) 

[ FI soluti on of eq . (331) ; FII solutions of eq . (3311) .] 

x 00 300 600 900 1200 1500 1650 1800 

F ' 0 . 0007 0 . 518 1 .025 1 .504 1.936 2 .298 2 . 433 2 .560 
F" ( -0 . 23) . 456 1.018 1 . 504 1.941 2 . 352 (2.55) 2.763 
G 1. 000 .989 .945 . 873 . 765 . 602 .473 0 

TABLE IV. - FI NAL AZIMUTH FUNCTIONS f(x) AND g(x) AS SOLUTION OF DIFFERENTIAL 

EQUATION SYSTEM (24) WITH BOUNDARY CONDITIONS OF EQUATIONS (26a ) TO (26c) 

x 0 ' 30 0 60 0 90 c 120 0 150 0 165 0 180 0 

f 0 1 . 181 2 . 337 3 . 430 4 . 41 5. 24 5 .55 5.84 
g 0 . 700 . 752 .718 . 664 . 581 .458 . 360 0 

f · g 0 .887 1. 678 2 . 274 2. 565 2 . 397 1. 995 0 

--- -- ---~---

22 . 1 39.3 

Te ::: 0 

~ 
(") 

:xo-

~ 
I-' 
(N 
(J) 
(J) 

(J1 
-..J 
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~4BLE V. - EVALUATION OF SCHLIEREN PHOTOGRAPHS FOR OCCURRENCE 

OF TURBULENCE 

(a) Vertical plate . 

Number b , t oo, Exposure t w' Critical height, hk ' em Grhkr R5kr 
time , . r mm 

°c °c Left Right Middle see 

24 748 16 .5 20 78 76 .0 55 .9 66 .0 13.42 x I0~ 324 
25 748 16 .5 20 113 53 . 8 47 .3 50 . 6 6 . 83 xl0 274 
26 748 16 . 5 25 100 66 . 2 60 .8 63 .5 13 .13 xl08 323 
27 748 16 .5 20 100 60 .9 47 . 3 54 .1 8 .12 xI08 2B6 

Mean : 303 

(b ) Horizontal cylinder . Diameter, d, 5B . 45 centimeters . 

Number b , to" Exposure t w' Critical azimuth , xkr Grhkr f (xkr ) R5kr 
rom °c time, 0,.., Left Right Middle v 

sec 

6 760 19 10 102 125 .5° ° 124 .5° 10 . 26 x lOB 123 .5 4 .55 291 
10 760 19 20 102 125 . Bo 110 .0° 117 .9° 10 .26'>( lOB 4 . 35 278 
11 760 19 5 102 120 .9° 116 . 0° U B.5° 10.26 x 108 4 . 37 279 
12 760 19 20 102 126 . 7° 117 . 6° 122 .1° 10.26 x lOB 4 .48 286 
17 752 IB 20 102 123 . 8° 115 .0° 119 . 4° 10.23 x lOB 4 . 39 2Bl 
IB 752 18 5 102 144 .5° 129 . 5° 137 .0° 10 . 23 x lOB 4 .90 313 

Mean : 2B5 

TABLE VI. - TRAVEL OF TURBULENCE I'RANSITION POINT (CRITICAL AZOOJTH xkr) 

WITH GRASHOF NUMBER OF CYLINDER Gr d OR WITH CYLINDER DIAMETER d 

[ t w' 100° C; t oo, 20° C; b , 760 mm_ J 

X1<;:r I BOo 165° 150° 120° 90° 60° 30° 15° 10° 5° 

Grd 3 _52 4 .30 5 . 42 1.07 2 .96 1. 37 2 .10 3 . 35 1. 69 2 . 72 
xI08 x 108 x lOB xI09 xl09 xl010 x lOll xl012 xlO13 x 1014 

d, em 41.3 44 _1 47 . 7 59 .9 B4 .0 140 347 890 1500 3790 

-~---. --~-- ~--. 
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Figure 1. - Convection tests of Ayrton and Kilgour on nine platinum wires. 
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Figure 2 . - Convection test s of Langmuir on five platinum wires. 
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Figure 3. - Convection tests of Bijlevelt on six wires of tantal um, platinum 

iron, copper, si lver , and nickel . 
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Figure 4 . - Convection tests of Kennelly, Wright, and Bijl evel t on three 
copper wires . 
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Figure 5 . - Convection tests of Petavel on one platinum wire . 
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Figure 6. Convection tests of Wamsler on one copper, one cast iron, and six 
wrought iron pipes . 
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Figure 7. - Convection tests of Koch on four steel pipes . 
• 2 

.1 

0 

3-1 

.8-1 

,7-1 

F~ Pr·O~ p I 
1 Ayrton and Kilgour 

1 81j/~rdl V 
J J(~nne/Iy et a l- '/' :-- I, LangmUIr 

~¥ 
/. 

~ 
~ 

,... 
J 

-1 ;:::;;--

'" 
i-

6-1 

.5-1 
-4 -3 -2 - 0 1 log Gr 

Figure 8 . - Comparison of test results of different investigators for Te = 0 
(extrapolated) . Limiting law of small temperature differences. 
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Figure 9 . - Comparison of test resul ts of various investigators 
for Te = 0 . 65 . 
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Figure 10 . - Summary of a ll test resul ts with diatomic gases (Pr = 0.74 ) with 
the adjustment curve giving the most probable heat - transfer law based on 
present information . 
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Figure 11. - Theoretical streaml ines for hori­
zontal cyl inder . The numbers five the values 
for ~/v. Scal e is for Gr = 10 : For Gr = 106 , 
the distances from the surface are to be 
shortened by 1/3 .16; for Gr = lOS, by 1/ 10 . 
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Figure 13 . - Vel ocity profiles near cylinder referred to nondimensional coordinates . 
Continuous curve represents t heoret ica l solution . Points according to 
measurements of Jodl bauer for 2r ; 9 centimeters ; tw ; 99 . 20 Cj t oo; 18.10 Cj 
Gr 3.76x105 . 
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Figure 15 . - Velocity profiles near cylinder . Continuous curve gives 
theoretical solution . Points according to measurements of Jodlbauer for 
2r ; 5 centimeters ; t" ; 104 . 60 C; teo; 18.10 C; Gr; 6 . 54xl05 . 
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Figure 17. - Azimuth function g(x} giving variation of l ocal heat-transfer 
coefficient or of a reCiprocal di stance from the wal l which is characteristic 
for profile (for example) boundary-layer t hickne ss ) a long cylinder perimeter, 

---- Local heat- transfer coefficient 
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--- Mean heat- t r ansfer coefficient) as 1: 0 .777 
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Figure 18. - Comparison of heat transfer for rectangul ar plate and horizontal 
cylinder . For H = d ) under otherwise equa l conditions) the two diagrams 
give dimensional heat- transfer coefficients '" to scal e . 
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Figure 19 . - Ratio of total heat transfer of horizontal cylinder and vertical 
plates (on both sides) of different heights under otherwise equal conditions . 
Ratio of boundary- l ayer Re at upper stagnation point of cylinder and upper 
edge of plate . Abscissa) heat transfer and Re ; ordinate) plate height . 

Figure 20 . - Vertical plate 100xl OOXl centimeters for determining occurrence 
of turbulence for free convection . 
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"igure 21. - Horizontal cylinder (58.5- cm diam . , 100-cm length) for determining 
occurrence of tur"bulence for free convection. 

Figure 22 . - Schlieren phot ograph of' heat transf er at the vertica l plate. Time 
photograph ( 25 sec) with lens and camera . Surface temperature, tw = 100

0 
C j 

t",= 16 .50 C j b = 748 millimeters ; critical height (arrows), left 66.2 
centimeters, right 60 centimetersj critical Grashof number , 13.1xlOB

j 

critical boundary- l ayer Re.t 323 . 
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Figure 23 . - Schl ieren phot ograph of the heat transfer at the horizontal cyl inder . 
Time photogr aphs ( 20 sec ) wit h l ens and camera . t w, 102° C; t oo , I So C; 
b , 752 milli meters; Gr of t he cyl inder, 10 . 2xl OS; critica l a zimuth (arrows ) 
left 123 .So, right 115 . 0° ; critical boundary-layer Be , 281. 
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h d 

c 
a 

Figure 24. - Schlieren photographs of heat transfer at one side of vertical 
plate. Simultaneous instantaneous photographs (about 1/20 sec) with indirect 
illumination . t w, 860 Cj too 16 . 50 C; b = 748 millimeters. (a) laminar; upper 
part of (b ) , tranSition; (c) and (d) , turbulent . 
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Figure 25 . - Schl ieren photographs of heat transfer 
Simul taneous instant aneous photographs (1/20 sec ) 
tw = 1020 c ; t ex> = lSo C; b = 752 mill imeters ; Gr , 
nation point , l aminar; (b ) azimuth of about 1200 , 

point , upflow of warm air with current lead wires 

. - ----------------------~ 

NACA TM 1366 

c· 

b 

a 

at the horizontal cylinder . 
with indirect illumination . 
10 . 2xlOS . (a ) lOWer stag­
turbul ent; (c) upper stagnation 
and so forth . 
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Figure 26. - Variation of position of start of turbulence with Gr 
number of cyl inder. ~omputed for critical boundary-layer Re, 285 . 
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Figure 27 . - Variation of position of start of turbulence with the cylinder 
diameter for surface t emperature of 1000 C in air at 200 C and 760 millimeters 
of mercury. Computed for critical boundary-layer Re , 285 . 
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