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ON THE SOUND FIELD OF APOINT-SHAPED SOUND SOURCE 

IN UNIFORM TRANSLATORY  MOTION*^ 
By H. H&l 

INTRODUCTION AND SUMMARY2 

The following repor t  w i l l  t r ea t  r igorously the  exc i ta t ion  of sound 
by a point-shaped sound source (pulsator) i n  uniform t rans la tory  motion 
a t  subsonic or  supersonic ve loc i ty through a medium a t  r e s t  f o r  the two- 
and three-dimensional case (two- and three-dimensional problem). 

I n  qua l i ta t ive  respect,  t h e  phenomena of sound propagation exci ted 
by a moving sound source are well  known. 
of constant phase i s  based on Huyghens' p r inc ip le  such t h a t  t h e  propaga- 
t i o n  i n  t h e  medium at  rest of t h e  elementary waves emanating from t h e  
sound source i s  regarded as independent of t h e  momentary state of motion 
of t h e  sound source, charac te r i s t ic  traits. of t he  sound propagation may 
be understood even on the  basis of simple geometric constructions.  If,  
f o r  instance,  t h e  motion of t he  sound source visual ized as point-shaped 
i s  uniform t r ans l a to ry  along t h e  negative x-axis of a three-dimensional 
Cartesian coordinate system, t h e  sound propagation for a sound source 
moved at subsonic or ,  respectively,  supersonic ve loc i ty  is  represented 
i n  t h e  known manner by figure 1; according t o  construction, surfaces of 
constant phase would correspond t o  t h e  c i r c l e s  plot ted.  For t h e  motion 
of t h e  source a t  supersonic velocity, it is, above a l l ,  cha rac t e r i s t i c  
t h a t  t h e  exc i ta t ion  of sound always remains l imited t o  t h e  i n t e r i o r  of 
a cone - t he  Mach cone - t h e  ( s e m i )  opening angle a of which r e s u l t s  
d i r e c t l y  from the  construction of the elementary waves (one has 
s i n  a = c/U when c denotes the sonic veloci ty ,  U >  c the ve loc i ty  
of the sound source).  F r o m  the physical point of view, however, there  
arises the  question how far the construction of the  phase surfaces 
according t o  the pr inc ip le  of Huyghens' elementary waves can be applied 

If the  construction of surfaces  

~~ ~ ~~~ 

*Il" Uber das Schal l fe ld  e iner  gleichfbirmig-translatorisch bewegten 
punkf%rmigen Schallquelle." Annalen der Physik, issue 5, vol .  43, 1 9 3 ,  
pp. 437-464. 

'Dedicated t o  Privy Councillor A .  Sommerfeld f o r  h i s  75th anniver- 

2The present invest igat ion was wr i t t en  within the  scope of my work 
sary on December 5, 1 9 3 .  

f o r  the  Kaiser-Wilheb I n s t i t u t e  for Flow Research, GEttingen. 
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. 
rigorously, a l s o  the  problem of the exact amplitudes or i n t ens i t i e s ,  
respectively,  of the  sound f i e l d .  It w i l l  be shown on the  bas i s  of the 
rigorous solut ion of the  plane and s p a t i a l  problem that, on the  whole, 
the qual i ta t ive descr ipt ion of t he  sound f i e l d  according t o  the pr in-  
c i p l e  of elementary waves is ju s t i f i ed ,  but  t h a t  i n  pa r t i cu la r ,  especial ly  
i n  case of supersonic veloci ty ,  cha rac t e r i s t i c  deviat ions from t h e  ele- 
mentary construction become evident. 

The mathematical theory of sound propagation w i l l  be based on the  
l i nea r  propagation equation f o r  the  medium a t  r e s t  

cp may signify there in  f o r  instance the  pressure disturbance. 'It would 
appear ra ther  obvious t o  u t i l i z e  the  acoustic op t i ca l  analogies f o r  t he  
problem of  t h e  sound source i n  uniform t rans la tory  motion and, accord- 
ingly, t o  apply t o  (1) a Lorentz transformation where then the  sonic 
ve loc i ty  c instead of the  ve loc i ty  of l i g h t  would appear i n  the  t rans-  
formation formulas as c r i t i c a l  veloci ty .3  
seem somewhat a r t i f i c i a l  f o r  the  present problem since the  transformation 
formulas of the space and time quant i t ies ,  d i f f e ren t ly  from opt ics ,  would 
have no physical s ignif icance and t h e i r  appl icat ion thus would be a merely 
formal methodical expedient; f i n a l l y ,  i n  case of supersonic veloci ty ,  one 
would depart even fu r the r  from the  physical s t a r t i n g  point ,  due t o  the  
d i f f e ren t  r e l a t i v i t y  formulations .4 

However, t h i s  method would 

W e  sha l l  therefore  adopt below another d i r e c t  method f o r  solut ion of 
the  problem, making use of the method of t he  Fourier i n t eg ra l .  Therein 
it i s  expedient t o  use a coordinate system with respect  t o  which the  sound 
source i s  a t  r e s t  a t  the  o r ig in  of the coordinate system. O u r  problem 
then is, except fo r  a Galileo transformation, obviously iden t i ca l  with 
the  sound propagation about a sound source in  an oncoming flow of sub- 
sonic o r  supersonic veloci ty ,  respect ively,  assumed a t  res t  a t  the coordi- 
na te  origin. If the  oncoming flow has pos i t ive  x-direct ion corresponding 

31t is known t h a t  h i s t o r i c a l l y  the  invest igat ion of t he  propagation 
equation (1) for the f i r s t  t i m e  gave occasion f o r  s e t t i n g  up l i nea r  t rans-  
formation formulas f o r  t he  space and time quant i t ies  which are closely 
r e l a t e d  t o  those of the  spec ia l  r e l a t i v i t y  theory. 

also W. Pauli, Enzykl. der Math. Wissensch, vol .  19, p. 543. 

p .  370, 1940, derived exact formulas f o r  the  sound f i e l d  of a moving sound 
source which agree with the  r e s u l t s  of t h i s  repor t  i n  an in t e re s t ing  man- 
ner by application of a "Lorentz transformation. " 

Compare W .  Voigt, ',. Uber das Dopplersche Prinzip,"  GFttingen Nachrichten, 1887, p. 41; see 

'For t he  subsonic region, H.  G .  Kcssner, Luftfahrtforsch, vol .  17, 
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. 
t o  f igure  1, the equation of propagation t o  be solved follows from equa- 
t i o n  (1) simply by replacement of the time operator - a by - a + U - a a t  a t  ax 
where U i s  t h e  free-stream velocity.  We thus  obtain f r o m  equation (1) 

Acp - -(- l a  + U -rCP a = 0 
,2 a t  ax 

If w e  l i m i t  ourselves immediately t o  t he  case of a sound exc i t a t ion  
periodic i n  time with the  frequency CD and put  accordingly 

- iut CP = u(x,y,z)e 

the  time f ac to r  may be s p l i t  off and w e  obtain from equation (1') 

Au - -(- 1 i L o  t u --) a 2  u = o 
C 

(3) 

Equation (3 )  is  t o  be f u l f i l l e d  i n  the e n t i r e  space w i t h  exception of 
t h e  coordinate or ig in  a t  which the sound source is located and of possible  
occurring s ingular  l i n e s  or  surfaces (del imitat ion of the  Mach cone or ,  
f o r  t h e  two-dimensional problem, of the Mach wedge). 

If one sets up an expression f o r  t h e  so lu t ion  for u i n  t h e  form of 
a mult iple  (two or th reefo ld)  Fourier i n t e g r a l  one has the  advantage t h a t  
t h e  coef f ic ien ts  of t he  representation may be r ead i ly  given as continuous 
functions i n  the Fourier space due t o  t he  l inear  character  of the  d i f f e r -  
e n t i a l  equation (3);  l ikewise ,  it i s  easy t o  determine simultaneously 
t h e  coe f f i c i en t s  of t he  Fourier representation i n  such a m a m n e r  as corre- 
sponds t o  the  presence of a "point-shaped" sound source a t  the  coordinate 
or ig in  or,  f o r  the  "plane" problem, of a source d i s t r i b u t i o n  visual ized 
as r e c t i l i n e a r .  It may appear a t  f irst  as a d i f f i c u l t y  of th i s  method 
that the in t eg ra l  representations f o r  the  so lu t ion  u thus obtained due 
t o  the integrand becoming i n f i n i t e  on cha rac t e r i s t i c  surfaces o r  l i n e s  
of the real  Fourier space ( for  the spa t i a l  or plane problem) are subject  
t o  indeterminate conditions and without spec ia l  s t i pu la t ions  regarding 
the  course of the integrat ion paths in  the complex domain have no unique 
meaning. The physical viewpoint, which here as i n  other  propagation 
problems enforces uniqueness, i s  that  a s ide  from the  conditions named 
which u must s a t i s fy ,  a rad ia t ion  condition must be f u l f i l l e d  in  i n f i n i t e  
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space.5 
in t eg ra l  which confers t h e  freedom of adjust ing the solut ion of equa- 
t i o n  (3) t o  the  na tura l  physical  conditions of t he  problem (su i tab ly  
manipulating the integrat ion paths i n  the  complex domain) and of de te r -  
mining it, i n  t h i s  manner, uniquely. 

Actually, it i s  precisely the  o r ig ina l  indeterminateness of the  

1. APPLICATION OF THE METHOD OF THE FOURIER INTEGRAL 

We search f o r  solut ions of t h e  propagation equation ( 3 )  which cor- 
respond t o  t h e  standard point source located a t  the  coordinate or ig in .  
We disregard f o r  t he  time being fu l f i l lment  of a rad ia t ion  condition. 
We leave the dimension number n indeterminate a t  f i rs t ,  and put sub- 
sequently n = 2 or  n = 3 ,  respectively.  

I n  order t o  a r r ive  a t  solut ions of t h i s  type i n  a physical ly  and 
mathematically unobjectionable manner, one w i l l  f i nd  it expedient t o  
start, instead of s t a r t i n g  from equation (3) ,  from the  inhomogeneous 
d i f f e r e n t i a l  equation 

i n  which f(xl,x2 . . .) s ign i f i e s  a source d i s t r ibu t ion  prescribed at 

first a r b i t r a r i l y  (vanishing s u f f i c i e n t l y  rap id ly  a t  i n f i n i t y ) .  
t h e  "unit source'' i so la ted  a t  the  zero point  now be interpreted as the  
l i m i t  of a sequence of continuous source d i s t r ibu t ions  
f o r e  first v isua l ize  continuous pos i t ive  functions 
maximum at t h e  zero point  of the  coordinate system (point  0) and are, for- 
t he  rest ,  t o  be subject  t o  t h e  condition 

L e t  

L e t  us there-  
f which have a la rge  

f .  

f d S = l  s (4) 

(dS = dxl % . . . an); 
manner that,  t o  t he  same extent t o  which this parameter tends toward a 

5Compare A. Sommerfeld, " D i e  Greensche Funktion der Schwingungs- 

f is t o  depend on a parameter i n  such a 

gleichung." Jahresber. d. DMV. 21, p.  309, 1912. Compare a l s o  Flrank- 
Mises, "Die Dif fe ren t ia l -  u. 
Braunschweig 1935, vol .  2, p. 803. 

Integralgleichungen d. Physik." 

.. 
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l imi t ing  value, 
point 0. Thus, one has i n  the  l i nes  for  the cha rac t e r i s t i c  "de l t a  
funct ion" 

f tends toward zero everywhere with exception of the  

f dSo = 1 f o r  P = 0 ( 4 4  s f = o f o r  F f o 

where t h e  i n t e g r a l  may be r e s t r i c t e d  t o  an a r b i t r a r i l y  small neighborhood 
of 0. The formulation of t h e  functions f according t o  equation (4) 
was chosen f o r  reasons of s-implicity. 
i t s e l f  physical ly  s ince there  r e s u l t s  from equations (3a) and (4)  f o r  a 
sound source at r e s t ,  thus U = 0, with appl icat ion of Green's theorem 

This s tandardizat ion suggests 

(duo surface element of a sphere of a rb i t r a ry  smallness surrounding t h e  
point  
accordance with the de f in i t i on  of the  un i t  source. 

0, der ivat ion w i t h  respect  t o  the outward d i rec ted  normal), i n  

In  order t o  make the genera l i ty  of t he  method f o r  in tegra t ion  of 
equation (3a) i n  question stand out c lear ly ,  one replaces  t h i s  d i f f e r -  
e n t i a l  equation by 

j ( 1' 2' * .> a a  LLu]=L- , - ,  . . .  u = f x  x 
(3x1 

where L i s  assumed t o  be an a rb i t r a ry  l i n e a r  d i f f e r e n t i a l  expression . 
d d  i n  - , -, . . . with constant coeff ic ients  of otherwise a r b i t r a r y  ax, axz 

order and dimension number. One now makes f o r  f and u the  statement 
of a Fourier i n t eg ra l  

t 
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Subst i tut ion of equation (m) i n  L[u] then r e s u l t s  

and since due t o  the  l i n e a r i t y  of L 

\ i(alxl%x2+. . . ) 
* I" L ial,ia2, . . ( 

there  r e su l t s  from equation (6)  by comparison of coe f f i c i en t s  

It now remains t o  determine 
t i ons  (4 )  and ( h a ) .  
inversion 

A(al,a2, . . .) corresponding t o  the  condi- 
From equation (7a) the re  follows f irst  by Fourier 

.) = (2n)'"J. . . S f e  -i( 9xl+u2x2+. . . )as 
+-pa* - ' 

and thus i n  the  l imi t ing  case (equation (4a) )  

-n A = ( 2 ~ )  
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. 
Subst i tut ion of equations (9) and (10) i n  equation (m) f i n a l l y  y ie lds  
the desired so lu t ion  

i( alxl+a2x2+.  . . ) 
da du2 . . dan (11) u = ( a ) - n J .  . .J e L(ial,iuz, . . .) 1 

The in t eg ra l  (11) is  iden t i ca l  with the  method of N.  Zeilon 6 f o r  
preparation of solut ions of l i nea r  and homogeneous d i f f e r e n t i a l  equa- 
t i ons  w i t h  constant coef f ic ien ts  f o r  a prescribed pole-type s ingu la r i ty  
of the  solut ion.  The basic  idea of Zeilon's motivation of t h e  in t eg ra l  
formula (11) a l s o  is  the u t i l i z a t i o n  of the i d e n t i t y  (8). 
whereas Zeilon gives f i r s t  consideration t o  the  requirement of repre- 
sent ing the  solut ions of equation (6) prescribed a r b i t r a r y  source d i s t r i -  
bution of 
i n  our method more d i r e c t l y  from Fourier ' s  i n t eg ra l  representat ion of t h e  
functions f and u and subsequent l imit ing process. The method may be 
regarded as mathematically s t r i c t  if a sequence of su i tab le  ana ly t ic  func- 
t i o n s  f has been selected and the  representation of f and u does not 
encounter any d i f f i c u l t i e s  before the  appl icat ion of t h e  l imi t ing  process. 
The l imi t ing  process t o  the f i n a l  formula (11) may then be performed w i t h -  
out hes i t a t ion .  

However, 

f by means of t h e  "fundamental integral ,"  t h i s  i n t eg ra l  r e s u l t s  

7 
2.  CLASSIFICATION OF THE 'XPICAL CASES 

We re tu rn  t o  the i n i t i a l  equation (1') and, w i t h  t he  use of 
make i n  it corresponding t o  equations ( 2 )  and (8) the  replacements 

L, 

(We wr i t e  furthermore x, y, z, and a, P ,  y instead of xi 
and a .) Then the  fundamental solution u = F becomes according t o  

i 
equation (11) : 

c 

'N. Zeilon, Arkiv flir Matematik 6.  1911, 9. 1913/14; compare Frank- 

7NACA e d i t o r ' s  note:  
Mises, H. I. S. 862ff.  

has t h i s  sec t ion  as number 3, but t h i s  is  believed t o  be a ty-pographical 
e r ro r  and has been changed t o  number 2 t o  provide consecutive numbers f o r  
t h i s  t r ans l a t ion .  

The or iginal  German version of t h i s  document 
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(a) For the plane problem (n = 2 )  

with 

with 

fl = (1 - M 2 ) a 2  + p2 + 2kMa - k2 
2 

(b)  For the  s p a t i a l  problem (n = 3) 
+W 

i f  we introduce instead of UI and U the  propagation parameter k and 
the  dimensionless Mach number M 

We consider f i r s t  the plane case.  Obviously the  integrand of the 
fundamental solut ion (12)  becomes i n f i n i t e  if the  Fourier coe f f i c i en t s  
a, P l i e  on t h e  conic sec t ion  a2 = 0 of the  r e a l  Fourier plane.  The 
equation of  the  cha rac t e r i s t i c  conic sec t ion  may be wr i t ten ,  according 
t o  eqdation (12a) 

( 1 4 )  2 2  ( a +  :M2)2 + (1 - M 2 >P 2 -  - k 2 

This equation shows that 

case M = 0 
M < 1, = 1, o r  > 1. Correspondingly, the  d i f f e r e n t i a l  equation (3) i s  
of e l l i p t i c ,  parabolic, or hyperbolic type. 

R2 = 0 represents  an e l l i p s e  ( i n  the  l imi t ing  

a c i r c l e ) ,  parabola, o r  hyperbola, according t o  whether 

Figure 2 represents  a number 
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of conic sect ions R 2  = 0 f o r  various values of t h e  parameter M. All 

conic sect ions pass through the  points a = 0, 
r e f l e c t i o n s  with respect  t o  t h e  a-axis. 

p = fk, and a r e  mirrored 

For the  s p a t i a l  problem, p2 on t h e  l e f t  s ide of equation (13) i s  t o  
The surfaces  be replaced, i n  conformity w i t h  equation (13a),  by 

Q3 = 0 

the  .a-axis and thus represent a sphere (M = 0) ,  e l l i p s o i d s  of revolut ion 
(0 < M < l), a paraboloid of revolution (M = l), or bi-sheeted hyperboloids 
of revolut ion (M > 1). 

P2 + Y 2 .  
a re  generated by ro t a t ing  t h e  conic sect ions of figure 2 about 

Following, both the  plane and s p a t i a l  problem w i l l  be t r ea t ed  sepa- 
r a t e l y  fo r  the e l l i p t i c ,  the pasabolic, and the  hyperbolic case.  The 
e l l i p t i c  case may be completely traced back t o  t h e  spec ia l  case 
The parabolic an& hyperbolic cases,  however, requi re  spec ia l  considerations 
depending on the  various connections regarding t h e  c h a r a c t e r i s t i c  curves 
R2 = 0 and surfaces R = 0, and on t h e  s t i pu la t ed  behavior of t he  s o h -  

t i o n  a t  i n f i n i t y .  
i s  the decis ive f ac to r .  

M = 0. 

3 
In  a l l  cases, the se l ec t ion  of t h e  in tegra t ion  paths 

3. TKE ELLIPTIC CASE (SUBSONIC REGION) 

(a) Plane Problem 

I n  the  two dimensional e l l i p t i c  case, M < 1, equation (15) represents  
an e l l i p s e .  I f  we wri te  i t s  equation i n  the  normal form 

we have 

( 1 6 4  
k kM 

1 - M2 a o = -  b =  
k 

a =  
1 - M2 i a  

I f  we furthermore make an a f f i n e  transformation i n  t h e  a,j3 plane, as wel l  
a s  i n  the  x,y plane, by put t ing  

(17) X 
a '  = {-'(a - UO) P '  = P E =  q'Y 
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the  fundamental i n t eg ra l  (12), .(12a) assumes t h e  form 

where K had been equated 

farox e Except for  t he  f a c t o r  

as a function of the var iab les  
r e s u l t  for  the case M = 0 with the  propagation parameter k = K .  This 
las t  i n t e g a l ,  however, represents  i n  the  known manner, a cy l indr ic  wave 
outgoing from t h e  coordinate or ig in  i n  c , ~ ,  since t h e  equation8 

the in t eg ra l  appearing i n  equation (18) 

E,7 

vi-." 
is therefore  the same which would 

i s  va l id ;  t he re in  Ho 
order i f  (which w i l l  be discussed i n  more d e t a i l  l a t e r  on) t he  i n f i n i t e  
integrat ion paths,  with respect  t o  A and CI provided i n  equation (lg), 
a r e  conducted on su i t ab le  paths i n  the  complex A- and P-plane. (Other- 
wise an incoming or standing cy l indr ic  wave would r e s u l t . )  If w e  regard 
the r e s u l t  of equation (19) f o r  the  present  as prescribed, we obtain,  if 
we subs t i tu te  equations (IGa), (17),  and (19) i n  equation (18) 

s i g n i f i e s  t he  f i r s t  Hankel funct ion of zero 

8 C f .  A. Somierfeld, elsewhere. 
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Turning t o  t h e  discussion of the terminal formula ( 2 0 ) ,  w e  remark 

f i r s t  t h a t  the  Hankel function Ho (1) f o r  large values of i t s  argument 

K P  shows asymptotic behavior 

4 (21) 

ll i , 'Kp- - )  HO (1) ( K p ) - >  E e  1 

The f ac to r  (K p )  i n  equation (20) corresponds, therefore ,  taken by 

i tself  with consideration of t h e  time dependency selected,  compare 
equation ( 2 ) ,  t o  an outgoing cylindric wave i n  the  6 , ~  plane. The 
space-time dependency of t h e  phase i s  l a rge ly  modified by occurrence of 
t he  f ac to r  

The phase @ thus becomes, again asymptoticaily, according t o  equation (20) 

If we consider, f o r  instance, the  propagation of t he  spec ia l  phase surface 

Q = - ' an elementary conversion of equation (22) y i e lds  6' 

or, with consideration of equation (14), 

(23 1 2 2 2  (x - ut) + y2 = c t 

This simple r e s u l t  s ign i f i e s  t h a t  the surfaces of constant phase are propa- 
gated, i n  r e l a t i o n  t o  the flowing medium, asymptotically a t  t h e  normal sonic 
ve loc i ty  c,  whereas t h e i r  center i s  carr ied along a t  the  ve loc i ty  U of 
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t h e  flow, j u s t  as t o  be expected on the basis of Huyghens' construction 
of t he  elementary waves. Going beyond the  asymtotic agreement with the 
geometric construction of the  elementary waves, our rigorous f O I T I U l a  (20) 
remains correct up t o  a r b i t r a r y  proximity t o  the  sound source a t  any r a t e  
as long as the  idea l iza t ions  leading t o  the wave equation (1) (llsmallll 
amplitudes, "point-shaped" sound source) hold t rue ,  thus a l s o  i n  a region 
where Huyghens pr inc ip le  would f a i l .  

It i s  i n t e re s t ing  t o  invest igate  i n  addi t ion t o  t h e  phase the  
behavior of  the amplitude. 
decrease of the  amplitude takes place asymptotically as l/G. The 
surfaces of constant amplitude a r e  therefore  cy l indr ic  surfaces of 
e l l i p t i c  cross-section, t he  ax i s  of which ( p a r a l l e l  z )  l i e s  i n  the  sounds 
once visualized as r e c t i l i n e a r .  
w i t h  a l s o  of the  in tens i ty ,  takes place more rap id ly  i n  t h e  *x d i r ec t ion  
than i n  the fy di rec t ion .  Here, d i f f e ren t  from the  phase, the  d i r ec t ion  
of t he  f l o w  i s  never one-sided. 

According t o  equations (20) and (21),  the 

The decrease of the  amplitude, and there-  

Finally, the  l imi t ing  case l i n e s  k j 3 w i l l  be considered. It 
corresponds t o  w = 0, thus t o  a s t a t i c  pressure disturbance, as is  
caused by the flow against  a th in  rod normally t o  the flow d i rec t ion .  
According t o  equation ( l2a )  % becomes the re in  

therewith 

and a f t e r  the  known transformation 

1 F =  
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Here a l s o  the  decrease of the  pressure disturbance i n  the  kx d i rec t ion  

takes  place more rapidly than i n  the i y  di rec t ion  by the  f ac to r  
1 

11 - M2 

The cha rac t e r i s t i c  appearance of the argument P =,/F instead 

of /- f o r  M = 0 is  usually denoted as P rand t l ' s  r u l e .  

(b)  Spat ia l  Problem 

A I 1  r e s u l t s  derived f o r  the  plane e l l i p t i c  case may be t ransfer red  
d i r e c t l y  t o  the  s p a t i a l  problem. 
maintaining the  subs t i tu t ions  (equation (17)) supplemented by 7'  = 7 9  

One obtains from equations (13) and (l3a), 

5 = 2, 

i (ar'S+g'17+7 ' 5  ) i-00 

da '  dg' dy' (26) 
1 eiw rrr e F = - -  

i*P \ ~ ~ _ M ~ J J J  -00 a12 + p + y ' 2  - K 2  

( w i t h  
and (17a). 

and K having t h e  same values given i n  equations (16a) 

If one, furthermore, makes use of the  Fourier representat ion of the  
spher ica l  wave outgoing from the zero point  

i ( h k  PT+V[ ) 

E = .'1 = 5 = 0 

3 +m 

ah dcl dv 
1 

- -= -  
p2 -I- v2 - K2 

-w 

(postponing intended remarks on the  integrat ion pa ths) ,  there  
from equations (26) and ( 2 7 ) ,  with consideration of equations 
and (18a), the  terminal formula 

F = - -  1 e -i-h 14.e M e m  { v z  / - }  
4s J1-r'2 
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The discussion i s  analogous t o  t h a t  f o r  t he  plane problem. The 
surfaces of constant phase a re  spherical  surfaces which are propagated 
i n  re la t ion  t o  t he  flowing medium a t  t h e  ve loc i ty  
is  simultaneously car r ied  along. This is  r igorously va l id  up t o  a rb i -  
t r a r y  nearness t o  the  sound source. 
and intensi ty ,  respectively,  a r e  the surfaces 
decreases as 
*y- and *z-direction. 

c, while t h e i r  center - 

The surfaces of constant amplitude 
p = const; t he  in t ens i ty  

l /p2 ,  thus more rap id ly  i n  the  tx-d i rec t ion  than i n  the  

( e )  For  t he  sake of completeness, a short  supplementary remark 
should be added t o  t h e  proof of t h e  formulas (19) and (27) f o r  t h e  Fourier 
representation of t h e  cy l indr ica l  and spher ica l  wave. 
treatment of these problems, we r e f e r  t o  A. Sommerfeld, elsewhere. 

Regarding de ta i led  

L e t ,  f o r  t he  plane case, the double in t eg ra l  (19) be designated 

Obviously, this in tegra l  has a t  first not ye t  a unique meaning, s ince 

the  integrand becomes i n f i n i t e  on the  c i r c l e  
A,cl plane. I f  one introduces i n  t h i s  plane, and likewise i n  the  x,y plane, 
polar c oordinat e s 

A* + CL2 = x2 i n  the  real  

A = u cos JI CL = u s i n  + 
5 = P cos cp '1 = P s i n  cp 

A2 + p2 = a2 
+ 7 2  = P2 

and visual izes  the  integrat ion with respect  t o  the  azimuth $ before 
the  integration w i t h  rc:spect t o  p, one may wri te  equation (l9>, with 
consideration of the known in t eg ra l  representat ion of t h e  Bessel function 
of zero order 

af ter  a simple t,rsnsformation, i n  t h e  form 
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. 
In equation (1%) the indeterminateness of the integral is not yet elimi- 
nated due to the integrand's becoming infinite for The integral 
(lga) represents a cylindrical wave extending to infinity, only when the 
integration path is transferred to the negative-imaginary complex 
leaving the point 
ure 3 .  

u = K .  

a-plane, 
a = K to the left in the manner characterized in fig- 

The correctness of the contention is known to result immediatelv " 
from the decomposition of the Bessel function Jo into the two Hankel 
functions and HO ( 2 )  

of different asymptotic behavior at infinity of the complex 
from the deformation of the integration paths indicated in figure 3. 
integral (19) may then be reduced to the residue of the constituent part of 
the integrand steming from the first summand in equation (30) for 
and yields 

a-plane, and 
The 

u = K 

Because of the asymptotic behavior of KO ('1 for large real values of 
the argument (compare equation (21)), equation (lgb) actually corresponds 
to an outgoing (divergent) wave. Had the integration path been trans- 
ferred from equation (1%) to the positive-imaginary complex a-plane, an 
incoming (convergent) cylindric wave would have resulted, corresponding to 
the asymptotic behavior of H0(*) . Completely analogous relations prevail 
for the spatial problem (G3). 

The behavior of the wave outgoing from the zero point divergent 
toward infinity may be comprised according to Sommerfeld into an analyti- 
cal condition, which is denoted as radiation condition. It reads for the 
plane and for the spatial problem, respectively 

on the infinitely distant boundary of the plane and spatial region, 
respectively. If G is interpreted as Green's function of the infinite 
domain, the addition of a condition of the type (31) together with the 
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known remaining conditions fo r  G i s  suf f ic ien t  f o r  uniquely f i x i n g  
t h i s  function9. 

3 I n  contrast  t o  the cy l ind r i ca l  and spherical  wave G2 and G 
propagated from the  zero point i so t rop ica l ly  i n  a l l  d i rec t ions  (compare 
equations (19) and ( 2 7 ) ) ,  one deals  i n  the  general  e l l i p t i c  case 
according t o  equations (20) and (28) with unsyrmnetric rad ia t ion .  We 
omit formulating f o r  t h i s  more general  case a r ad ia t ion  condition f o r  
i n f i n i t y  i n  analogy t o  equation (31) and a r e  content with having reduced 
the  general e l l i p t i c  case 0 < M  < 1  t o  the  i so t ropic  problem M = 0. 
The difference between outgoing and incoming wave is  therefore  brought 
about solely by the se lec t ion  of the  in tegra t ion  path i n  the  general  
e l l i p t i c  case as well .  
i n  case of subsonic approach flow t o  i so t ropic  sound propagation is  
physically understandable s ince the  propagation of a sound wave is  modi- 
f i e d  by the existence of  a flow U < c  but,  bas ica l ly ,  not e s s e n t i a l l y  
changed; however, the r e l a t ions  become completely d i f f e r e n t  i f  we now 
tu rn  t o  the hyperbolic and parabolic case. 

The p o s s i b i l i t y  of reducing the sound propagation 

4.  THE HYPERBOLIC CASE M > 1 (SUPERSONIC REGION)  

(a) Plane Problem 

I n  the hyperbolic case, the cha rac t e r i s t i c  conical  sec t ion  % = 0 
is  a hyperbola. I f  one wr i tes  i t s  equation i n  the  normal form 

one has according t o  equation (15) 

kM a. = k b '  = k a'  = 
M2 - 1 G M 2 - 1  

By v i r tue  of the  a f f ine  transformation 

(33) X 
v = B  E =  7 = Y  A = r(M2 - 1 (a - cug) 

G . 7  
yCompare a l so  W. &gnus, Jahresberichte d .  DMV, vo l .  52, p .  177, 

1943 
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the  fundamental in tegra l  (12) becomes 

. 

with 

k 
I C =  

The posi t ion of t he  charac te r i s t ic  hyperbola 

17 

i n  the  h , p  plane obviously suggests performance of the  in tegra t ion  over 
h before that over p (compare f i g .  4 ) .  The in tegra t ion  over h then 
leads first t o  the  in t eg ra l  

ih 5 

t h e  integrand of which has a pole each a t  h = -kip2 + K ~ .  I n  order t o  
e l iminate  the  indeterminateness of the in tegra l ,  t he  in tegra t ion  path 
leading from -03 t o  +m has t o  be sui tably detoured in to  the complex 
h-plane. The type of t ransfer  of the in tegra t ion  path again can be 
se lec ted  only on the  bas i s  of physical considerations.  
wave approaches here supersonic velocity,  t h e  sound exc i ta t ion  must be 
required t o  disappear f o r  x < 0. Since i n  equation (35 )  x i s  replaced 
by E ,  it i s  therefore  a requirement t h a t  t h e  in t eg ra l  (3’3) yie lds  zero 
f o r  negative values of 5 .  Except f o r  continuous deformations i n  which 
no s ingu la r i t i e s  a r e  transversed, the in tegra t ion  path i s  therewith fixed; 
one must make a detour in to  t h e  negative-imaginary complex h-plane, 
leaving both poles t o  the  l e f t .  If 5 i s  posi t ive,  t h e  in tegra t ion  path 
(compare f i g .  5 )  may be replaced by a path i n  t h e  i n f i n i t e l y  d i s t an t  
positive-imaginary A-plane and one c i rc l ing ,  i n  pos i t ive  sense, each of 

t h e  poles a t  *\CI-z. For negative 6, i n  contrast ,  t h e  s h i f t i n g  t o  

Since t h e  sound 

. 
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t h e  i n f i n i t e l y  d i s t an t  negative-imaginary A-plane r e s u l t s  i n  zero as 
it should. One obtains thus by formation of residues 

r 

Therewith the  double in t eg ra l  occurring i n  equation (34) may be 
reduced, disregarding the  f ac to r  -2x, f o r  5 > 0 t o  t h e  simple in t eg ra l  

I . 

Its calculat ion i s  achieved i n  the  following manner. If one puts  

K becomes 

If one subs t i tu tes  furthermore 

K may, with consideration of the  addi t ion theorem 

cosh -9 cosh X f sinh I9 sinh X = cosh ( 6  f X) 

a l s o  be w r i t t e n  
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and Ho ( 2 )  an i n t e g r a l  (1) One now uses f o r  t h e  Hankel functions 
representat ion going back t o  Heine 

Ho 10 

i z  cosh9 +m 

di3 
(1) 1 

H o  ( 2 )  = ZJW e 

Since t h e  appearance of fX bes 

"0 

l e  i3 --I equation (36a) i s  obviously 
ins igni f icant ,  because of t he  integrat ion limits ly ing  a t  i n f i n i t y ,  one 
obtains therewith 

Thrniigh t.hp si~-bstitil++~n, pqi~+i$r, ( 3 7 ) ,  e = . i d ~ n t l . ~  J V L ' A J  n-l-r  u ---+ y u L  u VI 

t he  e n t i r e  [,v-plane i s  covered; f o r  posi t ive T 'S ,  Only t h e  region 
characterized i n  f igure  6 by I and cross-hatching, respect ively.  
K shows f o r  negative values of T in  t he  region 11, according t o  
equation (36a), a l so  values d i f fe ren t  from zero, i s  ins igni f icant ,  since 
the  in t eg ra l  (36) has been defined or ig ina i ly  only f o r  pos i t ive  values 
of 5 .  It i s  shown, furthermore, tha t  t h e  in t eg ra l  (36) r e s u l t s  i n  zero 

That 

"Heinel s i n t eg ra l  representations f o r  H n ( l )  ( z )  and Hn(*)( z)  a r e  

with t h e  f i rs t  representation, f o r  a rb i t r a ry  
t h e  upper (positive-imaginary), the second only f o r  the lower (negative- 
imaginary) z half-plane. Specially for  n = 0 both representat ions are 
va l id  a l s o  on t h e  r e a l  z axis ,  which f a c t  i s  made use of i n  the t e x t .  
Compare, f o r  instance, R.  Weyrich, " D i e  Zylinderfunktionen und ihre  
Anwendungen", €3. G. Teubner, 1937, p. 30. 

n, being va l id  only f o r  
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i n  t h e  regions 111 and IV. If one puts  f o r  t h i s  purpose 

( 7 '  > 0 i n  111, 
considerat ion of 

I-' < 0 i n  I V ) ,  one obtains from equation (36), with 

sinh 6 cosh $ f cosh 6 s inh I) = sinh (9 f $) 

ac tua l ly  

The function K, defined by the  in t eg ra l  ( 3 6 ) ,  thus represents a d i s -  
continuous function which assumes values d i f f e ren t  from zero, only i n  
the  regions I and 11, but disappears i n  I11 and IV. 

Finally,  one subs t i tu tes  the  expressipn f o r  K i n  F, equation (34).  
If t h e  fac tors  are combined, there  r e s u l t s  

and hence a f t e r  inser t ion  of equations ( 3 7 ) ,  (39), (32a),  and (34a) 

I X and x > 0; otherwise F = 0 
V F T  for lyl I 

J 

The ana ly t i ca l  r e s u l t ,  t h a t  t h e  sound propagation i s  l imited t o  a 
conical region s i tua ted  symmetrically t o  t h e  x-axis, including t h e  pos i t ive  
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. 

. 

x-axis, has the  simple physical significance: the  appearance of t h e  Mach 
angle a. 
range f o r  t h e  sound exc i ta t ion  from Huyghens' elementary-wave construction 
i m e d i a t e l y  (compare f i g .  7) 

I n  f a c t ,  there  r e s u l t s  f o r  t h e  boundary of t h e  propagation 

Iy I 1 tan a = - = c 1  sins = - = -  
U M  [ E T  

The wave system represented by equation (40) appears, i n  contrast  t o  
t h e  r e l a t ions  i n  the  e l l i p t i c  case, as  a standing-wave system with f ixed  
nodal l i n e s  Bessel function Jo) which i s  modulated by a progressing 
wave (exponential f a c t o r ) .  One can explain t h i s  behavior i n  d e t a i l  i n  
t he  following manner. If one s p l i t s  t h e  Bessel function JO i n  equa- 

t i o n  (40), corresponding t o  equation (39) ,  i n to  t h e  two Hankel func- 
t i ons  KO (l) 

f o r  s u f - f i c i e n i i y  large vU1ut.s uf tiit: ai-guit.iit 

( 

and % (*) and uses t h e i r  asymptotic representa t ions l l  

t he re  results 

and thus  t h e  space-time dependence of t h e  phase becomes 

I ,. 

11 
Compare, f o r  instance, R .  Weyrich, elsewhere, p. 46; compare a l s o  

equation (21a) i n  the  t e x t .  
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with the  indices 1, 2, and the  upper and lower s ign re fer r ing ,  respec- 

t i v e l y ,  t o  t h e  o r ig in  i n  the  Hankel functions Ho(l) and Ho ( 2 ) .  If 
= 7 f, 

1,2 
one now considers f o r  instance the  propagation of t h e  phases 

an elementary ca lcu la t ion  y ie lds  j u s t  as i n  t h e  e l l i p t i c  case 

0 

2 2 2  (x  - u t )  + y2 = c t (43) 

II 
% = - -  4 The l i nes  (o r  surfaces)  with the  constant phase values 

O2 = +6 f i l l ,  therefore ,  a t  any r a t e  sec tors  of t h e  same c i r c l e  II and 

propagating at the  ve loc i ty  c ,  the  center  of which i s  propagated along 
the  posit ive x-axis a t  the ve loc i ty  U > c.  It has t o  be noted t h a t  t h e  
argument K T  of the  Bessel or Hankel funct ions must always be pos i t i ve .  
Hence, there r e s u l t s  t h a t ,  viewed by an observer located a t  la rge  pos i t ive  
x, the  f i r s t  summand ( i n  equation (40a))  represents  a convex wave out- 
going a t  a ve loc i ty  
a t  a veloci ty  w2 < U ( f i g .  8 ) .  
p a r t i a l  waves, t he  e n t i r e  wave system or ig ina tes .  Thus, one may speak 
i n  the  hyperbolic case of directed rad ia t ion .  

w1 > U ,  t he  second summand, a concave wave outgoing 
By superposit ion of t he  two outgoing 

It should be s t ressed  t h a t  t he  c i r c l e s  moving away, which r e s u l t  
a f t e r  construction of t he  elementary waves, do no longer t u r n  out t o  be 
curves of constant phase ( f o r  rigorous considerat ion) .  Rather, a phase 

s h i f t  o1 - Q~ = - ?  ' 
curves ( i n  t he  sense of t he  d i rec t ion  of propagation).  
change occurs i n  t,he neighborhood of t he  s t r a i g h t  l i n e  bounding t h e  Mach 
propagation range where the  asymptotic representat ion of t h e  Hankel 
functions i s  no longer su f f i c i en t  ( indicated by cross-hatching i n  f i g .  9 ) .  
These deviations from the  elementary construct ion, which only t h e  exact 
theory of the  propagation phenomenon can d isc lose ,  a r e  comparable t o  those 
occurring i n  the  theory of t he  r e f r ac t ion  of wave systems. 

e x i s t s  between the  f r o n t  and r e a r  pa r t  of these  

The gradual phase 

According t o  equation (40), the  amplitude i s  constant on hyperbola 
branches 

l/G 
bounding the propagation range themselves, t he re  occurs a f i n i t e  jump of 
F 
U approaches the  sonic ve loc i ty  c .  

KT = const,  and decreases, according t o  equation (40a),  l i k e  

toward the  i n t e r i o r  of the  Mach region. On t he  s t r a i g h t  l i n e s  

(pressure drop, compression shock) which i s  t h e  l a rge r  t he  more c lose ly  
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(b)  Spat ia l  Problem 

23 

. 

. 

I n  the  t r ans i t i on  from the plane t o  t h e  s p a t i a l  hyperbolic case 
there  r e s u l t s  from equations (13) and (13a) i n  analogy t o  equation (34) 
the  t r i p l e  i n t eg ra l  

w i t h  t he  same significance of %, 5, . . ., A, . . . as i n  equa- 
t i o n s  (32a) and (33); furthermore, we put f o r  reasons of symmetry 
z = f .  The integrat ion over h corresponds exact ly  t o  t h a t  of equa- 
t i o n  ( 3 3 ) ;  likewise, t h e  integrat ion path i s  t o  be selected i n  t h e  same 
manner as sub a ) ,  w i t h  t he  same motivation as i n  t h e  case of t he  plane 
problem. One obtains therewith 

y = v, 

If one now introduces i n  the  p,v plane, as well as i n  t h e  q,(  plane, 
polar  coordinates by put t ing 

7 = p cos cp f = p sin cp 72  + ( 2  = p2 

F becomes 

If one now again makes use of t he  in tegra l  representation of the Bessel 
funct ion Jo (equation ( 2 9 ) ) ,  integrat ing f irst  w i t h  respect t o  $', one 
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obtains fur ther  

The remaining, purely mathematical problem consis ts  i n  t h e  evaluation 
of t h e  in tegra l  i n  equation (45).  
mathematical appendix (section 6, in tegra ls  with respect t o  cylinder 
functions) from general viewpoints. Here we should l i k e  t o  remark t h a t  
t he  integrat ion occurring i n  equation (45) i s  e a s i l y  performed f o r  t he  
spec ia l  cases p = 0 and K = 0. For p = 0 one obtains,  i f  one sub- 

s t i t u t e s  = cu t h e  expression which is ,  a t  first,  inde f in i t e  

W e  s h a l l  solve t h i s  problem i n  t h e  

If one notes t h a t  i n  the  integrand of equation (45) the  (at first omitted) 
f ac to r  Jg(po) has, due t o  i t s  osc i l l a to ry  character,  a convergence- 
enforcing e f f e c t ,  and t h a t  f o r  us only t h e  l imi t ing  case of t h i s  i n t e g r a l  
f o r  p ~ 0  
ca l ly ,  by introducing i n  t h e  integrand of equation (46a) a convergence - 
enforcing f ac to r  and f i n a l l y  making t h e  t r a n s i t i o n  t o  the  l i m i t s  
p + o )  i n  a unique manner. 

i s  of i n t e re s t ,  one obtains therewith ( f o r  instance ana ly t i -  

e-m 

On the other hand, t he  in t eg ra l  o r ig ina t ing  f o r  K = 0 from equa- 
t i o n  (43) 

may be eas i ly  calculated according t o  t h e  residuum method, with in t ro-  
duction of t he  in t eg ra l  representation of Jo and interchange of t h e  
integration sequences; t he  in tegra l  represents  t he  discontinuous funct ion 11 

l2Cf. G. N .  Watson, Theory of Bessel Functions, I. A u f l . ,  s. 405, 
equation ( 6 ) .  
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Comparison of equations (47a) and (47b) with t h e  corresponding formulas 
f o r  the  plane hyperbolic problem suggests general izat ion t o  a r b i t r a r y  
and K 

p 

I n  sec t ion  6 it w i l l  be proved t h a t  the performed general izat ion i s  
ac tua l ly  j u s t i f i e d .  

By inser t ing  equation (48) i n  equation (45), one may immediately go 
over t o  t h e  f i n a l  formula f o r  t h e  spa t i a l  hyperbolic case; one obtains  

(49) 

J f o r  P and x > O ;  otherwise F = 0 

The discussion of t he  basic  solution (49) i n  t h e  s p a t i a l  case i s  i n  
a l l  po in ts  corresponding t o  t h a t  for  t h e  plane problem. The wave propa- 
gat ion i s  r e s t r i c t e d  t o  the  Mach cone. If one s p l i t s  t h e  standing wave 

system characterized by t h e  f ac to r  cos [. . .], modulated by t h e  preceding 

complex phase fac tor  again in to  i t s  complex pa r t s  

t h e  combination of t h e  f irst  summand with t h e  preceding phase f a c t o r  
(plane wave) results a f t e r  t h e  transformation indicated above i n  an out- 
going convex spherical  wave, t he  combination of the  second summand with 
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the  preceding phase f ac to r ,  i n  cont ras t ,  i n  an outgoing concave spherical  
wave. Altogether t he re  r e s u l t s  again d i rec ted  rad ia t ion .  Di f fe ren t ly  
from the  plane problem, however, here t h e  phase on a propagated spherical  
surface 

i s  exact constant,  not only asymptotically constant,  since here t h e  phase 
of the  two p a r t i a l  systems i s  exact ly  defined by decomposition of t h e  

cos {. . .) and obviously no phase s h i f t  occurs between the  spherical  

zones pertaining t o  the  p a r t i a l  systems. 
construction of t he  elementary waves ( insofar  as it i s  t o  contain only 
a s t a t emen t  on the  surfaces  of constant phase) up t o  a r b i t r a r y  proximity 
t o  the  Mach cone i s  here j u s t i f i e d .  

Accordingly, the  Huyghens' 

The amplitude i s  constant on t h e  hyperboloidal surfaces  - 
- y2 - z2 = const and becomes i n f i n i t e  approaching t h e  Mach X Z  

M2 - 1 
cone. On t h e  x-axis ( y  = z = 0) ,  t he  amplitude decreases l i k e  l/x t he  . 
i n t ens i ty  thus l i k e  l /x2.  The occurrence of amplitudes which increase 
with approach t o  the  Mach cone beyond a l l  l i m i t s  ind ica tes  t h a t ,  r igor -  
ously speaking, the  v a l i d i t y  range of l i n e a r  theory has been exceeded. 
I n  f a c t ,  the Mach cone represents a compression shock f o r  a more exact 
representation of which the  nonlinear hydrodynamic and thermodynamic 
equations must be used. 

5 .  THE P W O L I C  LIMITING CASE: M = 1 

(a )  Plane Problem 

The quantity S12 here becomes according t o  equation (12a) 

Q2 = 2ka + p2 - k2 

nnd a f t e r  substi tuti .on of a = a '  + k/2 

R 2  = 2ku' + p2 
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The cha rac t e r i s t i c  equation R2  = 0 thus represents  i n  the  a',p plane 
a parabola which passes through the  coordinate o r ig in  a '  = 0, p = 0 
and i s  opened toward the  negative a ' - ax i s .  The fundamental so lu t ion  F, 
equation (12),  may be wr i t ten  

The in tegra t ion  over a '  
residuum method. Here again t h e  choice of the  in tegra t ion  path i s  decis ive.  
We se l ec t  it i n  such a manner t h a t  we in tegra te  i n  the  complex a ' -plane from 
-m t o  t o  the  l e f t .  

Then we may replace the  in tegra t ion  path, f o r  pos i t ive  values of x, by a 

c i r c l i n g  of t h e  pole a '  = -e i n  posi t ive sense whereas f o r  negative 

values of x, t he re  r e s u l t s  zero. Thus 

may now eas i ly  be ca r r i ed  out according t o  the  

+ m on leaving the  pole of the integrand a t  a' = - @ 
2k 

2k 

. 

This r e s u l t  j u s t i f i e s  subsequently our choice of t h e  in tegra t ion  path.  
I n  f a c t ,  it i s  t o  be expected according t o  the  pr inc ip le  of t he  elementary 
waves t h a t  f o r  a sound source approached by a flow at  t h e  ve loc i ty  U = c 
no sound exc i ta t ion  i s  brought about for x < O  since the  sound propaga- 
t i o n  i s  car r ied  along by t h e  flow a t  t he  ve loc i ty  c i n  t h e  d i r ec t ion  of 
t he  pos i t ive  x-axis. 

Subs t i tu t ion  of equation (53) into equation (32) now yie lds  f o r  
x > o  

By quadratic supplement of t he  exponent, one r ead i ly  f inds  hence 

2 . k  x2+Y2 
' 2  TJ-; e - i a  da F = - - e  - i  

4nk x 
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The in tegra l  appearing here i s  well known as "Fresnel ' s  Integral ' '  

Therewith, one f i n a l l y  obtains 

f o r  x >  0 

f o r  x < 0 I" 
F i r s t ,  one considers again the  curves (or surfaces,  respect ively)  of 

constant phase. If one i n s e r t s  i n  t h e  expression f o r  t he  phase 

@ = -  k x2 + Y2 - y w t  2 X 

t he re  r e s u l t s  because of k = w/c immediately 

Thus, t h e  surfaces 
according t o  the  construction of the  elementary waves, a system of c i r c l e s  
which a r e  tangent at  t h e  coordinate o r ig in  x = y = 0 and t h e  centers  of 
which f i l l  t h e  pos i t ive  x-axis ( f i g .  10). 
surfaces in  t h e  medium takes place t o  a l l  s ides  and up t o  a r b i t r a r y  proxi- 
mity t o  the sound source a t  t h e  ve loc i ty  c .  On t h e  other  hand, it i s  
noteworthy t h a t  t he  decrease of t he  amplitude over t h e  e n t i r e  f ron t  occurs 

@ = const ( T  = const)  form, as i s  t o  be expected 

The propagation of t he  phase 

independently of y with l/G. With t h e  approach of pos i t ive  x-values 
t o  x = 0 t h e  amplitude increases beyond a l l  limits; for x < 0 it i s  
zero. 
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(b)  The Spatial  Problem 

!d3 becomes according t o  equation (l3a) and with replacement of a 
by a' as i n  the  plane case 

(56) n 3 = 2 k a + P  2 + y 2 - k  2 = 2 k a ' + p  2 2  + y  

therewith t h e  fundamental in tegra l  (l3), if one v isua l izes  t h e  integrat ion 
over a' car r ied  out i n  a manner exactly corresponding t o  equations (52) 
and (53) n 

If one uses furthermore polar  coordinates i n  t h e  
the  y,z plane 

p,y plane j u s t  as i n  

z = p s i n c p  y 2 + z 2 = p 2  

y = u s i n  $ p = (5 cos $ 

y = p cos 9 

one may w r i t e  t he  in t eg ra l  (57) for x > 0 

F i r s t  performing the  integrat ion over 
of the  in t eg ra l  representation of t h e  Bessel function 
from equation (57a) 

$, one obtains  w i t h  consideration 
Jo equation (29), 



NACA TM 1362 

The in tegra l  which appears here i s  of the  type of t he  in t eg ra l  named a f t e r  
H .  Weber’* 

and may therefore be reduced t o  an elementary function; f o r  a = p,  

there  resu l t s  

and f ina l ly  

f o r  x > 0 ~ - e  
X 

f o r  x < 0 t 
The s t ruc ture  of t h i s  formula i s  pe r fec t ly  analogous t o  t h a t  of 

equation (54) f o r  t h e  plane problem. 
spherical  surfaces which are a l l  tangent a t  t he  point 
centers  of  which again f i l l  t he  pos i t ive  x-axis. 
s t an t  on t h e  planes x = const ( thus independent of p )  and, corresponding 
t o  t h e  in tens i ty  r e l a t ions  f o r  t he  s p a t i a l  problem, decreases f o r  pos i t ive  
x a s  l /x .  

The surfaces of constant phase a re  
x = p = 0 and t h e  

The amplitude i s  con- 

Furthermore, t he  analogy between equations (54) and (59) and t h e  
basic  solution ( l g b )  of t h e  plane problem (cokpare a l s o  the  asymptotic 
representation (equation (21a) ) and of t h e  corresponding s p a t i a l  problem 

(59) 

13G. N .  Watson, Theory of Bessel-Functions, Cambridge 1922, p. 392. 
14Convergence of t h e  in t eg ra l  e x i s t s  as long as < T t  I arg b I = 6. 



f o r  t h e  case M = 0 of disappearing approach flow i s  remarkable. F ina l ly ,  
it should be noted t h a t  t h e  formulas (54) and (58 )  as l imi t ing  cases 
M-1 
e l l i p t i c  M < 1. 

can be represented o n l y  f romthe  hyperbolic case M > 1, not t he  

6 .  MATHEMATICAL APPENDIX 

In tegra ls  Over Cylinder 'Functions 

It remains t o  append t h e  proof f o r  t h e  in t eg ra l  formula (48). Since 
t h i s  proof requires a f e w  more general considerations, we sha l l ,  i n  con- 
nection with it, derive a f e w  more related in t eg ra l  formulas. 

We s t a r t  from Heine-Schafheitlin's i n t eg ra l  representat ion (38) of 

t h e  Hankel functions Ho (l) and HO ( 2 )  which we write 

$+m ei~cosnzY 
d.9 = i x % ( l ) ( z )  

We now consider t he  in t eg ra l s  

e - i z  coshd 
d.4 = -iflHo(2)(z) 

(38) 

A s  on page 18 w e  subs t i t u t e  

J' p + K = K cosh i3 

5 = T cosh X 

and thus obtain, according t o  the  addition theorem of t h e  hyperbolic 
functions and t o  t h e  in t eg ra l  formulas (38) 



both formulas a r e  va l id  f o r  the range of representat ion of t h e  coordi- 
nates 5 ,  7 by the  equation (37) (X r e a l ) ,  t h a t  i s ,  f o r  151 2 171. 
In  exactly the same manner as on page 20, one proves that1 
and K2 disappear f o r  I 5 I < 17 1 .  The in tegra ls  (6Oa) and (60b) thus 
represent discontinuous functions which assume values d i f fe ren t  from 
zero only in t he  regions I and I1 of f igure  8, but disappear i n  the  
regions I11 and I V .  Thus we have 

K1 

c 
(62b 1 
% In  order t o  indicate  t h e  discontinuous character of t h e  in t eg ra l s  

and K2 

of equations (62a) and (62b) abbreviatedly ini?o'l) ( K k-) 
and - i r H o  - (2)(~i-), indicat ing by a bar above the  symbol t h a t  t h e  

Hankel functions a re  t o  be applied only f o r  

i n  t h e  notation, we sha l l  wri te  below instead of t h e  r igh t  s ides  

15 I 2 I 7 1, however, zero. 

We now use a new integrat ion var iab le  v i n  equations (62a) and (62b) 
by putting 
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We thus obtain 
. 

0 

5 . . dp = J  . . . 4  +L+ . . . dp 
-02 -03 

-i{m +" + i / q  
eivs dv +L e eivs dv 

= - L  m 
or e l s e  

I n  exact analogy 

33 

By addi t ion and subtract ion of equations (63a) and (63b) there  r e s u l t s  
w i t h  consideration of the  mutual connection of t h e  cylinder functions 

(Jo Bessel function, No Neumann function of zero order), then fu r the r  
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( the  bar over t h e  symbol having t h e  same significance as above). 
application of Fourier ' s inversion formulas 

By 

f l ( t )  cos u t  d t  f l ( t )  = :Jam g l ( u )  cos G t  du 

one now obtains from equations (64a) and (64b) 

L 

t h e  in tegra l  formulas (65a) and (65b) assume the  form 

3 for 1.1 < K 



. 
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The first of the integral formulas (66) is identical with equation (48) 
as one recognizeb immediately if one makes in the designation the 
replacements 

quod erat demonstrandum. 

Translation by Mary L . Mahler 
National Advisory Committee 
for Aeronautics 

. 
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Figure 2.- The characteristic conic section 0 2 b , B )  = 0 fo r  various 
values of the Mach number M. 

Figure 3.- Complex a-plane. Integration paths for the constituents of 
the integrand of (19a) corresponding to Jo, %(I), and Ho (2). 
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Figure 4.- Position of the characteristic hyperbola in  the A, w -plane. 
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c 

Figure 5.- Integration paths in the complex h -plane for  5 > 0 and 
5 < 0. 
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Figure 6.- Division into regions in the E ,  rl -plane. Plotted hyperbolas: 
T = const (I and 11), T '  = const (111 and IV). 

__ 
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I 

Figure 7.- Construction of the Mach angle. 
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Outgoing convex wave 
Outgoing concave wave 

t y  

Figure 8.- Splitting of the wave system into two partial systems. 
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c 

Figure 9.- Region of transition (cross-hatched) from 0 = - 'q/4 to 
4 = + ~ / 4  for the plane problem. 

. 
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Figure 10.- Propagation of the surfaces (or  waves, respectively) 
CI = const. 


