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IN UNIFORM TRANSLATORY MO'I'ION%l

By H. Honl
INTRODUCTION AND SUMMARY?

The following report will treat rigorously the excitation of sound
by a point-shaped sound source (pulsator) in uniform translatory motion
at subsonic or supersonic velocity through a medium at rest for the two-
and three-dimensional case (two- and three-dimensional problem).

In qualitative respect, the phenomena of sound propagation excited
by a moving sound source are well known. If the construction of surfaces
of constant phase is based on Huyghens' principle such that the propaga-
tion in the medium at rest of the elementary waves emanating from the
sound source is regarded as independent of the momentary state of motion
of the sound source, characteristic traits of the sound propagation may
be understood even on the basis of simple geometriec constructions. If,
for instance, the motion of the sound source visualized as point-shaped
is uniform translatory along the negative x-axis of a three-dimensional
Cartesian coordinate system, the sound propagation for a sound source
moved at subsonic or, respectively, supersonic velocity is represented
in the known manner by figure 1l; according to construction, surfaces of
constant phase would correspond to the circles plotted. For the motion
of the source at supersonic veloecity, it 1s, above all, characteristic
that the excitation of sound always remains limited to the interior of
a cone - the Mach cone - the (semi) opening angle « of which results
directly from the construction of the elementary waves (one has
sin @ = ¢/U when c¢ denotes the sonic velocity, U > c the velocity
of the sound source). From the physical point of view, however, there
arises the question how far the construction of the phase surfaces
according to the principle of Huyghens' elementary waves can be applied

*'Jber das Schallfeld einer gleichformig-translatorisch bewegten

punkformigen Schallquelle." Annalen der Physik, issue 5, vol. 43, 1943,
PD. 437-h46k.

1pedicated to Privy Councillor A. Sommerfeld for his 75th anniver-
sary on December 5, 1943.

2The present investigation was written within the scope of my work
for the Kaiser-Wilhelm Institute for Flow Research, Gottingen.
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rigorously, also the problem of the exact amplitudes or intensities,
respectively, of the sound field. It will be shown on the basis of the
rigorous solution of the plane and spatial problem that, on the whole,

the qualitative description of the sound field according to the prin-
ciple of elementary waves is Jjustified, but that in particular, especially
in case of supersonic velocity, characteristic deviations from the ele-
mentary construction become evident.

The mathematical theory of sound propagation will be based on the
linear propagation equation for the medium at rest

er\)

S)
dt2

1
- = =0
JAY) 2 (1)

® may signify therein for instance the pressure disturbance. Tt would
appear rather obvious to utilize the acoustic optical analogies for the
problem of the sound source in uniform translatory motion and, accord-
ingly, to apply to (1) a Lorentz transformation where then the sonic
velocity ¢ 1instead of the velocity of light would appear in the trans-
formation formulas as critical velocity.3 However, this method would
seem somewhat artificial for the present problem since the transformation
formulas of the space and time quantities, differently from optics, would
have no physical significance and their application thus would be a merely
formal methodical expedient; finally, in case of supersonic velocity, one
would depart even further from the physical starting point, due to the
different relativity formulations.

We shall therefore adopt below another direct method for solution of

the problem, making use of the method of the Fourier integral. Therein

it is expedient to use a coordinate system with respect to which the sound
source is at rest at the origin of the coordinate system. Our problem
then is, except for a Galileo transformation, obviously identical with

the sound propagation about a sound source in an oncoming flow of sub-
sonic or supersonic velocity, respectively, assumed at rest at the coordi-
nate origin. If the oncoming flow has positive x-direction correspcnding

3It is known that historically the investigation of the propagation
equation (1) for the first time gave occasion for setting up linear trans-
formation formulas for the space and time quantities which are closely
related to those of the special relativity theory. Compare W. Voigt,
"Uber das Dopplersche Prinzip," GSttingen Nachrichten, 1887, p. 41; see
also W. Pauli, Enzykl. der Math. Wissensch, vol. 19, p. 5ki3.

uFor the subsonic region, H. G. Kissner, Luftfahrtforsch, vol. 17,
p. 370, 1640, derived exact formulas for the sound field of a moving sound
source which agree with the results of this report in an interesting man-
ner by application of a "Lorentz transformation."
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to figure 1, the equation of propagation to be solved follows from equa-

tion (1) simply by replacement of the time operator ji—by o + U'ji
ot ot ox

where U 1s the free-stream velocity. We thus obtain from equation (1}

173 D\
AP = === + U= =0 1'
i cz(at ¥ 8x> ? (1)

If we limit ourselves immediately to the case of a sound excitation
periodic in time with the frequency  and put accordingly

¢ = u(x,y,z)e ¢t (2)

the time factor may be split off and we obtain from equation (1')

Au - —12-<- in+ U -a—>2u =0 (3)

c ox

Equation (3) is to be fulfilled in the entire space with exception of

the coordinate origin at which the sound source is located and of possible
ocecurring singular lines or surfaces (delimitation of the Mach cone or,
for the two-dimensional problem, of the Mach wedge).

If one sets up an expression for the solution for u in the form of
a multiple (two or threefold) Fourier integral one has the advantage that
the coefficients of the representation may be readily given as continuous
functions in the Fourier space due to the linear character of the differ-
ential equation (3); likewise, it is easy to determine simultaneously
the coefficients of the Fourier representation in such a manner as corre-
sponds to the presence of a 'point-shaped" sound source at the coordinate
origin or, for the '"plane" problem, of a source distribution visualized
as rectilinear. It may appear at first as a difficulty of this method
that the integral representations for the solution u thus obtained due
to the integrand becoming infinite on characteristic surfaces or lines
of the real Fourier space (for the spatial or plane problem) are subject
to indeterminate conditions and without special stipulations regarding
the course of the integration paths in the complex domain have no unique
meaning. The physical viewpoint, which here as in other propagation
problems enforces uniqueness, is that aside from the conditions named
which u must satisfy, a radiation condition must be fulfilled in infinite
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space.5 Actually, it is precisely the original indeterminateness of the
integral which confers the freedom of adjusting the solution of equa-
tion (3) to the natural physical conditions of the problem (suitably
manipulating the integration paths in the complex domain) and of deter-
mining it, in this manner, uniquely.

1. APPLICATION OF THE METHOD OF THE FOURIER INTEGRAL

We search for solutions of the propagation equation (5) which cor-
respond to the standard point source located at the coordinate origin.
We disregard for the time being fulfillment of a radiation condition.
We leave the dimension number n indeterminate at first, and put sub-
sequently n =2 or n = 3, respectively.

In order to arrive at solutions of this type in a physically and
mathematically unobjectionable manner, one will find it expedient to
start, instead of starting from equation (3), from the inhomogeneous
differential equation

2
A - —%(— iw + Ui>u = f(xl,x2 .. ) (3a)

c Bxl

in which f(xl,xz . . .) signifies a source distribution prescribed at

first arbitrarily (vanishing sufficiently rapidly at infinity). Let

the "unit source'" isolated at the zero point now be interpreted as the
limit of & sequence of continuous source distributions f. Let us there-
fore first visualize continuous positive functions f which have a large
maximum at the zero point of the coordinate system (point 0) and are, for
the rest, to be subject to the condition

fde:l (&)

(dS = dxq dx, . . . dxn); f is to depend on a parameter in such a

—~

manner that, to the same extent to which this parameter tends toward a

5Com.pare A. Sommerfeld, "Die Greensche Funktion der Schwingungs-
gleichung." Jahresber. d. DMV. 21, p. 309, 1912. Compare also Frank-
Mises, "Die Differential- u. Integralgleichungen d. Physik."
Braunschweig 1935, vol. 2, p. 803.
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limiting value, f tends toward zero everywhere with exception of the
point O. Thus, one has in the lines for the characteristic "delta
function"

£=0for P£0O ffdso=1for1==o (4a)

where the integral may be restricted to an arbitrarily small neighborhood
of 0. The formulation of the functions f according to equation (4)
was chosen for reasons of simplicity. This standardization suggests
itself physically since there results from equations (3a) and (4) for a

sound source at rest, thus U = O, with application of Green's theorem

Ju
— do, = 1 (5)
o 9

(dco surface element of a sphere of arbitrary smallness surrounding the

point O, derivation with respect to the outward directed normal), in
sccordance with the definition of the unit source.

In order to make the generality of the method for integration of
equation (3a) in question stand out clearly, one replaces this differ-
ential equation by

|l = _é_ _é_ Ju = . e
Liu| = L(Bxl’ sz’ .. > f(xl,xz, ) (6)

where L 1is assumed to be an arbitrary linear differential expression

) )
I
Bxl sz
order and dimension number. One now makes for f and u the statement
of a Fourier integral

in . . . with constant coefficients of otherwise arbitrary

£ =ﬂ- : -fA(al,ag .. .)ei(alxlm’zx2+"')dal d8p « « - oy (7a)

u =LZ7W- . 'J/NB(al;ag .. -)ei(alxlﬁ12x2+...)dal day . . . day (7o)
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Substitution of equation (7b) in L[}] then results

L[u] =L<£-l-, BTBZ’ . >ff . .fB(al,a2 cee)

ei(alxl+a2x2+"‘)dal das . . . dayp
=ﬂ...f3(al,a2...)L<a%£,é§;,...>
ei(“lxl+d2x2+"')dal dap . . . da,

and since due to the linearity of L

L<_5_, o ,)ei(al"l*“zxz"') -
sz Bxl
L(iocl,iq2, - .)ei(“lxl“’ax2+"') (8)

there results from equation (6) by comparison of coefficients

A(al,ag, .o .>
B(al,az, .. .) = (9)
L(lal,iag, .. .)
It now remains to determine A(al,ag, . .) corresponding to the condi-

tions (4) and (4a). From equation (7a) there follows first by Fourier
inversion

Aay,ap « - o) = (Zﬂ)mff. . .ffe-i(a'lemzx2+"')d8

and thus in the limiting case (equation (ka))

A= (20) " (10)
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Substitution of equations (9) and (10) in equation (7b) finally yields
the desired solution

0 = (g,t)'n/], . f et (exrtaznzt .. ) da) day » - - day  (11)

L(iay,iap, . . .)

The integral (11) is identical with the method of N. Zeilon6 for
preparation of solutions of linear and homogeneous differential equa-
tions with constant coefficients for a prescribed pole-type singularity
of the solution. The basic idea of Zeilon's motivation of the integral
formula (11) also is the utilization of the identity (8). However,
whereas Zeilon gives first consideration to the requirement of repre-
senting the solutions of equation (6) prescribed arbitrary source distri-
bution of f by means of the "fundamental integral," this integral results
in our method more directly from Fourier's integral representation of the
functions f and u and subsequent limiting process. The method may be
regarded as mathematically strict if a sequence of suitable analytic func-
tions f has been selected and the representation of f and u does not
encounter any difficulties before the application of the limiting process.
The limiting process to the final formula (11) may then be performed with-
out hesitation.

7
2. CLASSIFICATION OF THE TYPICAL CASES

We return to the initial equation (1') and, with the use of L,
make in it corresponding to equations (2) and (8) the replacements

d . 5] : 5] 0
- > - —_—> —_—->1 — > i
ot e ox 1® oy P oz 7
- (az + ﬁ2> forn =2
b=ty —>

- (az + BZ + 72> for n =

|
OV

(We write furthermore x, y, 2z, and o, B, 7 instead of X4

and ai.) Then the fundamental solution u = F Dbecomes according to

equation (11):

oy, Zeilon, Arkiv f&r Matematik 6. 1911, 9. 1913/1k4; compare Frank-
Mises, Bd. I. S. 862ff.

TNACA editor's note: The original German version of this document
has this section as number 3, but this 1s believed to be a typographical
error and has been changed to number 2 to provide consecutive numbers for
this translation.
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(a) For the plane problem (n = 2)
o 1 (ax+By)
F = /f da dp (12)
(Zvr)2
with
2, = (1 - ¥2)a2 + 2 + 2kMa - x° (12a)
(b) For the spatial problem (n = 3)
+oo
i
F=-—> M- et (wxepyyz) | ap dy (13)
(2r)3 ol Q3
with
.(23 = (l - Mz)ccz + [32 + 72 + 2kMa - kz (13a)

if we introduce instead of w and U +the propagation parameter k and
the dimensionless Mach number M

k=2 M= (14)
(o] c

We consider first the plane case. Obviously the integrand of the
fundamental solution (12) becomes infinite if the Fourier coefficients
a, B lie on the conic section 92 = O of the real Fourier plane. The

equation of the characteristic conic section may be written, according
to equation (12a)

(1 - M2)2<cx, + __1_<_M__§)2 +(1 - M2)p2 = x2 (15)
1 - M

This equation shows that Qz = O represents an ellipse (in the limiting

case M = 0 a circle), parabola, or hyperbola, according to whether
M<1, =1, or >1. Correspondingly, the differential equation (3) is
of elliptic, parabolic, or hyperbolic type. Figure 2 represents a number
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of conic sections Qp = 0 for various values of the parameter M. All

conic sections pass through the points o = 0, f = tk, and are mirrored
reflections with respect to the a-axis.

For the spatial problem, Bg on the left side of equation (15) is to
be replaced, in conformity with equation (13a), by B2 + Y2, The surfaces
05 = 0 are generated by rotating the conic sections of figure 2 about

the .a-axis and thus represent a sphere (M = 0), ellipsoids of revolution
(0 <M < 1), a paraboloid of revolution (M = 1), or bi-sheeted hyperboloids
of revolution (M > 1).

Following, both the plane and spatial problem will be treated sepa-
rately for the elliptic, the parabolic, and the hyperbolic case. The
elliptic case may be completely traced back to the special case M = 0.

The parabolic and hyperbolic cases, however, require special considerations
depending on the various connections regarding the characteristic curves
{lo = 0 and surfaces 93 = 0, and on the stipulated behavior of the solu-

tion at infinity. In all cases, the selection of the integration paths
is the decisive factor.

3. THE ELLIPTIC CASE (SUBSONIC REGION)

(a) Plane Problem

In the two dimensional elliptic case, M < 1, equation (15) represents
an ellipse. If we write its equation in the normal form

2
(@ -ap)" g2
— +b—z=1 (16)
we have
k k kM

(16a)

a =

= b = ——— aoz___
1 - M2 \/1-M2 1 - M2

If we furthermore make an affine transformation in the a,B plane, as well
as in the x,y plane, by putting

' M - = X -
a' =\l - Mz(a - GO) B' =B £ = 7T=T=§§ n=Yy (17)
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the fundamental integral (12), (12a) assumes the form

(a't+p'n)
F = o2 /f : da' ap' (18)
2\/1 MRN g2 4 p'2 L2
where « had been equated
o= —K (172)

V1 - M2

the integral appearing in equation (18)

iopx

e

Vi - 2

as a function of the variables §&,0 is therefore the same which would
result for the case M = 0 with the propagation parameter k = Kk, This
last integral, however, represents in the known manner, a cylindric wave

Except for the factor

outgoing from the coordinate origin in £,7n, since the equation8

£ o
g (1) (kp) =2 f[ Salall aN au 0 = \/22 + 12 (19)

bi O (20)2 0 N2 + 12 - k2

(1)

order if (which will be discussed in more detail later on) the infinite
integration paths, with respect to A and H provided in equation (19),
are conducted on suitable paths in the complex A- and d-plane. (Other-
wise an incoming or standing cylindric wave would result.) If we regard
the result of equation (19) for the present as prescribed, we cobtain, if
we substitute equations (16a), (17), and (19) in equation (18)

gl Sk -

1-M ’

F = i e Ho(l) k X+ y° (20)
oo \1o- M2 2

is valid; therein Hj, signifies the first Hankel function of zero

Cf. A. Sommerfeld, elsewhere.
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Turning to the discussion of the terminal formula (20), we remark

first that the Hankel function Ho(l) for large values of its argument
kP shows asymptotic behavior

(1) R ei{np- i)
Hy ' (kp) —> dnnp (21)

1
The factor HO( )(Kp) in equation (20) corresponds, therefore, taken by

itself with consideration of the time dependency selected, compare
equation (2), to an outgoing cylindric wave in the §,n plane. The
space-time dependency of the phase is largely modified by occurrence of
the factor

The phase ¢ thus becomes, again asymptoticaily, according to equation (20)

[ 2
o= M oxx + X X + yg It (22)
1 - M Vi -2 \L - M2 I

If we consider, for instance, the propagation of the special phase surface

¢ = - &L an elementary conversion of equation (22) yields

pig
N

wM \2 o am>2
- —_—t + —
(x X ) Y k

or, with consideration of equation (1k4),

2 02t2

(x - Ut)2 +y (23)

This simple result signifies that the surfaces of constant phase are propa-
gated, in relation to the flowing medium, asymptotically at the normal sonic
velocity c¢, whereas their center is carried along at the velocity U of
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the flow, just as to be expected on the basis of Huyghens' construction
of the elementary waves. Going beyond the asymtotic agreement with the
geometric construction of the elementary waves, our rigorous formula (20)
remains correct up to arbitrary proximity to the sound source at any rate
as long as the idealizations leading to the wave equation (1) ("small"
amplitudes, "point-shaped" sound source) hold true, thus also in a region
where Huyghens' principle would fail.

It is interesting to investigate in addition to the phase the
behavior of the amplitude. According to equations (20) and (21), the
decrease of the amplitude takes place asymptotically as 1/%5. The
surfaces of constant amplitude are therefore cylindric surfaces of
elliptic cross-section, the axis of which (parallel z) lies in the sounds
once visualized as rectilinear. The decrease of the amplitude, and there-
with also of the intensity, takes place more rapidly in the *x direction
than in the ty direction. Here, different from the phase, the direction
of the flow 1s never one-sided.

Finally, the limiting case lines Kk —> 0 will be considered. It
corresponds to w = O, thus to a static pressure disturbance, as is
caused by the flow against a thin rod normally to the flow direction.
According to equation (12a) 92 becomes therein

o, = (1 - 12)eR + 62 (24)

therewith

and after the known transformation

1

F = (25)

en\/l - M
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Here also the decrease of the pressure disturbance in the x direction

takes place more rapidly than in the ty direction by the factor -——JL———.

\Il-ME

%2

The characteristic appearance of the argument p = + y2 instead

L - M
of WXg + y2 for M =0 is usually denoted as Prandtl's rule.

(b) Spatial Problem

A1l results derived for the plane elliptic case may be transferred
directly to the spatial problem. One obtains from equations (13) and (13a),
maintaining the substitutions (equation (17)) supplemented by 7y' = 7,
C= z,

. +0o . 13 ' 1
1 Gloox RACEL RN ’
. da' dp' dy (26)
' JJJ 1 1
21) 1 - M2 2 + p'2 4+ y'2 - 2

(with ag and «k having the same values given in equations (16a)
and (17a).

If one, furthermore, makes use of the Fourier representation of the
spherical wave outgoing from the zero point & =1 =§ =0

~
400

1 oike o1 (NE+HVE)
/] f d\ dm av
b o or )3 N o+ 2 V2 o 2 e

_\/§2+n2+§2 N

(27)

Lo
|

(postponing intended remarks on the integration paths), there results
from equations (26) and (27), with consideration of equations (16a)
and (18a), the terminal formula

2

i kx €XP + y + z
_j_L_e l—h { Vl - M \/ (28)

byt 1 - ME
+ y2 + 22

i

1-M
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The discussion is analogous to that for the plane problem. The
surfaces of constant phase are spherical surfaces which are propagated
in relation to the flowing medium at the velocity c¢, while their center
is simultaneously carried along. This is rigorously valid up to arbi-
trary nearness to the sound source. The surfaces of constant amplitude
and intensity, respectively, are the surfaces p = const; the intensity

decreases as 1/02, thus more rapidly in the tx-direction than in the
ty- and tz-direction.

(c) For the sake of completeness, a short supplementary remark
should be added to the proof of the formulas (19) and (27) for the Fourier
representation of the cylindrical and spherical wave. Regarding detailed
treatment of these problems, we refer to A. Sommerfeld, elsewhere.

Let, for the plane case, the double integral (19) be designated

400
1 (AE+H
Gy = - L \jypel( E+un) an du (19)
(2].[)2 ?\2 + lJ.2 - k2

- 00

Obviously, this integral has at first not yet a unique meaning, since

the integrand becomes infinite on the circle %2 + u2 = x2 in the real
A, plane. If one introduces in this plane, and likewise in the x,y plane,
polar coordinates

>
"

o cos ¥ B =0 sin ¥ N+ W2 = g2

P sin @ §2 + n2 = p2

Ve
1l

P cos @ n

and visualizes the integration with respect to the azimuth | before

the integration with respect to p, one may write eguation (19), with
consideration of the known integral representation of the Bessel function
of zero order

N . 21
1 iz cos X 5., _ 1 iz cos(V-9)
JO(Z) B 5?\/; -© dx = Z;Fb/; © v (29)

after a simple transformation, in the form

00

o 1 O(UD)
G2_ gj;modc (19a)
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In equation (192) the indeterminateness of the integral is not yet elimi-
nated due to the integrand's becoming infinite for o¢ = k. The integral
(19a) represents a cylindrical wave extending to infinity, only when the
integration path is transferred to the negative-imaginary complex o¢-plane,
leaving the point ¢ = k to the left in the manner characterized in fig-
ure 3. The correctness of the contention is known to result immedistely
from the decomposition of the Bessel function JO into the two Hankel

functions Ho(l) and HO(E)

Io(op) = %%{0(1)(@) + Ho(g)(op)} (30)

of different asymptotic behavior at infinity of the complex o-plane, and
from the deformation of the integration paths indicated in figure 3. The
integral (19) may then be reduced to the residue of the constituent part of
the integrand stemming from the first summand in equation (30) for o =«
and yields

6, = = 1, (xp) {19p)

(2)

the argument (compare equation (21)), equation (19b) actually corresponds
to an outgoing (divergent) wave. Had the integration path been trans-
ferred from equation (19a) to the positive-imaginary complex o-plane, an
incoming (convergent) cylindric wave would have resulted, corresponding to

Because of the asymptotic behavior of HO for large real values of

the asymptotic behavior of HO(Q). Completely analogous relations prevail
for the spatial problem (G3)'

The behavior of the wave outgoing from the zero point divergent
toward infinity may be comprised according to Sommerfeld into an analyti-
cal condition, which is denoted as radiation condition. It reads for the
plane and for the spatial problem, respectively

lim (905 | - lim (0G5
p_amﬁ(ﬁ - 1KG2> = 0 or, respectively P oo P ?p- - 1KG3 =0
(31)

on the infinitely distant boundary of the plane and spatial region,
respectively. If G is interpreted as Green's function of the infinite
domain, the addition of a condition of the type (31) together with the
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known remaining conditions for G is sufficient for uniquely fixing
this function9.

In contrast to the cylindrical and spherical wave G, and G5

propagated from the zero point isotropically in all directions (compare
equations (19) and (27)), one deals in the general elliptic case
according to equations (20) and (28) with unsymmetric radiation. We
omit formulating for this more general case a radiation condition for
infinity in analogy to equation (31) and are content with having reduced
the general elliptic case O <M <1 +to the isotropic problem M = O.
The difference between outgoing and incoming wave is therefore brought
about solely by the selection of the integration path in the general
elliptic case as well. The possibility of reducing the sound propagation
in case of subsonic approach flow to isotropic sound propagation is
physically understandable since the propagation of a sound wave is modi-
fied by the existence of a flow U <c but, basically, not essentially
changed; however, the relations become completely different if we now
turn to the hyperbolic and parabolic case.

4. THE HYPERBOLIC CASE M >1 (SUPERSONIC REGION)

(a) Plane Problem

In the hyperbolic case, the characteristic conical sectio
is a hyperbola. If one writes its equation in the normal form

[a]
l\?

]

(@]

2 2
x -
(-co) & _, (32)
a'?2 b'2
one has according to equation (15)
at = X bt = —X ay = KM (32a)
M -1 M2 -1 M2 - 1

By virtue of the affine transformation

A= WP -1 (@ - ) o= p £ = ——— n=y (33)

9Compare also W. Magnus, Jahresberichte d. DMV, vol. 52, p. 177,
1943,
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the fundamental integral (12) becomes

1(NE+pen)
F 1 an (34)
(2,()2 v - l[/"AQ 2 W

- - K

with

(34a)

The position of the characteristic hyperbola

92=—?\2+u2+ K‘.2=O

in the A,p plane obviously suggests performance of the integration over
N before that over p (compare fig. 4). The integration over A then
leads first to the integral

+eo Ing
e

.[()\ s w2+ 2 )()\_Vu2 + k2 )

the integrand of which has a pole each at A = +Vu2 k2. In order to
eliminate the indeterminateness of the integral, the integration path
leading from -« to +« has to be suitably detoured into the complex
A-plane. The type of transfer of the integration path again can be
selected only on the basis of physical considerations. Since the sound
wave approaches here supersonic velocity, the sound excitation must be
required to disappear for x < O. Since in equation (35) x is replaced
by &, it is therefore a requirement that the integral (35) yields zero
for negative values of &. Except for continuous deformations in which
no singularities are transversed, the integration path is therewith fixed;
one must make a detour into the negative-imaginary complex A-plane,
leaving both poles to the left. If & is positive, the integration path
(compare fig. 5) may be replaced by a path in the infinitely distant
positive-imaginary A-plane and one cirecling, in positive sense, each of

an (35)

the poles at = p2 + k2. TFor negative &, in contrast, the shifting to
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the infinitely distant negative-imaginary A-plane results in zero as
it should. One obtains thus by formation of residues

/+°° an = d-on BILEWE H KE L e o
T Y Vo2 + k2
—co0 b= T K (35a)

0 for £ < O

Therewith the double integral occurring in equation (34) may be
reduced, disregarding the factor -2rn, for & > 0 to the simple integral

to . J 2 2
K =\/P elpq sin EYpu“ + «k a (36)
-® VHE + K2

Its calculation is achieved in the following manner. If one puts

g = ksinh3 pg + K2 = kK cosh?d __Jﬂi___ = 443

VME + g2

K becomes

_ L ["" ] ix(t coshd+qsinhd)_-ix(gcosh9-nsinnd)l
- = -

9

If one substitutes furthermore

¢ = Tcosh X 1 = TsinhX 52 - n2 = 12 (37)
K may, with consideration of the addition theorem
cosh o cosh X % sinh § sinh X = cosh (§ ¥ X)

also be written

1 +o [ ikT cosh (9+%) -ikT cosh (3-%)
K = §T\/ﬁ e -e dd (36a)

-
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1 2
One now uses for the Hankel functions HO( ) and HO ) an integral
representation going back to HeinelO
1 h teo 4
( )( ) - __L/“ 1zcos s Ho(e)(z) - . j%\jp e~1z cosh 9 44
i J_g

(38)

Since the appearance of %X beside 4§ in equation (36a) is obviously
insignificant, because of the integration limits lying at infinity, one
obtains therewith

1, (1) (2)
K = Z i {HO (KT) + HO (KT) = j'('J-O(KT) (39)
Through the substitution, equation (37), evidently only a part of

the entire ¢,n-plane is covered; for positive T's, only the region
characterized in figure 6 by I and cross-hatching, respectively. That

K shows for negative values of T in the region II, according to
equation (563), also values different from zero, is 1n51gn1flcant since
the integral (36) has been defined orlglnally only for positive values
of &. It is shown, furthermore, that the integral (36) results in zero

2
Ofeine's integral representations for Hn(l)(z) and Hn( )(z) are

© 3
Hn(l)(z) (-,i)n+l‘§f 22080 o ny as
0

T

[oe] .
Hn(g)(z) _ in+1.gu/‘ Sizcoshd o g as
%

0

with the first representation, for arbitrary n, being valid only for
the upper (pos1t1ve imaginary), the second only for the lower (negative-
imaginary) z half-plane. Specially for n = O Dboth representations are
valid also on the real z axis, which fact is made use of in the text.
Compare, for instance, R. Weyrich, "Die Zylinderfunktionen und ihre

Anwendungen", B. G. Teubner, 1937, p. 30.
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in the regions III and IV. If one puts for this purpose

¢ = 7' sinh ¥ n=7'cosh ¥ n° - &2 = 12 (37a)

(t+* >0 in III, 7'< O in IV), one obtains from equation (36), with
consideration of

sinh 9 cosh ¥ ¥ cosh 9 sinh ¥ = sinh (9 T y)

actually

S o
K - {elm sinh(9+y)_gikT' sinh (13-‘1‘)](113 =0 (39a)

2iJ _,

The function K, defined by the integral (36), thus represents a dis-
continucus function which assumes values different from zero, only in
the regions I and II, but disappears in III and IV.

Finally, one substitutes the expression for K in F, equation (34).
If the factors are combined, there results

1 eiaoX

- (2ﬂ)2 VMQ -1

and hence after insertion of equations (37), (39), (32a), and (3ka)

F (-2nK)

-
i—BM—kx
F=-3—=27J, | -y
M2 - 1 M2 - 1YM2 - 1
( (40)
for || < —% _and «x > 0; otherwise F =0
W2 - 1
S

The analytical result, that the sound propagation is limited to a
conical region situated symmetrically to the x-axis, including the positive
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x-axis, has the simple physical significance: the appearance of the Mach
angle a. In fact, there results for the boundary of the propagation
range for the sound excitation from Huyghens' elementary-wave construction
immediately (compare fig. T)

tan a = = (41)

sin a = c .
U

Lo
—
=
o
1
o

The wave system represented by equation (40) appears, in contrast to
the relations in the elliptic case, as a standing-wave system with fixed

nodal lines (Bessel function Jo)wduch is modulated by a progressing
wave (exponential factor). One can explain this behavior in detail in
the following manner. If one splits the Bessel function Jo in equa-
tion (40), corresponding to equation (39), into the two Hankel func-
tions Ho(l) and Ho(g) and uses their asymptotic representationsll

~ m~, e - [ | i - ~ 3 - - R - I N, Py L T
10r SUlllCienily Jlarge vatucs ULl Lle argumeiiv

there results

-i( x x2 - 2_%)
2 —iut
. Wo-1 M2 Jlu (40a)

- wt (42)

11
Compare, for instance, R. Weyrich, elsewhere, p. 46; compare also

equation (2la) in the text.
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with the indices 1, 2, and the upper and lower sign referring, respec-
tively, to the origin in the Hankel functions Ho(l) and Ho(g). If

one now considers for instance the propagation of the phases @l 5 = + %,
2

an elementary calculation yields just as in the elliptic case

(x - Ut)2 + y° = %2 (43)
The lines (or surfaces) with the constant phase values ol = - ﬁ
and 0, =-+% fi1ll, therefore, at any rate sectors of the same circle

propagating at the velocity c¢, the center of which is propagated along
the positive x-axis at the velocity U > c¢. It has to be noted that the
argument kT of the Bessel or Hankel functions must always be positive.
Hence, there results that, viewed by an observer located at large positive
x, the first summand (in equation (40a)) represents a convex wave out-
going at a velocity wy > U, the second summand, a concave wave outgoing

at a velocity wo, <U (fig. 8). By superposition of the two outgoing

partial waves, the entire wave system originates. Thus, one may speak
in the hyperbolic case of directed radiation.

It should be stressed that the circles moving away, which result
after construction of the elementary waves, do no longer turn out to be
curves of constant phase (for rigorous consideration). Rather, a phase

shift ¢, - 9, =-—% exists between the front and rear part of these

curves (in the sense of the direction of propagation). The gradual phase
change occurs in the neighborhood of the straight line bounding the Mach
propagation range where the asymptotic representation of the Hankel
functions is no longer sufficient (indicated by cross-hatching in fig. 9).
These deviations from the elementary construction, which only the exact
theory of the propagation phenomenon can disclose, are comparable to those
occurring in the theory of the refraction of wave systems.

According to equation (40), the amplitude is constant on hyperbola
branches kT = const, and decreases, according to equation (40a), like

l/VE; toward the interior of the Mach region. On the straight lines
bounding the propagation range themselves, there occurs a finite Jjump of

F (pressure drop, compression shock) which is the larger the more closely
U approaches the sonic velocity c.
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(b) Spatial Problem

In the transition from the plane to the spatial hyperbolic case
there results from equations (13) and (13a) in analogy to equation (34)
the triple integral

. Fo i(AE+un+ve)
F-_L _el%X k[zym ° an dp dv (L)
(31)5 VME -1 vl 7\2 _ U-2 _ V2 - k2

with the same significance of o5, &, . . ., A, . . . as in equa-

tions (32a) and (33); furthermore, we put for reasons of symmetry v = v,
z = . The integration over AN corresponds exactly to that of equa-
tion (35); likewise, the integration path is to be selected in the same
manner as sub a), with the same motivation as in the case of the plane
problem. One obtains therewith

—~

+ iye sin 2 1 2 4 k°
f 5 ; 5 2d7\=—2tt—§-\-[“—v———for§>0
-o AT - pt - vE -k u2 + v + Kk©
0 for & <O

If one now introduces in the u,v plane, as well as in the n,{ plane,
polar coordinates by putting

o sin ¥ u- + ve =g

1

g cos V¥ 1%

=
1]

p sin @ n2 + cg =

v
"

p cos @

=3
]

|
he]

F becomes

-1 iagx o 2a . 2 2
F o= e J/‘ JF 1P cos (y-p) sin Vo= + & ¢ do ay
(ex)2 M2 - 1 Jo Jo

Vo2 + k2

If one now again makes use of the integral representation of the Bessel
function J, (equation (29)), integrating first with respect to V, one
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obtains further

lOLoX sin E\62 + &

\/[1\71 EﬂJ o2 + k2

The remaining, purely mathematical problem consists in the evaluation
of the integral in equation (45). We shall solve this problem in the
mathematical appendix (section 6, integrals with respect to cylinder
functions) from general viewpoints. Here we should like to remark that
the integration occurring in equation (45) is easily performed for the
special cases p =0 and k = 0. For p = 0O one obtains, if one sub-

F = o do (45)

stitutes No© + k2 = @ the expression which is, at first, indefinite

=0 =\/ﬁ sin EVo® + k° o do —k/P sin (wg) dw (46)
O  ¥o2 + &2

If one notes that in the integrand of equation (45) the (at first omitted)
factor Jo(po) has, due to its oscillatory character, a convergence-

enforcing effect, and that for us only the limiting case of this integral
for p—0 1is of interest, one obtains therewith (for instance analyti-
cally, by introducing in the integrand of equation (46a) a convergence -

enforcing factor e~P® ang finally making the transition to the limits
B—>0) in a unique manner.

_ cos k¢
Tpoo = S22EE (47a)

On the other hand, the integral originating for x = O from equa-

tion (45)

I 20 =L/; Jo(po) sin (pt) do

may be easily calculated according to the residuum method, with intro-
duction of the integral representation of JO and interchange of the

integration sequences; the integral represents the discontinuous functiontl

120¢. G. N. Watson, Theory of Bessel Functions, I. Aufl., s. 405,
equation (6).
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—L_ for |¢] > p(>0)

(47o)
0 for [&| <op

Comparison of equations (47a) and (47b) with the corresponding formulas
for the plane hyperbolic problem suggests generalization to arbitrary o

and k
cos nV§2 - p2
® sin E\o2 + k2 for || > p(>0)
J =f Jo(po) o do = 2 _ o2
« 2
0 02 + & 0 for |g] >p

(48)

In section 6 it will be proved that the performed generalization is
actually Justif'ied.

By inserting equation (48) in equation (45), one may immediately go
over to the final formula for the spatial hyperbolic case; one obtains

q
.M k x2 2 2
i kX COS{——=—x— -yc -z
po. Ll et {VME-l\/MQ-l
ex 2
R o R ( (x9)

for > P _ and x >0; otherwise F = O
y ~ 5

J

The discussion of the basic solution (49) in the spatial case is in
all points corresponding to that for the plane problem. The wave propa-
gation is restricted to the Mach cone. If one splits the standing wave

system characterized by the factor cos {..{}, modulated by the preceding

complex phase factor again into its complex parts

; ,ée_ 2 _ix\2 2
cos {K\’g2 _ 2}= % eln P ‘e ix P

the combination of the first summand with the preceding phase factor
(plane wave) results after the transformation indicated above in an out-
going convex spherical wave, the combination of the second summand with
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the preceding phase factor, in contrast, in an outgoing concave spherical
wave. Altogether there results again directed radiation. Differently
from the plane problem, however, here the phase on a propagated spherical
surface

{x-U(t-T)}2+y2+22=02(t"T)2 (50)

is exact constant, not only asymptotically constant, since here the phase
of the two partial systems is exactly defined by decomposition of the

cos ..} and obviously no phase shift occurs between the spherical

zones pertaining to the partial systems. Accordingly, the Huyghens'
construction of the elementary waves (insofar as it is to contain only

a statement on the surfaces of constant phase) up to arbitrary proximity
to the Mach cone is here justified.

The amplitude is constant on the hyperboloidal surfaces
2
—55——— - y2 - 22 = const and becomes infinite approaching the Mach
M= - 1

cone. On the x-axis (y = z = 0), the amplitude decreases like l/x the

intensity thus like l/x2. The occurrence of amplitudes which increase
with approach to the Mach cone beyond all limits indicates that, rigor-
ously speaking, the validity range of linear theory has been exceeded.
In fact, the Mach cone represents a compression shock for a more exact
representation of which the nonlinear hydrodynamic and thermodynamic
equations must be used.

5. THE PARABOLIC LIMITING CASE: M =1

(a) Plane Problem

The quantity (i, here becomes according to equation (12a)

Q5 = 2ka + B2 - k2 (51)

and after substitution of a = o'+ k/2

Qo = 2ka' + p° (51a)
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The characteristic equation {lo = O thus represents in the ao',B plane

a parabola which passes through the coordinate origin «' =0, B =0
and is opened toward the negative a'-axis. The fundamental solution F,
equation (12), may be written

.k )
12X +o0 s +o0 ia'x
F=-—t ¢° f ap e PY dot —&— (52)
-0 -00 2ka' + B2

The integration over a' may now easily be carried out according to the
residuum method. Here again the choice of the integration path is decisive.
We select it in such a manner that we integrate in the complex o'-plane from

2
-© to + = on leaving the pole of the integrand at o' =-gE to the left.
Then we may replace the integration path, for positive values of x, by a
2
circling of the pole a' = —gE in positive sense whereas for negative
values of x, there results zero. Thus
. _4B2
to o Jla'x %%% e KX for x >0
[ (53)
-0 2ka' + B 0 for x <0

This result justifies subsequently our choice of the integration path.

In fact, it is to be expected according to the principle of the elementary
waves that for a scund source approached by a flow at the velocity U = ¢
no sound excitation is brought about for x <O since the sound propaga-
tion is carried along by the flow at the velocity ¢ 1in the direction of
the positive x-axis.

Substitution of equation (53) into equation (52) now yields for
x >0

dp (52a)

. . B2
o e e
F=-— e e

(2n)%k ~

By quadratic supplement of the exponent, one readily finds hence

2,y2
ik x&+Y

i 2 oo ‘02 -
F=—-12k, X f e 9 ao (52p)
-0

L3
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The integral appearing here is well known as "Fresnel's Integral"

+oo . D
u/\ e™% do = J—- 1-1) = J;e
oo

Therewith, one finally obtains

_iéﬂ 15 EEiXE
L 2 X

€ € for x> 0

F=¢2Var Vix (54)

0 for x<«< O

First, one considers again the curves (or surfaces, respectively) of
constant phase. If one inserts in the expression for the phase

2 2
=k xZ+ Yo o
2 =3 X %r wt

there results because of k = w/c immediately

{% -c (¢t - 7)2}2 + y° = c2 (t - 7)2 (55)

Thus, the surfaces & = const (v = const) form, as is to be expected
according to the construction of the elementary waves, a system of circles
which are tangent at the coordinate origin x =y = O and the centers of
which f£ill the positive x-axis (fig. 10). The propagation of the phase
surfaces in the medium takes place to all sides and up to arbitrary proxi-
mity to the sound source at the velocity c¢. On the other hand, it is
noteworthy that the decrease of the amplitude over the entire front occurs

independently of y with l/\fgl With the approach of positive x-values
to x = O the amplitude increases beyond all limits; for x < 0 it is
Zero.
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(b) The Spatial Problem

93 becomes according to equation (13a) and with replacement of o
by o' as in the plane case

Q5 = 2ko+ B2 + 97 - K° = 2kat + B + o7 (56)

therewith the fundamental integral (13), if one visualizes the integration
over a' carried out in a manner exactly corresponding to equations (52)

and (53)

+o0 a
1 1(By+yz) [+ o' x
F = ——l_._._e /] dB d7 e f da! e
(2“>5 g - 2ka' + 132 + 72
i L
2
. iKx I i(By+7z- B2y x) (57)
- i 2N 2k .. o .
=y-— ¢ e dp dy for x> O
(2n) 2k JJ
0 for x< O
\_
v,

If one uses furthermore polar coordinates in the B,y plane Jjust as in
the y,z plane

o sin ¥ BS + 52

]
Q

hov}
n

i

g cos V¥ 7

(58)

p cos @ pA p sin @ y2+z2

i

>
I
n
©

one may write the integral (57) for x> O

i 2 2k
e

F = - —m—
(211)51{

o0 2
1Kx 21(10[3 cos (y-9)-i<x
fe o do 4dy (57a)

v

First performing the integration over YV, one obtains with consideration
of the integral representation of the Bessel function JO equation (29),

from equation (57a)
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. i%x o -iZts

F=--2_ce JF J (po)e K g do (57b)
Lrk o ©

The integral which appears here is of the type of the integral named after

H. Weberte

2,2 a

2
% -0t -

fJo(at)e tdt:—le-e b
0 2b

=

and may therefore be reduced to an elementary function; for a = p,

® ’1?);:02 k l%‘ﬁﬁ
q/\ Jo (po) e 0 do = — e X
ix
0
and finally
ik x24P2
X
1 e °
F =¢- for x>0
ey X (
59)
0 for x <O

The structure of this formula is perfectly analogous to that of
equation (54) for the plane problem. The surfaces of constant phase are
spherical surfaces which are all tangent at the point x = p = 0 and the
centers of which again £ill the positive x-axis. The amplitude is con-
stant on the planes x = const (thus independent of p) and, corresponding
to the i?tensity relations for the spatial problem, decreases for positive
x as 1/x.

Furthermore, the analogy between equations (54) and (59) and the
basic solution (19b) of the plane problem (compare also the asymptotic
representation (equation (21a)) and of the corresponding spatial problem

13G. N. Watson, Theory of Bessel-Functions, Cambridge 1922, p. 392.

1“Convergence of the integral exists as long as larg bl s %.
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for the case M = O of disappearing approach flow is remarkable. Finally,
it should be noted that the formulas (54) and (58) as limiting cases

M—1 can be represented only from the hyperbolic case M > 1, not the
elliptic M <1,

6. MATHEMATICAL APPENDIX
Integrals Over Cylinder Functions
It remains to append the proof for the integral formula (48). Since
this proof requires a few more general considerations, we shall, in con-
nection with it, derive a few more related integral formulas.

We start from Heine-Schafheitlin's integral representation (38) of

the Hankel functions Ho(l) and Ho(e) which we write

+00 17 coshd (l) » 40 =iz coshdd (2)
f e dy = inHp'~’(z) f e a9 = -inHp'“/(2)

-0 -

(38)
We now consider the integrals
Jf—w +iVH2+K2§ +ipn - -iVu2+K2§ +ipn
e
= —— O dp_ K = f .e_____.___. e d“
2
;! +o U2+ to w2 + 2
(60a, b)
As on page 18 we substitute
u2 + k2 = k cosh 9 =K sinh 3 ———EE——— = 49
2 2
+
A (37)
£ = 17 cosh X n =T sinh X 52 - ng = 12

and thus obtain, according to the addition theorem of the hyperbolic
functions and to the integral formulas (38)

. r e cosh (8+X) - inHO(l)<K m) (61a)

J e
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00 . 2
K, =\jp+ o ~IT cosh (8 -X) g9 = 'iﬂHO( )(K 2 _ ﬂ2> (61b)

both formulas are valid for the range of representation of the coordi-
nates &, n by the equation (37) (X real), that is, for tel = Inl.
In exactly the same manner as on page 20, one proves that K3

and Ko disappear for |&| < In|. The integrals (60a) and (60b) thus
represent discontinuous functions which assume values different from
zero only in the regions I and II of figure 8, but disappear in the
regions III and IV. Thus we have

P4 oilfiBee i g - dson W2 - 7) tor s

| z In]
o L2 1 k2 0 for fe| < |
(62a)
4o _-ﬂ 2 g
Jf e nEHe et M au = -iﬁHo(g)(K e2 - ﬂ2> for [t] 2 |n]
~oo 2 4 K 0 for |¢] < |nl
(62v)

In order to indicate the discontinuous character of the integrals
and K, 1in the notation, we shall write below instead of the right sides

of equations (62a) and (62b) abbreviatedly inﬁo(l)Oc%E - q2>

= (2 J
and -inHO( )(n §2 - qe), indicating by a bar above the symbol that the

Hankel functions are to be applied only for |[&| 2 |n|, however, zero.

We now use a new integration variable v in equations (62a) and (62b)
by putting

e + k2 = vy Z x wo= t\we - k€

NV
O
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We thus obtain

ﬁ:/ﬂw...@=/@...m+/: . . .du

or else

K =2 (63a)

[ oo P ey O

K o (2

In exact analogy

2 -i -
Jf £o8 ﬂ Ve - x e 1ve dv = -iﬂHo(g)(Kygg - n2) (63b)

K2

By addition and subtraction of equations (63a) and (63b) there results
with consideration of the mutual connection of the cylinder functions

Jolz) = % Ho(l)(z) + Ho(g)(z) No(z) = %; Ho(l)(z) - HO(2)(Z)

(JO Bessel function, Ny Neumann function of zero order), then further

1
]

%N‘O(K £2 - n2) (64a)

cos VvE dv

36(&V§2 - ng) (641p)

~
8
Q
(o]
9]
.j
1]
[N
=]
<
v
ol
<
1
+

ru
oA
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(the bar over the symbol having the same significance as above).
application of Fourier's inversion formulas
, 00 2 [s 0]
g, (u) =~/; £1(t) cos ut dat f1(t) = ;¥/; g1(u) cos ut du
o T OQ
go(u) =d/> fz(t) sin ut dt fg(t) = §¥/‘ go(u) sin ut du
0 TJo
one now obtains from equations (6ha) and (6k4b)
\/ 2 2
- COS MW = K- for |v| 2 | %]
+00 _( [2—2) ve - k2
No\k¥e -1 cos vg dE = «
Inl 0 for |v]| < [k|
_
~
|’ 2 2
o +cos W - K= for |v]| > |k
f 3O(K¢ge - n2> sin vg dg =< vE - k2
inl 0 for vl < |«
If we finally put
+ §2 - n2 =T £ = +V72 + n2 ag = T dr
27 12
the integral formulas (65a) and (65b) assume the form
00 . ,,2 2 ) 2 2
JF JO(KT) sin vV1% + 1% . 4. = _u/‘ No(xt) 28 viTe + 7 . ar
1
" 2 2
~{Ses MW - K for lvl >k >0
2 _ .2
© for |v| < K

By

S

(65b)

(66)
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The first of the integral formulas (66) is identical with equation (48)
as one recognizey immediately if one makes in the designation the
replacements

K —>p v —> ¢ T —>0 n —>kK

quod erat demonstrandum.

Translation by Mary L. Mahler
National Advisory Committee
for Aeronautics
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M=15

—» 0

Figure 2.- The characteristic conic section ©5(x,8) =0 for various
values of the Mach number M.

(2)
YHo

Figure 3.- Complex o-plane. Integration paths for the constituents of
the integrand of (19a) corresponding to Jg, HO<1), and HO(Z).
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Figure 4.-

Position of the characteristic hyperbola in the

A, w-plane.
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Figure 5.- Integration paths in the complex A -plane for & >0 and
£ < 0.

39
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Figure 6.- Division into regions in the &, n-plane. Plotted hyperbolas:
T = const (I and II), 7' = const (III and IV).
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Figure 7.-

Construction of the Mach angle.

41
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Figure 8.-
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——— Outgoing convex wave
— Qutgoing concave wave

Splitting of the wave system into two partial systems.
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Figure 9.- Region of transition (cross-hatched) from ¢ = - /4 to

® =+7/4 forthe plane problem,
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hct

Figure 10.- Propagation of the surfaces (or waves, respectively)
¢ = const.
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