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NOTICE 

This report deals with a method of studying the equation of cylin-
drical waves particularly indicated for the solution of certain problems 
in aerodynamics. One of the most remarkable aspects of this method is 
that it reduces problems of a hyperbolic equation to problems of harmonic 
functions. We have applied ourselves here to setting up the fundamental 
principles, to developing their investigation up to calculation of the 
pressures on the visualized obstacles, and to showing how the initial 
field of ttconical flows" was considerably enlarged by a procedure of 
integral superposition. 

Such an undertaking entails certain dangers. In France the exist-
ence of conical flows was not known before 1914 6. Abroad, this question 
has, for a long tiine, given rise to numerous reports which either were 
not published or were published only after a certain delay. Thus it 
must be pointed out that some of the results here obtained, original in 
France when found, doubtlessly were not original abroad. Nevertheless 
it seems possible to me to specify a certain number of points treated 
in this report which, even considering the lapse of time, appear as new: 
the parts concerning homogeneous flows, the general study of conical 
flows with infinitesimal cone angles, the numerical or analogous methods 
for the study of flows flattened in one direction, and a certain number 
of the results of chapter IV. Moreover, even where the results which we 
found independently were already known abroad, the employed methods are 
not always identical. 

Another peculiarity should be noted. Since these questions actually 
are everywhere the object of numerous investigations, progress has made 
very rapid strides. This report edited at the beginning of l91-8, risks 
appearing, in certain aspects, slightly outmoded in 191i-9. To extenuate 
this inconvenience we have indicated in a . brief appendix placed at the 
end of this report the progress made in these questions during the last 
year. This appendix is followed by a supplementary bibliography which 
indicates recent reports concerning our subject, or older ones of which 
we had no previous knowledge. 

I should not have been able to successfully terminate this report 
without the advice and support of my teacher, Mr. J. Peres, and it is 
very important to me to express here my great respect for and gratitude 
to him. 

I should equally cite all those who directly or less directly have 
contributed to my intellectual development and to whom I owe so much: 
my teachers of special mathematics and of normal school, Mr. Bouligand 
who directed my first reports, Mr. Villat, promoter of the Study of the 
Mechanics of Fluids in France whose brilliant instruction has been of 
the greatest value to me.
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I also feel obliged to thank the directors of the O.N.E.R.A. who 
have facilitated my task, and especially Mr. Girerd, director of aero-
dynamic research.
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PREFACE 

With his research on conical flows and their application, Mr. Paul 
Germain has made a major contribution to the very timely study of super-
sonic aerodynamics. The present volume offers a comprehensive èxpose' 
which had been still lacking, an expose' of elegance and solid construc-
tion containing a number of original developments. The author has fur-
thermore considered very thoroughly the applications and has shown how 
one may solve within the scope of linear theory, by combinations of 
conical flows, the general problems of' the supersonic wing, taking into 
account dihedral and sweepback, and also fuselage and control surface 
effects. The analysis he develops in this respect leads him to methods 
which permit, either by calculation alone or with the support of 
electrolytic-tank experimentation, complete and accurate numerical 
determinations. 

After a few preliminary developments (particularly on the validity 
of the hypothesis of linearization), chapter I is devoted to the gener-
alities concerning conical flows. In such flows the velocity components 
depend only on two variables and their determination makes use of har-
monic functions or of functions which verify the wave equation with two 
variables according to whether one is inside or outside of' the Mach 
cone. Mr. Gerinain specifies the conditions of agreement between func-
tions defined in one domain or in the other and shows that the study of 
conical flows amounts in general to boundary problems relative to three 
analytical functions connected by differential relationships. He studies, 
on the other hand, homogeneous flows which generalize the cone flows and 
are no less useful in the applications. 

From the viewpoint of the linear theory of' supersonic flows one 
must maintain two principal types of' conical flows, bounded respectively 
by an obstacle in the form of a cone with infinitesimal cone angle, and 
by an obstacle in the form of a cone flattened in one direction. 

The general investigation of the flows of the first type is entirely 
Mr. Germain's own and forms the object of chapter II of his book. By a 
subtle analysis of the approximations which may be legitimate'Mr. Germain 
succeeds in simplifying the rather complex boundary problem he had to 
deal with; he replaces it by an external Hubert problem. He shows how 
it is possible, after having obtained the solution for an orientation 
of the cone in the relative air stream, to pass, in a manner as simple 
as it is elegant, to the calculation of the effect of a change in inci-
dence. He gives general formulas for the forces, treats completely 
diverse noteworthy special cases and finally applies the method of trigo,-
nometric operators which is also his own to the practical numerical 	 / 
calculation of the flow about an arbitrary cone. 	

/ 
The determination of movements about infinitely flattened cones has 

formed the object of numerous reports. The analysis which Mr. Gerinain 
develops for this question (chapter iii) contributes simplifications, 
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specifications, and important supplements. Thus he evolves, in the case 
of an obstacle inside the Mach cone, a principle of minimum singularity 
which enters into the determination of the solution. Mr. Germain gives 
two original methods for treatment of the general case: one utilizes 
the electrolytic-tank analogy, surmounting the difficulty arising from 
the experimental application of the principle of minimum singularity; 
the other, purely numerical, involves the trigonometric operators quoted 
above. 

In the last chapter, finally, Mr. Germain visualizes the composi-
tion of conical flows with regard to aerodynamic calculation of a super-
sonic aircraft. Concerning this subject he develops a complete theory 
which covers most of the known results and incorporates new ones. He 
concludes with an outline of the flows past a flat dihedral, with appli-
cation to the fins and control surfaces. 

The creation of the National Office for Aeronautical Study and 
Research has already made possible the setting up of groups of investi-
gators which do excellent work in several domains that are of interest 
to modern aviation and put us on the level of the best research centers 
abroad. Mr. Paul Germain inspirits and directs one of those groups in 
the most efficient manner. He is one of those, and the present report 
will suffice to bear out this statement, on whom we can count for the 
development of the study of aerodynamics in France. 

Joseph Peres 
Member of the Academy of Sciences 
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NATIONAL ADVISORY COMMII'TEE FOR AERONAUTICS 

TEChNICAL MEMORANDUM 135 11-

GENERAL THEORY OF CONICAL FLOWS AND ITS APPLICATION


TO SUPERSONIC AERODYNAMICS* 

By Paul Germain 

CHAPTER I - GENERALITIES ON CONICAL FLOWS 

1.1 - Equations of Supersonic Linearized Flows 

1.1.1 - General Equation for the Velocity Potential 

Let us visualize the permanent irrotational flow of a compressible 
perfect fluid for which the pressure p and the density p are mutual 
functions. The space in which the flow takes place will be fixed by 
three trirectangular axes Ox1 , Ox2 , Ox3 , the coordinates of a fluid 

molecule will be x1, x2 , x-,, the projections on Ox of the veloc-
-*	 -)	 - 

ity V and of the acceleration A of a molecule will be denoted by 
u and a1 , respectively. 

The fundamental equations which permit determination of the flow 
are the Euler equations

1	 - A = - grad p 

the equation of continuity1 

* hILa thorie génrale des mouvements coniques et ses applications 
a l T arodyna1nique supersonique." Office National d'Etudes et de 
Recherches Aeronautiques, no. 311-, 191i-9. 

1We employ the classic convention of the silent index:
xi 

is to be read: __(u1 + A_(pu2) + _i(pu3).

x1	 /	 x2
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div pV = 0	 or	 _(uj) = 0	 (1.2) 

and the equation of compressibility 

p = f(p) 

If one notes that

u. 
a =u	 (1.3) i 

and introduces the sonic velocity2 

c2 =d!.	 (I.4.) 
dp 

the equation (1.1) assumes the form 

	

Uj - i p	 1 dp P - c2 P	 (i 5 k "	 - ----

We introduce the velocity potential	 (x1 , x2 , x3), defined with 

the exception of one constant, by

-


	

V=grad	 u----

2	 .	 .	 dD 
The velocity of sound, introduced here by the symbol -- has a 

dp 
well-known physical significance; it is the velocity of propagation of 
small disturbances. This significance frequently permits an intuitive 
interpretation of certain results which we shall encounter later on 
(see section i.i.L).
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which is legitimate since we shall assume the flow to be irrotational. 
If we make the combination

____ 
UjUk	

-	 iii Xj 

one sees, taking into account equations (1.5) and. (1.2), that 

= c2 	 (1.6) Xi Xk X1 Xk 

This equation is the general equation for the velocity potential. 
One may show, besides, that c is a function of the velocity modulus; 
thus one obtains an equation with partial derivatives of the second 
order, linear with respect to the second derivatives, but not completely 
linear. 

The nonlinear character of the equation for the velocity potential 
makes the rigorous investigation of compressible flows rather difficult, 
at least in the three-dimensional case. 

In order to be able to study, at least approximately, the behavior 
of wings, fuselages, and other elements of aeronautical structures, at 
velocities due to the compressibility, one has been led to introduce 
simplifying hypothesis which permit "linearization" of the equation for 
the velocity potential. 

1.1.2 - The Hypotheses of Linearization and. Their Consequences 

For aerodynamic calculation, one may assume that the body around 
which the flow occurs has a position fixed in spe id that the fluid 
at infinity upstream is moving with a velocity U, U being a constant 
vector, the modulus of which will be taken as velocity unit. 4e shall 
always assume that the axis Ox 1 has the same direction as U; the 

hypotheses of linearization amount to assuming that 	 every point of 
the fluid the velocity is reasonably equivalent to U. 

We put in a more precise manner 

u1 =l+u	 u2-v	 u3=w
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u, v, w are, according to definition, the components of the ttpertur_ 
bat ion velocity." 

(1) u, v, w are quantities which are very small referred to 
unity; if one considers these quantities as infinitesimals of the first 
order, one makes it at least permissible to neglect 3 in the equations 

all infinitesimals of the second order such as u2 , v2 , uv, etc. 

(2) All partial derivatives of u, v, w with respect to the 
coordinates are equally infinitesimals at least of the first order so 

/	 \2 
that one is justified in neglecting terms such as u	 (.L._' , etc. 

OX1 \X2) 

One may deduce from these hypotheses a few immediate consequences: 

(a) At every point of the field, the angle of the velocity vector 
with the axis Ox1 is an infinitesimal o the first order at least. 

Hence there results a condition imposed on the body about which the flow 
is to be investigated; at every point the tangent plane must make a 
small angle with the direction of the nondisturbed flow (this is what 
one calls the uniform motion, defined by the velocity ii'). 

If one designates by q the velocity modulus, one has, taking the 
hypotheses setup into account 

q2 = (1 + u) 2 + v2 + w2 = 1 + 2u 

whence

q= li-u 

(b) The pressure p and the density p differ from the values p1 

and p1 which these magnitudes assume at infinity upstream only by an 

infinitesimal of the first order; the equation (1.5) is written in effect 

- c12p 

1 X1 

3mis signifies that u, v, w may very well not be infiniteslinals 
of the same order; in this case one takes as the principal infinitesimal 
the perturbation velocity component which has the loiest order.
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with c1 denoting the sonic velocity at infinity upstream; thus 

U = - — (P -	 ('.1) 
p1 \ 

On the other hand, according to equation (1.14-) 

p -p1 = c 2 ( -	 = -p1u 

If one defines the pressure coefficient C by 

p-p 

P]i'21U1 

one has

C = -2u
	

(1.8) 

(c) Finally, an examination of what becomes of the equation for the 
velocity potential (equation (1.6)) under these hypotheses shows .that it 
is reduced to

____ = 2(
	 +	 +	 \ 

x12	 x12	 x22	 x32) 

Let cP(x1 ,x2 ,x3) be the "disturbance potential," that is, the 

potential the gradient of which is identical with the disturbance-
velocity vector; CP(x1 ,x2 ,x3) is the solution of the equation with 

partial derivatives of the second. order 

1 - c12	 =	 +	
(1.9) 

2	 2 
Cl	 xl	 x22	 x32 

a completely linear equation.
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The Mach number of the flow is called the dimensionless con-

I-I 
stant M = .!JL! which, with the velocity unit to be chosen arbitrarily, 

is written here M = 1/c1. 

We put: e(M2 - i) = 132 , with e being equal +1 or -1 according to 
whether M is larger or smaller than unity. 

(i) If M <1, equation (1.9) is written 

132	 + ____ = 

xl2	 x22	 x32. 

an equation which may be easily reduced to the Laplace equation. 

This equation applies to flows called ttSUbSOfliÔtt because the velocity 
of the nondisturbed flow is smaller than the sonic velocity at infinity 
upstream. These flows will not be investigated in the course of this 

report. 

(2) If M >1, equation (1.9) is thus written 

132 2cp = 2cp +	
. (1.10) 

xl2	 x22	 x32 

This equation applies to "supersonic" flows; if one interprets x1 

as representing the time t, this equation is identical with the equa-
tion for cylindrical waves, well-known in mathematical physics. Investi-
gation of this equation will form the object of this report. 

Remarks. 

(1) It should be noted that, in order to write the preceding equa-
tion, it was not necessary to specify the form of the equation for the 
state of the fluid. In particular, the formulas written above do not 
introduce the value of the exponent y of the adiabatic relation p = kpy 
which is the form usually assumed by the equation of compressibility. 

Investigation of linear subsonic flows has formed the object of 
numerous reports. See references 1 and 2.
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(2) The preceding analysis shows clearly the very different char-
acter of subsonic flows which lead to an elliptic equation, and of 
supersonic flows which are represented by a hyperbolic equation. 

(3) When we wrote equation (1.9), we supposed implicitly that 

M2 - 1 was not infinitely small, that is, that the flow was not "tran-
sonic," according to the expression of Von Krm.n 5 . Thus it is impossible 
to make M tend toward unity in the results we shall obtain, in the 
hope to acquire information on the transonic case6. 

(14.) It may happen, in agreement with the statement made in foot-
note 3, that u is an infinitesimal of an order higher than first. In 
this case, one will take up again the analysis made in paragraph (b) of 
section 1.1.2, wl4ch leads to a formula yielding the C, more adequate 

than the formula (1.8)

C=_2u_ (v2+w2)	 (1.11) 

1.1.3 - Validity of the Hypotheses of Linearization 

Any simplifying hypothesis leads necessarily to results different 
from those which one would obtain with a rigorous method. Nevertheless, 
it was shown in certain numerical investigations on profiles (two-
dimensional flows) where the rigorous method and the method of lineari-
zation were applied simultaneously that the approximation method provided 
a very good approximation for the calculation of forces. Besides, it 
is well-known that the classic Prandtl equation for the investigation of 

5Study of the transonic flows, with simplifying hypotheses analogous 
to those that have been made, requires a more compact analysis of the 
phenomena. It leads to a nonlinear equation, described for the first 
time by Oswatitsch and Wieghart (ref. 3). From it one may very easily 
deduce interesting relations of similitude for the transonic flows 
(ref. 11-). One may find these relations also, in a very simple manner, 
by utilizing the hodograph plane. 

61n a general manner, according to the values of' M, one may be led 
to neglect certain terms in the final formulas found for the pressure 
coefficient C. This requires an evaluation, in every particular case, 

of' the order of magnitude of' the terms occurring in the formulas when M 
varies. In this report, we shall neverenter into such a discussion. 
We shall limit ourselves voluntarily to the general formulas. An inter-
esting example of such a discussion may be found in the recent memorandum 
of E. Laitone (ref. 5).
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wings of finite span in an incompressible fluid furnishes very acceptable 
results, and. the Prandtl equation results from a linearization of the 
rigorous problem. 

It happens frequently, we shall have occasion several times to point 
it out, that the solution found for u, v, w will not satisfy the 
hypotheses of section 1.1.2 in certain regions (for example in the neigh-
borhood of a leading edge); eventually certain ones among these niagni-
tudes could even become infinite. 

Under rigorous conditions such a solution should not be retained. 
Anyhow, if the regions where the hypotheses of linearization are not 
satisfied are "sufficiently small," it is permissible to assume that the 
expressions found for the forces (obtained by integration of the pres-
sures) will still remain valid. This constitutes a justification 
a posteriori for the linearization method so frequently utilized in 
numerous aerodynamic problems 1 . Therefore, we shall not systematically 
discard. the solutions found which will not wholly satisfy the hypotheses 
we set up.

1.l. li. - Limiting Conditions. Existence Theorem 

Physically, the definition of sonic velocity leads to the rule 
which has been called the "rule of forbidden signals" (see footnote 2 
of section 1.1.1) and which can be stated as follows: 

A disturbance in a uniform supersonic flow, of the velocity U 
produced at a point P, takes effect only inside of a half-cone of 
revolution of the axis U and of the apex half-angle a. = Arc sin(1/M); 
( cot a) a. is called the Mach angle, the half-cone in question "Mach 
after-cone at P. 

Correlatively, one may state that the condition of the fluid at a 
point M (pressure, velocity, etc.) depends only on the character of 
the disturbances produced in the nondisturbed flow at points situated 
inside of the "Mach fore-cone at M;" the Mach fore-cone at a point is 
obviously the symmetrical counterpart of the Mach after-cone with respect 
to its apex. 

If one wants to justify this rule from the mathematical viewpoint, 
one must start out from the formulas solving the problem of Cauchy and 
take into account the boundary conditions particular to the problem. 
Along the obstacle one must write that the velocity is tangent to the 
obstacle which gives the value d SP/cm. Moreover, at infinity 

TFor instance, in the investigation of vibratory motions of mi in-
itely small amplitude about slender profiles.
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upstream (xi = _c) the first derivatives of (P must be zero, since (P 

is, from the aerodynamic viewpoint, only determined to within a constant, 
it will be assumed zero. 

The characteristic surfaces of the equation (1.10) are the Mach

cones. If one of the Mach cones of the point P cuts off a region (R) 

on a surface (E),trie classic study of the problem of Cauchy 8 shows 
that the value of (P at P is a continuous linear function of the 
values of P and of dCP/thi on R 

Let us therefore consider a point M of a supersonic flow such 
that its fore-cone does not intersect the obstacle. We take as the 
surface Z a plane x1 = -A, with A being of arbitrary magnitude. 

On E, (P and. d(P/dn, which are continuous functions, will be arbi-
trarily small. Consequently the value of (P at M is zero. Thus one 
aspect of the rule of "forbidden signal" is justified. 

Let us suppose that the forward-cone of M cuts off a region r(M) 
on the obstacle; on r(M), d(p/dn is given by the boundary conditions; 
thus (p(M) is a linear function of the values of (P on r(M). 

One sees therefore that, if one makes M tend toward a point Mr 

of the obstacle, one will obtain a functional equation permitting the 
determination of (P on the obstacle, at least in the case where the 

existence and uniqueness of the solution will be insured 9 . Consequently, 
CP(M) depends only on the values of dCP/dn in the region r(M); this 

justifies the fundamental result of the rule of "forbiddeh signals.t3O 

1.1.5 - General Methods for Investigation 

of Linearized Supersonic Flows 

In a recent article 11 dealing with the study of linear supersonic 
flows, Von Ka'rmn indicates that two major general procedures exist for 

8For the problem of Cauáhy, relative to the equation for cylindrical 
waves, see for instance references 6 and 7. 

9Such a method has been utilized by G. Temple and H. A. Jahn, in 

their study of a partial differential equation with two variables (ref. 8). 

• 10A more exact investigation of this question may be found in 
appendix 1, at the end of this report. 

11See reference . A quick expose of the methods in question may 
also be found in the text, in reference 2.
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the study of these flows, one called "the source method," the other 
"the acoustic analogy." 

The first is an old method and its theoretical application is 
fairly simple. It consists in placing on the outer surface of the 
obstacle a continuous distribution of singularities, called sources, 
the superposition of which gives at every point of the space the desired 
potential; the local strength of the sources may, in general, easily be 
determined with the aid of the boundary conditions. The second method 
utilizes a fundamental solution of the equation (1.10), the composition 
of which permits one to obtain the desired potential; this procedure is 
interesting in that it permits utilization of the Fourier integrals and 
thus furnishes, at least in certain particular cases, rather simple 
expressions for the total energy. 

Von Krm.n also indicates, at the end of his report, a third general 
procedure, that of conical flows. 

We intend to investigate in this report the conical flows and 
the development of this third procedure which utilizes systematically 
the composition of the "conical flows" and, more generally, of the flows 
which we shall call "homogeneous flows of the.order n." We shall see 
that this procedure permits one to find very easily, and frequently 
with less expenditure, a great number of the results previously obtained 
by other methods, and to bring to a successful end the investigation of 
certain problems which, to our knowledge, have not yet been solved. 

1.2 - Generalities on Conical Flows 


1.2.1 - History and Definition 

Conical flows have been introduced by A. Busemann (ref. 9) who has 
given the principal characteristics of these flows and has indicated 
briefly in what ways they could be utilized in the investigation of 
supersonic flows. Buseman.n gives as examples some results, frequently 
without . proof. Several authors have supplemented the investigation of 
Busemann: Stewart (ref. 10) has studied the case of the lifting wing 
to which we shall come back later on; L. Beschkine (ref. 11) has fur-
nished a certain number of results but generally without demonstration. 
We thought it of interest to attempt a summary of the entire problem. 

One calls "conical flows" (more precisely, "infinitesimal conical 

flows") 12 the flows in which there exists a point 0 such that along 

-2The adjective "infinitesimal" is remindful of the fact that the 
flows have been "linearized;" we shall henceforward omit this quaffica-
tion since no confusion can arise in this report.
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every straight line issuing toward one side of 0, the velocity vector 
remains of the same value. 

Let (it) be a plane not containing 0, normal to the vector It; 
let us suppose only that the velocity vector at every point of (IC) is 
not normal to (IC); the projection of these velocity vectors on (it) 
determines a field of vectors, the lines of force of which we shall 
call (y): the cones (cT) of vertex 0 and directrix (y) are "stream 
cones" for the flow. 

More generally, let (s) be a stream surface of the flow, passing 
through 0; every surface deduced from (s) by homothety of the center 0 
and of k, k being an arbitrary positive number, is a stream surface. 
(s) is not necessarily a conical surface of apex 0, but having (s) 
given as an obstable does not permit one to foresee the existence of 
such a flow. It is different if a conical obstacle of apex 0 is given; 
the designation "conical flowt' is thus justified. 

Conversely, let us consider a cone of the apex 0, situated entirely 
in the region x1 O, and suppose that a linearized supersonic flow 

exists around this cone; this flow is ncessarily a conical flow such 
as has just been defined; in fact, if V(x1 ,x2 ,x3) denotes this velocity 

field, V(Xxi ,Xx2 ,Xx3) (x being any arbitrary positive number) is 
equally a velocity field satisfying all conditions of the problem; con-. 
sequently, if the uniqueness of the desired flow is admitted, 	 must 
be constant along every half-straight line from o 13• 

Let us also point out that according to equations (1.8) or (1.11), 
the surfaces of equal pressure are also cones of the apex 0. 

1.2.2 - Partial Differential Equations Satisfied 


by the Velocity Components 

According to definition, the velocity components of a conical flow 
depend only on two variables; on the other hand, as functions of x1, 

131t should be noted that this • argument will no longer be valid 
without restriction in the case of a real supersonic flow around a cone 
because in this case the principle of "forbidden signals" is no longer 
valid in the rigorous form stated. Among other possibilities, a detached 
shock wave may form upstream from the cone behind which the motion is 
no longer irrotational.
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x2 , x3 , they are naturally the solution of the equation 

	

2 2f	 2f +2f 
2	 2 

	

ox1	 x2	 x3 

Let us first put

x2=rcosO	 x3=rsin6 

the equation then assumes the form 

	

22f	 (1.12) 

	

x12	 r2 r2	 r 

The second term of equation (1.12) is actually nothing else but 
the Laplacian of f(x1 ,x2 ,x3 ) in the plane x2 , x3 (x1 being con-

sidered as parameter); naturally f(xi,r,O) is periodic in e, the 

period being equal to art. 

To make the conical character of the flow evident, let us put 

x1 = t3rX	 (1.13) 

X is a new variable; X < 1 characterizes the exterior of the Mach 
cone with the apex 0, X > 1 characterizes the interior of the cone. 
Under these conditions, the disturbance-velocity components are func-
tions only of X and 0. Since f is a function of X and 0 only 

d2f =	 dx2 + 22f dX dO +	 e2 +	 d2X +	 d20 
e2 

but

dX = -_(dxi - 13X dr) 

d2X =	 (d2 - X d2r - 2 dr	 1 + 2 X 2\ 
r	 r	 )
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24,	 2.ç.	 p °	 ,	 - are the respective coefficients of dx3 ', dr, 
x12 	 r2	 r 

dO2, U2r in the expression of d2f as a function of the van-
ables x1, r, 6. 

As a consequence, the equation (1.12) becomes under these conditions 

(x2_l)^+x=o	 (1.111.) 
x2 	 e2 

One may try to simplify this equation further by replacing the 
variable X by the variable , X and	 being connected by a rela-




tionship x = x(), and by making a judicious choice for the func-
tion x( ). The first operation gives 

(x2 -	 + ' 2	 +	 - (x2 - l)X'l =0 
o2 	 XI 

with the primes denoting derivatives with respect to . For simplifying 

this equation, one may make the term in	 disappear. This will be 
realized by putting 

(1) If X>1,

X = ch	 (1.15)


one obtains for f Laplace's equation 

+	 = 0	 (1.16) 
2 

(2) If x<i,

X = cos 1 l 	 (1.17)


in this case, one obtains the equation for waves with two variables 

(1.18) 
2	 o2
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Geometrical interpretation. - X > 1 corresponds to the interior of 
the Mach rearward cone (F) of the point 0; every semi-infinite line, 
issuing from 0, inside of this cone, has as image a point 0, 	 . One 
will assume, for instance, -it < U it;	 = 0 corresponds to the 
cone (F),	 =	 corresponds to the cone axis (it will always be pos-
sible to assume	 as positive). The image of the interior of (F) 
forms therefore on the region (A) of the plane (e,) (fig. 1), limited 
by the semi-infinite lines AT, A'T' and by the segment AA'. The 
correspondence is double valued in the sense that to a semi-infinite 
line issuing from 0 • there corresponds one point and one only (o,) 
in the bounded region and conversely, to one point of this region there 
corresponds one semi-infinite line, and one only, issuing from 0, 
inside of (r). 

Since we shaLl suppose, in general, that the cone investigated is 
entirely in the region x1 >. 0, only this region will be of interest 

(P then being identically zero for x1 < 0). The semi-infinite lines 

of this region issuing from 0, outside of (F), correspond to 0 < X < 1 

(fig. 2), that is, according to equation (1.11), 0 <i <!; r = 0 

corresponds to the cone (r), T =	 to the plane x1 = 0; the semi-

infinite lines issuing from 0 correspond biunivocally to the points 
of the region (A!), inside of the rectangle AA'B'B in the plane (O,T). 

Summing up, the velocity components satisfy the simple equa-
tions (1.16) and (1.18), the first of which is relative to the region (A), 
the second to the region (A'). 

1.2.3 - Fundamental Theorem 

The equation (1.114. ) which represents the fundamental equation of 
our problem is an equation of mixed type; it is elliptic or hyperbolic 
according to whether X is larger or smaller than unity. In order to 
study this equation in a simpler manner, we have been led to divide the 
domain of the variables into two parts and to represent them on two 
different planes. How an agreement wILL be reached between the solutions 
obtained for f in the two planes - that is the question which will be 
completely elucidated by the ol1owing theorem which will be fundamental 
in the course of our investigation. 

Theorem: There exists " agreement " as to X = 1 for all derivatives of 

f, defined in either the region (A) or (A'), provided that there is 

"agreement" for the function itself.
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In fact, let us take two functions f1(O,), f2 (e,r1 ), the first 
satisfying the equation (1.16) in the region (A), the second the equa-
tion (1.18) in the region (A s ), both assuming the same values cp(e) 
the respective senents ( = 0, -it < & <) (r = 0, -it < & < it). Let 

nf 
be the abcissa of a point of AA. if 	 -(e0,o) exists, 

&r1 

: 1 ( e o, 0) =	 consequently o2(eO,0) exists and 

flf	 nf 

0ri e0, - ____ 

Let us now pass to the investigation of the derivatives of the 

order n of the form

	

	 the equation (I.i 1i) shows first that 
Qfl1 

(e,i) = -	 (e,i) 
o2 

which proves that all paftial derivatives of the order 1 with respect 
to X have the same value on (r), whether they are calculated starting 
from f1 or from f2 . The argument develops without difficulty through 

recurrence. By deriving equation (i.ili. ) n times with respect to X 
and making X = 1, one obtains 

(2n + )fl+lf + n2
	

+ n+2f = 

i+1	
xn	 e2xn 

fl+P 
which finally shows that the values L	 can be uniquely expressed 

as a function of the derivatives of CP(0) with respect to & and that 
they, consequently, have the same value, whether calculated starting 
from f1 or from f2. 

Summing up, one may say that it is sulTicient for the establishment 
of the "agreement tt between two solutions defined in (A) and (A'), if 
these solutions assume the same value on the senent AA'.
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1.2. 1k - Mode of Dependence of the Semi-Infinite 

Lines Issuing From 0 

If one puts in the plane (0,rj) 

6+11 =2X	 0-1=2i.i	 (1.19) 

one sees that the characteristics of the equation (1.18) are the parallels 

to the bisectrices X = c te ,	 = ate . These characteristics are, in

the plane (ri 3 O), the images of the planes 

x1 = 13rcos ( 2X - O and x1=rcos(O-2Fi) 

which are the planes tangent to the cone (F). The characteristics 
passing through a point 0 (8 0 ,r 0 ) are the images of two planes tangent 

to the cone (r) which one may lay through the semi-infinite L cor-
responding to the point o of the plane (e,) (fig. 3). The gener-
atrices of contact are characterized on the cone by the values 01 

and 02 of the angle 0. One encounters here a result which seems, to 

contradict indications of section 1.1. 14. This apparent contradiction 
is immediately explained if one notes that, since all points of a semi-
infinite & issued from 0 are equivalent, one must consider at the 

same time all Mach cones, the apexes of which are situated on 	 the 

group of these cones admits as envelope precisely the two planes tangent 
to the cone (r) passing through &. We shall call "Mach dihedron 
posterior" to the semi-infinite	 that one of the dihedra formed by 

the two planes which contains the group of the Mach eones to the rear of 
the points of /2cj. The region inside 01 this dihedron and outside of 

the cone (r) has as image in the plane (e,r) the triangle e 0e2. 
A semi-infinite	 will be said to be dependent on or independent of 

according to whether the image of 2l will be inside or outside of 

the triangle 01 j02 This argument also explains why the equa-
tion (1.114-) shows elliptic character inside of (F). More precisely, 
two semi-infinite lines -j and	 , inside of (r), are in a state of 

neutral dependence (ref. 9). In fact, let M1 be a point of l' N2 

a point of	 let us suppose that M1 is outside of the Mach forward


cone of M2 ; according to the argument of section 1.1.14. the point M2 
seems to be independent of M1; but on the other hand, if one assumes M1'
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to be a point of	 inside of the Mach forward cone of M2 , M1' 

and M1 are equivalent which explains that M 2 is actually not inde-
pendent of M1 (fig. 14). 

1.2.5 - The Conditions of Compatibility 

Thus one may foresee how the solution of a problem of conical flow 
will unfold itself. One will attempt to solve this problem in the 
region (A') which will generally be fairly easy since the general solu-
tion of the equation (1.18) is written immediately by adjoining an arbi-
trary function of the variable & +	 to an arbitrary function of the 
variable 0 - i. This will have the effect of "transporting" onto the 
segment AA' the boundary conditions relative to the region (A'). 
Applying the fundamental theorem, one will be led to a problem of har-
monic functions in the region (A). But taking as unknown functions the 
components u, v, w, of the disturbance velocity, we have introduced 
three unknown functions (while there was only one when we dealt with 
the function CP). One must therefore write certain relationships of 
compatibility which express finally that the motion is indeed irrotational. 

The motion will be irrotational if u dx1 + v dx2 + w dx3 is an 
exact differential which will be the case when, and only when 

x1 du + x2 dv + x3 dw = r(x du ^ cos & dv + sin 0 dw) 

is an exact differential. This can occur only if this expression 
is identically zero, with u, v, w being functions uniquely of 0 
and of x (the total differential not containing a term in dr must 
be independent of r): 

In a conical flow the potential is written 

= l + VX2 + WX3 = r(t3ux + v cos & + ,	 e) 

with u, v, w being the disturbance-velocity components. 

One will note that (p is proportional to r. 

Moreover

3x du + cos e dv + sin & dw = 0	 (1.20)
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This is the relationship which is to be written, and this is the 
point in question, on one hand in the plane (e,r1), on the other in the 
plane (o,). 

(a) Relations in the plane (e,r1 ). One may write 

U u(X) + u2(M) 

and analogous formulas for v and. w, X and i-i being defined by the 
relations (1.19). One has in particular 

d).	 Tj	 O	 dp.	 8 

Besides, according to equation (1.20) 

cos i du1 + cos 0 dv1 + sinO dw1 = 0
('.21) 

cosidu2+cosOdv2+sinOdw2=O 

however: 0 = X + it, i = X - ct; and consequently the first equa-
tion (1.21) is written 

cos Ii.[cosxdul^cosxdvl+sinxdwl1+ 

sin i.i[ sin . du1 - sin X dv1 + cos X dwil = 0 

since the two quantities between brackets are unique functions of X, 
the preceding equality causes 

3 cos X du1 ^ cos Xdv1 + sinA. dw1 = 0 

3 sin X du1 - sinX dv1 + cos X dw1 = 0 

or

dv	 dw1	
(I.22) -du-= 1 = ___ 

cos 2X sin 2X
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In the same manner one will show that 

-du2= dv
2 = dw2

(1.23) 
cos 2i	 sin 2i 

(b) Relations in the plane (e,). 

The calculation-is perfectly analogous. The equation (1.16) causes 
us to introduce the complex variable 	 = e + i and the func-
tions u(), V(), w(), defined with the exception of an imaginary 
additive constant, the real parts of which in (A) are, respectively, 
identical to u(O,), v(0,), w(6,). 

The equation (1.20) permits one to write 

ch dU+cos6dV+sinedW=0 

If one puts 

one obtains

cos	 cos . dU + cos - dV + sin dWt + 
2L	 2	 2	 2] 

2L	 2	 2	 2] 

thence one concludes as previously 

	

- dU = dV	 (I.21i) 

	

cos	 sin 

The formulas (1.22), (1.23), (I.21i-) express the relationships of 
compatibility which we had in mind. 

I
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Remark. 

We shall utilize frequently the conformal representation for studying 
the problems relative to the domain (A). If one puts, in particular 

Z = e = ee10 

one sees that, (A) becomes in the plane Z the interior area of the 

circle (C0) with the center 0 	 and the radius 1 (fig. 5). 

If one puts Z = pe, the point Z is the image of a semi-infinite 
line, issuing from the origin of the space (x 1 ,x2 ,x3 ), characterized 

by the angle 0 and the relationship 

= = 1 + p2 
2p 

The origin of the plane Z corresponds to the axis of the cone (r), 
the circle (C0) to the cone (r) itself. A problem of conical flow 

appears in a more intuitive manner in the plane Z than in the plane . 
In the plane Z, the formulas (I.2 1i-) are written 

_dU= 2Z	 =2iZ dW	 (1.25) 
z2 +i	 z2-i 

We shall moreover utilize the plane z defined by 

z= 2Z
1 

The domain (A) corresponds conformably to the plane z notched by 
the semi-infinite lines Ax, A'x' (fig. 6), the cone (r) at the edges 
of the cuts thus determined, and. the axis of the cone (1') at the origin 

114.No confusion is possible between the point 0, origin of the sys-
tem of axes x1, x2 , x3 and the point 0, here introduce as the 

origin of the plane Z.
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of the plane z. The relations of compatibility in the plane z then 
assume the form

	

-dU=zdV=- izdW	 (1.26) 
\Jl_z2 

1.2.6 - Boimdary Conditions 


The Two Main Types of Conical Flows 

The boundary conditions are obtained by writing that the velocity

vector is tangent to the cone obstacle. Let, for instance, x2 (t), x3(t) 
be a parametric representation of the section x1 =	 of the cone; 
x3x2 ' - x2x3 t , x3 t , -f3X2 ' constitute a system of direction parameters 

of the normal to the cone obstacle, and the boundary condition reads 

wx2 ' - vx3 ' = i(x3x2' - x2x3 1) (1 + u)
	

(I .27) 

It wifl be possible to simplify this condition according to the 
cases. However, the simplification will have to be treated in a dif-
ferent manner according to the conical flows investigated. As set forth 
in section 1.1.2, two main types of conical flows may exist. 

(1) The flow about cones with infinitesimal cone angles, that is, 
cones where every generatrix forms with the vector 	 an angle which 
remains small. Naturally, the cone section may, under these conditions, 
be of any arbitrary form;since the flow outside of (r) is undisturbed 
(velocity equivalent to U), on the cone (p) u, v, w are zero. 

The problem may have to be treated in the plane Z; u(z), v(z), 
w(z) will have real parts of zero on (C 0 ). The image (C) of the 

obstacle, in the plane Z, is defined by a relation p = f(e)'; conse-
quently, a parametric representation of the section x1 = 3 will be 
obtained by means of the formulas 

2p	 _______ x2 =	 cos6	 3= 2p sin 
1+p2	 1+p2
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Thus the condition (1.27) becomes 

sin e - p t cos e + p2 (p sin e + p' cos ej + 

v	 cos 0 + p t sin 0 + p2 (p cos 0 - p t	 sin 0 =	 + u)	 (1.28)

with 0 taken as parameter, and p t denoting the derivative of p 
with respect to 0. The investigation of conical flows with infinitesimal 
cone angles will form the object of chapter II. 

(2) The flow about flattened cones, that is, cone4, the generatrices 
of which deviate only little from a plane containing U. Let us remember 
that (section l.l.2) the tangent plane is to form a small angle with TI; 
consequently, rigorously speaking, the section of such a cone cannot be a 
regular closed curve, an ellipse for instance; it must present a lentic-
ular profile (fig. 7). In chapter III we shall study the flows about 
such cones. 

Remark. 

Actually, we have, therewith, not exhausted all types of conical 
flows, that is, those for which linearization is legitimate. One may, 
for instance, obtain flows about cones, the section of which presents 
the form shown in fiire 8; the axis of such a cone has infinitely small 
inclination toward ti'. 

Before beginning the study of these flows we shall, in order to 
terminate these generalities, introduce a generalization of the flows, 
the possible utilization of which we shall see in a final chapter. 

1.3 - Homogeneous Flows


1. 3 .1 - Definition and Properties 

The conical flows are flows for which the velocity potential is of 
the form

P = rf(0,X) 

as we had seen in section 1.2.5. One may visualize flows for which 

p = rr(O,x) 
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We shall call them homogeneous flows of the nth order'5 . The conical 
flows defined in section 1.2 are, therefore, homogeneous flows of the 
order I. However, we shall maintain the expression "conical flowtt to 
designate these flows since this term has been used by numerous authors 
and gives a good picture. 

The derivatives of the velocity potential with respect to the vari-
ables x1, x2 , x3 all satisfy the equation (1.10). If one then con-

siders the derivatives of the nth order of the potential of an homogeneous 
flow of the nth order, one finds that they depend only on X and e 
and satisfy the equation (1.1 11.); the analysis made in section 1.2.2 
remains entirely valid. One may make the changes in variables (1.15) 
and (1.17) which lead to the equations (1.16) and (1.18). Thus one has 
here a method sufficiently general.to obtain solutions of the equa-
tion (1.10) which may prove useful. 

The simplest flows are the homogeneous flows of the order 0 which 
do not give rise to any particular condition of compatibility. For the 
flows of nth order, in contrast, one has to write a certain number of 

conditions connecting the derivatives of nth order. We shall exaninel6 
as an example the case of homogeneous flows of 2nd order. 

There are six second derivatives which we shall denote cp 	 (i 

and j may assume independently the values 1, 2, 3), cP jj designating 

Outside of (1') we shall put 
xi x•

Cpu =
	

+ (Pu2 

with	 being a function of X only, Pjj2 of p. only (see for-

mula 1.19). Inside of (I'), CP 	 is the real part .of a function 

In order to obtain the desired relations, it is sufficient to note 
that

-5The definition for homogeneous flows of the nth order has been 
given for the first time by L. Beshkine (ref. 11); this author, by the 
way, calls them conical flows of the nth order. One may also connect 
this question with the article of Hayes (ref. 12). 

l6See appendix 2.
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Pj j dx = dP 

and to apply the results of section 1.2.5; thus one may write the fol-

lowing six relations between the q-

-3 dCp11- =	 1	 dP. 1 =	 1	 dcP. 1	 (i = 1,2,3) 

	

cos 2?	 i2	 sin 2X '3 

which, besides, are reduced to five as one sees immediately. One will 

have analogous relations for the functions (it is sufficient to 

exchange the role of X and of 4. 
Finally, one has for the analytic functions ij ( ) 

	

____	 - 1 d. - 1 d. - _____ 

	

- ___	 ___ ii	 i2 sin	 i3 

namely six relations which as before are reduced to five. The written 
conditions are not only necessary but also sufficient since the func-
tions cp1 necessarily are the components of a gradient. Thus one sees 

that there is no difficulty in writing the conditions of compatibility 
for a homogeneous flow of nth order. 

1. 3 .2 - Relations Between the Homogeneous Flows 


of nth and of (n-1)th Order 

We shall establish a theorem which can be useful in certain prob-
lems and which specifies the relations existing between homogeneous 
flows of nth and of (n-l)th order; we shall examine the case where n = 1. 

1.3.2.1.- Let us consider inside of the cone (r) a homogeneous 
flow of the order 0 defined by 

(p =
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We shall first of all seek the components u, v, w of the dis-
turbance velocity

d 
dP = u dx1 + v dx2 + w dx3 = R[(z) dZJ = R[ZT'(Z) -j 

then

=	 + i dO 
z	 p 

1 + p2 x1 =r	 x2=rcosO	 x3=rsinO 
2p 

thus

= 2 + 1rdx1 x2 dx2 + x3 dx31 

p2 -	 -	 r2 

x0 dx - x. dx 
dO=

r2 

whence one deduces

p2+l 1 RZ 

v = - cos ü P2 + 1 REZl(ZII + si 
r 

= - sin e p2 + 1 RIZt(Z	 - co e 
r 

however

Z+=P2+1cosO+iP2sinO 
z	 p	 p 

zl)2_lo+lP2 
z	 p	 p



26
	

NACA TM l351 -

hence the result

1 p+l
u=—	 RZ 
xl 

p2 - 
1 -[ 

=	 P2 + 1 R[	 z2 + 1) 1 (z)]	 (1.29) xl 
p2 - -L 2 

+ 1 ["z2 - 1)t(z)] 
2	 2' 

lp -1

= ¶t' x2 = o, x3 = o), 
with the coordi-
and with the para-
(homogeneous of 
(x1- €, r, e) and 

1.3.2.2.- Let us now consider a point 0' (x1 

E j being a very small quantity. Let M be a point 
nates (xi,r,O) with respect to 0, inside of (I'), 
meters (p,e) in the plane Z. For the conical flo' 
1st order) with the vertex O, its coordinates are: 
its parameters in the Z-plane: 

p(l -	 + 1 
\	 21x1J 

since

dx1 = l = r	 - dp	 p2 - 1 dp 

2p2	
=1 

2 1 p P+ 

Let us then consider two identical conical fields but with the 
apexes 0 and O, and form their difference. We shall obtain a 
velocity field which, due to the linear character of the equation (1.10), 
will satisfy this equation. If 

u O = R[F(zIJ 

denotes the component u of the field with the vertex 0, one has as 
component u in the "difference field" 

u = ^R[F(z -	 -	 + 1	 p2 + 1	 R['(z	 (1.30) 2_1x1 iJ	 2_1x1
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€ being considered as infinitely small. Moreover, according to the 

relations (1.25), the components v and w are written 

*	 C1 p2	
1 R E 	 z2 + l)Ft(zJ	

(i.i) 

=ip2	
1 

Gl P2 1 

E (z2 - l)FT(zt 
w=-

xlp	 1 

1. 3 . 2 . 3 . - Let us consider the point Ott(O,E2,O), with	 2 being


a small quantity. Let M be a point with the coordinates (x1,r,O) 

with respect to 0, inside of (r ) , with the parameters (p,e) in the 
plane Z. For the flow with apex 0'', the coordinates of M are 

(xi,.r -	 cos e, 
0 + C2	 0) as can be easily stated by projecting 


M in m on the plane x2x3 (fig. 9). But on the other hand 

2x1 1-p2 dp=-E2 cosO dr = - _________ 
13 (2)2 

2x1	 c rd0=—	 dO=E2sinO 
13 1 + 

thus

dZ = e 0 [dP + ip del = C2 +	 sin e - cos e 1 + Pe0 
2x1 lp2] 

with Z + dZ representing the point M in the conical field with the 
vertex 0''. 

Let us then consider two identical conical flows, but with the 
apexes 0 and 0'', and form their difference. We shall obtain a 
velocity field which due to the linear character of the equation (1.10) 
will satisfy this equation. If

= R[G(Z
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denotes the component v in the field of the vertex 0, one has a com-
ponent v in the "difference field't 

= -I-R[G(z)] - R[G(z +	 = -R[G'(z)dz] 

= -	 P2 + 1 
R[GT(Z)[COS e(i +	 + i sin O(p2 - i)]eie] 2x1 p2 - 1 L 

= -	 2 
^ 1 ['(z)fz + i\1 

2x12_1 L	 z)_j 

€	 2 +lRr(z2)()] 
p2 - 1	 2

(1.32) 

besides, according to equation (1.25), the components u and w are 
written

•	 +lR[ZGI(z)]	 1 
xlp_l	 I

('.33) 
w =	 + 1	

- l)Gt(z1 x 2	 2¼ 
ip -1 

l.3.2.li.._ With these three lemmas established, it is easy to demon-
strate the property we have in mind. Let us call "complex potential" of 
a homogeneous flow .of zero order the function 	 (z) (section 1.3.2.1) 
so that

(P = R[(z)] 

so that the function of complex variable, the real part of which gives 
insidef ( r) the projection of the disturbance velocity in the direc-
tion 1, is the "complex velocity" of a conical field in the direction 1; 
so that, finally, the velocity field obtained by the difference of two iden-
tical conical fields, the vertjes of which are infinitely close and 
ranged on a line paralleJto 1, is the "field derived from a conical 
flow" in the direction 1; thenwe may state:



NACA TM 1351	
29 

- Theorem: The field derived from a conical flow in the direction 1 is 

the velocity field of a homogeneous flow of zero order; the complex 

potential of that flow of zero order is proportional to the complex 

velocity of the conical field given in the direction	 since the pro-




port ionality factor is real. 

The proof follows immediately. According to sections 1.1.2 
and 1.1.3 . one may be satisfied with considering, for definition of a 
homogeneous flow, the inside of the cone (I'); comparison of the for-
mulà.s (1.29), (1.30), t.3l), (1.32), (1.33) entails thevalidity of 
the above theoremi±l is parallel or orthogonal to U. Hence the 
general case where 1 is arbitrary may be deduced immediately; if 
F(Z), G(Z), 11(Z) are the complex velocities in projection on Ox1, 
Ox2 , Ox3 , the expression for the component u of the field derived in 
the direction	

(1'2' ) is 

1 p2 u = -	 +	 z[lz + E2G'(Z) + E311h(z)]] x121 [ 

Thus, with 61F(Z) + €2G(Z) + € 11(Z) 
-+	 3 

projection on 1, comparison of this 
completely demonstrates the theorem.

being the complex velocity in 

formula with the first formula (1.29) 

Corollary: The field derived in the direction 1 of a conical flow, 

the complex velocity of which in the direction 1 is K(Z), is a 

velocity field of a homogeneous flow dependent only pn K(Z) (not on 

the direction 1). 

The theorem just demonstrated may be extended without difficulty 
to the homogeneous flows of nth and (n-1)th order. A statement of this 
general theorem would require only specification of a few definitions; 
however, since we shall not have to utilize it later on, we shall not 
formulate this statement.
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CHAPTER II - CONICAL FLOWS WITH INFINITESIMAL CONE ANGLES *



2.1 - Solution of the Problem 

2.1.1 - Generalities 

shall now tçeat the first problem set up in section 1.2.6. We 
shall operate in the plane Z. Let us recall that the image of the 

7 7 cone (r) is ' the circle (c0) of radius unity centered at the origin, 

and that the image of the obstacle is a curve (C), defined by its polar 
equationp(S). We shall denote by (D) the annular domain comprised 
between (C) and (c0); we shall call (7o) the circle of smallest 

radius centered at the origin and containing (A) in its interior, and 
we shall call k the radius of the circle (Yo)• In this entire 

chapter k will be considered as the principal infinitesimal. 

The problem then consists in finding three functions u(Z), v(z), 
,' w(z) defined inside of (D) except for an additive imaginary constant, 

so that

(1) _____	 _____ 
-13 dU	

2Z dV = 2iZ dW	 (1.25) 
z2 +i	 z2-i 

(2) the real parts u, v, w, which are uniform become zero on (C0), 

(3) on (C), one has the relation 

v[p cos e + p ,' sin 0 + p2 (p cos 0 - p' sin 0)] + 

wp sin e - p' cbs 0 + p2 (p sin 0 + p' cos 0)1 = E_(i + u) 

Put in this manner, the problem is obviously very hard to solve in 
its whole generality; however, an analysis of the permissible approxima-
tions will simplify it considerably. 

2.1.2 - Investigation of the Functions u(z), v(z), W(Z) 

2.1.2.1.- An analytical function of Z will be the said func-




tion (A) if its real part becomes zero on (c0). Let us designate by 

NACA editor t s note: Some minor inconsistencies appear in the numbering 
of equations in this chapter and subsequently in. chapters III and IV, but no 
attempt was made to change the numbering as given in the original text.
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( y,') the circle with the radius 1/k, centered at the origin, and by 

(D') the annulus limited by (7) and (7') (fig. 10). 

Lemma I.- A uniform function (A), defined inside the annulus 

limited by () and (C0) may be continued over the entire domain (D'). 

This results immediately from Schwartz' principle. Let M and M' 
be two symmetrical points with respect to (Co), M being inside of 

(Co); One defines the function (A) at the point (M') as having, 

respectively, an opposite real .nd an equal imaginary part compared to 
the real and the imaginary part of the function given at the point M. 

Lemma II.- A holomorphic function (A) inside of (D') has a 

Laurent development of the form'-T 

Let H(Z) = h + ih'. be such a function (A). Let us write its 
Laurent development in (D') provisorily in the form 

H ( z) = :^iii 
jznl . 

0	 4_zn 

It is an immediate demonstration and yields the formulas defining n 

and	 0 

p2mt 
=
 -J

(h + ih') e"8d8 
0 

1TWe remember that K denotes the conjugate imaginary of K.
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(h + ih ? )	 denoting the value f	 °	 (Yo); likewise 

2ic 
= if r	 (h + ihi) te_idO 

2itJ 

Consequently, according to the lemma I: 

= 

moreover

21( 

Jo =
	

H(Z)	 =	 (ii + ih')	 e =	 h' dO 
Z	 21(0	

O	 2it 

is purely imaginary, and the lemma II is therewith demonstrated. 

We shall note that, if H(Z) is limited by M on (7) or (7')' 

one has the inequality

KnI<	
n
	

(11.1) 

Lemma III. - A function	 (A) with a real and uniform part. defined 

in	 (D)	 can be developed inside of	 (D') in the form

(11.2) 
) 

with B being real. 

Actually, the derivative of the function (A) is necessarily uni-
form. Thus one knows (see for instance ref. 13) that one may consider 
the given function as the sum of a uniform function H(Z) and a loga-
rithmic term; since the critical point of the logarithm is arbitrary 
inside of (7), it is particularly indicated to choose this point at 

the origin; since the real part of the function is uniform, the coeff i-
cient of log Z is real. Besides, since log Z has a real part zero 
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on (Co), 11(Z) is itself a function (A). The given function may 

therefore be continued inside of CD') and the development (11.2) is 
thus justified. 

Remark. 

If one chooses as pole of the logarithmic term a point inside of 
(Yo) but different from the origin, one obtains a development of the 

form

B' log1 Z - a - 
- 1 1 - a) +

1 

2.1.2.2.- The functions U, V, W of the variable Z are all 
three functions (A) with a real uniform part and, consequently, can 
be developed in the form (11.2). We shall write henceforward 

- u(z) = A log Z + ia +	 ( - J Zn\ 
2	 1\zn	 n) 

v(z) = B log Z + i3 +
	

(".3) 

W(Z) = C log Z - iy +
	

( 

A, B, C are real, a, f3, y are real and also arbitrary; but these 
developments are not independent since the relations (1.25) must be 

taken into account. For instance, Z dV/dZ must be divisible by Z 2 .+ 1; 
otherwise we would have for. U logarithmic singularities on the cone (F) 
which is inadmissible. Now 

Z	 = B - : i 	 + KflZfl) 
dZ



3I
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Hence one deduces the relations 

	

B 
=	 C - i)P2p[2 + K2p] 

	

=	 ( - l)(2p + 1)[K2P+l - 1<2p+l

(I' .'i.) 

obtained by putting in the preceding equality Z = I and Z = -i. 

Likewise, Z dW/dZ must be divisible by Z 2 - 1 which gives 

C =	 2P(L2 .+ L2) 

0 =	 (2p + l)(L2+i + L2p+l)

(11.5) 

Finally, the equalities (1.25) lead, in addition, to relationships 
connecting the coefficients of the developments (11.3) among themselves; 
thus one may write the relations 

B+2K2 =_i[C_2Lj	 Ki_K1=_i[L1+Li]
	

(11.6) 

n-(n-2)2=i[(n-2)Ln2+n]	 (n2) 

and on the other hand 

B = _( Y1 + 1) 

1C = -A + 2J2
	

(".7) 

nKn = (n - l ) Jn_i + (n + l )Jn+l	 (n 2)
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2.1.2.3. Approxiinations for the developments (11.3).- Moreover, 
the hypotheses of linearization must be taken into account which, as we 
shall see, wifl pernLit us to simplify the developments (11.3) consider-
ably and will lead us in a very simple manner to the solution of the 
problem posed in section 2.1.1. 

The equalities (11.6) make v(z) and w(z) seem of the same 
order. We shall denote by M an upper limit of their modulus on the 
circle (7). M will be equally an upper limit of their modulus on 

(70 ! ) and hence in the entire domain (D'). 

If one utilizes the inequality (II.i), (11.14-) shows thatl8 

B = 0 2)	 K1 - K1 = 0 2) 

If one assumes a,	 , 7 zero in what follows, which does not at 

all impair the generality, one may write the second formula (11.3) in 
the form 

v(z) - R(Kl)( - z) - >1 	 = B log Z - >IKflZn +iT(K1)(1 + z) 

and consequently: 

In the annulus limited by (7) and (C0), the second term of this 

equality is

o(inc2iog k) 

Likewise according to equation (11.5) 

L1+L1=0(Mk3) 

W(z) - iT(Ll)( + z) -	 = C log Z + R(Li)(1 - 
z) - >1 LnZ 

2 

18 denotes Landau's symbol, A = o(Mk2) signifies that	 is


limited when k tends toward zero.
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In the arinulus comprised between (7) and (C0), the second term 

of this equality is also

O(Mk2iog k) 

Furthermore, according to equation (11.6) 

Kn2 + n-2 0(Mk")
	

(n> 2) 

Thus

w(z) -. iv(z) = o(Mk2log k) + 2iK1Z 

in the annulus (70,C0). 

Finally, according to equation (11.7) 

A=_K1 ^0(Mk3)	 jnnu1Cn+l^0(M12) 

Thus

Co 

- . u(z) = _(K1)log Z - 2K2Z +	
n + 1	 + o(Mk3log k) 

2 n	 Zn 
'1 

Summing up: If one is satisfied with defining v(Z) and w(z) except 

for o(ivn 2log k) and u(z) except for o(n 31og k), one may write in 
the corona (7o,Co)

w(z) = iV(Z) + 2iK1Z	 (11.8) 

v(Z) = 11(Z) - K1Z	 (11.9)
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with

11(Z) =

	

	 (11.1°) 
4-zn 

.11

u(z) = - [fz	 - 2K2z]	 (11.11) 

The coefficient 	 may be supposed to be real, and the integra-

tion occurring in equatIon (11.11) must be made in such a manner that 
R[u(z)] will be an infinitely small quantity of the third order at 
least on I Z I = 1. 

2.l.2. 1i - Remarks. 
(1) Theformula (11.8) which is the most important may be estab-

lished immediately from the second formula (1.25). However, the method 
followed In the text, even though a little lengthy, seems to us more 
natural; also, it shows more clearly the developments of the func-
tions U, V, W. 

(2) Strictly speaking, the hypotheses set forth in the course of 
this study must be verified by the solutions found in each particular 
case. We shall, however, omit this verification which in the usual 
cases is automatically satisfactory. 

(3) The results obtained by the preceding analysis and condensed 
in the formulas (11.8), (11.9), (11.11) are in all strictness valid only 
in the annulus ( 0 ,C0 ), but not in the domain (D). However, it is 
very easy to extend, by analytical continuation, the definition of H 
to (D). Let us now first suppose that (C) contains 0 in its 
interior; since one may write v(z) in the form 

v(z) = 11(z) - IKflZrI + B log Z 

one sees that, since v(z) is defined by hypothesis in (D), and one 

can extend	 and B log Z inside of (7) up to (C), 11(z)
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may itself be defined without difficulty inside of (D). The case where 
(C) does not contain the origin offers no difficulty; it is then suff i-
dent to utilize the development given at the end of section 2.1.2.1. 

As to the order of the terms neglected when one writes the equal-
ity (11.9) in the domain (D), they are found to be 0(Mk2lög k) in 
(D) in the case where there exists inside of (C) a circle of the 
radius ).k (x and i/x may be considered as .0(i)). Besides, if 
that is not the case, one may justify the validity of the results of 
the formulas (11.8), ( 11. 9), (11.10), (11.11) by making a conformal 
representation of the domain (D) on an annulus; the radius of the 
image circle of (C0 ) may be assumed equal to unity; the image circle 

of (C) has a radius infinitely small of first order with respect to 

k and the study may be carried out in the new plane of complex variable 
thus introduced, without essential complication. 

2.1.3 - Reduction of the Problem to a Hubert Problem 

If one puts, according to the formula (11.8) 

V = v + iv' 

with v' denoting the imaginary part of V, one may write on (C) the 
relation

w = 

Since one may, of course, with the accepted approximations, neglect u 
compared to 1 in the second term of the formula (1.28), one sees that 
this boundary condition (1.28) affects now only one single analytical 
function, the function V(Z); this is a first fundamental consequence 
of the preceding study. Formula (11.9) shows that this condition con-
sists in posing a linear relation between the real and the imaginary 
part of H(Z) on the obstacle. Now according to equation (11.10) the 
function H(Z) is a hoiomorphic function outside of (C), regular at 
infinity; the problem stated which initially referred to an annular 
area (D) is thus reduced to a Hubert problem for the function H 
defined in a simply connected region; exactly speaking, one has to solve 
an exterior Hilbert problem. This is the second fundamental consequence 
of the results of section 2.1.2. 

Since we attempt to calculate v(z) and w(z) not further than 
within o(Mk2log k), and u(z) within O(I4k3log k), the relation (1.28)
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which is written 

REv - iw)[2zP2do - i zi - 
p2J1
	

dO 

may be simplified and reduced to 

41- i dZ(v - iw)] =	 dO 

On (C), KJ Z is, according to equation (ii.i), of the order of 

and therefore

H = V = v + iv' = v - 1w 

consequently, H satisfies, on (C), the Hubert condition 

111(Z) dzl =	 de	 (11.12) 

2.1. 11. - Solution of the Hubert Problem 

A function 11(Z), holomorphic outside (C), regular and zero at 
infinity, satisfying on (C) the relation (11.12) must be found. Let 

	

z=Z+a0 +-+. . .	 (11.13) 

be the conformal canonical representation of the outside of (C) on 
the outside of a circle (y) centered at the origin of the plane z; 
the adjective canonical simply signifies that z and Z are equivalent 
at infinity. 

On (y) we shall put

z=re
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r being constant and well determined. Let us put 

	

F(Z) = i log	 (11.114.) 
r 

One has on (C) or on (y) 

F'(Z) dZ = i

	

	 = -dP = r(e) dO	 (11.15) 
z 

with 1' being real; consequently 

R[_ iH Li = R[iHL i 1 =T..R[H(z)l 
L deFt(Z)J dO L F'(Z)J 

and therefore equation (11.12) is written 

R[i	 )l = 2	 (11.16) 

L F'(Z)j	 ç dcP 
H(Z)/F ? (Z) is a holomorphic function outside of (C) and regular at 
infinity. Following a classical procedure, we thus have reduced the 
Hubert problem to an exterior problem of Dirichiet. 

Let G(Z) be the holomorphiç function outside of (C), real at 

infinity; its real part assumes on (C) the values -_ . G(Z) is 

determined in a unique manner. According to equation (11.12) 

	

11(z) = _iG(Z)F(Z) + 1EF'(Z)	 (u.rr) 

with E being a real constant. 

However, we have seen (section 2.1.2.3) that the coefficient of l/z 
in the development of H(Z) around the point at infinity (coeffi 
cient K..1 ) was real; now, around the point at infinity 

r
iF(z) = - 1 +	 + . .


Z
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In order to have the development of the second term of the formula (11.17) 
admit a real coefficient of l/Z, € must be zero since G(Z) is real at 
infinity. Thus the desired solution is 

11(Z) = _iG(Z)Ft(Z) 	 (11.18) 

With the function 11(z) thus determined, the formulas (11.8), 
( 11. 9), (ii.ii) permit calculation of the complex velocities u(z), 
v(z), w(z) within the scope of the accepted approximations. Thus the 
problem posed in section 2.1.1 is solved. 

Remarks.

(1) Uniqueness of the solution. - The preceding reasoning shows the 
solution of the Hubert problem satisfying the conditions (11.16) to be 
unique. This result- will be valid for our problem if one shows that 
every function satisfying the condition (11.16) is a solution of the 
initially posed problem (condition (ii.i1. )) which is immediate since it 
suffices to repeat the calculation. 

(2) Calculation of the coefficient K1 . - According to what has been 

said above, the coefficient K1 is equal to the (real) value assumed by 

G(Z) at infinity. In order to find G(Z), we may solve the Dirichiet 
problem in the plane z; according to a classic result of the study of 

harmonic functions, K1 is equal to the mean value of 2p2 - on the 

circle (y). Hence

2t	 2 

	

K =-L[	 p2de=-1	 2itJ0	 d'V	 JJ(c) 
wherein S represents the area inside the contour (C). 

2.2 - Applications 

2.2.1 - General Remark 

Let us consider a cone of the apex 0 in the space (0x1,x2,x3), 

the image of which in the plane Z is the curve (C), defined by its 
polar equation p(e). According to the definition of p (see the 
remark of section 1.2.5) the sections of this cone made by planes par-
allel to 0x2x3 are homothetic to the curve
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______	
= 2p = 2p	

sin ü	 (11.19) 
l+p2	 l+p2 

____ In the case of the linear approximations, with grad u, grad v, 
grad w being infinitely small (it would even be sufficient that they 
should be limited), one sees that one may, within the scope of the 
approximations of section 2.1, simplify the formulas (11.19) without 
inconvenience and write them 

x2 =2pcos6	 x3=2psinO 

hence the result, , essential for the applications. 

The curve (C) in the plane Z is homothetic to the sections of 
the cone obstacle made by planes normal to the nondisturbed velocity. 

Let us likewise consider a cone with variable but small incidences 
so that the flow about the cone should always be a flow in accordance 
with the hypotheses of this chapter. One sees that if the orientation 
of the cone varies with respect to the wind, the curve (C) in the 
plane Z undergoes a translation. 

2.2.2 - Study of a Cone of Variable Incidence 

This last remark allows us to foresee that when a thorough invest i-
gation of a cone has been made for a certain orientation with respect to 
the velocity it will not be necessary to repeat all the work fpr any 
other orientation. This we shall specify after having demonstrated the 
following lemma. 

2.2.2.1 - Lemma.- One may write on (C) that

(11.20) 
1 dP	 -[ 

dzj 

Actually, let us put 

Z = p cos 0 ^ ip sine =x+ y 

X and Y may be considered as functions of P.
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Hence one deduces that

x xty 
tan e =	 dO	 = Y'çp - cp 

cos2e	 x2 

and consequently 

2	 2 a(y' x - xt y'\ =	 . R[_ i =	 RrZZ i 
dP 13\ cP cp1 dPj Li

which establishes the formula (11.20). 

2.2.2.2.- Let us now consider two contours (c°) and (c') defined 

in the plane Z by two functions z(0)(q) and Z( 1 )((P) such that 

= ( l ) + a, a. being a complex constant determining the change in 
orientation. lxi the development (11.13) which gives the conformal repre-
sentation, only the coefficient a0 varies when one passes from the 

contour (c°) to the contour (c'). Consequently 

(l) = 

dz	 dz 

and the Dirichiet condition determining the function G (z) is written 
in the plane z 

R[G (l) (zl = . [ ( '- ) z i1 = 4F 0) i1 + R[Z i1 
J	 L	 dzJ	 LL	 dzj	 L dz] 

(we have omitted superscripts for the quantities which retain the same 
value, affected by the index 0 or 1). Consequently 

G( 1 )(z) = G () (z) + 

since g(z) is a regular function and real at infinity, holornorphic out-
side of (y), the real part of which on (y) assumes the 
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values R(az d.Z/dz), g(z) is then very easily determined. One has 
exactly

g(z) =	 - ].\ + 
dz,)	 z 

Thence for the function H(z), (sine F'(Z) = i/z dz/dZ) 

dz\ + a	 (11.21) 

	

H() (z) = H () (z) +	
-	 2 dZ] 

The formula (11.21) gives immediately the solution of the problem of 
change in orientation with respect to the nondisturbed flow. 

2.2.3 - Cone of Revolution 

We shall study first of all the case of the cone of zero incidence. 
One may then do without the preceding analysis and obtain the solution 
directly; that is what we shall do here. The curve (C) is a circle of 

the radius p = cte = r; the relation (1.28) is written 

cos o + w sin o -
	 2r0 

- (l + r02) 

On the other hand, for reasons of symmetry 

v sin e - w cos e = o 

Hence one deduces inimediately the values of v and w on (C) 


2r0 cos 6	 2r0 sin 6 

	

v_()	
W=(l+r02)
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whence

v(z) -
	 2r02	

w(z) = i	
2r02	

.11 + (1r)(Z)

(11.22) 

Finally the relations (1.25) permit the calculation of U 

2r02	 2Z '1 + z2\ -	 i• r02 i .-3 dU = - _________ _____ _____	 ______ 
(1r0)Z2+l z2 )--' - r0 

whence

r2 
IJ(z) = -h-.

	

	 log Z	 (11.23) 
1 - r0 

We shall now study, returning to the method of section 2.1, the 
case of a cone of revolution with incidence. 

The formula (11.13) is written 

z =Z - a 

a being a constant which may be supposed to be real. 

Consequently

F'(Z) = ____ 
Z-a 

On the other hand, an immediate calculation shows that 

= r(r + a cos cp)



11.6
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and consequently

= -(r2 + ar cos cp) 
3 dP 

whence

G(Z) = i'r2 + ar2 '\ 
Z-aJ 

According to equation (11.18)

ar2'\ 1 =2-
Z - a)Z - a	 (z - a)2 

the calculation is easily accomplished; one finds 

v(z) =	 z	
- ii	

(II.2) 
[z-a2 

and

u(z) =	 [1o(Z - a) - 3a	
-	 a2	

+	
(11.25) 

Z-a	 (Z-a)2 

since

K2=+a 

In particular, one finds, if a = 0, by means of the approximate 
formulas (11.211-) and (11.25), the same result as by the formulas (11.22) 
and (11.23) under the condition of neglecting in these formulas the term 

in r0 of the denominator. 

In order to give to these formulas a directly applicable form it 
suffices to again connect the quantities a, r with the geometrical 
data; for this purpose, one must use the formula defining p (p. 11-2).
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Figure 11 represents the cone section made by the aerodynamic plane 
of symmetry; a is the semiangle at the apex., 7 denotes the angle of 
the cone axis with the nondisturbed velocity. 

One has immediately

2r=a	 2a=y 

Finally, we shall utilize for the calculation of C the for-

mula (1.11) since the velocity component u is infinitely small com-
pared to the conxponehts v and w. This formula is here written 

C = _2R[U(Z)] - Iv (z ) 1 2 	 (11.26) 

According to equations (11.214. ) and (11.25) one has 

C = 2a2log -- - a2 - 2 + I4.cL7 cos 0 + 2y2cos 20	 (11.27) 
cL 

The case of the cone of revolution of zero incidence is obtained 
by making y = 0. One finds then again a known result. The f or-
mula (11.27) had already been given by Busemann (see ref. 9) without 
demonstration.

2.2.14. - Elliptic Cone 

We assume first of all the simplest hypotheses wher4 the 
planes 0x1x2 , 0x1x3 are symmetry planes of the flow (U is in the 

direction of the cone axis), with the cone flattened out on 0x1x2. 

The formula (11.13) may be written in the form 

2 
z = z +

z 

or

I	 2\	 • I	 2\ 
p cos 0 + ip sin 0 = (r + —}cos P + ilr - —)sin P 

\	 r/	 \,	 r/
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Hence one deduces successively

2	 2 
tanO=r -a tanP 

r2 + a2 

= cos r2 - a2 = (r2 - 

dP cos2cP r2 + a2	 \	 r21p2 

and

. p2	 = (r2 - 
13	 dP	 13	 r2 

The Dirichlet problem, which permits calculation of G(Z), is 
readily formulated; since G(Z) has a constant real part on the con-
tour (C), G(Z) is constant:

	

F'(Z)=i	 1
a2 \ dz	

z(l__) 

whence

H(z)	 a'	 1 

	

=—r -;:•)	 a2 
z --z 

and

H(Z)	
2(r2 a

\	 1 

=-	 22 

We note besides that 2= 0.
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One calculates v(z) by the formula (11.9) 

'1(z) - 2 (r2	 1 - -	
-	 - a2 -
	 (11.28) 

and u(z) by the formula (11.11) which may also be written 

u(z) = -	 -	 -	 - 2K2Z]	 (11.29) 
Jz 

whence

U(z) = 1ç2 -	 )(lo	
- 2a\ 

r2	 z2_a2) 

u(z) = L ç2 - a Log z+z2-a2 + 
2- a2-

L2

	 Jz2 -	
j	

(11.30) 

If one makes a = 0, one will find again the expressions already 
obtained for u(z .) and v(z) in the case of a cone of revolution of 
zero incidence (formulas (11.2 11W) and (11.25) in which one makes a = 0). 

We shall denote by e and by i the principal angles of the 
elliptic cone (see fig. 12). One has 

/	 2 
= 2ir + r 

f	 2 
T113 = 2r - 

whence

a2=-€2 _2) 
16 ' 

or
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The pressure distribution on the cone circumference is easily cal-
culated. It is safficient to apply the formula (11.26); besides 

	

-	 22 

- i 2cos 2 P + €2sin2q 

and

	

______	 -	 22 
R[u(z) = [lo	

j	 + €2sin2 

hence the final formula

I(€ + ii)	 _______________ C = 2c[_ 1og	
I -
	

+ 2( 2cos	 + e2sin)1	
(11.31) 

The case where the velocity is not in the direction of the axis 
may be treated equally by utilizing the formula (11.21). In this formula 
one must put

	

H0(z)=2(r2a''__1	 dZ_1a2 
a2	 dz 

z --
z 

One then obtains 

	

H( 1)(z) = Jr2 -	 z	 + 2[ui	 2	 + cxr2 	

2 ] 
r2Jz2 - a2	 - z2 - a2)	 z2 z2 - a2 

=	 2	 [(r2 -	 + ar2 - ia2l 
(z2 - a2) [\	 r2)	 J 

hence, remarking that

2 

	

z = z +	 + a z
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H(Z) - 2[(r2 a\(	 1	 + - -	

-	 -a)2-2) 

	

(22)(	

_(Za)2a2)1 
2a2\j(Z - ct)2 - 

and

v(z) = H(Z) - 2r2 -
r2) 

On the other hand, we shall calculate U by utilizing the vari-
able z and the foiniula (11.20). The coefficient 2 is equal to 

and U(z) is then given by the formula 

U(z) = L r(r2	

) (	

2a2+	 + 2-2 (2z2 + az)1 + 
2 [ - - og Z - z2 - a2 ) z(z2 - a2)

(11.32) 

One will note that., if one puts a = 0, one finds again the for-
mula (11.30), and that, for a = 0, one finds again the formula (11.25), 
except for the notations. 

Thus one can, without any difficulty.other than the lengthy writing 
expenditure, calculate the pressure distribution coefficient on the 
elliptic cone of any arbitrary orientation with respect to the wind.
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2.2.5 - Calculation of the Total Forces 

We have already seen in section 1.2.6 that the normal to the conical 
obstacle directed toward the outside has as direction parameters 

i (x3x2 1 - X2X3 t ) , x3 ? , -x2' 

Let	 be the unit vector coincidental with this normal, s be 
the area of the section with the abscissa x1 , L the length of this 

section; one may make correspond to the resultant of the forces acting 
on a section (xi, x1 + dxi) a (dimensionless) vector 

= - fcp ds	 (11.33) 

situated in the plane x2x3 , and a dimensionless number 

= - f

-p-, 
Cp (nU)ds	 (ii.3) 

the vector C characterizes the lift, the number C the drag. 

The integrals appearing inhe formulas (33) and (31i) are taken 
along the section. Naturally C and C are independent of this 

section. One may also replace	 by a complex number C, the real 

and imginary parts of which are equal to the components of the vec-
tor	 on Ox2 and Ox3 . For calculating equations (11.33) and (11.314-) 

one may utilize the section x1 = 3. If we assume 1 to be the length 

of the contour (C) in the plane Z, we may write, taking into account 
the habitual approximations

=	 C dZ	 (11.35) 

and

Cx = -	 Rc r
	 dZ]	 (11.36)
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with the integrals appearing in equations ( 11. 35 ) and ( 11. 36 ) taken in 
the plane Z. These integrals present a certain ana1or to the Blasius 
integrals (ref. 13); C is given by the formula (11.26); unfortunately, 

it is not possible to give simple formulas for the total forces since 
the integrals (11.35) and (11.36) make use of all coefficients of the 
conformal representation19. 

We shall apply the formulas (11.35) and (11.36) to the case of the 
circular cone; C is given by equation (11.27) 

dZ = I	 e1OdO 
2

ZdZ=I'2dQ 

One obtains

C = -2cty C = 2 3log -a-. —	 —	 (11.37) 
cL 

In the case of the elliptic cone of zero incidence, C is obvi-

ously zero

Z = re	 +	 e	 dZ = iEe1P —	 e_'JdcP 

whence

c	 :'( =—r2 --_\ I	 Cd'P -

r2 ) J0 

with C being given by formula ( 11. 31 ) . Now 

r

It	 Co 

€dtP	
= r 

J -it 2(ri2cosP + €2sin2q)	 J_CO 2 + 

19 
See appendix No. 7.
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As one can see immediately by putting 

t = tan (p 

the calculation of this last integral is iimnediate. 

Thus one obtains 

c =	 2r2[iog 
1	 [	 (€ + i) -	

( 11.38) 

with 1 being the length of the ellipse with the semiaxes	 flJ• 

2.2.6 - Approximate Formula for the Calculation of Cx 

Let us consider the function U(z); according to formula (11.11) 
and the remark 2 of section 2.1. 11. one may say that the principal term 
for U(z) is

U(z) = 14. --- log z 

Consequently, in first approximation 

= - ---. log r 

with S being the area inside of the contour (C), and r the radius 
of the circle (7) on which one makes the conformal canonical repre-
sentation of (C). If one now calculates C , taking into account this 

approximate formula, one has, according to equation (11.36) 

C = - 18s log rRLf Z dZ] x

[ c 

whence

C = + 32S2 log	 (11.39)
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We shall state: In every first approximation the value of the 
drag coefficient C is given by the formula (11.39). 

2.2.7 - Case Where the Cone Presents 

an Exterior Generatrix 

If the contour (C) shows an exterior angular point, the various 
functions introduced in the course of the study (first paragraph of 
this chapter) present certain singularities. These singularities we 
shall specify. Let	 be the designation angular point of (C), and 

Sic the angle of the two semitangents to (C) at the point Z 0(O < 5 <1) 
(see fig. 13); if. z0 is the image of the point Z0 in the plane z, 
one may write, according to a well-known result, in the neighborhood 
of z0

(dz \ = K(z - z0)k 

with K being a complex constant and k = 1 - 5; consequently 

_k 

[F'(z)] = Ki(z - z0)_k = K2 (Z - z0) 1+k 

iith K1 and 2 being complex constants. F'(Z) thus becomes infinite 

at the point Z = Z0. 

In contrast, the function G(z) has, according to definition, a 
real part which assumes on the circle (y) the values 

RrZZi 
dzj 

This real part thus remains finite on the circle (y) (and it 

satisfies there a condition of Hlder). According to a known theorem, 
its imaginary part likewise remains continuous on (y) (and likewise 
satisfies a condition of H3lder). Consequently, one sees, if one refers 
to formula (11.18) that
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H ( z) = K3 (z - z0) ' 

in the neighborhood of Z0; likewise, U, V, W will, in the proximity 

of this point, be of the order 	 k	 with respect to 
1+k	 Z-Z0 

Thus the analysis made in section 2.1 is no longer applicable to 
this case. However, the formulas (11.35) and. (11.36) show that if the 
pressure coefficient assumes very high values ii the neighborhood of 
Z = Z0, the total energy remains finite. According to what we have 

indicated in section 1.1.3 we consider the solution still valid, with 
the understanding that the values of C in the surroundings of Z = Z0 

are not reliable. 

2.2.8 - Delta () Wing of Small Apex Angle 

at an Infinitely Small Incidence 

If one puts in the formulas r 2 = a2 , at the end of section 2.2.Ii-, 
one obtains the pressure distribution on a delta wing with small apex 
angle. Let us recall that a delta wing is an infinitely small angle. 
Its angle, according to definition, is the half-angle u at the vertex 
(compare fig. 1 1 -). Thus one has 

u43 = 

The formulas ( 11. 31 ) and ( 11. 32 ) are applicable to a delta wing of 
small angle placed at an incidence also rather small. 

Let us moreover assume that this opening is infinitely small with 
respect to the incidence. Under these conditions, the formulas yielding 
u(z) and v(z) are written 

v(z)	 2a_ZJZ21a2 
2	 Jz2_1.a2 

u(z) = -	
-	 2	

+	 - a)Z	 (Ii.1O) 
2 \JZ2_Ia2	

2
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Actually one is justified in omitting the second-order terms with 
respect to a. For calculating Cp it suffices to apply the for-
mula (11.8); the second term of the second formula (Ii. li.0) may be 
neglected. 

With the incidence y, the delta wing being parallel to Ox 2 , one has 

y3 = 2ia 

Finally, one may put along the 

Z = 2a cos =	 cos p 

One then finds

= aA)7 

P	 sinCP
(II.1i.i) 

We remark further that p is related to the angle ji of figure 11. 
by

2'V3 = w3 cos	 'V = w cos 
2 

One may state: the pressure coefficient on a delta wing of infi-
nitely small opening angle is independent of the Mach number of the flow. 

One has

2wy	 .	 2'V 
C =	 if t=-

\Jlt2	
(A) 

if one applies formula (11.35), one finds 

C = i1XD7 

This coefficient C has not the same significance as the one 


utilized in the theory of the lifting wing. Actually, it is, according
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to the very manner in which it was obtained, relative to the total area 
of the L (pressure side and suction side); if one takes only one of 
these areas into account, one must write (neglecting the factor -i) 

C = 2iy 

This formula has been found by other methods by R. T. Jones 
(ref. i4-). We shall find it again in chapter III, section 3.l.2. Ii, when 
studying the general problem of the delta wing which is here qnly touched 
on incidentally and for the particular case of a z with infinitely 
small opening angle. 

2.2.9 - Study of a Cone With Semicircular Section 

As the last application, we shall trt the case of a cone with 
semicircular section, with the velocity U being directed along the 

intersection of the syimnetry plane and of the face plane of the cone2° 
(fig. 15). 

The contour (C) in the plane Z then is a semicircle, centered 
at the origin, of the radius a (fig. 16). 

One obtains very easily the. conformal canonical representation of 
the exterior of this contour, on the outside of a circle (y) of the 
radius r, centered at the origin of the plane z, by means of a par-
ticular Karman-Trefftz transformation (ref. 13, p. 128) which is written 

-1-12 
Z-a = z-re 61	 (II.2) 
Z+a	 .5tI -1-

z - re 

a and r are connected by the relationship 

4a = 3rJ 

In order to obtain the correspondence between the circle (y) and 
the contour (C), one must distinguish two cases. Let us put 

z = re 

20Sueh a cone formed the front of supersonic models planned by 
German engineers.
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(i) _<P<1gL, the corresponding point of (C) is on the arc 

of the circle. 

Let us put under these conditions 

Z = ae 

and we shall find according to formula (11.14.2): 

IC 

tan . = [
S1fl + 

2	 5it I (II.li.3) 

(2)	 <P	 the corresponding point of (C) is on the seg-




ment AA'; let us put under these conditions 

Z = a cos X 

The formula (11. 11.2) shows that

cP	 5i )1j + 

The two last formulas define completely the desired conformal 
representation. Figures (11) and (18) give the variations of V and x 
as functions of P. 

We shall have to utilize equally the value of dz/dZ. The simplest 
method for obtaining this value consists in logarithmic differentiation 
of the two terms of formula (11.11-2). One thus obtains the result 

=	 + irz - r2	 (11.14-5) 
dZ	 2	 2 Z -r
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If one has - < ci <	 one must put in the preceding formula 

z = re-	 Z = aei 

whence

dz = r2 1 + 2 sin p e i (P_*) = 8 1 + 2 sin P e ()	 (11.14.6) 
dZ 2a2	 27	 sin jr 

If P is comprised between	 and !., one puts z = re, 

Z = a cos X. Thus one obtains 

=	 1 + 2 sin P	 (II.7) 
dZ 27	 sin2X 

The function G(Z) has as its real part R [zZ i, that is 
LdzJ 

1ar	 sin'V	 if 
8	 1+2sinCp	 6	 6

(11.14.8) 

0	 if 

The analytic function

a2
Z dz 

has a real part which, on (y), assumes these same values. This func-
tion is regular at infinity, holomorphic outside of (y), but with a 

pole z = -ir, with the corresponding residue being equal to -ia2.
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Let us then consider the function 

a2i dZ - 1 Z - ir 
\Zdz 2z+ir 

This function is holomorphic outside of (v). It is regular at 

infinity; its value at infinity is equal to a 2/2. On (y), these real 
and imaginary parts satisfy H3lder conditions. This function is there-
fore identical with the desired function G(z). 

Hence one deduces according to equation (11.18) 

H(Z)	 f	 - 1 z - ir a2 dz a2 a2 z - ir dz

Zdz 

and according to equation (11.19) 

v(z) =a2__-Lz_ird 
2 2zz^irdZ) 

Finally, the calculation of u(z) may be carried out with the aid 
of formula (11.29) 

rG	 = a2log	 a2 Z - ir	 = a2 (iog Z	 + 1 log z) J	 z	 2Jz+ir z	 z+ir 2 

and

ZR - K = a2 (i - 1 Z dz z - ir - 1' = a2t1 - z - ir Z dz


	

1	 2zdZz+ir 2)	 2	 z+irzdZ 

whence

	

u(z) =	 - ir z dz -	 14K2Z	 _____ 

_______	 _____	
Z 1+	 +2log \z+irzdZ	 a2	

z+ir+l0z) 

The calculation of the coefficients K2 offers no difficulty what-
soever; however, as one had already opportunity to note, the term K2Z 

does not occur in the calculation of the pressures along the cone.
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This pressure distribution along the cone calculated with the aid 
of equation (11.26) is represented in figure 19. 

2.3 - Numerical Calculation of Conical Flows With 


Infinitesimal Cone Angles


2.3.1 - General Remarks 

In the preceding paragraph, we have studied a certain number of 
particularly simple cases. However, if the cone (C) is arbitrary, it 
will be necessary to carry out various operations leading to the solu-
tion by purely numerical procedures. 

Let us analyze the various operations necessary for the calculation: 

(i) The conformal canonical representation of the exterior of (C) 
on the outside of the circle (y) must be made; this calculation per-
mits, in particular, determination of the radius r of (7), corre-
spondence of the points of (C) and of (7), and calculation of the 
expression dZ on the contour (y). 

(2) The function G(z), holomorphic outside of (y), regular and 
real at infinity must be determined, the real part on (y) of which is 
known; we shall designate it by g(cp). In fact, it suffices to know, 
on (y), only the imaginary part of G(z), for instance g'(cp); g'(cp) 
is the conjugate fuxction of g(cp) and is given by the formula 

2it 
g'(cp) = J_J	 g(.cp')cot	 ' -	 dCP' 

2ir	 2 

This formula is called "Poisson's integral." 

(3) With these two operations accomplished, the values of 11(z) on 
the circle (y) (formula (11.18)) are known which provides the values 
of v and w on the cone; u is obtained by the formula (11.29). The 
only new calculation to be made is that of the expression: 

R[ fG]= fg' dP 

the constant of integration being determined so that u should have a 
mean value zero on (y).
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AU these operations always amount to the following numerical 
problems:

(a) With a function given, to calculate its conjugate function 
(Poisson integral) 

(b) With a function prescribed, to calculate the derivative of the 
conjugated function 

(c) With a function prescribed, to calculate its derivative23-. 

We shall justify this result in the following paragraph by showing 
that the operation (1) may be performed by applying the calculations (a), 
(b), (c). We shall then indicate a general method, relatively simple 
and accurate, whih permits solution of these problems. We shall ter-
inmate this chapter by giving an application. 

2. 3 .2 - Conformal Canonical Representation 

of a Contour (C) on a Circle (y) 

The numerical problem of determination of the conformal canonical 
representation of a contour (C) on a circle (y) has been solved for 

the first time by Theodorsen 22 . We shall briefly summarize the principle 
of this method, simplifying, however, the initial expose of that author. 

Let us suppose, first of all, that the contour (C) is neighboring 
on a circle of the radius a, centered at the origin (fig. 20); in a 
more accurate manner, putting on (C) 

Z = ae
	

(11.1i9) 

with 4 being a function of e, V = \V(0), we shall suppose that 'i(e) 

and	 are functions which assume small values. We shall then call 
dO 

211f the conformal representation of the exterior of (C) on the 
outside of (y) is known in explicit form, it will naturally be suiT i-
cient to apply operation (a). 

22Compare references 15 and 16. One may achieve this conformal 
representation also by the elegant method of electrical analogies (ref. i) 
the time expenditure required by the experimental method and by the purely 
numerical methods here described as well as the accuracy of these pro-
cedures are of the same order of magnitude.
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(C) ' t quasicircular." Let (P be the angular abscissa of the point of 
(y) which corresponds to the point of (C), the polar angle of which 
is 0; we put

0 = p + (cp)	 p = e - € (o)	 (11.50) 

€(e) and €((p) representing the same function but expressed as a 
function of 0 or as a function of cP; we shall put likewise 

V(cp) = V(e) 

The desired conformal transformation may be written 

Z = ze( z )-

with h(z) being a holornorphic function outside of (7), regular and 
zero at infinity. The equality (11.50) becomes, if one writes it on the 
circle (y),

= rei(Peh(z) 

whence

h(z) =	 7(p) + ip) + log	 (11.51) 
r	 r 

Finding the conformal representation of (C) on (cp) amounts to cal-
culating the functions iV( p ) and (cp). First of all, one knows (equa-
tion of (C)) that

=	
+	

(11.52) 

On the other hand, according to equation (11.51), E(Cp) is the conju-
gate function of 7(p), and consequently 

=	

f2	
((P')cot(P' 2
	

(11.53)



NACA Th l351.	 65 

the integral being taken at its principal value. There is no constant 
to add to the second term of equation (11.53), for c(cp) has a mean 
value zero since h(z) is zero at iniinity. For the same reason, if 

denotes the mean value of V(CP) in an interval of the amplitude 2mt 

r = ae"I 0	 (11.51,.) 

an equality which will permit calculation of r if 'V((P) is known. 
In order to calculate 	 (cp) and 17(cp), one disposes therefore of the 
relations (11.52) and (11.53); one can solve this system by a procedure 
of successive approximations. 

We shall put first

=	 cp) = a 

According to equation (11.52)

e) = ijr(e) 

and according to equation (11.53) 

=	 (0)cot 9? - e de' 
21J 0	 2 

Thence a first approximation for P 

= e -	 o =	 + 

From it one deduces, according to equation (11.52), a first approxima-
tion for jt(cp)

l(1) =	 + l(l)] 

whence a second approximation for the function €
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=

	

	 r
2ic 

i(1')cot	
' - 

2ic U o

=	
- €1(o)jJ 

whence

cp20_e2(e)	 e=2+2('2) 

The procedure can be followed indefinitely. 

The convergence of the successive approximations forms the subject 
of a memorandum by S. E. Warschawski (ref. 18). We refer the reader 
who wants to go more deeply into that question to this meritorious 
report. 

From the practical point of view one may say that the convergence 
is very rapid; two approximations suffice very amply in the majority of 
cases; the different changes in variables which encumber the preceding 
expose are very easily made by graphic method. Thus one sees that the 
numerical work essentially consists in calculating twice the inte-
gral (11.53). This calculation i precisely the object of the prob-
lem (a) stated at the end of section 2.3.1. 

If the contour (C) is not "quasicircular," one iiay make, first 
of all, a conformal representation which transforms it into the "quasi-
circular" contour (C'); one will then apply the preceding analysis to 
the contour (C'). For certain cases it will be quicker to use a direct 
method. Let us assume, for instance, that (C) is a contour flattened 
on the axis of the X (compare fig. 21) and for simplification that 
X'OX is permissible as the axis of symmetry. 

Let us suppose that X varies along (C) from -a to +a while 

IYI remains bounded by ma (with .m being, for instance, of the order 
of 1/10); it will then be indicated to operate as follows: 

We put along (y)

Z = .[f(cp) + ig(P 
r[
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One has

X(P) = f cos (P - g sin P 

y(cp) = f sin (p + g cos (P 

or also

f = x cos (p + Y sin (P 

g = Y cos (P - X sin (p 

r(p) is an even function of cp, g((P) is an odd function

(11.55) 

(11.56) 

r(o) = +f(it) = a	 g(0) = g(it) = 0 

The functions X(cp) and y (p ) have to be found. Let us take as 
starting point

X0((P) = a cos (P 

an approximation which would be definitive if (C) were an ellipse. 

On the contour (C) one reads the corresponding value Y 0 (P), and 

by means of the second formula (11.56) one obtains a first approximation 

g1 (p)	 Y0 (p)cos p - X0 ((P)sin p 

f1 ((P) will be given by a Poisson integral 

r' 2n 
f1 (P) = -- /	 g1)cot	 -	 dCP' + 

2itJ 0	 2 

with ?	 being a constant, such as f 1 (0) = a. 

Owing to the formulas (11.55), one has a first approximation x1((P), 

for the functions x(rP ) , Y(P). One proceeds in the same manner, 

reading off on (C) the functions Y1((P) corresponding to X1 (p), then
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calculating

= Y1(cp)cos cp - X1(cp)sin U 

and.

r-'13t 

f2 (CP) = 1. /	 g2(Cp')cot (p
t - (p dP + 

2icu 0	 2 

etc.

When one has obtained a pair r(cp), g(cp) providing a. sufficient 

approximation Xn(P), Y() of x(p), y(cp), one stops the calcula-

tions; then

r = 

In practice23 it suffices to take n = 2; the same method (averaging 
of very slight adaptations) will apply to the case where (C), although 
being flattened on OX, will no longer admit of OX as the symmetry 
axis.

Finafly, for a complete solution of the problem (1). posed at the 
beginning of the preceding paragraph, only dZ/dz remains to be calcu-
lated, which will obviously be possible with the aid of the problems (b) 
or (c).

2.3.3 - Calculation of the Trigonometric Operators2 

The method. we shall summarize permits calculation of the Linear 
operators A, transforming a function P(e) into a function Q(0) 

23The principle of this method is the one we applied for the study 
of profiles in an incompressible fluid. But in the case of the profiles 
a few complications (which can, however, easily be eliminated) arise due 
to the fact of the "tip." 

2ll e gave the principle of this method for the first time in 
March 1911.5 (ref. 19). Compare also reference 20. In continuation of 
this report, M. Watson provided a demonstration of the formulas which 
we obtained by a different method (ref. 21). We also point out a "War-
time Report" of Irven Naiinan, of September 1911.5, proposing this same 
method of calculation for the Poisson integral (ref. 22).
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Q(e) = A[P(o)] 

and re-entering one or the other of the following categories: 

First category: The operator possesses the following properties 

A(cos mO) = am sin mO 

A(sin mU) = -am cos mU 	 (11.57) 

A(l) =0 

with am being a nonzero constant, m any arbitrary integral different 

from zero. 

Second category: A possesses the properties 

A(cos me) = bm cos me 

A(sin me) = bm sin mU 

A(l) = b0 

with b. being a nonzero constant, m any arbitrary integral. 

We .shall call these operators "trigonometric operators." The 
operations which form the subject of the problems (a), (b), (c) are, 
precisely, particular cases of "trigonometric operators." 

With the function P(e) known, one now has to calculate the func-
tidn Q(e); the functions p(e) and Q(e) are assumed as periodic, of 
the period 2it. P(e) and Q(e) are determined approximately by knowl-
edge of their values for 2n particular values of U, uniformly dis-
tributed in the interval 0, 2t. One knows that the unknown 2n values 
of Q are linear functions of the known 2n values of P. The entire 
problem consists in calculating the coefficients of these linear equa-
tions. We shall do this, examining two possible modes of calculation.
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2.3.3.1 - First mode of calculation.- After having divided the 
circle into 2n equal parts, we shall put 

f . = f(.:Z.
1	 \fl 

(1) Operators of the first category. - Obvious considerations of 
parity show that the	 are expressed as functions of the P by 

equations of he form

n-1 
=	 -	 (11.58) 

1 

We shall apply the relations (11.57), that is, carry into the 2n 
equations (11.58)

p (e) = cos mO	 Q(0) = am sin mO 
and

P(e) = sin mU	 Q(e) =	 cos mU 

We thus obtain ti-n equations which are all reduced to the unique 
equation

n-i 

	

I5 sinp!=	 (11.59) 

1 

This reduction is the-explanation for the success of the method. 
We have to determine (n - 1) unknown K. For this purpose, we shall 

write the equation (11.59), for the values of p varying from 1 to 
n - 1. The system remains to be solved. If one multiplies the first 

equation by sin 1!!., the second by sin 	 the (n - 1)th by 

sin(n - i) 1 , and if one adds term by term, one obtains a linear rela-
tion between the K, with the following coefficients of 5	 -
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n-i	 n-i 
> sin m PIE.	

>[cos m	
I') - cos m (p + sin m - =	 ________	 ________ 

2 
m=i	 m=l 

	

= [r r( -	 -	 + 
2[	 n	 j	

n[ n	 ij 

with

n-i 

	

Cn(x) = >1 	 =	 ( n - 

	

m=0	
2

sin 

Thus the coefficient of 	 is zero if p	 .i, and equal to	 if 

Thence the desired value of 5 
n-i 

	

Kp_>IIainsin	
(11.60) 

m=l 

Let us apply this result to the calculation of the Poisson integral. 

•This integral defines an operator Q = A(P) of the first category 
for which am = -1. 

Consequently, the formula (11.60) is written 

n-i 

5 .>I	 mpt i sin—
n = i fl;\--) 

1 

if one puts

n-i 

Sn( x) =	 __ =	
(n - i)x sin 

2	 x 

	

1	 0	
sin
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Thus

5 =0	 if p even

}	

(11.61) 

cot	 if p odd 
Sn	 2n 

(2) Operators of the second category. - The considerations of parity 
permit one to write the general formula 

Qi =	 +	 +	 +	 i+n	 (11.62) 

Using the same reasoning as before, one is led to determine the coeff i-
cients 5 by the system 

n-i 

Ko+25	 / cos In - + - i)K = bm	 (11.63) 
n 

.p=i 

with in assuming the values 0, 1, 2, . . . n. 

Multiplying the first value by 1/2, the second by cos lilt/n, the 

third by cos	 the nth by cos (n	 and the last by ( - 

and adding them, one obtains a linear relation between the K, with the 

coefficient of 5 being (p 0, p n) 

2 + -)P+li +
	 n[ ± 

L) 
+ Cn[	 li)lt - 2]] 

that is, n if i = p, and 0 if li p.


	

The coefficient of	 is 

I-
+	 -	 + lic (E- + c ( -	 - 21 

2	 2	 2[fl\nI	 fl\	 nj
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The preceding conclusions remain valid, it is zero for ii 0 and equal 
to n if i = 0; the same result is valid for K1.1 . Finally, one 

obtains the general formula of solution 

	

n-i	 b1 

	

mpit	 / 
cos - + i. - i)P	 I	 (11.6k) 

n	 2 
m=l 

Let us consider, for instance, the operator transforming the func-
tion P(e) into the function dQjde, with Q being the conjugate func-
tion of P; it is an operator of the second category for which 

bm = -m 

Applying formula (11.6k), one obtains 

Ko

)P	 pO 
pmit 

= - I>i m cos - + ( - 1 n	 2] 
La. 

If one notes that 

n-i 

>	
(x) = Im cos	 =	 1	 sin(n -	 - sin2 

	

2xL	 \,	 2)	 2] 
0	 2sin

a 

one sees that

5=0

1 
5 =	 pic\ 

n(l - cos

if p even 

if p odd.
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2.3.3.2 - Second mode of calculation.- Examination of an important 
particular case will show us that in certain cases it will be advantageous 
to consider a second mode of calculation. 

The method consists in replacing the function P(o) by a function 
of the form

(o) = Ian cos nO + b sin nQ (11.66) 

for which the method is applied with the strictest exactness; the con-
stants a and •bn are such that P1 =	 One operator of the first


category, one of the most important ones, is the operator of derivation 
which makes the function dP/de correspond to the function P(e). If 

we apply the first type of calculation, we shall replace () by 

() now, it is precisely at the points 0 = 	 that the deriva-

tives	 and	 show the greatest deviation. In contrast, we shall 
dO	 dO 

obtain a good approximation of the desired function by replacing 

+	 by	 d[2i + 

dO L 2n J	 2n J 
We are thus led to the following mode of calculation: the circle 

is divided into 11-n equal parts; we shall put 

f . = 
'	 \2n 

and we shall express the En values	 as a function of the 2n values 

P2j+l. 

We shall limit ourselves to the operators of the first category. 
The formula expressing the 	 as a function of 2+1 is written 

Q2 =(P2i+2p_1 -
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and we obtain for determination of the 5 the system 
n >115 sin (2p - 1 )mt - 

	

2n	 2 
p=]-

with m varying from 1 to n. 

Multiplying the first equation by sin(211 - i)-, the second by 

(2ii - l)2it	 th	 (2i - i)(n - 
sin	 ,	 • •, the (n - 1) 	 by sin	 , the 

2n	 2n 

I 

last by ' - 2'
	

and adding them, one obtains a linear relation in 

which the coefficient of	 is 

n-i
sin(2p - i)	 sin(2 - i)	

+ (- i)+P 

2n	 2n	 2 
m=1 

I	 [cos(P -	 - cos(p + :_ i)j + ( - i)P = 

1	
fl	 2 

	

-	 - Cn p + i- i)ij + ( - 

The coefficient is zero if p Il, and equal to 	 if p = P• Hence 

	

5 = -	 sin (2Pn	
+ - 1)P a

n]	 (11.67)  

This procedure may be applied to the calculation of the derivative 
of a periodic function. In this case, am = -In. Applying formula (11.67), 
one obtains



'16	 NACA TM 1351i. 

	

5 = ( -
	 1	 (11.68) 

2nLl -
	 (2p - i)fl 

2nJ 

2.3.3. li- - Remarks on the Employment of the Suggested Methods.- In 
order to convey some idea of the accuracy of the proposed methods we 
shall give first of all a few examples where the desired results are 
theoretically known. 

Let us take as the pair of functions P(e), Q(0), the functions 

p (e) = )4 cos 20 -	 cos 0 + 1	 Q(e) = )4. sin 0(2 cos 0 - 1) 

(5 -	 cos 0)2	 (5 -	 cos 

which are the real and imaginary parts, respectively, on the circle of 
radius 1 of the function 

	

f(z) =	 1	 (z = e10) 
(2z - 1)2 

One will find in figure 22 the graphic representation of the func-
tions P(e), Q(e) and Of the derivative Qt(e) of this function, and 

pit also the values of these functions for e =	 (with p ranging 

between 0 and 12). Furthermore, one will find in figure 23 the values 
of Q(e), calculated from P(e) as starting point, by the method just 
explained (coefficients 5, defined by equation (11.61)), and in fig-
ure 2 )4- on one hand the values of Q ?(e) , calculated from P(e) as 
starting point (from coefficients 

5 defined by equation (11.65)), 

and, on the other, these same values calculated from Q(e). as starting 
point (coefficients 5 defined by equation (11.68)). One will see 

that the accuracy obtained is excellent although the selected functions 
show rather rapid variations. Such calculations by means of customary 
calculation methods are a delicate matter; this is particularly obvious 
in the case of the Poisson integralwhich is an integral ' t of principal 
value. t' Systematic comparisons of the method of trigonometric operators 
with those used so far have been made by M. Thwaites (ref. 23); they 
have shown that this method gives, in certain calculations, an accuracy 
largely superior to any attained before. 

The calculation procedure, with the aid of tables like the one 
represented (fig. 25) is very easy. One sees that one fills out this
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table paraflel to the main diagonal of the table. With such a table, 
about one and a half hours suffice for a Poisson integral if one has a 
calculating machine at his disposal. 

We have bad occasion to point out that the accuracy of the method 
obviously increases to the same degree as the functions one operates 
with are "regular" and present "rather slight" variations. This leads 
in practice io two remarks which are based on the "difference method" 
and reasonably improve the result in certain cases. We shall, for 
instance, discuss the case of the Poisson integral. 

(1) If the function P(e) presents singularities (for instance 
discontinuities of the derivative for certain values of e), it will be 
of interest to seek a function P1 (e), presenting the same singularities 

as the function P(e),'for which one knows explicitly the conjugate 
function Q1(0). One will make the calculation by means of the func-
tion P(o) - P1 (e); this function no longer presents a singularity. 

(2) If the function P(o) has a very extended range of variations, 
one will seek a function P1(0) for which one knows explicitly the 
function QjO) so that the difference P(e) - P1 (e) remains of small 

value, and one will operate with this difference. 

Finally we note that, if the calculation of the derivative of a 
function P(e) as described above necessitates that P(e) be periodic, 
one can always return to this case, applying, precisely, the "difference 
method."

2.3.11. - Example: Numerical Calculation of a 


Flow about a Semicircular Cone 

As an application, we have taken up again the case of the semicir-
cular cone studied in section 2.2.9. The function g(p) is given by 
the formula (11. 11.8), and g'(CP) will be calculated by a Poisson inte-
gral. Figure 26 shows the value g'((P) thus calculated compared to the 

theoretical value25. 

25We wanted to test the accuracy of the proposed method by assuming 
an extremely unfavorable case, without taking into account the singu-
larities presented by the function g(P). For a numerical operation of 
great exactness, this particular case would have required application 
of the lemma of Schwartz, with the contour (C) completed symmetrically 
with respect to OX.
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It is then possible to calculate the representation of the pres-
sures, by calculating successively the function H, Zil, and the inte-
gral g'(cp). 

One will find the pressure distribution thus calculated in fig-
ure 19; one may then compare the result obtained by the calculation 
method (for a very unfavorable case) with the result obtained 
theoretically.
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CHAPTER III - CONICAL FLOWS INFINITELY FLATENE])


IN ONE DIRECTION 

The purpose of this chapter will be the study of conical flows of 
the second type (see chapter I, section 1.2.6). Before starting this 
study proper, we shall make a few remarks concerning the boundary con-
ditions. The conical obstacle is flattened in the direction 0x1x2. 

Under these conditions, reassuming the formula (1.27) 

- vx3 1 = l(x3x2 ' - X2X3t) (1 + u)	 (1.21) 

one may say that it reduces itself, in first. approximation, to 

= (X3X2t - x2x3 ')	 (111.1) 

since x3, X3 1 , v, u are infinitesimals of first order, while x2 
and x2 ' are not infinitesimals. Under these conditions, one may say 

that one knows the function w on the contour (C). On the other hand, 
one may write, within the scope of the approximations made, this boundary 
condition on the surface (d) of the plane 0x1x2 , projection of the 

cone obstacle on the plane. Let us designate, provisionally, the 

value w by w ( '- ) (x1x2x3) if one operates as follows 

(1) 
ow	

1i,x2(t),O1 
w1Ji,x2(t),x3(tjj	 w(1) [xl, x2( t ), o1 + x(t) 

With the derivatives of w being, by hypothesis, supposed to be of 
first order, and the boundary equation written with neglect of the terms 
of second order, the intended simplification is justified. 

Various cases may arise, according to whether the cone obstacle is 
entirely comprised inside the Mach cone (fig. 27), whether it entirely 
bisects the Mach cone (fig. 28), whether the entire obstacle is com-
pletely outside the Mach cone (fig. 29), or whether it is partly inside 
and partly outside the Mach cone (fig. 30). In each of these cases 
there are two elementary problems, the solution of which is partiQularly
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interesting: the first, where the relation (111.1) is reduced to 

w = constant = w0 

which we shall call the elementary lifting problem (the corresponding 
flow is the flow about a delta wing placed at a certain incidence); the 
second, where the relation (111.1) is reduced to 

w=w0 for x3=+O 

for x3=-0

which we shall call the elementary symmetrical problem. This is the 
case of, for instance, the flow about a body consisting essentially of 
two delta wings, symmetrical with respect to 0x1x2 and forming an 

infinitely small angle with this plane. It is also the case that will 
be obtained, the section of which, produced by a plane parallel to 0x2x3, 

would be an infinitely flattened rhombus. The fact that one obtains the 
same mathematical formulation for two different cases indicates the 
relative character of the results which will be obtained. In the case 
of the symmetrical problem one may naturally assume that w is zero on 
the plane 0x1x2 at every point situated outside of (d). 

Let us finally point out that very frequently the obtained results 
do not satisfy the conditions of linearized flows; in particular, the 
velocity components and their derivatives will frequently be infinite 
along the semi-infinite lines bounding the area (d). However, we admit 
once more that the results obtained provide a first approximation of the 
problem posed above, in accordance with the remarks made in section 1.1.3 
of chapter I. 

3.1 - Cone Obstacle Entirely Inside the Mach Cone


3.1.1 - Study of the Elementary Problems 

The case of the lifting cone has already formed the subject of a 
memorandum by Stewart (ref. 10); however, the demonstration we are going 
to give is more elementary and will permit us to treat simultaneously 
the lifting and the symmetrical case. 
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3.1.1.1 - Definition of the function F(Z).- We shall make our

study in the plane Z. Let A'A(-a,+a) be the image of the cut of the 

surface (d)26, (co), as usual, the circle of radius 1 (fig. 31). 

Naturally, we shall operate with the function W(Z). One of the 
conditions to be realized which we shall find again everywhere below is 

that dW/dZ must be divisible by (z 2 - i), unless the compatibility 
relations show that u(z) would admit the points Z = ±1 as singular 
points which is inadmissible. Thus we introduce the function 

	

F(Z) =	 Z2	 (111.2) 
z2 - dZ 

and we shall attempt to determine F(Z) for the symmetrical as well as 
for the lifting problem. 

F(Z) is a holomorphic function inside of the domain (D), bounded 
by the cut and the circle (Co); the only singular points this function 

can present on the boundary of (D), are A and At; on the other hand, 

F(Z) must be divisible by Z 2 , unless U, V, W have singularities 
at the origin. On the two edges of the cut F(Z) must have a real zero 
part. On the circle (C0) 

Z	 = 1 = 

	

z2 -i z-	 2isine 
z 

Z	 = e 0	 = -i 
dZ	 dZ	 dO 

Consequently, F(Z) has a real zero part on (C 0) as well. The fact 

that F(Z) cannot be identically zero, and that its real part is zero 
on the boundary of (D), admits A and A' as singular points. We 
shall study the nature of these singularities. 

3.1.1.2 - Singularities of F(Z).- Physically, it is clear that A 
and A' cannot be essential singular points. Let us therefore suppose 
that, in the neighborhood of Z = a, one has 

26One assumes, as a start, that the problem permits the use of the 
plane 0x1x3 as the plane of symmetry.
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F(Z)	 K(z - a) 

m0 being arbitrary,	 0; let us put 

Z - a = re 

with q being equal to +ic on the upper edge of the cut, to -it on 
the lower edge; for sufficiently small values of r 

KrmOe im	 and	 crm0e - 11n01t 

must be purely imaginary quantities; thus the same will hold true for 


	

Km cos m0ic	 and for	 i}	 sin miyt; 

	

=	 2cos2mit - (iL sin 

is therefore real. On the other hand 

sin 2m0it 
iKm0 '	 = (ice cos moit) (uc sin nçp 

must be real which entails

sin 2m0it = 0 

Thus there are two possibilities; let us denote by k an arbitrary 
integral; either

in0 = k,	 is purely imaginary 

or else

m0=k+, K,,,	 isreal.
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Let us now consider 

F1 (Z) = F(Z) - K(z - a) 

In the neighborhood of Z = a 

F1 (Z)	 K (z - a)m1 lfl] 

and the same argument shows that 2m1 must be an integral. Finally, 

one may state the 'following theorem: 

Theorem: Inside of (c0 ) the function F(Z) may assume the form 

F(Z) = ( z) + _______ 'V(z)	 (".3) 

ga2 - z2 

with (z) and r(z) admitting no singularities other than the poles 

at A and A'. 

The analysis we shall make will be simplified owing to certain 
symmetry conditions which F(Z) satisfies. Let us put 

w = w + iv' 

Obviously, X in w(X,Y) is even (when Y is constant). 

Consequently, F(Z) has a real part zero on OY. Applying 
Schwartz' principle one may write 

F(Z) = _;•(_•)
	

(iii.1i.) 

This equation shows that knowledgeof the development of F(Z) 
around Z = a immediately entails knowledge of F(Z) around Z = -a.
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3.1.1.3 - Study of the case where F(Z) is uniform [iV(z) = o]._ 
Let us consider the function 

(z) =	 iz2p	 (111.5) 

[(a2 - z2)(l - a2Z2 

with p an integral and >1. 

This function satisfies all conditions imposed. on F(Z). 

Indeed, it satisfies equation (III. 1. ); inside of (c0) it does 
not admit singularities other than a and -a which are poles of the 
order	 Its real part is zero on the cut as well as on (C 0 ), as 

one can see when writing

i 

1 2/2 L\ - (i 	
II)1P 

L
a	 z2)	

+a] 

Finally, the origin should be double zero (at least). 

Let us assume F(Z) to be the general solution of the problem 
stated; we shall then demonstrate the following theorem: 

Theorem: If F(Z) is uniform, one has 

n	 n 

F(Z) = (z) = i (111.6) 

1	 1 Ra2 - z2 )(i - a2z2j 

with n being an integral, and the	 being real coefficients. 

In case F(Z) is assumed to be a solution of the problem having a 
pole of the order n, one can determine a number 	 so that 

F1 (Z) = F(Z) - XA(z) 

will be a solution admitting the pole Z = a only of an order not 
higher than (n - i) at most. But in consequence of equation (iii.1-),
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F1 (Z) will allow of Z = -a as pole of, at most, the order (n - 1). 

Proceeding by recurrence, one finally defines a function 

Fn(Z )	 F(z) _ApAp(Z) 

which must satisfy all conditions of the problem and be holomorphic 
inside of (C0). The boundary conditions on the circle and on the cut 

entail F(Z) to be a constant which must be zero because F(Z) must 

become zero at the origin. 

3.1.1. 14- - Case where	 (z) = 0.- We shall study the case where 
z) = 0 in a perfectly analogous manner. 

Let us put

f(Z) = \J(a2 - z2)(i - a22) F(Z) 
z 

f(Z) is a uniform function inside of (C 0) which admits as poles only 

the points (z = -a, Z = a). Actually, the origin is not a pole since, 
according to hypothesis, F(Z) is divisible by Z 2 . The function f(Z) 
possesses the following properties: It is imaginary on the cut, real 
on (Co), and real on OY (which entails properties of symmetry if one 

c'hanges Z to -z). Moreover, f(Z) admits the origin as zero of, at 
least, the order 1. All these properties appertain equally to the 
functions

=	 z2'-(z2 - i) B(Z) =	
-	

- z2 )(l - a2Z2 

p is an integral >1. 

Thus one deduces, as before, the theorem:


Theorem: In the case where (z) = 0, one may write
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n	 z2P(z - 
F(Z) =	

p+ 1	 - z2)(i - a2Z2	 2

("r) 

with n being an integral, the A being real. 

5.1.1.5 - The principle of "minimum singularities".- The for-
mulas (111.6) and (111.7) depend on an arbitrary number of coefficients'. 
The only datum we know is the w0 , the value w assumes on the upper 

edge of the cut. Thus we have to introduce a principle which will 
guarantee the uniqueness of the solution of the problems we have set 
ourselves. This rinciple which we shall call principle of the "minimum 
singularities" may be formulated in the following manner (it is con-
stantly being employed in mathematical physics): 

When the conditions of a problem require the introduction of func-
tions presenting singularities., one will, in a case of indeterminite-
ness, be satisfied with introducing the singularities of the lowest 
possible order permitting a complete solution of the posed problem. 

In the case which is of interest to us, this amounts to assuming 
n = 1 in the formulas (111.6) and (111.7). For the problem of interest 
to us, this principle has immediate significance; it amounts to stating 
that F(Z) and hence dW/dZ must be of an order lower than 2 in 
l/Z - a, or w(z) must be of an order lower than 1 with respect to that 
same infinity; the considerations set forth in section 2.2.7 show that 
these conditions entail the total energy to remain finite. 

3.1.1.6 - Solution of the elementary symmetrical problem.- Let us 
turn again to formula (111.6); one deduces from it, according to equa-
tion (111.2), that in the case where F(Z) is uniform 

z2-i 

1 (a2 - z2 )(l - a22) 

and hence

w(z) =	 ' l	 log (a - Z)(l - aZ) 

2a(l + a2)	 (a + z)(i ± aZ) +
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The determination of the logarithm is just that the real part of w(z) 
is zero on (C0 ). Besides

2a(l + a2)w0 
xl= - ___________ 

It 

On the upper edge of the cut

V = V0 

and on the lower bdge w assumes the opposite value. This shows us that 
the case investigated is that of the symmetrical problem. The value w(z) 
for this problem is therefore 

w(z) = -	 iog(a - Z)(l - aZ)] + V0 	 (111.8) 
It	 j(a+Z)(l+az) 

The calculation of the functions u(z) and v(z) offers no diff 1-
culty whatsoever. It suffices to apply the relationships of compati-
bility (1.25) and to integrate; the only precaution to be taken consists 
in choosing the constant of integration in such a manner that the real 
parts of U and V on (Co) become zero; one then finds 

____ [(a+Z)(l-aZl logi 
? (i - a2)	 L( z - a)(l + aZ)J	

(111.9) 

and.

2w a 
u(z) =	 o	 g[z2 -. a21 

	

It3(1 - a2)	 Li - a2Z2]	
(111.10) 

This last formula is the most interesting one since it permits calcula-
tion of the pressure coefficient (see formula (1.8)). One finds 

C =_c	 a	 iogF2_x2l 
p	

1-a2	 [i_a2X2]	
(111.11)
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In order to interpret this formula, one must connect the quanti-
ties a, X, to geometrical quantities, related to the given cone. First 
of all

w0 = a 

a being the constant inclination of the cone on Ox. On the other 
hand.

2X = 

l+x2 

whence

x=cosw_J] -M2sin2w 
13 Sifl CD 

(see fig. 32) and

cos CD0 - Ji - M2sin2w0 
a =	 (111.12) 

13 sin CD0 

In figure 33 one will find the curves giving the values of C as 
functions of w, for various Mach numbers and various values of w0. 

3.1.1.7 - Solution of the elementary lifting problem.- If one 
starts from the formula (111 . 7), one obtains 

(z2_i)2 

a2 - z2)(i - a2Z2)1 2 

The integration which yields w(z) introduces elliptic functions (see 
section 3.1.1.8); on the other hand, it will (now) be possible to cal-
culate u(z). We note beforehand that, according to the preceding f or-
mula, w(z) assumes the same value on the two edges of the cut and 
that, consequently, this solution corresponds to the lifting problem.
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The relationships of compatibility show that 

z(z2_i)

2 
dZ	

a2 - z2) (i - a2Z23. 

and hence

2	 Z2 + 1	 (111.13) 
1 

u(z) 

= - (a2 + i)2	
a2 - z2) (i - a2z22 

We still have to calculate 	 as a function of w0 . For this 
purpose, one may write 

i	 i 

	

-w = r	 dZ=iX 
dZ	 1 

	

0	 0 

We put in this integral Z = iu

(2 - 1)2d.z

3. 
a2 - z2) (i - a 2Z2 ] 2 

	

P'	 (i + u2) 2du	 = 1 I (a) wo=1	
3. 

	

J0	
a2 ^ u2 )(l + a2u2)]2 

The calculation of 1(a) can be made with the aid of the function E 
(see ref. 2 1t-). We shall put

ut 

After a few calculations one obtains 

1
dt 1(a) =	

1 - t 2 [a2 + (a2 - 1)2t21
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Finally, the change in variable 

t(a2 + i) sin cp = ____	 _______ 

\J14.a2 +i_ l)2t2 

shows that if one puts

k = - a2 

1 + a2 

=	
l	

- k2 sin2 dP =	 1	 - a2 

a2(a2 + 1) Jo	 a2(a2 + i)	 i + a2 

Hence the new formula for u(z) 

2	 a2w0	 z2 + 1	 (Iii.i) u(z) = - ______________ __________________ 

(a + 1)E(l	
)	

a2 - z2 )(i - 

We still have to connect a and Z to the geometrical quantities. 
One has (fig. 32) 

______	

2X = 2a =tanw0	 tanw 
l+a2	 l+X2 

One puts

= tan u 
tan 

and obtains

w0tan0	 1 
u 

= - E1	
2tan2wl l - t2
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and

2a tan	 1	 (111.15) Cp = _______________ _______ 

EEJ1 - 132tan2w0] Jl - 

if one puts, as usual

V0 = CL 

If u,- is Email, E \j1 - 132tan2w0	 is close to 1, and the for-

mula (111.15), except for the notations, again gives a result found 
before (formula (11.33)). 

On the other hand, if 13 tan	 -4 1 

El - 132tan2w] 
-3 

and the formula (111.15) is written 

C =2	 1 p	
13\ji_t2 

Remark. 

Thus one sees that the elliptic functions need not be used in an 
essential manner in order to obtain the pressure coefficient. Actually 
they appear only in the multiplicative coefficient. (In contrast, 
Stewart, in his demonstration (ref. 10), makes essential use of the 
elliptic functions.) However, these functions are indispensable in the 
explicit calculation of w(z) and v(z). 

3.1.1.8 - Calculation of w(z) and v(z).- There exist several 

simple methods for calculating W(Z); the first consists in putting2? 

2TFor all the properties of the elliptic functions made use of in 
this report, see for instance reference 24 . . In this paragraph, u will 
be a complex variable and will have no relation to the velocity compo-
nent along Ox1.
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z = a sn(u,a2 )	 (k = a2)	 (111.16) 

This transformation achieves the conformal representation of the 
domain (D) on a strip of the plane u (see fig. 3k); the values 
written inside of small circles indicate the values of Z taken for 
the corresponding value of u. 

One has actually

snO=O	 snK=l 

sn( K	 I sc(-,k' =	 = 
\2 /	 \2	 J	 a 

sn(K+f) =cd(F)=(1)=)= 

Under these conditions 

-	 -	 i (z2 - i) 2
	 - 

du - dZ du - (a 2 - z2 )(i - a22 ) - 

- 1 - a2 r 1	 -	 1	 11 =	 +	 - 
[2 1 + a2 {2 - a2 a2 (a22 - l)JJ	 a2 L dn2u cn2u] 

whence 

W(u) w0 =	 +
a2(a2 + 

)2 (a + l)u - 2E(u) + asn u cn u + dn u sn u 
dnu	 cnu 

(111.17) 

For determination of X1 , it suffices to write, for Instance, that 

= o 
\2 I
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I'Jow 

w	 =	 2 Ra2 + i) i (1 + K ) - 2E 	 + w0 = 
\ 2 /	 a2(a2 + 

However,

2E il._\ = iK t + 2idn(,k')sc(,k') - 2iE(-k) 
2)

dn(1_,k)sc(!L,kt) = 1 

2E(,k ? ) = E(K',k') + k'2 
1 +k 

whence the value of

22	 2 - w0a a + 1) 
- _____________ 

a2K' + E(k') 

This expression differs from the formula given for 	 in the

course of section 3.1.1; besides, one may, in a general manner, put the 

2 
formula (111.17) in another form (using a modulus k 1 = -a which 

1 + a2 
is different from the modulus k = a 2 utilized so far) by applying 
the Landen transformation. 

This transformation permits, in particular, establishment of the 
following formula 

El + k)u,kil = 1 k(u,k) + 2 	 - k' 2 sn u cd u 

with the functions of the term at the right of the preceding equality 

being relative to the modulus k' = ,Jii. a.
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If one puts

U = 

this formula is written 

E El + k)iY,kll =
	 + k)y - 2E(y,k) + 2 dn Sn - kt2sn 

l+kL	
cny	 cnyclnyj 

These last functions are relative to the modulus k = a2. 

However, 

2dnysny2	 ny	 =	 ny 

cny	 cnydny cnyanyL 

sny	 /2 2	 jj2y)=aIfsnYcnY+dnYsnY ik en y +
dny	 cny en y dn y \ 

If one now refers to the formula (111.17), one sees that it may 
also be written

W(u) = w0 +
	

Er(l + a2)iu,k 
a2(a2 + i) L 

and that under these conditions 

w(
') - wo -	 E	

+ k)K' 1
-	
a2(a2 + i) L 2	

,k = 0 

However, K1 =	 + k)K is precisely such that 
2

sn(K1 ,k1 ) = 1
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Consequently

w a2(a2 + i) 

1 - 	 / 

E(' - a 
\l + a2 

which is, of course, the formula found previously. Hence 

W(u) =	
+ E[(l + a2)iu,kl 

E(k)	
]

95 

(111.18) 

One may also proceed in another manner, introducing a variable 
other than the variable u. 

We put

= 2iZ 

z2 - 1 

The integration of 	 leads to 
dZ

ut 

w(t) =w0-X1 /
	

dt 

- t 2 a2 + (a2 - l)2t212 00 

We put

1	 2 k _-a 
1

1 +a 

The complementary modulus is	 2a 

i + a
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If one puts, therefore

t.= cn(-r,kl) 

W(T) =w0+

	

	 I	 dT 

(a2 + 1)3J 1 2T = 

a2(a2+ 
) [E(kl) - E(T,ki) + (i - a 2 ) 2 Sn T Cfl TJ 

(i+a2)2	 d.flT 

If Z = 1, t = l -r = 0, one always still finds the same value 
for

- w0a2 (a2 + i) 
xl -	 I

- a 

\l + a2 

and

rE(T,k1)	 - a2\	 1 5fl T cn Ti 

	

W(T) 
= woL () - (i + a2) E(ki ) dn T J	 (111.19) 

The formulas (111.18) and (111.19) are indicated for the calcula-
tion of W along the axis OY, whereas equation (iii.ii) is more suit-
able for the calculation of W along the axis OX. We now turn to the 
calculation of v(z). The calculation with the aid of the variable u 
is particularly simple. dV/dZ is calculated with the aid of the rela-
tionships of compatibility 

= - wa2 (a2 + 1) 

dZ	 E(k1)
- 1 

a2 - z2 )(l - a2Z22 

Let us recall that

2 

1 +a
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and perform the change in variable (iiI.i6). We obtain immediately 

	

= w(a2 +	 1 - a1+sn1+u 
du	 E(ki) 

but V must be zero for u = 0. The integration of dV/du then gives 

V(u) = w
0 (a2 + i)	 Sn u	 (111.20) 

	

E(k1)	 cnudnu 

We verify, for instance, that for Z = i, V has a real part zero, 

= i corresponds to u = 

= 
\2j	 a

1 +k 2) =nc(kt) =\J k 

dn(L) = dc(1!,k') = \jk(i + k)	 (k = a2) 

One can state that	 is purely imaginary. We shall not give 

another formula for the calculation of v(z); the formula (111.20) which 
is particularly simple (it does not make use of the function E) permits 
the calculation of v on the axis OX; on the other hand, v is zero 
on OY.

3.1.2 - Study of the Case Where the Cut is Not 


Symmetrical With Respect to OY 

3.1.2.1 - General Principle.- The case where the cone investigated 
does not admit the plane Ox1 ,x3 as the symmetry plane is easily led 

back to the preceding by a conformal representation, maintaining the 
circle (Co).
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Let us suppose, for instance, that in the plane Z the obstacle 
is represented by a cut along the segment (b,c) of the real axis (see 
fig. 35); the conformal transformation 

Z-a-i 

	

z =	 (111.21) 
- a1 

where a1 is a real number (la.i <1) maintains definitely the real 

axis and the circle (C 0). We shall attempt to determine the numbers a1 

and a1 in such a manner that Z = c corresponds to Z1 = a1, Z = b 

to Z1 = -a1 . One must write 

c-a.1	 b-a1 
a1 =	 a1 

is determined by the equation 

c-ci1	 b-a, =0 

l-a1c 1-a1b 

which gives

1 + bc -	 - b2) (i - c2) 

b+c 

(wenotethat, if b+c=O, a.1=o). 

One will then determine a1 by one of the two formulas described 

above or by the formula symmetrical with respect to b and c 

- b2 - 1 - c2 = be - 1 + (l - b2)(1 - c2) 
a1= ______	 ______ 

	

bl - c2 + c1 - b2	
b - C 

a. relationship which one may find directly by writing 

(l,_1,ai,-ai) = (l,-1,c,b)
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In particular

- a12 =• J(i - b2)(1 - 2) 
1+a12	 1-bc 

3.1.2.2 - Symmetrical problem.- It will now be very easy for us to 
study the case of the symmetrical problem (that is, the case where w 
assumes the value w0 on the upper edge, and the value -w0 on the 

lower edge of the cut). 

The formula which gives W as a function of Z1 is written (for-

mula (111.8)) 

iw0 
w(z1) = - log1

ra1_z1la1z1
+ 

Lal + Z1 1 + aiZl]

whence 

w(z)	 - ±[iogc - z)(i - ZcJ - log[(b - z)(l - ZbJJ ^

(111.22) 

v(z) and u(z) are obtained by the compatibility formulas 

(Z2+l)(bc)(1bc) 

dZ	 t (c - Z)(l - Zc)(Z - b)(1 - Zb) 

whence

v(z)=_+c2iogc_z _l+b210gZ_b1 
1-Zc 1-b2	 l_ZbJ 

Finally

(b-c)(l-bc)Z 
dZ - t (c - z)(i - Zc)(Z - b)(1 - Zb) 
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whence

	

u(z) =	 log C	 Z -	 b	 log Z - b i	 (111.23) 
[çi_c2)	 l-cZ 1-b2.	 l_bZj 

Naturally, one could have obt.ined these expressions directly, by 
a reasoning analogous to the one made before in the sections above 
(3.l. li-, 3.1.5, 3.1.6). 

We remark that this problem possesses a property of "additivity" 
which is, besides, evident from the outset but is entirely obvious in 
the formulas (111.21), (111.22), (111.23). This means that, if one 
knows the solution . of the problem for a segment bc and the one rela-
tive to a segment cd, one obtains the solution relative to the seg-
ment bd by adding the given solutions. Also, we point out that in 
the preceding formulas the manner of determination of the logarithms 
should be conveniently chosen. 

3.1.2.3 - Lifting problem.- We shall be satisfied with the calcu-
lation of the function u(z). Let us put in this paragraph 

1 - a12 =	 - b 2 ) (1 - c2) 
k1 =

1+a12	 1-bc 

One has

= iw0a12 (a12 + i)	 (z12 - i)2

2 

	

dZ1	 E(ki)	
a12 - z12)(i - ai2zi2j 

dZ1 - 1 - a.12 

dZ	 (1 - a.1Z)2 

whence one obtains very easily 

- 2w0 a12 (i + a12 )(l + c) 3 (1 - b)3
	

z(z2 - i) 

- 13E(k1)	 (1 + a1)6	
- z)(z - b)(1 - bZ)(1 - CZ
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The equality

(bcl) = (_ai_ -J-,a1,i\ 
a	

) 

is written

F=c_b = 2a1 
1-bc l+a12 

(F + and if one forms the combination 	 /_, one may deduce from it the 
F2 

identity

(i + c) 3 (i - b)3	 (1 + al)6 

(c - b) 2 (1 - be)	 I -a12 (l + a12) 

which permits one to write 

_____	
z(z2_i) =	 0	

(b - c) 2 (1 - bc) 
dZ 2E(k1)	 kc - z)(z - b)(1 - bZ)(1 - cZ2 

The integration is easily made, with the aid of the elementary functions 

____________ u(z) = 2bc(Z2 + i) - (b + c)(1 + bc)Z	
(III.2) 

E(k1) (i - be)
(c - z)(z - b)(l - bZ)(l - cZ)

3.1.2. - Lift of a delta wing.- The total energy on an obstacle 
will be obtained, in a general manner, by integration of the pressures. 
However, the lift may be calculated by means of a very simple general 
formula which we shall set up. 

We shall start from the formula 

C = 2R[U(Z 
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Let us consider an elementary triangle OIvllvP (see fig. 36), with 

M having the coordinates (i x2 O); its area is equal to	 2 • One 

has, by definition of C

= _2f	 p 

'M1M2 2 

which in the plane z is written 

= fcpz 

In z, ? and i are the images of the limiting generatrices of the 
obstacle, L is the loop surrounding the cut (X,1 t). If one denotes 
by (L) the loop surrounding the corresponding cut bc in the plane Z, 
one has, since

2X	 (Z=X+iY) 
1 + x2

1 - _________	 = 
= 'L	

2 = 2 f	 (i + X2)2 

_R r u(z) 1 - Z2 d = -R	 u(z) 1 - Z2 dZl 

L L	 (1 + z2)2 ]	
- Co'	 (1 + z2)2 

with (Co') denoting the circle of the radius 1, modified in the neigh-

borhood of i and -i by two small arcs Li', mm', in order to avoid 
the singular points (see fig. 31); the arrows indicate the direction of 

the course. Along the circle (co), (z = ele)
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1-z2 dZ=_2neide= sinO 
(1 + z2)2	 1. cos 26	 2 cos26 

and since

R[u(z)] = 0 

one deduces that the integral is zero along the arcs i'm', ml; the 
points Z = ±i are double poles of the quantity that must be integrated; 
but one can easily see that the integral remains finite along the cir-
cular arcs ii' and m'm. Exactly speaking: if one denotes by R1 

and B 1 the remainders of the function 

u(z) l-Z2 
(1 + Z2)2 

at the points Z = i and Z = -i, one has, since 

=	 2c	 2b	 2(c - b)(l - be) 

1-i-c2	 1-b2	 (1+b2)(l+c2) 

C 
= +2 (1 + b2)(1 + 2) R7r(Rj + R_ij 

(c - b)(l - be) 

However,

B - ldU, -

	

	 ldU, R_1=-Z=_i) 

whence

- (l+b2)(l+c2) RLr
	 +	 1 - - (c - b)(l - be) _LLdZI
	

dZ(z__ijJ
(111.25)
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One can also express C as a function of the values of dW/dZ 

at the points i and -i 

	

+ b2)(l + 2) Rc
	 dW	 11

(111.26) Cz =

	

- b)(l - be)	 LLd=i) - dZ(z=iJ 

One may finally remark that

dW	 = -i	 (o,i) 
dZ(z.1) 

whence

+ b2
)(l + c2) [i(O+l) - L(O,_i	 (111.27) 

= (c - b)(l - be) 

We shall apply this result to the case of the lifting delta wing 
studied in section 3.l.23: 

_______	
w0	 (b - c) 2 (l - be) dU	 =_

3 
212 

dZ(zj)	 E(k1)	
+ b 2)(l + c 

whence

c -	 2asc	 c-b - -
	 (ki) 

with k1 being equal to

J b2Xlc 
1 - be 

In the wing theory, one designates the incidence by i; with the 
usual notations one has here
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The desired formula C ( i ) is 

	

2ci	 c-b 
= E(k) (i + b

2)(1 + c2)	
(111.28) 

In the case where b = -a, c = a, one finds 

	

C =	 'i-itai 
+ a2)E(k1) 

or again with the ndtations of figure 32 

2t tan 
Cz =
	 U)0	

(111.29) 

E (\Jl - 2tan20) 

A few applications of this formula may be found in figure 38. 

If	 is small, one will find again the result obtained in sec-

tion 2.2.i- (except for the notations) 

C = 2iw0i 

3.1.3.1 - Study of the general case.- So far, we have treated only 
the elementary cases, that is, those for which the function w assumed 
a constant value on each edge of the cut. We shall now treat the case 
where the function w assumes on the upper edge of the cut prescribed 
values

w = w1(X) 

and on the lower edge prescribed values which we shall note 

w = w2(X)
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Let us note, first of all, that the solution of the general prob-
lem may always be considered as the result of superposition of the solu-
tions of a purely lifting problem (with w assuming the same value 

w1
(X) ± w2(X) on each edge of the cut) and of a purely symmetrical 

w1 (X) - w2(X) 
problem (with w assuming opposite values ± 	

2	
on the two 

edges of the cut). Thus we shall be able to limit ourselves to these 
two types of problems. We shall note, in addition, that in the purely 
symmetrical problem u assumes the same values on the two edges of the 
cut, whereas it assumes, in contrast, opposite values in the case of a 
pure lifting problem. 

A first idea for the treatment of this problem consists in utilizing 
the elementary solutions found before and in superposing them conven-
iently. Let us consider, for instance, for a symmetrical problem, an 
elementary wing of infinitely small span, the image of which in the 
plane Z is a segment of the real axis of the length tX, situated in 
the neighborhood of the point X, and let us assume w = w(X) to be the 
value corresponding to w; the complex velocities of this flow are given 
by the formulas (111.21), (111.22), (111.23); using the hypotheses made, 
one may write, designating the complex velocities by iU(Z), zW(Z), 

iw(X) d r = -	 —ilog(X - z)(l - zxJx 

v(z) -	 w(X) d 1ii + x2 
--	 t log - Zi(


l-ZXJ 

u(z) = 2w(X) d x	 x-zl 
log	 ILX 

-x2 

One arrives at writing the solution of the syrmnetrical problem in 
the form



NACA Th 135 1i-	 101 

(-'C 

	

w(z) = -	 /	 w()[lo( - z)(i - Zd 
Jb	 d 

"C 

	

v(z) = -	 / w()[1 -
	

log	 - Zl	 (111.30) 
d[ + 2	 i_zj 

=	 rc W()r	 log - Zld 
t I3J b	 d[_2 

The integrals occurring in these formulas make sense only if Z is not 
on the segment bc. If Z is real and comprised between b and c, 
one has to take the "principal value" of these integrals. Furthermore, 
one must demonstrate, in order to justify these formulas, that the real 
part of the function w(z), defined by the first formula (III.)o), actu-
ally assumes the value w(X) when Z is real (z = x). 

For this purpose, one calculates w(z) in a point of Z = X + ir 
(with being positive and small) by dividing the integral appearing 
in the first formula (111.30) into three parts 

	

w(z)	
r+ ': 

After this has been done, one chooses € and ii in such a manner that 
the last integral is arbitrarily close to the value 

€ 
I w(X) f_	 - z 

which is possible since this integral may be written 

X+€ w()(l - z2)2 d 

-€ ( - z)(l - z)
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One may then, diminishing as necessary the upper limit fixed for r, 
choose that last number so that 

R if +c11 
—[[b	 X€J] 

should be arbitrarily small. There is no difficulty whatsoever since 

the quantity under the sign f is continued in Z. Finally, I may be 

made arbitrarily close to

itw(x) 

which shows that, if r1 is safficiently small 

R[w(z)] - w(X) 

is arbitrarily small which had to be demonstrated. 

This procedure, while theoretically simple, is rather delicate in 
practice since the calculations to be made affect the integrals, the 
principal value of which has to be taken. In the lifting case, on the 
other hand, the application of this method would require previous solu-
tion of an integral equation of a rather complicated type. For that 
reason we prefer to give the following calculation methods; the first 
utilizes the "electric analogies;" the second which is purely numerical 
will red.uce the numerical calculation to that of a Poisson integral; in 
section 2.2.7 we have given a simple and accurate procedure for solving 
such a problem. 

3.1.3.2 - Utilization of the "electric anaiogieslt28._ The analogy 
consists in identifying the harmonic function w(X,Y) with an electric 
potential P(x,Y), through a conductor constituted by a liquid occupying 
a tank with horizontal bottom of half-circular shape (see fig. 39). On 
the circular boundary w is constant; consequently, the semicircumference 
will be brought to a constant potential; it will be possible to regard 
that potential as the zero of the scale of potentials. This circumfer-
ence will, therefore, be conducting; (this half-circle is nothing else 
but the part of the circle (C0 ) of the plane Z for which Y > 0). 

2BFor all questions concerning electric analogy, see the fundamental 
memoranda by M. Malavard (ref 5. 25 and .26).
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On the cut bc which represents the conical obstacle, one distributes 
electrodes which will be brought, by means of adjustable potentiometers, 
to the given potential (P. For specification of the boundary condi-
tions on the segments A'b and cA, one must distinguish between the 
symmetrical and the lifting problem. 

3.1.3.2.1 - Symmetrical problem.- w must be zero on the portions 
of the axis outside of the cut; consequently, the corresponding bound-
aries of the tank are brought to the potential zero, that is, to the 
same potential as the semicircuiriference AtBA; w is given directly 
by a pure Dirichlet problem. However, the unknown of our problem is 
the value of the pressure along the segment be, that is, u. 

u is connected with w by the relationships of compatibility 
which permit one to. write on the axis pf the X 

2X	 w 

- 1 - X2 

with w/Y being proportional to the intensity entering the tank 
through the electrodes; this quantity is easily measured with the aid 

of a convenient arrangement29 . With the value of u/X thus known, 
we must, in order to obtain the desired pressure distribution, determine, 
in addition, a value of u along be, for instance the one at the 
point 030 . On the axis OY one may write 

290ne may, for instance, feed the electrodes of the cut through 
resistances R, insuring a drop of the potential from 	 to P (see 
fig. 39). Under these conditions, one has a relation of the form 

= k(X)(co - P) 

with k(X) being a function which depends on the chosen resistances 
and on the resistivity of the tank, but can always easily be obtained; 
the manipulation to be performed is then as follows: after the resist-
ances R have been determined, one has to choose the values of P in 
order to obtain at the electrodes the values of p prescribed by the 
boundary conditions. 

30We shall assume the point 0 to lie on the cut. In the opposite 
case the procedure indicated here may be very easily modified.
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2Y	 w 
Y1y2Y 

Since u(X,Y) is zero at the point B(0,i), 

nl 

3u(0) = J	
2t	 L(0,t)dt = [ 2Y	 w(o,tl 

j i+t	 J 

2J w(0,t)_1 - t2 dt

0	 (l+t2)2 

Hence

u(0) = _2f w(0,t)_1 - t2 dt


	

0	 (l+t2)2

(111.31) 

One will know u(0) by means of a simple integral if one knows the 
distribution of the w (the same as that of the cp) on the axis Q'f 
Since this may very easily be determined, the problem is entirely solved. 

3 .1. 3 .2.2 - Lifting problem.- The boundary conditions to be realized 
for the lifting problem are the same as for the symmetrical problem as 
far as the smicircuuitference A'BA and the cut b,c are concerned. 
On the senents A'b and cA one must, of course, write 

Y dn 

that is, the corresponding walls will be insulating walls. 

However, this is not sufficient. If no precaution is taken, the 
harmonic function corresponding to the electric field thus realized will 
not be a solution of the aerodynamic problem posed. Actually, there is 
no reason whatsoever why the gradient of this potential should be zero 
at the points A and A', since the intensity at A and A' is, in 
general, not zero. Since the corresponding function dW/dZ is not zero 
at Z = ±1, we have already pointed out that this leads to singularities 
inadmissible for u(z) (see section 3.1.1.1).
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The investigation of the elementary lifting problem, admitting OY 
as symmetry axis, will permit us to better understand the difficulty, 
and to solve it. If one realizes in the tank the preceding boundary 
conditions by bringing the electrodes from the cut (-a,+a) to a con-
stant potential, it is quite obvious that the potential thus realized 
in the tank will remain finite at every point of the field, even at A 
and A'. Thus one obtains a solution by taking for (P(x, y) the real 
part of the analytic function F(Z), defined by 

iX 
dZ	 '2 Ra - z2)(i - a2Z2)Ih/2 

with X being a real constant. 

This solution does not correspond to the solution of the aerodynamic 
problem (see section 3.1.1) which, in contrast, gives a singularity 

-1/2 
at (a2 - Z2 )	 for the function W(z), in the neighborhood of Z = ±a. 
As a consequence, w(X,Y) must be infinitely large at points close to 

+a and -a3 -. This particularity must, therefore, be taken into account 
in the circuit. 

It is not the first time one encounters problems of analogy with 
singularities 32 . One knows that one must then realize in the neighbor-
hood of the points ±a, a material model, partly conducting, partly 
insulating, which schematizes the arrangement of an equipotential elec-
tric line and a current line. 

310ne encounters there an interesting example of precautions to be 
taken in a given problem when one applies the principle of minimum sin-
gularities. This principle has led us to pose, for our aerodynamic 

/ 2	 2\-3/2 problem, a solution for dW/dZ in a - Z )	 . But if one makes 
the analogy, the electric tank has no reason o "know," a priori, that 
realization of other conditions than those directly concerning w(z) 
is. desired. Thus it "applies" the principle of minimum singularities, 

2	 2/2 realizing the solution for dW/dZ in (a - z ) 

32See for instance references 21 and 28. For several months, the 
laboratory of electric analogies of the O.N.E.R.A. has been utilizing 
singularities for the study of compressible subsonic flows in the hodo-
graph plane.
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In th case of interest to us, in the neighborhood of the 
point X = +a, one has

w(z)=	 K 
Jz - a 

with K being a real constant; consequently, if one puts 

w(z) = w(X,Y) + iw'(X,Y) 

Z - a = = sea 

and

w+iw' =-&[cos-isinl 
2	 2J 

the lines w = constant are determined by 

s = s0 cos2	
= s0 (l + cos a) 

2	 2 

and the lines w' = constant by 

s=s sin2 = 1	 2

81(1 - cos a)


2 

s 0 and s1 being two positive constants. They are, therefore, cardi-

oids; their arrangement is given by figure 1-O. Also, one finds in this 
figure the scheme of the singularity which must be placed at b and c. 
Thus the manipulation is as follows: after the circumference ABAT has 
oeen brought to the potential zero and the boundary conditions have been 
realized along the cut bc, one brings the conductive part of the two 
singularities to rather high potentials which must be determined so that 
the intensity at the points A and A T is zero (of course, if the 
problem presents the axis OY as symmetry axis, the two singularities 
must be brought to the same potential, and the nullity of the intensity 
at A will insure that of the intensity at At). This one will realize, 
from the practical point of view, by detaching at A (and eventually
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at At) on the semicircumference a small electrode which will not be 
fed and the potential of which will be made opposite to the potential 
of the rest of the circumference, through a zero apparatus. It is this 
condition which permits determination of the potential to which the 
conductive part of the singularity at c (and eventually at b) must 
be brought. The field (P(X,Y) realized in the tank will then, in con-
sequence of the principle of ttjfljJ singularities," be proportional 
to the field w(X,Y) of the velocity component following Ox3. 

After that, the manipulation unfolds as for the symmetrical case. 
One measures the intensities along the cut (b,c) which furnishes the 
values du/dX. One determines the value of u at the point 0 by 
restoring the field of values of w along OY and by applying the 
formula (111.31). 

3.1.3.2.3 - Electric measurement of C in the case of the lifting 

problem. - In all cases, the total energy can be determined by integra-
tion. In the case of the lifting problem, one will yet have a supple-
mentary verification by utilizing the formula (111.27) which we shall 
writ e

= aL (i + b 2)(l + c2)	
(o,i) 

3 (c - b)(1 - cb) 

Actually, this last formula permits to obtain directly the Cz, by 
a simple electric measurement which gives the intensity entering at the 
point B, since dw/dY(O,l) is proportional to that intensity. For 
this purpose, it suffices to detach, in the neighborhood of B, a small 
electrode (fig. )#l) and to feed it by the intermediary of an arbitrary 
resistance R. With all boundary conditions satisfied, it suffices to 
regulate ) to make the potential at B zero as on the rest f the 
semicircle. C is then proportional to (P. 

3.l.3.2. I1 - Applications.- The scheme of the circuit used is given 
by figure 39. We do not intend to give here the details of operation, 
the precautions taken for increasing the accuracy, the determination of 
the scales, and the reduction of experiments. All this will form the 
subject of a later report. 

Here we shall give simply the results of the first experiments 

made following these principles 33 . In every case studied, we have 

33There is every reason to assume that the satisfactory precision 
obtained could be further improved by employing a more suitable material 
than theone that was utilized. These tests were made frequently with 
utilization of chance setups with the material that happened to be at 
the laboratory.
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3.1.3.3 - Purely numerical methods. Utilization of the plane z.-
We have introduced this plane in section (1.2.5). Let us recall that 
z corresponds to Z by the conformal transformation 

2Z 

Z2 + 1 

and that in this plane the relations of compatibility are written 

- 13 dU = z dV = ______ dW	 (111.26) 
Ji - 

One of the advantages of the plane which is of practical interest 
is that one has on the real axis (if z = x + iy) 

x = x2 

x2 being the ordinate of a point of the section x 1 = j3, situated on 
x3 0, in the axis system Ox1x2x3. 

Some of the formulas established before may be written '#nore simply. 
If one denotes, for instance, the image of the cut (b,c) of the 
plane Z in z by (X,ii ), the formula (111.21) is written 

W(z) = -i	 log	 -	 (111.32) 
it	 X-z 

W(z) thus appears as the complex potential due to two vortices placed 
at the points X and i and of opposite intensity. Likewise, the 
formula (III.21i-) may be written 

Wa	 (l + b2)(l + c2) 2X - z(X +	 (111.33) 
U(z) = 13E(k1)	 1 - bc	

- z)(z- x) 

If one puts

X=cos I'	 i=cosw



118
	

NACA TM l351 

iV and w lying between 0 and c 

k1 
=	 and	

+ b2)(l 
+ 2) =	 i 

sin\V+U)	 1-bc	 sintTf+C1) 
2	 2 

In the case where P. = -X = k, one has, in particular 

2k2 ________ 

= E'•(k) \)k2 - x2 

Let us recall that

E'(k) = E(J1 - k2) 

3 .1. 3 . 3 .1 - Case of the symmetrical problem.- Let us now assume 
that the problem corresponding to the boundary conditions w = f(x) on 
the upper edge of the cut, w = -f(x) on the lower edge has to be 
solved. The formula ( 111. 32 ) leads us to represent W(z) as the poten-
tial of a .istribution of vortices carried by the segment Xi i; conse-

quently

W(z) = -	 ri f(u) du 
D:JX U - Z 

At a point of the upper edge of the cut, one has actually 

W(x) = -	 r f(u)du + 1(x) = w + iw' 
1tJX U - X 

with the integral taken at principal value. 

Let us put on the cut 

X + ii + - cos x=
2	 2

U = + ^ - cos e 
2	 2 

1(u) = F(e)
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Let us assume, to begin with, that 

F(0) = F(it) = a 

and that F(e) can be developed in a Fourier series 

F(e)= sinne 

Then

fit 
(I A sin ne)sin 0 

	

= -1 j	 0	 dO 

	

it1	 cosO-cosCp 

U0 

We shall furthermore admit that the signs 	 and	 are inter-

changeable. According to a known result (ref. 13) 

flit - 1	 j	 sin nO sin 0 dO =
- 1fit [cos(n - 1)6 - cos(n + 1)6] dO = 

itJ0	 cosO-cosP 2it cos 6 - cos

- [sin(n - l)q) - sin(n + 1)cP] 
____________________________ = cos n 

2 sin (p 

and consequently

w'((P) =	 A1. cos n (P 

Thus one sees that w ? ( 0 ) is the conjugate function of F(0) which 
could have been easily established by other methods as well. 
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However, according to the relation of compatibility 

x	 w_	 x 

and

- -	 x	 = ______	 nA sin ncp 

-	 - 2	 - 2 0 

We shall put

G((P) = -	 nA sin nP (111.311.) 

G((P) is the derivative of the conjugate function of F(cp). Thus one 
has

- xG((P)
	

(111.35) 

N' - 
Knowledge of F( (P) entails that of G( (P) by a calculation of 

trigonometric operator (section 2.3.3) and, consequently, that of 

In order to set up formula (111.35),. we have made a certain number of 
hypotheses. These hypotheses will be satisfied if the derivative of F 
with respect to (P satisfies a conditionof Cauchy-Lipschitz. 

In order to calculate the pressure at every point of the cone one 
must integrate the formula (111.35); for that, however, one must know 
the integration constant. 

The exact determination of the function u will be easily obtained 
as soon as we have studied thoroughly the character of the function U(z). 
We suppose first

-x = 

In order to study the function U, we shall perform the conformal 
transformation of the plane z, provided with cuts (-,-i), (-I.L,+4.'),
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(l,+co) traced on the real axis, on an annular corona. This is inmie-
diate (see, for instance, section 3.1.7.1). Let z 1 first be a complex 
variable defined by

dz	 I
- z2)(i - z2) 

or

Z = i sn(z1 ,±), (k = 4, then 

iK -zi) 
z2 = e 

The plane z provided with its cuts then is represented on a 
strip 0 < T(z1) < K' of the plane z1 , and on an annular area of the 
plane z2 (see fig. 11 3) bounded by the circumferences (71) of the 
radius 1 and (72) of the radius

2K 

In the plane z2 , U is of the form 

U(z2 ) = A log z2 + f(z2) 

with f(z2 ) being a uniform holomorphic function inside of the annulus 

(see for instance section 2.1.2.1), since U(z 2 ) is finite, even at 
the image points of z = ±1 1 , because of the hypothesis 

F(0) = F(c) = 0 

We remark that f(z 2 ) has a real part zero on the circle (7l)• 

We assume the value of the coefficient A to be known; on the circuin-
ference (71)' A log z2 maintains as constant real part
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Alogq=_ aL A	 (111.36)

2K 

According to a well-known theorem of the theory of harmonic func-
tions (see ref. 29) one now knows that, if a uniform harmonic func-
tion H(x,y), defined inside of a circular annulus, assumes on the two 
limiting circles the values cp0(e) and p1 (e), (with e being the 

angle at the center representing the running point on each circle), one 
has

P0(e)de = 

This theorem will allow us to demonstrate the following theorem: 

Theorem: If i = -?, the function u(9) satisfies the eguality 

(Vt 

/	
u(ci	 = 2K(ii)A log 

Lb	 \j1 - ii2cos2P 

K(ii ) being the elliptic function of first kind relative to the modulus 

dP K()	
- 2cos2cp 

In fact, the mean value of the real part of f(z 2 ) on the 

circle (ri) must be zero, but the mean value of u on (72) reads 

--	 I	 udz1 
2c/	 iz2	 2it2K/ 

I_Jo

1	 dz =iI 
j	

4(2 - z2)(i - 2) 

with L. designating the loop surrounding the cut (-.i,+.i) in the posi-
tive direction. However, the function u(cp) assumes the same values at 
points which have the same abscissa on the upper and on the lower edge
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of the cut; consequently, this mean value is equal to 

r1t 
1 1	 u((P)d(P 

j0 ji	 ii2cos2cp 

In order to have a mean value of f(z) on (72) of zero, it is 

necessary and sufficient that the mean value of u should be equal to 
A log q which justifies the theorem. One utilizes this theorem in the 
following manner: 

If uij ((P) is a. primitive of 	 , calculated by the formula (111.35), 

and if

	

1 I	 u0(cp)dcp 

JO 1 - 2cos = 

the desired value of u(cp) may be written 

u(CP) = A log q + u0 (CP) - C 

To establish this result, we have assumed that the cut is extended 
on the segment (-.i,+p.), symmetrical with respect to the origin. In 
order to reduce the general case to this particular casc, it suffices 
to make a conformal representation, analogous to the one already made 
in section .1.2. Let

Zt = z - a 
1 - az 

be this conformal representation which makes the cut (-k,+k) of the 
plane z' correspond to the cut (X,t) of the plane z. One has, in 
particular

	

= 1 -	 - (i - 2)(i - 2) 

I.L-x
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The mean value of u on the image circle of the cut (-k,+k) of the 
plane z', in the conformal representation which transforms the plane z' 
into a ring, reads, according to what we have just learned 

	

1	 udz' 
1iK(k) I JI	 -	 -	 r2) 

with L' designating the loop surrounding the cut (-k,+k) in the 
plane z'. 

However

dz(
2\ 

1- a) dz' = 
(1 - az)2 

	

(k2 - z 2)(i - t 2 ) = 1 - a2	
l - 2	

(l - z2)( - z)(z - x) 
(1 - az)2	

-	 )( - 

We remark that

/(la)(la) - l-X


	

\J	 1-a2	 \J2k 

The mean value is then written 

1	 udz 

2k	 - z2)( - z)(z - 

L being the loop surrounding the cut (x,) in positive direction. 

If we finally put

t+?.	 t-X +	 cos 

	

2	 2
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the desired mean value on the upper edge of the cut is written 

_____ nit 
1	 Ii_) I	 u(p)dcp 

2K(k)	 2k J o ji - z2 

As previously, one draws the conclusion: 

If u0((P) is a primitive calculated from equation ( 111. 35 ), and if 

i	 It_	 u()d	
= 

2K(k) \J 2k JO \Jl - z2 

the desired value of u( CP) is 

	

u((P) =u0 (CP) + A log q - C
	

(".37) 

Thus the entire matter amounts to calculating the constant A. 
This constant is calculated very easily if one considers the imaginary 
part uT(x,y) of U(z). 

In fact: 

When, in the plane z, one circles once in the positive direction 
of the cut (x,4, the imaginary part of U(z) increases by -2itA. If 
one circles the cut by the loop L, one notices that u! (x,y) assumes 
opposite values at the two points of -the cut which have the same abscissa 
but are situated on different edges. Thus one may write 

ni-1 
A=/	 —dx


itU 

However, according to the relations of compatibility, one may also write 

A = J.	 x	 (IX	 (111.38)
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which permits directly the calculation of A, (starting) from the function 

w = f(x) 

given on the cut. 

The entire analysis above, assumes that f(x) becomes zero for 
x = X and x.= t. We now still have to reduce the general case to this 
particular case. One may put 

f(x) = f0 (x) + C0 + C1x 

with f0 (x) becoming zero for x = X and x = ii, and C0 and C1 

being two suitably selected constants. The problem then may be reduced 
to the superposition of three problems, the first where 

w(x) = f0(x) 

the second where

w(x) = C0 

the third where

w(x) = C1x 

Since the two first problems already have been dealt with, we now 
only have to treat the last problem. Thus we put 

f(x) = x 

and seek the function U(z) 

W(z) = -	 dt = -	 - x) -	 z log	
- Z 

t-z
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hence

dz	
log P - Z - i( - x)	 Z 

-z	 it	 (p-z)(X_z) 

and according to equation (1.26) 

	

-	 ______ [log -z +	 (i - X)z] 
dz	 2'	 X-z	 (p-z)(X-z) l-z L 

whence by integration (determining the integration constant so that 
u(i) should have a real part zero) 

U(z) = -	 - z2log _- z +	 1	 1-+ ___-z2(l-2) 
______ log 

-	 \Jl_p2 

1	 i_Xz+(l_z2)(1X2) 

	

______ log	 (111.39) 
\J1_X2	 -z	 * 

Summingup: In order to calculate numerically the pressures in a 
symmetrical problem, one has to perform the following operations: 

(i) One turns to the case where w(x) becomes zero for x = X 
and x = p, following the method just exposed. 

(2) Calculate the constants A (formula (111.38)) and q (for-
mula (111.36)). 

(3) Calculate the function G( CP) for a trigonometric operator. 

	

(Ii ) Calculate	 (formula (111.35)) and a primitive ij0(cP). 

(5) Calculate

flit 

C	
u0((P)d(P 

2K()J	 Ji	 p2cos2cp 

u(CP) is then given by the formula (111.37).
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Example: In applying this method to the calculation of the case 
of the parabolic cone where 

= ±€0(k2 + 2)	 Cp = E0pl(P) 

one has found the following distribution of the C 

( 0 15° 30° 4-5° 60° 75° 90° 

p 1 (cp) 6.814O 2.535 1.521k. 1.196 1.102 1.088

In order to compare this with the results of the electric analogy, 
one must recall that

2X 

1 + X2 

The comparison is given by the figure li-li-. 

3.1.3.3.2 - Study of the lifting problem.- For simplification, we 
shall limit ourselves to the case where the problem admits the 
plane 0x1x3 as symmetry plane. 

Let us consider the function W(z); one may put it in the form 

W(z) = AW0 (z) + F(z) 

W0 (z) being the solution in W of the elementary lifting problem (for 

which w0 = 1), A being a real constant and F(z) a function which 

remains finite in the domain where W(z) is defined. We shall put 
along the cut

F(z) = f(x) + if(x) 

Let us put likewise

U(z) = AU0 (z) + G(z) 

G(z) being the value of U(z) corresponding to the case where 
W(z) = F(z). 
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We shall designate the real and imaginary pax-ts of the function G(z) 
on the cut by g(x) and g'(x). 

If one notes that along the cut 

- 
- 

one sees that the relations of compatibility permit one to write 

x	 f_	 x 

ji_x2	 Jl_x2 

w(x) is the function given by hypothesis; hence 

x 

I	 2 - x 

If we assume.	 to be limited, one may visualize the development


in trigonometric series of dg'/dCP in the form 

=	 I A sin nCP	 (111.11.0) 
dP	

nil 

Now G(z) may be visualized as the potential of a vortex distribu-
tion carried by the cut (in particular, the real part of U(z) is zero 
on the real axis outside of the cut). 

Let us consider a vortex distribution of the intensity 

g(CP) =	 B sin nP 

The value of dg'/d(P will be identical to the one written in the 
formula (111. 11.0), if, and only if

=
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as it results from very simple calculations, already carried out in the 
preceding paragraph. 

Hence one then deduces the value of g(Cp) corresponding to dg'/dcp, 
defined by the formula (IIi. 1 O), by means of a trigonometric operator 
the numerical calculation of which results from the considerations 
developed in chapter II, section 2.3.3. 

One can also simply first calculate 

= ->11 A cos n(P	 (IiI.la) 

1 

by means of a Poisson integral, and then deduce from it g((P) by simple 
integration, noting that 

g((P) =0 for P=O, P=it 

Thus the problem will be completely solved as soon as we have calculated 
the constant A. One may put, as before 

F(z2) = B log z2 + 

(z2) being a uniform function inside of the annulus (l'2) of the 

previously defined plane z2. 

(z2 ) has a real part zero on the circle () of the radius 1. 

Consequently, the mean value of R[(z 2 )] on the circle (72) is zero. 

Thus one deduces, as in the preceding paragraph, that 

flit 
1	 I	 w(cp)dcp 

A + B log q = 2K(k)J
	 Ji - k2cosP	

(III..2), 

With w known, it is then easy to calculate A + B log q. Thus the 
entire matter amounts to calculating. B. 

If one now describes in the plane z the loop L surrounding the 
cut (-ii,) in positive direction, the imaginary value of F(z) must
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increase by -2irB, according to definition. Now 

_(:=	 x 

	

t x	 I	 2 - x 

However,	 is known (formula (iiI.li-l)), and consequentiy" 

n+t-L 

	

B='	 (III.3) 

	

:rtj	 x 
-11 

Summarizing, one may say that the following operations have to be 
carried out: 

(i) Calculation of g'(CP). 

(2) Calculation of dg/dCP, by a Poisson integral. 

(3) Calculation of g( CP), by an integration of dg/dCP. 

(1) Calculation of B (formula (III.li-3)). 

(5) Calculation of A (formula (III.1-2)). 

The result reads

U = Au(CP) + g(CP) 

with u0 (cp) representing the value of u for the elementary lifting 

problem when	 = 1. 

Application. - Lifting parabolic cone 

w = €0 (k2 + x2) 

= E0p3(Cp) 

	

will easily ascertain that	 /x becomes zero for x = 0. 
The integral then does not present any difficulty.
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(p 0 15° 300 11-5° 6o° 75° 900 

p3 (P) 5.81 2.11-72 1.11-72 1.l111i 1.070 1.062

One will find in figure 53 the pressure distribution compared to 
the one found by electric analogy. 

.2 - Case Where the Cone Is Not Inside the Mach Cone (P


3.2.1 - Generalities 

From the mathematical viewpoint, there is an essential difference 
between the case where the conical obstacle is entirely inside of (r) 

and the case where, in contrast, it is not entirely inside. The differ-
ence becomes very clear if one visualizes oneself in the plane Z. 
Whereas the flows studied in section 3.1 led to problems of complex 
variables relative to an annular area, the problems to be studied now 
will be relative to simply connected areas. This simplifies the investi-
gation considerably. It can be foreseen that we shall no longer have to 
utilize the theory of elliptic functions, and in the numerical or ana-
logical study of the problems we shall avoid the difficulties arising 
from the determination of the ttintegration constant" for the pressure 
(see sections 3.1.3.2 and 3.1.3.3). 

If one places oneself in the plane Z, the functions u(z), v(z), 
w(z) will no longer be identically zero on (Co). We shall show that 

the relations of compatibilitythen take on a form particularly simple. 

These relations may be written 

-13Z	
=	 2Z	 = 2iZ	 ci-1L	 (iii.1) 

dZ Z2+l dZ	 2_	 dZ 

and if one notes that on (Co) 

Z=-i 
dZ	 dO 

one can deduce from the formulas (iIi. 1l.1.l) the following relations between 
the real parts u, v, w of U, V, W on C0 
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-13 du	 1	 dv =	 1	 (III.15)

d6 cos6dO sin6d9 

Knowledge of one function u, v, or w on an arc of the circle 
of (Co) entails (except for an additive constant) knowledge of the 
two others. 

It is easy to ectend this result to the case where U V, W pre-
sent certain discontinuities. Let A1 be a point of (c0 5 of the 
argument 61, and. let us suppose that the real part of w(z) increases 
by Lw if 6 passes from 61 - G to	 + €, with € being positive

and arbitrarily small. Let (y) (see fig. 5) be a small arc of the 
circle centered at A1 and lying inside of (c 0 ). One has 

Lw = R[r - dzl J 
However

= R[P dZl
J7dZ 

and

U=R[rdZl 
dZ J 

Consequently, it su1fices in the case where dU/dZ, dV/dZ, dW/dZ 
have a simple pole at A1 , to utilize the relations of compatibility in 
order to establish the formulas 

u =	 1	 Lw =	 Lw	 (iii.li-6) 
cos 6	 sin 6 

Remark. 

The formulas which we are going to set up below will be demonstrated 
in the case of the figure where the conical obstacle is in its entirety 
in the region x1 > 0. But it suff ices to return to the generalities
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of section 1.2.2 to recognize that the obtained results will be valid 
in more general cases. Under these conditions, one may have in the 
region (A') (see fig. 2) domains which encroach on one another. How-
ever, no difficulty arises since the relations of compatibility in the 
plane (r,e), formula (1.22), show that the functions u, v, w in 
the plane (At) are perfectly known, owing to the boundary conditions. 
One will note the identity of the formulas (111.14-5) and (1.22). 

3.2.2 - Cone Totally Bisecting the Mach Cone (Fig. 28) 

If one .utilizes the plane Z, the problem amounts to determining 
the functions u(z), v(z), w(z) in such a manner that u, v, w are 
zero on the circular arcs A1A2 , A1 1 A2 ' (see fig. 16), and that w 

assumes prescribed values, with one part on the line A 1AA'A2 , and the 

other part on the line A1 t AA'A2 . In contrast to what happened in the 

preceding problem, the two half spaces, separated by the plane x 3 = 0, 

are independent of each other. From the mathematical viewpoint, it may 
for instance be a matter of determining the solution in one of the semi-
circles determined in (C 0) by the cut AA'. There follows that there 

is no theoretical distinction between the synunetrical and the lifting 
problem. Naturally, one may operate in the same manner in the plane z. 
There will then be occasion to determine the solution in a semiplane, 
the upper semiplane for instance; the function w = f(x) is assumed to 
be known along a segment Xii, comprising in its interior the seg-
ment -1,+l of the real axis. The function is zero on the rest of the 

real axis35. 

3.2.2.1 - Elementary problem.. As before, we shall start with the 
study of the elementary problem, that is, the one where w = w0 on the 

part of a cone situated in the region x3 > 0. 

We shall operate, for instance, in the plane Z; the func-
tion w(z) - w0 has a real part zero on the segment AA' and the 

arcs AA1 and A tA1t, and equal to -w0 on the arc A1A2 . One can, 

by application of Schwartz principle, extend the definition of this 
function to a complete circle; its determination is then classical. 
(See, for instance, ref. 13, p. 162.) 

35See appendix 3.
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This permits one to write immediately 

1w0	 1 +	 - 2Z cos 01 

	

w(z) =	 - - log	 (III.Wi) 
l+Z2-2ZcosG2 

with the logarithm being real for a real Z, and with 01 and 62 
being the respective angular abscissas of the points A 1 and A2 . The 

function v(z) may be determined, for instance, with the aid of the 
relations of compatibility 

dV_ w0Z2 +1[ 1	 +	 1	 -	 1	 -	 1 
dZ -	 z2 -
	

i61	 -1e1	 i0	 -i62 I 
Z-e	 Z-e	 Z-e	 Z-e J 

In the integration it suffices to choose the integration constant 
in such a manner that the real part of V(Z) becomes zero on the 
arc A1A2 . Thus one obtains

____	 Ze I 
iwo[	 10	 1021 

	

log e 1 -	 cot 02 log -
	 1021 

v(z) =	 cot 01	
1 - Ze161	 1 - Ze j 

It

(III. 'p8) 

with the logarithms having an argument zero on the arc A 1A2 . One finds 

for v the following values 

	

=	 cot 61, on the arc A1A2 

	

v =	 cot 2' on the arc A'A2 

besides, one could have written these values directly by virtue of the 

reiations 36 (III. li-5) and (iii.Ii-6). 

6This shows that one could have written the formula (iii.li.8) 

directly, without writing the relations of compatibility.



x - cos 02 

1 - x cos 02
(111.50) 
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In order to write the value of v on the axis AA', one must cal-
culate the argument of

iOi 
e	 -z 

1 - Ze 

Now

1 

Argi e 1 -	 I = Arg e1 - z)(i -	 _ieiJ 
Li - Zei01] 

For calculating this argument, for Z = X, one notes that the modulus 

( j1	 -16\	 ( 101	 "2 of \e	 - Z)1 - Ze	 ) is the one of Ie	 - X) , under the assump-
tion of 1 +	 - 2X cos l; on the other hand, its real part is written 

01(1 + x2) - 2X. If one puts, therefore 

2X 

1 + X2 

ArgI

El61	
cos	 - x	

(III.9)


	

e	 - Z	 Arc cos 
L1_zeiOul
	

1-xcos61 

with the arc cosine having thus, besides, its principal value. One 
finds likewise

r	 161 
Argi -	 I = -Arc cos 

I	 i62 
Li-Ze

hence on the axis AAt 

v=_[cot	
cos6 -x	 x-cos62l 

Arc cos	 1	 + cot 62 
Arp cos 1 - x cos 62] -	 1-xcos01
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The calculation of u(z) is perfectly analogous. One finds 

iw	 i0.	 1 0	 1	 logz_e	 - .1	 loge. -Z1 u(z)=__[.0	

1-Ze	 1-Ze J 

	

i0	 sin 01 	 101 I

(111.51) 

with the logarithms having the same value as in the formula (iiI.1-8). 
One finds as the value of the pressure coefficient (w 0 = a) 

-°	 1 
p	 13 sin 02'

on the arc A'A2 

1 
p	 sin01'

on the arc (111.52) 

C	
= 

P	 134
1 Arc cos	

cos	 - 

01	 1 - x cos
+	 1	 Arc cos	

X 

01	 sin	 2	 1 -

- cos 021 

X COS ej 

on the axis	 Mt 

In the case where 0x1x3 is a symmetry plane 

02 = IC - 01 

and the last formula (111.52) may also be written

C 2a [Arccos
cosO1-x 

l-xcos61

x + cos oil * Arc cos +
	 01] 

Arc sin	
sin	

(111.53) 13it sin	 Ji - x2cos2G1 
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In order to utilize these formulas, it is sufficient to connect 
the angles 01 and 02 with the geometrical form of the given delta 

wing (fig. k.7). One has, according to definition 
* 

01 = 1/13 tan CD1	 cos 02 = 1/13 tan U)2 

Let us recall also that

13X2 
xl 

One will find in figure 11-8 a few applications of the f or-
mula (111.53). 

3.2.2.2 - Resultant of the normal forces on the upper region

(x3 > o)._ One can give, asin section 3.1.9, a simple formula permit-

ting the calculation of the resultant of the normal forces. If we des-
ignate by	 the dimensionless coefficient characterizing this 

resultant,	 is defined by the equality 

fl1.1 
JCpdx 

- -

/dx 

Likewise we define the dimensionless number C, characterizing the 

forces normal to the lower region (x 3 < a), by the equality 

Cz- =	

dx 

1W
dx 

with the integrals taken in the plane z, the first on the upper edge 
of the cut (X,t), the second on the lower edge. This definition entails
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that the total C of a cone is written 

Cz = C z + Cz 

Now

1W 

I dx-

	

cos	 co e2 

On the other hand. 

	

f C dx 2R f U(z .)dz] =	 u(z) 1 Z2 dZl P LJX L A2A 1	 (i + z2)2 

	

However, the integral of u(z)	 along the closed con-
(1 + Z2)2 

tour BA2A'A1B (fig. 1i-6) is zero. On the other hand, with u(z) 
having a real part zero on the arc A2A1 , one has 

u(z) 1- 2 d rr	 u(z) l-Z2 

L A2A1	 (i + z2)2 ]	 LJA1A2	 (i + z2)2	
= RRj] 

R denoting the residue of the function to be integrated, at the. 

point , Z = i

1	 2 dZ (z ...i)	 2 13 dZ(z..j) 

Thus one obtains the general formula 

+ -	 2iic cos
	 cos 62	

(111.511.) 

- - 13 cos	 - cos 62 dZ(zj)
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In the case of the elementary problem, studied in section 3.2.2.1, 
one has	 - 

cos 0- cos 01 

dZzi)	 t cos 01 cos 62 

whence

	

C=-=1	 (111.55) z	 J3	 1:3 

if one puts a = -i., following the notation customary in the wing theory. 

Thus we shall find anew a remarkable result: the value of the 
coefficient C	 is independent of the angles 61 and 

3.2.2.3 - Study of the general case by means of the method of 
electric analogies.- The method set forth above (section 3.1.3.3) may 
be applied in superposition. The electrodes must be disposed on the 
arcs AA1, A'A2 , and on the segment AA'. These electrodes must be 

brought to prescribed potentials the conductive arc A 1A2 is brought 

to the potential 0. Finally, one will detach a small electrode at the 
point B wfth the purpose of measuring the resultant of the normal 
forces; this resultant, given by the formula (111.514-) is, in fact, pro-
portional to the intensity entering at B. 

The value of u on the arcs AA1 and A'A2 is immediately known 

by simple integration. 

In fact, if for instance w1 designates the value of w given for 

.0 = 01 - € 

(€ positive and arbitrarily small), one has37, according to for-
mula (111.14.6) 

37Physically, the fact that the pressure on the bounding genera-
trices of the conical obstacle depends only on the inclination of the 
tangent plane along these geieratrices is obvious. It expresses the 
independence (see section 1.2.14. ) of these bounding generatrices with 
respect to the other generatrices of the conical obstacle.
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w 
U1 = - ________ 

s1n61 

and the formulas (III. Ii-5) permit the calculation of u on the entire 
arc Ak1 . Thus it is not necessary to measure the intensities leaving 

each of the electrodes except over the length of the segment AA'. As 
before, this intensity, proportional to w/Y, furnishes immediately 
the value of u/X along the axis OX, owing to the formula 

2X w 

X i_x 

Since one knows the value of u at the points A and A, one 
uses the superabundant data for calculation of the value of u on the 
axis Ak. Thus it is unnecessary to obtain the distribution of the 
potential, inside of the tank, as in the case described in sec-
tion 3.1.3.2. 

3.2.2. 14 - Study of the general problem by purely numerical methods.-
In order to simplify the exposition, we shall be content to examine the 
case where the given cone admits the plane 0x 1x3 as symmetry plane. 

This amounts to stating that in the plane z the function w(x) is 
even in x on the cut 	 representing the given cone. 

We assume w1 to be the value of w at the points x = 1 

and x = -1, and put

f(x) = w(x) - w1 

If 1 < x < i, one will put x = 1 	 = 1	 and r(e) = f(x). 
c9s 0	 COs 

One notes that F(0) = 0. After this statement, it is first of all evi-
dent, according to the foregoing, that one can immediately calculate the 
pressure outside of the cone (F). 

In order to calculate the pressure inside of (r), one will consider 
the flow as the superposition, 

1.- of an elementary flow (w = -w1 , on the entire cut), 

2.- of an infinite number of elementary flows bisecting the cone (r') 
and symmetrical with respect to 0x1x3 . These flows give at the
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point x(x < 1) a pressure coefficient equal to 

Cp =	 Arc sin	 sin e 
It	 sinede J o	 Ji - x2cos26 

3 . - of a symmetric flow inside the Mach cone, defined by w = f(x), on 
the cut (-i,+i). One may apply the method described in section 3.1.3.3 
for the calculation of this flow. We shall simply remark that it is not 
necessary to determine the integration constant since one knows that 
u = 0, for x = ±1. 

3.2.3 - Cone Partially Inside and Partially Outside 


of the Mach Cone (r) (Fig. 30) 

3 .2. 3 .1 - Symmetrical elementary problem.- The circle bounded by 
(c0) must be notéhed by a cut CA (see fig. ii.9), with the real part 
of w(z) assuming the constant value w 0 = a. on the upper edge of the 

cut, and the value -w0 on the lower edge. On the circle (Co), w is 

zero, except on the arc AA1 where w = w0 , and on the arc	 l' where 

w = -w0 . One will designate the point C on the circle C 0 by 

Z = a, and the argument of A1 on the circle (C0) by 01. 

The function w(z) can be written without difficulty 

w(z) = w0 + I	 log	
- a)(l - aZ) 

It	 ( - e IOl)( Z - e_I6l) 

with the argument

(z - a)(1 - aZ) 
/	 iOl) (
	

-i01\ 
Z-e	 Z-e	 ) 

being chosen equal to zero at the point A on the upper edge of the 
cut. Since w(z) is defined with exception of an imaginary constant 
only, one may also write
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V0	 2Zt0-(l+Z2) 

	

w(z) = w0 + i - log	 (111.56) 
l+Z2-2ZcosO1 

putting t0 =	 +
a) 

We shall now seek u(z) 

- dU = 2 iZ dW = - 'O	 Z [ 1 -	 a	 -	 1	 -	 1 
dZ z2 - 1 dZ	 2 1 1z - a 1 - aZ	 i01	 -i6 

	

Z-e	 Z-e 

whence

101 
u(z) =	 I	 log e	 - Z	 •a	 log a	 Z	 (111.57) sin 01	 -	 - - 2	 : aZ] 

Consequently, on the arc AA1 

C=
3 sine1 

which is a result one could foresee immediately. 

One obtains easily the value of C along the axis OX; it suffices 
to write the formula (III.1-9)

* 2a logla_X ii 
1-a2	 Il-aXj

(111.58) 

=	 1	 Arc cos .cos 6 - x 
P	 1tJ3[in l	 1 - x cos 01 

Let us recall that x = 2X 
1 + x2
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Particular case: Let us assume that	 =	 a =0, under the 

following conditions 

On the arc AA1, 

On the segment AA',

2a. 
P- 13 

	

C =	 rc cos( - x] 

	

=	 + Arc sin x

(111.59) 

Let us recall that in all these formulas x = 13 •--, with (x1,r,O) 
xl 

being the semipolar coordinates of a point of the wing 	 in the system 
of axes (0x1,x2 ,x3), and that cos	 = 1/13 tan 

3.2.3.2 - Elementary lifting problem, in the case where a = 0.-

The transformation s =	 transforms the circle (C 0) into a semi-

circle in the plane of the complex variable s. In this plane, A1 

•and A1 ' have as homologues M1 and M1 ' (see fig. 50). The func-

tion W(s) has a real part zero on the arc M1M1 ' and equal to w0 

on the arcs Mu 1, BM1 ', and on the segment kB. 

We shall determine directly the function u(z) or rather the func-
tion U(s). In fact, U(s) has its real part zero on M 1M1 ' and one 

knows, according to the relations of compatibility, that as in the pre-
ceding paragraphs

w0 ______ 
1 , on 

13 sin 

WO______ 
u=—	 , on 

f3 sin



	

NACA 'I l35!.	 115 

Moreover, the imaginary part of U(s) is constant on the real 
axis and may, consequently, be put equal to 0. Thus one may analyti-
cally continue the function U(s) across the real axis. U(s) is then 
determined as solution of a Dirichiet problem inside of the circle of 
radius unity. One has

I'	 iO 

U(s) =
	 log s - e	 + el/2) 

sin 01	 (	 iOi/2)( - e_ 10 112 )
+ e 

with the logarithm having the value of ut for s = 1. 

It is then easy to calculate u on the real axis, that is, on the 
senent OA of the original plane Z. Let us put 

x= 2Z = 2s2 

l+Z2 l+s 

The quantity under the logarithmic sign is written 

- 1 - 2is sin
2 

- 1 + 2is sin 01 

Its argument is equal to that of

2 
(2 - 1 - 2is sin 

Now, the real part and the modulus of this expression are., respec-
tively, equal to 

	

(
2	 1) 2	 2	 201 -	 - 4-s sin - = s + 1 - 2s2(2 - COS 01)
2 

and

(2 - 1) 2 + i1.5252 01 - = s + 1 - 2s2cos Oi 2
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Hence

Wr 

	

u=-	 Arccos 
sinO1	

[2x(1_cos01)l 

1 - x cos 1 _ 

	

=	 2c	 Arc	
- 2x(l - cos 61)1 

1 - x cos 61] P	 tsin01
(111.60) 

Particular case.- Let us suppose that 01 = 

C =Arc cos(l - 2x) p	 itr3 

3.2.3.3 - Elementary lifting problem in the case where a b 0.-. 
The elegant demonstration which has just been made for a= 0 and the 
principle of which is to be found in the original memorandum by Busemann, 
conceals one difficulty; this has caused M. Beschkine (ref. 11) to give 
a formula in the case where a 0 which, at least in certain cases, 
leads to difficulties. In working directly with the function U, one 
risks forgetting the supplementary conditions which, because of the 
relations of compatibility, must be applied if one does not want singu-
larities for the functions U, V, W at points other than the ends of 
the cut. 

In fact, if u(z) is regular inside of the circle (Co), v(z) 
and w(z) will have a logarithmic singularity at the point Z = 0. We 
shall study the case where a ,4 0, by studying directly the function w 
and limiting ourselves to not having singularities outside of the boundary 
generatrices of the cone. Besides, we shall again take up this important 
problem in section 3.3. 

Thus it is a matter of studying the case where w = wc on the 

arc	 l and on the upper and lower edges of the cut CA (see fig. I9) 

and on the arc AA1 1 ; the transformation 

1 - aZ 

which maintains the circle of radius unity, leads us to the case where
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the cut is arranged following a radius. Finally the transformation 


a = 

leads, in the plane s, to search for a function W(s) the real part 
of which assumes the value w0 on the arcs BM1 , B'M1 ' of the semi-

circle of radius unity of the positive plane and on the segment BB', 
and becomes zero on the arc M1M1' by application of Schwartz' prin-
ciple; one may continue the function W(s) - w0 to the lower semicircle 

of the plane s. This function is defined by the values of its real 
part on the circumference of radius 1 of the plane s. However, since 
dW/dZ must become zero at the point Z = -1, dW/ds must become zero 
for s=±i. 

In order to satisfy this condition, one decides to admit, for 
W(s), singular points at the points M1 , M1 1 , M2 , M2 ', and at the 

point s = 0. According to the investigation of section 3.1.1.2, this 
point may be a pole of the order one, with the residue being necessarily 
purely imaginary. 

If 1k is the residue of this pole, one may therefore write 

W(s) = w0 + G(s) + ik + 

with G(s) being a holomorphic function inside of the circle of 
radius 1.

2 
However, on the circle Isi = 1, 1k 1 ±
	 is purely imaginary. 

One deduces from it immediately the function G(s); consequently, W(s) 
is of the form

iwo 
W(s) = w0 -	 log

1 + 2 - 2s cos
2 

2	 Pl 
1 ± s + 2s cos - 

2

2 
+ 1k 1 + S 

S 

being the argument of the point M1.
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One calculates U(s), owing to the relations of compatibility 

.i	 .l \ 
-	 2w	 (s2 + a)(l + s2a) 2e 2	 + 2e 

ds - -	 (l - a2)	 s - 1	 2	 1' + -e	 s-e	 / 
(2 + a)(l + s2a)


J3 (1 + a2 )s2 (s2 ^ 1) 

because

2Z	 2(a+a)(l+aa) 

z2 - i	 (a2 -	 - a2) 

One verifies immediately that the points s = ±i are not poles 
(and that, consequently, the points Z = ±1 are not singular points), 
if

w

cp1 
cos 

Hence, for U(s) 

U(s) 
=	 2w0	 a(l - 2) + 

l (i - a2)s 
f3t cos

f	 .l\f I
+ 2a 2\ cos	 + a ) I	 i—I( 

\s	 2j\ +
-i---

2 
log - e	 e 

(1 - a2)sin	
i ( -i

2,/\ 2 - e	 + e

(111.61) 

It is easy to relate the angle	 l to the given angle O, fixing 
the point	 A1	 on	 (c0 ) in the plane	 Z
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cp1 (i + a2) + 2a + j (i - a2) sin 
e	

=	 1+2acosCP1+a2 

The calculation of C is then simple; it saffices to resume the cal-

culation at the end of the preceding paragraph 

2s2 	 2(l+a2) _2a(1+Z2 )	 x_xo 

s 1-+l	 (l+a2)(i+Z2)1a	 1-xx0 

if one puts, on the real axis 

2Z

	

	 2a 
xO= 

1+z2 	 1+a2 

Under these conditions

cos	 - 
l = _____________


1 - x0 cos
(111.62) 

and, consequently,

c -	 2a,	 onthe arc AA1 
- ij3 sin 01' 

Cp = -	 1l-aa.	 1 - X __________________ + 

l • I(x - a)(1 - aX) - a)cos --. \I 

2a	 c cos[i - 2(x -
	 - cos	 1 

sinO1	 1_0_(x_x0)cosi]	
(111.63) 

on the upper edge of the cut AC.

0
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If a =	 = 0, one arrives again at the formula (111.60); the 


formula given by L. Beschkine (ref. ii) does not contain the first term. 

3.2.3.14. - Calculation of C 	 in the lifting case.- C 	 in the 

plane z is always defined by the equality 

Cz= ________ 

with the first integral being taken in the positive sense on the loop 
surrounding the cut. 

However, with the adopted notations

cos01 

	

1	 l-x0cos91 
-xO= 

	

cos	 cos 01 

On the other hand

rcpdz2 r	 C	 -2 dZ JA1ACAA1 '	 (i + Z2)2 

But

	

R[u(z
(i + z2) 2	 - -	 1AC1'	 (i + z2) 2	 =


	

l-Z2 dZ_RLf	

u(z)1_Z2 dZ 

r	 u(z)_1 - 
Z2 dZl =
	 + 

- LJA1A 'A1 '	 (1 + z2)2 

and

Jx
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and R_ being the reaidues of the function to be integrated at 
the points Z i and Z = -i; finally 

2iit cos 6	
- (L	 1 C -

	 -	 cos e) dZ)(zl)	 dzi(zi 

In the purely lifting case 

=	 4-iiC cos ei	 (dw\ 
Z	 3(l -	 cos 61) \dZ)( 1) 

We apply this formula to the elementary case

(iii.61) 

LQaLL l_a2

dZ ds dci dZ ds 2j (1 - az)2 

One will put for simplification for Z = i 

	

a = tan(. -
	

xc = -cos $3	 a. = e 

	

One then finds that 	 a 

sin2 $3 cos 
(dw)	 =±Q	

(p1 

	

(z=i)	
(cos P - cos $3)cos 

Hence (w0 = a) 

C=-
	 cos	 sin $3 

(i + cos $3 cos 61 )(cos P1 - cos $3)cos 1



cos 
_ Ii. i	 2 - - ______ 

(p1 
cos -

(iii.6s) 
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If one utilizes the equality (111.62) in defining 	 and. if one 

puts a = -i, with I designating the incidence, one finds the very 
simple formula

3 .2. 3 .5 - Genra1 case.- The investigation of the general case may 
be made either by electric analogy or by calculation. The methods, to 
be employed result from what has been seen in sections 3.1.3.2, 3.1.3.3, 
3.2.2.3, and 3.2.2.11.. 

Let us only indicate that, in the solution of the lifting problem 
by electric analogy, one must arrange a singularity at the point C 
like the one defined in section 3.1.3.2.3. The adjustment of the poten-
tial to which the conductive part of this singularity must be brought is 
obtained by the condition that no intensity enters at the point A'. 
To verify this condition, one will use the method already Indicated in 
the section noted. 

Naturally, the total Cz will be very easily determined by mea-

surement of the intensity entering at the point B and application of 
the formula (111.611-). 

3.2. 11. - Cone Entirely'Outside of the Cone (r) (Fig. 29) 

3.2. 1l-.l - Elementary syimnetrical problem.- The problem consists In 
determining u(z), v(z), W(Z) by means of the following conditions: 
the real part of w(z) assumes on the arc A1A2 (see fig. 51) of the 

circle (C0) the constant value w0 = a, and on the arc A1 1 A2 ' the 

value -w0 . On the other portions of (C 0) this real part is zero. 

Thus one may write immediately the value of the real part of u(z) on 
the circle (Co) (formulas (111.11-5), (111.11-6)). It is an even function 

of the argument e. One has
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u = 0, /	 on the arc A'A2 

	

-	 O 1 

	

u - - --
	

on the arc A2A1 

wO/l	 1 U = - 
ii sin 

6 - sin 01)' on the arc A1A 

whence for the function u(z), the formula 

	

1w	 109	 16 
u(z) = __.Q 	 1	 log e	 Z -	 1	 log e 1 - Z I (111.66) 

in 0	 1 - Ze'02 sin 01	 1 - ieiJ 

the logarithms assuming the value lit at the point Z = 1. 

The complete calculation of v(z) and W(z), likewise, does not 
offer any difficulties. 

One deduces from this formula the calculation of the pressures on 
the obstacle and outside of the obstacle. 

In the plane x1Ox2 the pressure coefficient has the value 

= 2ci	 1 ,	 on the obstacle 
J3 sin 02 

2a( 1	 -	 1 \ in the region comprised between the obstacle 
\sln 62 sin e4'	 and the Mach cone of the point 0 

Let us recall that if 	 and u 2 designate the angles formed by 


the bounding generatrices of the obstacle with Ox 1 , one has according 
to definition (see fig. 52): 

cos 01 = l/j3 tan	 cos 62 = 1/3 tan
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Inside of the Mach cone, finally, at the point x 1, x2 , one has 

1	 cos 02 - X cos	 - x =
Arc cos - Arc cos P	 I3ltLsin 02	 1 - x cos 02 sin 01 1 - X COS oiJ

x2 
if x = J3 -, the arc cosines having their principle values. xl 

3.2. 11. . 2 - General symmetrical problem.- The general symmetrical 
problem does not present any difficulty, since one may Operate by means 
of superposition; let w = a(0) be the given value of velocity compo-
nent following Ox3, over the length of the obstacle ( 01 < 0 < 02). 
The formulas giving the C may be written immediately 

= - a	 at the point of the obstacle of p	 sin 0'	 parameter 0 

I00 
= - -	 do , behind the obstacle, outside of the 

01-0 
Sifl 0	 cone (r) 

_______ ___ 
I	 Arc cos COS 0 - t da	 inside of the 

Jo1_o	 1 - t cos 0 sin 0	 Mach cone

(111.67) 

The integrals of the preceding formulas must be taken according to 
the signification of Stieljes; this is a fundamental condition for the 
case where ct(0) presents discontinuities. In particular, one will 
have to take account of two discontinuities: the discontinuity -4-a(0i) 

for 0 = 01, and the discontinuity _a.(& 2) for 0 = 02 . Not to forget 

these discontinuities was the reason that we wrote certain limits of the 
integrals 01 - 0, 0 + 0. 

3.2. 1-.3 - Elementary lifting problem.- The solution obtained for 
the symmetrical problem (formula (iii.66)) is valid, since dW/dZ 
necessarily becomes zero at the points Z = ±1; also, dU/dZ becomes 
zero at the point Z = 0; thus the relations of compatibility do not 
entail any singularity other than the points A 1 and A2 . We shall see 
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that in case of the lifting problem a few precautions must be taken if 
this condition is again to be satisfied. 

Let us first assume that the points. A1, A2 and A1 1 , A2 ' are 

simple poles for	 , I, and	 L. One may then write the values of 
dZ dZ	 dZ 

u, v, w on the circle (C 0) utilizing the relations (111.11.5) 

and (111.11.6) as well as the boundary conditions. These latter let us 
know that w assumes the value w0 on the arcs A1A2 , A1tA2' 

(fig. 51). On the other hand, the component u necessarily continues 
outside of the cone (since u represents the pressure except for one 
constant) and, being odd in x 3 , must become zero in the plane 0x1x2 

outside of the given delta wing. Consequently, u = 0 on the cir-
cle (C0), outside of the arcs A1A2 , A1 1 A2 '. Hence one deduces, as 

before, that on A1A2 

v = a cot
	 1 

J3 sin 02 

but on the arc 

w=a sin 02 - sin	 v =a cos 02 - cos 

sin 02	 sin 02 

We note therefore that w assumes on the arc AA' the same values 

as on the arc AA1 , whereas v assumes opposite values. Hence one 

deduces that the region of the plane Ox1x2 , comprised between the 

trailing edge	 and the Mach cone (see fig. 52), is thus a region of 

discontinuity for the velocity. 

One sees therefore that the hypothesis set up before (simple poles 

for Q, -,	 is incompatible with the fact that U, V, W do 
dZ dZ dZ/ 

not admit singularities other than the points A 1, A2 , A1 ', A2'. 

One may realize this, besides, in another manner; in order to satisfy 
in the simplest possible way the boundary conditions imposed on u(z), 
it suffices to write u(z) in the form
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U1(z) = -	 log 1 - 2Z cos 01 + 

it Sin 0	 1 - 2Z cos 02 ^ Z 

since this function 1J1(z) well fulfills the boundary conditions 

required for the function u(z) on the circumference (c0 ). However, 

= 2ia
r Z-cos01

-

Z-cos02 

dz sin 02 - 2Z eQs 01 + z2 1 - 2Z cos 02 + Z 

and for	 Z = 0

('f	 = 2ia	 (cos	 1 - COS 02) \dZ 'z=O 3,t sin 02

If, therefore, the functions ii(Z), v(z), w(z) are not to admit 
singularities inside of (C 0), the solution	 cannot be retained 

just as it is because the corresponding functions v 1 (z) and W1(Z) 

would have a critical logarithmic point at the origin38. 

Thus we are led to modify the solution iJ1 (Z) by introducing a 

singularity at one of the points . A1 or A2 (and, by symmetry, at A1t 

or A2!). Physically, by virtue of the rule of forbidden signals, this 

singularity must be placed at the pair of points A 1, A1 t , because the 

bounding generatrix L (fig. 52) which takes the place of the leading 

edge (having as image the pair of points A2 , A2 ' in the plane z) is 

independent (see section 1.2. 11-) of the trailing edge (pair or 
points A1, A1 t , in the plane z). One then sees tht, by putting 

1 - 2Z cos 01 + Z2 -	 2ict	 (cos 01 - cos e2)z u(z) = -	 log 
itI3 sin 02	 1 - 2Z cos 62 + Z2	 T3 Sjfl 02 1 - 2Z cos ei + Z2 

(111.68) 

8L. Beschkine (ref. II) took the function U1 (z) as the value of 

see further on, in section 3.3.2, the discussion of this question. 
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one has, for u(z), a function satisfying the boundary conditions on 
(Co), holomorphic inside of (Co), the derivative of which becomes zero 

at the point Z = 0 and consequently leads to functions W(z) and v(z) 
which do not present singularities inside of (C 0). Besides, this solu-

tion is unique if one takes account of the principle of minimum singu-
larities. 

One may then calculate the functions v(z) and w(z). Thus one 
finds for w(z)

10 
w(z) = -	 log e 2 - z +	 ic	 (i - COS 01 cos 02)	 _________ log e	 -z + 

1 - Ze102	 t sin 02	 sin 01	 1 - i01 

a, cos	 - cos 02	 - 1 (111.69) 
it	 sin	 1 + z2 - 2Z	 01 

and

v(z) = -	 cot 02 log ( - 
e 02)( Z - e 02) ^ 

it	
( - ei01)( Z-e	 ) 

• cos 0 Z(cos 61 - cos 02)	
(111.70)


it sin 62 1 + Z2 - 2Z cos 61 

-

	

	 Thus one finds that on the wing (arc A1A2) the component v has


the value

v = a cot 02 

In the region of the plane 0x1x2 outside of the wing, the compo-

nent v is always zero; whereas w assumes a constant value in the part 
comprised between the trailing edge and the cone (r) 

1 - COS 01 COS 02\	 1 - cos(01 - 02) =	
- sin 02 sin 01 ) =	 sin 01 sin 02
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- 2Z cos	 + z2) I	 cos 61	 sin0
dct( 6) 

- cos 6 
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Finally, in the part of the plane 0x1x2 inside of (r') (seg-

ment AA') v = 0, and w is given by the formula 

/ cos 62 - x 
= Arc cos( it	 \1_xcos02) 

a (i - cos O cos 02)	 /cos 01 - Arccosl	 1+ 
it	 sin 01 sin	 -	 \l - xcos 

a cos Oi - cos 02	 Ji - x2	
(111.71) it	 sin02	 l-xcosO1 

3.2. 11. 14. - General lifting problem.- One sees immediately that, if 
one wants to uniquely calculate the pressure on the obstacle, one may 
utilize the same formula as for the general symmetrical problem (for-
mula (111.67)). Besides, the study of the values u(z), v(z), and w(z) 
in the general case will also be very simple with the aid of superposi-
tion. One will easily verify that, if w = o(0) is the prescribed 
value of the normal component along the obstacle ( 01 < 0 < 02), one 
has, for instance 

f02+O	 1 + Z2 - 2Z cos 01 da(6) 

01	
log	 +


1 + z2 - 2Z cos 0 sin 0 

Analogous formulas could be written for v(z) and w(z). 

Thus the electric analogy is less. interesting in this case, since 
there is a way of solving the problem explicitly. We shall simply note 
that the singularity to be placed at the tank at the image point of the 
trailing edge is a doublet.
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3.3 - Supplementary Remarks on the Infinitely 

Flattened Conical Flows 

3.3.1 - Continuity of the Results 

At the ,end of this investigation, it will not be unnecessary to 
state briefly the continuity of the obtained results. 

If one takes for instance an elementary flow bisecting the Mach 

cone for which one makes 81 tend toward 0, e toward it, one finds, 
passing to the corresponding limit in the formula (111.52) as limiting 
value of the pressure coefficient 

C = cim01__^0 1 Arc cos	 1 -	 + 

	

'	 sin 81	 1 - x cos 01 

____	 x-cose2l 1	 ______________ 

sin 82 Arc cos 1 - x	 82] - 

2arl^x	 -xl=	 1	 (111.72) 
1+xJ	 2 11 - x 

If one now makes, in an elementary flow, symmetrical or lifting 
(see sections 2.1.2.2 and 3.1.2.3), b and c, respectively, tend 
toward -1 and 1, one again arrives at the formula ( 111. 72 ) . Besides, 
the formula (111.72) has already been written, at the end of sec-
tion 3.1.1.7. One finds, finally, the same result by transferring like-
wise results from section 3.2.3. If one makes, for instance, in the 
formula (111.58), 01 tend toward zero and a toward -1, one obtains 

c = 1iim91^0 1 Arc	
cos 01 - 

1 - x cos
x	 + 
01 sin 01

1 10gfl_X_2aEl+x±1_xl_1	 1 
la2	 Li- ax]]i- x l+Xjit2 
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Likewise, starting from equation (111.63) and making a tend 
toward -1, Oi toward zero ((P1 tend toward zero) 

2l+X	 sine1	 (l_ =	 1 - X + a	 ].:—*O	
1	 Arc cos 

2 ( x - xO)(1 - cos (Pl)	 ___


l_x_(x_xO)cosPl)_L1+X 

	

2(x_x0)	 I1+Xl2aXIl+x114	 1 (i+)(l-x)i-J[i+x	 1-XJ x2 

Likewise, one may verify the continuity of the results under the 
hypothesis where a single one of the generatrices of the conical obstacle 
is situated on the Mach cone. One thus obtains a limiting case between 
the flows studied in section 3.1.2 and those studied in section 3.2.3. 
If one supposes, for instance, that one of the bounding generatrices 
has as inage the point Z = 1, the second the point Z = a, -1 <a < 1, 
one finds, whatever the manner of making the passage to the limit, for 
the symmetrical problem 

c = [Il + x + 2a iog[X - al it[l-x 1-a2	 Li-ax] 

and for the lifting problem 

c =-	 14act	 l-x 
P	 (i - a) (x - a)(l - aX) + 

2ct	 2(x - x0)	 ltct[X(l + a) 2 - 2a(X2 + i)] 
- x)(i	 xO)	 (i - x)(l - a)(X - a)(i - 

In the same manner one can verify the continuity between the flows 
studied in sections 3.2.3 and 3.2.14..
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3.3;2 - Discussion on the Possible Singularities 


of Lifting Problems 

In this entire chapter, we have limited ourselves to giving the 
solutions which .atisfy the condition, stated frequently: To admit as 
singularities in the plane Z only the bounding generatrices of the E, 
and to choose from among all possible solutions the solution which sat-
isfies the principle of minimum singularities. This is a hypothesis 
which is justified by its simplicity and which we have set up here with-
out using the experimental results apt to guide our choice for placing 

the singularities39 .	 - 

A first theoretical possibility would consist in admitting singu-
larities possible on the generatrices of the Mach cone, having as image 
the points Z = ±1 in the plane Z. This seems to us not easily admis-
sible from the physical point of view. Besides, to our knowledge, the 
various authors who have treated problems of infinitely flattened conical 
flows have always eliminated this possibility (see in particular ref s. 
10 and 11). In fact, it is hard tO understand how the pressure could 
become infinite in the neighbdrhood of these generatrices. 

In contrast, one has a means of obtaining solutions different from 
those obtained in the course of this investigation, in tolerating, as 
possible singular point, the point Z = 0. 

We shall first make the following general remark: Let us take the 
case of a cone where one of the bounding generatrices has as image the 
point Z = 0 in the plane Z; in this case the pressure remains finite 
in the neighborhood of the corresponding bounding generatrix. This 
results from the formulas (111.23) and (III.2 1I) for the case of a cone 
entirely inside of (F) (section 3.1.2), and from formulas (111.58) 
and (111.60) for the case of a cone partially outside, partially inside 
of (r) (section 3.2.3). We shall show that, utilizing conformal repre-
sentations and maintaining the circle (C 0), it will be possible, even 
in the case where Ox1 is not a bounding generatrix, to define a solu-

tion of the lifting problem in such a manner that the pressure remains 
finite along a bounding generatrix inside of (r), under the condition 
of admitting the point Z 0 as singular point. 

39The theoretical study of flows (movements) in incompressible 
fluid has been rendered possible and effective only owing to the famous 
hypothesis of Joukowsky which indicates the choice to be made among the 
singularities which are possible for the flow. The study of the prob-
lems treated here shows uncertainty in the state of our actual knowledge 
concerning the conditions which the theoretical solution must satisfy 
in order to represent best the real phenomena.
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We return to the investigation of section 3.2.3.3 where a 0: 
One may in fact come back to the case where a = 0, by the transforma-
tions utilized before

S2 = cr 
1 - aZ 

The function U(s) the determination of which was the problem is 
then defined inside of the semicircle, and it satisfies exactly the 
same conditions as the function U(s) studied in section 3.2.3.2. 
Thus one will have

1W	

(	 . i\f 

	

U(s) =	 •	 log s - e 1 A5 + e 1	 )	 ( 111.73) 
131t sin	 if 

(s + e	 - e 

i being defined starting from e1 by the equality (111.62). This 

leads us to a value of the Dressure coefficient 

c =	 2a	 Prc cosE_ 2(x - .xo)(l - cos c1) 1 
3ic sin l	 1 - xxrj - (x - x0)cos cPj 

a value already given by Beschkine which is deduced from the for-
mula (111.63) by suppression of the term in logarithm. This pressure 
coefficient remains finite along the bounding generatrix inside of (r): 
x = XO. 

However, if one calculates the functions w(z) and v(z), corre-
sponding to the function U defined by equation ( 111.73), one finds 
the following results
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w	 I1+s2_2scoslI. 
W(s) = w0 - I	 log1	 TI + 

I	 cp1J

Ii + 2 + 2s cos --

cos	
log (s - i)(l +
	 - i	 + 

+ .Jlog 
(s+i)(i-) 

iw	 /S2l_25Sifl\ 
-	 V(s) = - _ 2 cot e1 log1	 2 

lt	
2l+2I55Ifl) 

0	 log ( - i)(l +	 -	 -	 + ii - cos -	 _________________	 _______ ______ log 

2 L 	 (s+1)(1)

(III.7!i.) 

These formulas call for the following remarks (see fig. 51i. ). We 
assume a>O: 

1. On the region of the obstacle comprised between OD and O 

(IArg sJ <	 oe has

w = w0 

= ±w cot 

a result which is quite conformal to the formulas (iii.4i -) and (iiI-.Ii-6). 

2. On the region of the obstacle comprised between OD and o 
s is real l < s < 0, for the surface x3 < 0]; one sees that w w0 

P1 
cos - 

on every surface, whereas v assumes the opposite values ±w0 	 2
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3 . On the region of the plane 0x1x2 comprised between 0	 and 

Ox1 (s is purely imaginary and varies on the segment Cth), v main-

P1 
cos - 

tains constant opposite values, equal to a ±w 	 2 , whereas w 

increases infinitely in absolute value. 

Ii. . On the region of the plane comprised between Ox1 and OD' 

(s, which is purely imaginary, describes the segment uiB), v is zero; 
w, infinite on Ox1 , becomes zero on OD'. 

Behind the generatrix 0	 which one may consider as the trailing


edge of the wing L. studied, this solution furnishes therefare a zone 
of discont'inuity of velocity (the discontinuity being in the direction 
of Ox2) which occupies the region 0	 Ox1. Moreover, the axis Ox1


is a singular straight line for the flow. Thus one encounters a scheme 
which seems at first rather tempting and reminds one of the study of 
the wing in subsonic flow; behind the wing there appears a zone of dis-
continuity of velocity produced by vortices following the direction of 
Ox1 , and the singularity encountered along the axis Ox 1 reminds one 

of the "marginal vortex" of the wing theory. As in the case of subsonic 
flows, this flow scheme appears linked to the condition of having a 
finite pressure along the trailing edge. 

The formulas (iiI.7!.) likewise show us that the-flow found does 
not satisfy the boundary conditions if a is negative, that is, if the 
obstacle is not situated on the same side of the plane Ox 1x3 . In fact, 

in this case w would admit on the obstacle a discontinuity in the 
neighborhood of the axis Ox1 ; but this is incompatible with the boundary 

data. 

If one wants to apply a similar method in the case of a symmetrical 
flow, one likewise notices immediately that the result is incompatible 
with the given boundary conditions since one obtains a discontinuity 
for w. 

Let us now visualize the case of a flow around a cone entirely 
inside of the Mach cone, with the bounding generatrices on the same 

solution which has been suggested by Beschkine must, there-
fore, certainly be rejected in the case where a is negative; the fig-
ure 6 given by Beschkine (ref. 11) seems to show that this author has 
not seen this fundamental restriction. In this case one must certainly 
adopt the solution set forth in section 3.2.3.3.
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side as Ox1 (fig. 55) and-the remaining finite on the trailing 

edge 0 t. The function u(z ) then has the form 

u ( z) =	 C(b,c) I(z - b)(1 -	
(111.75) 

\J(c - z ) (i - Zc) 

with C(b,c) being a function of b and of. c. 

One then sees that in calculating v ( z) and w( z) one will find 
the same particularities as previously: the point Z = 0 will be a 
singular point. In the region comprised between Ox1 and 0	 one 

states a discontinuity of the component v whereas the velocity w 
becomes infinite along Ox1. 

The following problem arises: Should one adopt in the case where 
the two bounding generatrices 0 L1 and 0 	 are on the same side 

as Ox1 the solutions exposed in the course of this chapter, which we 

shall call solutions of type I (singularitie .s on 0 zl and 0	 or 

the solutions we just indicated, which we shall call solutions of type II 
(singularities along 0 	 and Ox1)? 

Let us note first of all that, for reasons of continuity, it is 
absolutely necessary to adopt completely one or the other viewpoint; 
one cannot admit a solution of the type I for the flows entirely inside 
the Mach cone, and a solution of the type II for the flows partly 
inside, partly outside. 

Under this presupposition, the solutions of the type II are, at a 
first glance, rather tempting; perhaps certain authors were thinking of 
these solutions when they exposed the condition of the subsonic trailing 
edge which could be stated in the following manner: 

Since the tangent to the trailing edge forms with the flow an angle 
which is smaller than the Mach angle of the flow, one must write on the 
corresponding trailing edge the condition of Joukowsky in order to be 
sure that the velocity remains finite (see for instance ref. 1). 

Now the solutions corresponding to the formulas (111.73) and (111.75) 
seem to satisfy these conditions. And as we remarked before, these 
flows show, behind the trailing edge, actually a character which reminds 
one of subsonic flows.
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We do not want to definitely reject these flows; however, we have 
to make three remarks. 

1. As we have stated that the solutions with finite pressure along 
the trailing edge are not possible for the symmetrical problems, the 
pressure cannot remain finite in the case of a flow of the type II 
around a cone having thickness. 

2. It would be dangerous to link the solutions of the type II to 
the "subsonic trailing edge" since, if the wing is entirely outside of 
the cone (r), there exists still another solution which yields a finite 
pressure on 0	 and gives rise to a surface of discontinuity between 

Ox1 and 0 : It is the solution 1J1 (Z) visualized at the beginning 

of section 3.2. 11.3. One has, in fact, under this hypothesis 

v1(z) =
	

0(cos 02 - eQS e1)log( - z) 

ia	 os Oi log(l + Z2 - 2Z cos 01) - 
it sin 02 L 

cos 02 log (i +	 - 2Z cos 02)] 

which gives in the region comprised between Ox1 and 0 L 1 equal 
values of v

+ a (cos 02 - cos o) - sin 02 

If one adopts for such a cone the lifting solution of\ the type II, 
one finds that the velocity remains finite at the trailing edge, even 
under the hypothesis of a cone of nonzero thickness.. 

3. Adopting, still by virtue of the principle of continuity, the 
type II for the lifting solutions in the case where the bounding genera-
triôes are on the same side as Ox1 would lead us to a restriction of 

the range of the study of the flows with infinitely small cone angle 
made in chapter II; for this problem, such as it has been posed, would 
no longer be valid in the case where the contour (C) in the plane Z 
no longer contains 0 in its interior. In contrast, we already have 
had occasion to state that the results of chapter III are in complete

1 
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agreement with those of chapter II (see section 2.2.8); this statement 
is valid for the case of any figure whatsoever. 

We may conclude that, according to the actual state of our knowl-
edge, it does not seem imperative to adopt the viewpoint of the solu-
tions of type II. In our opinion, only an experimental study can indi-
cate where the theorist must place the singularities; the viewpoint 
adopted in this chapter seems to us to be the most natural one. It 
becomes required in the case where Ox1 is comprised in the angle O 

and 0	 in the oposite case, if in one way or another our knowledge 

of the physical phenomenon should widen and lead us to a change in our 
hypotheses on the singularities, it will still be easy to obtain the 
desired solutions, provided the conical character of the flow is main-

tained-. 

l4.lSee Appendix No. 1i..
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CHAPTER IV - THE COMPOSIT'ION OF CONICAL FLOWS 

MD ITS APPLICATION TO THE AERODYNAMIC 

CALCULATION OF SUPERSONIC AIRCRAFT 

We shall show in this chapter how the conical flows studied in the 
previous chapter and possibly the homogeneous flows defined in sec-
tion 1.3 of chapter I permit to study, at least in certain particular 
cases, the various elements of a supersthlic airplane (fuselages, wings, 
controls, etc.) by "superposition" if one can apply the general method 
of linear approximations. Our aim is not to furnish all possible appli-
cations nor to give all the formulas the constructor may need. We 
shall, rather, insist on the principles of such a composition; we shall 
give the simplest and most significant results and, more specially, 
those which, at least to our knowledge, have a character of newness. 
We shall voluntarily reserve the results of technical character for a 
later publication. 

Such a superposition is justified by the linear character of the 
fundamental equation (1.10). The simplicity of the following arguments 
frequently results from the rule of "forbidden signals" which we have 
stressed already in section 1.1.11-. 

- Application of Conical Flows to the 

Calculation of the Wings 

In his fundamental memorandum, often quoted above (ref. 1i), 
Th. Von Krman indicates that the theory of conical flows permits the 
investigation of wings the profiles of which are formed by straight 

iines' 2 . We intend to show in this paragraph that one can investigate 
a wing of finite span and with a curvilinear profile by means of compo-
sition of conical flows. Like the problems of conical flows (compare 
chapter III), a wing problem may be divided into a symmetrical and a 
lifting problem. 

We shall note	 (x1,x2) and &(x1 ,x2), the inclinations of the


top surface profiles (x3 = +0) and bottom surface profiles (x3 = _ O) 

'#2The subject of a certain number of memoranda is the study of 
wings with polygonal profile. One must then superpose a finite number 
of conical flows. The most recent and most complete investigation of 
this problem is the one by A. E. Pukett and H. J. Stewart (ref. 30).
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of the wing investigated, and we shall put (compare fig. 56) 

with i representing the general incidence of the wing (one will define 
it as the incidence of the chord of one of the sections). We shall then 
put

=	 a	 a = _______ 

In the case of a purely symmetrical problem 

	

1=0	 j0=O 

In the case of a purely lifting problem 

a= 0 

Let C and be the pressure coefficients on the upper side 

and lower side of the wing. The local c and the local c of a sec-
tion parallel to 0x1 ,x3 will be defined by (compare fig. 56) 

= f (c - c)dx1 
mm' 

c
 = f

(cs - Cp8)dx1 
mm' 

Designating by c(l) and c(2) the pressure coefficients obtained 
in the study of the symmetrical and lifting problems, the superposition 
of which gives the general problem investigated, one has 

+ =	 (1) + c(2)	 cp- = c( 1 ) - c(2) p	 p
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and consequently

cz = c(2) 

c z (2) being the local c of the lifting problem and 

c
 = f

c(1)( + - )dx1 
+ f c(2 )(_2i +	 + 

111111'	 nun' 

=
 2f

c(1)a c + 2f , c(2 )(_i + j0)dx1 

mm'	 nun 

= cx(1) + c(2) 

cx(-) and cx(2 ) designating the local c of the symmetrical and 

lifting problems3. 

Designating by C and C the total-lift and drag coefficients, 

one will, of course, have 

cz = c( 2 )	 .cx =	 + c(2) 

One sees thus very clearly how a general problem is divided into a 
symmetrical and a lifting problem. One may say, figuratively speaking, 
that the symmetrical problem investigates "the effect of thickness 
and that the lifting problem investigates "the effect of curvature and 
incidence." We shall treat these two problems successively. 

could put: cx (2) = c t x (2) ^ ic , noting that 

c' (2) = 2 r	 (2)0 dX1 . The local c is, therefore, the sum 
of cx (l ), drag due to the thickness, c t x (2) , drag due to the curvature, 

and of ic, drag due to the incidence (induced drag).
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- Symmetrical Problem 

1I. . 1.1.l - Rectangular wing with symmetrical 

profile and. zero lift 

.l.l.l.l - General remarks.- The projection of the wing is a rec-
tangle (R): ABA'B' (compare fig. 57). We shall put 

AA' = BB' = 1	 AB = A'B' = Xl 

The problem is to find a flow such as to make the value of the 
normal component w zero at every point of the plane x3 = 0, except 
in. (R). Furthermore we shall, for a start, assume that the wing cross 
section is constant for the entire span. This profile, symmetrical 
according to hypothesis, will be defined by the function a,(x 1) which 
gives the value of the inclination of the profile (supposed to be small) 
toward the axis of the x1 ; w will therefore assume the 
value w = a.(xi ) on the upper side (x 3 > 0) of the rectangle ABB'A', 
and the opposite value w = _cL(x1) on the lower side (x3 < 0). 

In order to solve the problem, we shall compose conical flows the 
vertices of which are situated on the sides AA' and BB'. 

	

In order to simplify the notation, we shall call 	 (M,ct) the 
elementary symmetrical conical flow which has its vertex at a point M 
of the plane 0x1x2 (compare fig. 58) for which w is zero outside of 

the quadrant limited by the semi-infinite lines parallel to Ox1 and Ox2 
issuing from M; w is equal to the constant 	 on the upper part of 
this quadrant and to -a. on the lower part. C 8(M,a.) will designate 
an analogous flow where the axis Ox2 will have been replaced by its 
symmetrical counterpart. Such a flow has benvestigated in sec-
tion 3 .2. 3 .1. If one designates the angle x1NP by C, the for-
mulas (111.59) show that the pressure coefficient C is given by 

cp =	 +	 sin( tan	
I tan	 <1	 (iv.i) 

C=Oif'tan cP< ..1	 C=iftanP>l
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1,..1.l.1.2 - General principle of the superposition.- Let us visu-
alize, first of all, the superposition of the following flows 

and Z[BcLO)] 

The resultant flow gives in the plane x3 = 0 the values of w indi-

cated by the figure 59(a). If we now subtract the two-dimensional flow 
about a dihedron of the angle 2a(0), it is disposed symmetrically 
with respect to the plane Ox1x2 and has Ox2 as edge; the semi-

infinite Ox1 is inside of the dihedron, and one obtains in the 

plane x3 = +0 the values of w indicated by the figure 59(b). This 

gives us the principle of the composition. One4rill obtain the desired 
flow by superposing conical flows of the type C 5 the vertices M of 

which will be situated on AA, conical flows of the type C 5 the ver-

tices of which will be situated on BB t , and by subtracting suitable 
two-dimensional flows. It will be possible to schematize the flow in a 
precise manner as follows 

J & 

5 (M, cia.) + 5 4ã5 (M, da.) - E[a(xl)] 
BB' 

with EIa.(xl)I designating the two-dimensional flow about a wing of 
infinite span the profile of which is identical with the profile of 
the given rectangular wing. 

In fact, one verifies immediately that the flow, symbolically 
defined by the formula (IV.2), satisfies the given boundary conditions. 
We want, nevertheless, to specify that the integrals of this formula 
ought to be understood in the sense of Stieljes, in order to understand 
the case where the function a(x 1) will represent discontinuities of 

the first kind. Such discontinuities exist, in general, at the leading 
edge AB and at the trailing edge A'Bt. 

.l.l.l.3 - Study of the flow 	 5(M, cia).- In order to mce

UAA' 

this investigation, we introduce the axes Axy, Ax parallel to Ox1, 

Ay coinciding with Ox2 , and .put 

t =xx	 ctx(xx)=a(x)
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The section of the Mach cone behind the point A is formed by two 
semi-infinites which have as equations 

± y = 0 

Let (xX,yX) be the reduced coordinates of a point P of the 
plane Axy (fig. 60). We shall suppose x < 1. If 0 <x X < yX, the 
point P is outside of the Mach cones behind all points M of the 
segment AAt; consequently, according to equation (Iv.i) 

c(,yX) =	 da =	 d& = g 

If now 0 <yX < xX, the point P is outside of the Mach cones of 
the points of the segment P 1P0 , but inside of the Mach cones of the 
points situated on AP 3 , P1 being the point of M t of the 

abscissa xX - yX. Besides, the conical flows, the vertex of which is 
on P0A', have no influence on the point P. Consequently, the pressure 
at the point P is written, according to equation (IV.l) 

xx_yx	 )	 (xX 
CP =
	

+ Arc sin 
yX 

da? ( ) + a t	 da?( ) 
0	 xX_ 

or

c =	 - P(xX,yI 	 1
(Iv.3) 

xX_yX 
P(xX ,yX) = aX(xX -

	 - a
	 Arc sin	 da) f 1C3	 Xx_ 

This formula, set up for the case where 0 < yX < xX, may be extended 

to the case already studied 0 < xx < yX since 'a. may be considered 
zero for the negative values of the abscissa.
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One can now calculate the drag of the section yX 

c(yx) = 2	 Cp(,yX)aX()d 

Conseq.uently

('l 
21 c (yX) =	 aX2()d -
	

-	 + 

x ji
X()d 

I j3ltJyX	 Jo
Arc sin	 daX(T) 

or, changing the order of integration in the last term and. putting 

= 

F (yX) = 2f X(X( -	 - 

3tJ0 YX 
dX() 1 Arc sin Y 

=	 - 1F(yX) 

According to our conventions, if y >1 

F(yX) = 0	 c(yX) =
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Such a section actually behaves like the section of a wing of 
infinite span which is quite obvious according to the rule of forbidden 
signals. We note in addition that 

c(o) = 

thus the drag of the section yX = 0 is half the drag of the same sec-
tion at infinite aspect ratio. 

We want to point out another remarkable result 

(1 
I	 cx (yx)dyx =	 (Iv.5) 

(JO 

that is, the mean value of the drag in the region 0 < yX < 1 where 

the c(yx) is not constant is equal to the value of the drag in infinite 
flow.

In fact, first of all 

fl d	 aX( x ( - ) d =	 X( ) d	 ( - ) dyX = 

I	 X()eX()d = irex()] 2	 = 0 
Jo	 2t.

0 

if one puts

eX(x) =
	

aX()d
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On the other hand

p1 
I	 dyX I	 &()d I	 Arc sin	 daX(TI) = 

JO	 LJ	 Jo 

r'l	 fl	 ____ dy
X I	 &()d I	 d&(ii) I	 Arc sin	 - 

Jo	 'Jo	 Jo 

If we put in the last integral 

yx = ( - ri)sin t 

the preceding expression becomes equal to 

( - 
i) 101 x()d10	 - )dax() =

	
- i) [f aX2 ()d - 

p1 
I	 - eX(d	 = 0 

Jo 

The formula (111.5) is thus justified. 

- Study of the rectangular wing with constant profile.-
We shall call the quantity 3X, which we shall note 2j 0 , (3x = 
the "reduced aspect ratio" of a rectangular wing. 

We shall designate by t the "reduced chord" 

x 
t

1 

and we shall put (compare fig. .56)

3X2
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In applying the formula of composition (formula (IV.2)) one sees 
that the pressure coefficient at a point of the rectangular wing is 
given by

c(t,i) = 2X(t) -	 + 11) + P(t,TIO -iTI)]	 (iv.6) 

P is the function defined by the formula (Iv.3). The drag of the sec-
tion TI is given by

rl 

c(ii) 2! -	
- _	

+ 11) + P(t,TIo - TI1X(t)dt 

However, by definition

fll 

	

2	 P(t,u)cLX(t)dt = F(u) 
tJO 

F being, besides, the function defined by equation (Iv.4). Consequently 

c(TI) •=ff - [F(TIQ + n) + F(1 0 - Tl)]	 (Iv.7) 

we remark that if 110 > 1, that is, if X > a, there is always at least 

one of the functions F zero; in this case the c of the sections 

close to the center is equal to	 -. This is an immediate consequence


of the principle of forbidden signals. 

Now we can finally calculate the total drag which we shall fix by 
the coefficient

PTIo 
Cx = L_ 

j	 cx(11)dll 
110 tJ-
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If one puts

(v) = iv F(u)du 

one sees immediately that 

C =	 - ._i_ (2r)	 (IV.8) x	 13110 

However, the result obtained by the formula (IV.5) amounts to 
stating that

(v) = 0 if V >1 

Consequently, the drag of a rectangular wing has a value independent 

of the aspect ratio and equal to -, for geometrical aspect ratios X 

greater than
13 

Summarizing, one may say that the complete investigation of a sym-
metrical rectangular wing of zero lift amounts to calculating the func-
tions P, F,	 which are all calculated by quadratures. 

- Applications.- 1. The profile is a rhomb; in this case 

if t<1 
2 

= -a0 if t >.	 = a0 

We shall now calculate the function F(yX), defined by equa-
tion (IV. 1i-). For this purpose we remark first that 

[a02 (1 - 3C) if 0 yX 

- 
yx)d = [a02(l -	 if yx
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There remains to be calculated 

rl_yX	 P1 
X()	 Arc sin 

Jo	 Uy+1 

However, 

	

f
b Arc sin	 = (b - TI)Arc sin	 - (a - TI)Arc sin	 + 

a	 -TI	 b -TI	 a-TI 

rg ch b - - Arg ch a - yx	 x) 

as one sees immediately, integrating by parts. 

If O yX. , ax(TI) is subjected to two discontinuities, the 

first for TI = 0, the contribution of which is 

	

2 [(

i Arc sin 2yx + yxArg ch	 - y - (Arc sin y - 

	

2	 2yx 2 ) 

Arc sin 2) - yx (rg ch --- - Arg ch L\l 
2YX)J 

the second for TI = , the contribution of which is 

2a02 [i Arc sin 2yx yX + yxArg ch
2yX] 

If yX > , only the discontinuity for TI = 0 comes Into play, the 

contribution, of which is 

	

2[Arc sin yX -	 + yXArg ch 

	

2	 xl 
yJ
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If one assembles these partial results and puts 

	

= (Arc sin	 + Arg ch	 for 0 <	 < 1 
x)

(Iv.9) 
for yX.>1 

one sees that one may write in a general manner 

	

F(yx) =	
+	 - 2Y(2Yx)] 

and consequently 

cx(ii) 
= ___L - Y.(0 +	 - Y(0 -	 ^ 2Y(2 0 + 2) + 2Y(2 0 - 2)] 

(iv.io) 

Figure 61 gives the variation of c(ij) for two values of 

For knowing, finally, the total drag it suIfiáes to calculate the 
function (u). 

Now

fY()d = u 

with

D(u)	 1LJ1_U22Ari 

uArgch	 if 0<ul 

D(u) =1	 if u>1
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Hence

(u) = lkLO2[[1 + D(u - u D(2u	 (iv.n) 

Consequently, applying equation (IV.8), one obtains 

=	 [ D(1;i) - D(2roJ	 (Iv.12) 

One will find In figure 62 the curve giving C as a function of 

the reduced aspect ratio. 

The curves of the figures 61 and 62 have already been given by 
Th. Von Krmn (ref. ]4.), but this author does not give any analytical 
fornn.ila. Moreover it seems as if the results Th. Von Karmn's had been 
obtained by application of the method of "acoustic analogy." The curve 
given in figure 61 may also be found in a memorandum of Lighthill 
(ref. 31) who utilized the method of sources. 

2. The profile is formed by two symmetrical parabolic arcs;, in 
this case one must put

a.X(t) = c0 (l - 2t) 

characterizes the thickness of the profile. 

The problem consists in calculating the functions F (xx) and (v) 
defined in the previous paragraph. One finds after a few integrations 
of elementary' character 

F() = EQ2[	 .+ c(c2 - 3) g ch	 +	 - yX	 (w.13) 

and

	

E2 I (xll. 3yX2	 ___________ 
ch	 +	 rc cos	

+ 2i_yX2] 
(v) = ____	 ____)Ar	 yx

(iv.i1)
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On the other hand.

2 

3 

One can clearly verify that 

F(0) = 2E02 = 2E2	 F(l) = o	 (l) = 

In figures 63 and 614. one will find the distribution of c. over 

the span for a wing of reduced aspect ratio 2ro = 2, and the variation 

of C	 (total-drag coefficient) as a function of the aspect ratio. 

14.1.1.1.6 - Case where the profile is variable in sDan. - It is 
possible to calculate the symmetrical rectangular wing at zero lift in 
the general case where the profile is variable in span. We shall here 
be satisfied to examine the relatively simple case where the profiles 
along the span are deduced from one another by affinity; the ratio of 
the affinity varies with the span. We shall assume that the wing of 

reduced span 2Tj 0 has a local inclination of the form k(ri)a?(t) at a 

point of reduced coordinates r, t. 

The function k(ri) must of course satisfy the usual limitations 
so that the problem posed can be treated by means of linear approxima-
tions. Finally, we shall assume the function k() to be even in . 

Let us first of all remark that the wing of reduced span 2r, the 
profile of which (which is constant along the entire span) is defined by 
the function a?(t), causes outside of the wing, at a point of reduced 

coordinates t, yx(yx > ri), a pressure coefficient 

c(t,) = 1[P(t,	 -	 -	 +	 ( . 15) 

P is the function defined by equation (Iv.3) as one sees reassuming the 
arguments of the sections .l.l.l.3 and 14.1.1.1.14-. 

One will now obtain the desired boundary conditions by superposing 
a succession of rectangular wings which are symmetrical with respect to 
O1x1, of equal chord reduced to 1 and of variable reduced
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span 2T(O < <	 for which the profile remains constant in span. 

This is justified since k(i1) had been assumed to be even. 

At a point (t,yx) the pressure coefficient is written 

pTo c(t , yx) =	 aX(t)kfro) + i	 p(t, + yX)dk() + 

yx 

r°	 - )dk() - r	 - 
UyX	 JQ 

All these integra1 are taken in the sense of Stieljes. 

One will obtain a simpler formula by putting 

P(t,v,i0) = fOP[t( - v)} dk() 	 (w.i6) 

c being defined by the equality 

- v) =	 - V 

In this case 

c(t,yx) =	 X((yX) - j(t,yx,110) + p (t ,-yx,0	 (iv.i) 

This formula is reduced to the formula (IV.6) in the case where 
k(i1) = 1 over the entire span. 

The drag of, the section yX is easily obtained 

cx(?) = k2()E2 - k(yX) [(yX,0) + F(yo	 (iv.18)
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by putting

(U 
F(v,i 0) = 2 I	 P(t,v,110)cLX(t)dt 

Jo 

=	 aX(t)dtj° [t,€( - v)] € dk() 

= 
_f	 €	 P[t,E( - vaX(t)dt 

whence the formula 

F(v, 0) =	 F[€( - vil€ dk()	 (flT.19) 

F is the function defined by the equality (IV.l-). 

Thus one can see that the pressure coefficient and the local-drag 
coefficient are expressed by formulas analogous to those obtained in the 
case where the profile is constant under the condition that the func-

tions P(t,yX) and F(yx) are replaced by weighted averages, P(t,v,1i0) 

and F(v,r 0), defined by the formulas (IV.l6) and (IV.19). 

Finally, the total-drag coefficient is obtained immediately 

C =	 c(yX)dyX =	
c()d 

20J_	 oJo 

whence

1 

= 122 - LiO [Vo + F(yo)k()dyx
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As an example, we shall suppose k(r) to be defined by 

(°<') 
110 

One will then have 

= JO F[e(i - v	 dk(11) = + C110 F[E(11 -	 di 

	

JO	 Tb 

If v is positive 

F (v 110) = -	 F(v - 11) dTb +	 F(Tb - 
TbOJv 

= -	 r F(u)du +	 r0- F(u)du 
1103 0	 iioJ0 

=	 - v) - 

(v) = 
J F(u)du being the function introduced before in sec-

Uo 
tion 14.1.1.1.11.. 

If V is negative: v =

1 p110 
F(v110) = 9-J	 F('ii + v')dTb 

+v' 

= - I	 F(u)du 
11 dv' 

= -(11 - v) -	 v)]

185
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whence

= 

(l x22 - (1 -
	

- yx) +
	

+	 - 2(yj 
TI0)	 I\	 TI0)o 

(Iv.2o) 

Let us recall that	 v) = 0, if v >1. 

It is then easy to make applications of this formula in the case 
where the profile is a rhomb or lenticular formed by zero parabolic 
arcs.

One will find the curve which gives in the first case the varia-

tion of c as a function of yX, for a reduced aspect ratio 	 = 2, 

in figure 65.

- Study of the sweptback wing 

with constant profile 

Without investigating the sweptback wing as thoroughly as the 
rectangular wing, we shall show that one may, without essential diff i-
culty, apply the method used for study of the rectangular wing for the 
sweptback wing of constant profile the plan-form of which is schematized 
in figure 66. We shall suppose that the plane Ox 1x3 is a symmetry 
plane for the wing. With y designating the angle of sweepback, it 
is obvious that we shall have flows of different type according to 
whether the leading edge AOB will be outside or inside the Mach cone 
of' 0. One has become accustomed to say that in the first case the 
leading edge is "supersonic" while it is "subsonic" in the second case, 
thus recalling that the velocity component normal to the leading edge 
is higher than sonic velocity in the first case, lower in the second. 

The number V, defined by: 3 cot 7 = , (v < 1 characterizes the case 

where the leading edge is outside of the Mach cone, V > 1, in contrast, 
the case where it is inside) will, therefore, be an essential parameter 
in the investigation of sweptback wings. 

11..l.l.2.l - Case where V <1.- We shall put in this case V = cos e. 
We shall define, as for the rectangular wing, "the reduced aspect ratio" 

2TI0 (compare figure 66) by the relation 

if X designates the span of the wing taken along Ox2.
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For simplification we shall assume that the profile chord is taken 
as length unit, and that the profile is defined by the function 

with x1 varying from 0 to 1. It is obvious that the desired flow 

will be obtained by a superposition of elementary conical flows which 
one may note schematically 

r c5(M,d,e) - JBB'
	 - f	 5(M,da,O) JQ0! 

c 5 (M,da,e) designates a flow completely. bisecting the Mach cone, 

admitting the plane 0x1x as symmetry plane (section 3.2.2); 

C 5 (M,da,6) designates a flow partially inside of the Mach cone; the 

sign - indicates the direction of the bounding generatrix which 
forms with Ox2 the angle y; the other bounding generatrix is supposed 

to be parallel to the wind. Because of the symmetry it. will be suff i-
cient to study the region of the wing where x 2 > 0. 

It will be convenient to put 

yX = 13x2


x1 = x + yXcos e 

A conical flow with the vertex M 0 (x1 = , x2 = o), of the type 

c (M0 , a, e) 

causes (compare formula 111.53) the following pressure field in the 
region yX > 0:
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=	 1 Arc 51cr sin 6 
p	

1 - 2O2J	
0 < t < 1 

yx 
t being defined by t =

- + yXcos e 

= 2ct	 if 1<t< p	 case 

Cp=0	 1

cos 6 

At a point (x,yX) the pressure coefficient due to the flows 

C(M,dct,6) is equal to 
U 00

2 L(x) -	 - yX (l - cos	 + 
3 sin eL

_yx(l_cose) 

2	 sin	 - + yXcos e) 
—j  j	 -	 - + 2yXcos e) 

d(	 = Arcsin _______________ 

2 
sin E(x) - 
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putting 

Q(x,yx,6) =	 - yX(i - cos	 - 

21
 x_yX(l_cos&)	

sin e(x -	 + yxcos e) da() =
Arcsin _______________ 

(x-)(x-+2cos6) 
0 

	

px_yx(l_cose)	
[	 O(x - 

^ yx 0 e)] da() 2!	 Arccos _________________ 

x-)(x-+2cose) 
0 

Let us note that

Q(x,yX ,e) = 0 if yX(l - cos e) > x 

and that the same holds true also in the case where the sweepback is 

zero (e= \	 2 

For simplification, we shall henceforward assume r > 0 l+cose 
(which will always be vexified if	 > 1), that is, that the edge AA' 


has no influence whatsoever on the wing region x 2 > 0. 

The contribution due to the flows	
f	

C(M,da,O) is very easily

U BB' 

obtained from the formula (111.58). The pressure coefficient due to 
these flows may immediately be written

1 Cp = P(x,0 -	 sin e
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if one puts 

P(x,yX ,O) = a.[x - yX (l + cos ej - 

2 r_(1405e) Ar
	 Frxsjn2e	

EJdct() 
C sini	 - Cos 

LX
(rv.22) 

If e =	 one falls back on the function P defined by the for-

muia (IV.3); on the other hand, P(x,yx ,e) is obviously zero if 

yX(l + cos e) 

Finally, with the reservation that 

1 
0 1+cosQ 

one has at a point of the wing 

C - ____ -	
sin	 - 2Q(x,P,9) - P(x, 0 -	 ( . 23) 

The local-drag coefficient is immediately obtained 

cx() =
	 2	 -	

G(,O) -	 1	 F(0 - yX,e 
sin9	 sine	 sine '	 /

(Iv.21i)
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It signifies that the effect of limitation of the span does not 
modify the total drag. 

2.
1 

i_cose G(y
x ,e)dyx = 

Jo 

In fact, this expression is equal to 

x-
nl	 nx	 l-cos6 

/	
a(x)dx 

/ 
dct() 

/	
Arc cos	

sin	 -	 + yXcos e)	 dyx 

J0	 J0	 x-)(x-+2yXcose) 

The last integral is written 

(x -	 r Arc cos	 Sfl e	 dt 

Jo	 Ji - t2cos2e (i - t cos e)2 

If one puts

yX 
t=

x_ +yXcose 

the result is then immediate. It signifies that if r > 	 1	 , 
l-cos 

the drag of the investigated wing is identical with that of the yawed 
wing of infinite span 	 -

3 . If 0 = 0 (the leading edge is situated on the Mach cone of 0), 
the given formulas present an indeterminate form. Nevertheless it is 
very easy to eliminate the indetermination. We shall, in particular, 
calculate the total drag. The value we shall obtain is very interesting
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because it corresponds for a given sweptback wing to the xnaxiinu.m of the 
total drag when the Mach number varies. 

If 6 tends toward zero, 

1 Arc sin	 sinO 
sin 6	

ji - t2cos26 

has as a limit

1	 =	 x_+yX 

it2 

We assume	 >	 since our purpose is calculation of the total 

drag, the edge BB' may be neglected. The desired total drag which we 

	

shall denote by C	 is written Xinax 

C	 = 8 
fl0 

d	 (x)dx	 X - + 

	

Jo	 do	 U0 

fl =	
ct(x)dx	 da() /	

X - + Y	 dyX 

3o	 x-)(x-+2) 

whence, carrying out the last integration 

rl 
____	 I	 lx X	 2Q[2( -
	 +	 d) C)	

I	
(x)	

j 

	

do	 Uo
(Iv.28) 

One thus obtains a very simple formula giving the value of the total C 

when 6 = 0.
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If the profile is a rhomb, one sees, writing 

- 8	 ___________ 
ax - 311	

da 11 X	
(x -	 +	 (x)dx 

Jo

___ 2 r,-,f1\ - 
311o L )	 I 

putting

Iu	
1	 3 

(u) =	 (2x + 110) dx = u2 (u + 2110)2 + 2 
x	 \ 

0 

191i. 

that 

whence

= (cx ) 2[(l +
	

)2 - ( + 

110	

2110)2]
(Iv.29) 

In figure 67 one will find, the variation of (C')	 as a function max 
of

If the profile is formed by two parabolic arcs, 

a(x) = E0(l - 2x) 

and.

86o2 P'	 x + 2 
C	

= 311oJ	
(1 - 2x)	 (2x + 11o) - 2(xdx
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or

8Eo2	
- 6J(i) + 6ii0K(1) + 

Cxniax - _____ 

putting 

	

1(x) =
	

x2(x + 2 0) 2dx =	 x(x + 2 0 )x + 20)2(x	 ) + 

__

	

	 x+0+x(x+20)

log

1•10 

rx 

	

J(x) = I	 x2 (x + 2 0) 2dx =	 x(x + 2 o) x + 2)2 -	 + 2r 0 ) - 
ti 

	

3o2I	
o3	 (o + X + Jx + 2i0)x 

	

2	
-----log

1 
K(x) =
	

x2(x + 2 0) 2dx =	 x(x + 20)(x + 

log	 + x + x(x + 2) 

Hence 

	

=	
+	 (o + ) (i - o) + 03log 1 +	 + 1 + 2Q] 

3 TO

(Iv.3o) 

One will find the corresponding curve in figure 68.
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11..1.1.2.2 - Case where ' > 1.- We shall begin by examining the 
case of an infinite half-wing inside slip (compare figure 69). 

It is convenient to put

= 1 + C2 
2c 

The flow is obtained by a superposition of conical flows symbolized by 

I_I I	 C5(M,da,c)	 (IV.31) 
d 00' 

with C(M,da,c) designating the elementary flow investigated in section 

3.1.2.2. in the case where b = 0. If one puts 

=	 yX	 =	 2p	
(Iv.32) 

x 
• x-+vy	 l+p2 

the pressure coefficient is given by the formula (111.23) which may also 
be written

	

2ct	 Il-cp 
=	 ______ log 
J3\Jv2_l	

IC	 P 

This formula is valid for	 <1. If p > 1, one has Cp = 0. 

One sees immediately the essential difference compared to the cases 
investigated before: a conical flow with the vertex (to) can influence 

a point (x,yX ) for which x < . In particular, the trailing edge will 
play a role in the calculation of the pressure. Finally, if x = 
p = c, the C of the corresponding conical flow becomes infinite. If 

the method remains exactly the same, one must also expect a few addi-
tional difficulties. 

The pressure coefficient at a point of the wing will therefore be 
written
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x^(v_l)yX	
1 - cp (x,yx) =	 2	 log1	 CPIda() 

r3tjv2_i	 Ic_P I 

p is of course defined by the equality (IV.32). 

The c of the section y is then written 

p1	 ft+(v_1)yX	
Ii 

	

c (yX) =	 _____ I c(t)dt	 log1 -_CPlda() 
3iJv2 - lt.JO	 C - p 

One will notice that, for yX = 0, p = 0; and consequently 

Cp(x,O) = 2a(x)	
log = 2a(x)	 log[V + v2 - 1] 

Jv2	
c 

-1 

As in the case of a wing of infinite span, the c depends only 

on the local inclination of the profile. Likewise 

c ( 0 ) =	 og(v + Jv2 - 1)	 (Iv.33)

t Jv2 - 1 

The calculation of the function c(y.x ), for yX 0, presents no 

theoretical difficulty whatsoever. We shall now calculate the drag of 
the infinite half-wing, and shall show that it is finite in spite of the 
infinite dimensions of the wing. Assuming X to be this total drag, 
we shall put

X = . ITIx 

Our purpose is the calculation of C.
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The desired value of	 will be the limit, if it exists, of the 

integral

1 

=	 _____	 dyX	 ct(x)dx	 log 1 = CPd() 

JO	 JO 

	

2Jv2i	 C 

when y0 increases indefinitely. 

In order to calculate this triple integral, we shall replace the 

ensemble of the variables yX ,x, by the variables x,,p; the func-

D(yXx) 
tional determinant	 ' '	 is equal to 

D(x, ,p) 

= 2c 2 (x -	 - 2) 

dp	 (p - c) 2 (l - pc)2 

This expression one obtains from equation (ni.32) if one writes this 
equality in the form

2pc(x- ) 

(c - p)(l - pc) 

The volume in which the triple integral must be calculated is 
represented in figure 70. One can write
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larger than c, the triple integrals of equation ( IV . 31i-) will be zero 
be cause

1
01	 (x - )d) = 0 

p1	 nl 

I	 a(x)dx 1	 ( - x)da.() = 0 
LJX 

Since one wants to calculate the limit, if it exists, of I(y0X), 

one will utilize the limited developments. Let us put 

p = c(i + r) 

	

Ii - cp' =	 1 - c2 1 - c2r	 +	 2c2(1 - p2) 
logi	 J	 log 

	

I c_p ,	 cr	 c_p)(1_pc)]2 

	

=	 2 

1 - c2 r2' 

We designate the values of r corresponding to p0 and p1 by 

r0 and r1; in the integrals 

() 0	 Il - cpl	 2c2 (l - 2) 

	

a	 logi	 I	 dp 

	

J	 IC - P	 - c) 2 (1 - pc)2 

and

P log h l cp 2c2 (l - 2)	
dp 

J 1	 Ic -	 I(p - c) 2 (l - pc)2 

one may neglect the terms which are constant with respect to x and , 
or in1initely small with respect to r 0 and r1 . Thus there is every 

reason to maintain only
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r0fl 2
	 1og1 - C2 I -	 2c2	 c dr I L - 
c2 r2	 (i - c2)2 

cr 

and

r [ 2	 L. log - 2I -	 2c2	 i1c dr 
cr	 í Jri[_i_c2 r2	 I	 i_c2)J 

which gives for the first 

2c	 I Cr0	 _________ 
logi	 +L._	 2c3 

- c2r0	 ji -	
r0	

(i - 2)2	
gro 

and an ana1ogois expression for the integral
U 

But if one puts

X=E 

r=P C =_ 	 E	 1	 • 
C	

gv2_i	 2Cv2_i 

and one obtains an expression of the form 

log € + + C log E + . 

the dots indicate terms not infinitely large which may be neglected, 
according to a remark made before.



202	 MACA TN l351. 

The term in . log e gives in the first triple integral 

yoX	 (x)c	 d()logx- 
J 

and. in the second (the one which corresponds to p1) 

yoxfl (x)dx	 d)logx - 

Hence, summing up

pin 

	

y0X 
/ ct(x)dx I	 iogx - dcL() = yoXJ j	 cL(x)a() dx d = 0 tjo	 JO	 0 0 

The term in	 brings into the first integral the contribution 

YOXI (x)dxf d) 

and into the second

(U	 fli 
y0X 

I	 (x)dx I	 da,() - -2 x - -ay0 
JO	 Jx 

FinaL1y, only the term in log € gives a result which is nonzero. 
Now

C=- 2c 
Ec2 +	 1 

1_c2 Li_ c2 24v2_l]
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and since

1	 = 2c 

2 _i 1-c2 

one sees that one obtains 

	

= i	 c2(i + c2)	 i	 p1 
C

	

	 j	 a(x)dx I	 iogfx - J ( - x)da()

2It (i - c2) 3 t.Jj 

One may replace c by its value as a function of y which gives 
the simple expression 

=	 cos2y sin /2 r a(x)dx	 ( - x)logx - Ida() 

	

( - Mcos2y) 3	 .JO	 tiO

(Iv.35) 

Let us take, for instance, the case of the rhombic profile. One then 

finds immediately that the double integral is equal to ct 2log 2. This 

result, in the special case of a rhombic profile, has been given by 
Th. von Karman (ref. )4). 

If one takes the profile formed by two parabolic arcs 

c(x) = E(1 - 2x) 

one finds as value of the double integral € 2 /li- = e2 , with •e desig-
nating the relative thickness of the profile. With an equal relative 
thickness and equal sweepback, the drags are in the ratio log 2 = 0.69 
whereas one obtains for an infinite wing, straight or oblique, the 
ratio 0.77. Thus one deduces that the rhombic profile is even more 
advantageous for a sweptback half-wing. 

If one compares the drags, at infinite aspect ratio, of a pro-
file formed by two parabolic arcs and of a rhombic profile, of equal 
area, one finds that the first is 3/14 of the second. With a pronounced 
sweepback, this ratio is equal to 0.92.
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If one wants to investigate a bounded wing, like the one repre-
sented in figure 71, one must add the end effect due to the edge BB'. 
It suffices to subtract the flow symbolized by 

- r	 (M,dct,c)	 (iv.36) 
Li BB' 

from the flow defined by the formula (IV.5i). The pressure coefficient 
due to the flow symbolized by equation (iv.6) is written 

fx_(1+v)(vo_YX)	 1 C (x,yx) -	 2	 _____ 
-

- 1	

log	 -_cPld() 
- p 

with C being zero if x < (1 + v) (iij - yx). 

If ir >	 , the edge BB' does not influence the point 0'. 
In this case it may be easily shown that the contribution of the flow 
(equation (iv.6)) to the total drag is zero. In fact, this contribu-
tion is proportional to 

1 
nIT	 1	

cL(x)dx1 I	 dy?X 

Uo	 1^v)y	 J	 lo' : 

if one puts

y?X 
=	 - 

yX
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One may make the change in variables used before which consists in 
replacing y,x, by x,,,p; one obtains 

(U	 px	 nO 
I	 c(x)dx I	 dct()(x - ) I	 2pc(l - 2)	 Ii_-_CPIdP 

tJ0	 J-.l (p - c)(l - pc) 2 	 I - P I 

which is evidently zero. 

This justifies a remark of Th. von Karman (ref. Ii). 

For wings of high-aspect ratio, one may adopt, without large error, 
the formula (Iv.5) for the total drag. 

The calculation of the drag of an infinite sweptback wing (fig. 72), 
on the hypothesis that V > 1, is perfectly analogous to the one just 
performed. It suffices to replace, according to section 13.1.2.2, in 
the preceding formulas 

	

logl i - cp	 by	 logil - cpl + logil ^ CP 
ic-p	 ic-pt	 Jc^p 

Since

logll + cPI = logil + c2 1 + c2 - 1	 r 
2c	 2(l+c2) 

it is sufficient to combine the expression 

_______ c	 cos2y 

- 1 1 + C	 sin 7(1 - M2cos2y)h/2 

with the coefficient of the double integral of the formula (Iv.37). 

However, one thus attains only the drag for half the wing (x2 > a); 
one must therefore multiply by 2 in order to obtain the desired formula 

C =	 1 + 2 sin2y - M2Cos2y P 1 a(x)dx P'( - x)iogx - Ida() x
	 (l_ M2 2 3/2 cosy)	 a	 U0 

(iv.y)
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According to the remark just made, this formula gives, for a sweptback 

wing of high-aspect ratio, an approximate value of the total drag5. 

We shall borrow from the memorandum Th. Von Krmn's the figure '(3 
which illustrates the usefulness of the formulas found above for the 
study of the variation of the 	 of a sweptback wing of high-aspect 

ratio with the Mach number (the profile is rhombic, the sweepback 
angle y = 4-7°, and the reduced aspect ratio	 = ii. ). We obtained in 

the course of this investigation the value of the C 	 (point A of 

the figure) by the formula (IV.29), and the portion of the curve from 
B (formula IV.21). The dotted part at the right of the abscissa M = 
is calculated by that seine formula. One sees that it indicates also 
the behavior of the exact curve. Finally, for the values of M< \j, 
the dotted part corresponds to the formula (IV.37). It represents a 
good approxiinationof the rigorous values, except for the immediate 
surroundings of M = 

Here we shall stop the investigation of ttsymmetricaltt wing prob-
lems. One sees that this method leads to simple results and that the 
calculations are always elementary. The field of application may easily 
be extended to more general cases (trapezoidal wings, leading edge cur-
vature, etc.).

- Lifting Problems 

Study of the lifting problems is generally more delicate. In fact, 
the boundary conditions furnish on the wing the values of w, but out-
side of the wing (in the general case) w is different from zero; on 
the other hand, continuity of the pressure is required which leads to 
supposing (in pursuance of the hypothesis of linearization as noted in 
chapter Iii) that u = 0 in the plane 0x1x2 outside o± the region (R) 

occupied by the wing. The difficulty lies in the fact that, in the 
general case, the boundary conditions bear up on two of the velocity 
components.

1,.l.2.l - Problems where the condition u = 0 

may be replaced by w = 0 

The rule of "forbidden signals" permits to define a general class 
of lifting problems where it will be possible to replace the 

' Compare appendix No. 7.
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condition u = 0 by the simpler condition w = 0. This will be the 
case for wings, the projection (R) on 0x1x2 of which will satisfy 

the following condition: 

With C designating the contour of the plan form (R), the tangent 
to (C) forms, at every point of (C), with Ox1 an angle which is 

larger than the Mach angie. 

Naturally, such a contour (C) will present angular points. It 
is understood that, at these points, each of the semitangents must 
satisfy the condition stated. For the sake of abbreviation, we shall 
say that this contour is entirely supersonic. 

Let us consider a point M of (R). As we remarked in sec-
tion l.l. 1 , the state of the fluid at M depends only on the perturba-
tions inside of the Mach forecone of the point M; this forecone cuts 
off, in 0x1x2 , a portion of (R) on which w is given, and a portion 

of the plane 0x1x2 in which the general flow is not disturbed (sec-

tion l.l. li. ) and on which u = v = w O. In order to calculate the 
pressure at the point M, one may suppose that w = 0 outside of (R). 
One may also say that, under these conditions, the upper and the lower 
surface of 'the wing are independent. The solution of the corresponding 
lifting problems is therefore perfectly analogous to that of the sym-
metrical problems visualized in the previous paragraph. 

Let us assume, for instance, a flat plate of the plan form indi-
cated by figure 74-, with the contour (C) being entirely supersonic; 
the pressure at every point of this plate has been calculated in 
chapter III. We intend to calculate the total C. One has obviously 

= -

	

Cr2dcp 

if one puts

x==tanp	 r=OM 
xl 

with S being the area of the region (R). Let us put furthermore 

= tan l	 = tan	 P(x) =	 r2 = r2cosq) 

P(x) depends uniquely on the trailing edge BAB.
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One then obtains the formula 

= -	 Cp(x)P(x)dx 
S J?

(Iv.38.) 

Let us recall that 

2i 

C (x) = - 
p

2i

1 
sin

krccos cosO0-x 

sin	 1 - x cos 

1 
sin

if l<x< 

+	 1	
Arccos x_cosei) 

sin9 1	 1 -xcose1 

if -l<x<+l 
if	 <x<-1 

with i designating the incidence counted according to the usual con-
vent ions. 

In a recent memorandum, M. Snow (ref. 32) has applied this method to 
the calculation of the total C of a plate in the shape of a quadri-

lateral. We simply want to point out that, in a certain number of cases, 
it is possible to calculate the integral (IV.38) very simply. This 
simplification becomes apparent when P(x) is analytic. It is then 
possible to use integrals in the complex field (variable z or z). 

Let us suppose to begin with that the contour BAB is rectilinear 
and that its polar equation is written 

r = sin(cpo - cp) 

OA=l= 
r0	

x0=tancp0 
sin 

- i2	 tan2(p0(tan w0 - tan	 - i2	 2(i.t - 
- 2 (tan pO - tan w0)(tan p0 - tan wi) 	 2 (x0 - )(xo -
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P(x) = _____________ 
cos2 cp0 (x - x0)2 

and consequently

fl}	 Cp (x)	 2r02	 f	 u(x)dx Cz= - ________	 _________	 ________	 _________ 
S cos2poJ	 (x -	 = s cos2p0J	 (x - 

2r02 	 U(z)dz ] = - 2r02 

	

2	
2 RiiRc) 

= s cos2p	 (z - x0)	 S COS 

with R0 designating the residue at the point z = 

However, 

dU	 xc	 dW	 - .	 (I.1-)x0 
dz (

z=xc)	 xc2 - dz (z=xc)	 (xc - ) (xc - xc2 - i 

and

2r02 	 (I.L - ) ) x0w0	 = 212xc2	 (i.t - 
Cz= - ________ _______________________ ______ _______________________ 

S 
COSQ (xc - ) (xc - 

xc2 -	 (xc - ) (xc - xc2 - 1 

or

11-w0	 x0	 =	 sin cp	
(Iv.9) 

	

CZ=_xc2_i	 gM2sin2po_l
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The	 is independent of	 and of w1; this generalizes a 

result already found 6 in section .2.2.2. 

Let us now suppose that the arc BABt is an arc of an ellipse with 
the polar equation

r2 =	 a2b2 

b2cos2p + a2sin2p 

and let us, for simplification, assume that 	 = -wi. 

22 a b 
P(x) = _________ 

2b2 + a2x2 

whence

- - ab2	 C(x)dx	 2pa2b2	 U(z)dz 

	

Z -	 S 1	 2b2 + a2x2	 2b2 ^ a2z2j 

= 2a2b2 

R1 being the residue at the point z = i 

In order to calculate this residue, one must know the value of U, 

for z = i	 this value is very easily obtained from the for-
a 

mula (111.71). One finds 

u (	 \ = - 2w0	 Arc sin	 a sin 0 
a)	 ic sin 0	 Ja2 + b22cos28 

1i-6fl a general manner, one can obtain the C of a wing, the sur-
face of which is a portion of a cone bisecting the Mach cone, with the 
vertex 0 and a rectilinear trailing edge by measurement of the electric 
intensity in the tank. This result may be ectended to the case where 
the cone is placed in any arbitrary relation to the Mach cone of 0 
provided the trailing edge is rectilinear.



a sin 9 Arc tan
b cos 0

Arc sin a sin 0


Ja2 + b22cos29

(Iv.o) cz =
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On the other hand.

S=abArctan	 a 
b cos 9 

Thus, if one puts w0 = -i (incidence) 

So far we have .visualized only the case where the flow on the plate 
was conical due to the shape of the leading edge. To terminate these 
few remarks about the flat plate of supersonic contour, we shall now 
examine the case where the leading edge is curvilinear. 

We shall start with the case of' a polygonal leading edge (fig. 75). 
The investigation is based on the following remark: if one superposes 
at a point A1 two elementary lifting flows, which completely bisect 
the Mach cone of A1 and the first of' which has as bounding generatrices 
A1 i, A1D1, so that w = -w0 on (1D1), while the second has as 
bounding generatrices A1 t,, A1B1, so that w =	 on (A1B1), one 
obtains a resultant flow of' such a type that, if' A 171 and A1y1 ' are 
the sections. of the Mach cone of A 1 in the plane 0x1x2 , w = 0 out-
side of' the angle (B1A1D1), whereas w = -w0 on that angle; on the 
other hand, u = 0 outside of the angle (Y1TA1D1). Besides, one can 

easily verify that the resultant flow thus obtained is independent of 
the generatrix .	 (provided, however, that the latter is outside of 
(y'A1y1)), and that, if' one puts as usual 

	

1	 1 

	

cos 9 = tan	
cos 9 = tan (B1 

the pressure coefficient is equal to 

2w0(1	 1 
in l - sin o)	

on (71A1B1)
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and to 

2w01 1	 cos 01 - x	 1	 cos 00 - x Arc cos	 Arc cos 
1sin i	 1 - x cos 0i - sin 0	 1 - x cos 

on (iii) 

x represents as usual a semi-infinite line inside of (yi'A1y1). 

We shall note the resultant flow

- 01) 

The flow about the plate schematized in figure 77 is then obtained 
by superimposing on the conical flow of the vertex 0 and the bounding 
generatrices aD1 ' and 0D1 the flows 

- 01)	 and	 (A1',o0',e0' - el') 

with 0', 01', Oo, °l characterizing the directions of the straight 

lines 0A1 1 , A1 t B1 T , 0A1 , A1B1. 

If the leading edge is curvilinear (fig. 6), let us assume 
A[xi (t),x2 (t	 the point moving along this leading edge, u(t) the 

angle between the tangent at the moving point and Ox 1 , and let us put 

	

cos 0(t) =	 1 
tan cr(t) 

Assuming M(x1 ,x2) to be the point where one desires to calculate the 

pressure, one will put

x(t) =	
x1 (t) -
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The flow will be obtained by subtracting the flow symbolized by 

Jc) c 

from the flow around a plate of infinite aspect ratio, with the leading 
edge Ox2. 

If MA1 and MA2 are, in Ox1x, the two semigeneratrices of the 

Mach forecone at the point M, one has therefore as value of the pres-
sure coefficient at M by putting 

1	 ___________ Arc cos COS 0 - X I = F(0,x) 
delsin 0	 1 - x cos el 

c(M) = 
2w0[ -	

F[0(t),x(td	 (iv.la) 
Jtl 

At a point such as M' (compare fig. 76) a slight modification of 
the formula will be convenient; one must write 

rt2 = 2w0	 2w0 
i	 F(t),x(tdo c(Mt)	

sin 01 - 

One thus obtains the C by a simple integral. 

We shall point out a very remarkable result for the total C of 

such a plate when the trailing edge is rectilinear. We shall show that 
the C of such a plate depends only on the trailing edge; this fact 

generalizes the result of the formula ( IV. 39) . It suffices, of course, 
to demonstrate the result in the case of a polygonal leading edge; thence 
the general case is deduced by passing to the limit (fig. 77). According 
to the formula ( Iv. 39), the resultant of the normal forces due to the 
flow

- l)
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acting on the region (R) is equal to that of the normal forces acting 
on the triangle A1B1D1 in the conical flow with the vertex 0 and 

the bounding generatrices aD 1 , 0D1 1 . The result stated above results 

from this remark. Thus one verifies that on this plate the total C 

is the same as if the direction of the flow had been reversed7. 

- Infinitely thin rectangular wing 

We shall now investigate the case of a rectangular wing, the pro-
file of which is an arc segment (fig. 8). In accordance with what was 
said before, this arc segment will be defined by the angle j0(x1) 

which is formed by the tangent and the chord at the point with the 
abscissa x1; if the wing has a geometric incidence defined by the 
angle i, we put

j(x1) = jo(x1) - i	 (Iv.2) 

w must be equal to j (xi) on (R), and u must be zero outside of 

(R).

We shall designate by Cp (M,a.) the lifting elementary conical 

flow, with the vertex M, which furnishes the value w = a. on the two 
faces of the quadrant M, x1, x2 . With the notations of figure 78, 
the formula (111.60) is then written 

C -	 Arc cos (1 - 2 tan p 
p - 

c =? 
p

for	 O<tanp<l 

for	 tancp>l

(Iv.L3) 

By an argument analogous to the one of section 1-.l.l.l.2 we are 
induced to define the desired flow by the symbolic notation 

1 0ne finds here anew a remark made before by N. Snow (ref. 2) in 
a particular case. Besides, this result may be extended without great 
difficulties to any arbitrary plate of supersonic contour.
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r	 p	 ( iv.1) (M,dj) + J	 c(M,di) - E JAA'	 BB' 

The flow thus defined does satisfy the conditions concerning w; 
however, one sees immediately that the flow gives a component u, zero 
outside of (R) only in the case where the aspect ratio X is smaller 
than or equal to 1. The limiting case 	 = 1 corresponds to the dis-
position of the Mach cones given by figure 79. We shall use here 8 the 
hypothesis where	 ? 1, and shall then be able to calculate the flow

by the formula (iv.14i-). 

11.1.2.2.1. Study of the flow	 J	 C(M,di)._ We shall use the 
LI AA1 

same notations as in section 11.1.1.1.3. According to equation (iV.1), 

the pressure coefficient C at a point (xx,yx) is written9 

(o < x <i)

1,xx 
Cp(xX , yX)	 2 I	 dj() = a j(xX) 

= .JO 

(.Ixx 	 xX_yX 

Cp (xX , yX) = a I	 dj() + 2 
Jxx_ c	 IO

if O<xX<yX 

Arc cos(l - ____ 

if xX>yX 

118 is not impossible to investigate the case where	 < 1. One 
must then superimpose on the flow given by (equation (IV. l1 I ) other 
conical flows, the vertices of which describe the two edges of the wing, 
in order to establish pressure continuity without changing the w value 
on the wing. This investigation is clearly more complicated than the 
one we shall make. We shall not enter on it in order to limit ourselves 
to the simplest results. Further on (section 11.1.2.3.2.) one will find 
an application of this method in a special case. 

Strictly speaking, the slope of the wing should be noted jX(xX) 
when one expresses it as a function of the reduced abscissa. We shall 
omit the asterisk in order to simplify the notations.
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These two formulas may be written 

Cp =	 - R(xX,yj 

with

R	 = j (XX - x) -	 ____ 
- 2yX 

tdj() c	
XX -

(IvJi7) 

stating that the function j(xX) is zero outside of the interval (0.1). 

It is then easy to calculate the local cz of a section X with 
this coefficient defined by 

c z (yX) = -2 I Cp(XX,yX)clxX 
'Jo 

Remarking that

= j 0 (xx) - i 

and putting

f(xX) 

=	
j0()d	 [f(1) = o] 

one has

^ 
p1 

c=—

Now



NACA TM 1)5--

B (, c) ã	
=	

j (xx - x) d	 - 

	

(P11	 nxx_yx 
2:! dxx !	 Arccos 

	

ttJyx	 Jo	
(1 

=	 -	 ) -.i(i -	 -

21T 

di()J Arc 
COS( - ______ 

xXyXJ 

However,

r 1 - 
IArc	 -	 = 2	 - )Arc sin	 + 

L 

Thus we put 

k(y) =1-)Arcsin fl 
\Ji -

if yx< i -
	 (iv#6) 

k(yX,) = 2(1 -	 jf yX> 1 -
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1 
I R (xx , yx) X =	 - yX) - j - yx) ^ yX [_ + j 0 (i - yx - 
Jyx

r1- k(yx,)dj() 
2J0 

= -i + . k(y,0) + r(i - x) + yxj 0 (i - x) - 
2 

ni-yx 
I	 k(yX,)dj0() 

2J0 

= 4 +. k(y,O) + p0(yX) 

with

	

=	
- X) + j0(1 -	 -	 k(?,)dj0()

(Iv.7) 

Consequently

c(yx) 
= 2k(,O) 

+ p0(yx)	 (iv.8) 

One will find in figure 80 the curve giving the variation of k(yX,O) 
and of k(yX,1/2). 

We remark that 

p i 	 r1yX	 i'l 

	

j
dYX J	 k(yX,)dj0() 

= J di()J	 k(yx,)dyx 0	 0	 0	 0


111 
=	 I	 ( i - )2dj0() 
23
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because

n1-
k(yx,)dyx 

(JO	 2 

However

nl	 Cl	 ('l 
1	 (i -	 = 2 I	 (i -	 = 2 I	 f(x)dx = 2.t 

JO	 (JO	 LiO 

putting

p1 

J
f(x)dx = 

0 

On the other hand

if(l)d= ff(x)dx= 

and

± 1 yxj 0 (1 - yx)dyx	 (1 - t)j0(t)dt 
=	

tj(t)dt = 

Conse quently

p1 
I c(yX)dyX = a^ a	 (Iv.149) 

-Ll.2.2.2 - Study of the thin rectangular wing in the case where

>1.- As we have said in section i-.1.2.2, one can apply to this case 


a method analogous to the one employed in section 	 The pressure 
coefficient at a point of the wing situated on the surface x = +0 of 
reduced coordinates t,	 , can innnediately be written 

c(t,) = aEO(t) -	 - [t,0 +	 + R(t, 0 -
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Consequently, the local c of the section i is obtained by the 

formula

c ()	 _2f c(t,)dt 

=	 +	 +	 + ii 3 O) + k(r10 - iI,o)] + 

+	 + o(o - 

or 

c(q) =	 no + ii3O) + k(10	 rio) -
	

+ ±[0 (r + i) + p0 (i 0 - 

with the functions k and p0 being defined by the equalities (w.i-6) 
and (IV. i1. 7). Finally, let us calculate the total C 

c	 c(ii)di	 -	 ^	
P2o k(t,o)dt + i	

p(t)dt 

	

0J0	 0L/0 

and since

2r0 = 1 +	 - 1 

one has, applying the results established at the end of the preceding 
paragraph,

Cz = - ±-+ i.t^ ?:E + (? - 
T 0 	 1	 ri0 

be cause

k(t,0) = 2	 if t > 1
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whence

=	
-	 + -
	 (Iv.5o) 

Figure 81 gives the variation of (- 	 as a function of M, \2 di I 
for various values of 50• 

One may also plan the calculation of the drag of this wing. First 
of all the local drag 

r'l 
c ( i ) = icz( ii) + 2 I	 C(t,1)jo(t)dt 

Jo 

c(i) = icz(i)+	
2 -
	 (o + ii) ^	 - ij

or

(Iv.71) 

putting

p1 
T(yx) = I	 R(t,yx)j0(t)dt Li yX 

= if() +	 j0(t -	 )j 0 (t)dt - 

1	 pt_yX	 /	 2" 
- I	 j0(t)dt J	 Arc cos(l -	 )dj() 

1J	 \	 tJ 

50A. Bonney has . already obtained this formula in the case where 
= 0, .i = 0 (rectangular flat plate); compare reference 3.
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whence 

T() = if() +	 c sin	 j0(t)dt +
	

j(t -	 )j 0 (t)dt - 

C1yX 

a I	 dj0() I	 Arc sin	
yX 

j0(t)dt 
TCJO	 (iyX+ 

The total drag C will be obtained by taking the mean value 

Po	 2	 4 
fl2110 

X - 2J	 cx1)	 =	 + io -	 T(t)dt 

1 2	 Ii. cX=icz+Jo _0 T(t)dt 

It is easy to calculate the mean value of T(t) in the inter-
val (0.1), since

(-1	 ni 

J

dyxJ j 0 (t - yx)j 0 (t)dt = 0 

0	 yX 

and

P1	 PiyX 
I dyX I	 dj0() I	 Arc sin	

yX 
j0(t)dt 

Jo	 Li0	 JyX+	 \jt 

P1	 Pt	 Pt-	 I x 
I j 0(t)dt I dj() I	 Arc sin I_	 dyX = 0 

U 0	 U0 

The calculations are analogous to those carried out at the end of sec-
tion )4-.1.1.1.5.
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However,

1-il 

I	 dyX I	 Arc sin 
\j-i;:- 

j 0 (t)dt = 
Jo

(,t 
I	 jç(t)dt I Arc sin	 dyX = 

Jo	 Jo 

consequently

= !L 52 + jc -	 =	 l -
	

4 5 2 
2A	 \	 27J	

0 (iv. 5) 

We shall make an application to the case where the profile is 
defined by

	

j0(x) =	 if 0 < xX < 1 

j 0 (x) = -j 0	 if	 < xX < 1 
2 

[j 0x	 if O<x<
2 

Lio(19	 if 

1 rl 

= P jx dx + I j 0 (l - x)dx = 

	

LI Q 	 Jl 

In order to determine the local forces, one must calculate the functions 
p0(yX) and T(yX); now 

iok(,1) - 2 k(yX,O)	 jf 0< yX 	 . 

p0(yX) =	 (w.) 

	

jo -	 k(yX,O)	 if	 1
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The variation of p0(yX) for a wing of reduced aspect ratio equal 

to 2 is given by the figure 82. 

On the other hand, T (yX) can be expressed siniply as a function of 

In fact

j (1 - 3yX)j02	 if O, fl

	

j0 (t -	 )j 0 (t)dt =
[(i)i 02	 if 

- k(yx,O) - 2j if O.	 1 

fyX 
Arc sin	 j0(t)dt

if l<yl 

These formulas one can establish immediately, remarking that 

	

I	 Arc sin	 du = .[k(yx , ) - 2yj 
JyX 

Finally

(-1 

I	 dj0() I	 Arc sin [ 
yX 

j0 (t)dt = 
do	 JyX	 \t -

j02 [k(Yx,) - 6yx - 

k(yx,Oj if 0<	 1 

j02 .[2yx - k(yx,O 

if
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whence

L 
2 ioEk() - k(0)] 

^ 1	 + k(,O) - 

T() =	 if 

L.	 - k(yx,OJ + 1 i O2 Lk(Yx ,o) - 21	
if < y< 1 

(iv.ss) 

In figure 83, one will find the distribution of the drags over the 
span for a wing of this type of reduced aspect ratio equal to 2. 

One will remark that

1
- J p0(Yx)dc= 

and

101 T(yx)dyx =	 = . jO 

This results from the equality previously demonstrated 

Jk(yX,)dyX =	 - 

11.1.2.2.3 - Effect of flaps and ailerons.- We shall begin with the 
case of a flat plate; the formulas can easily be generalized in the case 
where the wing profile is curved. The ailerons are, for instance, dis-
posed on the plate in the arrangement indicated by figure 81i-; 71 desig-

nates the deflection of the first aileron AICDD?, 72 that of the 

second B'EFF'. 

For study of the flow one must utilize conical flows T(M,ct) which 
one can define in the following manner. In the region x3 > 0 the
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flow (M,ct) is identical with the flow d 5 (M,-cL); in the region x3 < 0 

it is identical with the flow C 5 (M,a.). One can immediately make an 

interpretation of the flows T which gives account of the possible 

utilization in the effects of flaps and ailerons;5 1 the flow T(M,cL) 
is established when, after the plane Ox1x2 has been materialized, one 

makes the quadrant 	 1x2 pivot around Mx2 by an angle -a (fig. 58). 

Hence the investigated flow may be obtained irmndiately by superposition 
of conical flows schematized in the following manner 

-
C(A,_i) c(B,_i) E(AB,+i) 

- 
c(c,y1 ) T(D,71 )	 E(CD,-71 )	 (Iv.56)  

(E,72 ) T(F,y2 )	 E(EF,-y2) 

If such a scheme is to be valid without further complications, the 
pressure coefficient outside of (R) must, of course, be zero. This 
will .be the case if the reduced aspect ratio of the plate and the flaps 
is greater than, or equal to 1. 

Let us apply these principles to the calculation of the local C 

of a plate fo,r which the Mach cones of the points A1 , B, C, D, E, F 

are disposed as shown in figure 8-i-. One may then place the origin at the 
point A and immediately write the local C as a function of 
yx(yx =	 one will put AA' = 1, CA' = c, CD = 2, according to 

51We have indicated this method in a note to the reports on the 
proceedings of the Academy of Sciences in December l9 (ref. (). The 
advantage of the flows T we indicate here has also been pointed out in 
the article of M. Snow, published at the same time as our note (ref. 32).
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the results obtained in sections .l.l.l.7 and .l.2.2.].: 

=	 E1E J\rc sin J1^ jyx (c - yxIJ + 

I c sin	 + yx i -	 if yX.< C 

cz =	
+ i [Arc sin	 + yX(l - yx)	 c <yx < i 

= ±.(i + y1c ) 	 1 <YX < •l - C 

C =I^iL^-
2	

c sin	
-	

+ (z - C)g ch 
c

1 - C < yX < C 

i +	 —'Arc sin C	
E	 - 1 + (yx - z )Arg ch	 C 

C	 yXl 

1 < yX < 1 + C 

In figure 85, one will find the distribution of c over the span. 
Besides, it will be possible to write in a general manner the local c 
of any slender rectangular wing provided with flaps or ailerons.



228
	

NACA TM l35l-

In fact, if one puts 

f(u,c) = c 
E 

+	 sin ! + u Arg ch	 if -c<u<c 

f(u,c) = 0	 if u+c<O	 (iv.58) 

f(u,c) = 2c	 if u-c>O 

one has with the customary notations 

c(r) = .t[k(r 0 + r0) + k(r10 - r,0) - 2J 
+ i o +	 + 0(0 -
	 + 

^ ,l - c) - f( 0 - 1 ^	 + 

- ibi - c) - feb - 1 - ibc]
	

(iv .59) 

The total C may be easily calculated. We remark for this purpose 
that

fo k(u,l - c)du 
= f k(u,l - c)du + f2o k(u,l - c)du 

= c2 + 2c(2r 0 - c) 
2 

The mean value of f is very easily obtained whence 

C =	 -	 +	 + 2	 + 2) cl -	 c2\	 (iv.6o) 
2?)	 2 ) 

One also sees that the calculation of the moments does not present 
any difficulties.
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- A few remarks regarding the study 

of the effect of sweepback 

We cannot here develop a theory of the sweptback wing. We there-
fore shall content ourselves with a few remarks. 

- Study of the sweptback wing with "supersonic leadin 
edg&' ( cot 7 > 1), compare figure 66.- This investigation does not 
present any difficulty in the case where the reduced aspect ratio 

is greater than	 . We reassume the notations of sec-
1-cosO 

tion l-.l.l.2.l; let j() be the angle defining the infinitely slender 
ofile of the wing supposed to be constantover the span Li() = j 0() -	 the flow will be obtained by superimposing as before: 

(i) Conical flows bisecting the Mach cone, centered on 00'. 

(2) Lifting flows centered on AA' and BB'. 

(c) Finally flows about the wing of infinite span with a fin with 
the same profiles as the wing profile and leading edges which 
coincide with OA and OB. 

In order to simplify the investigation, we shall assume that the 
Mach cones of the points 0, A, B do not interfere with the wing; 
this will permit one to study separately the "head effect" (conical flows 
centered on 00') and the "end effect" (conical flows centered on AA' 
or BB'). The "head effect" can be investigated inmiediately, according 
to the formulas of section li-.l.l.2.l. 

The pressure coefficient on the surface x 3 = ^0 is written 

C =	 [j(x) - 2(x,yx,eJ 
sin L 

Q, being defined by the formula (Iv.21) in which ct() has been replaced 
by j().
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R being the function defined by equation ( IV . 5I -) . Consequently 

c(yx) 
= 2k(yx(l + cos e),o)	

o[(i + cos 1+	 p 
sine	 sinO 

	

the mean value of c in the interval 0 < yX < 	 1	 written 
1 + cos e 

= 3i	 + 2i 
Z	 sine	 sine 

In the same manner, one obtains without any difficulty the value 
of the local drag 

cx (yx) = ic (yX) +	 2 _____ 

sne3° 

and its mean value in the interval 0 < y <
1 + cos e 

i2	 1	 --2 
+ sine	 sinO 

One may summarize these results in the following manner: we con-
sider a wing of an aspect ratio equal to 2To (fig. 86); the total C 

of this wing is written 

= ________ - i(e) - cos el	 1	 +	 3i	 1	 + 

sin	 it	 jl - cos e	 sin 0 1 + cos 0 

sin2e - 2	 2t.t	 r 1	 _____ 

^ 
sin 0	 2	 sin e oLi ^ cos e ^	 ] 0	 sinO 

or 

C = 
z	 sin e	

+ i	 + 1 I(e)J	 2i	 r 1	 + 1I(e)1 
cos 0	 it	 j	 sin 0	 ^ cos 0	 it J
(iv.6)
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Likewise, for the' total drag 

= (i2 + 2) ________ -

	 I(e)	 + 
sin e 1 - cos 8	 c sin 

E	 ^	 i	
+ i(2 +	 o sin2O - 2 

Lsin e	 sin	 (i + cos	 5jfl	
sin2O 

or

C =	 2	 _______ ^ 'I(e) Si +	
(Iv.67) 

	

sin 0 L -	 + cos 0	 it 1]	 sin 0 

These formulas remain applicable as long as 	 >	 1 
1 - cos 0 

.l.2.3.2 - The study of the sweptback wing with a supersonic leading 

edge when	 <	 1 , or with a subsonic leading edge, presents more 
1 - cos e 

serious difficulties.- A complete investigation of this kind would lead 
us too far. We shall content ourselves with treating a simple example 
which will show how to proceed in order to surmount the difficulties. 

We attain thisaim by introducing conical flows which we shall 
denote

S(M,t0,u0) 

defined in the plane Z by the following boundary conditions (fig. 87): 

(l)On (Co), u=v=w=O. 

(2)On OA, w=O. 

(3) On the upper edge of OC, u = u0 . 
On the lower edge of OC, u = -u0. 

u0 is a given constant, the point C is the image of the number Z = -a2; 
one puts as usual	 S	 - 

L O -
l+a
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The methods of chapter III permit one to write very easily the 
function u(z) the real part of which gives the component u of such 
a flow; if one puts

z = 

one has

iu 
u(z) = - _... .Q iog1 - ia 1 + ia 

IC	 [_s+ial_iasJ	
66) 

One verifies readily that this flow satisfies all boundary conditions. 
Besides, if one puts

= 2s 

1 + s1-

one has on OA

sin I u = ±	 Arc cos [ - 2t
0 (l - t1 = ±
	 Arc	

1t0(i - t) 

t+t0

(Iv.67) 

These flows will enable us to make the pressure discontinuities 
appearing outside of the wing disappear, without modification of the 
boundary conditions on the wing itself. 

Let us take for instance the case of a plate of the plan form indi-
cated in figure 88. With •y being the sweepback angle, one will put as 
usual

cotany= 1 
cos 0 

One assumes that the Mach cone A does not intersect the seg-
ment 00', but that the Mach cone of 0 does intersect the segment AA' 
at the point M0 . According to what was said above, one will obtain a 

flow which satisfies the boundary conditions on the wing portion yX < j 
by superimposing a conical flow of the vertex 0 and bounding genera-
trices OA, OB, a flow of the vertex A and bounding genera-
trices AA', AO, and by subtracting the flow about a plate of infinite 
span with AO as leading edge; however, the region M0P0A' then is a
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zone of discontinuity for the pressure. If M 0P1 represents the other 

generatrix of the Mach cone of M 0 in x10x2 , the pressures obtained 
in the region M0A T P1 will thus be erroneous. 

One will obtain the desired result by superimposing on the preceding 
flow a flow schematized by

S(M,t0,u0) 
M0A' 

In this formula

2i	

..Erc	

sin	 + 110 cos 

	

UO=_sin8	
(+2110cosO)] 

110 

+ rfr cos 0 

	

if N is at M,, to = 1,	 = 110( 1 - cos e). 

The pressure coefficient 52 in the region M0A'P1 is given by the 
following formula (x is negative): 

to = 

520ne will find in appendix No. 6 the explicit calculation of this 
pressure coefficient and a few important brief remarks regarding certain 
pecularities occurring in analogous problems.
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The integral of the second term represents the "end effect" of the 
wing AA' while the first term represents simply the pressure coeff i-

cient in the conical flow with the vertex 73• 

As an application, we shall calculate the total C of this wing 

___	 pl (x + yX) dx	 1 P 1	 p1	 flX-Z 
c = 8i r 0 dJ	

+ -J 
dzJ dxJ	 F(z,x,)d z	

L	 0 x (x + 2yX)	 o	 0 

5311ad one wanted to study directly the case where 9 = 0 by appli-
cation of the preceding method, one would have been led to write 

- L	 x_yX 
p L - 2) 

	

x-2 (r +yX'	 I r 
I	

'	
/	 lb Lx -	 - 2(110 + yX)j	 r	 + 11	 1 
Arcsinl	 --j	 '-' icJ	 10x + y	 + 2110)] 

Horever, the integral of the second term has no meaning since the dif-

ferential element is in	 3/2• In order to eliminate this difficulty, 
one must utilize the conception: "finite part" of an integral intro-
duced into the analysis by M. Hadamard (compare ref. 7) . One has in fact 

1

X2(fl0+yX)	 1[x- _ -2 ^)1	 +10	 d = 

0	

Arc sin	
0x + yX	

( + 
2) 

px_2(110+yx)	

+	
Ibo[X- _- 2(10 + 

- JO	 ( + 2110)	 L sin	 lOX + yX 

This justifies once more the interest in the motion of the "finite" part 
of an integral which permits a very easy performance of limiting process 
which may be delicate.
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if one puts

2(ri0 + yx) = z 

with F(z,x,) designating the quantity under the sign	 in the 

formula (Iv.69). The double integral may be calculated immediately 
(compare the end of section li-.l.l.2.l) 

P110	 l ___________	

Pl 

	

dyx	
x+yX	 _______ 

______ 
dx= I dxJ	 X+Y	 dyX= 

Jo	 J 0 x (x + 2yX)	 Jo	 o	
x (x + 2yX) 

-	 I2x+ldx=1kl+ 211o)2l1 
l\I3+2 

As to the triple integral, one may write it changing the order of 
integrations

1 
__________	 dz 

	

P1 (^110)df 
dx/	

z-x-2110 ______ 

	

L'	
z+2110(x-)x--z 

In order to calculate the last integral, one puts 

	

z	 =2 

	

x-	 -z 

It is then written 

	

/

r	 t2(x -	 - (x + 2110) (i + t2)	
t2dt 2


	

Jo	
2110(1 t2) + t2	 (i + t2)2
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and may be calculated rapidly by residues. It has the value 

- 3Z_f + 
1) - j. \J2TIO ( + 2ro)	

2 

Therefore, it suffices for calculating the triple integral to 
utilize the following results 

p1 I (^)(i-)	 ______	 __ 

J	 ( + 2)	
d =	

+ ) - 
2(l + 2io) 

Arc tan 

jP ( + o) ( + o) (1 - 2)	 ro +	 +	 + d=-	
3/2	

j-+ 2)

2 3/2 1 -	 tan ii 

	

+	 Arc
\J2To] 

P____ ____ 

J	 ( + 2) 2	 - -	
( + 2) +	 + 2 2 + 

	

3r	 j 

The triple integral thus has the value 

+ lo1 O\\ + (i + 2110)2 
Arc tan	 -	

(i + 2110)2 
3)	 8	 3 

which leads to the following value for the desired C 

= ____	 + 1o)	
+ (1 + 2 11 0) 2Arc tan ____ 

81 

itnoL	 3	
-	

(Iv.'o) 

One will find in figure 89 the variation of C as a function 
of



20	 NACA m 137k 

As an application, we have traced in figure 90 the variation of 
-1 dCZ - - as a function of the Mach number for plates of the plan form 
2di 
defined by figure 86. The angle of sweepback is t-7°; the geometric 
aspect ratios are, respectively, equal to 1, 2, and 8. The points sit-
uated on the abscissa M =	 are obtained exactly [formula (Iv.iO. 
The parts traced in 'solid lines are given by the formula (Iv.6I-). The 
dotted parts are obtained by interpolation. In order to obtain them in 
full rigor, one would have to calculate the C from the formula (Iv.68). 

- The Uniformly Lifting Segments 

The role played by the "horseshoe vortex" or "uniformly lifting 
segment" in the subsonic wing theory is well-known; the linear theory 
of Prandtl is based on this conception. We shall show how easy it is 
to obtain the corresponding supersonic flow, and shall indicate a few 
possible applications. 

According to section 3.2.3.1, the conical flow for which 

U(Z) = urj + i .Q log	 Z	 (iv.i) 
It 

represents a flow for which u has the value zero in the plane x3 = 0 

except on the quadrant Ox1 , Ox2 where u assumes the values ±u0. 

Let us then apply the results of section 1.3. The homogeneous flow of 
zero order, defined by the complex potential 

(z) = - i	 log	 Z	 (Iv.72) 
2n	 l+Z2 

may be considered as a derivative of the flow in the direction Ox1 of 

the conical flow defined by equation (Iv.7l), and consequently defines 
the flow corresponding to the uniformly lifting semi-infinite line 

with the uniform lift being equal to p 0 . The velocity field inside of 

the Mach cone r of 0 is obthined by application of the formulas (1.29)



Th
	

2Li-1 

p0 p2 +1 [z2 _ 11 
2x1 p2• - i - L 2 +

L 

v=
2nxip2 _ 1 L 2 Z 

.W=OP+lRr(Zl) 

Outside of (r) the velocities are zero. 

If one calculates the velocity field in a plane x 1 = x1° (x10 
being very large), one has therefore 

p 2x1 

Consequently

____	 Ocos 0 u0	 v=--

	

2ir	 r	 2it	 r 

that is, the classical vortex field. 

In order to obtain the flow corresponding to the uniformly lifting 
segment, one visualizes the superposition of two homogeneous flows of 
this type. Let, for instance, A1 and A2 be two points of Ox2 , and 

and	 the values of the variable Z if one takes, respectively, 

A1 and A2 as origin. The desired flow is determined by the complex 

potent iai51

(z) = ±Q[og 
z2	

- log	
1 

	

2 L •i^z22	 i+z12] 

formulas here obtained have been obtained by another method 
by Schlichting (ref. )4).
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This could form the basis of a theory of straight wings (without sweep-
back) analogous to the Prandtl theory for subsonic flows. However, one 
has not succeeded in linking the local lift with the general inclination 
of the profile. 

On the other hand, one can apply these formulas for the study, at 
least in an approximate manner, of the velocity field behind a straight 
wing when the distribution of the circulations is known. This seems to 
us to be a method which should permit a first investigation of the inter-

action of a wing and the controls55 

Likewise, it is very easy to define, following the same principle, 
the flows corresponding to two uniformly lifting semi-infinite 

lines 0 i-j, 0 i 	 (compare fig. 91). If 	 cot y =
	 , we are 
cos 0 

dealing with a homogeneous flow of zero order, defined by the complex 
potential

(z) = -	 log 1 + Z2 - 2Z cos 0	 (Iv.73) 
2g	 l+Z2+2ZcosG 

This results immediately from the formula (III.47). Likewise does the 
semi-infinite line when uniformly loaded, give rise to the flow 

defined by

ipo	 z = - - log 
2Tr	 l+Z2-2ZcosO 

In each of these cases, one can immediately write the velocity field, 
applying the formulas (1.29). 

This permits one to define the flow about a lifting line such as 


A10A2 which is uniformly loaded. As in the case of a straight wing, one 

may utilize these flows for the study of the velocity field behind a 
sweptback wing. 

55The investigation made in section 1. .l.2.2 for the rectangular wing 
permits in fact calculation of the forces acting on the wing but does not 
in any case permit the study of the field behind the wing.
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4.2 - Study of Fuselages 

4.2.1 - Generalities Concerning the Flows Past Bodies 


of Revolution of Fuselage Shape 

By composition of conical flows, we shall obtain a new method for 
the investigation of flows past bodies of revolution. The results. 
relating to these flows have formed the subject of numerous reports 
(ref s. 35, 36, 5); however, the methods we shall describe seem to us to 
permit certain generalizations. The given parameter in this problem is 
the value of the radial velocity Vr along a meridian line. This veloc-

ity is equal to	 _(x1); r(xi) is the function defining the meridian 


line in a plane r, x1 . However, we shall see that vr(xi, r) is a 

function which is, when x1 is fixed, of the order , for a small r. 

The boundary condition may also be written 

rvr	 dx1 2ic dx1 

with S(x1) = itr2 designating the area of the fuselage section of the 

abscissa x1 . If cue makes r tend toward zero, rvr will maintain a 

finite value. In a precise manner, we shall state that the investigated 
flow will have to verify the following boundary condition 

Urn	 rv = --	 (IV.74) r--*O r 2icdx1 

4.2.2 - Investigation of a Particular Case 

Let us consider the flow around a cone of revolution; the formu-
las v(z), w(z), u(z) are functions of Z which admit inside of 
IZI = 1 only the point Z = 0 as a singularity. Thus they may be con-
tinued analytically to the interior of the circle (C), image of the 
conical obstacle in the plane Z, under the condition of excluding the 
origin 0 from this circle. 

Alter this statement we shall determine the flow around a body of 
revolution the meridian line of which has the simple form given by fig-
ure 92. 0 naturally is an infinitely small angle. Afirst idea for
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obtaining such a flow consists in subtracting from a flow around a cone 
of revolution of the vertex 0 and the angle P 0 a similar flow of 

vertex A. Let us put

	

____	 x1-a 1+ p12 

2p	 r	 2p1 

The radial velocity of the resultant flow is 

eo21	
p_ 

	

vr_ 2	 \Pl 

Let us assume-that p and p1 are infinitely small which is the 

case for points M which are sufficiently distant from A 

o02r1	 -Pcc1(x1a)]	
2 

vr	
2	 r L 

In order to obtain the desired flow, it will therefore be necessary 
(which is, besides, in accordance with the theorem of section 1.1.3) to 
add a homogeneous flow of zero order with the vertex A defined by the 
complex potential

= -ae02log z1 

with Z1 designating the complex variable Z for a flow with the ver-

tex A (in particular I zil = 
The resultant flow has for x1 > a the radial velocity (compare 

formula (1.29)) 

eo2	 ______ _______ 

Vr = 2	 -	
- (1 -	

- a802 1 + p12 / 
2 

1 1 + 
x1_a1_1 \ 

or

v = e02L	

(i + 2)	
6r 

r	 2	
p1-2p-a 1-p

12 (x1_a)2]
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The obtained radial velocity is therefore not identically zero along 
the conical obstacle, but it is very small when x 1 is not too close to 

a since p , p1 and r are infinitely small quantities. For the rest, 

the equality (IV.7 1l) is satisfied for any value x1 > a. In first 

approximation, we regard the flow obtained as satisfying the conditions 
posed, although of course the value of Vr is not negligible if x1 is 

close to a. 

Let us now suppose that we would want to study the flow around a 
body of revolution which has a meridian line schematized by figure 93. 
One is led to visualize the flow as a resultant of the previously defined 
flow and a conical flow of revolution of vertex A relative to the 
angle G. At a point M situated on the meridian line (when the 

abscissa of M is distinctly larger than a), one has as the radial 
velocity

yr	
- x1 - a) - 0 02a + 912 (x1 - a) 

where

r = (x1 - a)Oi + a00 = r(a) + (x1 - a)e1 

If one puts

r(a) = ae0 

r(a) designates the radius of the abscissa section x1 = a. 

Hence

e1(r - a8 0)	 r(a)01 
r	 r	 r 

Since one must have r = e 1, one sees that one must, moreover, add 

the homogeneous flow of vertex A of complex potential 

(z) = r(a)0 1 log Z
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Finally, the case investigated is obtained: 

(1)By adding a conical flow of the vertex 0 relative to the 
angle 9. 

(2) By adding a conical flow of the vertex A relative to the 
angle e1. 

(5) By subtracting a conical flow of the vertex A relative to 
the angle O. 

(1i ) By adding a homogeneous flow of zero order of complex potential 

r(a)e(a)log Z 

where r(a) is the value of the radius for x1 = a and 

(a) is the discontinuity of the angle 0 for x1 = a. 

li.2.5 - Approximate Study of a Body of Revolution 

of Fuselage Shape 

The application of the above said permits to obtain, in an approxi-
mate manner, the flow about a fuselage-shaped body the meridian line of 
which is polygonal and, by limiting process, the flow about a body of 
revolution the meridian line of which possesses a continuous tangent. 

If one assumes first a1, a2 , . . . a1 . . ., as the abscissas of 

the vertices of the polygonal line which constitutes the meridian, the 
desired flow will arise from the superposition: 

(1) Of a succession of conical flows which cause an axial velocity 
of the form (formula (11.25))

2	 p 
O log

pn2 + 1 

where

1 + n = x1 - a 

with 0 being the value of 0 for a < x1 < a^1;
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(2) Of a succession of homogeneous flows which cause an axial 
velocity of the form (formula (1.29)) 

l^p2 
x1 - a	 - 

where

rn = r(a)	 =	 = °n - en_i 

However, p will be very small except in the immediate neighborhood of 
a, consequently one may expect the reduced axial velocity to be written 

	

u(x1 ,r) =	 eiog x
1 - an+l -	 rn Len 
x1_ a	 L.xi_an 

with the sums	 ectending to all points A the abscissa a of 

which is smaller than x1 - r. The case of a meridian with a continuous 
tangent is obtained by performing the limiting process in the preceding 
expression which leads to 

	

u=_J

cxl-r e2()d	 rxl-r r()e'() 
x1 -

However,

	

e() = r'()	 r12()+ rr' '(k) =	 S() 
2i d2 

if S() = 

One obtains

flX1_ 

1! _ 

	

u=_-I	 xl-	
(iv.) 

'JO
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This expression is exactly the one given by LaitQne (ref. 5); it 
is, besides, equivalent to those suggested by the other authors named 
before. 

However, the argument just produced is somewhat summary due to the 
difficulties arising in the neighborhood of the points a1, a2, . 
a . . . In the following paragraph, we shall justify the aforesaid, in 
particular the important formula (Iv.75). 

Ii. .2. 1. - Justification of the Method 

The question is to calculate the radial and axial velocities 
according to the rigorous formulas, and to take the possible simplifi-
cations into account only in the final result. The radial velocity com-
prises two terms, the first of which results from the composition of the 
homogeneous flows of zero order; the differential element of the corre-
sponding integral is 

1	 l\l-1-p2	 ______ ____	 ____	 1 1 +	 r(9() p + -) 2 Xl - (	 Jl -	
r(0) = - - p2(t) 

or

+ 

if one assumes o() differentiable since 

2p2d = r dp 
1 - p2 

hence the contribution due to these flows to the radial velocity 

1 px1_
+	 I	 r()Ot()dp 

Lip0 

p0 being the value of p() for 	 = 0. 

Likewise, the composition of the conical flow causes an integral 
the differential element of which is written
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e 2 ( d_[l - ( d =	 2(xi- + > d 

Hence the desired integral

P1 

	

e2 ()d +	 /	 O()dp 
U p0 

Thus the velocity is written

p1 2r rx1_ d2s() d +	 I d2S() dp 

	

d	 2icJ	 d2 p0 

The last integral is bounded by the upper boundary of

	

	 '' and con-




d 
sequently the condition (IV.711-) is thus verified. The calculation of u 
is made by a quite analogous method and leads to the formula 

(-'x 
U =	 I	

-r	
1	 d	 r()O2() 2p2() 

2it/	 l -. d	 - J0	 xl -	 1 - Lb

ru xl-r d
2S	 -	

/	
2p() --I	 xl_ 1 + p2(d2) 

Jo	 Jpo 

Now it is quite obvious that this last integral is negligible com-
pared to the first. Thus the formula (IV.77) is established. It furnishes 
the following approximation for the pressure coefficient 

px1 -r 

C =	 1	 d	 (iv.y6) 
Jo	 X1d2 

2J0
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Remark. 

In chapter II, we had. utilized the formula (1.10) for writing the 
pressure coefficient. This formula would lead to write here 

pxl-r 

cp =	 d	
- r'2(x) 

Jo	 d2xl 

One will compare this formula with the one given in reference 36. 
Nevertheless, the analysis just made does not guarantee that the term r'2 
represents all terms of the second order; therefore, besides, in accord-
ance with Laitone, we shall content ourselves with the formula (iv.6). 

l .2.5 - Generalizations 

The method indicated above has the advantage not only of giving a 
new demonstration of the formulas relative to flows of revolution, but 
also of furnishing a more general method which lends itself to applica-
tion to numerous fuselage problems. 

Let us take, for instance, the case of fuselages of revolution the 
axis of which is slightly inclined toward the wind direction. One may 
reassume the preceding method, starting out from the flow about a cone 
of revolution inclined toward the wind (formulas (II.2 1 ) and (11.25)). 
The desired flow is obtained by suitable superposition of those conical 
flows and of homogeneous flows of zero order which one deduces from them 
by differentiating these flows in the direction of the axis of the fuse-
lage (compare section 1.3). 

It is permissible to assume that this method will also permit the 
study of fuselages which are not bodies of revolution but the cross sec-
tion of which remains, for instance, homothetic. Certain difficulties 
make their appearance, but do not seem insurmountable. In entering on 
the investigation of fuselages by the method of conical flows, we aimed 
only at indicating the principle of a new method. We reserve the devel-
opment for a later reportS6. 

6Conipare in appendix No. 7 the development of this idea.



NACA TM l54-	 251 

- First Investigation Regarding the Conical 

Flows Past a Flat Dihedral. Applications 

to the Fins and Control Surfaces. 

We have already indicated in the course of this chapter that there 
exist other conical flows than the flows with infinitesimal cone angles 
or the flows flattened in one direction. In this last paragraph, we 
shall give a few examples of flows past a flat dihedral. These flows 
may be utilized either for the study of the effect of dihedral on a 
lifting wing or for the study of the fins and. control surfaces. We can 
here not consider developing the complete theory of these flows. We 
shall content ourselves with indicating a few examples. 

I.3.l - Effect of Dihedral on a Wing Completely 

Bisecting the Mach Cone 

Let us consider a A wing having dihedral; this wing is infinitely 
flattened into two planes which intersect in Ox 1 . For simplification, 

we shall assume that the plane Ox1x is a plane of symmetry, the wing 

completely bisecting the Mach cone; upper arI lower sides are therefore 
"independents." This signifies that in the plane Z the region inside 
of (Co) is divided into two domains (fig. 91k). The wing portion inside 

of the Mach cone (r) is represented by two radii OD, OD' which form 
with OX the angles 0 and t -	 The bounding generatrices of the 

A have as imagc.s the points E and E' of the argument 01 and it - 01 

on the circle. One will assume, in order to better establish the ideas, 

that 0<0 <0 <2. 0	 1 2 

The boundary conditions which permit determination of the unknown 
functions u(z), v(z), w(z) in the region ODEE'D'O are: 

(1) On the arc EE'
	

u=v=w=O 

(2) On the arc ED and on the segment OD w cos 00 - v sin Oo = a 

() On the arc E'D' and on the 
segment 01)'
	

w cos Oo + v sin 0 = a 

We shall treat here the elementary case; consequently, a. will be 
considered constant. The condition
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W COS 00 - V Sifl 0 = a 

entails that on OD

	

R r	 - Z	 sin 01 = 0 
dZ 

or also

LL	 zJ	 \ ZJ	 J dZJ 

whence

TFZa1=O 
—L dZj 

The normal derivative of u is zero along OD. 

One would have an analogous result on the senent OD'. 

On the other hand, on 

	

TrZ	 cos 0o - Z	 sin eo] = 0 
Ldz	 dZ 

which entails also

T[Z 1 = o 
LdZJ 

Consequently, u maintains a constant value on ED and E'D. 

Besides, it is easy to calculate this value owing to the formu-
las (IiI. 1 6); one finds

a u0
 = sin(00 - i) 

In order to achieve the calculation of u(z) it is then necessary 
to carry out the conformal transformation
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T = l-Inm 

where

m=
IT - 20 

The domain investigated is represented on a semicircle of the plane r 
(compare fig. 95). The homologous point of E has as argument 

= 
1

IT - c0 

Now the function U(T) can be written immediately on the strength 
of the results of section 3.2.2.1 

	

U(T) 
=	 log (T + e1)(i	

iPi) 
- Te 

sin(e - e)	 (	 -iP1) ( ip1	 )	
(Iv.77) 

l+Te	 e	 -T 

and according to formula (111 . 53) one may write the value of the pressure 
coefficient on the wing portion inside of (r)

sin 
C =
	 sin(e1 -	

Arc sin __________ 

ji - x2cos2(p1 

putting

x = tan 0) 

In order to link 81 to the angle W defining the bounding gen-

eratrices of the cone, one will remark that

1


	

=	 + 8	
with	 cos 110 = tan 

It is easy to obtain the component of the normal forces on the upper 
surface of each half wing; one will express this component by the dimen-
sionless coefficient
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____ pxo 
CN=-	

1	 C dx	 x=tanw0 
tanw0J0 

In order to calculate CN one will use the plane r 

CN = - _________	 _________ 

—	 (l^T2)2dTl
ri w0 
L1 

c 
2(1 - T2) 

	

2	 R(T)1_T	 d-r 

	

= 
tan	 -L	 (1 + ¶2)2 

	

2	 [PUT1- 2
	 1 -r	

d-rI

tan (DO (l+T2)2 

with L denoting the contour &d'de in the plane T (fig. 97). 

The calculation of this integral has already been performed in sec-
tion 5.2.2.2. Hence

2a	 1	 2	 sinp1 

	

CN = - tanu 2 cos	 sin(Gi - e) 

= -	
cos(i-ç + Go )	 sin	

(Iv.78) 
cos cp1	 sin(G1 - 

Remarks.

(1) It is obvious that the general case where ct would be variable 
over the span can be investigated ithout difficulty with the aid of 
electric analogies. 

(2) The treatment of the case where the cone representing a dihedral 
is entirely inside the Mach cone is more difficult. The domain where the 
functions u(z), v(z), w(z) must be studied is annular, and in contrast 
to what occurred in section .l, the conformal representation of such a 
domain on a circular annulus does not seem to follow immediately.
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(3) It is possible to study the effect of dihedral on a rectangular 
or on a sweptback wing by "composition tt using the methods developed in 
section 4-.1.

- Fin at the Wing Tip 

Let us consider, for instance, the edge AA' of a rectangular wing 
of large aspect ratio; we shall assume the fin to be formed by a trian-
gular plate P.BB' (fig. 96) which we shall suppose, to start with, as 
lined up with the wind. We aim to calculate the effect of this fin on 
the flow. 

.3.2.1 - It is almost evident that if the semi-infinite 

lines AB, AB' are outside of the Mach cone of A 

the fin suppresses the end effect of AA' 

Let us consider, for instance, the case where the wing is reduced to 
a lifting plate in the plane Z; the boundary conditions for the quad-
rant OAB read, in fact, as follows: 

w = w0, on OA and AB


v = 0, on OB 

They are the same that would be valid for a flow around a plate of inf i-
nite span placed at a certain incidence with respect to the wind. 

In contrast, the perturbation flow in the quadrant OA'B is iden-
tically zero. This result applies, by the way, likewise to the "thick-
ness effect." We deal, therefore, not with a new mathematical problem, 
but simply with a remark which can be utilized in certain technical 
problems. 

If now the fin is itself •a lifting surface, that is, if v assumes 
on the fin a constant value different from zero, the case is particularly 
simple and one may conclude immediately that it is the one where the 
bounding generatrices of the fin are symmetrical with respect to the 
plane x10x2 . In fact, if the fin were by itself, it would give rise to 

a flow of such a type that the component w would be zero in the
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plane 0x1x2 . Thus it suffices to add this flow to the one found in the 

case where the fin is lined up with the wind77. 

- The case where the bounding generatrices 

of the fin are inside of the Mach cone 

gives rise to a new problem 

If C and C' are the images of these generatrices in the plane Z 
(fig. 97), we shall suppose, for instance, that C and C' are symmet-
trical with respect to 0, and shall study the effect of the fin on an 
elementary symmetrical problem. The boundary conditions are: 

w = w0 on the upper edge of OA and on the arc 

w = -w0 on the lower edge of OA and on the arc AB' 

v = 0 on the two edges of OC and of OC' 

For reasons of symmetry one also has w = 0 on OA'. 

We shall discuss the function Z 	 (the function F(Z) introduced 


in section 3.1.1 is propoiona1 to 
zd). 

The boundary conditions 

inform us that Z	 is real on the contour ABA'OCOA. On the other 
dZ 

hand, according to the results obtained in chapter 3, B is a simple 
pole for this function while C is a critical point of the order p + 1/2, 
p being an integer. Reassuming the arguments raised in section 3.1, one 
sees that the simplest (in the sense of the principle of minimum singu-
larities) of the functions which satisfy these conditions is written 

z dU ( ' ) = -	 .	 z2	 (Iv.79) 
dZ	

(z2 ^ i) [(z? ^c2)(l + c2z2)11 

We denote by the index (1) the corresponding solution. 

7TFor reasons of simplification, we have visualized the case where 
the bounding generatrices of the cone were normal to the wind; it is easy 
to treat in the same manner the case where this condition is not satisfied.
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Besides, U is zero on the arc AB, and u = - - on the arc PB. 

Consequently, one has,.if one takes as the initial determination for the 
radical the positive one on the upper edge of OA, according to equa-
tion (iIi.-i-6)

k =	 - c2) 

The integration of equation (IV.79) does not present any difficulty; 
naturally, the integration constant must be chosen in such a manner that 
u = 0 for Z = -1. One finds 

u(1)(z)	
w0	 - z2)(i - e2) - 2Z2 + c2

)(l + c2z2)1 = - log

L	 (Z2+l)(l+c2)

(Iv.8o) 

with the logarithm having the value it for Z = 1. 

The explicit calculation of	 and v ( - ) (z) may be made by 
the elliptic functions. One must, in fact, examine whether all boundary 
conditions are satisfactOrily verified. Now 

dV( 1 ) - + w0 (l - c2)	 i 
dZ -	 TC	 [(z2 + c2)(i + c2Z2)]l/2 

Consequently, if one puts

z =ic sn(-r,c2) 

the investigated region of the plane Z has as image in the plane i - a 
rectangle (compare section 3.1.1.8 and fig. 3) and one obtains 

dV ( - ) = dV(-) dZ =	 ._ 2.) 
di'	 dZ	 dr	 n3 

=	 -. 2) (T - i

2
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The integration constant is chosen in such a manner that v = 0 on the 

circle (C0). The solution u ( - ) (z), v(1 )(z) , w ( - ) (z) thus does not 

satisfy the boundary conditions posed; it corresponds to the case where 
the fin itself is inclined toward the wind direction with the value of 
v on the fin being equal to

	

(1 - cK'	 (iv.8i) 
2 

On the other hand, one finds for w(l)(z) 

dW( l )	 dW( l )	 = - w0 (i - 2)	 + 
dT	 dZ dT	 1 - c2sn2'r 

is, therefore, expressed as a function of T by an elliptic inte-
gral of the third kind. 

After having thus defined the solution U( l )(Z), V( l)(Z), w(l)(z) 

it is easy to obtain the one which is relative to the posed boundary 

problem; it suffices to add a solution U( 2 )(Z), V( 2 )(Z), W( 2 )(Z) so 

that

	

(i) ( 2 ) = ( 2 ) = (2 )	 o, on (CO) 

(2) w( 2 ) = 0, on OA and OA' 

() v( 2 ) = _v ( -), on the two edges of the cut CC' 

This flow is, except for the notations, the one which has been 
studied in section 3.1.1.7. In particular, the value of the func-

tion U( 2 )(Z) is written 

u( 2)z) = a	 c2	 v()	 -	 (iv.82) 
c2 ^ 1 E_-_c?'\ c2 + Z2) (i + Z2c2'2 

+ C ) 

One obtains thus the following general result: if one must on the 
fin have v = v0 , the value of the function u(z) is given by the formula
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(i+z2)(i+c2)	 1 u(z) =	 iog(1 - z2)(i - c2) - 2(Z2 + c2)(i + c2z2) 

2c2 - 2
	

+	 - c2)K'	 (i - z2) 
2it 

+ c2)E 
+ 2)L	

(z2 +	 ^ c2z2) 

(Iv.83) 
One will see that in the case where v0 _.O and c 2 —>1, one finds, 

at the limit, the result foreseen in the case where the fin bisects the 
Mach cone (li-.3.2.1); and that, if c—.O, one falls back on the solution 
of section 3.2.2.1 (equation (111.57)). One may then calculate the pres-
sure coefficient on the wing (Z real and positive), and finds 

2w0 + c cos Cp_[a

2
I2v 

- 72)L 

putting

l-x wO(	
c2)K	

2 
-	

-	 1x2(i - 2) + 

2p	 2c 
7= 

l+p2	 l+c2 

- Crossed Wings 

To terminate these few remarks regarding the calculation of the 
effects of dihedral, we shall give a few indications regarding the case 
of crossed. wings. 

Let us consider a cone flattened in two directions of the 

planes Ox1x2 , Ox1x3 . The function w on the two faces of the tn-

angle OAA' and the function v on the two faces of the triangle OBB' 
are known. 

Let us suppose that OB and OB' are symmetrical with respect to 
0x1x2 , and that OA and OA' are symmetrical with respect to Ox1x3; 

under these conditions the flow around the crossed wing is obtained in a
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particularly siniple manner. It suffices to superimpose the flow which 
is infinitely flattened into the plane 0x 1x5 and realizes the desired 

values for v, and the flow which 	 infinitely flattened into the 
plane 0x1x2 and realizes the desired values for w. In fact, due to 

the symmetry, the first flow gives a value of zero for w in the 
plane 0x1x, and the second a value of zero for v in the plane 0x1x. 

The case where the crossed wing does not admit two planes of sym-
metry cannot be treated as simply in the general case. Particularly, 
the case where the bounding generatrices are all entirely inside the 
Mach cone leads doubtlessly to analytical solutions which can be explic-
itly expressed only with difficulty, even in the elementary case. How-
ever, as in all these problems concerning the effect of dihedral, the 
solution is facilitated by the utilization of conformal representations. 
Although they are hard to obtain in explicit analytical form, they may 
be determined accurately by judicious utilization of the general method 
of electric analogies.
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APPENDIX 

No. 1 - Theorem of Existence and Singularities 

of the Solution for a Flow Infinitely 

Flattened in One Direction 

1. Generalities.- The source method which should be called more 
exactly the "method of the. fundamental solution of Hadamard" permits the 
general investigation of the flows about obstacles which are infinitely 
flattened in one direction. Several authors (compare ref s. 1, 2, 13, 

and 11 of the references for the appendix) have independently investigated 
this problem. We ourselves have studied this question in collaboration 
with M. R. Bader. Since the corresponding report (ref. 5) has not been 
officially published, we shall give here the results which seem to us 
original with regard to the investigations quoted. With the same nota-
tions as in the text, the problem may be formulated in the following 
manner (see fig. l)*: 

Find a solution cp(x1 ,x2 ,x13) satisfying the equation 

L(p) = 2	
-	

- a2p = 

	

x12	 x132 

and the boundary conditions: 

(i) at infinity upstream: tp = 0, grap = 0; 

(2) on (5), projection on 0x1x2 of the obstacle: 

	

= k(x1 ,x)	 for	 x3 = +0 

	

= k(x,x2 )	 for	 x3 = -O 

k+ and k are known functions which satisfy the conditibns of regu-
larity (II) relative to 	 p/x3 which will be specified below. 

*Figures for this appendix are found on pp. 332-1333.
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In order to pose the problem correctly, one must furthermore state 
exactly the hypothesis of regularity which one imposes on the solution; 
we shall denote by (R) the portion of 0x1x2 which corresponds to the 

wake of the flattened body on (s). 

(I) p is continuous, except for, eventually, across the 
plane x1 = 0 on (s) and (R). 

(II)The first and second derivatives of p exist and are generally 
continuous outside of (5); a possible exception may occur across certain 
characteristic surfaces where the derivatives may have either disconti-
nuities of the first kind at a regular point or infinities at an excep-
tional point. Nevertheless, they may have infinities on (5) in order 
to satisfy the hypothesis of linearization; p/x3 can become infinite 

only on parts of the boundary of (s) and only when one approaches it 
by remaining outside of (5). 

Furthermore, we shall assume cP/x 5 and p/x1 to be continuous 

if one traverses 0x1x2 at a point outside of (s). This hypothesis 

has an immediate physical significance for cp/x; the same holds true 

for cp/x1 if one recalls that this quantity is proportional to the 

pressure. In other words, only 

first kind across 0x1x2. 

Finally, p can be divided 
even parts with respect to x. 

problem), p/x = 0 outside o 

problem), cP/xi = 0 in 0x1x2 

the hypothesis (ii).

can have a discontinuity of the 

(as in chapter iii) into its odd and 
If cp is odd in x (symmetrical 

r (s). If p is even in x5 (lifting


outside of (5) as it results from 

2. Fundamental formula.- We shall utilize the generalized formula 
of Green

Iff	 - vLudT = - rr c - V 
JJ>ILdv	

dvj 

is the surface having an element d which bounds the volume V 

having an element dT; the derivatives d/dv are the derivatives in the 

transverse direction. Thus one has, if 	 is defined by 

F(x1 ,x2 ,x) = 0 with F(x1 ,x2 ,x) > 0 outside of V
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d	 2F	 ?iF	 F 
dv	 xl x1	 x2 x2	 X5 x3 

Finally, utilizing the conception of the "finite part" of an integral 
originated by Hadamard, one may apply Green's formula to functions u 
and v which cause the employed integrals to become infinite. One 
then writes

JJT 
[ui(v) - vL ( u3j dT = - 1'1	 [	 - V 

JJLdV	 dv] 

Let us consider at a point P( 1 , 2,) ( > 0 for instance), the 

Mach forecone r and let us intersect it by the plane x 1 = -A where 

A is positive and very large, and by the plane x 3 = 0. We determine 

thus a volume V in the region x3 > 0, bounded by a surface >11. 
Admitting the existence of cp, we apply Green's formula to the pair 

U = cp(x1,x2,x3) 

v=H=
	 1 

- x)2 - 2 [(2 - x2) + () - x)2] 

H is the fundamental solution, in the sense of Hadairiard, for the 
wave equation. 

We cannot discuss here all the details and all justifications but 
we shall note the principal stages of the demonstration. 

(a) It is shown that the generalized formula of Green can be applied 
effectively to the pair cp, H, even if the derivatives of cp present 
discontinuities of the first kind, owing to (ii) which informs us that 
these discontinuities occur on characteristic surfaces. 

(b),For the part of	 situated on x1 = -A, the double integral 

becomes zero due to the boundary conditions. 

(c) On the cone F the double integral must be taken at its finite 
part. Let us introduce the cone	 with the equation
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-	 + (x3 -	 = ( 1 - €) 2 (x - 

and. the plane P8

(8>0) 

Since E and 8 are small, one will calculate the double integral on 

the surface adjoining	 , formed on one hand by FE and on the other 

by the circle C 8 , with the section of F made by the plane P8 . One 

can easily show that the contribution due to F has a finite part of 

	

zero, and that the one due to C 	 is -2iip(P). Consequently, one 

obtains, denoting by h the section of (I') by x3 = 0,. the relation 

cp(p) =J:_ f"f' p—d--- rr H—da 
2it JJh	 X3	 2ic JJh	 X3 

(d) In order to eliminate p in the second term, one may apply the 
image method utilized by V. Volterra in an analogous problem. Let P' 
be the symmetric point of P with regard to 0x 1x2 ; let us apply Green t s 

formula to the volume V situated in x > 0, bounded by the 

planes x1 = -A, x = 0, and the Mach forecone of P' by putting 

	

u = cp(x1 ,x2 ,x)	 v = if = H(P') 

One thus obtains 

°=jT P_thl-LjjllP_do h	 2n	 h 

and since for x = 0

H=H
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one has

rrP—da=-

	

UUh	 X3	 iJh	 X3 

Combining this result with the preceding one, one obtains the desired 
fundamental formula 

	

cp(P) - rr H —da = JT	 il_ da 
' UU	 X3	 tih	 x3 

3. The theorem of existence for the symmetrical problem.- In a 
symmetrical problem dp/dx3 is known on every face of x3 = 0; conse-
quently (p may be calculated in the entire space. The existence of 
the solution will be established if one verifies that this function p 
satisfies L(cp) = 0, the boundary conditions, and the conditions of 
regularity. 

(a)L(cp) = 0, for the functions k(x 1 , x2 ) satisfying the 

hypothesis of regularity; one may calculate the derivatives of p by 
deriving under the sum sign with respect to the coordinates of P. 
Since only H depends on these coordinates and H satisfies L(H) = 0, 
the result follows from it as Hadaznard has shown in a very general 
manner.

(b) In order to verify the boundary conditions, one must show that 

	

= inn	 - TJ'	 T— da = 1

	

0 
3(l23)	

3	 > 0	 h

(3>O) 

This verification is easy if one puts 

3 
X1 = l + (1 - t.t)siñ e	 = 2 -	 cot 0 

in the integral and then going to the indicated limit. 

(c) Verification of the conditions of regularity leads to a careful 
study of the behavior of p and its derivatives. We can give here only 
the conclusions of this study.
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+ A. In the plane 0x1x2 , let P and P be two points lined up 
with P so that

P+P = P-P = € 

(1) If there are only isolated points of discontinuity of cp/x 

on the Mach lines ahead of F, and if 	 is continuous at P 

p(P) = p(p- ) + o(€) 

that is, cp is continuous at F, of the order €. An analogous result 
is valid for the first derivatives 	 P/x1, p/x2. 

(2) If there is only a finite number of points of discontinuity on 
the Mach lines ahead of P and if P is a point of a supersonic line 
(compare chapter IV) of discontinuity for cp/x, p is continuous of 
the order e, but	 P/x1 and cP/x2 have discontinujtjes of the 

first kind. In particular, if the tangent to the line of discontinuity 
at P forms with Ox1 • the angle co, the discontinuities of 
and of P/x are connected by the well-known relati6n 

tanw 

x1)	 2tan2w - 1 

() If there is only a finite number of points of discontinuity on 
the Mach lines ahead of P, and if P is a point of a subsonic line of 
discontinuity, the first derivatives of p become infinite as log € 
when one tends toward P. 

() If there is a discontinuity of cp/x3 on an entire senent 

of one of the Mach lines ahead of P, the first derivatives of p become 

there infinite as 

B. Outside of the plane Ox1x2 one has the following results: 

(1) If the boundary of h is not at any point tangent to a line 
of discontinuity of P/x, and does not contain any finite part of 
such a line, the first derivatives of p are continuous and of the 
order €.
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(2) If the boundary of h is at certain points tangent to a line 
of discontinuity of cP/x3 without containing any finite part of 

such a line, P is situated on the characteristic surface which has 
this line of discontinuity as directrix, and. the first derivatives of 
(p admit discontinuities of the first kind at P when traversing this 
surface.

(3) If in exceptional cases the boundary of h contains a part of 
a line of discont.nuity of zp/x3 , the first derivatives of cp become 

infinite as e_V2 ; besides, such a point is necessarily isolated. 

All these results taken together show that the conditions of regu-
larity are satisfied which proves the existence of the solution found 
in this manner. 

•	 1. The theorem of existence for the lifting problem.- We shall 
insist less on the calculation of the solution, which one can find in 
the published memoranda quoted before, particularly in reference 1i, than 
on the study of its singularities. However, in order to make this 
investigation, we must indicate briefly the procedure of the calcula-
tion; we shall do so for the simplest case, the one where the edges of 
the wing are independent. (Compare fig. 2.) 

The fundamental formula permits the calculation of the potential 
when one knows cP/x3 on the entire plane 0x1x2. 

It is clear that this quantity is zero upstream from the line AMM, 

with 1M1 being the characteristic tangent to the leading edge of the 

wing.

In order to calculate this quantity in the regions where it remains 
provisionally unknown, it is advisable to make the change of variable 

xl - x2 =
k(x1,x2) = K(A,i) 

xl + x2 = 

If	 = .i1(?) and	 = 2() are the equations of the arcs P1N


and MNQ, one has at a point 7'o ' o of the region M1MNN1 (since in 

this region (p is zero) the equation
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I	 d7	 ________ 
_______	 _______ + 

= J	 A0 - A

	

1(A)	 0 - 

I

dA I	 d 
rslQ 

_____	 ____ 

=0 

AM	 UP.2(A) 

this equation entails the equality
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li.0
cp	 dli. 

0 - +
I

2 (A) 
K(A,) dt = 0 

which determines CP/x(A0 ,i.iQ) by the inversion of an equation of 

Abel. One finds (ref. Ii.)

'2 (A0) 

1	 ____________
dp.' 

- 
2(Ao)J	

K(A0,')2(A0) - 

Ii. - lt1 

thus one knows cP/x3 in the region M1NNN1. 

At a point where CP(A0,110) is not zero (for instance on the wake), 

one has

= 

which gives, after a double Abel inversion



2	 2(2)N

[o'2'2 

\J2 -

2 
It

d? 0 - 
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(2
	

r2(2) 
d4t0	 - - -

J 2(A2) J2 - I.Lo	

i ()

	 - 1.1 

2
	

dL0
	 p 

'
2 (2)
	

-	
'2
	

J2 - 

This equation contains two unknown functions, and in general it will be 
inipossible to determine them both without introducing a supplementary 
hypothesis. But if one supposes that: 

is continuous in Oxlx2 when traversing the subsonic trailing edge, 

it will be seen that it is easy to calculate first p on the wake, and 
then	 in 0x1x2 . The preceding equation is written 

20'2) 

	

_____________	 ____________ + = -	 1	

L(2) 

K(2,)d 

It	
- 2(? 2)	 - 

C2	 2('2) 
1 I	 ________	 ___________ 

I.	
°2(2)	

(RO -	 /2 ^ J iQ' 

(2
________	 K(A2,it) 

	

dp.0	 ___________ 

42. - 
°1(2)	

(o - 
) /2 - 

2	 I	 d.i0	 I	
tP)0t(A0,0) 

_______	 _______ d?o 

UP.2(\2)
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If one makes 2 tend toward t2(A2) with € oeing a small quantity, 

one sees that, according to the previous hypothesis, the second term of 
the second member tends toward cP/x3(A2,ii2) whereas the third tends 
toward zero. Let us moreover make the provisional hypothesis that the 
last term tends toward zero (this hypothesis will have to be verified 
later on), and we obtain 

K(A2,i)dt + 2 f\2 '[A0,22)] dA
0 = 0 

	

i() 
J 2 (A2) -	 J	 j '2 - 

However, since	 maintains in the wake a constant value on the lines 
parallel to Ox1 , it suffices to know, for instance, the values of the 

potential on the straight line QI (fig. 2) in order to know them every-
where. In accordance with this remark 

Ii2(APt) 

	

P'(AQ,1Q) dA
	 1 P	 K(A,i)	

dt 

JA1	
- A0	

-	 1(Ap1)	
2(Apt) - 

or

2(7\Pt) 

= - j	
A1 

if one defines A 1 by

A - APt = Q

K(A, ,ii) 

ji
i2( Apt) - 

We note that the circulation along the subsonic trailing edge is thus 
calculated. 

It remains to be verified that the provisional hypothesis adopted 
in the course of the calculation is well founded which can be accomplished 
without difficulties. One sees thus how the solution of the lifting 
problem can be determined.
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In order to establish that the calculated solution completely ful-
fills the problem that is the theorem of existence, one proceeds as in 
the syimnetrical case; thus the whole matter finally amounts to an inves-
tigation of the singularities of this solution; this investigation per-
mits a verification a posteriori of the conditions of regularity. In 
order to make this investigation, it is necessary to study first of all 
the behavior of P/x5 in the plane 0x1x2 . As before, we shall indi-

cate the results without demonstration. 

(a) Study of	 p/x in 0x1x2 . - First, one sees immediately that 

	

increases indefinitely as 	 when one tends toward the sub-

sonic leading edge MN, remaining outside of (5-). On the other hand, 
according to hypothesis, this quantity is continuous on the subsonic 
trailing edge NQ. We shall'now specify its behavior along the charac-
teristic NN1 ; a rather simple calculation which we cannot reproduce 

here, in order to avoid postponement of publication, permits to show that: 

Along the line	 =	 >	 P/x3 undergoes a discontinuity

of the first kind equal to

2 (AN) 
-	

2	 2(AN)	 2(N) - 

The manner in which cP/x) is calculated shows then readily that 

has no other discontinuities in the plane 0x 1x2 , outside of 

(s), of course. 

(b) Stiidy of the solution in Ox1x2 . - What has been said for the 

symmetrical problem remains valid by means of the following modifica-

tion: First of all, cp/x1 and CP/x2 become infinite like 

along the subsonic leading edge. On the other hand, a very important 
fact, the derivatives P/x1 and ?Jp/x2 undergo discontinuities of 

the first kind along the characteristics issuing from the boundary points 

between subsonic leading edge and subsonic trailing edge. [For cp/x1, 

however, such a discontinuity can occur only on (5).] 

• (c) Study in space.- The only really new fact to be pointed out is 
that across the Mach cones behind the boundary points between subsonic 
leading and trailing edges, the first derivatives undergo a discontinuity 
of the first kind.
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Final remarks.-

(a) We have adhered to demonstrating the existence of the solution, 
but the employed procedure of demonstration shows at the same time that 
the solution is unique. Consequently, every solution which corresponds 
to the hypothesis found by other methods (particularly by the method of 
conical and homogeneous flows) represents the unique solution to the 
problem posed. 

(b) One will also note that the supplementary hypothesis introduced 
along the subsonic trailing edge in the case of a lifting problem may 
also be expressed by saying that the pressure remains continuous along 
this line. This is an imnediate consequence of the investigation of the 
behavior of the solution. 

(c) We have not attempted to investigate here the most general type 
of surface (s). In general, the method can be applied by means of a 
few precautions (compare ref. 11. or ref. 5) . Nevertheless, there exist 
cases where the application of this method actually fails, for instance, 
the case where the wing does not possess a supersonic leading edge, or 
also for certain dispositions of the trailing edge. Figure ) shows such 
examples; if one traces a few Mach lines, one will understand immediately 
the reason for this failure. 

(d) One of the advantages of the method just described is the fact 
that it may be effectively applied to very general problems. Neverthe-
less, it does, in our opinion, not minimize the advantages of the method 
of conical flows, since in many particular problems arising in aeronau-
tics, the method of conical flows (and the method of homogeneous flows) 
lead in a simpler manner to the desired result. 

(e) The method of the fundamental solution has the great merit of 
permitting the study of the general conditions of the flow, particularly 
the study of certain pressure discontinuities which one encounters on 
the surface of the wing in certain lifting problems. 

No. 2 - On Homogeneous Flows 

We developed the theory of homogeneous flows 58 and gave a few 
applications in a recent article (ref. 7) . We shall give here a few 
supplements to the general study made in section l.3. If one puts 

58Simultaneously, this problem has formed the subject of an article 
by M. Poritzky (ref. 6). However, this author does not seem to us to 
have gone as far as we have in the investigation of the homogeneous 
flows.
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(n)	 - 
(p,q,r) - -' p•.	 q.	 r c,X1 ax2 ax3

(p + q + r = n) 

(n) 
the p,	 ., depend in a homogeneous flow of the order n only on 

p, q, r j 
X and e. Inside of the Mach cone (r) these quantities may be con-
sidered as the real parts of analytic functions of the variable Z 
defined except for an additive purely imaginary constant which we shall 
denote

(n)	 (z) 
(p,q,r) 

A problem of homogeneous flows is treated for the nth derivatives. 
These nth derivatives are connected by the relations of compatibility 
which may be expressed in the following manner: 

All the expressions

q 

	

p+q 
2Z	 2iZ \	 (n-p-q,p,q) 

(- )	 ^	 z2 - i,J	 dZ 

are identical whatever the integers p and q may be which satisfy the 
inequalities

o.p + q<n 

In order to express the boundary conditions with the nth derivatives, 
and to enter the nth derivatives into the calculation of the potential 
or of the pressure (c = _u), one will utilize a generalization of 
Euler's identity 

-	 Lx 
(1)	 + x2cp	 + x (i)	 i n 

	

- 
- l (1 , o,o)	 (0,1,0)	 3 (o,o,ij 

a formula in which one must use the following convention concerning the 
(k)

[(i)	 1P[(i)	 (l)	 i r = (p-i-q+r) 

L (1,o,oJ L( 0 , 1 , o)J L( o , o , 1 )J	 (p,q,r)
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One will find in the quoted article an application of these general 
principles to the case of the flows flattened in one direction. The 
methods used in chapter III can be generalized without any difficulties; 
also., one may utilize in this investigation the analo r of the electro-
lytic tank. A superposition of homogeneous flows permits, in a very 

simple manner, the investigation79 of a rather large group of ii wings: 
"the z wings with affine sections." 

No. 5 - On the Methods Utilized in Chapter III 

The exposition of certain problems of chapter III could be somewhat 
simplified not only by omitting certain intermediary calculations of 
wholly elementary character which we have mentioned to facilitate the 

reading, but also by employing slightly different methods 60 . First of 
all, as we have remarked in the text, certain simplifications appear if 
one places oneself in the plane z. Thus the synnnetrical problem may 
be solved by the same formulas whatever the position of the obstacle 
may be with respect to the Mach cone. Nevertheless one has to be very 
careful regarding the determinations of the solution when one passes 
from one case to another since the solution should be characterized by 
continuity. We have elected to utilize here the plane Z because the 
relations of compatability in Z do not cause the appearance of multi-
form functions and the theoretical difficulties are, consequently, of 
distinctly lesser importance even though the calculations may sometimes 
be a little lengthier. Particularly, the demonstration of the theorems 
of sections 5.1.1.5 and 5.l.l. 1 is markedly simpler if one utilizes the 
plane Z. Summarizing one may say that the plane Z is simpler theo-

retically while the plane z is simpler for t' ... calculations6l. 

Mr. Ward has stated the solution of certain elementary problems 
relative to obstacles flattened in one direction using a very elegant 
method (ref. 8). His study is based on a solution of the equation of' 
cylindrical waves given by Whittaker. With our notations 

59One will also refer to the article of Mr. Fenain which will 
appear shortly in	 Recherche Aronaütique tt ; in it one will find a 
complete study of a certain number of these particulars. 

6OIn conferences at the 'Centre d'Etudes suprienres de mcainq.ue 
(19l-9) we have made an exposition regarding conical flows flattened in 
one direction which is very different in form from the one given in 
this report. 

61The same may hold true for the electric analogies (compare on 
this subject the article of Mr. Fenain quoted before).
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p = f (x1 - x2 ch u + ix sh u)f(u)du 

is the potential of a conical flow provided that the contour C joins 
two points u1 and u2 so that u1 and u2 are roots of the equation 

x1-x2chu+ix3shu=O 

In contrast, the function f(u) is arbitrary. 

This very refined expression for p furnishes the relations of 
compatibility and permits solution of the particular problems. The 
homogeneous flows are given by the solutions of the wave equation of 
the form

(x - x2 ch u + ix3 sh u)nf(u)du 

In the case of homogeneous problems of the order n, it seein neverthe-
less difficult to state the boundary problem clearly and to solve it by 
this method without falling back on methods strictly equivalent to those 
reemployed.

No. 1l - On the Complementary Hypothesis at the 


Subsonic Trailing Edge 

The question posed in section 3.3, which we left pending, seems to 
admit a practically definitive answer; one must maintain the flows of 
the type II which give rise to a discontinuity of the potential along 
the wake of the wing. But as we have said before, this results from a 
hypothesis clearly formulated in the appendix No. 1 which may be stated 
as follows: 

The gradient of the potential is continuous across a subsonic 
trailing edge. All the remarks made in section 3.3 concerning the con-
sequences of this hypothesis remain valid. 

The most decisive argument in favor of this hypothesis is that it 
appears to be the simplest of all one may set up that insures the con-
tinuity of (p.
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In the case of conical flows infinitely flattened in one direction, 
we have seen that it entails a line of singularities following Ox1 

along which w is infinite when the body has a trailing edge. Such an 
occasion does not arise in the general case (compare appendix No. 1). 
All methods of chapter III can be applied to the calculation of the 
conical flows for which this complementary hypothesis must be taken 

into account. In particular, we have indicated elsewhere 62 how one must 
operate in this case for the analogical calculation of the solution. 

No. 5 - Remark on Sweptback Wings 

With Subsonic Leading Edge6 

The formula (flr.37) may be written also 

1	 nl 
c = -	 cos2y(l + 2 sin2y - M2cos2y) r ci(x)dx I	 ct()iogfx - X	

sin y(1 - M2cos2y) 3/2	 Jo	 Jo 

This formula lends itself well to 'an investigation of the optimum. We 
shall search, in fact', for the profile which, in delimiting a given 
area, provides a minimum drag; putting 

e(x) =
	

a(t)dt 

one is led to seek the minimum absolute value of the integral 

f' de(x)j de()logx - 

62Counicat ion to the 7th Congrs International de Mcanique 
applique (l9118). 

6	 . 
This remark has been made by the author in the course of his 

communication to the 7th Congrs International de Mcanique app1ique 
(l9118), quoted above.
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It is easily seen, and the fact is well-known to aerodynamists, that the 
solution of the function e(x) of this problem has the.form 

e(x) = kjl - 

that is, that the desired profile is an ellipse. 

The train of thought which leads to (IV.7) cannot be applied to 
the case where the profile has a tangent normal to the synetry axis; 
but according to a remark already made more than once, one may neverthe-
less assume that the obtained result does not lack connection with 
reality. 

This leads to the idea that, for a wing with subsonic leading edge, 
it may be practical to utilize profiles with rounded leading edges. 

One will note that this is not the case in supersonic regime. If 
one takes up this problem for a wing of intinite span normal to the wind, 
one finds readily that the optimum profile is formed by two symmetrical 
parabolic arcs. 

No. 6 - Remarks on Lifting Sweptback Wings With 

Sonic and Subsonic Leading Edges 

(Compare Section Ii-.l.2..2) 

The formula (P1.69) may also be written by putting 

o	 -	 - 2 ( +	 =	 = 
T10x+yx	 l+t2
	

x	 L + 

in the form

- 2) 

_________ to - 
_- ( 

+	 + t2)	 dt	

} 
2(o+ )i	 ^ t2	 4t02 -
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One could make the calculation of the C of the plate studied in sec-
tion Ii. . l.2.5.2 in a different manner by obtaining first the preceding 
integral, and integrating the pressures along the plate. Thus one finds 
that the Cp has in the region AA t A' t of figure 88 the simple value 

- - a I2(llo + yx) 
p_	 \Jx-2yx 

Along AA?t there exists therefore a pressure discontinuity equal to 

LC	 'a.	
x2yX 

x(x - 2yx) 

Besides, this discontinuity may be calculated immediately from the 
formula giving the C in making t0 tend toward zero since it is 
clear that the integral tends toward a finite value when t 0 tends 

toward zero. 

If the leading edge is subsonic, the same theory is applicable. In 
this case, the C cannot be expressed with the aid of elementary func-
tions6'1 . However, the pressure discontinuity along the Mach line issuing 
from A may be calculated directly. One will compare this important 
phenomenon with the general investigation made at the end of the appen-
dix 1 which anticipates the existence of such discontinuities on the 
Mach cones which have as vertices the ends of the subsonic leading edges. 

No. '( - Calculation of Fuselage Shaped Bodies 


With Infinitesimal Opening Angle 

At the end of section 11.2. )4 we indicated that by composition of 
conical flows one could give a complete study of any arbitrary spindle-
shaped bodies with infinitesimal cone angle. In a communication to the 
7th Congres International de Mecanique appliquee (September i9i-8), 
Mr. Ward described an elegant method based on a solution of the wave 
equation with the aid of symbolic calculation; this report has been pub-
lished (ref. 9) . We shall show here the accuracy of our anticipation by 

6 Compare an investigation of this problem with numerical applica-
tions in an article to appear shortly in "La Recherche Aeronautique.t'
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establishing through the method of composition of conical flows the 
fundamental formulas given by Mr. Ward. 

The notations which are not defined here are the same as those of 
chapter II. In this chapter we have shown that in the neighborhood of 
the obstacle, the complex velocity u(z) had the form 

IJ(z) =A3logZ+ 

with the A being numerical coefficients depending on the shape of 

the cone. Let us put

z = re 

as in the neighborhood of the obstacle

z-
2x1	 2x1 

and

U(z) = Ao (lo z + log	 +	
A	 fl 

2x1)	 i 
with the A' being new coefficients. Hence one deduces that the 

potential of perturbation has the form 

with

A" n+l 

=	 1 log z + I	 log	
dtl + 

}(z)	 A0

Jo 

with the A" denoting new numerical coefficients.
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More generally, the potential of the conical flow with infinitesimal 
cone angle, the vertex of which is situated in x1 = , r = 0, can be 

ecpressed (in the neighborhood of the obstacle) 

(P = 

with

rxl 
Ka( z ) =	 (a) xl	 a)log 

Z + J	 log	 +	
A' () (x - 

o	
2t	

1 

A superposition of conical flows the vertices of which are situated on 
Ox1 causes a flow which in the neighborhood of the obstacle depends on 

the potential

(1) 

where f(z) has the form 

f(z) =aologz+bo-1-

	

	 (2) 
1 Zn 

the coefficients a0 , b0, a being defined by the integrals 

	

a0 =
	

(x - 

b0= /	 dA13(a) I	 log--dt 

	

Jo	 Jo	 2t 

p Xi 

a = /	
(x1 - 

Jo



28+	 NACA TM 135)4 

One will remark immediately that 

xl	 x1-
b0 = a0 log - f	 (a) f	 log t dt 

= a log - 1 1 log(x1 - 

or

da 
b0 = a0 log - J	 a- log(x1 - 

Reciprocally, it is clear that under very broad conditions a func-
tion f(z) like (2) (in which the coefficients a 0 , b0, an are func-

tions of x1, a0, and b0 connected by (3)) determines by (1) the 

potential of a flow with infinitesimal cone angle in the neighborhood 
of the axis Ox1 . This constitutes the fundamental result of Mr. Ward. 

Thus we are in a position to construct such flows. The only theo-
retical question to be examined is the following: Can one. determine the 
coefficients an(xi) so that cp represents the potential of a flow 

around a given obstacle. We shall see that, visualizing the boundary 
conditions, we may answer this question in the affirmative. 

Let us designate by

r = F (e,xi) 

the equation defining the obstacle by Cx 1 the section of the 

abscissa x 1 and by cp1 the function of the two variables r and 9 

obtained by considering x1 in (p as parameter. 

The normal derivative of 	 along C1 is given by 

d(p	 1Fp 
Xl 

dn = F2 + (F/e)2
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Now the boundary conditions along C 1 are written, taking into 

account the usual approximations, 

F--!=F--
r FO9 

hence the relation

dcp1	 F-

	

dn -
	 + (F/e)2 

Thus one has, denoting by s and	 respectively, the arc of C1 

and the conjugate function of cp1 

dr ____ = F 

	

ds	 x1 ds 

The coefficient a0 is given by 

-	 ____ ds	 1 I	 F -. d9 = -	 - a0 if dijr	 fl2n 

ds	 = 2iJo	 x1	 2n dx1
Cx 

S(x1 ) denotes the area delimited by C ; the coefficients a are 

then obtained by solving an exterior Dirichiet problem for the con-
tour C 1 . Thus the flow around any obstacle with infinitesimal opening 

angle can be completely determined. 

Mr. Ward (ref. 9) has given in his memorandum splendid applications 
of these results. In particular, he has shown, taking for expressing 
the pressure the formula (1.11), that the total lift is uniquely expressed 
as a function of the coefficient a 1 of the terminal section of the 

obstacle and that the drag depended only on the coefficients an ( 
this sect ion.
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