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NOTICE

This report deals with a method of studying the equation of cylin-
drical waves particularly indicated for the solution of certain problems
in aerodynamics. One of the most remarkable aspects of this method is
that it reduces problems of a hyperbolic equation to problems of harmonic
functions. We have applied ourselves here to setting up the fundamental
principles, to developing their investigation up to calculation of the
pressures on the visualized obstacles, and to showing how the initial
field of "conical flows" was considerably enlarged by a procedure of
integral superposition.

Such an undertaking entails certain dangers. In France the exist-
ence of conical flows was not known before 1946. Abroad, this question
has, for a long time, given rise to numerous reports which either were
not published or were published only after a certain delay. Thus it
must be pointed out that some of the results here obtained, original in
France when found, doubtlessly were not original abroad. Nevertheless
it seems possible to me to specify a certain number of points treated
in this report which, even considering the lapse of time, appear as new:
the parts concerning homogeneous flows, the general study of conical
flows with infinitesimal cone angles, the numerical or analogous methods
for the study of flows flattened in one direction, and a certain number
of the results of chapter IV. Moreover, even where the results which we
found independently were already known abroad, the employed methods are
not always identical.

Another peculiarity should be noted. Since these questions actually
are everywhere the object of numerous investigations, progress has made
very rapid strides. This report edited at the beginning of 1948, risks
appearing, in certain aspects, slightly outmoded in 1949. To extenuate
this inconvenience we have indicated in a brief appendix placed at the
end of this report the progress made in these questions during the last
year. This appendix is followed by a supplementary bibliography which
indicates recent reports concerning our subject, or older ones of which
we had no previous knowledge.

I should not have been able to successfully terminate this report
without the advice and support of my teacher, Mr. J. Peres, and it is
very important to me to express here my great respect for and gratitude
to him.

I should equally cite all those who directly or less directly have
contributed to my intellectual development and to whom I owe so much:
my teachers of special mathematics and of normal school, Mr. Bouligand
who directed my first reports, Mr. Villat, promoter of the Study of the
Mechanics of Fluids in France whose brllllant instruction has been of
the greatest value to me.
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I also feel obliged to thank the directors of the O.N.E.R.A. who

have facilitated my task, and especially Mr. Girerd, director of aero-
dynamic research.
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PREFACE

With his research on conical flows and their aspplication, Mr. Paul
Germain has made a major contribution to the very timely study of super-
sonic aerodynamics. The present volume offers a comprehensive expose’
which had been still lacking, an expos€ of elegance and solid construc-
tion containing a number of original developments. The author has fur-
thermore considered very thoroughly the applications and has shown how
one may solve within the scope of linear theory, by combinations of
conical flows, the general problems of the supersonic wing, taking into
account dihedral and sweepback, and also fuselage and control surface
effects. The analysis he develops in this respect leads him to methods
which permit, either by calculation alone or with the support of
electrolytic-tank experimentation, complete and accurate numerical
determinations.

After a few preliminary developments (particularly on the validity
of the hypothesis of linearization), chapter I is devoted to the gener-
alities concerning conical flows. In such flows the velocity components
depend only on two variables and their determination makes use of har-
monic functions or of functions which verify the wave equation with two
variables according to whether one is inside or outside of the Mach
cone. Mr. Germain specifies the conditions of agreement between func-
tions defined in one domain or in the other and shows that the study of
conical flows amounts in general to boundary problems relative to three
analytical functions connected by differential relationships. He studies,
on the other hand, homogeneous flows which generalize the cone flows and
are no less useful in the applications.

From the viewpoint of the linear theory of supersonic flows one
must maintain two principal types of conical flows, bounded respectively
by an obstacle in the form of a cone with infinitesimal cone angle, and
by an obstacle in the form of a cone flattened in one direction.

The general investigation of the flows of the first type is entirely
Mr. Germain's own and forms the object of chapter II of his book. By a
subtle analysis of the approximations which may be legitimate Mr. Germain
succeeds in simplifying the rather complex boundary problem he had to
deal with; he replaces it by an external Hilbert problem. He shows how
it is possible, after having obtained the solution for an orientation
of the cone in the relative air stream, to pass, in a manner as simple /
as it is elegant, to the calculation of the effect of a change in inci-
dence. He gives general formulas for the forces, treats completely //
diverse noteworthy special cases and finally applies the method of trigo#
nometric operators which is also his own to the practical numerical
calculation of the flow about an arbitrary cone. .

The determination of movements about infinitely flattened cones has
formed the object of numerous reports. The analysis which Mr. Germain
develops for this question (chapter III) contributes simplifications,
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specifications, and important supplements. Thus he evolves, in the case
of an obstacle inside the Mach cone, a principle of minimum singularity
which enters into the determination of the solution. Mr. Germain gives
two original methods for treatment of the general case: one utilizes
the electrolytic-tank analogy, surmounting the difficulty arising from
the experimental application of the principle of minimum singularity;
the other, purely numerical, involves the trigonometric operators quoted
above.

In the last chapter, finally, Mr. Germain visualizes the composi-
tion of conical flows with regard to aerodynamic calculation of a super-
sonic aircraft. Concerning this subject he develops a complete theory
which covers most of the known results and incorporates new ones. He
concludes with an outline of the flows past a flat dihedral, with appli-
cation to the fins and control surfaces.

The creation of the National Office for Aeronautical Study and
Research has already made possible the setting up of groups of investi-
gators which do excellent work in several domains that are of interest
to modern aviation and put us on the level of the best research centers
abroad. Mr. Paul Germain inspirits and directs one of those groups in
the most efficient manner. He is one of those, and the present report
will suffice to bear out this statement, on whom we can count for the
development of the study of aerodynamics in France.

Joseph Peres
Member of the Academy of Sciences
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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1354

GENERAL THEORY OF CONICAL FLOWS AND ITS APPLICATION
TO SUPERSONIC AERODYNAMICS*

By Paul Germain

CHAPTER I - GENERALITIES ON CONICAL FLOWS

1.1 - Equations of Supersonic Linearized Flows

1.1.1 - General Equation for the Velocity Potential

Let us visualize the permanent irrotational flow of a compressible
perfect fluid for which the pressure p and the density p are mutual
functions. The space in which the flow takes place will be fixed by
three trirectangular axes O0x), Oxs, Ox3, the coordinates of a fluid

molecule will be x7, Xp, X3, the projections on Ox; of the veloc-
ity V and of the acceleration A of a molecule will be denoted by

u; and aj, respectively.

The fundamental equations which permit determination of the flow
are the Euler equations

A =-=grad p
P
or
P axl

the equation of continuityl

¥"La théorie générale des mouvements coniques et ses applications

a l'aérodynagique supersonique." Office National d'Etudes et de
Recherches Aeronautiques, no. 34, 1949.

e employ the classic convention of the silent index: Ba (pu )
X4
i
. ) ) 0
: — 4+ —
is to be read 5 l(pu]) S 2(puz) 5 3 (pu3)
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div oV = O ) 0 (1.2
1v pvV = or g— (pu i) =0 . )

and the equation of compressibility

p = £(p)
If one notes that
du;
_ i
ai = uk -BT (1‘3)
k
and introduces the sonic'velocityz
2 _dp - ,
c = — Io
i | (T.1)

the equation (I.l) assumes the form

ouj 13 _ _1dpdd _ _c2 (1.5)

We introduce the velocity potential ®(x1, X0, x3), defined with
the exception of one constant, by

N
V = grad ¢ w =90

zThe velocity of sound, introduced here by the symbol dp has a

. dp
well-known physical significance; it is the velocity of propagation of
small disturbances. This significance frequently permits an intuitive
interpretation of certain results which we shall encounter later on
(see section 1.1.4k).
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which is legitimate since we shall assume the flow to be irrotational.
If we make the cembination

e o2 » S
ik Juy Ox; Oxp Oxj OXy

one sees, taking into account equations (I.5) and (I.2), that

0 % % _ .2 d%
dx; Oxg %y Oxg | © 3.2 ~ (2.6)
1

This equation is the general equation for the velocity potential.
One may show, besides, that c¢ 1is a function of the velocity modulus;
thus one obtains an equation with partial derivatives of the second
order, linear with respect to the second derivatives, but not completely
linear.

The nonlinear character of the equation for the velocity poﬁential
makes the rigorous investigation of compressible flows rather diffiecult,
at least in the three-dimensional case.

In order to be able to study, at least approximately, the behavior
of wings, fuselages, and other elements of aeronautical structures, at
velocities due to the compressibility, one has been led to introduce
simplifying hypothesis which permit "linearization" of the equation for
the velocity potential.

1.1.2 - The Hypotheses of Linearization and Their Consequences

For aerodynamic calculation, one may assume that the body around
which the flow occurs has a position fixed in spagce and that the fluid
at infinity upstream is moving with a velocity U, U being a constant
vector, the modulus of which will be taken as velocity unit.__ye shall
always assume that the axis Ox; has the same direction as U; the

hypotheses of linearization amount to assuming that_g} every point of
the fluid the velocity is reasonably equivalent to U.

We put in a more precise manner
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u, v, w are, according to definition, the components of the "pertur-
bation velocity."

(1) u, v, w are quantities which are very small referred to
unity; if one considers these quantities as infinitesimals of the first
order, one makes it at least permissible to neglect3 in the equations

all infinitesimals of the second order such as uz, vz, uv, etc.

(2) All partial derivatives of u, v, w with respect to the
coordinates are equally infinitesimals at least of the first order so

2
that one is justified in neglecting terms such as u ég_’ v , ete.
aXl BXZ

One may deduce from these hypotheses a few immediate consequences:

(a) At every point of the field, the angle of the velocity vector
with the axis Oxl is an infinitesimal of the first order at least.

Hence there results a condition imposed on the body about which the flow
is to be investigated; at every point the tangent plane must make a
small angle with the direction of the nondisturbed flow (this is what
one calls the uniform motion, defined by the velocity 73).

If one designates by q the velocity modulus, one has, taking the
hypotheses setup into account
g2 = (1 +u)2 +v2 + w2 =1 + 2u
whence
ag=1+u
(b) The pressure p and the density p differ from the values 123

and P which these magnitudes assume at infinity upstream only by an

infinitesimal of the first order; the equation (1.5) is written in effect

2
du_ _ _ %1 9p

Bxl Py Bxl

3This signifies that u, v, w may very well not be infinitesimals
of the same order; in this case one takes as the principal infinitesimal
the perturbation velocity component which has the lowest order.
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with cq denoting the sonic velocity at infinity upstream; thus

clz
u = - —(o - pl) (1.7)
P
On the other hand, according to equation (I.k)

P -p =70 - pp) = -ppu

If one defines the pressure coefficient CP by

one has

C, = -2u (1.8)

(e) Finally, an examination of what becomes of the equation for the
velocity potential (equation (I.6)) under these hypotheses shows that it
is reduced to

%o - c. 2 2% + e + %
2 132 32 3.2

0%y Xy X X3

Let @(xl,xz,x3) be the "disturbance potential," that is, the

potential the gradient of which is identical with the disturbance-
velocity vector; @(xl,xz,x3) is the solution of the equation with

partial derivatives of the second order

2 .
1o 3% _d% |, % (1.9)
2 2 2 2
Cl Bxl

sz 8x3

a completely linear equation.
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The Mach number of the flow is called the dimensionless con-

_)
stant M = lQJ which, with the velocity unit to be chosen arbitrarily,
c

1
is written here M = l/cl.

We put: e(M2 - l) = Bz, with € Dbeing equal +1 or -1 according to
whether M 1is larger or smaller than unity.

(1) If M <1, equation (I.9) is written

2 2 2
g2 90,97 +acp2=0

BXlz aX22 6X3

an equation which may be easily reduced to the Laplace equation.

This equation applies to flows called "subsonié" because the velocity
of the nondisturbed flow is smaller than the sonic velocity at infinity
upstream. These flows will not be investigated in the course of this

reporth.

(2) If M >1, equation (I.9) is thus written

g2 %0 _ 3%, 3% . (1.10)

Bxlz szz 5x32

This equation applies to "supersonic" flows; if one interprets Xy

as representing the time +t, this equation is identical with the equa-
tion for cylindrical waves, well-known in mathematical physics. Investi-
gation of this equation will form the object of this report.

Remarks.

(1) It should be noted that, in order to write the preceding equa-
tion, it was not necessary to specify the form of the equation for the
state of the fluid. In particular, the formulas written above do not
introduce the value of the exponent 7y of the adiabatic relation p = kpy
which is the form usually assumed by the equation of compressibility.

LLInvestlgatlon of linear subsonie flows has formed the object of
numerous reports. See references 1 and 2.
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(2) The preceding analysis shows clearly‘the very different char-
acter of subsonic flows which lead to an elliptic equation, and of
supersonic flows which are represented by a hyperbolic equation.

(3) When we wrote equation (I.9), we supposed implicitly that

M2 - 1 was not infinitely small, that is, that the flow was not "tran-

sonic," according to the expression of Von Kirmin®. Thus it is impossible

to make M tend toward unity in the results we shall obtain, in the
hope to acquire information on the transonic cased.

(4) 1t may happen, in agreement with the statement made in foot-
note 3, that u is an infinitesimal of an order higher than first. In
this case, one will take up again the analysis made in paragraph (b) of
section 1.1.2, which leads to a formula yielding the Cp, more adequate

than the formula (I.8)

Cp = -2u - (2 + wB) (1.11)

1.1.3 - Validity of the Hypotheses of Linearization

Any simplifying hypothesis leads necessarily to results different
from those which one would obtain with a rigorous method. Nevertheless,
it was shown in certain numerical investigations on profiles (two-
dimensional flows) where the rigorous method and the method of lineari-
zation were applied simultaneously that the approximation method provided
a very good approximation for the calculation of forces. Besides, it
1s well-known that the classic Prandtl equation for the investigation of

5Study of the transonic flows, with simplifying hypotheses analogous
to those that have been made, requires a more compact analysis of the
phenomena. It leads to a nonlinear equation, described for the first
time by Oswatitsch and Wieghart (ref. 3). From it one may very easily
deduce interesting relations of similitude for the transonic flows
(ref. 4). One may find thesé relations also, in a very simple manner,
by utilizing the hodograph plane.

In a general manner, according to the values of M, one may be led
to neglect certain terms in the final formulas found for the pressure
coefficient C This requires an evaluation, in every particular case,

of the order of magnitude of the terms occurring in the formulas when M
varies. In this report, we shall never'enter into such a discussion.

We shall limit ourselves voluntarily to the general formulas. An inter-
esting example of such a discussion may be found in the recent memorandum
of E. Laitone (ref 5).
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wings of finite span in an incompressible fluid furnishes very acceptable
results, and the Prandtl equation results from a linearization of the
rigorous problem.

It happens frequently, we shall have occasion several times to point
it out, that the solution found for u, v, w will not satisfy the
hypotheses of section 1.1.2 in certain regions (for example in the neigh-
borhood of a leading edge); eventually certain ones among these magnl-
tudes could even become infinite.

Under rigorous conditions such a solution should not be retained.
Anyhow, if the regions where the hypotheses of linearization are not
satisfied are "sufficiently small," it is permissible to assume that the
expressions found for the forces (obtained by integration of the pres-
sures) will still'remain valid. This constitutes a justification
a posteriori for the lineerization method so frequently utilized in
numerous aerodynamic problems7. Therefore, we shall not systematically
discard the solutions found which will not wholly satisfy the hypotheses
we set up.

1.1.4 - Limiting Conditions. Existence Theorem

Physically, the definition of sonic velocity leads to the rule
which has been called the "rule of forbidden signals" (see footnote 2
of section 1.1.1) and which can be stated as follows:

A disturbance in a uniform supersonic flow, of the velocity U
produced at a p01nt P, takes effect only inside of a half -cone of
revolution of the axis U and of the apex half-angle o = Arc 31n(l/M
(B cot a) a is called the Mach angle, the half-cone in question 'Mach
after-cone at P.

Correlatively, one may state that the condition of the fluid at a
point M (pressure, velocity, etc.) depends only on the character of
the disturbances produced in the nondisturbed flow at points situated
inside of the "Mach fore-cone at M;" the Mach fore-cone at a point is
obviously the symmetrical counterpart of the Mach after-cone with respect
to its apex.

If oneé wants to Justify this rule from the mathematical viewpoint,
one must start out from the formulas solving the problem of Cauchy and
take into account the boundary conditions particular to the problem.
Along the obstacle one must write that the velocity is tangent to the
obstacle which gives the value d@/dn. Moreover, at infinity

7For instance, in the investigation of vibratory motions of infin-
itely small amplitude about slender profiles.
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upstream (xl = -w) the first derivatives of @ must be zero, since @

is, from the aerodynamic viewpoint, only determined to within a constant,
it will be assumed zero.

The charactéristic surfaces of the equation (1.10) are the Mach
cones. If one of the Mach cones of the point P cuts off a region (R)

on a surface (Z),'the classic study of the problem of Cauchy8 shows
that the value of ® at P is a continuous linear function of the
values of ® and of d?/dn on R:

Let. us therefore consider a point M of a supersonic flow such
that its fore-cone does not intersect the obstacle. We take as the
surface %~ a plane x; = -A, with A being of arbitrary magnitude.

On £, ¢ and d%/dn, which are continuous functions, will be arbi-
trarily small. Consequently the value of ® at M is zero. Thus one
aspect of the rule of "forbidden signal" is justified.

Let us suppose that the forward-cone of M cuts off a region r(M)
on the obstacle; on r(M), d@/dn is given by the boundary conditions;
thus ®(M) 1is & linear function of the values of @ on r(M).

One sees therefore that, if one makes M tend toward a point Mo

of the obstacle, one will obtain a functional equation permitting the
determination of @ on the obstacle, at least in the case where the

‘existence and uniqueness of the solution will be insured9. Consequently,
®(M) depends only on the values of dP/dn in the region r(M); this

justifies the fundamental result of the rule of "forbidden signals."1O

1.1.5 - General Methods for Investigation
of Linearized Supersonic Flows

In a regen@ articlell dealing with the study of linear supersonic
flows, Von Karman indicates that two major general procedures exist for

8For the problem of Cauchy, relative to the equation for cylindrical
waves, see for instance references 6 and T.

98uch & method has been utilized by G. Temple and H. A. Jahn, in
their study of a partial differential equation with two variables (ref. 8).

105 more exact investigation of this question may be found in
appendix 1, at the end of this report.

1lgee reference 4. A quick exposé of the methods in question may
also be found in the text, in reference 2.
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the study of these flows, one called "the source method," the other
"the acoustic analogy."

The first is an old method and its theoretical application is
fairly simple. It consists in placing on the outer surface of the
obstacle a continuous distribution of singularities, called sources,
the superposition of which gives at every point of the space the desired
potential; the local strength of the sources may, in general, easily be
determined with the aid of the boundary conditions. The second method
utilizes a fundamental solution of the equation (I.10), the composition
of which permits one to obtain the desired potential; this procedure is
interesting in that it permits utilization of the Fourier integrals and
thus furnishes, at least in certain particular cases, rather simple
expressions for the total energy. ‘

Von Karman also indicates, at the end of his report, a third general
procedure, that of conical flows.

We intend to investigate in this report the conical flows and
the development of this third procedure which utilizes systematically
the composition of the "conical flows" and, more generally, of the flows
which we shall call "homogeneous flows of the.order n." We shall see
that this procedure permits one to find very easily, and frequently
with less expenditure, a great number of the results previously obtained
by other methods, and to bring to a successful end the investigation of
certain problems which, to our knowledge, have not yet been solved.

1.2 - Generalities on Conical Flows

1.2.1 - History and Definition

Conical flows have been introduced by A. Busemann (ref. 9) who has
given the principal characteristics of these flows and has indicated
briefly in what ways they could be utilized in the investigation of
supersonic flows. Busemann gives as examples some results, frequently
without.proof. Several authors have supplemented the investigation of
Busemann: Stewart (ref. 10) has studied the case of the lifting wing A
to which we shall come back later on; L. Beschkine (ref. 11) has fur-
nished a certain number of results but generally without demonstration.
We thought it of interest to attempt a summary of the entire problem.

One calls "conical flows" (more precisely, "infinitesimal conical
flows" )12 the flows in which there exists a point O such that along

127ne adjective "infinitesimal" is remindful of the fact that the
flows have been "linearized;" we shall henceforward omit this quaiifica-
tion since no confusion can arise in this report.
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every straight line issuing toward one side of O, the velocity vector
remains of the same value.

Let (n) be a plane not containing O, normal to the vector Tﬁ
let us suppose only that the velocity vector at every point of () 1is
not normal to (x); the projection of these velocity vectors on (=)
determines a field of vectors, the lines of force of which we shall
call (7): the cones (o) of vertex O and directrix (y) are "stréam
cones" for the flow.

More generally, let (S) bve a stream surface of the flow, passing
through O; every surface deduced from (S) by homothety of the center O
and of k, k being an arbitrary positive number, is a stream surface.
(8) is not necessarily a conical surface of apex O, but having (S)
given as an obstatle does not permit one to foresee the existence of
such a flow. It is different if a conical obstacle of apex O 1is given;
the designation "conical flow" is thus Jjustified.

Conversely, let us consider a cone of the apex O, situated entirely
in the region X1 > 0, and suppose that a linearized supersonic flow

exists around this cone; this flow is necessarily a conical flow such .
as has Just been defined; in fact, if V( l,xz,x3) denotes this veloc1ty

field, V(XXI,XXB,XXj) (A veing any arbitrary p051t1ve number) is
equally a velocity field satisfying all conditions of the problem; con-

sequently, if the uniqueness of the desired flow is_admitted,. must
be constant along every half-straight line from O
Let us also point out that according to equations (I.8) or (I.1l),
the surfaces of equal pressure are also cones of the apex O.
1.2.2 - Partial Differential Equations Satisfied
by the Velocity Components

According to definition, the velocity components of a conical flow
depend only on two variables; on the other hand, as functions of xq,

131t should be noted that this argument will no longer be valid
without restriction in the case of a real supersonic flow around a cone
because in this case the principle of "forbidden signals" is no longer
valid in the rigorous form stated. Among other possibilities, a detached
. shock wave may form upstream from the cone behind which the motion is
no longer irrotational.
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X3, X3, they are naturally the solution of the equation

g2 % _ o%r , off
2 2

~

2

Bxl aXZ ax 3

Let us first put

Xo = I cOs 6 x3 =71 sin 6

the equation then assumes the form

2 2 2
p2 O°f _9f ., 1 o°f ,

= (1.12)
Bxl2 dré  ré de2

ol [
O/IO/
R [H

The second “erm of equation (1,12) is actually nothing =lse but
the Laplacian of f(xl,xz,x3) in the plane Xo x3 (xl being con-

sidered as parameter); naturally f(xl,r,e) is periodic in 6, the

period being equal to 2x.

To make the conical character of the flow evident, let us put
= Brx (1.13)

X 1is a new variable; X < 1 characterizes the exterior of the Mach
cone with the apex 0, X > 1 characterizes the interior of the cone.
Under these conditions, the disturbance—velocity»compdnents are func-
tions only of X and 6. Since f 1is a function of X and 6 only

a2 - 2 02 + 2% ax ap + L 392 4 OF a2y 4 BL 42g
N ox o8 o T 36

but

dx = Bl—r(dxl - BX dr)

a%x = L(dle - px dr - 2 drdx 3 , g X drz)
pr r
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2% % Pr o
2’ arz’ 392’ or

are the respective coefficients of dxlz, drz,
ox
1

dez, d®r in the expression of d%f as a function of the vari-
ables Xy, T, 0.

As a consequence, the equation (1.12) becomes under these conditions

2
(x2-1)§—f+-a-2—i:+xa—f=0 (T.14)
2 362 oX

One may try to simplify this equation further by replacing the
variable X by the variable &, X and & being connected by a rela-
tionship X = X(t), and by making a judicious choice for the func-

- tion X(&). The first operation gives

(2 - 1)§Ei s x2 3L, Qi[%x' - fééi:;l)lﬁ%;l= 0
_ =

N o2  of

with the primes denoting derivatives with respect to &. For simplifying
of

this equation, one may make the term in SE disappear. This will be

realized by putting
(1) £ x >1,
X =ch & (1.15)

one obtains for f Laplace's equation

2 2
off , 3 _ g (1.16)
>t g
(2) If x <1,
X = cos 7 (1.17)

in this case, one obtains the equation for waves with two variables

.a_zi - a_2£ =0 (1.18)
M2 62
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Geometrical interpretation.- X > 1 corresponds to the interior of
the Mach rearward cone (I') of the point O0; every semi-infinite line,
issuing from O, inside of .this cone, has as image a point 6, &. One
will assume, for instance, -n< 8 n; & =0 corresponds to the
cone ('), & =« corresponds to the cone axis (it will always be pos-
sible to assume £ as positive). The image of the interior of (I')
forms therefore on the region (A) of the plane (6,t) (fig. 1), limited
by the semi-infinite-lines AT, A'T' and by the segment AA'. The
correspondence is double valued in the sense that to a semi-infinite
line issuing from O there corresponds one point and one only (6,t)
in the bounded region and conversely, to one point of this region there
corresponds one semi-infinite line, and one only, issuing €from O,
inside of (I').

- Since we shall suppose, in general, that the cone investigated is
entirely in the region x; > O, only this region will be of interest

(P then being identically zero for x3 < 0). The semi-infinite lines
of this region issuing from O, outside of ('), correspond to 0 < X <1

(fig. 2), that is, according to equation (I.17), 0 <7 < %; n=20

corresponds to' the cone (F), N = L to the plane x; = O; the semi-

infinite lines issuing from O correspond biunivocally to the points
of the region (A'), inside of the rectangle AA'B'B in the plane (6,7).

Sunnning up, the velocity components satisfy the simple equa-
tions (I.16) and (I.18), the first of which is relative to the region (A),
the second to the region (A').

1.2.3 -~ Fundamental Theorem

The equation (I.14) which represents the fundamental equation of
our problem is an equation of mixed type; it is elliptic or hyperbolic
according to whether X 1is larger or smaller than unity. In order to
study this equation in a simpler manner, we have been led to divide the
domain of the variables into two parts and to represent them on two
different planes. How an agreement will be reached between the solutions
obtained for f in the two planes - that is the question which will be
completely elucidated by the following theorem which will be fundamental
in the course of our investigation.

Theorem: There exists "agreement” as to X =1 for all derivatives of

f, defined in either the region (A) or (A'), provided that there is

"agreement" for the function itself.




NACA T 1354 . ‘ 15

In fact, let us take two functions f,(6,t), f5(6,n), the first
.satisfying the equation (I.16) in the region (A), the second the equa-
tion (I.18) in the region (A'), both assuming the same values ©(8) on
the respective segments (£ =0, -n <6 <x) (41 =0, -n <0 < x). Let

3
6y be the abcissa of a point of AA'. If ——HL(BO,O) exists,
. 06
df : 3
l(60,0) = QEQ; consequently ———2(60,0) exists and
on ae™ Je"

of,
o1

P 4
(90;0 = SEHQ(GO,O)

Let us now pass to the investigation of the derivatives of the

order n of the form —9f _: the equation (I.14) shows first that
n-1 .
X6 _
f 3%r '
(6,1) = - (Q,l)

which proves that all partial derivatives of the order 1 with respect
to X have the same value on (I'), whether they are calculated starting
from f; or from f,. The argument develops without difficulty through

recurrence. By deriving equation (I.1%) n times with respect to X
and making X = 1, one obtains

(2n + l)QE:li +n2 OF OB
ad+t 0%

NP
6P
as a function of the derivatives of @(6) with respect to 6 and that
they, consequently, have the same value, whether calculated starting
from fl or from fz.

which finally shows that the values can be uniquely expressed

Summing up, one may say that it is sufficient for the establishment
of the "agreement" between two solutions defined in (A) and (A'), if
these solutions assume the same value on the segment AA'.
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1.2.4% - Mode of Dependence of the Semi-Infinite
Lines Issuing From O

If one puts in the plane (96,7)

6 +1 =2\ -1 =2u (1.19)

one sees that the characteristics of the equation (I.18) are the parallels

to the bisectrices A = c¥®, p = c'®. These characteristics are, in

the plane (1,8), the images of the planes

x; ='Br cos(2r - 6) and x; = Br cos(6 - 2pu)

which are the planes tangent to the cone (I'). The characteristics
passing through a point so(eo,qo) are the images of two planes tangent

to the cone (I'’) which one may lay through the semi-infinite Ay cor-
responding to the point ®g of the plane (6,n) (fig. 3). The gener-
atrices of contact are characterized on the cone by the values 61

and 8, of the angle 6. One encounters here a result which seems to

contradict indications of section 1.1.4k. This apparent contradiction
is immediately explained if one notes that, since all points of a semi-
infinite Ay issued from O are equivalent, one must consider at the

same time all Mach cones, the apexes of which are situated on Ag; the

group of these cones admits as envelope precisely the two planes tangent
to the cone (I') passing through 0Dy We shall call "Mach dihedron

posterior" to the semi-infinite Ay that one of the'dihedra formed by

the two planes which contains the group of the Mach cones to the rear of
the points of Ap. The region inside ot this dihedron and outside of '

the cone (I') has as image in the plane (e,n) the triangle 64 5qgf2 -
A semi-infinite 'A; will be said to be dependent on or independent of
Ay according to whether the image of /Ay will be inside or outside of
the triangle 67 ®@pf. This argument also explains why the equa-

tion (I.14) shows elliptic character inside of (I'). More precisely,
two semi-infinite lines 4y and A,, inside of (P), are in a state of

neutral dependence (ref. 9). In fact, let M; Dbe a point of 4, M,
a point of A,; let us suppose that M; 1is outside of the Mach forward

cone of M,; according to the argument of section 1.1.4 the point M,
seems to be independent of M;; but on the other hand, if one ‘assumes M’
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to be a point of /A, inside of the Mach forward cone of My, M
and M; are equivalent which explains that M, 1is actually not inde-
pendent of M; (fig. 4).

1.2.5 - The Conditions of Compatibility

Thus one may foresee how the solution of a problem of conical flow
will unfold itself. One will attempt to solve this problem in the
region (A') which will generally be fairly easy since the general solu-
tion of the equation (I.18) is written immediately by adjoining an arbi-
trary function of the variable 6 + 1 to an arbitrary function of the
variable 6 - n. This will have the effect of "transporting" onto the
segment AA' the boundary conditions relative to the region (A').
Applying the fundamental theorem, one will be led to a problem of har-
monic functions in the region (A). But taking as unknown functions the
components u, v, w, of the disturbance velocity, we have introduced
three unknown functions (while there was only one when we dealt with
the function ®). One must therefore write certain relationships of
compatibility which express finally that the motion is indeed irrotational.

The motion will be irrotational if u dxl + v dxz + W dx3 is an

exact differential which will be the case when, and only when

x; du + x, dv + X3 dw = r(BX du + cos 6 dv + sin 6 aw)

is an exact differential. This can occur only if this expression

is identically zero, with u, v, w being functions uniquely of @
and of X (the total differential not containing a term in dr must
be independent of r):

In a conical flow the potential is written

® = ux; + vXp + Wx3 = r(Bux + v cos 6 + w sin 6)

with u, v, w Dbeing the disturbance-velocity components.
One will note that @ 1is proportional to r.

Moreover

B du + cos 8 dv + sin 6 dw = O (1.20)
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This is the relationship which is to be written, and this is the
point in question, on one hand in the plane (6,n), on the other in the
plane (6,t). : :

.(a) Relations in the plane (6,7). One may write

and analogous formulas for v and w, A .and H being defined by the
relations (I.19). One has in particular

™M _u,u M2 u_u

. on 08 dp 96 On

Besides, according to equation (I.20)

]
o

B cos n du; + cos 6 dvy + sin 6 dwy
(1.21)

[l
o

B cos 1 duy, + cos 6 dvy, + sin 6 dws,

however: 8 = A + |4, 7 A= M and'consequently the first equa-

tion (I.21) is written
cos u[é cos A duy + cos A dvl + sin A dwi] +

sin p[% sin A dul'- sin A dvl + cos A dwi] =0

since the two quantities between brackets are unique functions of A,
the preceding equality causes

B cos A duy; + cos A'dvy + sin A dwy =0
B sin A du; - sin A dvy + cos A dwy = 0
or
pau = ko S (1.22)

cos 2\ sin 2\
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In the same manner one will show that

-B d.uz = = A ’ (1'23)

(b) Relations in the plane (6,t).

The calculation-is perfectly analogous.. The equation (I.16) causes
us to introduce the complex variable € =6 + i€ and the func-
‘tions U(t), V(t), W(f), defined with the exception of an imaginary

additive constant, the real parts of which in (A) are, respectively,
identical to u(6,t), v(6,&), w(6,E).

The equation' (I.20) permits one to write
B ch &£ dU + COSAG dV + sin 6 dW = 0
If one puts
6 + it =¢ 0 - it =7¢

one obtains

\ cos E[E cos & dU + cos £ av + sin & aw| +
2 2 2 2
E _
sin £ B sin £ dU - sin £ dv + cos £ dWw| =0
2 2 2 2

thence one concludes as previously

pay =V _ _ W S (L.2W)
cos { sin ¢

The formulas (I.22), (I.23), (I.24) express the relationships of
compatibility which we had in mind.

4
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Remark.

We shall utilize frequently the conformal representation for studying
the problems relative to the domain (A). If one puts, in particular

Z = eig = e'geie

one sees that (A) becomes in the plane Z the interior area of the

o &

circle (Cp) with the center and the radius 1 (fig. 5).

If one puts Z = peie, the point Z is the image of a semi-infinite
line, issuing from the origin of the space (xl,xz,x3), characterized

by the angle 6 and the relationship

1+ p2
2p

—_ =X

™
2]

The origin of the plane Z corresponds to the axis of the cone (r,
the circle (Cy) to the cone (') itself. A problem of conical flow

appears in a more intuitive manner in the plane Z +than in the plane €.
In the plane 2, the formulas (I.24) are written

B du = 224V __ 54y AW (1.25)
‘ 2 2
Z¢ + 1 2 -1

We shall moreover utilize the plane =z defined by

2 = —2Z
727+ 1

The domain (A) corresponds conformably to the plane =z notched by
the semi-infinite lines Ax, A'x' (fig. 6), the cone (I') at the edges
of the cuts thus determined, and the axis of the cone (I') at the origin

tho confusion is possible between the point O, origin of the sys-
tem of axes X3, Xp, X3 and the point 'O, here introduced as the

origin of the plane Z.
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of the plane z. The relations of compatibility in the plane =z then
assume the form

-BdU =z 4V = - Lz AW _ . (1.26)

dl - z2

1.2.6 - Boundary Conditions
The Two Main Types of Conical Flows

The boundary conditions are obtained by writing that the velocity
vector is tangent to the cone obstacle. Let, for instance, xo(t), x3(t)

be a parametric representation of the section X, = B of the cone;
x3x2' - x2x3', Bx3', -BXy! constitute a system of direction parameters
of the normal to the cone obstacle, and the boundary condition reads

wxz' - vx3' =

w |+

(x3x2' - x2x39 (1 +u) (1.27)

It -will be possible to simplify this condition according to the
cases. However, the simplification will have to be treated in a dif-
ferent manner according to the conical flows investigated. As set forth
in section 1.1.2, two main types of conical flows may exist.

(1) The flow about cones with infinitesimal cone angles, that is,
cones where every generatrix forms with the vector an angle which
remains small. Naturally, the cone section may, under these conditions,
be of any arbitrary form; since the flow outside of (I’) is undisturbed
(velocity equivalent to U), on the cone (') u, v, w are zero.

The problem may have to be treated in the plane Z; U(z), Vv(z),
W(Z) will have real parts of zero on (Co). The image (C) of the

obstacle, in the plane Z, is defined by a relation p = f(GY; conse-
quently, a parametric representation of the section X3 = B will be

obtained by means of the formulas

Xo = __EE__ cos 6 Xq = -—E——— sin ©

1l +p : 1+ p2
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Thus the condition (I.27) becomes

w1§ sin 6 - p' cos ® + p2(p sin 6 + p' cos Gi] +

with 6 taken as parameter, and p' denoting the derivative of p
with respect to 6. The investigation of conical flows with infinitesimal
cone angles will form the object of chapter II.

(2) The flow about flattened cones, that is, coneg, the generatrices
of which deviate only little from a plane containing U. Let us remember
that (section 1.1.2) the tangent plane is to form a small angle with Iﬁ
consequently, rigorously speaking, the section of such a cone cannot be a
regular closed curve, an ellipse for instance; it must present a lentic-
ular profile (fig. 7). In chapter III we shall study the flows about
such cones. '

Remark.

Actually, we have, therewith, not exhausted all types of conical
flows, that is, those for which linearization is legitimate. One may,
for instance, obtain flows about cones, the section of which presents
the form shown in figure 8; the axis of such a cone has infinitely small
inclination toward .

Before beginning the study of these flows we shall, in order to

terminate these generalities, introduce a generalization of the flows,
the possible utilization of which we shall see in a final chapter.

1.3 - Homogeneous Flows

1.3.1'- Definition and Properties

The conical flows are flows for which the velocity potential is of
the form

® = rf(6,x)

‘as we had seen in section 1.2.5. One may visualize flows for which

¢ = r’f(6,x)
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We shall call them homogeneous flows of the nth orderl®. The conical
flows defined in section 1.2 are, therefore, homogeneous flows of the
order I. However, we shall maintain the expression "conical flow" to
designate these flows since this term has been used by numerous authors
and gives a good picture.

The derivatives of the velocity potential with respect to the vari-
ables X1, Xz, X3 all satisfy the equation (I.lO). If one then con-

siders the derivatives of the nth order of the potential of an homogeneous
flow of the nth order, one finds that they depend only on X and 6 ‘
and satisfy the equation (I.14); the analysis made in section 1.2.2
remains entirely valid. One may make the changes in variables (I.15)

and (I.17) which lead to the equations (I.16) and (I.18). Thus one has
here a method sufficiently genersal to obtain solutions of the equa-

tion (I.10) which may prove useful.

The simplest flows are the homogeneous flows of the order O which
do not give rise to any particular condition of compatibility. For the
flows of nth order, in contrast, one has to write a certain number of

~ conditions connecting the derivatives of nth order. We shall exa.mine16
as an example the case of homogeneous flows of 2nd order.

There are six second derivatives which we shall denote $ij (i

and J may assume independently the values 1, 2, 3), Qij designating

——QEQ——. Outside of (TI') we shall put

1, . 2
P15 TPy T Py

with ©;;' being a function of A only, 9;;° of u only (see for-
mula I.19). Inside of ('), Qij is the real part .of a function @ij(ﬁ).

In order to obtain the desired relations, it is sufficient to note
that

15mhe definition for homogeneous flows of the nth order has been
given for the first time by L. Beshkine (ref. 11); this author, by the
way, calls them conical flows of the nth order. One may also connect
this question with the article of Hayes (ref. 12).

l6See appendix 2.
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and to apply the results of section 1.2.5; thus one may write the fol-

lowing six relations between the @ijl
1 1 1 1 1 . '
-B 4o, = —=— 3d9%. = —=——— 49, i=1,2
P a®y cos 2» 12 sin 2n» 13 ( »2,3)

which, besides, are reduced to five as one sees immediately One will

have analogous relations for the functions @i 2 (it is sufficient to

exchange the role of A and of W) .

Finally, one has for the analytic functions ®ij(§)

1 1
-B 4%., = do., = dad,
B doy cos £ 12 sin § 13

namely six relations which as before are reduced to five. The written
conditions are not only necessary but also sufficient since the func-

tions Qi necessarily are the components of a gradient. Thus one sees

that there is no difficulty in writing the conditions of compatibility
for a homogeneous flow of nth order.
1.3.2 - Relations Between the Homogeneous Flows
of nth and of (n-1)th Order
We shall establish a theorem which can be useful in certain prob-
lems and which specifies the relations existing between homogeneous

flows of nth and of (n-1)th order; we shall examine the case where n =

1.3.2.1.- Let us consider inside of the cone (') a homogeneous
flow of the order O defined by

= R[o(2)]

1.
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We shall first of all seek the components u, v, w of the dis-

turbance velocity

g&=dp+id9

Xp = I COS e ‘x3 =r sin 6

thus

dp _ pz +1 dxl _ X5 dx2 + x3 dx3
P p2 -1 Xl r2
2

doé =

r

whence one deduces
p +1 1 R[%@ :]

2 . ]
v = .Ccos6pt+l R[%Q,(Zi] 4 sin @ p Z@'(Z@]
R . =

w=.-8iné 0% +1 B—E(D'(Z[l _ g_oIs'_GEE‘@.(ZZ]

r pz_l
however
2 2
g+l oPe*L se+i P2 *Lging
Z p P
2 2 _
Z - & =P 1 cos 6 + i P sin 6
Z p p
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hence the fesﬁlt

1 p? -
g i)
v=xleZthtg( +1)a>'(z):|f (1.29)

W = -1_&_*_11%&@(22 - 1)q>'(z)j|
1 L2 |

1.3.2.2.- Let us now consider a point O (xl =€, X =0, X3 = O),

.€1 Dbeing a very small quantity. Let M be a point with the coordi-

nates (xl,r 9) with respect to 0, inside of (T'), and with the para-

meters (p,0) in the plane Z. For the conical flow (homogeneous of
1st order) with the vertex O0', its coordinates are: (x1- €3, r, 8) and
its parameters in the Z-plane:

2 €
+ 1
of1 - QE____.;L ,0
p? -1 X1

since
2 . 2 .
dX = =€ =Brp__ldp=x p lgg.
1 1 2 1 2 o
2p p-+ 1

Let us then consider two identical conical fields but with the
apexes O and O0', and form their difference. We shall obtain a

- velocity field which, due to the linear character of the equation (1.10),

will satisfy this equation. If

ug = B[F(Z):'

denotes the component u of the field with the vertex - O, one has as
component u in the "difference field"

=+REF(Z:' -R (z-%*—l-e—l-z> ° t1 l [ZF (Z:l (1.30)

p~ -1 S
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€] Dbeing considered as infinitely small. Moreover, according to the
relations (I.25), the components v and w are written

A E 2 gr— —
v = __1.9__1_1_5_ - ﬁ(zz + l)F’(Z)
X] p2 .1 "L 2 _
_ _ (1.31)
€ 2
w=-L0_* gl; B(z2 - 1)F'(2)
Xl p2_l—_2 ]

1.3.2.3.- Let us consider the point O"(O,ez,o), with €5, being
a small quantity.” Let M be a point with the coordinates (xl,r,O)

with respect to O, inside of (I'), with the parameters (p,0) in the

plane Z. For the flow with apex O0'', the coordinates of M are

sin @
r

M in m on the plane XpX3 (fig. 9). But on the other hand

(xl,,r - 62 cos 6, 0 + 62 ) as can be easily stated by projecting

2 2 '
rlel_p dp

= =€, cos 6
. 2
P 1 e?)
2%
rag=—L L 46 =¢,sin0
P 1+ p2
thus
6 1+ p? 1+ p?| 160
dz = e [ép + ip dé} = 62 ——— B|i sin 6 - cos § ———}e
2xy 1 - p?

with Z + dZ representing the point M in the conical field with the
vertex O''.

Let us then consider two identical conical flows, but with the
apexes O and O'', and form their difference. We shall obtain a
velocity field which due to the linear character of the equatlon (1.10)
will satisfy this equatlon If

vo = R[(2)
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denotes the component v in the field of the vertex 0, one has a com-
ponent v in the "difference field"

<
It

+5[G(z)] - B[G(Z + dzﬂ = -R[G'(z)dz]

-
_ S2B QE_i;L R|G'(Z) |cos 9(1 + pz) + i sin G(pz - li]ei%]

lepz_l |
_ _
€
=__ZE£¢_1Rmx(Z)(z+;)
2x) 02 _ 1~ z

L_ p—

€ 2
2 9_;}..5 - ﬁ.(zz + l)G'(Z)
“ef 17 2 - (1.32)

besides, according to equation (I.25), the components u and w are
written

) € 2 . B
u=-20_*1g zc*(zﬂ
X] g2 o1 Tk

' (1.33)

W = -CZEZ—”‘iREﬁ(ZZ - l)G'(Z{'
Xy pZ _ l-——?

J

1.3.2.4.- With these three lemmas established, it is easy to demon-
strate the property we have in mind. Let us call "complex potential" of
a homogeneous flow of zero order the function @(2Z) (section 1.3.2.1)
so that

0] =B_q>(z)]

so that the function of complex variable, the real part of which gives
inside pf (T) the projection of the disturbance velocity in the direc-
tion 1, is the "complex velocity" of a conical field in the direction l;
so that, finally, the velocity field obtained by the difference of two iden-
tical conical fields, the vertiges of which are infinitely close and

ranged on a line parallel to 1, is the "field derived from a conical

flow" in the direction 1; then we may state:
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__)
Theorem: The field derived from a conical flow in the direction 1 is

the velocity field of a homogeneous flow of zero order; the complex

pptential of that flow of zero order is proportional to the complex

_._)
velocity of the conical field given in the direction l, since the pro-

portionality factor is real.

The proof follows immediately. According to sections 1.1.2
and 1.1.3 one may be satisfied with considering, for definition of a
homogeneous flow, the inside of the cone (F); comparison of the for-
mulas (I.29), (I.30), _(>I.3l), (1.32), (I.33) entails thsiralidity of
the above theorem'iﬁ;’l is parallel or orthogonal to U. Hence the
general case where 1 is arbitrary may be deduced immediately; if
F(z), G(Z), H(Z) are the complex velocities in projection on 0xp,

0x,, Ox3, the expression for the component u of the field derived in
the direction Z(Gl,€2,€3) is

2
u=2 B *1p Z[elF’(Z) + €,G'(2) + €3H’(Z):l
X p2 _ 1

Thus, with €F(2) + €,G(Z) + €3H(Z) being the complex velocity in

projection on 1, comparison of this formula with the first formula (I.29)
completely demonstrates the theorem.

Corollary: The field derived in the direction of a conical flow,

—

1
: —
the complex velocity of which in the direction 1 is K(Z), is a

velocity field of a homogeneous flow dependent only on K(Z) (not on

—)
the direction 1).

The theorem just demonstrated may be extended without difficulty
to the homogeneous flows of nth and (n-1)th order. A statement of this
general theorem would require only specification of a few definitions;
however, since we shall not have to utilize it later on, we shall not
formulate this statement. ‘
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CHAPTER IT - CONICAL FLOWS WITH INFINITESIMAL CONE ANGLES*

2,1 - Solution of the Probiem

2.1.1 - Generalities

///WgAshall now treat the first problem set up in section 1.2.6. We
shall operate in the plane Z. Let us recall that the image of the
cone (r) is the circle (Cp) of radius unity centered at the origin,

and that the image of the obstacle is a curve (C), defined by its polar
equation p(8). We shall denote by (D) the annular domain comprised
between” (C) and (Co); we shall call (7o) the circle of smallest

radius centered at the origin and containing (A) in its interior, and

- we shall call k the radius of the circle (yg). In this entire

chapter;” k will be considered as the principal infinitesimal.

The problem then consists in finding three functions u(z), v(z),

e W(z) defined inside of (D) except for an additive imaginary constant,

so that

(1) “ 27,

- dU = av = 212 gy ‘ (1.25)

72 + 1 78 -1
(2) the real parts u, v, w, which are uniform become zero on (Co),
(3) on (C), one has the relation

v[é cos O + p! sin 6 + 02(p cos 6 - p' sin Gi] +

5
w{} sin 6 - p' cos 6 + pz(p sin 6 + p' cos 6{] = E%—(1 + u)

Put in this manner, the problem is obviously very hard to solve in
its whole generality; however, an analysis of the permissible approxima-
tions will simplify it considerably.

2.1.2 - Investigation of the Functions U(Z), V(z), W(Z)

2.1.2.1.~- An analytical function of Z will be the said func-
tion (A) if its real part becomes zero on (CO). Let us designate by

NACA editor's note: Some minor inconsistencies appear in the numbering
of equations in this chapter and subsequently in. chapters III and IV, but-no
attempt was made to change the numbering as given in the original text.
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(70') the circle with the radius l/k, centered at the origin, and by
(D') the annulus limited by (7o) and (ro') (fig. 10).

Lemma I.- A uniform function (A), defined inside the annulus

limited by (70) and (CO) may be continued over the entire domain (D').

This results itmediately from Schwartz' principle. Let M and M'
be two symmetrical points with respect to (CO), M %being inside of

(Co); ¢ne defines the function (A) at the point (M') as having,

respectively, an opposite real and an equal imaginary part compared to
the real and the imaginary part of the function given at the point M.

Lemma II.- A holomorphic function (A) inside of (D') has a

Laurent development of the forml T

ip + ZE: <§% - R;zﬂ)

1

Let H(Z) =h + ih' be such a function (A). Let us write its
Laurent development in (D') provisorily in the form

H(z) = :Ei:thn~+ j;: g%
0 1

It is an immediate  demonstration and yields the formulas defining Jn

and Kh

. EE an
Kh 2n 0

(h + inh')., eiPPg
70

17We remember that Ri denotes the conjugate imaginary of K,.
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(h + ih')70 denoting the value of H on (70); likewise

2n

n .
J. =k (h + ih')70.e'1n6d6

n
2n 0

Consequently, according to the lemma I:

moreover

1 ' ' 4z 1 2n . 21
Jn = — H(Z) & = = | h + ih' a0 = = h., ' dé
0~ 2ix ¢ () 7 Zn\/; ( )CO 2ndg co

is purely imaginary, and the lemma TII is therewith demonstrated.

We shall note that, if H(Z) is limited by M on (70) or (70'),
one has the inequality ’

K| < (11.1)

Lemma III.- A function (A) with a real and uniform part. defined

in (D) can be developed inside of (D') in the form

B log Z + iB + i (% - Enzn) (11.2)

1 Z

with B being real.

Actually, the derivative of the function (A) is necessarily uni-
form. Thus one knows (see for instance ref. 13) that one may consider
the given function as the sum of a uniform function H(Z) and a loga-
rithmic term; since the critical point of the logarithm is arbitrary
inside of (70), it is particularly indicated to choose this point at

the origin; since the real part of the function is uniform, the coeffi-
cient of log Z is real. Besides, since log Z has a real part zero
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on (CO), H(z) is itself a function (A). The given function may
therefore be continued inside of (D') and the development (II.2) is
thus justified.
Remark.

If one chooses as pole of the logarithmic term a point inside of
(70) but different from the origin, one obtains a development of the

form

® 1
Bl log —Z -aa -1 + iB + Kn _ KrnZn
aZ - 11 - a ZE: 7z .

1

2.1.2.2.- The functions U, V, W of the variable Z are all
three functions (A) with a real uniform part and, consequently, can
be developed in the form (II.2). We shall write henceforward

[e o]
J —
- B i _S_ n _ n
2U(z) AlogZ+1a.+l( an>

Vo

(11.3)

V(z) = B log Z + iB +Zw (ZK% - ann>

1

(e L _
W(z) =C log 2 - iy + g <—n- - ann>

I
T \¢

A, B, C are real, a, B, 7 are real and also arbitrary; but these
developments are not independent since the relations (I.25) must be

taken into account. For instance, Z dV/dZ must be divisible by 72 + 1;
otherwise we would have for U logarithmic singularities on the cone (r)
which is inadmissible. Now ' '

z%=§-zn(%+—xnzn>
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Hence one deduces the relations

= i ( - 1)P2p[K2p + KZI;]

1
e (II.4)

0= i( - 1)P(2p + l)[sz+1 - E2p+1£l

o’

obtained by putting in the preceding equality Z =3i and Z = -i.

Likewise, Z dW/dZ must be divisible by 2% - 1 which gives

-

= Z Zp(sz + fzp)
1
. ( (11.5)

=> (+ 1)(Lzps1 + Lopsa)
0

-

Finally, the equalities (I.25) lead, in addition, to relationships
connecting the coefficients of the developments (II.3) among themselves;
thus one may write the relations

B + 2K, = -il:c - ZL;’I K -K = -il:fl + Ll] (11.6)

nkK, - (n - 2)K, 5 = i[(n - 2)L, o + ;mr;] ,

and on the other hand
B = (3 + )
Ky = -A + 20, f (11.7)

nK, = (n - 1)J, 5 + (o +1)J, (n >2)
J
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2.1.2.3. Approximations for the developments (II.3).- Moreover,-
the hypotheses of linearization must be taken into account which, as we
shall see, will permit us to simplify the developments (II.3) considér-
ably and will lead us in a very simple manner to the solution of the
problem posed in section 2.1.1.

The equalities (II.6) make V(Z) and W(Z) seem of the same
order. We shall denote by M an upper limit of their modulus on the
circle (70). M will be equally an upper limit of their modulus on

(70') and hence in the entire domsin (D').

i

If one utilizes the inequality (II.l), (TI.4) shows that18
B = o(Mx?) K - K = o(mx?)

If one assumes a, B, 7 zero in what follows, which does not at
all impair the generality, one may write the second formula (II.3) in
the form

- 00 00

v(z) - g(KQ(%.- ) - g g"a - B log Z - ginzn " ig(xl)(% " z)

and consequently:

In the annulus limited by (70) and (CO), the second term of this
equality is

o(Mk210g )

Likewise according to equation (II.5)

¢ = ofmx?) Ly +I; = o(mx3)
w(z) - ig(Ll)(% + z) - 2 I;—g; C log Z + B(Ll)(% - z) - 2 T, z0

180 denotes Landau's symbol, A = O(Mkz) signifies that —AE is
Mk
limited when k tends toward zero.
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In the annulus comprised between (7 and (C thé second term
0 0/’

of.this equality is also
o(Mk21og k)

Furthermore, according to equation (II.6)

Kpp + ily_p = O(Mc") (n > 2)

Thus

w(z) - 1v(z) = O(Mkzlqg k) + 21K 2

in the annulus (70,00).

Finally, according to equation (II.T)

A = -k + 0fp3) Tp = BEL Ky + O(k™2)

Thus

0

- gu(z) = -R (K )1og 2 - 2K,7 + ; ntl % + O(M31og k)

Summing up: If one is satisfied with defining V(Z) and W(Z) except

for O(Mkzlog k) and U(Z) except for O(Mk3log k), one may write in
the corona (7O’CO)

w(z) = iv(Z) + 2iKy2 | (11.8)

v(z) = H(zZ) - K2 (1I1.9)



NACA TM 1354 37

with
H(Z) = Z % : (11.10)
T 2
and
'— 2 d.H . p—
u(z) = - 5 fz a3z 42 - 2Kz | (11.11)

The coefficient Ky may be supposed to be real, and the integra-~

tion occurring in equation (II.ll) must be made in such a manner that
B[p(zi] will be an infinitely small quantity of the third order at
least on |Z| = 1.

2.1.2.4 - Remarks.

(1) The.formula (II.8) which is the most important may be estab-
lished immediately from the second formula (I.25). However, the method
followed in the text, even though a little lengthy, seems to us more
natural; also, it shows more clearly the developments of the func-
tions U, V, W. >

(2) Strictly speaking, the hypotheses set forth in the course of
this study must be verified by the solutions found in each particular
case. We shall, however, omit this verification which in the usual
cases is automatically satisfactory.

(3) The results obtained by the preceding analysis and condensed
in the formulas (II.8), (II.9), (II.11) are in all strictness valid only
in the annulus (70,00), but not in the domain (D). However, it is

very easy to extend, by analytical continuation, thq definition of H
to (D). Let us now first suppose that (C) contains O in its
interior; since one may write V(Z) 1in the form

v(z) = H(2) - iinzn + B log Z
1

one sees that, since V(Z) is defined by hypothesis in (D), and one

can extend E Kth and B log Z inside of (70) up to (C), H(Z)
1
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may itself be defined without difficulty inside of (D). The case where
(C) does not contain the origin offers no difficulty; it is then suffi-
cient to utilize the development given at the end of section 2.1.2.1.

As to the order of the terms neglected when one writes the equal-
ity (II.9) in the domain (D), they are found to be O(Mk%log k) in
(D) in the case where there exists inside of (C) a circle of the
radius Ak (A and 1/A may be considered as O(1l)). Besides, if
that is not the cas€, one may justify the validity of the results of
the formulas (II.8), (II.9), (II1.10), (II.1l) by making a conformal
representation of the domain (D) on an annulus; the radius of the
image circle of (Co) may be assumed equal to unity; the image circle

of (C) has a radius infinitely small of first order with respect to

k and the study may be carried out in the new plane of complex variable
thus introduced, without essential complication.

2.1.3 - Reduction of the Problem to a Hilbert Problem

If one puts, according to the formula (11.8)
V=v+iv'

with v' denoting the imaginary part of V, one may write on (C) the
relation

Since one may, of course, with the accepted approximations, neglect u
compared to 1 in the second term of the formula (1.28), one sees that
this boundary condition (1.28) affects now only one single analytical
function, the function V(Z); this is a first fundamental consequence

of the preceding study. Formula (II.9) shows that this condition con-
sists in posing a linear relation between the real and the imaginary
part of H(Z) on the obstacle. Now according to equation (II.10) the
function H(Z) is a holomorphic function outside of (C), regular at
infinity; the problem stated which initially referred to an annular
area (D) is thus reduced to a Hilbert problem for the function H
defined in a simply connected region; exactly speaking, one has to solve
an exterior Hilbert problem. This is the second fundamental consequence
of the results of section 2.1.2.

Since we attempt to calculate V(Z) and W(2Z) not further than
" within O0(MxPlog k), and U(Z) within O(Mc’log k), the relation (I.28)
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which is written

2
R|(v - iw)|2Zp%d0 - i dz(l - pzﬂ = 20~ 3¢

may be simplified and reduced to

‘ 2
g[- idz(v - iw)] =§%-de

On (C);

A KiZ 1is, according to equation (II.1), of the order of Mk2,
and therefore )

consequently, H satisfies, on (C), the Hilbert condition

5[- iH(2) dZ] = -z-gﬁ e (I1.12)

2.1.4 - Solution of the Hilbert Problem

‘A function H(Z), holomorphic outside (C), regular and zero at
infinity, satisfying on (C) the relation (II.12) must be found. Let

v

a
z =2 +a, + 24
Z

0 c e , (11.13)

be the conformal canonical representation of the outside of (C) on
the outside of a circle (y) centered at the origin of the plane z;

the adjective canonical simply signifies that z and Z are equivalent
at infinity. :

On (y) we shall put
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r being constant and well determined. Let us put

F(Z) = i log % (II.1k%)
One has on (C) or on (7)
F'(z) 4z = i %Z = - = £() a6 ' (11.15)
with f Dbeing real; consequently
R|- g 2| -plim ® _1 _|-®g|; HZ)
- ae = ae F'(z) ae =|" F'(2)
and therefore equation (II.12) is written
. 2 .
rl1 B2)_|_ 02 40 (1I1.16)
=1 F'(2) B &

H(z)/F'(Z) 1is a holomorphic function outside of (C) and regular at
infinity. Following a classical procedure, we thus have reduced the
Hilbert problem to an exterior problem of Dirichlet.

Let G(Z) bve the holomorphig function outside of (C), real at

: 2
infinity; its real part assumes on (C) the values 2% %g. G(z) 1is

determined in a unique manner. According to equation (11.12)
H(Z) = -iG(Z)F'(Z) + icF'(2) | : (11.17)

with ¢ Dbeing a real constant.

However, we have seen (section 2.1.2.3) that the coefficient of l/Z
in the development of H(Z) around the point at infinity'(coeffi-
cient Ki) was real; now, around the point at infinity
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In order to have the development of the second term of the formula (II.17)
admit a real coefficient of 1/Z, € must be zero since G(Z) is real at
infinity. Thus the desired solution is

H(Z) = -iG(2)F'(2) (11.18)

With the function H(Z) thus determined, the formulas (II.8),
(I1.9), (I1.11) permit calculation of the complex velocities U(Z),
v(z), W(Z) within the scope of the accepted approximations. Thus the
problem posed in section 2.1.1 is solved.

Remarks.

(1) Uniqueness of the solution.- The preceding reasoning shows the
solution of the Hilbert problem satisfying the conditions (II.16) to be
unique. This result-will be valid for our problem if one shows that
every function satisfying the condition (II.16) is a solution of the
initially posed problem (condition (II.14)) which is immediate since it
suffices to repeat the calculation. '

(2) Calculation of the coefficient Ky .- According to what has been
said above, the coefficient Ky is equal to the (real) value assumed by
G(z) at infinity. In order to find G(Z), we may solve the Dirichlet
problem in the plane 2z; according to a classic result of the study of
2 40

dae

harmonic functions, K; 1is equal to the mean value of 2p on the

circle (7). Hence

2n 2 2
2n J B 4P nBJ () np

wherein S represents the area inside the contour (C).

2.2 - Applications

2.2.1 - General Remark

Let us consider a cone of the apex O in the space (Oxl,xz,x3),

the image of which in the plane Z 1is the curve (C), defined by its
polar equation p(6). According to the definition of p (see the
remark of section 1.2.5) the sections of this cone made by planes par-
allel to Oxzx3 are homothetic to the curve
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Xo = 2P o5 6 X3 = —20  sine (11.19)

l+p2 ].+p2

—_, In the case of the linear approximations, with grad u, grad v,
grad w being infinitely small (it would even be sufficient that they
should be limited), one sees that one may, within the scope of the
approximations of section 2.1, simplify the formulas (II.19) without
inconvenience and write them

Xo = 2p cos 6 X3 = 2p sin 6

hence the result,, essential for the applications.

The curve (€) in the plane 2Z is homothetic to the sections of
the cone obstacle made by planes normal to the nondisturbed velocity.

Let us likewise consider a cone with variable but small incidences

~ so that the flow about the cone should always be a flow in accordance

with the hypotheses of this chapter. One sees that if the orientation
of the cone varies with respect to the wind, the curve (C) in the
plane Z undergoes a translation.

2.2.2 - Study of a Cone of Variable Incidence

This last remark allows us to foresee that when a thorough investi-
gation of a cone has been made for a certain orientation with respect to
the velocity it will not be necessary to repeat all the work for any
other orientation. This we shall specify after having demonstrated the
following lemma.

2.2.2.1 - Lemma.- One may write on (C) that

2 _
ﬂi@:%g[zz Ql] (1I.20)

Actually, let us put
Z =pcos @ + ip sin 6 = X + iY

X and Y may be considered as functions of Q.
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Hence one deduces that

tan 6 =

ke Lo

and consequently

which establishes the formula (II.20).

2.2.2.2.- Let us now consider two contours (CO) and (Cl) defined
in the plane Z by two functions Z(O)(@) and 2(1)(®) such that

Z(O) = Z(l) + a, a Dbeing a complex constant determining the change in
orientation. In the development (II.13) which gives the conformal repre-
sentation, only the coefficient agy varies when one passes from the

contour (CO) to the contour (Cl). Consequently

z_—
dz dz

and the Dirichlet condition determining the function G(l)(z) is written
in the plane =z :

- B — dz Bl— dz - dz

(we have omitted superscripts for the quantities which retain the same
value, affected by the index O or 1). Consequently

Dy - o0 s + 2lats
¢ (z) = ¢ ()+B[:g(>]

since g(z) 1is a regular function and real at infinity, holomorphic out-
side of (7), the real part of which on (7) assumes the
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values R(az dz/dz), g(z) is then very easily determined. One has
exactly

Thence for the function H(l)(z), (since F'(2z) = i/z dz/daz)

(1) (2) = u(0)(2) + 2|gfr - d2) 4 o 22 az| . 21)
81 (z) = ® )()+B (1 dZ)+ ZZdZ (11.21)

The formula (II.21) gives immediately the solution of the problem of
change in orientation with respect to the nondisturbed flow.

2.2.3 - Cone of Revolution

We shall study first of all the case of the cone of zero incidence.
One may then do without the preceding analysis and obtain the solution
directly; that is what we shall do here. The curve () is a circle of

the radius p = c°€ = r; the relation (I.28) is written

arg
B(l + r02>

On the other hand, for reasons of symmetry

Vv cos @ + w sin 6 =

v sin 6 - wcos 6 =0

Hence one deduces immediately the values of v and w on (c)

2r. cos 6
v=_0""" W =

| 2r0 sin 0
% B(l + roz) B(l + r02>
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whence

2 2
ar 2r
v(z) = ————Jl—jr-ck - ) w(z) = i ____—9-_-_(l + z)
B(l -I'O )Z B(l - rOI*)Z
(11.22)
Finally the relations (I.25) permit the calculation of U
2 2
pau = - — %0 2z (1 +ZB\ _ b _To" 1
B - rot) 22 + 1\ 22 B1 -2
whence
r 2
u(z) = £ ---9--K 1log Z (11.23)
le—ro

We shall now study, returning to the method of section 2.1, the
case of a cone of revolution with incidence.

The formula (II.13) is written
z =2 -a
a being a constant which may be supposed to be real.

Consequently

F'(z) = Z f a

On the other hand, an immediate calculation shows that

38 _r(r + a cos @)

ae pz
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and consequently

whence

the calculation is easily accomplished; one finds

2
v(z) = & 7 1 -1 (II.24)
B 1(z - a)?
and
2 2
U(z) = ¥ E|log(z - a) - 22— - 2 + haz (1I.25)
BZ Z - a (z - a)z
since

Ko = +ha %;

In particular, one finds, if a = O, by means of the approximate
formulas (II.24) and (II.25), the same result as by the formulas (II.22)
and (II.23) under the condition of neglecting in these formulas the term

in roh of the denominator.

In order to give to these formulas a directly applicable form it
suffices to again connect the quantities a, r with the geometrical
data; for this purpose, one must use the formula defining p (p. 42).
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Figure 11 represents the cone section made by the aerodynamic plane

of symmetry; a is the semiangle at the apex, 7y denctes the angle of
the cone axis with the nondisturbed velocity.

One has immediately
2r = Ba 2a = By

Finally, we shall utilize for the calculation of C the for-

mula (I.11) since the velocity component u is 1nf1n1tely small com-
pared to the components v and w. This formula is here written

Cp = -z_fg[U(z)] - lv(z)l2 (1I.26)

According to equations (II.24k) and (II.25) one has

210g é% - a® - 72 + hay cos 6 + 2y%cos 26 (11.27)

CP = 2a

The case of the cone of revolution of zero incidence is obtained
by making ¥y = O. One finds then again a known result. The for-
mula (II.27) had already been given by Busemann (see ref. 9) without
demonstration.

2.2.4 - Elliptic Cone

We assume first of all the simplest hypotheses where, the
planes Ox)x5, Oxlx3 are symmetry planes of the flow (U is in the

direction of the cone axis), with the cone flattened out on 0xy %5
The formula (II.13) may be written in the form

or

a? ' a2
pcos O + ip sin 6 = (r + = cos ¢ + ilr - = sin @
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Hence one deduces successively

2 2
tan 0 = L—2_ tan @
ré + a

a6 _ cos20 r? - a® - (rz _ g_lt)i_
ae coszCP r2 + a? r2 p2

and

246 .2
@ B

w |
o)

l
0D
e
[\
|
’1'9’
[\VR BE
S’
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The Dirichlet problem, which permits calculation of G(z2), is
readily formulated; since G(Z) has a constant real part on the con-

tour (C), G(z) is constant:

' 2
az -3 - & F'(2) =1 — 32—
dz ZZ a2
z{l - =
Z
whence
H(z) = 2(p2 _27)_ 1
B re al
7 - =
z
and

H(Z) = 2(ye - ilt>_]:._
B rz ZZ - uaz

We note besides that K,a ‘= 0.
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One calculates V(Z) by the formula (II.9)

v(z) = 3(1-2 - ﬁ) —31 _ _z (11.28)

Pz -

and U(Z) by the formula (II.11l) which may also be written

-E-EH - K - fG dz—z - 2@2} (11.29)

u(z)

whence

U(z) 4

i}
%ol
[AV]
- R

[\V]
"SIQ’
N
~—
/;\
]
(453
N

)
N

[\
19>N
o

[\®]
~—_ -

or

(11.30)

2 _ 1.2 2 _ nal
U(z)=i<r2-§i)1ogz+\fzz La +\/z ha® - 2

82 2

If one makes 'a = O, one will find again the expressions already
obtained for U(Z) and V(Z) in the case of a cone of revolution of
zero incidence (formulas (II.24) and (II.25) in which one makes a = O).

We shall denote by ¢ and by n the principal angles of the
elliptic cone (see flg 12) One has

aZ)
e = Z(I‘ + S
. - aZ)
nB = 2<I‘ - &

whence

= £(c + n) aZ = B2 (& _ y2)
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The pressure distribution on the cone circumference is easily cal-
culated. It is sufficient to apply the formula (II.26); besides

2.2.
|v(z)|3 s ) 2
n cosz¢ + € sin2¢

and
2.2
BEJ(ZZl=€nlOgE(—€_+—ﬂ)_ +1 €T
N b qzcosz@ + ¢2s5in20
hence the final formula
, B(€+n)l €n
C, = 26| - log|=——2] - 1 + (11.31)
P b Z(nzcosz$ + ezsinzw)

The case wheére the velocity is not in the direction of the axis
may be treated equally by utilizing the formula (II.21). In this formula
one must put

HO(z) = 2(x2 _ &)1 az_, _a?
B I'z 8.2 dz 22
Z-—i— )
One then obtains
() -2(2 a2z ,z2|lzh .22 |, w? 22
B re/z2 - g2 B 2% - a2 22 22 _ @2

hence, remarking that
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and

On the other hand, we shall calculate U by utilizing the vari-
able z and the formula (II.20). The coefficient K, is equal to

r

K2=%(r2‘—4%>a.+arz-aaz

and U(z) is then given by the formula

w| 5

4 2 I 22;.2 + az a8l - qré 2
U(z) = = (r -—>(logz— >+ 2z° + az)| + &
g2 re 22 - a2 z(z2 - az)(. )

(11-32)

One will note that, if one puts o = O, one finds again the for-
mula (II.30), and that, for a = O, one finds again the formula (II.25),
except for the notations.

Thus one can, without any difficulty other than the lengthy writing
expenditure, calculate the pressure distribution coefficient on the
elliptic cone of any arbitrary orientation with respect to the wind.
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2.2.5 - Calculation of the Total Forces

We have already seen in section 1.2.6 that the normal to the conical
obstacle directed toward the outside has as direction parameters

%(x3x2' - x2x3'), x3’, -Xo'

Let ?? be the unit vector coincidental with this normal, s be
the area of the section with the abscissa Xy, L the length of this

section; one may make correspond to the resultant of the forces acting
on a section (xl, x] + dxl) a (dimensionless) vector

—> _ 1 -> .
¢, - - i:fcpn as (11.33)

situated in the plane x2x3, and a dimensionless number

' >
Cy = - %fcp(nU)ds (I1.34)

=
the vector C, characterizes the 1ift, the number C, the drag.

The integrals appearing in the formulas (33) and (34) are taken

along the section. Naturally C, and C, are independent of this
—_
section. One may also replace C, z» the real

and ;@gginary parts of which are equal to the components of the vec-
tor C, on Oxp and Ox3. For calculating equations (I1.33) and (II.34)

one may utilize the section Xx; = B. If we assume ! to be the length

by a complex number C

of the contour (C) in the plane 72, we may write, taking into account
the habitual approximations

_1
C, = Tf Cp 4z (I1.395)
c
and

Cx = - & R if CpZ dz (1I1.36)
c |
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with the integrals appearing in equations (II.35) and (II.36) taken in
the plane Z. These integrals present a certain analogy to the Blasius
integrals (ref. 13); Cp 1is given by the formula (II.26); unfortunately,
it is not possible to give simple formulas for the total forces since
the integrals (II.35) and (II.36) make use of all coefficients of the

conformal representationl9.

We shall apply the formulas (II.35) and (II.36) to the case of the
circular cone; C is given by equation (II.27)

P
dz=i-32&eiede EdZ:i#de 1 = nBa
One obtains}
C, = -2ay Cy = 2a3log f; - a3 - - (11.37)

In the case of the elliptic cone of zero incidence, C, is obvi-

ously zero

— . 2 . . 2 .
Z = re”i? 4 a? ei? dz = il}'e1CP - a? e"lﬂdq)

whence

» N 2x
CX = L rz - a f Cp a9
Bl 2/ Jdo

with C, being given by formula (11.31). Now

-7 2(n2cosz$ + ezsinap) P T]2 + 2l

19See appendix No. 7.
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As one can see immediately by putting
t = tan @

the calculation of this last integral is immediate.

Thus. one obtains

= 2nB 2,2 SRR S § .
Cy ) en[logﬂ(€+n) 2:\ (11.38)

with 1 Dbeing the length of the ellipse with the semiaxes <B %?.

2.2.6 - Approximate Formula for the Calculation of Cx

Let us consider the function U(z); according to formula (II.11)
and the remark 2 of section 2.1.4 one may say that the principal term
for U(z) is

Consequently, in first approximation

C, =2 —§§ log r

P ”

with S being the area inside of the contour (C), and r the radius.
of the circle (¥) on which one makes the conformal canonical repre-
sentation of (C). 1If one now calculates Cx, taking into account this

approximate formula, one has, according to equation (11.36)
cx=-—18—slogrgif2dz
nB3Z c

whence

2
Cx = + ﬁg_l log T - (11.39)
np
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We shall state: 1In every first approximation the value of the
drag coefficient CX is given by the formula (II.39).

2.2.7T - Case Where the Cone Presents
an Exterior Generatrix

If the contour (C) shows an exterior angular point, the various
functions introduced in the course of the study (first paragraph of
this chapter) present certain singularities. These singularities we
shall specify. Let Zy be the designation angular point of (C), and

On the angle of the two semitangents to (C) at the point Zo(0 <8 <1)
(see fig. 13); if. 2o 1s the image of the point Z; in the plane z,

one may write, according to a well-known result, in the neighborhood
of 7o) . ’

(), - -

with K being a complex constant and k = 1 - 8; consequently

k

[?'(Zi]o = Ki(z - zo)'k = Kz(Z - Zo) 1+k

with K, and K, being complex constants. F'(Z) thus becomes infinite
at the point Z = Zg.

In contrast, the function G(z) has, according to definition, a
real part which assumes on the circle (y) the values '

2 R|zz 42
B~ dz
This real part thus remains”finite on the circle (y) (and it
satisfies there a condition of Holder). According to a known theorem,
its imaginary part likewise remains continuous on (y) (and likewise

satisfies a condition of Holder). Consequently, one sees, if one refers
to formula (II.18) that
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k

H(Z) =-K3(Z_ i, ZO) 1+k

in the neighborhood of Z,; likewise, U, V, W will, in the proximity
k 1
+ Z-ZO

of this poinf, be of the order with respect to

Thus the analysis made in section 2.1 is no longer applicable to
this case. However, the formulas (II.35) and (II.36) show that if the
pressure coefficient assumes very high values in the neighborhood of
Z = Zg, the total energy remains finite.  According to what we have

indicated in section 1.1.3 we consider the solution still valid, with
the understanding that the values of Cp in the surroundings of Z = Zg

are not reliable.

2.2.8 - Delta (A) Wing of Small Apex Angle
at an Infinitely Small Incidence

If one puts in the formulas ré = az, at the end of section 2.2.k,

one obtains the pressure distribution on a delta wing with small apex
angle. Let us recall that a delta wing is an infinitely small angle.
Its angle, according to definition, is the half- angle @ at the vertex
(compare flg 14). Thus one has

wB = La

The formulas (II.31) and (II.32) are applicable to a delta wing of
small angle placed at an incidence also rather small.

Let us moreover assume that this opening is infinitely small with
respect to the incidence. Under these conditions, the formulas yielding
U(z) and V(Z) are written

+ 82 (@ - a)2 (1I1.%0)
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Actually one is Jjustified in omitting the second-order terms with
respect to a. For calculating Cp it suffices to apply the for-

mula (II.8); the second term of the second formula (II.LO) may be
neglected.

With the incidence 7y, the delta wing being parallel to Oxp, one has
7B = 2ia

Finally, one may put along the A
‘Z = 2a cos @ = %? cos @ .

One then finds

2wy
C, = —— IT.41
P sino : ( )

We remark further that ¢ is related to the angle V¥ of figure 1k
by

2VB = wp cos @ w=w_cgﬂ

One may state: the pressure coefficient on a delta wing of infi-
nitely small opening angle is independent of the Mach number of the flow.

One has

if one applies formula (II.35), one finds

Cz = imwy

This coefficient C, has not the same significance as the one
utilized in the theory of the lifting wing. Actually, it is, according
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to the very manner in which it was obtained, relative to the total area
of the A (pressure side and suction side); if one takes only one of
these areas into account, one must write (neglecting the factor -i)

C

g = 21wy

This formula has been found by other methods by R. T. Jones
(ref. 14). We shall find it again in chapter III, section 3.1.2.4, when
studying the general problem of the delta wing which is here only touched
on incidentally and for the particular case of a A with infinitely-
small opening angle.

2.2.9 - Study of a Cone With Semicircular Section

As the last application, we shall tgggt the case of a cone with
semicircular section, with the velocity U being directed along the

intersection of the symmetry plane and of the face plane of the cone?0
(fig. 15). '

" The contour (C) in the plane Z then is a semicircle, centered
at the origin, of the radius a (fig. 16).

One obtains very easily the. conformal canonical representation of
the exterior of this contour, on the outside of a circle (y) of the
radius r, centered at the origin of the plane 2z, by means of a par-
ticular Karman-Trefftz transformation (ref. 13, p. 128) which is written

3
-i%—lz .
Z -a _lz =-re
Z+a .ST} (11.%2)
—1;

Z - re

a and r are connected by the relationship

ha = 3rJ§

In order to obtain the correspondence between the circle (y) and
the contour (C), one must distinguish two cases. Let us put

z = rel®

20guch a cone formed the front of supersonic models planned by
German engineers.
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(1) - % <P < %%, the corresponding point of (C) is on the arc

of the circle.

Let us put under these conditions

iv

Z = ae

and we shall find according to formula (II.42):

3
. (@ T\ =
51n(— + ——J 2
tan g - | —2 12/ (I1.43)

o2 + )
s1n(2 + 17

ZE 1lx
(2) z <P < z

ment AA'; let us put under these conditions

the corresponding point of (C) is on the seg-

" Z =a cos X

The formula (II.42) shows that

3
sincg + {%) 4

tan X = |8 1o/ (II.4k)
e
Slnz 12

The two last formulas define completely the desired conformal -
representation. Figures (17) and (18) give the variations of V¥ and X
as functions of @. .

We shall have to utilize equally the value of dz/dZ. The simplest
method for obtaining this value consists in logarithmic differentiation
of the two terms of formula (II.42). One thus obtains the result

dz _ 22 + irz - r
dzZ 2 2

(I1.45)
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If one has - % < P« %?, one must put in the preceding formula
z = rei?® 2 = aeiw
whence
dz - r®1+25inQ (i(P-¥) _ B 1+2sin® i(@-¥)  (11.4¢)
dZ 5,2 sin ¥ 27 sin V
If ¢ 1is comprised between %? and 5%5, one puts 2z = reiw,
Z = a cos X. Thus one obtains
e
. i(=-0
gg _161+2sin® c (2 ) (11.47)
21 gin2y
The function G(Z) has as its real part B[%Z g%ﬂ, that is
A
2l gr —8inV ¢ _ 2o < I
8 1+2sin® 6
> (11.48)
0 ir [Xco i
6 6

The analytic function

NN
QJIQJ
N [N

“has a real part which, on (7), assumes these same values. This func-
tion is regular at infinity, holomorphic outside of (7), but with a

pole z = -ir, with the corresponding residue being equal to -ia®.
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Let us then consider the function .

az(g dz _ 1z - ir)

This function is holomorphic outside of (y). It is regular at

infinity; its value at infinity is equal to a%/2. On (7), these real
and imaginary parts satisfy Holder conditions. This function is there-
fore identical with the desired function G(z).

Hence one deduces according to equation (II.18)

2/ _Z2 _1 z - ir gg)
2 2z z + ir dZ

Finally, the calculation of U(Z) may be carried out with the aid
of formula (II.29)

2 . .
de_Z=azlogZ-a_fZ_-ﬁd_Z=a2(10g__Z'._+%logz)

Z 2 z + ir 2z z + ir
and
ZH - K, =a2f1-12Zdzz-dir 1\ _28%f _z-irZzdz
1 2 2dZ z + ir 2 2 z + ir z dZ
whence
2 : LK, 2
U(z):Q_Z_‘EEQ%_1+_KL+21og_L_+logz
B\z + ir z dZ al z + ir

The calculation of the coefficients Ré offers no difficulty what-
soever; however, as one had already opportunity to note, the term Rzz

. does not accur in the calculation of the pressures along the cone.
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This pressure distribution along the cone calculated with the aid
of equation {I1.26) is represented in figure 19.

2.3 - Numerical Calculation of Conical Flows With

Infinitesimal Cone Angles

2.3.1 - General Remafks

In the preceding paragraph, we have studied a certain number of
perticularly simple cases. However, if the cone (C) is arbitrary, it
will be necessary to carry out various operations leading to the solu-
tion by purely numerical procedures.

Let us analyze the various operations necessary for the calculation:

(1) The conformal canonical representation of the exterior of (c)
on the outside of the circle (y) must be made; this calculation per-
mits, in particular, determination of the radius r of (7), corre-
spondence of the points of (C) and of (), and calculation of the
expression dZ on the contour (7).

(2) The function G(z), holomorphic outside of (7y), regular and
real at infinity must be determined, the real part on (y) of which is
known; we shall designate it by g(®). 1In fact, it suffices to know,
on (y), only the imaginary part of G(z), for instance g'(®); g'(®)
is the conjugate function of g(®) and is given by the formula

on
g (9) = i—f g(9')cot L= =2 3o
21 0 2

This formula is called "Poisson's integral."

(3) With these two operations accomplished, the values of H(z) on
the circle (y) (formula (II.18)) are known which provides the values
of v and w on the cone; u 1is obtained by the formula (1I1.29). The
only new calculation to be made is that of the expression:

s[- fog]- Jorw

the constant of integration being determined so that wu should have a
mean value zero on (7). :
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All these operations always amount to the following numerical
problems:

(a) With a function given, to calculate its conjugate function
(Poisson integral)

(b) With a function prescribed, to calculate the derivative of the
conjugated function

(c) With a function prescribed, to calculate its derivative®l,

We shall justify this result in the following paragraph by showing
that the operation (l) may be performed by applying the calculations (a),
(b), (¢). We shall then indicate a general method, relatively simple
and accurate, which permits solution of these problems. We shall ter-
minate this chapter by giving an application.

~

. 2.3.2 ~ Conformal Canonical Representation
"of a Contour (C) on a Circle (7)

) The numerical problem of determination of the conformal canonical
representation of a contour (C) on a circle (y) has been solved for

the first time by Theodorsen?2. We shall briefly summarize the principle
of this method, simplifying, however, the initial exposé of that author.

Let us suppose, first of all, that the conmtour (C) is neighboring
on a circle of the radius a, centered at the origin (fig. 20); in a
more accurate manner, putting on (C)

z = ae¥*i® (1I.49)

with V being a function of 6, V¥ = ¥(6), we shall suppose that V(9)
av '

and 55 are functions which assume small values. We shall then call

©

21If the conformal representation of the exterior of (C) on the
outside of (y) is known in explicit form, it will naturally be suffi-
cient to apply operation (a).

22Compare references 15 and 16. One may achieve this conformal
representation also by the elegant method of electrical analogies (ref. 17);
the time expenditure required by the experimental method and by the purely
numerical methods here described as well as the accuracy of these pro-
cedures are of the same order of magnitude.
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() "quasicircular." 'Let ® be the angular abscissa of the point of
(7) which corresponds to the point of (C), the polar angle of which
is 6; we put

=9 + €(9) P =6 - ¢€(o) (11.50)

€() and €(P) representing the same function but expressed as a
function of 6 or as a function of @; we shall put likewise

V(P) = V(o)
The desired conformal transformation may be written
7 = zeh(z)f

with h(z) being a holomorphic function outside of (7y), regular and

zero at infinity. The equality (II.50) becomes, if one writes it on the
circle (7),

ae\F(CP)+i|:(P+E(CP)] = rei(peh(z)

whence
n(z) = %Tf(cp) + ie(@) + log S (11.51)

Finding the conformal representation of (C) on (9) amounts to cal-
culating the functions V(p) and <(p). First of all, one knows (equa-
tion of (C)) that

Y(p) = \VEP + ?(fpﬂ (11.52)

On the other hand, according to equation (11.51), <€(®) 1is the conju-
gate function of ¥(p), and consequently

(o) = él-;j:ﬁ W-(@.')cot(sglz;(p)dq)' | (1I.53)
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the integral being taken at its principal value. There is no constant
to add to the second term of equation (II.53), for ¢(9)  has a mean
value zero since h(z) is zero at infinity. For the same reason, if
WO denotes the mean value of W(@) in an interval of the amplitude 2x

r = ae@b (11.54)

an equality which will permit calculation of r if V(?) is known.

In order to calculate €(®) and V(?), one disposes therefore of the
relations (II.52) and (II.53); one can solve this system by a procedure
of successive approximations.

We shall put first
According to equation (II.S52)

() = V(o)

and according to equation (II.S53)
1 2n ,
€ (0) = —-f Y(8')cot 8 -9 49
2n 0 2
Thence a first approximation for ¢

From it one deduces, accordlng to equation (II. 52), a first approxima-
tion for V(o)

") - \IflEpl * E1(([)1)]

whence a second approximation for the function ¢
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o 1 szn = o Naar 71 =%
GZ(‘E l) = é; o Wl(ch )COt —2— dfPl

ez(e) = 62[% - el(ei]

whence

0, =6 - c(0)  0=9, +E(v,)

The procedure can be followed indefinitely.

The convergence of the successive approximations forms the subject
of a memorandum by S. E. Warschawski (ref. 18). We refer the reader
who wants to go more deeply into that question to this meritorious
report.

From the practical point of view one may say that the convergence
is very rapid; two approximations suffice very amply in the majority of
cases; the different changes in variables which encumber the preceding
exposé are very easily made by graphic method. Thus one sees that the
numerical work essentially consists in calculating twice the inte-
gral (II.53). This calculation i precisely the object of the prob-
lem (a) stated at the end of section 2.3.1.

If the contour (C) is not "quasicircular;" one may make, first
of all, a conformal representation which transforms it into the "quasi-
circular" contour (C'); one will then apply the preceding analysis to
the contour (C'). For certain cases it will be quicker to use a direct
method. Let us assume, for instance, that (C) is a contour flattened
on the axis of the X (compare fig. 21) and for simplification that

" X'0X 1is permissible as the axis of symmetry.

Let us suppose that X varies along (C) from -a to +a while
|Y| remains bounded by - ma (with .m being, for instance, of the order
of l/lO); it will then be indicated to operate as follows:

We put along (7)

Z=%E@)+jg@ﬂ
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One has
X(®) =f cos ? - g sin @
C (11.55)
Y(®) = f sin ® + g cos @
or also
f=Xcos® +Y sin®
> (II.56)
g=Ycos®P - Xsin®

f(®) is an even function of @, g(®) is an odd function
£(0) = +f(n) = a - g(0) = g(x) =0

The functions X(®) and Y(®) have to be found. Let us take as
starting point

XO(Q) =a cos @

an approximation which would be definitive if (C) were an ellipse.

On the contour (C) one reads the corresponding value Yo(w), and

by means of the second formula (II.56) one obtains a first approximation
gl(@) = Yo(@)cos o - XO(@)sin )

fl(@) will be given by a Poisson integral

nan .
£1(¢) = 3;&/“ g1 (P)eot L= ap' + 2y
and g 2

with )\ being a constant, such as f1(0) = a.

Owing to the formulas (II.SS), one has a first approximation X;(?),
Yl(@) for the functions X(¥), Y(?). One proceeds in.the same manner,
reading off on (C) the functions Y,(®) corresponding to X;(¢), then
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calculating .
g,(?) =Y,(9)cos ¢ - X;(p)sin ©
and
1x .
£2(9) = an . go(?" )cot ‘P—zﬂi P’ + Ay
ete.

When one has obtained a pair fn(W), gn(®) providing a. sufficient
approximation X,(9), Y, (?) of X(9), Y(P), one stops the calcula-
-tions; then

In_practice23 it suffices to take n = 2; the same method (averaging
of very slight adaptations) will apply to the case where (C), although
being flattened on OX, will no longer admit of OX as the symmetry
axis. i

Finally, for a complete solution of the problem (1) posed at the
beginning of the preceding paragraph, only dZ/dz remains to be calcu-
lat?d, which will obviously be possible with the aid of the problems (b)
or (c).

2.3.3 - Calculation of the Trigonometric Operatorszu

The method we shall summarize permits calculation of the linear
operators A, transforming a function P(6) into a function Q(e)

23The principle of this method is the one we applied for the study
of profiles in an incompressible fluid. But in the case of the profiles
a few complications (which can, however, easily be eliminated) arise due
to the fact of the "tip."

ZhWé gave the principle of this method for the first time in
March 1945 (ref. 19). Compare also reference 20. In continuation of
this report, M. Watson provided a demonstration of the formulas which
we obtained by a different method (ref. 21). We also point out a "War-
time Report" of Irven Naiman, of September 1945, proposing this same
method of calculation for the Poisson integral (ref. 22).
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Q(e) = a[p(0)]
and re-entering one or the other of the following categories:

First category: The operator possesses the following properties

o«

A(cos m6) = a; sin m@
A(sin mo) = -a;, cos mf (11.57)
A(l) =0

with a; Dbeing a nonzero constant, m any arbitrary integral different
from zero.

Second category: A possesses the properties

A(cos m6) = by cos mé
A(sin m6) = by sin m6 )
A1) = by

with by being a nonzero constant, m any arbitrary integral.

We shall call these operators "trigonometric operators.” The
operations which form the subject of the problems (a), (b), (c) are,
precisely, particular cases of "trigonometric operators."

With the function P(6) known, one now has to calculate the func-
tion Q(6); the functions P(6) and Q(6) are assumed as periodic, of
the period 2n. P(6) and Q(6) are determined approximately by knowl-
edge of their values for 2n particular values of 6, uniformly dis-
tributed in the interval O, 2n. One knows that the unknown 2n values
of Q are linear functions of the known 2n values of P. The entire
problem consists in calculating the coefficients of these linear equa-
tions. We shall do this, examining two possible modes of calculation.
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2.3.3.1 - First mode of calculation.- After having divided the
circle into 2n equal parts, we shall put

- in
£ = (1)

<

(1) Operators of the first category.- Obvious considerations of

parity show that the Q; are expressed as functions of the Pj by

equations of . he form

n-1

Q; = ZKP(Pi+P - Pi_p) (11.58)
1

We shall apply the relations (II.S57), that is, carry into the 2n

equations (II.S58)

P(6) = cos mé Q(e)

an sin mo

and

P(8) = sin m6 Q(8) = -ap cos mo

We thus obtain U4n equations which are all reduced to the unique
equation

n-l

ZKP sinpr-[—:?:a—;i (11.59)
1

This reduction is the-explanation for the success of the method.
We have to determine (n - 1) unknown Kb. For this purpose, we shall

write the equation (II.59), for the values of p varying from 1 to
n - 1. The system remains to be solved. If one multiplies the first

equation by sin %?, the second by sin zgﬂ, the (n - l)th by

sin(n - l)%?, and if one adds term by term, one obtains a linear rela-
tion between the Kb, with the following coefficients of Kp )
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n-1 n-1 '
sinmp—ﬂsinm}ﬂ=l [cosmM-cOsmw]
z n n 2 E n : n
m=1 m=1
e |- W] |G+
o n n n
with
n-1. sin 2 x
_ B (n - 1) 2
Cn(x) = E CcOS mX = cos > X —
m=0 sin -~
2
" Thus the coefficient of K@ is zero if P ﬁ 1, and equal to % if
P = p.
Thence the desired value of Kp
n-1
--15 mpst
Kp = - = ay sin (11.60)
m=1

to the calculation of the Poisson integfal.

operator Q = A(P) . of the first category"

Consequently, the formula (II.60) is written

if one puts




T2 : NACA TM 1354

Thus

Kp =0 if p even
(11.61)

=

pr ' . :
t = f d.
co i p odd

K, =

(2) Operators of the second category.- The considerations of parity
permit one to write the general formula

Q; = KoPj + :E:: Kp(Pi+p + Py p) + KpPiag (1I1.62)

Using the same reasoning as before, one is led to determine the coeffi-
" cients Kp by the system

n-1
Ko + E 2K, cos wB o+ (-1)%, = (11.63)
p=1
with m assuming the values 0,1, 2, . . .n.

Multiplying the first value by l/2,‘the second by cos un/n, the
third by cos 351, the nth by cos LE-:EllEE, and the last by ( - 1)%/2,
and adding them, one obtains a linear relation between the Kp, with the
coefficient of K, being (p £0, p £n)

oL, (1) l)P+“ [: [Fp + u)f] + 0 [Fp - u)ﬁ] _ o
2 2

that is, n if p=p, and O if u £ p.

The coefficient of K
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The preceding conclusions remain valid, it is zero for pu f 0 and equal
to n if p = O; the same result is valid for K,. Finally, one

obtains the general formula of solution

1/ Zn_l mpr °

==Y = - 1)p B

K ==z >+ by cos —— + ( -1) > (I1.64)
nm=

Let us consider, for instance, the operator transforming the func-
tion P(68) into the function dQ/dG, with Q ©being the conjugate func-
tion of P; it is an operator of the second category for which

S

K - - 2

n-1 b
E m cos 2%5 + (-1 2 pFO
1l

If one notes that

n-1
E (x) = E mecos mxk = —=*|n sin(n - l)x - sin® DX
n 2 X 2 2
0 2

2 sin
one sees that

Kp =0 if p even‘

Ki = - if p odd
n(i - CcOs %r)
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2.3.3.2 - Second mode of calculation.- Examination of an important
particular case will show us that in certain cases it will be advantageous
to consider a second mode of calculation.

The method consists in replacing the function P(6) by a function
of the form

n
2(0) = :E::an cos n + b, sin né (11.66)
) L

for which the method is applied with the strictest exactness; the con-
stants an and 'bn are such that Pi =0y One operator of the first

category, one of the most important ones, is the operator of derivation
which makes the function dP/dG correspond to the function P(6). If

we apply the first type of calculation, we shall replace (%g) by
i

a 5 now, it is precisely at the points 6 = it that the deriva-
i n

tives %% and %% show the greatest deviation. In contrast, we shall

obtain a good approximation of the desired function by replacing

apl(2i + 1)xn by ap|(2i + 1)x
de 2n de 2n

We are thus led to the following mode of calculation: the circle
is divided into U4n equal parts; we shall put

. in
f. = f(=
1 (2n>
and we shall express the 2n values Qi as a function of the 2n values
Paj+1:

We shall limit ourselves to the operators of the first category.
The formula expressing the Q21 as a function of PZj+l is written

n
Qi =:§::K§(P21+zp-1 - PZi-Zp{Q
p=l
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~ and we obtain for determination of the Kp the system
9 (zp - 1)
> K, sin o i’;}a
n
p=1

with m varying from 1 to n.

Multiplying the first equation by sin(2u - l)';_n’ the second by

sin M, .« ., the (n --A.l)th by sin (2u - 1)(n - l)ﬂ, the
Z2n 2n
(- 1)1 . N .
last by -~———— and adding them, one obtains a linear relation in

which the coefficient of K, is

n-1
_ 1)MtP
5 sin(2p - 1)2X sin(2u - 1)2L + (-1 =
1 2n 2n 2
m= :

n-1 ‘ -
?%[cos(p - u)m—g- - cos(p + 1 - l)n;—“:l + g-z_l)“ pv =

%Enﬁp - 0] - eafo e - 1]+ (- 1)*“{'

The coefficient is zero if p ;4 M, and equal to % if p = K. Hence

n-1 - : ’ ‘
Kp=‘%za‘m5j‘n (ZPA- l)m:t+( -l)plan (11.67)

2
— n- 2

This procedure may be applied to the calcﬁlation of the derivative
of a periodic function. In this case, ap = -m. Applying formula (II.67),

one obtains
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= ( -1)p-1 1 ' (I1.68)
Kﬁ ) Zn[% - cos igggléil%]
n

2.3.3.4 - Remarks on the Employment of the Suggested Methods.- In
order to convey some idea of the accuracy of the proposed methods we
shall give first of all a few examples where the desired results are
theoretically known.

Let us take as the pair of functions P(9), Q(6), the functions

P(0) = 4 cos 20 - 4 cos B8 +1 Q(6) = -k sin e(z.cos 0 - 1)
(5 - & cos 6)2 (5 - 4 cos 8)2

which are the real and imaginary parts, fespectively, on the circle of
radius 1 of the function

f(z) = — L (z = eie)

One will find in figure 22 the graphic representation of the func-
tions P(6), Q(8) and of the derivative Q'(8) of this function, and
also the values of these functions for 6 = ?g (with P ranging
between O and 12).' Furthermore, one will find in figure 23 the values
of Q(6), calculated from P(8) as starting point, by the method just
explained (coefficients K> defined by equation (II.61)), and in fig-

ure 24 on one hand the values of Q'(8), calculated from P(6) as
starting point (from coefficients K, defined by equation (II.65)),

and, on the other, these same values calculated from Q(6). as starting
point (coefficients K, defined by equation (I1.68)). One will see

that the accuracy obtained is excellent although the selected functions
show rather rapid variations. Such calculations by means of customary
calculation methods are a delicate matter; this is particularly obvious
in the case of the Poisson integral which is an integral "of principal
value." Systematic comparisons of the method of trigonometric operators
with those used so far have been made by M. Thwaites (ref. 23); they
have shown that this method gives, in certain calculations, an accuracy
largely superior to any attained before. ‘ ‘

The calculation procedure, with the aid of tables like the one
represented (fig. 25) is very easy. One sees that one fills out this
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table parallel to the main diagonal of the table. With such a table,
about one and a half hours suffice for a Poisson integral if one has a
calculating machine at his disposal.

We have had occasion to point out that the accuracy of the method
obviously increases to the same degree as the functions one operates
with are "regular" and present "rather slight" variations. This leads
in practice ¥o two remarks which are based on the "difference method”
and reasonably improve the result in certain cases. We shall, for
instance, discuss the case of the Poisson integral.

(1) If the function P(8) presents singularities (for instance
discontinuities of the derivative for certain values of 8), it will be
of interest to seek a function Pl(e), Presenting the same singularities
as the function P(8),'for which one knows explicitly the conjugate
function Ql(e). One will make the calculation by means of the func-
tion P(6) - P1(0); this function no longer presents a singularity.

(2) If the function P(6) has a very extended range of variationms,
one will seek a function Pl(e) for which one knows explicitly the

function Ql(e) so that the difference P(9) - Pl(e) remains of small
value, and one will operate with this difference.

Finally we note that, if the calculation of the derivative of a
function P(8) as described above necessitates that P(0) be periodic,

one can always return to this case, applying, precisely, the "difference
method."

2.3.h - Example: Numerical Calculation of a
Flow about a Semicircular Cone

As an application, we have taken up again the case of the semicir-
cular cone studied in section 2.2.9. The function g(®) is given by
the formula (II.48), and g'(®) will be calculated by a Poisson inte-
gral. Figure 26 shows the value g'(?) thus calculated compared to the

theoretical valuezs.

25We wanted to test the accuracy of the proposed method by assuming
an extremely unfavorable case, without taking into account the singu-
larities presented by the function g(%?). For a numerical operation of
great exactness, this particular case would have required application
of the lemma of Schwartz, with the contour (C) completed symmetrically
with respect to OX.
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It is then possible to calculate the representation of the pres-
sures, by calculating successively the function H, ZH, and the inte-

gral g'(9).

One will find the pressure distribution thus calculated in fig-
ure 19; one may then compare the result obtained by the calculation
method (for a very unfavorable case) with the result obtained
theoretically. .
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CHAPTER III - CONICAL FLOWS INFINITELY FLATTENED

IN ONE DIRECTION

The purpose of this chapter will be the study of conical flows of
the second type (see chapter I, section 1.2.6). Before starting this
study proper, we shall make a few remarks concerning the boundary con-
ditions. The conical obstacle is flattened in the direction 0x1%5.

Under these conditions, reassuming the formula (1.27)

wXp' - vx3' =

(x3x2' - x2x3') (1 + u) (1.27)

w |-

one may say that it reduces itself, in first. approximation, to

WXZI =

w |+

6x3x2' - x2x3ﬁ (I11.1)

since X3, x3', Vv, u are infinitesimals of first order, while X5
and xz' are not infinitesimals. Under these conditions, one may say

- that one knows the function w on the contour (C). On the other hand,
one may write, within the scope of the approximations made, this boundary
condition on the surface (d) of the plane Oxlxz, projection of the

cone obstacle on the plane. Let us designate, provisionally, the

value w by w(l)(xlx2x3) if one operates as follows

(1)
w(l) xl’xe(t)’XB(t) = w(1) x1,%5(t),0] + x3(t) ow_ x1,x5(t),0
. 6x5

With the derivatives of w being, by hypothesis, supposed to be of
first order, and the boundary equation written with neglect of the terms
of second order, the intended simplification is justified.

Various cases may arise, according to whether the cone obstacle is
entirely comprised inside the Mach cone (fig. 27), whether it entirely
bisects the Mach cone (fig. 28), whether the entire obstacle is com-
pletely outside the Mach cone (fig. 29), or whether it is partly inside
and partly outside the Mach cone (fig. 30). 1In each of these cases
there are two elementary problems, the solution of which is partiqularly
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interesting: the first, where the relation (ITI.1) is reduced to

w = constant = wo

which we shall call the elementary lifting problem (the corresponding
flow is the flow about a delta wing placed at a certain incidence); the
second, where the relation (III.1l) is reduced to

w = W for x3 = +0

-0

W = -wo for X

3

which wé shall call the elementary symmetrical problem. This is the
case of, for instance, the flow about a body consisting essentially of
two delta wings, symmetrical with respect to Ox;X, and forming an

infinitely small angle with this plane. It is also the case that will
be obtained, the section of which, produced by a plane parallel to Ox2x5,

would be an infinitely flattened rhombus. The fact that one obtains the
same mathematical formulation for two different cases indicates the
relative character of the results which will be obtained. In the case
of the symmetrical problem one may naturally assume that w 1is zero on
the plane O0Ox;x, at every point situated outside of (a).

Let us finally point out that very frequently the obtained results
do not satisfy the conditions of linearized flows; in particular, the
velocity components and their derivatives will frequently be infinite
along the semi-infinite lines bounding the area (a). However, we admit
once more that the results obtained provide a first approximation of the
problem posed above, in accordance with the remarks made in section 1.1.3
of chapter I.

3.1 - Cone Obstacle Entirely Inside the Mach Cone

3.1.1 - Study of the Elementary Problems

The case of the lifting cone has already formed the subject of a
memorandum by Stewart (ref. 10); however, the demonstration we are going
to give is more elementary and will permit us to treat simultaneously
the lifting and the symmetrical case.
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3.1.1.1 - Definition of the function F(Z).- We shall make our
study in the plane Z. Let A'A(-a,+a) be the image of the cut of the

surface (d)26, (CO), as usual, the circle of radius 1 (fig. 31).

Naturally, we shall operate with the function W(Z). One of the
conditions to be realized which we shall find again everywhere below is

that dW/dZ must be divisible by (Z2 - 1), unless the compatibility
relations show that U(Z) would admit the points Z = *1 as singular
points which is inadmissible. Thus we introduce the function

2
F(2) = ZZ—- % (111.2)
72 _ 1

and we shall attempt to determine F(Z) for the symmetrical as well as
for the lifting problem.

F(z) 4is a holomorphic function inside of the domain (D), bounded
by the cut and the circle (CO); the only singular points this function

can present on the boundary of (D), are A and A'; on the other hand,

F(Z) must be divisible by Zz, unless U, V, W have singularities
at the origin. On the two edges of the cut F(Z) must have a real zero
part. On the circle (Co)

Z 1 1

Zz_l Z_%—Zisine

Z@.:eieg=—igﬂ
az dz a0

Consequently, F(Z) has a real zero part on (CO) as well. The fact

that F(Z) cannot be identically zero, and that its real part is zero
on the boundary of (D), admits A and A' as singular points. We
shall study the nature of these singularities.

3.1.1.2 - Singularities of F(Z).- Physically, it is clear that A
and A' cannot be essential singular points. Let us therefore suppose
that, in the neighborhood of Z = a, one has

26One assumes, as a start, that the problem permits the use of the
plane Oxlx3 as the plane of symmetry.
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F(2) ~ KmO(Z - a)mo

mg being‘arbitrary, Kﬁo # 0; let us put

Z - a=re®

with @ being equal to +mx on the upper edge of the cut, to -m on
the lower edge; for sufficiently small values of r

i T -] T \
Kmormoelmo and Kmormoe o
must be purely imaginary quantities; thus the same will hold true for

Kﬁo cos mgn and for iKﬁO sin mgr;

Kﬁoz = Khozcos?mﬂ - (iKmo sin mn)z
is therefore real. On the other hand

2 sin ZmOn

Kmo (Kmo cos mon) (leO sin an\)

must be real which entails
sin 2m0n =0

Thus there are two possibilities; let us denote by k an arbitrary
integral; either

my = k, Kﬁo is purely imaginary

or else

S

k + %, Kﬁo is real.
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Let us now consider
F1(2) = F(2) - Ky (2 - 8)"°
In the neighborhood of Z =
F)(2) ~ K, (2 - a)

and the same argument shows that 2my must be an integral. Finally,
one may state the:'following theorem:

Theorem: Inside of (CO) the function F(Z) may assume the form

F(2) = 0(2) + —2—— ¥(2) (III.3)
2 _ g2

with 0(2) and V¥(Z) admitting no singularities other-than the poles

at A and A'.

The analysis we shall make will be simplified owing to certain
symmetry conditions which F(Z) satisfies. Let us put

W=w+ iw'

Obviously, X in w(X,Y) is even (when Y is constant).
Consequently, F(Z) has a real part zero on OY. Applying
Schwartz' principle one may write .

F(2) = -F(-2) (III.4)

This equation shows that knowledge of the development of F(Z)
around Z = a immediately entails knowledge of F(2) around Z = -a.
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3.1.1.3 - Study of the case where F(Z) is uniform [&(Z) = Q].-
Let us consider the function

(111.5)

with p an integral and 2> 1.
This function satisfies all conditions imposed on F(Z).

Indeed, it satisfies equation (IIT.4); inside of (CO) it does

not admit singularities other than a and -a which are poles of the
order p;. Its real part is zero on the cut as well as on (Co), as

one can see when writing

i

A, (2) = F(Zz +L) C(1s au):lp

72

Finally, the origin should be double zero (at least).

Let us assume F(Z) to be the general solution of the problem
stated; we shall then demonstrate the following theorem:

Theorem: If F(Z) is uniform, one has

n n poZp

" 2 (62 - 22)(x - o2)|"

with n being an integral, and the xp being real coefficients.

(111.6)

In case F(Z) is assumed to be a solution of the problem having a
pole of the order n, one can determine a number A, so that

Fq(2) = F(2) - MAn(2)

will be a solution admitting the pole Z = a only of an order not

higher than (n - 1) at most. But in consequence of equation (III.4),
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‘F1(2) will allow of Z = -a as pole of, at most, the order (n - 1).
Proceeding by recurrence, one finally defines a function

Fp(z) = F(z) - > A A (2)
e

which must satisfy all conditions of the problem and be holomorphic
inside of (CO). The boundary conditions on the circle and on the cut

entail F,(Z) to be a constant which must be zero because F,(Z) must
become zero at the origin.

3.1.1.4 - Case where @(Z) = O.- We shall study the case where
9(z) = O in a perfectly analogous manner.
Let us put

£(2z) = \(e? - 22151 - a%2?) F(2)

£(2) 4is a uniform function inside of (CO) which admits as poles only
the points (Z=-a, 2Z=a). Actually, the origin is not a pole since,
according to hypothesis, F(Z) is divisible by Z2. The function f(Z)
possesses the following properties: It is imaginary on the cut, real
on (CO), and real on 9OY (which entails properties of symmetry if one
changes Z to -Z). Moreover, f(Z) admits the origin as zero of, at
least, the order 1. All these properties appertain equally to the
functions

1 172P-1(z2 _ 1)

Bp(Z) = AP( B Z) B Kaz _ Zz)(l ) azzzﬂp

P is an integral 2> 1.
Thus one deduces, as before, the theorem:

Theorem: In the case where &(Z) = 0, one may write
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F(z) = 1 i - (s - 1) (III.7)
P+
1 Kaz - Zz) (l - azzzil

with n being an integral, the kp being real.

oo |-

3.1.1.5 - The principle of "minimum singularities".- The for-
milas (III.6) and (III.7) depend on an arbitrary number of coefficients.
The only datum we know is the wg, the value w assumes on the upper

edge of the cut. Thus we have to introduce a principle which will
guarantee the uniqueness of the solution of the problems we have set
ourselves. This principle which we shall call principle of the "minimum
singularities" may be formulated in the following manner (it is con-
stantly being employed in mathematical physics):

When the conditions of a problem require the introduction of func-
tions presenting singularities,, one will, in a case of indeterminite-
ness, be satisfied with introducing the singularities of the lowest
possible order permitting a complete solution of the posed problem.

In the case which is of interest to us, this amounts to assuming
n =1 in the formulas (III.6) and (III.7). For the problem of interest
to us, this principle has immediate significance; it amounts to stating
that F(Z) and hence dW/dZ must be of an order lower than 2z in
l/Z - a, or W(Z) must be of an order lower than 1 with respect to that
same infinity; the considerations set forth in section 2.2.7 show that
these conditions entail the total energy to remain finite.

3.1.1.6 - Solution of the elementary symmetrical problem.- Let us
turn again to formula (III.6); one deduces from it, according to equa-
tion (III.2), that in the case where F(Z) is uniform

W _ g z2 -1
az 1 (a2 - 22)(1 - a222)

and hence

i (a - 2)(1 - a2)
W(z) = ————x log (@ + 2)(1 + az) T
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The determination of the logarithm is just that the real part of W(Z)
is zero on (CO). Besides

Za(l + az)wo'
¢

AM o= -
On the upper edge of the cut
W=WO

and on the lower edge w assumes the opposite value. This shows us that
the case investigated is that of the symmetrical problem. The value W(Z)
for this problem is therefore

w(z) = - 3;9 log é: - ;;Ei - :;{] + W (111.8)

The calculation of the functions U(Z) and V(Z) offers no diffi-
culty whatsoever. It suffices to apply the relationships of compati-
bility (I.25) and to integrate; the only precaution to be taken consists
in choosing the constant of integration in such a manner that the real
parts of U and V on (Co) become zero; one then finds

_ ¥ (1 + a?) (a + 2)(1 - az)
v(z) = ?F (1 - az) log[;Z )0+ e2) (111.9)
and
_ AR g2 _ g2 .
u(z) = ;E(l ) log - agzz (I1I1.10)

This last formula is the most interesting one since it permits calcula-
tion of the pressure coefficient (see formula (I.8)). One finds

LY, 2 2

(111.11)
P np 1l - a2 1l - azxz
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In order to interpret this formula, one must connect the quanti-
ties a, X, to geometrical quantities, related to the given cone. First
of all

"a being the:constant inclination of the cone on Ox. On the other
hand

—2 _-pg X -ptanow
1 + X2 X
whence

cos @ - Ql - MZsin®o

B sin w

X =

(see fig. 32) and-

cos wyq —\h.- Mzsinawo
B sin wy

a =

(111.12)

In figure 33 one will find the curves giving the values of Cp as
functions of , for various Mach numbers and various values of .

'3.1.1.7 - Solution of the elementary lifting problem.- If one
starts from the formula (III.7), one obtains

(22 - 1)

Baz -22) (1 - azzz):|

dw N

== A
az 1 3
2

The integration which yields W(Z) introduces elliptic functions (see
section 3.1.1.8); on the other hand, it will (now) be possible to cal-
culate U(Z). We note beforehand that, according to the preceding for-
mula, W(Z) assumes the same value on the two edges of the cut and
that, consequently, this solution corresponds to the lifting problem.
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The relationships of compatibilityAshow that

au _ M z(z2 - 1)

@w P Eaz -2 - azzzﬂ%

and hence

u(z) = - 2hy z% +1 (II1.13)

B(az + 1)2 Kaz ) ZZ) (l ) azzz_)]%

We still have to calculate Xl as a function of Wg- For this

purpose, one may write

1 M 4z - g 1 (22 - 1)%az

az =™ 3
Kaz .2 - azzzﬂz

..wo =

o 0

We put in this integral Z = iu

. (l + uz)zdu

Wo = M 3‘ = MI(a)

o Eaz + uz)(l + a2u2)]2

The calculation of I(a) can be made with the aid of the function E
(see ref. 24). We shall put

e [
1
o oo

After a few calculations one obtains

I(a) =

1
at
) 3
. \Il - 12 Eaz + (a2 - 1)2t2:lz
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Finally, the change in variable

t(a2 + 1)

Jﬁaz + (az - l)ztz

sin @ =

shows that if one puts

2
k 1l -a
1 + a2

2 l 1l - a2

I-= \’ 25in20 g9 = E
a + l) a + l) 1 + a?
Hence the new formula for U(Z)
2 awo | 72 + 1
u(z) = - . T (II1.14)

(a2 + l)EQ_ﬁ;) Baz - 22)(1 - azzzﬂi

We still have to connect a and Z to the geometrical quantities.
One has (fig. 32)

2a 2X

Y = f tan W0 s = B tan w
One puts
t = tan w
tan wq
and obtains
L/e) taﬁ ) 1

NB]\/
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and

_ 2a tan wp 1
P 2 2 2
EE]l - B%tan wO] \]l -t

if one puts, as usual

C

(I11.15)

WO=C(.

.~

If w, is emall, EEJl - thanawo:l is close to 1, and the for-

mula (III.15), except for the notations, again gives a result found
before (formula (II.33)).

On the other hand, if B tan wg —> 1

E{Jl - than%né]-——a %

and the formula (III.15) is written

c. = Lo | 1

Pobn Jl - t2

Remark.

Thus one sees that the elliptic functions need not be used in an
essential manner in order to obtain the pressure coefficient. Actually
they appear only in the multiplicative coefficient. (In contrast,
Stewart, in his demonstration (ref. 10), makes essential use of the
elliptic functions.) However, these functions are indispensable in the
explicit calculation of W(Z) and V(Z).

2

3.1.1.8 - Calculation of W(Z) and V(Z).- There exist several

simple methods for calculating W(Z); the first consists in putting27

2TFor all the properties of the elliptic functions made use of in
this report, see for instance reference 24. In this paragraph, u will
be a complex variable -and will have no relation to the velocity compo-
nent along 0x. -
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Z =a sn(u,az) (k = a2) : (I11.16)

This transformation achieves the conformal representation of the
domain (D) on a strip of the plane u (see fig. 34); the values
written inside of small circles indicate the values of Z taken for
the corresponding value of u.

One has actually

sn 0 =0 sn K =1
i : ! i i
sn{= K"} .= i se{=,k'} = — = =
(2> (2) & &
sn(K + 55l> = cd(lK'> = 1 =1 -1
2 K' ., a
o)
Under these conditions
. 2 2
ol _awaz _ _ M(2%-1) -
du dZ du (az _ ZZ)(l aZZZ)
2 in
i)\'l;l___l—a 1 - 1 = ll+ 1 _ 1
al 1 + al|22 - g2 az(aZZ2 - l) a dnu  cnu
whence
M in 2 auén cn dn u
W(u) = Wy t Z(a + l)u - 2E(u) + u 4o Sou
aZ(aZ . 1)2 dn u en u
(I11.17)
For determination of Ay, it suffices to write, for instance, that
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Now
e i e
w(1K>= 1 Ba2+1)i(1+K')-2E(—lK>j,+w =0
2 0
2 az(a2 + l) 2
However,

ZE(—i};) = iK' + 21 'd.n(%—,k') sc(Kz—',k'> - ZiE(Kz—',k‘>

dn(—K—'-,k') sc (K—',k'> =1
2 2

2
2E(K k) = B(k',k') + K
(z’ ) (K, k') 1+k

whence the value of )‘l

B woaz(a2 + 1)2

51
alK' + E(k')

This expression differs from the formula given for A1 in the

course of section 3.1.7; besides, one may, in a general manner, put the
- 52
formula (III.17) in another form (using a modulus k] = 1-8" inien
1+ a2
is different from the modulus k = a2 utilized so far) by applying
the Landen transformation.

This transformation permits, in particular, establishment of the
following formula

E[(l + k)u,kl:l = }_ kEE(u,k') + 2ku - k'%sn u cd u:l

with the functions of the term at the right of the preceding equality

being relative to the modulus k' =\j1 - au.
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If one puts
u = iy

this formula is written

i 12
EE1 * k)iy’k]] = E(l +K)y - 2E(y,x) + 2 dnysny K Ten y:|
y

1+k cn y cn y dn

These last functions are relative to the modulus k = az.

However,
Zdnysny_kz sny _ sny [Ednzy_k,zjz
cny cnydny ocnydny

sn y (kzcn2y+dn2y) =a1+ snyeny dnysny
cny dny dn y cn y

If one now refers to the formula (III.17), one sees that it may
also be written

A
W(uw) = wy + m E'Bl + az)iu,kl:I

and that under these conditions

However, Kj = A+ KK is precisely such that
>

sn(Kl,kl) =1
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Consequently

_ woaz(az + l)
1 - a2
E(l + a2>

which is, of course, the formula found previously. Hence

| E[(l + a2) iu,kl:l
E

Wiu) = wpll +
(u) = wy )

One may also proceed in another manner, introducing a variable
other than the variable u. '

M

(111.18)

We put

The integration of %% leads to

t

at
‘ 3
5 \/1 - t2 Eaz + (a2 - 1)2t2:’2

W(t) = w, - b

Yo 1

We put

The complementary modulus is
l+a
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If one puts, therefore

t.= cn(r,kl)

DY T
w(T)=wo+_#3f Ty -
(a2+l) K.ldnT

A (1 - a2)2 snTcnT
————1E(ky) - E(7,ky) +
a2(a2 + 1) (k1) - E(7>k1) (1 +a2)2 Qo7

If 2z=1i, t =1, 7t =0, one always still finds the same value
for A

N woaz(az + l)

A
1
1 - az
E———
1+ az

Wit) = w E(T’kl) (1= a2'2 l snTenctT

and

(I11.19)

The formulas (III.18) and (III.19) are .indicated for the calcula-
tion of W along the axis OY, whereas equation (III.17) is more suit-
able for the calculation of W along the axis O0X. We now turn to the
calculation of V(Z). The calculation with the aid of the variable u

is particularly simple. dV/dZ is calculated with the aid of the rela-
tionships of compatibility

Let us recall that
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and perform the change in variable (III.16). We obtain immediately

av _ Wo(az + l) 1 - alsn™u
du E( kl) anu dnzu

but V must be zero for u = 0. The integration of dV/du then gives

V(u) = WO(az + l) sn_u
E(kl) cnudn u

(I11.20)

We verify, for instance, that for 2Z =i, V has a real part zero,

Z =i corresponds to u = =—

on(i) - 1
2 a

One can state that V(i§:> is purely imaginary. We shall not give

another formula for the calculation of V(Z); the formula (III.20) which
is particularly simple (it does not make use of the function E) permits
the calculation of v on the axis O0X; on the other hand, v is zero
on OY.

3.1.2 - Study of the Case Where the Cut is Not

Symmetrical With Respect to OY

3.1.2.1 - General Principle.- The case where the cone investigated
does not admit the plane Oxl,x3 as the symmetry plane is easily led

back to the preceding by a conformal representation, maintaining the
circle (CO).
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Let us suppose, for instance, that in the plane Z the obstacle
is represented by a cut along the segment (b,c) of the real axis (see
fig. 35); the conformal transformation

_t-

= (I11.21)
1l - G.lZ

Zq

where oy 1is a real number (|a1| < l) maintains definitely the real
axis and the circle (CO). We shall attempt to determine the numbers a;
and ay in such a manner that Z = ¢ corresponds to Z; =a1, Z =D

to Zl = -ay. One must write
cC - b -
a,l = ——L —a,l = _—(I_J:—
1l - aqc 1l - alb

a) 1is determined by the equation

c;. b -
o P-o
1-aqc 1-aob

which gives

(we note that, if b +c¢ =0, ay =0).

One will then determine a; Dby one of the two formulas described
above or by the formula symmetrical with respect to b and c¢

ay - Ji-v2 -1 -2 _be -1+ -p2)(1 - c?)
W1 - @ + oyl - b2 b-e

a. relationship which one may find directly by writing

(l,—l,al,-al) = (1,-1,c,b)
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In particular

1 - a;2 =-\kl - 2)(1 - <)

2 1l - be
1+ a

3.1.2.2 - Symmetrical problem.- It will now be very .easy for us to
. study the case of the symmetrical problem (that is, the case where w
assumes the value wy on the upper edge, and the value ~-Wy on the

lower edge of the cut).

The formula which gives W as a function of Z, is written (for-
mula (III.8))

iw ay =27 1 - a %
W(zy) = - —2 log| 21 LT,y
E1d : 0

al + Zl 1 + a lZl

whence

w(z) = - %’9 log[(c -z)(1 - ZC):I - long -2)1 - ZbZI:, + W
| (I11.22)

V(z) and U(Z) are obtained by the compatibility formulas

. _vo_ (22 +1)(6 - c)(@ - pe)

az T (c -2)(1 - Ze)(Z - b)(1 - Zb)
whence
Ry xSty
Finally
w2 (v - &)1 - ve)z

aZ Bt (¢ - z)(1 - 2e)(Z - bY(1 - Zb)
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whence

2w,

0 c c -7 b Z -D

u(z) = lo - 1o II1.2
(2) %B((1 . c2) ~Ll-cZ ] _p2 - 1-vZ (111.23)

Naturally, one could have obtained these expressions directly, by
a reasoning analogous to the one made before in the sections above

(3.1.%, 3.1.5, 3.1.6).

We remark that this problem possesses a property of "additivity"
which is, besides, evident from the outset but is entirely obvious in
the formulas (III.21), (III.22), (III.23). This means that, if one
knows the solution.of the problem for a segment bc and the one rela-
tive to a segment cd, one obtains the solution relative to the seg-
ment bd by adding the given solutions. Also, we point out that in
the preceding formulas the manner of determination of the logarithms
should be conveniently chosen.

3.1.2.3 - Lifting problem.- We shall be satisfied with the calcu-
lation of the function U(Z). Let us put in this paragraph

1 -2 Ja - 02) (1 - <2)

s a2 1-0c
j One has
aw_ _ ivoay (al + 1) (2% - 1)
azq E (kp) 3
Kalz ) le><1 ) alzzlzilz

whence one obtains very easily

au _ 2ip a1+ 212)(1 + ¢)3(1 - b)3 z(z2 - 1)
az 6
dZ BE(kl) (l ¥ al) Bc -z2)(z -v)(1 -vz2)(1 - czil%
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The equality

(b:;—):c):L) = ("al;' 'aiL—l;al:l>

is written

F=C¢-Db _ Zal
1l - be 1+ alZ
(F +1)3

“and if one forms the combination ; one may deduce from it the

F2
identity

L+e)3@-1)3 _ (1+ 21)®
(¢ - b)2(L - be) ‘ ha12<l + alz)

which permits one to write

T
a Ec -2)(Z -v)(1 -vz)(1 - cZﬂE

The integration is easily made, with the aid of the elementary functions

wo 20c(22 + 1) - (b + ¢)(1 + be)zZ

u(z) =
PE(k )1 - Pe) e - 2)(z - )@ - b2)(1 - c2)

(1I1II.24)

3.1.2.4 - Lift of a delta wing.- The total energy on an obstacle
will be obtained, in a general manner, by integration of the pressures.
However, the 1lift may be calculated by means of a very simple general
formula which we shall set up.

We shall start from the formula

Cp = -ngJ(zﬂ
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Let us consider an elementary triangle OMM' (see fig. 36), with

dx
M having the coordinates (B,XZ,O); its area is equal to "2, One

has, by definition of C,

which in the plane 2z 1is written

In z, X and p are the images of the limiting generatrices of the
obstacle, L 1is the loop surrounding the cut (A,1). If one denotes

by (L) the loop surrounding the corresponding cut be in the plane Z,
one has, since

x = —2X (Z = X + iY)
1+ X2
Jf Cp dx Jf p dxp = 2‘jf Cp 1-x2 ax =
L © (1+x0)°
l - 72 1 - 72
-1+R U(Z) az| = -4R u(z) —— az
(1 +2z ) Co' (1 + 22)

with (CO') denoting the circle of the radius 1, modified in the neigh-

borhood of i and -i by two small arcs 11', mm', in order to avoid
the singular points (see fig. 37); the arrows indicate the direction of
the course. Along the circle (Co), (Z =‘e19)
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1-2% 4y . _2i8in0; g9 . sin @ g
(l + Zz)z 4 cos2g 2 cos2e
and since
R[u(z)] = o

one deduces that the integral is zero along the arcs l'm', ml; the
points Z = i are double poles of the quantity that must be integrated;
but one can easily see that the integral remains finite along the cir-
cular arcs 1l' and m'm. Exactly speaking: if one denotes by Ry

and R_; the remainders of the function

u(z) A -22

(1 +22)2
at the points Z =i and 2 = -i, one has, since
bon=—2 __2b _2(c-b)(1 - be)

1+c2 1-12 (1+012)(1+cB)

c, = +2 (1 +2) (1 +c?) BIEK<R1 N R—iﬂ

(e - B)(1 - be)

However,
1du 14u
= - = 2= R. =-=2=2 = -
Ry 7 azt2 = 1) -1 2 ag'l = -1
whence
c, = - (1 + bz)(l + c2) Rlil Y + U P14 (111.25)
(¢ =d)(1 -1ve) = AZ(5=i)  AZ(p=-i)
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One can also express C, as a function of the values of aw/az

z
at the points 1 and -1

"~ gle - b)(1 - be) dZ(z=1) AZ(z=-i

C, = x{1 + v2)(1 + c?) R iE—W- U J (1II.26)

One may finally remark that

AW D
2z -1 a—¥(0,1)
whence
a1+ ) (1 + ®) o 3
2 = 5 o) @ - ve) [a_y(o’“) - S70,-1) (111.27)

We shall apply this result to the case of the lifting delta wing
studied in section 35.1.2.3:

au__ _ g V(fo ) (b - ¢)2(1 - be)
dZ(z=1 BE(kq 3
) Bl + bz)(l + czil2

whence

c, = - 2a1 c -b
PE (k1) \](1 +12) (1 +

[¢)
[AV)
N’

with kq being equal to

In the wing theory, one designates the incidence by 1i; with the
usual notations one has here
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The desired formula C,(i) is

c, = —=ni c-b (III.28)

BE(kl) \kl + bz)(l + c2)

In the case where b = -a, c¢ = a, one finds

c. = bnai
© (1 + a®)E(ky )

or again with the ndtations of figure 32

21 tan
Cp = %0 i (I11.29)

E(Jl - than2w0>

A few applications of this formula may be found in figure 38.

If wy is small, one will find again the result obtained in sec-
tion 2.2.4 (except for the notations)

CZ = 21((1)01

3.1.3.1 - Study of the general case.- So far, we have treated only
the elementary cases, that is, those for which the function w assumed
a constant value on each edge of the cut. We shall now treat the case
where the function w assumes on the upper edge of the cut prescribed
values

W = wl(X)

and on the lower edge prescribed values which we shall note

W o= WZ(X)
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Let us note, first of all, that the solution of the general prob-
lem may always be considered as the result of superposition of the solu-
tions of a purely lifting problem (with w assuming the same value

Wl(X) + WZ(X)
2

on each edge of the cut) and of a purely symmetrical

+wl(X) - Wy (X)
* 5 ;
edges of the cut). Thus we shall be able to limit ourselves to these
two types of problems. We shall note, in addition, that in the purely
symmetrical problem u assumes the same values on the two edges of the
cut, whereas it assumes, in contrast, opposite values in the case of a
pure lifting problem.

problem {with w assuming opposite values on the two

A first idea for the treatment of this problem consists in utilizing
the elementary solutions found before and in superposing them conven-
iently. Let us consider, for instance, for a symmetrical problem, an
elementary wing of infinitely small span, the image of which in the
plane Z is a segment of the real axis of the length AX, situated in
the neighborhood of the point X, and let us assume w = w(X) to be the
value corresponding to w; the complex velocities of this flow are given
by the formulas (III.21), (III.22), (III.23); using the hypotheses made,
on? may write, designating the complex velocities by AU(Z), AV(Z),
oW(Z),

ri(z) = - WX —d—Flog(X - 2)(1 - ZX{]AX
1 dX{_ :
B 2
AV(Z)=_w(x)_c1_1+ 1ogX'ZAx
x dAX|] _ 42 o1 - X
1 - x
pu(z) = 2(X) df X g, X-2Z |
T[B dX 1 - xz 1 - ZX

One arrives at writing the solution of the symmétrical problem in
the form
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. c
w(z) = - ij; w(e)d 1og(§ -z)(1 - Z§{|d§

A C 2
= - ; i—_l = g _g -7
v(2) ’fjb w(&)dg el log T at (III.30)
_ 2 d & E -2z
u(z) = f (g) e log T at

The integrals occurring in these formulas make sense only if 2Z 1is not
on the segment bec. If Z 1is real and comprised between b and c,
one has to take the "principal value" of these integrals. Furthérmore,
one must demonstrate, in order to justify these formulas, that the real
part of the function W(Z), defined by the first formula (III.30), actu-
ally assumes the value w(X) when Z is real (2 = X).

For this purpose, one calculates W(Z) in a point of Z = X + in

(with 7 being positive and small) by dividing the integral appearing
in the first formula (III.30) into three parts

ol S

After this has been done, one chooses ¢ and 7 in such a manner that
the last integral is arbitrarily close to the value

+c

. X+e€ ¢
I =w(X) gd >
X-€ -

which is possible since this integral may be written

fm wi)(1 - 28)° .
X

x-c (& -12)(1 - t2)
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One may then, diminishing as necessary the upper limit fixed for 1,
choose that last number so that

X-¢ c
r| -1 [
Ty X-¢

should be arbitrarily small. There is no difficulty whatsoever since

-

‘the quantity under the sign is continued in Z. Finally, I may be

made arbitrarily close to
inw(x)

which shows that, if 1 1is sufficiently small
R[W(z)] - w(x)

is arbitrarily small which had to be demonstrated.

This procedure, while theoretically simple, is rather delicate in
practice since the calculations to be made affect the integrals, the
principal value of which has to be taken. In the lifting case, on the
other hand, the application of this method would require previous solu-
tion of an integral equation of a rather complicated type. For that
reason we prefer to give the following calculation methods; the first
utilizes the "electric analogies;" the second which is purely numerical
will reduce the numerical calculation to that of a Poisson integral; in

\séction'2.2.7 we have given a simple and accurate procedure for solving

such a problem.

3.1.3.2 - Utilization of the "electric analogies"ZB.- The analogy
consists in identifying the harmonic function w(X,Y) with an electric
potential @(X,Y), through a conductor constituted by a liquid occupying
a tank with horizontal bottom of half-circular shape (see fig. 39). On
the circular boundary w is constant; consequently, the semicircumference
will be brought to a constant potential; it will be possible to regard
that potential as the zero of the scale of potentials. This circumfer-
ence will, therefore, be conducting; (this half-circle is nothing else
but the part of the circle (Co) of the plane Z for which Y > 0).

28For all questions concerning electric analogy, see the fundamental
memoranda by M. Malavard (refs. 25 and 26).
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On the cut bc which represents the conical Obstacle, one distributes
electrodes which will be brought, by means of adjustable potentiometers,
to the given potential ¢. For specification of the boundary condi-
tions on the segments A'b and cA, one must distinguish between the
symmetrical and the lifting problem.

3.1.3.2.1 - Symmetrical problem.- w must be zero on the portions
of the axis outside of the cut; consequently, the corresponding bound-
aries of the tank are brought to the potential zero, that is, to the
same potential as the semicircumference A'BA; w is given directly
by a pure Dirichlet problem. However, the unknown of our problem is
the value of the pressure along the segment be, that is, wu.

u 1is connected with w by the relationships of compatibility
vhich permit one to.write on the axis of the X

with BW/BY being proportional to the intensity entering the tank
through the electrodes; this quantity is easily measured with the aid

of a convenient arrangement29. With the value of Ju/dX thus known,
we must, in order to obtain the desired pressure distribution, determine,
in addition, a value of u along be, for instance the one at the

point 030, On the axis OY one may write

29%0ne may, for instance, feed the electrodes of the cut through
)
resistances R, insuring a drop of the potential from P to ¢ (see
fig. 39). Under these conditions, one has a relation of the form

a _ —
B% = k(X)(©@ - @)

with k(X) being a function which depends on the chosen resistances
and on the resistivity of the tank, but can always easily be obtained;
the manipulation to be performed is then as follows: after the resist-
ances R have been determined, one has to choose the values of @ in
order to obtain at the electrodes the values of @ prescribed by the
boundary conditions.

3OWe shall assume the point O to lie on the cut. In the opposite
case the procedure indicated here may be very easily modified.
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Since u(X,Y) is zero at the point B(0,1),

1 1
pu(0) = A{: @Y(o,t)dt = [—ZY—z- W(O’til -
0 1+t 1 +Y 0
1 2
2\]q w(0,t)-2 = at
0 (1 + tz)z
Hence
L 2
pu(0) = -z(jp W(O’t)_l_:_EESE dt (III.31)
o 1+t

One will know u(0) by means of a simple integral if one knows the
distribution of the w (the same as that of the @) on the axis OY.
Since this may very easily be determined, the problem is entirely solved.

3.1.3.2.2 - Lifting problem.- The boundary conditions to be realized
for the lifting problem are the same as for the symmetrical problem as
far as the semicircumference A'BA and the cut b,c are concerned.
On the segments A'b and cA one must, of course, write

ow _ dw 0

Y dn

that is, the corresponding walls will be insulating walls.

However, this is not sufficient. If no precaution is taken, the
harmonic function corresponding to the electric field thus realized will
not be a solution of the aerodynamic problem posed. Actually, there is
no reason whatsoever why the gradient of this potential should be zero
at the points A and A', since the intensity at A and A' 1is, in
general, not zero. Since the corresponding function dw/dZ is not zero
at Z = +1, we have already pointed out that this leads to singularities
inadmissible for U(Z) (see section 3.1.1.1).
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The investigation of the elementary lifting problem, admitting OY
as symmetry axis, will permit us to better understand the difficulty,
and to solve it. If one realizes in the tank the preceding boundary
conditions by bringing the electrodes from the cut (-a,+a) to a con-
stant potential, it is quite obvious that the potential thus realized
in the tank will remain finite at every point of the field, even at A
and A'. Thus one obtains a solution by taking for @(X,Y) the real
part of the analytic function F(Z), defined by

&F _ i\
P (2 - )2 - a2z2)|l/2

with A Dbeing a real constant.

This solution does not correspond to the solution of the aerodynamic
problem (see section 3.1.7) which, in contrast, gives a singularity

2 2\ -1/2 . . )
at (a -2 ) for the function W(Z), in the neighborhood of Z = +a.
As a consequence, w(X,Y) must be infinitely large at points close to

+a and -a3l. This particularity must, therefore, be taken into account
in the circuit.

! It is not the first time one encounters problems of analogy with

singularities32. One knows that one must then realize in the neighbor-
‘hood of the points +a, a material model, partly conducting, partly
insulating, which schematizes the arrangement of an equipotential elec-
tric line and a current line.

31One encounters there an interesting example of precautions to be
taken in a given problem when one applies the principle of minimum sin-
gularities. This principle has led us to pose, for our aerodynamic

. . 2 2)"3/2 .
problem, a solution for dW/dZ in (a - Z ) . But if one makes
the analogy, the electric tank has no reason to "know," a priori, that
realization of other conditions than those directly concerning W(Z)
is desired. Thus it "applies" the principle of minimum singularities,

-1/2
realizing the solution for dW/dz in (a% - z2) / .

32See for instance references 27 and 28. For several months, the
laboratory of electric analogies of the O.N.E.R.A. has been utilizing
singularities for the study of compressible subsonic flows in the hodo-
graph plane. :
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In the case of interest to us, in the neighborhqu of the
point X = +a, one has

W(Z) = ——
Z - a

with K being a real constant; consequently, if one puts
W(z) = w(X,Y) + iw'(X,Y)

7 -a =~ = gell

i

and

=~
la

w + iw' = —=jcos

- i sin E:l
N3 2 2

the lines w = constant are determined by

so(1 + cos o)

20
8§ = 8y CcOS”® = =
0 2
and the lines w' = constant by
s.(1 - cos o)
S = sq sinz g. 1 >

S0 and sy being two positive constants. They are, therefore, cardi-

oids; their arrangement is given by figure 40. Also, one finds in this
figure the scheme of the singularity which must be placed at b and c.
Thus the manipulation is as follows: after the circumference ABA' has
oeen brought to the potential zero and the boundary conditions have been
realized along the cut bc, one brings the conductive part of the two
singularities to rather high .potentials which must be determined so that
the intensity at the points A and A' is zero (of course, if the
problem presents the axis OY as symmetry axis, the two singularities
must be brought to the same potential, and the nullity of the intensity
at A will insure that of the intensity at A'). This one will realize,
from the practical point of view, by detaching at A (and eventually
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at A') on the semicircumference a small electrode which will not be
fed and the potential of which will be made opposite to the potential
of the rest of the circumference, through a zero apparatus. It is this
condition which permits determination of the potential to which the
conductive part of the singularity at c¢ (and eventually at b) must
be brought. The field ?(X,Y) realized in the tank will then, in con-
sequence of the principle .of "minimum singularities," be proportional
to the field W(X,Y) of the velocity component following Ox3.

After that, the manipulation unfolds as for the symmetrical case.
One measures the intensities along the cut (b,c) which furnishes the
values du/dX. One determines the value of u at the point 0O by
restoring the field of values of w along OY and by applying the
formula (III.31).

3.1.3.2.3 - Electric measurement of C, in the case of the lifting

problem.- In all cases, the total energy can be determined by integra-
tion. In the case of the lifting problem, one will yet have a supple-
mentary verification by utilizing the formula (III.27) which we shall
write

_2n (l + bz)(l + cz) §E(o,1)
B (¢ -Db)(1 - cb) oY

Actually, this last formula permits to obtain directly the C,, by

a simple electric measurement which gives the intensity entering at the
point B, since dw/dY(O,l) is proportional to that intensity. For
this purpose, it suffices to detach, in the neighborhood of B, a small
electrode (fig. 41) and to feed it by the intermediary of an arbitrary
resistance R. With all boundary conditions satisfied, it suffices to
regulate O to make the potential at B zero as on the rest Jf the

semicircle. C, is then proportional to [C

3.1.3.2.4 - Applications.- The scheme of the circuit used is given
by figure 39. We do not intend to give here the details of operation,
the precautions taken for increasing the accuracy, the determination of
the scales, and the reduction of experiments. All this will form the
subject of a later report.

Here we shall give simply the results of the first experiments
made following these principles33. In every case studied, we have

33There is every reason to assume that the satisfactory precision
obtained could be further improved by employing a more suitable material
than the-one that was utilized. These tests were made frequently with
utilization of chance setups with the material that happened to be at
the laboratory.
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3.1.3.3 - Purely numerical methods. Utilization of the plane z.-
We have introduced this plane in section (1.2.5). Let us recall that
z corresponds to Z by the conformal transformation

27
72 + 1

Zz =

and that in this plane the relations of compatibility are written

-BdU =z @V = —=12 gy (1II.26)
1 - z2

One of the advantages of the plane which is of practical interest
is that one has on the real axis (if z = x + iy)

X=X2

Xo Dbeing the ordinate of a point of the section X1 = B, situated on
X3 = 0, in the axis system 0x7 XpX3. '

Some of the formulas established before may be written Mmore simply.
If one denotes, for instance, the image of the cut (b,c) of the
plane Z in z by (\,u), the formula (III.21) is written

s Yo - Z
W(z) = -i - log XP—_—_ - (111.32)

W(z) thus appears as the complex potential due to two vortices placed
at the points A and W and of opposite intensity. Likewise, the
formula (III.24) may be written

U(z) = 0 @+ 62) (1 + c) 2hu - 200 + 1) (171.33)
Wk - 2)(z - 1)

3

If one puts

A =cos V¥ L= cos w
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Vv and o lying between O and =

ﬁsin ¥ sin w \ki + bz)(l + cz) 1
kl = \lf and 1 \l}'
sin —X+ @ - be sin 1@
2 2
In the case where [ = -\ = k, one has, in particular

cp = 2Kk2 o)
BE' (k)

ke - x2

Iet us recall that

E'(k) = E(Jl - k2>

3.1.3.3.1 - Case of the symmetrical problem.- Let us now assume
that the problem corresponding to the boundary conditions w = £(x) on
the upper edge of the cut, w = -f(x) on the lower edge has to be
solved. The formula (III.32) leads us to represent W(z) as the poten-
tial of a distribution of vortices carried by the segment Ap; conse-
quently

W(z) = - lk/qu £lu) du
A

b1 u - 2z

At a point of the upper edge of the cut, one has actually

W(x) = - %}j;u Ei%lgg + £(x) = w + iw'

with the integral taken at principal value.

Let us put on the cut

X = b S A cos P u = D T TN
2 2 .2 2

f(u) = F(6)
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Let us éssume, to begin with, that
F(0) =F(n) =0

and that F(9) can be developed in a Fourier series

00
F(6)=§ A, sin né 0<6<nx
0

Then

I 00
<§ An sin ne)sin e
0

de
cos 8 - cos @

w'(6) = - ;[l-

We shall furthermore admit that the signs E and f are inter-

changeable. According to a known result (ref. 13)

7 7 - -
_ 1 sin n@ sin 6 46 _ _ Lf E:os(n 1)6 - cos(n + 1)6] a6 =
0 an Jo

7 cos O - cos @ cos 6 - cos @

[sin(n - 1)® - sin(n + l)CP] ' )
—= =cos n®P
2 sin @

and consequently

0

w' (9) =2Ancosn<P
0

Thus one sees that w'(6) is the conjugate function of F(6) which
could have been easily established by other methods as well.
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However, according to the relation of compatibility

pM o x ow._ __x ovw
ox _ 2 oy _ .2 ox
and
ou . _ X ow' _ X zg: nA, sin ng

We shall put
n
G(?) = - > nAp sin oo (ITI.34)
0

G(®) 1is the derivative of the conjugate function of F(®). Thus one
has

du _ _xG(9) (III.35)

oP B E‘:”;g

Knowledge of F(P) entails that of G(P?) by a calculation of

du
0°
In order to set up formula (III.35), we have made a certain number of
hypotheses. These hypotheses will be satisfied if the derivative of F
with respect to ¢ satisfies a condition.of Cauchy-Lipschitz.

trigonometric operator (section 2.3.3) and, consequently, that of

In order to calculate the pressure at every point of the cone one
must integrate the formula (III.35); for that, however, one must know
the integration constant. .

The exact determination of the function u will be easily obtained
as soon as we have studied thoroughly the character of the function U(z).
We suppose first

In order to study the function U, we shall perform the conformal
transformation of the plane =z, provided with cuts (-0,-1), (=p,+u),
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(1,+°) traced on the real axis, on an annular corona. This is imme-
diate (see, for instance, section 3.1.7.1). Let z1 Tfirst be a complex

variable defined by

or

The plane z provided with its cuts then is represented on a
strip 0 < E(Zl) < K' of the plane z1, and on an annular area of the

plane 2z, (see fig. 43) bounded by the circumferences (71) of the
radius 1 and (72) of the radius

qg=e X
In the plane 2o, U 1is of the form
U(zp) = A log zp + £(zp)

with f(zz) being a uniform holomorphic function inside of the annulus
(see for instance section 2.1.2.1), since U(zz) is finite, even at
the image points of 2z = +u, because of the hypothesis

F(0) =F(x) =0
We remark that f(zz) has a real ﬁart zero on the circle (71).

We assume the value of the coefficient A to be known; on the circum-
ference (71), A log z, maintains as constant real part
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Alog q = -2K III.36
g q > ¥ ( 36)

According to a well-known theorem of the theory of harmonic func-
tions (see ref. 29) one now knows that, if a uniform harmonic func-'
tion H(x,y), defined inside of a circular annulus, assumes on the two
limiting circles the values ®4(6) and @4(6), (with 6 being the

angle at the center representing the running point on each circle), one

has
2n 2n
f @O(e)cw:f 9, (6)ae
0 0

This theorem will allow us to demonstrate the following theorem:

Theorem: If p = -A, the function u(®) satisfies the equality

b1
u(P)ae

= 2K(K)A log q
0 Jl - plcosP

K(u) being the elliptic function of first kind relative to the modulus

7
2
K(u)=f &
0 Jl - p?coszw

In fact, the mean value of the real part of f(zz) on the
circle (71) must be zero, but the mean value of u on (72) reads

an 3,

LK
Z{ U.T———‘z—ﬁﬁ’ ud21=ﬁfu dz
12
0 2 0 L \](uz - 2'2) (l - Zz)

with L. designating the loop surrounding the cut (-p,+u) in the posi-
tive direction. However, the function u(®) assumes the same values at
points which have the same abscissa on the upper and on the lower edge
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of the cut; consequently, this mean value is equal to

L
1 u(@)de

2K ’
0 1l - uzcoszw

In order to have a mean value of f(z) on (72) of zero, it is

necessary and sufficient that the mean value of u should be equal to
A log q which justifies the theorem. One utilizes this theorem in the
following manner:

If up(P) is & primitive of au, calculated by the formula (III.35),

and if

_1_f Yledde
2K 0 Jl - uzcosa$
the desired value of u(P) may be written

u(®) = A log q + uy(®) - c

To establish this result, we have assumed that the cut is extended
on the segment (—p,+p), symunetrical with respect to the origin. In
order to reduce the general case to this particular case, it suffices
to make a conformal representation, analogous to the one already made
in section 3.1.2. Let

1l - az

Zl

be this conformal representation which makes the cut (—k,+k) of the
plane 2z' correspond to the cut (x,u) of the plane =z. One has, in
particular

k.zl-)\.u—\](l-xz)(l—uz)
‘ Y
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The mean value of u on the image circle of the cut (-k,+k) of the
plane =z', in the conformal representation which transforms the plane =z'
into a ring, reads, according to what we have just learned

u dz'

uK(k)fI:. \[(kz -22)(1 - 2'2)

with L' designating the loop surrounding the cut (-k,+k) in the
plane =z'.

However

Vo dz(l - 0?)
(1 - az)?

dz

2

k2 - z'z)(l - z‘z) = L= o? 1-c 1 - 28)(p - 2)(z - 2\)
J( (1 - az)? \Rl - )1 - ap) \/( )

We remark that

(1 - )@ - ap) _ [u-nr
1.42 \/21{

The mean value is then written

1 U - kl/F u dz
L ’
K(k)\| 2k L \l(l - 22)(u - 2)(z - 1)

L Dbeing the loop surrounding the cut (A1) in positive direction.

If we finélly put

cos @

5 = BT A s B A
2 2
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the desired mean wvalue on the upper edge of the cut is written

TSN u(@ )dw
w0\ = o -2

As previously, one draws the conclusion:

If ug(?) is a primitive calculated from equation (III.35), and if

1 u-xf u(®)ae
K \‘
2K(k) \| 2k . Jz‘j";‘

the desired value of u(®) is

u(®) =-uo($) +Aloggq-C (111.37)

Thus the entire matter amounts to calculating the constant A.
This constant is calculated very easily if one considers the imaginary
part u'(x,y) of U(z).

In fact:

When, in the plane .z, one circles once in the positive direction
of the cut (A,p), the imaginary part of U(z) increases by -2rA. If
one circles the cut by the loop L, one notices that u'(x,y) assumes

opposite values at the two points of the cut which have the same abscissa
but are situated on different edges. Thus one may write

=1 qu'
A ﬂL/Z ax dx

However, according to the relations of compatibility, one may also write

(111.38)

Q;L/nu __ X oW gy
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which permits directly the calculation of A, (starting) from the function
w = f£(x)

given on the cut.

The entire analysis above assumes that f(x) becomes zero for
x =M and x.= M. We now still have to reduce the general case to this
particular case. One may put

f(x) = fo(x) + Cy + Cyx

with fo(x) becoming zero for x =\ and x = y, and Co and Cy

being two suitably selected constants. The problem then may be reduced
to the superposition of three problems, the first where

T w(x) = fo(x)
the second where
w(x) = Cq
the third where
w(x) = Cyx

)
Since the two first problems already have been dealt with, we now
only have to treat the last problem. Thus we put

f(x) = x

and seek the function U(z)

. .
il t i i - Z

W(z) = - it/q dt = - =(u - A) -1z log =2
A t -2z b1 b A -2z
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hence

dw i H - 2z i Z
N - _Lgoght-2z _ i, _y
dz PR n(u )(u -z)(A - 2)

and according to equation (I.26)

1 z log B2 4 (1 - Nz
dz =B JI_:—;E A=z (p-2z)(\-2)

whence by integration (determining the integration constant so that
U(1) should have a real part zero)

(I1I.39)

Summing up: In order to calculate numerically the pressures in a
symmetrical problem, one has to perform the following operations:

(1) One turns to the case where w(x) becomes zero for x = A
and x = p, following the method just exposed.

(2) Calculate the constants A (formula (III.38)) and q (for-
mula (III.36)). ‘ :

(3) Calculate the function G(?) for a trigonometric operator.

(4) Calculate g% (formua (III.35)) and a primitive Up(?®).

e
c._2 f _uo((P)dCP
2K
() 0 \1 - pzcoszm

u(?) 1is then given by the formula (III.37).

(5) Calculate
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Example: In applying this method to the calculation of the case
of the parabolic cone where

W o= teo(kz + xz) Cp = egp1 (P)

one has found the following distribution of the Cp

® 0 15° 30° 45° 60° 75° 90°

py(®) | = | 6.840 | 2.535 | 1.524 | 1.196 | 1.102 | 1.088

In order to compare this with the results of the electric analogy,
one must recall that

< = _2X
1+ X2

The comparison is given by the figure Lk.

3.1.3.3.2 - Study of the lifting problem.- For simplification, we
shall limit ourselves to the case where the problem admits the
plane Oxlx3 as symmetry plane.

Let us consider the function W(z); one may put it in the form

W(z) = AWy(z) + F(z)

Wo(z) being the solution in W of the elementary lifting problem (for

which wg = 1), A being a real constant and F(z) a function which

remains finite in the domain where W(z) is defined. We shall put
along the cut

F(z) = £(x) + if'(x)

Let us put likewise

U(z) = AUG(z) + G(z)

G(z) being the value of "U(z) corresponding to the case where

W(z) = F(z).
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We shall designate the real and imaginary parts of the function G(z)
on the cut by g(x) and g'(x).

If one notes that along the cut

)

of _ ow
ox  Ox

one sees that the relations of compatibility permit one to write

—_— = - = - —_— T - —— ——

oy o

8 g _ ' _ . X of X ow
x

w(x) is the function given by hypothesis; hence

dg' _ X dw
Bx Bl_xzax

If we assume . %E to be limited, one may visualize the development
< ;

in trigonometric series of dg'/d® in the form

dg'

8-> Apsinmw . (I11.40)

Now G(z) may be visualized as the potential of a vortex distribu-
tion carried by the cut (in particular, the real part of U(z) is zero
on the real axis outside of the cut).

Let us consider a vortex distribution of the intensity

g(®) = 22: B, sin n®

The value of dg'/dP will be identical to the one written in the
formula (III.40), if, and only if
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as it results from very simple calculations, already carried out in the
preceding paragraph.

Hence one then deduces the value of g(®) corresponding to dg'/d@,
defined by the formula (III.4O), by means of a trigonometric operator
the numerical calculation of which results from the considerations

developed in chapter II, section 2.3.3.

One can also simply first calculate

00

" _Z;: A, cos n® (III.41)

by means of a Poisson integral, and then deduce from it g(®) by simple
. integration, noting that

g(®?) =0 for ? =0, ?=nm

Thus the problem will be completely solved as soon as we have calculated
the constant A. One may put, as before

F(zz) = B log z, + @(zz)

®(zz) being a uniform function inside of the annulus (71,72) of the

previously defined plane Zg .

@(zz) has a real part zero on the circle (71) of the radius 1.

Consequently, the mean value of B{%(zz)] on the circle (72) is zero.
Thus one deduces, as in the preceding paragraph, that

7T
1 w(®)dp

2K (k) 0 Jl - kzcosaP

With w known, it is then easy to calculate A + B log q. Thus the
entire matter amounts to calculating. B.

A+Bloggq-= (III.42).

If one now describes in the plane 2z the loop L surrounding the
cut (-p,p) in positive direction, the imaginary value of F(z) must
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increase by -2aB, according to definition. Now

s __x o
B dx , 2 Ox
1 - x
dg . 34
However, S is known (formula (III.41)), and consequently
X

+Ha >
B = :;?B'f }11 ;:x: g—i ax (III.43)
-

Summarizing, one may say that the following operations have to be
carried out:

(1) Calculation of g'(?).

(2) Calculation of dg/d?, by a Poisson integral.

(3) Calculation of g(?), by an integration of dg/d®.
(4) Calculation of B (formula (III.43)).

(5) Calculation of A (forﬁmla (I1I.42)).

The result reads

u = Auo(@) + g(9)

with uo(@) representing the value of u for the elementary lifting
problem when wy = 1.

Application.- Lifting parabolic cone

Cp = <op3(?)

31+One will easily ascertain that Jg/dx becomes zero for x = O.
The integral then does not present any difficulty.
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® 0 15° 30° 45© 60° 75° 90°

p3(w) w 5.844 2.472 1.472 1.144 1.070 1.062

One will find in figure 53 the pressure distribution compared to
the one found by electric analogy.

3.2 - Case Where the Cone Is Not Inside the Mach Cone (')

3.2.1 - Generalities

From the mathematical viewpoint, there is an essential difference
between the case where the conical obstacle is entirely inside of (T')
and the case where, in contrast, it is not entirely inside. The differ-
ence becomes very clear if one visualizes oneself in the plane 2Z.
Whereas the flows studied in section 3.1 led to problems of complex
variables relative to an annular area, the problems to be studied now
will be relative to simply connected areas. This simplifies the investi-
gation considerably. It can be foreseen that we shall no longer have to
utilize the theory of elliptic functions, and in the numerical or ana-
logical study of the problems we shall avoid the difficulties arising
from the determination of the "integration constant" for the pressure
(see sections 3.1.3.2 and 3.1.3.3).

If one places oneself in the plane Z, the functions U(Z), V(Z),
W(Z) will no longer be identically zéro on (CO). We shall show that

the relations of compatibility then take on a form particularly simple.

These relations may be written

pz W . 22 5 dV_ 2i2 5 dW (III.4k)
AZ g2 4 4z g2 L4 a4z

and if one notes that on (CO)

7 QU _ _; dU

az ae

one can deduce from the formulas (III.44) the following relations between
the real parts u, v, w of U, V, W on Cjg
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pdu - 1L dv_ _1 dw (I11.45)
de cos 6 46 sin 6 46

Knowledge of one function u, v, or w on an arc of the circle
of (Co) entails (except for an additive constant) knowledge of the

two others.

It is easy to extend this result to the case where U, V, W pre-
sent certain discontinuities. Let A; be a point of (Cos of the

argument 6, and let us suppose that the real part of W(Z) increases
by Aw if 6 passes from 67 - € to 6, + €, with € being positive

and arbitrarily small. Let (y) (see fig. 45) be a small arc of the
circle centered at A and lying inside of (Cg). One has

‘AW = R av 47
- daz
4
However
Av = R &V 47
- az
i
and
HNu =R

f%gdz
, 4z

Consequently, it suffices in the case where dU/dz, dv/dz, aw/az
have a simple pole at Ay, to utilize the relations of compatibility in

order to establish the formulas

BMu=—E A= L Aw (III1.46)
cos 6 sin 6

Remark.

The formulas which we are going to set up below will be demonstrated
in the.case of the figure where the conical obstacle is in its entirety
in the region x; >0. But it suffices to return to the generalities
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of section 1.2.2 to recognize that the obtained results will be valid
in more general cases. Under these conditions, one may have in the
region (A') (see fig. 2) domains which encroach on one another. How-
ever, no difficulty arises since the relations of compatibility in the
plane . (1,6), formula (I.22), show that the functions u, v, w in
the plane (A') are perfectly known, owing to the boundary conditions.
One will note the identity of the formulas (III.L5) and (I.22).

3.2.2 - Cone Totally Bisecting the Mach Cone (Fig. 28)

If one utilizes the plane Z, the problem amounts to determining
the functions U(Z), V(zZ), W(Z) in such a manner that u, v, w are
zero on the circular arcs AjA,, Aj'Ay' (see fig. 46), and that w

assumes prescribed values, with one part on the line A AA'A5, and the
other part on the line A;'AA'As'. In contrast to what happened in the
preceding problem, the two half spaces, separated by the plane x3 =0,

are independent of each other. From the mathematical viewpoint, it may
for instance be a matter of determining the solution in one of the semi-
circles determined in (Co> by the cut AA'. There follows that there

is no theoretical distinction between the symmetrical and the lifting
problem. Naturally, one may operate in the same manner in the plane z.
There will then be occasion to determine the solution in a semiplane,
the upper semiplane for instance; the function w = f(x) is assumed to
be known along a segment AM, comprising in its interior the seg-

ment -1,+1 of the real axis. The function is zero on the rest of the

real axis35.

3.2.2.1 - Elementary problem.- As before, we shall start with the
study of the elementary problem, that is, the one where w = wy on the

part of a cone situated in the region X3 > 0.

We shall operate, for instance, in the plane Z; the func-
tion W(Z) - Wo has a real part zero on the segment AA' and the

arcs AA; and A'Ay', and equal to -wy on the arc AjAy. One can,

by application of Schwartz principle, extend the definition of this
. function to a complete circle; its determination is then classical.
(See, for instance, ref. 13, p. 162.)

35See appendix 3.
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This permits one to write immediately

1+ 28 - 22 cos 6y

iw,
W(Z) = wy - —2 log

(I1I.47)
T 1+ 22 - 22 cos 6y

with the logarithm being real for a real 2Z, and with 61 and 6,
being the respective angular abscissas of the points A; and A,. The

function V(Z) may be determined, for instance, with the aid of the
relations of compatibility

av _ Vo z2 +1f 1 . 1 o 1

-16,

-1 Z - e Z - e Z - e

In the integration it suffices to choose the integration constant
in such a manner that the real part of V(Z) becomes zero on the
arc AjA,. Thus one obtains

iw i6; - 19z
V(z) = —2|cot 6, log &—=2- - cot. 6, log 2=
T 1 - zetl 1 - zet

(II1.48)

with the logarithms having an argument zerc on the arc AjA>. One finds
for v the following values

v = wy cot 61, on the arc AjA,

<
il

Wy cot 85, on the arc A'A,

besides, one could have written these values directly by virtue of the
relations3® (IIT.45) and (III.L6).

36Tnis shows that one could have written the formula (II1.48)
directly, without writing the relations of compatibility.
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In order to write the value of v on the axis AA', one must cal-
culate the argument of

i6
e 1_ Z

1l - Zelel
Now

i@ . .

1 i6 -i6

Argl® -ig. =ArgKe l-Z>(l-Ze 11'
1 - ze L L

For calculating this argument, for Z = X, one notes that the modulus
i6¢ -i67 i6, 2
of \e - Z)\1 - Ze is the one of \e - X/¢, under the assump-
tion of 1 + X2 - 2X cos 015 on the other hand, its real part is written

cos 91(1 + Xz) - 2X. If one puts, therefore

x = 2X
1+ X2

161
Arg 9————175— = Arc cos I >
l-Zell - X COSs 1

cos 61 - X

(I11.49)

with the arc cosine having thus, besides, its principal value. One
finds likewise

16,
Arg .Z__.L = =Arc cos
i6, 1 - x cos 6,

1 - Ze

X - CcOs 62

(I11.50)

hence on the axis AA'

W, cos 647 - X X - cos 6
v=-0 cot 93 Arc cos 1 2
1 3

+ cot 92 Arc cos
1l - x cos 91 1l - x cos 62
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The calculation of U(Z) is perfectly analogous. One finds
in

_ 1
192 sin 91

-7

- iw,
u(z) = - =01 __10g2-¢

log
Pt |sin 6o 1 7e

i6
1l - Ze 1
(111.51)

with the logarithms having the same value as in the formula (III.L8).
One finds as the value of the pressure coefficient (wo = a)

C. = 2w
p B sin 62

» on the arc A'As

20 1
C, = &= on the arc AA ITI.52
P "B sin 6, 1 ( )

X - CcOos 92

cos 67 - X
C, = 2Jﬁ#!\rc cos 1 + 1 Arc cos

p <|sin 6 1 - xcos 6 sin 6 1 - x cos 65}’
B 1 1 2 2
on the axis AA'

In the case where Oxlx3 is a symmetry plane
92=‘JT—91

and the last formula (III.52) may also be written

20 cos 67 - x X + cos 6,
C, = —=2—_JArc cos + Arc cos =
P Br sin 6 1 - xcos 6 1+ x cos 6y
Lo sin 6y
——=— Arc sin (I11.83) -
Pt sin 64

Jl - xzcoszel
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In order to utilize these formulas, it is sufficient to connect
‘the angles 6, and 6, with the geometrical form of the given delta

wing (fig. 47). One has, according to definition
s

cos 69 = 1/8 tan . cos 8y = 1/B tan wo .
Let us recall also that

Bx,

X = —

X

One will find in figure 48 a few applications of the for-
mula (III.53). :

3.2.2.2 - Resultant of the normal forces on the upper region
(x3 > O!.— One can give, as in section 3.1.9, a simple formula permit-

ting the calculation of the resultant of the normal forces. If we des-
ignate by Cz+ the dimensionless coefficient characterizing this.

resultant, CZ+ is defined by the equality

e
S v

Likewise we define the dimensionless number CZ', characterizing the

czt

forces normal to the lower region (x3 < O), by the equality

with the integrals taken in the plane 1z, the first on the upper edge
of the cut (M\,pn), the second on the lower edge. This definition entails

e
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that the total C, of a cone is written

Now

u
f dx - l - l
A cos 61 cos 92

On the other hand

H i Ap -
2
f C, dx = 2R f U(z)dz| = -4R f u(z) 1-2 az
A A AoA'AA (1 + Zz)z

1 - 72

(l + 72
tour BAoA'A{B (fig. 46) is zero. On the other hand, with U(Z)

having a real part zero on the arc AzAl, one has

However, the integral of U(Z) along the closed con-

R f u(z) 1=2% 4z - -R f u(z) =22 [mR:l
ApA'ARy (1 + 22)° AjAp (

1l + Z2

R; denoting the residue of the function to be integrated, at the.
point |2 =

=L
2p

s

It

1
o |-

o

&

o
&I%

2(z=1) (z=1)

Thus one obtains the general formula

. cos 0, cos O
c,t = - B 1 2 g (III.54)
B cos 61 - Ccos 92 dZ(Z=i)
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In the case of the elementary problem, studied in section 3.2.2.1,
one has

-~

aw _ ig Ccos 92 - COS 91

dz(Z:i) Tt cos 61 cos 92

whence
c,t=-2x_21 (111.55)
z B B

if one puts o = -i, following the notation customary in the wing theory.

Thus we shall find anew a remarkable result: the value of the
coefficient CZ+ is independent of the angles 6, and 65.

3.2.2.3 - Study of the general case by means of the method of
electric analogies.- The method set forth above (section 3.1.3.3) may
be applied in superposition. The electrodes must be disposed on the
arcs AAy, A'Ay, and on the segment AA'. These electrodes must be

brought to prescribed potentialsy the conductive arc AqA, 1is brought

to the potential O. Finally, one will detach a small electrode at the
point B with the purpose of measuring the resultant of the normal
forces; this resultant, given by the formula (III.54) is, in fact, pro-
portional to the intensity entering at B.

"The value of u on the arcs AA; and A'A; 1s immediately known
by simple integration.

In fact, if for instance w; designates the value of w given for

(¢ positive and arbitrarily small), one has37, according to for-
mula (III.L6)

37Physically, the fact that the pressure on the bounding genera-
trices of the conical obstacle depends only on the inclination of the
tangent plane along these geperatrices is obvious. It expresses the
independence (see section 1.2.4) of these bounding generatrices with
respect to the other generatrices of the conical obstacle.
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W
ulz——l_
B sin 61

and the formulas (III.hS) permit the calculation of u on the entire
arc AA;. Thus it is not necessary to measure the intensities leaving

each of the electrodes except over the length of the segment AA'. As
before, this intensity, proportional to bw/aY, furnishes immediately
the value of Ju/dX along the axis OX, owing to the formula

g _2X dw
X  _ g2 Y

Since one knows the value of u at the points A and A', one
uses the superabundant data for calculation of the value of u on the
axis AA'. Thus it is unnecessary to obtain the distribution of the
potential, inside of the tank, as in the case described in sec-
tion 3.1.3.2.

3.2.2.4 - Study of the general problem by purely numerical methods.-
~In order to simplify the exposition, we shall be content to examine the
case where “the given cone admits the plane Oxlx3 as symmetry plane.

This amounts to stating that in the plane =z the function w(x) is
even in x on the cut (-p,p) representing the given cone.

We assume w; to be the value of w at the points x =1
and x = -1, and put

f(x) = w(x) - Wy

. 1
If 1 one will put = = and F(9) =1 .
< x <p, on Pt X =t Moy OO (6) (x)

One notes that F(0) = 0. After this statement, it is first of all evi-
dent, according to the foregoing, that one can immediately calculate the
pressure outside of the cone (I'). '

In order to calculate the pressure inside of (I'), one will consider
the flow as the superposition,

1l.- of an elementary flow (w = -wp, on the entire cut),

2.- of an infinite number of elementary flows bisecting the cone (T')
and symmetrical with respect to Oxlx3. These flows give at the
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point x(x < 1) a pressure coefficient equal to

61
c. = 1 _ & pArc sin
P gx sin 6 48 5 o
0 1 - x“cos“0

3.- of a symmetric flow inside the Mach cone, defined by w = f£(x), on
the cut (-1,+l). One may apply the method described in section 3.1.3.3
for the calculation of this flow. We shall simply remark that it is not
necessary to determine the integration constant since one knows that
u=0, for x = #£1.

3.2.3 - Cone Partially Inside and Partially Outside

of the Mach Cone (I') (Fig. 30)

3.2.3.1 - Symmetrical elementary problem.- The circle bounded by
(Co) must be notched by a cut CA (see fig. 49), with the real part

of W(2Z) assuming the constant value Wy = o on the upper edge of the

cut, and the value -wg on the lower edge. On the circle (CO), w is
‘ zero, except on the arc AAy where W = Vg, and on the arc AA;' where
i W = -wg. One will designate the point C on the circle Cny by

| Z = a, and the argument of A; on the circle (CO) by 6y.

The function W(Z) can be written without difficulty
~vlor

(z - a)(1 - az)

(Z _ eiel><Z ) e-iel>

W
W(z) =wy + 1 9 10g
x

with the argument

(z - a)(1 - az)
(2 - &) (2 - )

being chosen equal to zero at the point A on the upper edge of the
cut. Since W(Z) is defined with exception of an imaginary constant
only, one may also write
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22tg - (1 + 22)

W,
W(Z) =wp + i -2 log (III.56)
n 1+ 2% - 22 cos 6,
. 1 1
tt th = =[a + =}).
 putting t, 2( a)
We shall now seek U(Z)
pdU_ 21z aW_ _32¥% g 1 __&a 1 _ 1
dz Zz_le JTZZ_lZ-a 1l - az -eiel Z-e—iel
whence
2w, : 16y
u(z) = 9|1 log &—=2 _ _ 2 1052 =2{ (111.57)
Bt |2 sin 64 1 Zelel 1 - a 1l - az

Consequently, on the arc AAy

C. =22 _ 1
b B sin 6y

which is a result one could foresee immediately.
One obtains easily the value of Cp along the axis O0X; it suffices

to write the formula (III.49)

cos 6y - x a - X

1l - aX

C =2CL 1

Arc cos - + 28

o P log
P nBisin 69 1l -xcos 8, 4 _ ac

(I11.58)

Let us recall that x = ——3&—-.
1 +~X2
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Particular case: Let us assume that 64 = %, a = 0, under the

following conditions

' 2a

On the arc AAq, CP = ?;
On the segment AA', Cp = Z—G'Erc cos( - xﬂ 5 (I11.59)

B

= 2a(% 4 Are sin x
B \2

>

Let us recall that in all these formulas x = B il, with (xl,r,O)
l .

being the semipolar coordinates of a point of the wing A 1in the system
of axes (Oxl,xz,x3), and that cos 6; = 1/B tan wy.

3.2.3.2 - Elementary lifting problem, in the case where a = O.-

The transformation s = JE- transforms the circle (CO) into a semi-
circle in the plane of the complex variable s. In this plane, A;

and A;' have as homologues M; and M’ (see fig. 50). The func-

tion W(s) has a real part zero on the arc MM, ' and equal to wp
on the arcs AM;, BM;', and on the segment AB.

We shall determine directly the function U(Z) or rather the func-
tion U(s). 1In fact, U(s) has its real part zero on M;M;' and one

knows, according to the relations of compatibility, that as in the pre-
ceding paragraphs

W — '
u=_o_._1_, on AMl

B sin 69

W, — 4
u = -9 __QL——u on BM;'

" B sin 6
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Moreover, the imaginary part of U(s) is constant on the real
axis and may, consequently, be put equal to O. Thus one may analyti-
cally continue the function U(s) across the real axis. U(s) is then
determined as solution of a Dirichlet problem inside of the circle of
radius unity. One has

T 16y /2)( -i6, /2)
vie) = p sig 6, tog %i . :191/2)(: j :-iel/z)

with the logarithm having the value of ix for s = 1.

It is then easy to calculate u on the real axis, that is, on the
segment OA of the original plane Z. Let us put

<. _22 _ 28

1+22 1+ g4

The quantity under the logarithmic sign is written

e
s -1 - 2is sin-zi
2]
52 -1 + 2is sin E%

Its argument is equal to that of

(sz -1 - 2is sin —2l>

Now, the real part and the modulus of this expression are, respec-~
tively, equal to

(s2 - l)z - 4s2gin %% s 2s2(2 - cos 91)
and

2 6 o
(sz - l) + hszsi_n2 E% = su +1 - 2s2cos 61
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Hence
W 2x(1 - cos @
u = - —90 Arc cos|l - ( l)
Bt sin 64 1 - x cos 6,
B 2x(1l - cos 6 3
C, = —2% __ Arc cos|i - ( l) (I11.60)
p Bt sin 6y 1l - x cos 61

Particular case.- Let us suppose that 6y = %

2a,
C. = 2 Arc cos(l - 2x
, - & (1 - 2x)

3.2.3.3 - Elementary lifting problem in the case where a ﬁ 0.~
The elegant demonstration which has just been made for a = O and the
principle of which is to be found in the original memorandum by Busemann,
conceals one difficulty; this has caused M. Beschkine (ref. 11) to give
a formula in the case where a ﬁ 0 which, at least in certain cases,
leads to difficulties. In working directly with the function U, one
risks forgetting the supplementary conditions which, because of the
relations of compatibility, must be applied if one does not want singu-
larities for the functions U, V, W at points other than the ends of
the cut.

In fact, if U(Z) is regular inside of the circle (CO), v(z)

and W(Z) will have a logarithmic singularity at the point Z = 0. We
shall study the case where a ﬁ 0, by studying directly the function W
and limiting ourselves to not having singularities outside of the boundary
generatrices of the cone. Besides, we shall again take up this important
problem- in section 3.3.

Thus it is a matter of studying the case where w = Wg on the
arc AA; and on the upper and lower edges of the cut CA (see fig. 49)
and on the arc AA;'; the transformation

g=2%2-28
1l -2az

which maintains the circle of radius unity, leads us to the case where .
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the cut is arranged following a radius. Finally the transformation

leads, in the plane s, to search for a function W(s) the real part
of which assumes the value wy on the arcs BMy, "B'M;' 'of the semi-

circle of radius unity of the positive plane and on the segment BB',
and becomes zero on the arc M;M;' by application of Schwartz' prin-

ciple; one may continue the function W(s) - Wwo to the lower semicircle

of the plane s. This function is defined by the values of its real
part on the circumference of radius 1 of the plane s. However, since
dW/dZ must become zero at the point Z = -1, dW/ds must become zero
for s = *1i.

- In order to satisfy this condition, one decides to admit, for
W(s), singular points at the points My, My', My, My', and at the
point s = 0. According to the investigation of section 3.1.1.2, this

point may be a pole of the order one, with the residue being necessarily
purely imaginary.

If ik 1is the residue of this pole, one may therefore write

2
W(s) = wy + G(s) + ik 1+ s”
S -

with G(s) being a holomorphic function inside of the circle of
radius 1.

However, on the circle |s| =1,

1l + sz
ik =—=- 1is purely imaginary.
S

One deduces from it immediately the function G(s); consequently, W(s)
is of the form

Aw 1+ s - 2s cos ?l 2
W(s) = w -—Olog 2 + ik L+ s
0 b1¢ @l s

1+ s2 + 28 cos —

being the argument of the point M;.

nJLﬁ
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One calculates U(s), owing to the relations of compatibility

S KA
- e (s2 + 2) (2 + s%a) 2el Z + Ze-l 2 +
ds  pr(1 - a2) % -1 2 P1 oz
2k (Sz + a)(l + Sza)
P (1« az)sz(sz +1)
because
_;2&__ =2 (0 +8)(1 + oa)
Z2 -1 (0.2 _ l)(l _ az)

One verifies immediately that the points s = i are not poles
(and that, consequently, the points Z = +1 are not singular points),
if )

W
o.M
T cos ?i
2
Hence, for U(s)
2w 1 _ al
U(s) = 0 5 a(l ; ) +
1 (l -a )s

Bt cos CH

. 2 i—= -i =
iwg (l + 2a cos P + a ) log \s = e 2M\s + e 2

prt (l - az)sin @l ( i 9)( i f;)
: 2\s + e

It is easy to relate the angle ¢; to the given angle ‘91, fixing
the point Ay on (Cp) in the plane Z
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_ify _ cos o (1 + a?) +2a + i(1 - a%)sin %

1l + 2a cos @l + a2

149

The calculation of Cp is then simple; it suffices to resume the cal-

culation at the end of the preceding paragraph

2s2 2(1 + 82) - 2a(1 + 22) _¥-Xo

sh+1 (1 +a2)(1 + 22)haz 1 -
if one puts, on the real axis

x = 27 X0 = 2a

1l + Z2 1+ az

Under these conditions

cos 69 -
cos @l = 1 0
1l - Xg cos 91
and, consequently,
C, = 2a, on the arc AA;

b nB sin 91’

haq 1-.Xx
np(1 - a)cos 2%-\kx - a)(1 - aX)

+

Cp = -

2a Are cos|1 - 2(x - xo)(l - cos @l)

7B sin 67 1 - xxg - (x - xo)cos 4

on the upper edge of the cut AC.

(111.62)

(111.63)
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If a = x5 = O, one arrives again at the formula (II1.60); the
formula given by L. Beschkine (ref. 11) does not contain the first term.

3.2.3.4 - Calculation of C, in the lifting case.- C, 1in the

plane 2z 1is always defined by the equality

L/“ CP dx
L

C, = —
W
L/“ dx
A

with the first integral being taken in the positive sense on the loop
surrounding the cut.

However, with the adopted notations

1
A= M =
*0 cos 91
and \
"
) dx = l -xozl"Xocosel
by cos el cos 91
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points Z =1 and Z = -i; finally

2in cos 61 AW aw
C., = aw - [aw
z B(l - X cos 61) (dz>(z;i) (dZ>(z=—i)

In the purely lifting case

C _ ]-l-lﬁ coOs Gl aw
z - B(l - Xy cos 61)<dz)(z=i)

We apply this formula to the elementary case

dW _dW ds dg _dW 1 1 - a@

92 ds 4o Az ds a5 (1 - z)2

One will put for simplification for Z = i

a =tan(B - X Xg = -cos B o = elib
2 4
One then finds that o
. 2 B
; sin“B cos
&), ., = e
az/,. . b1 P
(z=1) (cos 9, - cos B)cos ?%
(vo = a)
c - hq cos 91 sin B
= p @y

(1 + cos B cos 91)(cos ®1 - cos B)cos

131

being the residues of the function to be integrated at

(I1I.6L4)
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If one utilizes the equality (11I1.62) in defining @1 and if one

puts a = -i, with i designating the incidence, one finds the very
simple formula

. COs
CZ _ )-‘-l

5

_— III.65

J—y ( )
2

cos

3.2.3.5 - General case.- The investigation of the general case may
be made either by electric analogy or by calculation. The methods, to
be employed result from what has been seen in sections 3.1.3.2, 3.1.3.3,
3.2.2.3, and 3.2.2.L.

Let us only indicate that, in the solution of the lifting problem
by electric analogy, one must arrange a singularity at the point C
like the one defined in section 3.1.3.2.3. The adjustment of the poten-
tial to which the conductive part of this singularity must be brought is
obtained by the condition that no intensity enters at the point A'.
To verify this condition, one will use the method already indicated in
the section noted.

Naturally, the total C, will be very easily determined by mea-

surement of the intensity entering at the point B and application of
the formula (III.6h).

3.2.4 - Cone Entirely Outside of the Cone (TI) (Fig. 29)

3.2.4.1 - Elementary symmetrical problem.- The problem consists in
determining U(Z), V(Z), W(Z) by means of the following conditions:
the real part of W(Z) assumes on the arc AjA, (see fig. 51) of the

circle (CO) the constant value wny = a, and on the arc Aj;'Ay' the
value -wg. On the other portions of (Co) this real part is zero.

Thus one may write immediately the value of the real part of U(Z) on
the circle (CO) (formulas (III.45), (III.46)). It is an even function

of the argument 6. One has
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u =0, "’ on the arc: A'A,
w

u = - —9-—7;;——, on the arc AZAl
B sin 65
W

w=--2 _l - _l > on the arc AjA
B \sin 6, sin 67

whence for the function U(Z), the formula

192 i6,
=2 1 joge -2 | (111.66)
192 sin 91 1. Zelel )

iw
Bt |sin 6 1 - 7e
the logarithms assuming the value ix at the point 2 = 1.

The complete calculation of " V(Z) and W(Z), likewise, does not
offer any difficulties.

One deduces from this formula the calculation of the pressures on
the obstacle and outside of the obstacle.

In the plane x;0x, the pressure coefficient has the value

Cp = 2a ——l———, on the obstacle

P :
B sin 65

CP = Za _.l - _l ;» 1in the region comprised between the obstacle
B \sin Oy sin 6y ‘and the Mach cone of the point O

Let us recall that if Wy and W, designate the angles formed by

the bounding generatrices of the obstacle with Oxy, one has according

to definition (see fig. 52):

cos 67 = l/B tan wy cos 65 = 1/B tan wso
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/

Inside of the Mach cone, finally, at the point xi, Xo, one has

cos 0, - x cos 67 - x
C, =221 __ Arc cos 2 - —& _ Arc cos 1
P prisin 6, 1-xcos 6, sin 6 1 - xcos 6;

x :
if x=98 —3, the arc cosines having their principle values.
X1

- 3.2.4.2 - General symmetrical problem.- The general symmetrical
problem does not present any difficulty, since one may Operate by means
of superposition; let w = a(6) be the given value of velocity compo-
nent following Oxz over the length of the obstacle (91 <6< ez).

The formulas giving the Cp may be written immediately

6,+0
2
C.=-2 da at the point of the obstacle of
p N 9}
: PJg SIn U parameter 6
6510 ‘
2
Cp = - EL/w da " pehind the obstacle, outside of the p  (III.67)
B 6,-0 S o cone (I')
85+0
2
Cp = - & Are cos —t8S -t c.ia, , 1inside of the
pr 6,-0 - l -t cos 6 sin 6 Mach cone
/

The integrals of the preceding formulas must be taken according to
the signification of Stieljes; this is a fundamental condition for the
case where o(6) presents discontinuities. In particular, one will
have to take account of two discontinuities: the disconmtinuity +a(6y)

for 6 = 67, and the discontinuity -a(ez) for 6 = 6,. Not to forget

these discontinuities was the reason that we wrote certain limits of the
integrals 6; - 0, 65 + O.

3.2.4.3 - Elementary lifting problem.- The solution obtained for
the symmetrical problem (formula (III.66)) is valid, since dW/dZ
necessarily becomes zero at the points Z = *1; also, dU/dZ becomes
zero at the point 2Z = 0; thus the relations of compatibility do not
entail any singularity other than the points Ay and Az.' We shall see
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that in case of the 1lifting problem a few precautions must be taken if
this condition is again to be satisfied.

Let us first assume that the points. A;, A, and A", Ap' are
simple poles for QQ, Q!, and . One may then write the values of
dz" 4z dz
u, v, w on the circle (CO) utilizing the relations (III.4S)

and (III.46) as well as the boundary conditions. These latter let us
know that w assumes the value wpy on the arcs AjA,, A 'As!

(fig. 51). On the other hand, the component u necessarily continues
outside of the cone (since u represents the pressure except for one
constant) and, being odd in X3, must become zero in the plane 0x4 xo

outside of the given delta wing. Consequently, u = O on the cir-
cle (Co), outside of the arcs AjA;, A'Ay'. Hence one deduces, as

before, that on A A,

but on the arc AAl

sin 92 - sin 91
w=a vV =a
sin 6, _ sin 6,

cos.Gz - Ccos 91

We note therefore that w assumes on the arc AAl' the same values

as on the arc AA;, whereas v assumes Opposite values. Hence one
deduces that the region of the plane Ox;x,, comprised between the
trailing edge 4y and the Mach cone (see fig. 52{2 is thus a region of
discontinuity for the velocity.

One sees therefore that the hypothesis set up before (simple poles
for dU 4V ‘J-"l) is incompatible with the fact that U, V, W do
dz® dz° dz :
not admit singularities other than the points Ay, Ay, AT, Ax'.
One may realize this, besides, in another manner; in order to satisfy
in the simplest possible way the boundary conditions imposed on U(Z),
it suffices to write U(Z) in the form
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A 1 - 27 cos 6, + 22
U (2) = - 1o log 1

pr sin 6y 1 - 2Z cos 62 + 22

since this function Ul(Z) well fulfills the boﬁndary conditions
required for the function U(Z) on the circumference (Co). However,

/

_ 2iq Z - cos 61 Z - cos 62

az Bt sin 8211 - 22 cos 67 + 22 1 - 22 cos 6, + Z2

and for Z =0

dUy 2iq,

—_— = —2=2—__{cos 67 - cos @
(dZ >z=0 B sin 92( 1 2)

If, therefore, the functions U{(Z), V(Z), W(Z) are not to admit
singularities inside of (CO), the solution Ul(Z). cannot be retained

just as it is because the corresponding functions V,(Z) and W,(2)
would have a critical logarithmic point at the origin38.
Thus we are led to modify the solution Ul(Z) by introducing a

singularity at one of the points Ay or A, (and, by symmetry, at A’
or Az'). Physically, by virtue of the rule of forbidden signals, this

‘singularity must be placed at the pair of points Ay, Ay', because the

bounding generatrix A, (fig. 52) which takes the place of the leading
edge (having as image the pair of points Ap, As' 1in the plane Z) is .

independent (see section 1.2.4) of the trailing edge (pair of
points Ay, Ay', in the plane Z). One then sees that, by putting

2
: 1l -2Zcos 67 + 2 :
U(Z) - ia log 1 - 2ia

7B sin 07 1 - 2Z cos 6, + 22 7B 8In 62 1 _ 27 cos gy + 22
(I;;.68)

cos 6q - cos 65)Z
1 2

38L. Beschkine (ref. 11) took the function Uy(Z) as the value of
1
U(Z); see further on, in section 3.3.2, the discussion of this question.
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one has, for u(z), a function satisfying the boundary conditions on
(Co) holomorphic inside of (Co) the derivative of which becomes zero

at the point Z = O and consequently leads to functions W(Z) and V(Z)
which do not present singularities inside of (CO). Besides, this solu-

tion is unique if one takes account of the principle of minimum singu-
larities.

One may then calculate the functions V(Z) and W(Z). Thus one
finds for W(z)

i@ i6
. 2 . 1 - cos 69 cos 6 1
W(Z) - _ ia log e —'Z + }a ( i 1 2) log e -.Z +
T 1 - Zelez x sin 92 sin 61 1. Zelel
cos 67 - cos 6 2
e ] 2 2o -1 (III.69)
n sin O 1+ Z2 - 27 cos 6,
and
ié -i6
: 2 2
V(Z)=-l—“‘cot6210g(z'e_e)(z'e_ )+
n (Z ol 1)(2 ) e-191)
. cos 67 Z(cos 67 - cos O
Zlg‘ 1 ( 1 2) (III.70)

® sin 03 1 + 22 _ 27 cos 6

Thus one finds that on the wing (arc AlAz) the component v has

the value
v = a cot 62

In the region of the plane Oxlxé outside of the wing, the compo-

nent v 1is always zero; wWhereas w assumes a constant value in the part
comprised between the trailing edge and the cone (r):

1l - cos 61 cos 92 1l - cos(el - 62)
=(1 - :-a
sin 92 sin 61 sin 61 sin 92
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Finally, in the part of the plane Oxjx, inside of (I') (seg-

.ment AA') v =0, and w 1is given by the formula ‘

cos 65 - X
w =2 Arc cos 2 -
1l - x cos 92

(l - cos 07 cos 62) Arc cos[-S98 61 - x +
sin 67 sin 6, . 1l - x-cos 6

A g

n sin 6, 1 - xcos 6y

cos 6, - cos B J - x&
Q@ 1 2 _ Nt -x (III.71)

3.2.4.4 - General lifting problem.- One sees immediately that, if
one wants to uniquely calculate the pressure on the obstacle, one may
utilize the same formula as for the general symmetrical problem (for-
mula (III.67)). Besides, the study of the values U(Z), V(Z), and W(Z)
in the general case will also be very simple with the aid of superposi-
tion. One will easily verify that, if w = a(6) is the prescribed
value of the normal component along the obstacle (91 <0< 62), one

has, for instance

85+0 2
2 1l + 2% - 2Z cos 6
u(z) =L [ 10g - 1 d‘f‘(eg "
pr 01 1 + 2% - 22 cos 6 Sin
0,40
2417 f 2 cOos 61 - cos O da(e)
pr(1 - 22 cos 6, + 27) Vg, sin 6

Analogous formulas could be written for V(Z) and W(Z). ‘

Thus the electric analogy is less. interesting in this case, since
there is a way of solving the problem explicitly. We shall simply note
that the singularity to be placed at the tank at the image point of the
trailing edge is a doublet.
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3.3 - Supplementary Remarks on the Infinitely

Flattened Conical Flows

3.3.1 - Continuity of the Results

+ At the end of this investigation, it will not be unnecessary to
state briefly the continuity of the obtained results.

If one takes for instance an elementary flow bisecting the Mach
cone for which one makes 6 tend toward O, 6, toward =, one finds,

passing to the corresponding limit in the formula (ITI.52) as limiting
value of the pressure coefficient

cos 91 - X

1
C, = =|1lim,y _,n ——— Arc cos +
P [: 9170 5in 61 1 - x cos 6y

. | 1 X - cos 6,
llmez__,ﬂ —=— Arc cos 5 =

sin 92 -l - x cos 6
2al L+ x, L -x|_ba_ 1 (1I1.72)
Brefyl - x {1 + x Bt >
1 - x

If one now makes, in an elementary flow, symmetrical or lifting
(see sections 2.1.2.2 and 3.1.2.3), b and ¢, respectively, tend
toward -1 and 1, one again arrives at the formula (III.72). Besides,
the formula (III 72) has already been written, at the end of sec-
tion 3.1.1.7. One finds, finally, the same result by transferring like-
wise results from section 3.2.3. If one makes, for instance, in the
formula (III.S8), 8, tend toward zero and a toward -1, one obtains

cos 67 - x
C, = Za llme 1 Arc 1 +
P g 179 Sin 61 1 - x cos 6y

: 1 1+x ,1-X ha, 1
1 ~ 1o + N g
Tle—-1 7 g[l - ax:ﬂ [1 -x 1 x| B o3




160 D NACA TM 1354

Likewise, starting from equation (III.63) and making & tend
toward -1, 6; toward zero (@l tend toward zero)

Arc cos|l -
P 2prl+X X Bn 91__’0 sin 69 (

Xg —- -1

2(x - x9) (1 - cos 9y) _2all -X,
1 - xxg - (x - xo)cos Ql Bx 1+X X

. 2(x - Xo) 1+X| 2q¢]1 -X ,1 + x| _hka 1
llQXO"*‘l (l + xo)(l - x) 1 - x, - E% 1+X ¥ 1-x| pcf _ X2

Likewise, one may verify the continuity of the results under the
hypothesis where a single one of the generatrices of the conical obstacle
is situated on the Mach cone. One thus obtains a limiting case between
the flows studied in section 3.1.2 and those studied in section 3.2.3.

If one supposes, for instance, that one of the bounding generatrices
has as image the point Z = 1, the second the point Z =a, -1<a<1,
one finds, whatever the manner of making the passage to the limit, for
the symmetrical problem

Cp -2aljl +x , _2a log X -8a
ﬁB 1l -x l_a l-a.

and for the lifting problem

haa 1 -x

= - +

° Br(1 - &) \](x -a)(1 - aX)

e | 2(x - xg) baX(1 + a)2 - 2a(x® + 1)]
Pyt = X - %0) (1 - 1)@ - )X - 2) (1 - )

In the same manner one can verify the continuity between the flows
studied in sections 3.2.3 and 3.2.k4.
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3.3:2 - Discussion on the Possible Singularities
of Lifting Problems

In this entire chapter, we have limited ourselves to giving the
solutions which satisfy the condition, stated frequently: To admit as
singularities in the plane- Z only the bounding generatrices of the A,
and to choose from among all possible solutions the solution which sat-
isfies the principle of minimum singularities. This is a hypothesis
which is justified by its simplicity and which we have set up here with-
out using the experimental results apt to gulde our choice for placing

the 81ngularit1es39

A first theoretical possibility would consist in admitting singu-
larities possible on the generatrices of the Mach cone, having as image
the points 2Z = +1 in the plane Z. This seems to us not easily admis-
sible from the physical point of view. Besides, to our knowledge, the
various authors who have treated problems of infinitely flattened conical
flows have always eliminated this possibility (see in particular refs.

10 and 11). In fact, it is hard to understand how the pressure could
become infinite in the neighborhood of these generatrices..

In contrast, one has a means of obtaining solutions different from
those obtained 1n the course of this investigation, in toleratlng, as
possible singular point, the point Z = O.

O We shall first make the following general remark: Let us take the
case of a cone where one of the bounding generatrices has as image the
point Z =0 in the plane 2Z; in this case the pressure remains finite
in the neighborhood of the corresponding bounding generatrix. This
results from the formulas (III.23) and (III.2k) for the case of a cone
entirely inside of (I') (section 3.1.2), and from formulas (III.58) .
and (III.60) for the case of a cone partially outside, partially inside
of (r) (section 3.2.3). We shall show that, utilizing conformal repre-
sentations and maintaining the circle (CO), it will be possible, even.

in the case where 0x; 1is not a bounding generatrix, to define a solu-

tion of the lifting problem in such a manner that the pressure remains
finite along a bounding generatrix inside of (P), under the condition
of admitting the point Z = 0 as singular point.

39The theoretical study of flows (movements) in incompressible
fluid has been rendered possible and effective only owing to the famous
hypothesis of Joukowsky which indicates the choice to be made among the
singularities which are possible for the flow. The study of the prob-
lems treated here shows uncertainty in the state of our actual knowledge
concerning the conditions which the theoretical solution must satisfy
in order to represent best the real phenomena.
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We return to the investigation of section 3.2.3.3 where a % 0:
One may in fact come back to the case where a = O, by the transforma-
tions utilized before

_Z - a 2

g = .
1l - az

The function U(s) the determination of which was the problem is
then defined inside of the semicircle, and it satisfies exactly the
same conditions as the function U(s) studied in section 3.2.3.2.

(111.73)

?, Dbeing defined starting from 6y - by the equality (III.62). This
leads us to a value of the pressure coefficient

C. - 20 are cosll - 2(x - xo)(1 - cos 9)
P Br sin 6 1 - xxq - (x - xo)cos P

a value already given by Beschkine which is deduced from the for-
mula (III.63) by suppression of the term in logarithm. This pressure
coefficient remains finite along the bounding generatrix inside of (I'):

X=Xo.

However, if one calculates the functions W(Z) and V(Z), corre-
sponding to the function U dJdefined by equation (III.73), one finds
the following results
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2 pat
W 1+ 8% - 2s cos —|-
W(s) =Vp - i—;o-log @2 +
1+ s2 + 2s cos?l
F-4
%0 cos 2|1 108 (s-i\lg)(ljrﬁ)hﬁlogs‘]g'i\[‘;*l'
a

sfa +iJa -1

¢
iw s =1 - 25 sin L
V(s) = - —ﬂ—o cot 61 log ch -
sZ - 1 + 2is sin?l

iw (P_O(s-i£>(1+\[a_)_'aos\lg—i\]a—+l
rro —ZL\]lElg(s+ia)(l-\]a_L) \!_lgsa+i\[§-l

(II1.74)

These formulas call for the following remarks (see fig. 54). We .
assume a > O:

1. On the region of the obstacle comprised between OD and O\Az

(IArg sI < (Ezl) one has

<~ W = Wo
v = iw cot 01

a result which is quite conformal to the formulas (III.44) and (IIT.U46).

2. On the region of the obstacle comprised between OD and O Ly,
5 1is real El < 8 < 0, for the surface x3»< (II; one sees that w = wj

P
cos &
2

5

on every surface, whereas v assumes the opposite values £ 4170)
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3. On the region of the plane Ox x2 comprlsed between O Al and
Oxl (s is purely imaginary and varies on the segment w), v main-
P
cos =+
tains constant opposite values, equal to a iw-————zL, whereas w

increases infinitely in absolute value.

4. On the region of the plane comprised between Oxq and OD'

(s, which is purely imaginary, describes the segment mB), v is zero;
w, infinite on O0xy, becomes zero on OD'. '

Behind the generatrix O Ay which one may consider as the trailing

edge of the wing A studied, this solution furnishes therefare a zone
of discontinuity of velocity (the discontinuity being in the direction
of Oxz) which occupies the region O 4y, Ox;. Moreover, the axis Oxy

is a singular straight line for the flow. Thus one encounters a scheme
which seems at first rather tempting and reminds one of the study of
the wing in subsonic flow; behind the wing there appears a zone of dis-
continuity of velocity produced by vortices following the direction of
Oxy, and the singularity encountered along the axis Oxl reminds one

of the "marginal vortex" of the wing theory. As in the case of subsonic
flows, this flow scheme appears linked to the condition of having a
finite pressure along the trailing edge.

The formulas (III.T4) likewise show us that the-flow found does
not satisfy the boundary conditions if a 1is negative, that is, if the
obstacle is not situated on the same side of the plane Oxlx3. In fact,

in this case w would admit on the obstacle a discontinuity in the
neighborhood of the axis O0xj; but this is incompatible with the boundary

dataho.

If one wants to apply a similar method in the case of a symmetrical
flow, one likewise notices immediately that the result is incompatible
with the given boundary conditions since one obtains a discontinuity
for w.

Let us now visualize the case of a flow around a cone entirely
inside of the Mach cone, with the bounding generatrices on the same

hoThis solution which has been suggested by Beschkine must, there-
fore, certainly be rejected in the case where &a 1is negative; the fig-
ure 6 given by Beschkine (ref. 11) seems to show that this author has
not seen this fundamental restriction. In this case one must certainly
adopt the solution set forth in section 3.2.3.3.
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side as Oxl (rig. 55) and -the remaining finite on the trailing
edge O Ay. The function U(Z) then has the form
‘ .

(z - v)(1 - zb)
(c - 2)(1 - Ze)

u(z) = %? c(v,c) (111.75)

with C(b,c) being a function of b and of. c.

One then sees that in calculating V(Z) and W(Z) one will find
the same particularities as previously: the point Z = 0 will be a
singular point. In the region comprised between Ox; and O Ay one

states a discontinuity of the component v whereas the velocity w
becomes infinite along Oxl.

The following problem arises: Should one adopt in the case where
the two bounding generatrices O A; and 0 A, are on the same side

as Oxy the solutions exposed in the course of this chapter, which we
shall call solutions of type I (singularities on 04y and O Az), or

the solutions we just indicated, which we shall call solutions of type II
(singularities along O A, and Oxl)?

Let us note first of all that, for reasons of continuity, it is
absolutely necessary to adopt completely one or the other viewpoint;
one cannot admit a solution of the type I for the flows entirely inside
the Mach cone, and a solution of the type II for the flows partly
inside, partly outside.

Under this presupposition, the solutions of the type II are, at a
first glance, rather tempting; perhaps certain authors were thinking of
these solutions when they exposed the condition of the subsonic trailing
edge which could be stated in the following manner:

Since the tangent to the trailing edge forms with the flow an angle
which is smaller than the Mach angle of the flow, one must write on the
corresponding trailing edge the condition of Joukowsky in order to be
sure that the velocity remains finite (see for instance ref. L).

Now the solutions corresponding to the formulas (III.73) and (III.75)
seem tO satisfy these conditions. And as we remarked before, these
flows show, behind the trailing edge, actually a character which reminds
one of subsonic flows. '
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We do not want to definitely reject these flows; however, we have
to make three remarks.

1. As we have stated that the solutions with finite pressure along
the trailing edge are not possible for the symmetrical problems, the
pressure cannot remain finite in the case of a flow of the type II
around a cone having thickness.

2. It would be dangerous to link the solutions of the type II to
the "subsonic trailing edge" since, if the wing is entirely outside of
the cone (I'), there exists still another solution which yields a finite
pressure on O Ay and gives rise to a surface of discontinuity between

Oxy and O Ay: It is the solution Ul(Z) visualized at the beginning
of section 3.2.4.3. One has, in fact, under this hypothesis

\

V,(2) = —3a 6o - 6-V1og( - 2) +
l( ) nt sin ez(cos 2 cos 1) og( )

ia 2
—22 __ _leos 64 logll + Z° - 27 cos 6 - .
i sin 92[ 1 g( l)

cos 6, log(l + 7% - 22 cos 92)]

which gives in the region comprised between Ox; and O /Ay equal
values of v

t-STI?‘—e-g@os 6, - cos 61)

If one adopts for such a cone the lifting solution of the type II,
one finds that the velocity remains finite at the tralllng edge, even
under the hypothesis of a cone of nonzero thickness. 2

3. Adopting, still by virtue of the principle of continuity, the
type II for the lifting solutions in the case where the bounding genera-
trices are on the same side as Ox; would lead us to a restriction of

the range of the study of the flows with infinitely small cone angle
made in chapter II; for this problem, such as it has been posed, would
no longer be valid in the case where the contour (C) in the plane 2
no longer contains O 1in its interior. In contrast, we already have
had occasion to state that the results of chapter III are in complete
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agreement with those of chapter II‘(see section 2.2.8); this statement
is valid for the case of any figure whatsoever.

We may conclude that, according to the actual state of our knowl-
edge, it does not seem imperative to adopt the viewpoint of the solu-
tions of type II. In our opinion, only an experimental study can indi-
cate where the theorist must place the singularities; the viewpoint
adopted in this chapter seems to us to be the most natural one. It
becomes required in the case where Oxy 1is comprised in the angle O by

- and O Ap; in the opbosite case, if in one way or another our knowledge

of the physical phenomenon should widen and lead us to a change in our
hypotheses on the singularities, it will still be easy to obtain the
desired solutions, provided the conical character of the flow is main-

tainedul.

blgee Appendix No. k.
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CHAPTER IV - THE COMPOSITION OF CONICAL FLOWS
AND ITS APPLICATION TO THE AERODYNAMIC

CALCULATION OF SUPERSONIC AIRCRAFT

We shall show in this chapter how the conical flows studied in the
previous chapter and possibly the homogeneous flows defined in sec-
tion 1.3 of chapter I permit to study, at least in certain particular
cases, the various elements of a supersonic airplane (fuselages, wings,
controls, etc.) by "superposition" if one can apply the general method
of linear approximations. Our aim is not to furnish all possible appli-
cations nor to give all the formulas the constructor may need. We
‘'shall, rather, insist on the principles of such a composition; we shall
give the simplest and most significant results and, more specially,
those which, at least to our knowledge, have a character of newness.

We shall voluntarlly reserve the results of technical character for a
later publication.

Such a superposition is justified by the linear character of the
fundamental equation (I 10). The simplicity of the following arguments
frequently results from the rule of "forbidden signals" which we have
stressed already in section 1.1.k.

4.1 - Application of Conical Flows to the

Calculation of the Wings

In his fundamental memorandum, often quoted above (ref. 4),
Th. Von Karmsan indicates that the theory of conical flows permits the
investigation of wings the profiles of which are formed by straight

llneshz. We intend to show in this paragraph that one can investigate
a wing of finite span and with a curvilinear profile by means of compo-
sition of conical flows. Like the problems of conical flows (compare
chapter III), a wing problem may be divided into a symmetrical and a
lifting problem. '

We shall note 8+(xl,x2> and 6'(xl,x2), the inclinations of the
top surface profiles (x3 = +O) and bottom surface profiles (x3 = -O)

uzThe subject of a certain number of memoranda is the study of
wings with polygonal profile. One must then superpose a finite number
of conical flows. The most recent and most complete investigation of
this problem is the one by A. E. Pukett and H. J. Stewart (ref. 30).
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of the wing investigated, and we shall put (compare fig. 56)

8% = -1 + o 5 = -i + o~

with 1 representing the general incidence of the wing (one will define
it as the incidence of the chord of one of the sections). We shall then
put

dorareg) - £ a-giel

In the case of a purely symmetrical problem
i=0 Jo =0
In the case of a purely“lifting problem
a =20

Let Cp' and Cp+ be the pressure coefficients on the upper side
and lower side of the wing. The local ¢, and the local cy of a sec-
tion parallel to Oxl,x3 will be defined by (compare fig. 56)

c; = f ' (cp™ - Cp*)axy

mm

cy = fm (cp** - Cp87)dxy

Designating by Cp(l) and Cp(z) the pressure coefficients obtained

in the study of the symmetrical and lifting problems, the superposition
of which gives the general problem investigated, one has

c,t = cp(l) + cp(z) c,” = cp(l) } cp(z)
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and consequently

e, = cz(z)

cz(z) being the local ci of the lifting problem and

k/1 Cp(l)(af - a”)dxy + L/1 Cp(z)(-Zi +at + aT)dxy
o' mm'

zf Mo ax + zf cp(B) (-1 + gg)axy
mm mm

e (1) 4 o (2)

cx(l) and cx(z) designating the local c, of the symmetrical and
i lifting problemsh3.

Designating by C, and Cy the total-lift and drag coefficients,

one will, of course, have
Cz = Cz(z) -Cx = Cx(l) + Cx(z)

One sees thus very clearly how a general problem is divided into a
symmetrical and a lifting problem. One may say, figuratively speaking,
that the symmetrical problem investigates "the effect of thickness"
and that the lifting problem investigates "the effect of curvature and
incidence." We shall treat these two problems successively.

430ne could put: cx(e) = c'x(z) +.ic,, noting that
c'x(g) =2 . cp(e)jo dxl. The local c¢y 1is, therefore, the sum

(1), “ara ' (2)
of cy\'/, drag due to the thickness, c y'</, drag due to the curvature,
and of 1icy, drag due to the incidence (induced drag).
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4.1.1 - Symmetrical Problem

4.1.1.1 - Rectangular wing with- symmetrical

profile and zero 1lift

4.1.1.1.1 - General remarks.- The projection of the wing is a rec-
tangle (R): ABA'B' (compare fig. 57). We shall put

AA' =BB' =1 AB = A'B' =l

The problem is to find a flow such as to make the value of the
normal component w zero at every point of the plane X3 = 0, except

in. (R). Furthermore we shall, for a start, assume that the wing cross
section is constant for the entire span. This profile, symmetrical
according to hypothesis, will be defined by the function “(xl), which

gives the value of the inclination of the profile (supposed to be small)
toward the axis of the X15  .will therefore assume the

value o't = a(xl) on the upper side (x3 > O) of the rectangle ABB'A',
and the opposite value o~ = -a(xl) on the lower side (x3 < 0).

In order to solve the problem, we shall compose conical flows the
vertices of which are situated on the sides AA' and BB'.

In order to simplify the notation, we shall call -E;(M,a) the

elementary symmetrical conical flow which has its vertex at a point M
of the plane Oxlxz (compare fig. 58) for which w is zero outside of

the quadrant limited by the semi-infinite lines parallel to Ox) and Oxp

issuing from M; w 1is equal to the constant o on the upper part of
this quadrant and to -a on the lower part. CS(M,a) will designate

an analogous flow where the axis Oxz will have been replaced by its

symmetrical counterpart. Such a flow has bggg_ipvestigated in sec-
tion 3.2.3.1. If one designates the angle x;MP by ¢, the for-

mulas (III.59) show that the pressure coefficient CP is given by

D Cp = 2L 1A sin(p tan @) IB tanCP, <1 (1v.1)
P~ glz "« .
C,h=0if ptan P < -1 Co=2%irBtan® > 1

P, P B
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4.1.1.1.2 - General principle of the superposition.- Let us visu-
alize, first of all, the superposition of the following flows

?sl:A,u,(Oil and %—SEB,CL(OH

The resultant flow gives in the plane X3 = O the values of w indi-

cated by the figure 59(a). If we now subtract the two-dimensional flow
sbout a dihedron of the angle 2@(0), it is disposed symmetrically
with respect to the plane Ox;xo and has Ox, as edge; the semi-

infinite Ox; 1is inside of the dihedron, and one obtains in the
plane X3 = +0 the values of w indicated by the figure 59(b). This

gives us the principle of the composition. andyill obtain the desired
flow by superposing conical flows of the type Cg the vertices M of

4_.
which will be situated on AA', conical flows of the type Cg the ver-

tices of which will be situated on BB', and by subtracting suitable
two-dimensional flows. It will be possible to schematize the flow in a
precise manner as follows

‘ ?S(M, da) + ‘ES(M, da) - EEL(X]_)] (1v.2)

AA! BB'

with Eja(x designating the two-dimensional flow about a wing of
1

infinite span the profile of which 1s identical with the profile of
the given rectangular wing.

In fact, one verifies immediately that the flow, symbolically
defined by the formula (Iv.2), satisfies the given boundary conditions.
We want, nevertheless, to specify that the integrals of this formula
ought to be understood in the sense of Stieljes, in order to understand
the case where the function a(xl) will represent discontinuities of

the first kind. Such discontinuities exist, in general, at the leading
edge AB and at the trailing edge A'B'.

4.1.1.1.3 - Study of the flow T, (M, da).- In order to make
. AAI
this investigation, we introduce the axes Axy, Ax parallel to Oxy,

Ay coinciding with O0x,, and put

= x* Bl_ = y* or,x(xx) = a(x)

I
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The section of the Mach cone behind the point A 1is formed by two
semi~infinites which have as equations

X+ y¥=0

Let (xx,yx) be the reduced coordinates of a point P of the

plane Axy (fig. 60). We shall suppose x¥ < 1. If O < xX < y¥X, the
point P 1is outside of the Mach cones behind all points M of the
segment AA'; consequently, according to equation (IV.1)

"2x2xxx2x
Cp(xx,yx) = E‘]; da = EL[; daX = g (xx)

If now O < yX < xX, the point P is outside of the Mach cones of
the points of the segment PPy, but inside of the Mach cones of the

points situated on APy, Py being the point of AA' of the

abscissa x¥ - yX. Besides, the conical flows, the vertex of which is
on PpA', have no influence on the point P. Consequently, the pressure
at the point P 1is written, according to equation (IV.1)

xX

X_uX
Cp = &- TV (2 4 e sin Y5 daX(8) + & daX(E)
Bt Jo 2 & - & B '

or

Cp = %[Za.x(xx) - P(xx,yxil
' ‘ (1Iv.3)
xX-yX X r

(5, 5%) = X (et - y¥) - gﬁ Are sin =L aaX(8)

P

This formula, set up for the case where O < y¥X < xX, may be extended

to the case already studied O < x* < y¥ since ‘a may be considered
zero for the negative values of the abscissa.
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1
cx(yx) = 2\[0 Cp (g,yx)a.x( E)de

Consequently

NACA T 135k

One can now calculate the drag of the section y*

1 1
= _lt axz - _2_ ax ax -
ey (v%) = Bj; (e)at Bf (e)a* (& - y¥)at +

N 1 . g'yx yx
—f o.x(E)dE,f Arc sin
Bt yX 0 £ -

or, changing the order of integration in the last term and putting

1
f oX2(t)dE = o?
0

1
F(y¥) = zf oX(&)aX (& - y¥)at -
(v) x (

1- 1
‘ Ef v du,x('q)f Arc sin sl
TJdo v+ £ -1

da(n)

oX(E)dt

(Iv.4%)
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Such a section actually behaves like the section of a wing of
infinite span which is quite obvious according to the rule of forbidden
signals. We note in addition that

=2
ex(0) = £

thus the drag of the section yX = O is half the drag of the same sec-
tion at infinite aspect ratio.

We want to point out another remarkable result

1
L/; ey (y¥)ay* = % A (1v.5)

that is, the mean value of the drag in the region 0 < yX¥ < 1 where

the cx(yx) is not constant is equal to the value of the drag in infinite
flow.

In fact, first of all

1 1 1 3
f dyxf aX(8)aX (& - yX)at = f ax(g)agf o (& - y¥)day* =
0 = 0 0

1

1 >
J; aX(8)eX(t)at = 1[ex(e)]°| =0

0

if one puts

X
eX(x) = f aX(t)at
Y
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On the other hand

1 1 E-y™
f dy"xf ax(g)dE.f Arc sin y da*(n) =
0 N ° P

1 3 £-1 ¥
L[‘ aX(E)dEL]‘ da?(n)L[‘ Arc sin dyX
0 0 0 £€-nm

If we put in the last integral

y¥ = (& -n)sin t

the preceding expression becomes equal to

(IZL.- 1) Ll c,x(é)déj;g (& - n)daX(n) = (g - ) fol B2 (E)at -
1
fo ax(2) [tax(e) - ex(EﬂdE - 0

The formula (IV.5) is thus justified.

4.1.1.1.4 - Study of the rectangular wing with constant profile.-
We shall call the quantity P\, which we shall note 27, (B)» = 2ng ),

the "reduced aspect ratio" of a rectangular wing.

We shall designate by t the "reduced chord"

and we shall put (compare fig. -56)

T].':._B>(_2
1
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In applying the formula of composition (formula (IV.2)) one sees
that the pressure coefficient at a point of the rectangular wing is
given by

Cp(t,ﬂ) = E%&El - %E’(tmo + T]) + P(‘t,'ﬂo ‘r"l):l (1v.6)

P 1is the function defined by the formula (IV.3). The drag of the sec-
tion 1 1is given by

_ 1 |
ex(n) = b ‘E—z - %J; [P.(tﬂlo +m) + P(t,ng - nilax(t)dt

However, by definition

1
zf P(t,u)aX(t)dt = F(u)
0

F being, besides, the function defined by equation (IV.ﬂ). Consequently

cx(n) = % - %E‘(no +1) +F(ng - n):l (1Iv.7)
we remark that if n5 > 1, that is, if A > 3, there is always at least
° B

one of the functions F zero; in this case the c, of the sections

g

close to the center is equal to —E—. This is an immediate consequence

of the principle of forbidden signals.

Now we can finally calculate the total drag which we shall fix by
the coefficient
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If one puts

v
o(v) = L/1 F(u)du
0 .

one sees immediately that

ke 1,
CX = —B—— - -B_'-F]G (I)(leo) (IV.B)

However, the result obtained by the formula (Iv.5) amounts to
stating that .

o(v) =0 if v>1

Consequently, the drag of a rectangular wing has a value independent

of the aspect ratio and equal to , for geometrical aspect ratios A

greater than %.

Summarizing, one may say that the complete investigation of a sym-
metrical rectangular wing of zero lift amounts to calculating the func-
tions P, F, ¢ which are all calculated by quadratures.

4,1.1.1.5 - Applications.~ 1. The profile is a rhomb; in this case

*(t) =ag if t <z
ca®(t) = g if & >>% a = ag

| We shall now calculate the function -F(yx), defined by equa-
| tion (IV.4). For this purpose we remark first that

[NVl o

0l (L - 3%) if 0y g
<Y<

~ogP(1 - ¥¥) 1f

’ 1
oX(E)a (& - y¥)at =
J ot

] g
[}
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There remains to be calculated

l-y%X 1
f dax('q)f Arc sin s a®(t)at
0 v £ -1

However,

b
Arc sin ¥ dt = (b - n)Arc sin . (a - 7)Are sin e +
a € -1 b -1 a -1

y'x(Arg ch pF’—Tl - Arg ch aF-Jl)

as one sees immediately, integrating by parts.

If 0K ¥y*< ;ZL’ a®(n) 1s subjected to two discontinuities, the

first for 1 = 0, the contribution of which is
0[.02 <;2L_Arc sin 2y* + y*Arg Ch_ix—_lzt-yx>- (Arc sin y¥ -
‘ 2

L Arc sin 2yx> - y¥¥|Arg ch 4 - Arg ch L
2 ¥ 2y
the second for n = -]2-—, the contribution of which is

20,2 %Arc sin'2y* - y* 2 + y¥Arg ch i]

f y* >12'-, only the discontinuity for n = O comes into play, the

contribution of which is

X
y

-a,ozArc sinyx-yx%+yxArgchL:l
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If one assembles these partial results and puts

I

b

Y(yx) 1<Arc sin y* + y*Arg ch#) for 0<y*<1

¢ (1v.9)
for y¥>1

I
—
&
S’
]
N

one sees that one may write in a general manner

F(y*) = 4002[% +Y(y¥) - ZY(ZyX):]

and consequently

2
cxln) = 222

|:% - Y(np + n) - Y(ng - n) + 2¥(2ng + 2n) + 2¥(2ng - 2“)]

(1v.10)
Figure 61 gives the variation of c¢,(n) for two values of 1g.

For knowing, finally, the total drag it suffices to calculate the

function &(u).

with

Now

_ 42
D(u) = L[N =Y 4 2 Are sin u +
. 2 u .
uArgch% if O0<ugl
D(u) =1 if uxl
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Hence

o(u) = ua,ozlz[l + D(uﬂ -u D(2u€| (Iv.11)

Consequently, applying equation (Iv.8), one obtains

Cy = %92—[2 D(hjo) - D(znoil (1v.12)

One will find in figure 62 the curve giving Cy as a function of

the reduced aspect ratio.

The curves of the figures 61 and 62 have already been given by
Th. Von Kdrmén (ref. 4), but this author does not give any analytical
formula. Moreover it seems as if the results Th. Von Kéfmén's‘had been
obtained by application of the method of "acoustic analogy." The curve
given in figure 61 may also be found in a memorandum of Lighthill
(ref. 31) who utilized the method of sources.

2. The profile is formed by two symmetrical parabolic arcs; in
this case one must put

oX(t) = (1 - 2t)
€9 characterizes the thickness of the profile.

The problem consists in calculating the functions F(yx) and 9(v)
defined in the previous paragraph. One finds after a few integrations
of elementary character

€ 2
F(y¥) = )*3: l}rc cos yX + y"{(yx2 - 3)Arg ch ;-L)—( + yx"l - yxztl (Iv.13)

and

-h 2 L 2 A | 2 ﬁ >
o(v) = ;g <?i - 3i; )Arg ch 5; + yXArc cos y* + zf___zlqu_

(Iv.1k)
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On the other hand

c 2
T = 0
3
One can clearly verify that
2
2¢€
F(0) = 30 = 25 F(1) = 0 o(1) = 0

In figures 63 and 64 one will find the distribution of e, . over

X -
the span for a wing of reduced aspect ratio Zno = 2, and the variation

of Cy (total-drag coefficient) as a function of the aspect ratio.

4.1.1.1.6 - Case where the profile is variable in span.- It is
possible to calculate the symmetrical rectangular wing at zero 1lift in
the general case where the profile is variable in span. We shall here
be satisfied to examine the relatively simple case where the profiles
along the span are deduced from one another by affinity; the ratio of
the affinity varies with the span. We shall assume that the wing of

reduced span 21y has a local inclination of the form k(n)aX(t) at a
point of reduced coordinates 1, t.

The function k(n) must of course satisfy the usual limitations
so that the problem posed can be treated by means of linear approxima-
tions. Finally, we shall assume the function k(1) to be even in M.

Let us first of all remark that the wing of reduced span 27, the
profile of which (which is constant along the entire span) is defined by

the function a?(t), causes outside of the wing, at a point of reduced

coordinates t, yx(yx > n), a pressure coefficient
Cplt,y™) = %E(t,yx -n) - P&,y + ) (1v.15)
P 1is the function defined by equation (IV.3) as one sees reassuming the
arguments of the sections 4.1.1.1.3 and 4.1.1.1.L4.
One will now obtain the desired boundary conditions by superposing

a succession of rectangular wings which are symmetrical with respect to
01x7, of equal chord reduced to 1 and of variable reduced



NACA TM 1354 183

span Bn(O <7< no) for which the profile remains constant in span.

This is justified since k(n) had been assumed to be even.

At a point (t,yx) the pressure coefficient is written

. |
Cy (t,5%) = %[}ax(t)k(y") + J; ° P(t,n + y¥)dk(n) +

yX
fy:o P(t,n - y¥)dk(n) - J; P(t,y* - n)dk(n)

All these integrals are taken in the sense of Stieljes.

One will obtain a simpler formula by putting

: M
B(t:V)nO) = "J; ° Plt,e(n - V):l€ dk(n) (1v.16)

¢ Dbeing defined by the equality

e -v) =|n - v|

In this case

Cp(e,57) = £ oM()k(y¥) - %[z(t,y",no) + P_(t,-yx,noﬂ (v.17)

This formula is reduced to the formula (IV.6) in the case where
k(n) =1 over the entire span.

The drag of. the section yX is easily obtained

) - 200 - OV (%n0) v e(ng)]  (van)
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by putting

1
_F_(V)T]o) 2];) E(t)ano) ax(t)dt

1 10
- oX(t)dt P|t, - dk
fo ) fo [6,¢(n - v)] € aw(n)
ul 1
_J; °. dk(n)J; Pl:t,e(n - vﬂ oX(t)dt

whence the formula

y
F(v,ng) = -j; ®¥[etn - v)] € ax(n) (1Iv.19)

F is the function defined by the equality (IV.k4).
Thus one can see that the pressure coefficient and the local-drag '

coefficient are expressed by formulas analogous to those obtained in the
case where the profile is constant under the condition that the func-

tions P(t,yx) and F(yx) are replaced by weighted averages, B(t;V;ﬂd)
and E(v,no), defined by the formulas (IV.16) and (IV.19).

Finally, the total-drag coefficient is obtained immediately
o o
Cx = L. cx(yx)dyx = j;k]; cx(yx)dyx

whence
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As an example, we shall suppose k(1) to.be defined by

k) =1- b (0< <)

One will then have

L y
F(v,ng) =-LOF e(n - vﬂedk(n) =+J;OFI:€(T] ) Vﬂ%dﬂ

If v 1is positive

v

1 1 Mo
E(V,no) = - = F(v - n)ang + = F(q -.v)dy
Todo ToUv

1l

v -

1 1 Mo~V

- = F(u)du + = F(u)du
Todo Todo

= %E(no - v) - @(vil

v
o(v) = f F(u)du being the function introduced before in sec-
0]

tion L4.1.1.1.4.

If v 1is negative: VvV = -V
M
1 0 1
F.(v,n =—f F(n + v')an
( O) Mo 0 _
'
otV
=4 F(u)au
qo !

nl_o °(ng = V) - ‘D('Vﬂ
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whence

) 3 ) - B0+ o9 - 0]

o
(Iv.20)

Let us recall that o¢(v) =0, if v » 1.

It is then easy to make applications of this formula in the case
where the profile is a rhomb-or lenticular formed by zero parabolic
arcs.

One will find the curve which gives in the first case the varia-
tion of cy as a function of y¥, for a reduced aspect ratio ng = 2,
in figure 65.

4.1.1.2 - Study of the sweptback wing

with constant profile

Without investigating the sweptback wing as thoroughly as the
rectangular wing, we shall show that one may, without essential diffi-
culty, apply the method used for study of the rectangular wing for the
sweptback wing of constant profile the plan-form of which is schematized
in figure 66. We shall suppose that the plane Oxyx3 is a symmetry

plane for the wing. With ¥ designating the angle of sweepback, it

is obvious that we shall have flows of different type according to
whether the leading edge AOB will be outside or inside the Mach cone
of 0. One has become accustomed to say that in the first case the
leading edge is "supersonic" while it is "subsonic" in the second case,
thus recalling that the velocity component normal to the leading edge
is higher than sonic velocity in the first case, lower in the second.

The number V, defined by: B cot 7y = %, (v <1 characterizes the case

where the leading edge is outside of the Mach cone, v > 1, in contrast,
the case where it is inside) will, therefore, be an essential parameter
in the investigation of sweptback wings.

‘ 4L.1.1.2.1 - Case where V < 1.- We shall put in this case Vv = cos 6.
We shall define, as for the rectangular wing, "the reduced aspect ratio"
2ng (compare figure 66) by the relation

Zno = BA

if A designates the span of the wing taken along Oxsp.
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For simplification we shall assume that the profile chord is taken
as length unit, and that the profile is defined by the function a(xl>,

with x; varying from O to 1. It is obvious that the desired flow

will be obtained by a superposition of elementary conical flows which
one may note schematically

—> «~—
Cg(M,da,0) - Cg(M,da,0) - Cs(M,da,8)
Ool B H 1]

C5(M,da,8) designates a flow completely bisecting the Mach cone,
admittlng the plane Oxlx3 as symmetry plane (section 3.2. 2);
C (M da,8) designates a flow partially inside of the Mach cone; the

sign —> indicates the direction of the bounding generatrix which
forms with Oxz the angle 7; the other bounding generatrix is supposed

to be parallel to the wind. Because of the symmetry it will be suffi-
cient to study the region of the wing where Xo > 0.

It will be convenient to put
= Bxp
X] = x + yXcos 6
A conical flow with the vertex MO<X1 =&, x5 = O), of the type
, CS(MO,Q,Q)

causes (compare formula III. 53) the following pressure field in the
region yX > O:
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3
c. =Y _1 pp gin|—sino if 0<t<1
P B sin C] 2 2
1 - L%cos“@
y¥
t being defined by t =
x - £ + y%cos 6 5
Cp = L% if 1<t<—=
B sin 0O cos @
C, =0 if ¢ > —=&
P cos 6

At a point (x,yx) the pressure coefficient due to the flows.

f Cé(M,da,e) is equal to
00'

—2__|a(x) - a.Ec - y¥(1 - cos eil +

B sin @6

-yX(1-cos6)

Arc sin

sin G(X - t + yXcos 6)

da(t)]| =

a

B szin GE(X) .- Q(x,yx,e):l :

\ﬁ- E)(x - t + 2y%cos 6)
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putting

Q(x,y B G.E X(1 - cos Gﬂ -

X(1- 2]
x-y*(1-cos) sin e(x - £ + yXcos 6) da(t) =

J(X - £)(x - £ + 2y¥cos )

Arc sin

P [aV]

x-y*(1-cos8)
Arc cos

[éin o(x - £ + y*Xcos 6)] dé(&)
\k;—_ E)(x - £ + 2y%cos 9)

A

Let us note that

Q(X,yx,e) =0 if y¥(1 - cos ) >x

and that the same holds true also in the case where the sweepback is

zero (6 = 1).
2

1
1l + cos 6

(which will always be verified if ng > 1), that is, that the edge AA'

For simplification, we shall henceforward assume mnq >

has no influence whatsoever on the wing region x5 > O.

—_
The contribution due to the flows \]ﬁ C(M,da,8) is very easily
B 1]

obtained from the formula (III.58). The pressure coefficient due to
these flows may immediately be written

= ( Mo - yX: )

B sin 6
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if one puts

P(x,yx,e) = aE{ - ¥¥(1 + cos 61_, -

x*-y¥(1+cos) . 2
gf . Arc sin y'sin9 _ cos doa(é)
0 x - €

7

(1v.22)

If 6 = -’23, one falls back on the function P defined by the for-
mula (IV.3); on the other hand, P(x,yx,e) is obviously zero if

v¥(1 + cos 6) >x
Finally, with the reservation that

1
D —
o 1 + cos 6

one has at a point of the wing

Cp = E__si_n?lgaxm - zQ(x,yx,G) - P(x,'qo - yx,e)] (1Iv.23)

The local-drag coefficient is immediately obtained

() = —E . b g(%6) - L r (1, - y%,0)

" Bsin @ B sin @ B sin 0

(Iv.24)
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It signifies that the effect of limitation of the span does not
modify the total drag.

2.
1

T-cos6
. G(y*,0)ay* =

In fact, this expression is equal to

x-£
1 X I1-cosb
a(x)ax aa(t) Are cos . Sin e(x - £ + yXcos 6) ay*
0 0 0 ' \kx— £) (x - & + 2yXcos 6)

The last integral is written

1
(x - t) Arc cos sin 6 dat
0 1 - tchSZQ (l - t cos 6)2
If one puts
t = ¥t
. x - &+ yXcos 6

-1
1 - cos 6’
the drag of the investigated wing is identical with that of the yawed
wing of infinite span

the result is then immediate. It signifies that if Ny >

_ Lge
Cx = B sin 6 . (1v.27)

3. If 6 = 0 (the leading edge is situated on the Mach cone of 0),
the given formulas present an indeterminate form. Nevertheless it is
very easy to eliminate the indetermination. We shall, in particular,
calculate the total drag. The value we shall obtain is very interesting
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because it corresponds for a given sweptback wing to the maximum of the
total drag when the Mach number varies.

If © tends toward zero,

1 Arc sin sin ©

sin O
Jl - t2cos20

has as a limit

1. x - &+ y°
L -2 J<x-g)(x-g+2yx) ‘

We assume o > %; since our purpose is calculation of the total

drag, the edge BB' may be neglected. The desired total drag which we
shall denote by mea is written
. X

Cxmax = Bt L/q dny/q x)dXL/1 x - bty da(€)
"o W - ) (x - &+ 2y%)

X-§+yX dyx
W - 8 (x - & + 2y%)

alx)dx da(t)

whence, carrying out the last integration

1 X ——m———
_ 4 X - & + 2T]o «
CX x = mf @(X)uf V_X——Q_E(x - g) + T]Jd (g)
0 0

One thus obtains a very simple formula giving the value of the total Cy
when 6 = O.

(1v.28)
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If the profile is a rhomb, one sees, writing

1 1
I ’x - £+ 2n0|: :|
Cx < = 3KBT]O d@(g)f —_;—-—E_ Z(X - §) + Mo cx,(x)dx
0 3

that
hag? 3 1
C = — hol(=) -
max 3y (> o)
putting
u s 1 3
o(u) = L/w A’i——z—EQ(ZX + 1 )dx = uz(u + Zno)z
0
whence
3 3
Comax = (), 3 ) " ) (1v.29)

In figure 67 one will find the variation of (Cx) as a function
max
of Mg

If the profile is formed by two parabolic arcs,
a(x) = (1 - 2x)

and

8 + 2
€0 (1 - 2x) f————EQ(ZX + no) - 20(x)| dx
X
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or

Cx . = 860 l:I (1) - 63(1) + 6nok(1) + q>(1)]

1
(x + Zno)z X = %,/ (x + Zno)(x + no)
noz Log Mg + x + ¢x(x + 2"0)

2 no

=
~
>
j
1t
h
»
Hol-

Hence

Mo

heoz 2' 1+ + Jl + 2100
Cona - a—n[“l * 010 + )@ - n0) + oo

(1v.30)

One will find the corresponding curve in figure 68.
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4.1.1.2.2 - Case where Vv > 1l.- We shall begin by examining the
case of an infinite half-wing inside slip (compare figure-69).

It is convenient to put

=_l__:f_°E

2c

v

The flow is obtained by a superposition of conical flows symbolized by

f .E’S(M,da,,c) (1v.31)
00" _

._)
- with CS(M,da,c) designating the elementary flow investigated in section
3.1.2.2. in the case where b = 0. If one puts '

X
t = — - _.2p (1v.32)
x - &+ vyx 1+ p2

the pressure coefficient is given by the formula (III.23) which may also
be written

Cp:____z.a;__]_og.l_-__ce
c -
Bx JVZ -1 P

This formula is valid for e <1. 1If |p| >1, one has Cp = O.

One sees immediately the essential difference compared to the cases
investigated before: a conical flow with the vertex (80) can influence

a point (x,yX) for which x < £&. In particular, the trailing edge will

play a role in the calculation of the pressure. Finally, if x = §,

p = ¢, the Cp of the corresponding conical flow becomes infinite. If

the method remains exactly the same, one must also expect a few addi-
tional difficulties.

The pressure coefficient at a point of the wing will therefore be
written
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x+(v-1)y¥
l1-c¢
Cp(x,5%) = -___EL_—-_L/‘ : log E____B da(t)
- pr v - 1V 0 P
p 1is of course defined by the equality (IV.32).
The ¢y of the section y* 1is then written
1 t+(v-1)y% ,
Cx(yx) = -————l*—————L/w a(t)dtL/W log é-:—EE da(€)
Bn\}vz -1Y0 0 e

One will notice that, for y* =0, p = 0; and consequently

Cp(x,0) = _2alx) log 1_ _2alx) log[% + Jvz - ]
ﬁn\’vz -1 ¢ \’

As in the case of a wing of infinite span, the ¢ depends only

X
on the local inclination of the profile. Likewise

e (0) = & Log(v + |2 - 1) (IV.33)

B
bid Vz -1

The calculation of the function cx(yx), for yx;é 0, presents no

theoretical difficulty whatsocever. We shall now calculate the drag of
the infinite half-wing, and shall show that it is finite in spite of the
infinite dimensions of the wing. Assuming X to be this total drag,

we shall put

-Our purpose is the calculation of Cx'
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The desired value of 'C, will be the limit, if it exists, of the
integral

yo© | 1 x+(v-1)y¥
I(yg) = — & ay* | alx)ax log
( ) naz\fvz-lf f f
0 0 0

when yox increases indefinitely.

da(t)

1l -cp
c-p

In order to calculate this triple integral, we shall replace the

ensemble of the variables yX,x,t by the variables x,&,p; the func-

. X
tional determinant Eiz—iiiél is equal to
D(x,E,p)

dy* _ 2c2(x - §)(1 - pz)
0 (p - ¢)?3(1 - pe)?

This expression one obtains from equation (IV.32) if one writes this
equality in the form '

_ __2pc(x - €)
v (¢ - p)(1 - pe)

The volume in which the triple integral must be calculated is
represented in figure 7O. One can write
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larger than c, the triple integrals of equation (IV.34) will be zero

because
1 X
f a(x)axf (x - £)aa(e)
0 0

1 1
f cx.(x)dxf (& - x)da(t)
0 X

1
(@]

1]
- O

Since one wants to calculate the limit, if it exists, of I(yox),

one will utilize the limited developments. Let us put

>

p =c(l +r)
log 1-ce log| = Al | fr ., ., 2021 - 0?)
c -p er 1 - c2 Ec - o)1 - DCE]Z
T S
1l - 02 r2

We designate the values of r corresponding to py and py by
rg and rq; in the integrals

P ) 2(v _ 2
[0 v 2=,
P 1(p - ¢)?(1 - pe)
and
- 2(1 _ 2
[ e M
Py " P i(p - e)?(1 - pc)

one may neglect the terms which are constant with respect to x and ¢,
or infinitely small with respect to ry and ry. Thus there is every

reason to maintain only
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r
0 2 2
2 > JE log|i—=2= e Lic ar
cr r
l-~-c%r (l - CZ)
and
2 : 2
f —2 L jog{l -ty ac Ll ar
rif1 - c2 ré cr (l _ c2)2 r
which gives for the first
c
—2c (L1 log Sl VI IV N 2¢c loglrol
1-c2fo f1-cB| To (3 _ .2)

and an analogous expression for the integral L[‘ .
r
1

But if one puts

r=£0=-20¢C_- _ € 'é + éi —E;——— + .. .)
c c
2 1 ve -1

and one obtains an expression of the form

% log € + % + C 1og € + .

201

the dots indicate terms not infinitely large which may be neglected,

according to a remark made before.
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The term in %— log € gives in the first triple integral

1 X
¥o© | a(x)ax | = aa(t)log|x-- ¢
0 0 0 )

and in the second (the one which corresponds to pl)

1 1
yoxf a(x)dxf doc(&)loglx - §l
» 0 X

Hence, summing up

pof a(x) dxf 1og|x - E,Ida(é) = Yo f f alx)a(t) o4 qe -
0 X - E,

The term in %— brings into the first integral the contribution

Nl X
yOxf a(x)dxf da(t) = TRygX
0 0

and into the second

1 1
yoxf a(x)dxf da(t) = -3 N
0 X

Finaily, only the term in log € gives a result which is nonzero.
Now

1‘02[}'02 2e\V2 - 1
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and since

one sees that one obtains

oy = -k 52 (1 + c2)fl a(#_)dxfl 1og|x _ gl (t _‘x)da(é)
Bzﬂ (]_ - c2)3 0 : 0

One may replace ¢ by its value as a function of ¥ which gives
the simple expression

Cy = % cos 7 sin 7 /L/1 a(x)dxk[\ (¢ - x loglx - Elda
Q.- Mecos

(Iv.35)

Let us take, for instance, the case of the rhombic profile. One then
'finds immediately that the double integral is equal to aozlog 2. This

result, in the special case of a rhombic profile, has been given by
Th. von Karman (ref. 4).

If one takes the profile formed by two parabolic arcs
a(x) = e(1 - 2x)

one finds as value of the double integral 2/M = e , with e desig-
nating the relative thickness of the profile. With an equal relative
thickness and equal sweepback, the drags are in the ratio 1log 2 = 0.69
whereas one obtains for an infinite wing, straight or oblique, the
ratio 0.75. Thus one deduces that the rhombic profile is even more

advantageous for a sweptback half-winguh.

lmIf one compares the drags, at infinite aspect ratio, of a pro-
file formed by two parabolic arcs and of a rhombkic profile, of equal
area, one finds that the first is B/h of the second. With a pronounced
sweepback, this ratio is equal to 0.92.
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If one wants to investigate a bounded wing, like the one repre-
sented in figure 71, one must add the end effect due to the edge BB'.
" It suffices to subtract the flow symbolized by
4

-f . (M,da,c) (1V.36)
BB’

- from the flow defined by the formula (IV.31). The pressure coefficient
due to the flow symbolized by equation (Iv.36) is written

x-(14+V) (va-y*
Cp (x,¥%) = - f /(o )1ogl—‘—c‘°da<g>
c -
ﬁnJV
with
20 _ ¥* - 19
1+ p° X-§+V( -Tlo)

with C, being zero if x< (1 + v)(no - yx>.

If 19 > T i e the edge BB' does not influence the point O'.

In this case it may be easily shown that the contribution of the flow
(equation (IV.36)) to the total drag is zero. In fact, this contribu-
tion is proportional to

1

1+v 1 px-(1+v)y' ¥
ay'¥ on(x)dxf log.
0 (L+v)y'¥ 0 :

if one puts

1l-cp
o |aa(e)
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One may make the change in variables used before which consists in
replacing y,x,§ by x,£,p; one obtains

2
a(x)dx do(t)(x - ¢ kjw 2pc l -c )
L/; ) \jﬁ ) ) 1 (p - c)2(l - pe)@ 1og

which is evidently zero.

1l -cp do

This justifies a remark of Th. von Karmén (ref. 4).

For wings of high-aspect ratio, one may adopt, without large error,
the formula (IV.35) for the total drag.

The calculation of the drag of an infinite sweptback wing (fig. 72),
on the hypothesis that Vv > 1, is perfectly analogous to the one just
performed. It suffices to replace, according to section 3.1.2.2, in
the preceding formulas

log l-cp by log 1-cp + log 1+ cp
c-p e - c+ P
Since
l+c L+ 2 -1
log =+ ecpl - log + r
c+p I 2¢ 2(1 + c?)
it is sufficient to combine the expression
b c  _2 cos®y
7 1/2

Beﬂ’vg -1 1+ 2

with the coefficient of the double integral of the formula (IV.35).

sin 7(1 - Mgcos 7)

However, one thus attains only the drag for half the wing (x2 > 0);
one must therefore multiply by 2 in order to obtain the desired formula

2 2 2nnal 1 1
Cy = b.cos“y 1 + 2 sin“y - M“cos<y a(x)dx (6 - x)loglx ~ glda(g)
n sin ¥ o> 5 3/2
(l M“cos 7) 0

(Iv.37)
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According to the remark just made, this formula gives, for a sweptback
wing of high-aspect ratio, an approximate value of the total dragh5.

We shall borrow from the memorandum Th. Von KarmAn's the figure T3
which illustrates the usefulness of the formulas found above for the
study of the variation of the Cy of a sweptback wing of high-aspect

ratio with the Mach number (the profile is rhombic, the sweepback
angle y = 45°, and the reduced aspect ratio no = 4). We obtained in

Xmax
the figure) by the formula (IV.29), and the portion of the curve from

B (formula IV.27). The dotted part at the right of the abscissa M = ﬁ?
is calculated by that same formula. One sees that it indicates also

the behavior of the exact curve. Finally, for the values of M < 453

the dotted part corresponds to the formula (IV.37). It represents a

good approximation of the rigorous values, except for the immediate -
surroundings of M = \2.

the course of this investigation the value of the C (point A of -

Here we shall stop the investigation of "symmetrical" wing prob-
lems. One sees that this method leads to simple results and that the
calculations are always elementary. The field of application may easily
be extended to more general cases (trapezoidal wings, leading edge cur-
vature, etc.).

4.1.2 - Lifting Problems

Study of the lifting problems is generally more delicate. In fact,
the boundary conditions furnish on the wing the values of w, but out-
side of the wing (in the general case) w is different from zero; on
the other hand, continuity of the pressure is required which leads to
supposing (in pursuance of the hypothesis of linearization as noted in
chapter III) that u = O in the plane Ox)X,  outside of the region (R)

occupied by the wing. The difficulty lies in the fact that, in the
general case, the boundary conditions bear up on two of the velocity
components. :

4.,1.2.1 - Problems where the condition u =0

may be replaced by w =0

The rule of "forbidden signals" permits to define a general class
of lifting problems where it will be possible to replace the

»u5Compare appendix No. 5.
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condition u =0 by the simpler condition w = O. This will be the
case for wings, the projection (R) on Ox1xp of which will satisfy

the following condition:

With C designating the contour of the plan form (R), the tangent
to (C) forms, at every point of (C), with Ox; an angle which is

larger than the Mach angle.

Naturally, such a contour (C) will present angular points. It
is 'understood that, at these points, each of the semitangents must
satisfy the condition stated. For the sake of abbreviation, we shall
say that this contour is entirely supersonic.

Let us consider a point M of (R). As we remarked in sec-
tion 1.1l.k, the state of the fluid at M depends only on the perturba-
tions inside of the Mach forecone of the point M; this forecone cuts
off, in Ox3x5, a portion of (R) on which w is given, and a portion

of the plane O0x;X%, in which the general flow is not disturbed (sec-

tion 1.1.k) and on which u =v =w = 0. In order to calculate the
pressure at the point - ‘M, one may suppose that w = O outside of (R).
One may also say that, under these conditions, the upper and the lower
surface of the wing are independent. The solution of the corresponding
lifting problems is therefore perfectly analogous to that of the sym-
metrical problems visualized in the previous paragraph.

Let us assume, for instance, a flat plate of the plan form indi-
cated by figure T4, with the contour (C) being entirely supersonic;
the pressure at every point of this plate has been calculated in
chapter III. We intend to calculate the total C,. One has obviously

if one puts

X = Efg p tan @ r = 0M
Xl )

with S being the area of the regibh (R). Let us put furthermore

2 2005
A =P tan w) p =B tan wy P(x) = —B~ = r-cos7

P(x) depends uniquely on the trailing edge B'AB.
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One then obtains the formula
1 78
Cy = - S Cp(x)P(x)dx (1Iv.38)
' A

Let us recall that

~

- gk —74L——- if 1<x<wyp
B sin 6j

; cos B - X X - CcOs 6
C.(x) = J- el _T!;_* Arc cos 0 + 1 Arc cos — - 71
P Bn \sin 6 1 -xcosby sin6g 1 - x cos 8y

, if -1<x<+l
-%L_,l_e_ if A<x<-1
sS1in
1

-

with 1 designating the incidence counted according to the usual con-
ventions.

In a recent memorandum, M. Snow (ref.'52) has applied this method to
the calculation of the total C, of a plate in the shape of a quadri-

lateral. We simply want to point out that, in a certain number of cases,
it is possible to calculate the integral (IV.38) very simply. This
simplification becomes apparent when P(x) is analytic. It is then
possible to use integrals in the complex field (variable z or Z).

Let us suppose to begin with that the contour B'AB is rectilinear
and that its polar equation is written

r = X0
sin(cpo - cp)
OA =1 =20 xo = B tan 9
sin (PO
tanzwo(tan wp - tan wl) _ 12 'xoz(u -

2
s =2 =
2 (tan 9y - tan wp)(tan 9y - tan wy) 2B (X9 - u)(xo - A).
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2
P(x) = Pro

cosgwo(x - x0)2

and consequently

c, S __EEQE__L[\H._fiéfl__ dx = _EEEQE__JFLL_ELEBEE__
S cosacpo ) (x - x0)2 S cosgcpo A (x - xo)2

o) 2 M 2 2
- Pro gl Bladdz | 2PTo. R (inRo)
S cos2¢ - (z - 2 S cos®py
o |Un %0) ®o

with Ry designating the residue at the point z = XQ-

However,
RO:dzdl_J . % é aw___ ;Y (B = N)xg

(=0) s -1 (o - ¥) (o - WP -2
and
C, = - 2rg” (1 - Nxgwo _ 21242 (b - N)xgwp

8090 (15 - ) (xg - o -1 BT (xo - W) (o - W - 2

or

= 4 : (1v.39)
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The C, 1is independent of wg and of w;; this generalizes a
result already foundl*6 in section 3.2.2.2.

Let us now suppose that the arc BAB' 1is an arc of an ellipse with
the polar equation

re = 8Sbe
b2c0s2¢ + a2sin2¢

and let us, for simplification, assume that wg = -wy.

Bagb2

P(x) = 22 . 22
B“b- + a~x

whence

S fuid
A

5 262 + 822 B2p2 4 522

2.2
= 2@%52_ E[%iﬂRil

Ry Dbeing the residue at the point z =1 EE.
1 a

In order to calculate this residue, one must know the value of U,

for z =1 QI—’-; this value is very easily obtained from the for-
2 v

mula (III.51). One finds

5 2w, .
U(i ;3):--——————(? eArc sin g sin ©

nf sin

P Jag + beaecosze

l+6In a general manner, one can obtain the C, of a wing, the sur-

face of which is a portion of a cone bisecting the Mach cone, with the
vertex O and a rectilinear trailing edge by measurement of the electric
intensity in the tank. This result may be extended to the case where
the cone is placed in any arbitrary relation to the Mach cone of O
provided the trailing edge is rectilinear.
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On the other hand

S = ab Arc tan a

bR cos ©
Thus, if one puts wy = -i (incidence)
C, = el —— Arc sin 28108 (IV.40) -
B sin 6 Arc tan B oos Jae + b2p2cos20

So far we have.visualized only the case where the flow on the plate
was conical due to the shape of the leading edge. To terminate these
few remarks about the flat plate of supersonic contour, we shall now
examine the case where the leading edge is curvilinear.

We shall start with the case of a polygonal leading edge (fig. 7).
The investigation is based on the following remark: if one superposes
at a point Ay two elementary lifting flows, which completely bisect

the Mach cone of Ay and the first of which has as bounding generatrices
Ay A, AjDy, so that w = -wg on (AA1D1), while the second has as
bounding generatrices Aj) A, A)By, so that w = wy on @SAlBl), one
obtains a resultant flow of such a type that, if Ay7y and Ay7' are
the sections. of the Mach cone of Ay in the plane Oxy%,, w =0 out-
side of the angle (BlAlDl), whereas W = -Wy on that angle; on the
other hand, u = O outside of the angle (71'A1Dl). Besides, one can

easily verify that the resultant flow thus obtained is independent of
the generatrix .A (provided, however, that the latter is outside of
(7'Al7l)), and that, if one puts as usual

cos eo =1 cos 01 S S
B tan uy B tan uy

the pressure coefficient is equal to

e S— on (71A1B))
B \sin 64 sin 8g
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and to
2wo 1 Are cos cos 61 - X _ 1 Are cos cos 90 - X
Bt \sin 67 1 -xcos 6; sin 80 1 - x cos 8y

/’\
on (r'A7)
T ——
x represents as usual a semi-infinite line inside of (71‘A171).

We shall note the resultant flow
_’
c (Al,eo,eo - 91)

Thé flow about the plate schematized in figure 75 is then obtained
by superimposing on the conical flow of the vertex O and the bounding
generatrices ODy' and OD; the flows

7?(Al,60,60 - 61) and ?;@&l',eo',eol f 91')

with 8g';, 67', 6p, 67 characterizing the directions of the straight
lines OAl', Al'Bl', OAl’ AlBl'

If the leading edge is curvilinear (fig. T76), let us assume
A xl(t),xa(tﬂ the point moving along this leading edge, w(t) the
angle between the tangent at the moving point and Oxj, and let us put

1

cOos e(t) = E—EEHTB(EY

Assuming M(xl,xe) to be the point where one desires to calculate the
pressure, one will put

_ o xet) - %
X(t) - B Xl(t) _ xl
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The flow will be obtained by subtracting the flow symbolized by

f c E(t),e‘(t),de(tﬂ
(c)

from the flow around a plate of infinite aspect ratio, with the leading
edge O0x,.

If MA; and MA, are, in Oxyx5, the two semigeneratrices of the

Mach forecone at the point M, one has therefore as value of the pres-
sure coefficient at M by putting

a l Arc cos &S_B;X_ = F(G)x)
df|sin 6 l - x cos 8
2 ‘2
_ “¥o 1
Cp(M) oy 1 - - . F[E)(t),x(tﬂ dae (Iv.41)

At a point such as M' (compare fig. 76) a slight modification of
the formula will be convenient; one must write ‘

| &
oL 2w0 2wy 2
cp(M') = e B j;l FE(t),x(tﬂ a6

One thus obtains the Cp by a simple integral.

We shéll point out a very remarkable result for the total' C, of

such a plate when the trailing edge is rectilinear. We shall show that
the C, of such a plate depends only on the trailing edge; this fact

generalizes the result of the formula (IV.39). It suffices, of course,
to demonstrate the result in the case of a polygonal leading edge; thence
the general case is deduced by passing to the limit (fig. 77). According
to the formula (IV.39), the resultant of the normal forces due to the
flow

E)(“*1:90:90 - 6;)
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acting on the region (R) is equal to that of the normal forces acting
on the triangle AyByDy in the conical flow with the vertex O and

the bounding generatrices ODy, ODy'. The result stated above results
from this remark. Thus one verifies that on this plate the total Cy
is the same as if the direction of the flow had been reversedh7.

4.1.2.2 - Infinitely thin rectangular wing

We shall now investigate the case of a rectangular wing, the pro-
file of which is an arc segment (fig. 78). In accordance with what was
said before, this arc segment will be defined by the angle jo(xl)

which is formed by the tangént and the chord at the point with the
abscissa Xx;; if the wing has a geometric incidence defined by the

angle i, we put
J(x1) =Jdo(x) - 1 , (Iv.k2)

w must be equal to j(xl) on (R), and u must be zero outside of
(R).

%
We shall designate by CP(M,u) the lifting elementary conical

flow, with the vertex M, which furnishes the value w = o on the two
faces of the quadrant M, X1, Xp. With the notations of figure 58,

the formula (III.60) is then written

C.. = 2% pAye cos (L - 2B tan ¢ for O<pBtanop<l
p Bn
> (Iv.43)
_ 20
Cp = Er for B tan ¢ > 1 J

By an argument analogous to the one of section 4.1.1.1.2 we are
induced to define the desired flow by the symbolic notation

u70ne finds here anew a remark made before by M. Snow (ref. 72) in
a particular case. Besides, this result may be extended without great
difficulties to any arbitrary plate of supersonic contour.
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fAA' ?p'(M,dj) + J;B' ‘EP(M,dj) - E[J(xl):l (IV.L4)

The flow thus defined does satisfy the conditions concerning w;
however, one sees immediately that the flow gives a component u, zero
outside of (R) only in the case where the aspect ratio BN is smaller
than or equal to 1. The limiting case P\ =1 corresponds to the dis-

position of the Mach cones given by figure 79. We shall use hereh8 the
hypothesis where BN > 1, and shall then be able to calculate the flow
by the formula (IV.4k).

-
h.1.2.2.1. Study of the flow f CP(M,dj).- We shall use the

same notations as in section 4.1.1.1.3. According to equation (1Iv.43),
the pressure coefficient C, at a point (xx,yx) is written*d
(O < xX < l)

| o
Cp(x*,y*) = %j; a3(8) = 5 3(x¥) If 0< xX¥< y¥

B

X KX _yX
Cp(xx,yx) = ng x aj(e) + 62;‘[(; Arc cos(l - x—2¥x—§)dj(§)

if xX > yX¥

A8It is not impossible to investigate the case where BA < 1. One
must then superimpose on the flow given by (equation (IV.L4)) other
conical flows, the vertices of which describe the two edges of the wing,
in order to establish pressure continuity without changing the w wvalue
on the wing. This investigation is clearly more complicated than the
one we shall make. We shall not enter on it in order to limit ourselves
to the simplest results. Further on (section h.l.2.3.2.) one will find
an application of this method in a special case.

h9Strictly speaking, the slope of the wing should be noted jx(xx)
when one expresses it as a function of the reduced abscissa. We shall
omit the asterisk in order to simplify the notations.
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These two formulas may be written

Cp = 2[o() - RG]

with

b1 xX..§

| : . xx_yx ' 5 X.
R(x%,y%) = 3(x* - y¥) - 2 Arc cos <1 - ——y-—>dj(§)
0
(Iv.L5)
stating that the function j(xx) is zero outside of the interval (0.1).

It is then easy to calculate the local ¢, of a section y¥ with
this coefficient defined by

1

c,(¥%) = -2j; Cp (3, y%) ax*

Remarking that

and putting
xX ~
f(xxX) = f Jolt)ae [r) = 9]
0
one has
v, n [T
0y =g+ nyx R (X, y%) ax*

Now
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[T [ st - e

1 KX _yX ,
%fyx dxxf; Arc cos<l 5%)@(5)

S20 ) -1 - ) -

1- 1 ;
lf a d,j(g)f Arc cos(l .2y >dxx
TJo 4 v5+E xX - y¥

However,

1-¢
f Arc cos (l - ?uﬁ>du =2 IE]_ - £)Arc sin - }"xg +
X ‘ -

\/yx(l-yx-g):]4nyx

Thus we put

k(y%,8) = %El - &)Arc sin,’l “fxg + WL - y)

if y¥<i-¢

k(y%,E) = 2(1A- 3) if yX>1 -¢
)

(Iv.46)
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fyi R(xx,yx)dxx = f(l - yx) - i(l - yx) + yx[-i + ;jo( - yxil -

1-y¥
l_- .
j; k(y¥,8)ai (k)

2

= -i + % k(yx,o) + f(l - yx).+ yxjo(l - yx) -

1%
J; k(y%,8)dig (k)

= -1 +~% k(yx,o) + po(yx)

o -

with

Consequently

cz(yx) = gk_(_y;_,o_) i+ % po(yx) (Iv.48)

One will find in figure 80 the curve giving the variation of k(yX,O)
and of k(y%,1/2).

We remark that

1 1-y¥ Nl 1-¢
f dyxf k(y¥,8)dig(e) = f djo(g)f k(y%,8)ay*
0 (03 0] 0 ’

1
= gf (1 - &)2aip(t)
0
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because
1-¢
f k(y*,6) ay* = 2(1 - )7
0
However
1 , 1 1
f (1 - £)2ayy(e) = 2f (1 - &)igle) = 2f £(x)dx = 2p
0 ) 0 0
putting
1
k[‘ f(x)dx = u
0
On the other hand
1 1
f £(1 - yX)ayX = f f(x)dx = p
0 0
and .
1 1 1
f ¥¥io(1 - y¥)ayx = f (1 - t)jg(t)at = f tig(t)at =
0 0 0
Consequently
1 3 2
f e (y¥)ay* =22+ 22 (IV.49)
0 g B

4.1.2.2.2 - Study of the thin rectangular wing in the case where
BA > 1.- As we have said in section H.l.2.2, one can apply to this case
a method analogous to the one employed in section 4.1.1.1.4. The pressure
coefficient at a point of the wing situated on the surface Xz = +0 of
reduced coordinates t,

1, can immediately be written

Cp(t;ﬂ). = gEo(t) -1i- E‘(t:ﬂo + T]) + R(tf‘]o = ﬂﬂ:,
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Consequently, the local c, of the section 7 1is obtained by the

formula
1
cy(n) = -ZJ; Cplt,n)at
- %l_ + %EEi + %E(no +1,0) + k(g - n,o)] +
Po(lo + 1) * Py (g - nil
or

c,(n) = %E‘(”o + 1,0) + k(ng - 1,0) - :I + %E’o(ﬂo + 1) + Py(p - nﬂ

with the functions k and py being defined by the equalities (IV.46)
and (IV.47). Finally, let us calculate the total C,

n . . M2 2n
C, =2 | Cocy(n)an=-ty2i |0 kg 0)at + —“—f © p(t)at
B B 0 Bno 0

and since

2ng =1+ PN -1

one has, applying the results established at the end of the preceding
paragraph,

__hi o1 /31 2u> bi
Cyg = - ==+ — + —} + (BN - 1)=—
’ B n0<l3 g) (M- By

because

k(t,0) =2 if t>1
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whence

Lhi 1 4
= x1f7 o L o TH .
C, 5 < 2B%> + ng (1v.50)

b1

>, as a function of M,

. . . . 1 dcz
Figure 81 gives the variation of 53
i

for various values of N0,

One may also plan the calculation of the drag of this wing. First
of all the local drag

1
ex(n) = icy(n) + 2f Cp(t,m)do(t)at
0
or
cx() = 1)+ £ 3% - E[L(g + M) + 2(g - M) (TV51)

putting

3
<
»
S~—”
0

X

1 _
f R(t,y%)io(t)at
y

1
= ir(y¥) + fyx Jo(t - ¥¥)ip(t)at -

1 t-yX
if jo(t)dtf Arc cos(l . A7 >dj(§)
mUyx o Pt

504, Bonney has already obtained this formula in the case where
jo =0, p =0 (rectangular flat plate); compare reference 33.
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whence

| 1 % 1
T(y¥) = if(y¥) + ?,%f Arc Sin\ﬁ—' Jo(t)at + f Jolt - ¥¥)ip(t)at -
y

yX X

1-yX 1 %
gf djo(g)f Arc sin [—L— jo(t)dt
0 yX+E t-¢

b1

The total drag C, will be obtained by taking the mean value

1 - 2n

0 , . o

C, = L e (n)dn = iC, + £ 32 - _l’r_f T(t)dt
210 Jo, P Povo

1
. . L T2 Ly

C, = iC, + = jo° - —/— T(t)dt
X Z B 0 Bnoj;) )

It is easy to calculate the mean value of T(t) in the inter-
val (0.1), since

1 1
J; ay* | gt - ¥¥)dolt)at =0

yX

and

1 1-yX 1 X
f dy* djo(t) Arc sin ’ jot)at =
0 0 yX+E Nt - ¢

fl ()ft ()ft'g Y g%
j {t)dt ajlg Ar i d =0
. Jo . 3 . ¢ sin ra—

The calculations are analogous to those carried out at the end of sec-
tion 4.1.1.1.3.




NACA TM 1354 ' 223

However,
1
f dyX Arc sin J7 ,jo (t)at =
0
1 X
f t)dtf Arc sin szyx = -uZ
0 t L
consequently
_ T2 Chpi b2 > Y <
c s + iCy - L 317 . 2\ 3 IV.5%
x =350 a2 5 < 20t B J (1v.53)

We shall make an application to the case where the profile is
defined by

. . . 1
= £ 0 X o =
Jo(x) JO 1 < X <2
Jolx) = -Jg if %< <1
2
f(x) =
. . 1
1l -x if = <x<«1l
Jo( ) 5
1 1
2 3
. 0
M= Jox ax + Jo(l - x)ax = ¥
1
0 2

In order to determine the local forces, one must calculate the functions
po(yx) and- T(yx); now

. J .

Jok<}’x,%) - ?O k(yx,o) if 0g¥y'g %
3

jo-?ok(yx,o) if %{yx<1
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The variation of pg (yx) for a wing of reduced aspect ratio equal

to 2 is given by the figure 82.

On the other hand, T(yx) can be expressed simply as a function of
k(yx,g>. In fact

)

X (@ - 35302 if 0g ¥’ 3

f Jolt - ¥¥)Jpledat =
v (¢ - 1342 ir L<yg1
| e
30 [ fox 1 ;
) Tfk(yx,§> - k(y%,0) - Eyﬂ if 0g ¥*g
fx Arc sin \Eﬁ Jo(t)at =ﬁ ’

y "i_ogyx . k(yx,oﬂ if -é-< v <

These formulas one can establish immediately, remarking that

1-¢
J;x Arcan'du——l:yx, -2yﬂ

Finally

g[ <yx >,- 6y* -
k(yx,oﬂ if 0 y¥¥<1

1-y* : 1 =
dj (g)f Arc sin ’ I 5n(t)dt y '
J; "0 Y+ R 302 %l—éyx - k(yx,oﬂ

if

N |-
N
<
N

H

M |-
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whence
% Jo Ek(y’%-é—) - k(y",o)] ‘1 ‘jozlig + k(ﬁ,o) N 4k<yx,%_ﬂ
T(y%) =< o i O<y’x<.]2-_
§aole - x(0)] + Fac?[k(0) - 2] if 3<vg?
| (Iv.55)

In figure 83, one will find the distribution of the drags over the
span for a wing of this type of réduced aspect ratio equal to 2.

One will remark that

and
. i i
| e - i< £
Jo 2 8
This results from the equality previously demonstrated

1-¢ '
f k(y%,8) ay* = g(l - £)°
0

4.1.2.2.3 - Effect of flaps and ailerons.- We shall begin with the
case of a flat plate; the formulas can easily be generalized in the case
where the wing profile is curved. The ailerons are, for instance, dis-
posed on the plate in the arrangement indicated by figure 84; 1y, desig-

nates the deflection of .the first aileron A'CDD', 7, ‘that of the
second B'EFF'. '

. . . —>
For study of the flow one must utilize conical flows T(M,a) which
one can define in the following manner. In the region Xz > 0 the
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g -
flow T(M,a) is identical wit%afhe flow CS(M,-a); in the region X3 <0
it is identical with the flow CS(M,a). One can immediately make an
interpretation of the flows T which gives account of the possible

: -
utilization in the effects of flaps and ailerons;dl the flow T(M,a)
is established when, after the plane Oxjx, has been materialized, one

makes the quadrant Mxyx, pivot around Mx, by an angle -a (fig. 58).

‘Hence the investigated flow may be obtained immediately by superposition
of conical flows schematized in the following manner

- 3
- «
Cp(A,-i) CP(B,—i) E(AB,+i)

() T(D,7m)  E(ED,-n) | (1V.56)

<« >
CP(E;72) T(F)72) E(EF:’72)

/

If such a scheme is to be valid without further complications, the
pressure coefficient outside of (R) must, of course, be zero. This
will be the case if the reduced aspect ratio of the plate and the flaps
is greater than, or equal to 1.

Let us apply these principles to the calculation of the local Cj
of a plate for which the Mach cones of the points A;, B, ¢, b, E, F

are disposed as shown in figure 84. One may then place the origin at the
point A and immediately write the local C, as a function of

‘ynyx = 6x2); one will put AA' =1, CA' =c, BCD = 1, according to

51We have indicated this method in a note to the reports on the
proceedings of the Academy of Sciences in December 1947 (ref. 37). The
advantage of the flows T we indicate here has also been pointed out in
the article of M. Snow, published at the same time as our note (ref. 32).
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"the results obtained in sections h.‘l.l.l.5 and 1+.-l.2.2.l:

cgy = ESEIElE Arc sin\l}ge- ,’yx(c - yx)] +

czz_

0
1]
|+

[¢]
1
|+

71¢

Sin\/y_x+\[y—x_(l-—yx):|:l if y¥<¢

+%i—[}rc sin\!y—x+,’yx(l -yX)II c<y¥<l

710) l<y¥<1l-c

l-c<yX¥X<e

7-¢ 77¢ -
_l.___l_Erc sinyxc l+(yX-Z)Argch‘ c ]

I<y¥< l+ec

In figure 85, one will find the distribution of ¢, over the span.
Besides, it will be possible to write in a general manner the local c;
of any slender rectangular wing provided with flaps or ailerons.
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In fact, if one puts

f(u,c) =CE+ 2»(Arc.sin‘—1-+uAi‘g; chi-] if -c<u<e

T c jul
f(u,c) =0 if u+c<O0 p (IV.58)
f(u,c) = 2¢ if u-¢c>0

one has with the customary notations

c (n) = %E‘(’]o + 1;0) + k(ng -An,O) - ] + %@o + 1) + Po(Mg - nﬂ +

27, — —_

—E—L_lj(qo+n,l-c) -f(no- Z+n,c-)—J +

2%, ‘

_Eg k(ng - m,1 -¢) - f(ng - 1 - n,cz] (1v.59)

The total C, may be easily calculated. We remark for this purpose

c 21’]0
f k(u,l - c)du + f k(u,l - c)du
0 c

gce + 2c(2no - c)

that

2n0
f k(u,l - c)du
0

The mean value of f 1s very easily obtained whence

Cz=l—*—i-l- l>+ LITRRN (7l+72)(2c1 --l-ce) (Iv.60)
B 28N 2 B2 2

One also sees that the calculation of the moments does not present
any difficulties.
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4.1.2.3 - A few remarks regarding the study

of the effect of sweepback

We cannot here develop a theory of the sweptback wing. We there-
fore shall content ourselves with a few remarks.

4.1.2.3.1 - Study of the sweptback wing with "supersonic leading
edge" (B cot y > 1), compare figure 66.- This investigation does not
present any difficulty in the case where the reduced aspect ratio 17g

—1
1l - cos ©
tion 4.1.1.2.1; let j(&) be the angle defining the infinitely slender
rofile of the wing supposed to be constant-over the span
j(&) = jo(g) - i]; the flow will be obtained by superimposing as before:

is greater than We reassume the notations of sec-

(1) Conical flows bisecting the Mach cone, centered on 00'.
(2) Lifting flows centered on AA' and BB'.

(c) Finally flows about the wing of infinite span with a fin with
the same profiles as the wing profile and leading edges which
coincide with OA and OB.

In order to simplify the investigation, we shall assume that the
Mach cones of the points O, A, B do not interfere with the wing;
this will permit one to study separately the "head effect" (conical flows
centered on 00') and the "end effect" (conical flows centered on AA'
or BB'). The "head effect" can be investigated immediately, according
to the formulas of section 4.1.1.2.1.

The pressure coefficient on the surface Xz = +0 1is written

C, = —-A——Ej(x) - EQ(X,yx,eil

I B sin ©

Q being defined by the formula (IV.21) in which «(¢) has been replaced
by J(&).
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} R being the function defined by equation (IvV.5k). Consequently

e (v%) = 2k(y*(1 + cos 8),0) . po[;¥(1 + cos Gﬂ

B sin O B sin ©

1

1 is written
1l + cos ©

the mean value of ¢, in the interval 0< y*<

_ 31 + 2u .
B sin 9 B sin ©

Cz

In the same manner, one obtains without any difficulty the value
of the local drag

cx(yx) = icz(yx) PN S 362 S TE&x(l + cos Bﬂ

B sin © B sin O

1

and its mean value in the interval 0 < y* < ——=—
1l + cos 6

342 + 4 3 2
B sin © B sin © 0

One may summarize these results in the following manner: we con-
sider a wing of an aspect ratio equal to 2n0 (fig. 86); the total C,

of this wing is written

!

c, = —=i 1 - 2O)(1  cos 6) 1,2 1
“ . B sin eno bt 1l - cos 6 nOB sin 6 1 + cos ©

‘ 2
| Wi 1o sine - 2 ou [ 1 . 41(9):1

+
B sin 6 . 2 B sin © 1l + cos 6 N
Mo 5in“0 o

or

¢, = h .1 ( 1 . 41(9)) .2 1 , 41(8)
B sin 0 kng\L + cos 8 i Bng sin 8 {1 + cos © n
| (Iv.64)
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Likewise, for the total drag

2 T2
_ k(2 + 557) 1 I {C) S
x MoB sin ® 1 - cos 8 Br sin Bng
.2 T . :
I: 32, _ b 32 1 N 4 (12 + 35°) mg sine - 2
Bsine psing “O|(1+cos@)yy P sin 6, <1028
or
| ) 4 . hE 2 |
Cy = hi€ 13 o 1 1 + 4I(6)> +—0 (1Iv.65)
B sin 8 hno 1+ cos © n B sin ©
These formulas remain applicable as long as o > I 1 3
- cos

4.1.2.3.2 - The study of the sweptback wing with a supersonic leading

edge when Mo < , or with a subsonic leading edge, presents more

‘1l - cos 8
serious difficudties.- A complete investigation of this kind would lead
us too far. We shall content ourselves with treating a simple example

which will show how tq proceed in order to surmount the difficulties.

We attain this aim by introducing conical flows which we shall
-denote

defined in the plane Z by the following toundary conditions (fig. 87):
(1) On (CO), u=v=w=20.

(2) On OA, w=0.

(3) On the upper edge of OC, u = uy-
"~ On the lower edge of 0C, u = -ug .

ug is a given conStént, the point C is’fhe imgge of the number 2 = -a<;
one puts -as usual )
232

th = ————
0 1+ ah
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'The methods of chapter III permit one to write very easily the
function U(Z) the real part of which gives the component u of such
a flow; if one puts

Z = 52
one has
iuo ia 1 .
u(z) = - logE‘ - da 1+ }a_ﬂ (1V.66)
b s + ia 1 - ias

One verifies readily that this flow satisfies all boundary conditions.
Besides, if one puts

2s2

t= "

1+ s

one has on OA

u, 2th{(1 - t 2 th(l - t
u =t =20 Arc cos il - ——QS—————Z =% _EQ Arc sin —QL——-——Z
b1 t+to b1 t+to

(Iv.67)

These flows will enable us to make the pressure discontinuities
appearing outside of the wing disappear, without modification of the
boundary conditions on the wing itself.

Let us take for instance the case of a plate of the plan form indi-
cated in figure 88. With 9 being the sweepback angle, one will put as
usual

1

B cotan y =
cos ©

One assumes that the Mach cone A does not intersect the seg-
ment 00', but that the Mach cone of O does intersect the segment AA'
at the point Mgy. According to what was said above, one will obtain a

flow which satisfies the boundary conditions on the wing portion ¥ <0
by superimposing a conical flow of the vertex O and bounding genera-
trices OA, OB, a flow of the vertex A and bounding genera-

trices AA', AO, and by subtracting the flow about a plate of infinite
span with AO as leading edge; however, the region MgPpA' then is a
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zone of discontinuity for the pressure. If MoP; represents the other
generatrix of the Mach cone of My in x10xp, the pressures obtained
in the region MpA'P; will thus be erroneous.

One will obtain the desired result by superimposing on the preceding
flow a flow schematized by

| S(M,tn,u
J;oA' (M,%0,u0)

In this formula

sin-G(g + ng cos 65
Jg(g + 274 cos e)

=

2i ) ;
ug = - —== 2 lAre sin
07 " Bx sin 8 o

ag

- Mo
- £ + ng cos 6

to

if M is at , tg=1, & =1,(1 - cos 8).
0 Mo

The pressure coefficient 2 in the region MpA'P; is given by the
following formula (y¥X is negative):

52One will find in appendix No. 6 the explicit calculation of this
pressure coefficient and a few important brief remarks regarding certain
pecularities occurring in analogous problems.
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The integral of the second term represents the "end effect" of the
wing AA' while the first term represents simply the pressure coeffi-

cient in the conical flow with the vertex 0°7.

As an application, we shall calculate the total C, of this wing

. 1 1 -
c, = Bi "o ay® ﬁf_i;éfifgi_ az dx *-2 F(z,x,t)dt
B 0 0 z 0 '

x + 2yx)

53Had one wanted to study directly the case where 6 = 0 by appli-
cation of the preceding method, one would have been led to write

oo Ml x-yt
P Bn
x(x - 2yx)
) X =
, X (n0+y ) i 'r]o X - g - 2(no + yx)] a § + T]o
=4 ¢ sin = = - dg
"Jo ox + v %I k(e + 2ng)

However, tﬁe integral of the second term has no meaning since the dif-

ferential element is in 5'5/2. In order to eliminate this difficulty,
one must utilize the conception: "finite part" of an integral intro-
duced into the analysis by M. Hadamard (compare ref. 7). One has in fact

-2 (1g+y") no[x - & - 2 (o +_yx)] 5 B+

Arc sin S dg =
gX + Y& & E(E + 2ng)

o)

2(16%%) g 4 N ”OE{ -t -2(ng + yx):l

g(g+2no)ag ' nox + ¥¥

.

This justifies once more the interest in the motion of the "finite" part
of an integral which permits a very easy performance of limiting process
-which may be delicate.
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if one puts

' 2(ny + ¥¥) =

with F(z,x,g) designating the quantity under the sign JF in the

| formula (IV.69). The double integral may be calculated immediately
(compare the end of section 4.1.1.2.1)

1 o
, x + gyx 0 0 J X + 2yx
) 1l [x+2
1 o 1
3fo JT@“”@““T%&“E“@ ]

As to the triple integral, one may write it changing the order of
integrations

1
-;_L/j g + nO V_B dgL/q L/q 2 - X - 2“0 > iz
2 ' 2 Z§+2710(X‘§) X-£8-2
\J-O §(§+ rlo

In order to calculate the last integral, one puts

PON

It is then written

) 2(x - £) - (x+2n0) (L + t8) (24
2o (1 + t2) + 2% (1 + £2)°2
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and may be calculated rapidly by residues. It has the value

nx

£ T]o(ﬁ + 27]0) - ;LE(E + l*Tlo) - ?21

Therefore, it suffices for calculating the triple integral to
utilize the following results

Arc tan 1
219 \,2710

(g + ﬂo)(l - &) dt = 2(_2_ + T]O> _ 27}0(1 + 21]0)

(6 + no) (& + 4ng) (1 - &) bng L 3
£ = - + 2+ 61, & +
20 v ang) 5P f°

(8 + ng) (2 - €3)ag . £ + 219 28 + 1o
Feroge L& T
0

The triple integral thus has the value

1 - hnae
%§5/2+—T£-Arc tan §

PO

g 21, <l + lOnO) + (l,+ 27]0)2 n Arc tan —— - x ———(l * 2110)

3 8 \]2TO 3

which leads to the following value for the desired Cg

. (3 + 10
C, = Bﬂlno ( +3 Tlo) ,’21]0 + (l + qu)EArc ‘tan 1_ % (Iv.70)

One will find in figure 89 the variation of C, as a function
of Mo+
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Asvan application, we have traced in figure 90 the variation of

% gsa as -a function of the Mach number for plates of the plan form
i ¥

defined by figure 86. The angle of sweepback is 45°; the geometric
aspect ratios are, respectively, equal to 1, 2, and 8. The points sit-

uated on the abscissa M = JE- are obtained exactly [Eormula~(IV.70E].

The parts traced in solid lines are given by the formula (IV.64). The
dotted parts are obtained by interpolation. In order to obtain them in
full rigor, one would have to calculate the C, from the formula (IV.68).

4.1.2.4 - The Uniformly Lifting Segments

The role played by the "horseshoe vortex" or "uniformly lifting
segment" in the subsonic wing theory is well-known; the linear theory
of Prandtl is based on this conception. We shall show how easy it is
to obtain the corresponding supersonic flow, and shall indicate a few
possible applications.

According to section 3.2.3.1, the conical flow for which

U(z) = ug + i 2 log —2— (1V.71)

n 1+ 2°

represents a flow for which u has the value zero in the pléne X3 = 0
except on the quadrant Ox;, Ox, where u assumes the values zug.

Let us then apply the results of section 1.3. The homogeneous flow of
zero order, defined by the complex potential

0(2) = -1 20 10g —Z (IV.72)
2x 1+ 22

may be considered as a derivative of the flow in the direction Ox; of

the conical flow defined by equation (IV.?l), and consequently defines
the flow corresponding to the uniformly lifting semi-infinite line Ox,,

with the uniform 1ift being equal to Pg- The velocity field inside of
the Mach cone I' of O is obtained by application of the formulas (I.29)
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Outside of (') the velocities are zero.

If one calculates the velocity field in a plane x; = xlo (xlo

being very large), one has therefore

5. B
2Xl
Consequently
d 0 v-.P0sing w 20 cos 6
2n r 2n r

that is, the classical vortex field.

In order to obtain the flow corresponding to the uniformly lifting
segment, one visualizes the superposition of two homogeneous flows of
this type. Let, for instance, A; and A, be two points of Ox,, and

Zy and Z, the values of the variable Z if one takes, respectively,
Al and A, as origin. The desired flow is determined by the complex

potential5u '
Z Z

ip
0(Z) = —2|log —2— - log —+ —
e. 1+ 222 1+ le

ShThe formulas here obtained have been obtalned by another method
by Schlichting (ref. 34).
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This could form the basis of a theory of straight wings (without sweep-

back) analogous to the Prandtl theory for subsonic flows. However, one

has not succeeded in linking the local lift with the general inclination
of the profile.

On the other hand, one can apply these formulas for the study, at
least in an approximate manner, of the velocity field behind a straight
wing when the distribution of the circulations is known. This seems to
us to be a method which should permit a first investigation of the inter-

action of a wing and the controls”?.

Likewise, it is very easy to define, following the same principle,
the flows corresponding to two uniformly lifting semi-infinite

lines 04y, 04, (compare fig. 91). If B cot y =

, we are -
cos ©

dealing with a homogeneous flow of zero order, defined by the complex
potential

ip 2 _
@(Z) = - 5 0 lOg 1 + Z2 27 cos 0O (IV'YB)
n 1+ Z5 4+ 2Z cos ©

This results immediately from the formula (III.47). Likewise does the
semi-infinite line O Ay when uniformly loaded, give rise to the flow

defined by

i
o (2) =-2p° log 5 Z
n . 1+ 2° -2Z cos ©

In each of these cases, one can immediately write the velocity field,
applying the formulas (I.29).

This permits one to define the flow about a lifting line such as
A, 0A, which is uniformly loaded. As in the case of a straight wing, one

may utilize these flows for the study of the velocity field behind a
sweptback wing.

2 The investigation made in section L.1.2.2 for the rectangular wing
permits in fact calculation of the forces acting on the wing but does not
in any case permit the study of the field behind the wing.
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4.2 - Study of Fuselages

4.2.1 - Generalities Concerning the Flows Past Bodies
of Revolution of Fuselage Shape

. By composition of conical flows, we shall obtain a new method for -
the investigation of flows past bodies of revolution. The results.
relating to these flows have formed the subject of numerous reports
(refs. 35, 36, 5); however, the methods we shall describe seem to us to
permit certain generalizations. The given parameter in this problem is
the value of the radial velocity vy along a meridian line. This veloc-

ity is equal to iﬁ—@q); r(xl) is the function defining the meridian

line in a plane 1, Xy . However, we shall see that vr(xl,r? is a

function which is, when x; is fixed, of the order %, for a small r.

The boundary condition may also be written

rv, = dr _ 1 4S8
dxq 2n dxy

with S(xl) = nr® designating the area of the fuselage section of the

abscissa x;. If cne makes r tend toward zero, rv, will maintain a

finite value. 1In a precise manner, we shall state that the investigated
‘flow will have to verify the following boundary condition

. 1l das
lim TV, = = = (Iv.74)
r —>0 © 2rdx

4.2.2 - Investigation of a Particular Case

Let us consider the flow around a cone of revolution; the formu-
las V(Z), W(Z), U(Z) are functions of 2 which admit inside of
|Z| =1 only the point Z = O as a singularity. Thus they may be con-
tinued analytically to the interior of the circle (C), image of the
conical obstacle in the plane Z, under the condition of excluding the
origin . O from this circle.

After this statement we shall determine the flow around a body of
revolution the meridian line of which has the simple form given by fig-
ure 92. 89 naturally is an infinitely small angle. ‘A first idea for
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obtaining such a flow consists in subtracting from a flow arouhd a cone
of revolution of the vertex O and the angle 685 a similar flow of

vertex A.  Let us put

2
-X_l - 1+ 92 xl - a _ 1+ pl
pr 2p . Br 20y

The radial velocity of the resultant flow is

Boo=[1 1
V. = = - 0 - — - p

Let us assume-that p and p; are infinitely small which is the
case for points M which are sufficiently distant from A

2 2 2
v B 2l %7 _ _.a)] - %%
r 2 P pl r 1 1 r

In order to obtain the desired flow, it will therefore be necessary
(which is, besides, in accordance with the theorem of section 1.1.3) to
add a homogeneous flow of zero order with the vertex A defined by the
complex potential ‘

0(zy) = -a8p?log Z)
L
with 2, designating the complex variable 7 for a flow with the ver-
tex A (in particular lZl' = pl).

The resultant flow has for xl'> a the radial velocity (compare
formula (I.29))

Ve = —=|[=-p}) - [=- P\ - : P+ =
2 |\p A\ X1 -81 -p2\" A1

or
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The obtained radial velocity is therefore not identically zero along
the conical obstacle, but it is very small when x; 1is not too close to

a since p, Py and r are infinitely small quantities. For the rest,

the equality (IV.74) is satisfied for any value x; > a. In first

approximation, we regard the flow obtained as satisfying the conditions

posed, although of course the value of v, 1is not negligible if x; 1is

close to a.

Let us now suppose that we would want to study the flow around a
body of revolution which has a meridian line schematized by figure 93.
One is led to visualize the flow as a resultant of the previously defined
flow and a conical flow of revolution of vertex A 'relative to the
angle ©;. At a point M situated on the meridian line (when the

abscissa of M is distinctly larger than a), one has as the radial
velocity

' 2 2
vy~ e02<X1 X - a) _ %08, 01°(xy - 8)

r r r r

where
r = (Xl - a)Gl + aeo = I'(a) + (Xl - a)el
If one puts

r(a) = af,

r{(a) designates the radius of the abscissa section X] = a.
Hence

N Sl(r - abg) o - r(a)6y
r r 1 r

Since one must have v, = 8y, one sees that one must, moreover, add

r
the homogeneous flow of vertex A of complex potential

o(2) = r(a)6y log Z
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Finally, the case investigated is obtained:

(1) By adding a conical flow of the vertex O relative to the
angle 8g-

(2) By adding a conical flow of the vertex A relative to the
angle 6.

(3) By subtracting a conical flow of the vertex A relative to
the angle 6.

(4) By adding a homogeneous flow of zero order of complex potential
r(a)nd(a)log 2

where r(a) is the value of the radius for x; =a and
M (a) is the discontinuity of the angle 6 for x; = a.

4.2.3 - Approximate Study of a Body of Revolution
of Fuselage Shape

The application of the above said permits to obtain, in an approxi-
mate manner, the flow about a fuselage-shaped body the meridian line of
which is polygonal and, by limiting process, the flow about a body of
revolution the meridian line of which possesses a continuous tangent.

If one assumes first a;, ap, . . .a, . . ., as the abscissas of

the vertices of the polygonal line which constitutes the meridian, the
desired flow will arise from the superposition:

(1) Of a succession of conical flows which cause an axial velocity
of the form (formula (II.23))

. P
6. 2log — B
n P2 + 1
n
where
l+pn2 Xl-an
Epn Br

with 6, Dbeing the value of 6 for a, < x; <apq;
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(2) Of a succession of homogeneous flows which cause an axial
velocity of the form (formula (I.29))

2
ry Aen 1+ Pn
xl'ﬂnl-pn‘2

where
r, = r(an) 08, = A(en) =0, -6,

However, p, will bé very small except in the immediate neighborhood of
a,, consequently one may expect the reduced axial velocity to be written

zi: X7 - a r. Ao
u (Xl’ r) = enzlog L__L-Fl_ - n—-n
Xy - &8, :E: Xy - a,

with the sums E extending to all points A, the abscissa ap of

which is smaller than Xy - Br. The case of a meridian with a continuous

tangent is obtained by performing the limiting process in the preceding
expression which leads to '

u = -fxl'sr 0B(a)as fxl'sr £(8)0'(8) 4
0 X) - & 0 X -8

However,

) = r(e) rEE) e () < 2 s

if S(g) = nr2(g).

One obtains

P72
I ¢ g2
u= -5 o dat (Iv.75)
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This expression is exactly the one given by Laitone (ref. 5); it
is, besides, equivalent to those suggested by the other authors named
before.

However, the argument just produced is somewhat summary due to the
difficulties arising in the neighborhood of the points a3, ap, . . .
a . . . In the following paragraph, we shall justify the aforesaid, in

particular the important formula (IV.75).

h.2.4 - Justification of the Method

The question is to calculate the radial and axial velocities
according to the rigorous formulas, and to take the possible simplifi-

‘cations into account only in the final result.: The radial velocity com-

prises two terms, the first of which results from the composition of the
homogeneous flows of zero order; the differential element of the corre-
sponding integral is

B_1 (o, DLl+e _11x o)
el p>1 5 rleden(e) - 2 2 x(e)ao(e)

or
Llr(e)er(2)at + pr2(z)o" (2)ap|
r

if one assumes O(g) differentiable since

hence the contribution due to these flows to the radial velocity

X = 1
lj; 1? r(g)e'(g)dag + f r(£)e'(&)dp

2
Po

oy Deing the value of p(¢) for & =0..

Likewise, the composition of the conical flow causes an integral
the differential element of which is written
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> £ (g)—[(g) - o(gjdg = > B o¥( )i E(Xl 28, S 66(5)ap

Hence the desired integral

Xy -Br ‘ 1
if 02(¢)de + B 02(& )dp
2 0 o

0

Thus the velocity is written

' X7 -Br 1
Y 2nr o a2 2 dge

0

a2s(s)

. ag?
sequently the condition (IV.Yh) is thus verified. The calculation of u
is made by a quite analogous method and leads to the formula

The last integral is bounded by the upper boundary of and con-

L T L s, fxl'arr(g)fﬁ(g) 202(t) 4
0

u = enee
an 0 - g d§2 }Xl —»g 1 - p2(§)
| -B: 1
Xl 51‘ ie—s_
_ 1 dg2 a - L 2o(§) (42 s>
0 Po

Now it is quite obvious that this last infegral,is negligible com-
pared to the first. Thus the formula (IV.75) is established. It furnishes
the following approximation for the pressure coefficient

Xy -Br 5
c_ =2 —1 d%8 4 (Iv.76)
b Xl - g dge



250 NACA T™ 1354

Remark.

In chapter II, we had utilized the formula (1.10) for writing the
pressure coefficient. This formula would lead to write here

Xl—ﬁr
2 .
C. = _]; dss dg _ rle(x)
k1

0 Egg x - ¢

One will compare this formula with the one given in reference 36.

Nevertheless, the analysis just made does not guarantee that the term r'
represents all terms of the second order; therefore, besides, in accord-
ance with Laitone, we shall content ourselves with the formula (Iv.76).

4.2.5 - Generalizations

The method indicated above has the advantage not only of giving a
new demonstration of the formulas relative to flows of revolution, but
also of furnishing a more general method which lends itself to applica-
tion to numerous fuselage problems.

Let us take, for instance, the case of fuselages of revolution the
axis of which is slightly inclined toward the wind direction. One may
reassume the preceding method, starting out from the flow about a cone
of revolution inclined toward the wind (formulas (II.24) and (II.25)).
The desired flow is obtained by suitable superposition of those conical
flows and of homogeneous flows of zero order which one deduces from them
by differentiating these flows in the direction of the axis of the fuse-
lage (compare section 1.3).

It is permissible to assume that this method will also permit the
study of fuselages which are not bodies of revolution but the cross sec-
tion of which remains, for instance, homothetic. Certain difficulties
make their appearance, but do not seem insurmountable. In entering on
the investigation of fuselages by the method of conical flows, we aimed
only at indicating the principle of a new method. We reserve the devel-
opment for a later report20. :

56Compaxje in appendix No. 7 the development of this idea.

2



NACA T 1354 251

4.3 - First Investigation Regarding the Conical

Flows Past a Flat Dihedral. Applications

to the Fins and Control Surfaces.

We have already indicated in the course of this chapter that there
exist other conical flows than the flows with infinitesimal cone angles
or the flows flattened in one direction. In this last paragraph, we
shall give a few examples of flows past a flat dihedral. These flows
may be utilized either for the study of the effect of dihedral on a
lifting wing or for the study of the fins and control surfaces. We can
here not consider developing the complete theory of these flows. We
shall content ourselves with indicating a few examples.

4.3.1 - Effect of Dihedral on a Wing Completely
Bisecting the Mach Cone

Let us consider a A wing having dihedral; this wing is infinitely
flattened into two planes which intersect in Oxy. For simplification,

we shall assume that the plane Oxlx3 is a plane of symmetry, the wing

completely bisecting the Mach cone; upper and lower sides are therefore
"independents." This signifies that in the plane Z the region inside
. of (CO) is divided into two domains (fig. 9%). The wing portion inside

of the Mach cone (I') 1is represented by two radii OD, OD' which form
with OX the angles 6p and = - 83. The bounding generatrices of the

A have as imagcs the points E and E' of the argument 67 and = - 64
on the circle. One will assume, in order to better establish the ideas,

that o<eo<el<g.

The boundary conditions which permit determination of the unknown
functions U(Z), V(Z), W(Z) in the region ODEE'D'0O are:

(1) On the arc EE' u=v=w=20

(2) On the arc ED and on the segment OD w cos 6 - v sin 8y = @

(3) On the arc E'D' and on the
segment OD' w cos 6g + v sin 85 = @

We shall treat here the elementary case; consequently, a Wwill be
considered constant. The condition :
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w cos 80 - v sin 60 = o

entails that on OD

RiZ aw cos 60 -7 av sin 90 =0
- az , az : '

-

or also

R (z + l)sin 8 + i(z,- l)cos 60|z W| =0
= z 7 0 “ az
rlz Ul - o
=" az

The normal derivative of u 1is zero along OD.

whence

One would have an analogous result on the segment OD'.

On the other hand, on ED-
7|z W cos 6y - 2 L sin 65f = 0
—| d4Z dz

which entails also

rlz Ui - o
=" az

Consequently, u maintains a constant value on ED and E'D'.

Besides, it is easy to calculate this value owing to the formu-
las (III.46); one finds '

= a
B sin(8g - 01)

uo

In order to achieve the calculation of U(Z) it is then necessary
to carry out the conformal transformation
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T = 1-Ozm
where

S | S
It—zeo

The domain investigated is represented on a semicircle of the plane T
(compare fig. 95). The homologous point of E has as argument

q)l _ ﬂ!el - 90)

n-290

Now the function U(T) can be written immediately on the strength
of the results of section 3.2.2.1

u(r) = -l log (r+ e - we™)

np sin(eo - 91) (l N Te_i(pl) (eiq)l i T) (IV-77-)

and according to formula (III.53) one may write the value of the pressure
coefficient on the wing portion inside of (I')

sin @

C - )-"a:

) S sin (0 - 90) Arc sin

\]1 - chOSECPl

putting

X =f tan w

In order to link 67 to the angle gy defining the bounding gen-
eratrices of the cone, one will remark that

- | . i N
91 = + 0 with Cos My =

Mo + % B tan oy

It is easy to obtain the component of the normal forces on the upper
surface of each half wing; one will express this component by the dimen-
sionless coefficient
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X0
Cy = - ———l'———-L/W C, dx Xg = B tan uy
B tanwgdgp P

In order to calculate Cy one will use the plane

1 l - T
Cy = -~ ——— L/w C
P
?B tan ag L l + T2)2
RU(Tl_T
B tan %o l + 10

- —2 R ()l-T
P tan wp ~ L l + 7@

with L denoting the contour e'd'de in the plane (fig. 95).

The calculation of this integral has already been performed in sec-
tion 3.2.2.2. Hence

20, 1 _ 2 sin @
B tan wg 2B cos ¢ sin(el - eo)

Cy = -

2 cos(no + 90) sin @

B cos ¢y sin(el - 60) (Tv.78)

Remarks.

(1) It is obvious that the general case where o would be variable
over the span can be investigated without difficulty with the aid of
electric analogies.

(2) The treatment of the case where the cone representing a dihedral
is entirely inside the Mach cone is more difficult. The domain where the
functions U(Z), V(Z), W(Z) must be studied is annular, and in contrast
to what occurred in section 3.1, the conformal representation of such a
domain on a circular annulus does not seem to follow immediately.
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(3) It is possible to study the effect of dihedral>on a rectangular
or on a sweptback wing by "composition" using the methods developed in
section b4.1.

4.3.2 - Fin at the Wing Tip

Let us consider, for instance, the edge AA' of a rectangular wing
of large aspect ratio; we shall assume the fin to be formed by a trian-
gular plate ABB' (fig. 96) which we shall suppose, to start with, as
lined up with the wind. We aim to calculate the effect of this fin on
the flow.

4.,3.2.1 - It is almost evident that if the semi-infinite

lines AB, AB' are outside of the Mach cone of A,

the fin suppresses the end effect of AA'

Let us consider, for instance, the case where the wing is reduced to
a lifting plate in the plane Z; the boundary conditions for the quad-
rant OAB read, in fact, as follows:

w =Wy, on OA and AB

v =0, on OB

They are the same that would be valid for a flow around a plate of infi-
nite span placed at a certain incidence with respect to the wind.

In contrast, the perturbation flow in the guadrant OA'B 1is iden-
tically zero. This result applies, by the way, likewise to the "thick-
ness effect." We deal, therefore, not with a new mathematical problem,
but simply with a remark which can be utilized in certain technical
problems.

If now the fin is itself a lifting surface, that is, if v assumes
on the fin a constant value different from zero, the case is particularly
simple and one may conclude immediately that it is the one where the
bounding generatrices of the fin are symmetrical with respect to the
plane x70x,. 1In fact, if the fin were by itself, it would give rise to

a flow of such a type that the component w would be zero in the
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plane Oxyx,. Thus it suffices to add this flow to the one found in the
case where the fin is lined up with the wind>7.

4.,3,2.,2 - The case where the bounding generatrices

of the fin are inside of the Mach cone

gives rise to a new problem

If C and C' are the images of these generatrices in the plane 2
(fig. 97), we shall suppose, for instance, that C and C' are symmet-
trical with respect to 0, and shall study the effect of the fin on an
elementary symmetrical problem. The boundary conditions are:

W = Wy on the upper edge of OA and on the arc AB
w = -wy on the lower edge of OA and on the arc AB'

v

0 on the two edges of ©OC and of OC'

For reasons of symmetry one also has w =0 on OA'.

We shall discuss the function 2 %% (the function F(Z) introduced

in section 3.1.1 is proportional to 2 %%). The boundary conditions

inform us that 2 %% is real on the contour ABA'OCOA. On the otheri

hand, according to the results obtained in chapter 3, B 1is a simple

pole for this function while C is a critical point of the order p + 1/2,
p Dbeing an integer. Reassuming the arguments raised in section 3.1, one
sees that the simplest (in the sense of the principle of minimum singu-
larities) of the functions which satisfy these conditions is written

gault) ok z? (1V.79)
az g (z2 + 1) I:(22 + )1+ 0222)]1/2‘ o

We denote by the index (1) the corresponding solution.

JTFor reasons of simplification, we have visualized the case where
the bounding generatrices of the cone were normal to the wind; it is easy
to treat in the same manner the case where this condition is not satisfied.
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W
Besides, u 1is zero on the arc A'B, and u = - E? on the arc AB.
Consequently, one has,.if one takes as the initial determination for the
radical the positive one on the upper edge of OA, according to equa-
tion (III.46)

2
k =-:—0(1 - 02)

The integration of equation (IV.79) does not present any difficulty;
naturally, the integration constant must be chosen in such a manner that
=0 for Z = -1. One finds

1(1 - 2)(1 - c®) - o\(72 + @) (L + 27R)
(Z2 + 1) (l + c2)

Wl |
u(1)(z) = 20% 10g
Bn
(1v.80)
with the logarithm having the value inx for Z = 1.
The explicit calculation of W(l)(Z) and V(l)(Z) may be made by

thée elliptic functions. One must, in fact, examine whether all boundary
conditions are satisfactorily verified. Now

@) | wold - e?) 1
“ P [(22 + e (1 + c222:| 1/2

Consequently, if one puts
Z = ic sn ('r,ce)

the investigated region of the plane Z has as image in the plane T a
rectangle (compare section 3.1.1.8 and fig. 34) and one obtains

av(t) _ av(®) gz _ Mo )
d+ az_ ar B

V(l) = ig%(l T c2)<;— i %&)
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The integration constant is chosen in such a manner that v = O on the
circle (CO). The solution U(l)(Z), V(l)(Z), W(l)(Z) thus does not

satisfy the boundary conditions posed; it corresponds to the case where
the fin itself is inclined toward the wind direction with the value of
v on the fin being egual to

L) ;’_2 1 —202 K' (1v.81)

On the other hand, one finds for W(l)(Z)

2
dW(l) - dW(l) az _ _ WO(l - ¢ ) 1 + c2snlr
dr 4z  dr Bn 1 - c@snlr

W(l) is, therefore, expressed as a function of T by an elliptic inte-
gral of the third kind.

After having thus defined the solution U()(z), v(1)(z), w(l)(z)
it is easy to obtain the one which is relative to the posed boundary
problem; it suffices to add a solution U(e)(Z), V(g)(Z), W(E)(Z) S0
that .

(1) w(@) 2 (@) 2 w(2) - 0, on (Co)

(2) w(2) =0, on OA and OA’

(3) v(2) - —v(l), on the two edges of the cut CC'

This flow is, except for the notations, the one which has been
studied in section 3.1.1.7. In particular, the value of the func-

tion U(2)(z) is written

(2)(oy _ 2 v(1) 1 - 72
ul\=/(z) = & (1v.82)
Bc2y1 E(l . c2> (2 + 22) (1 + Z2c25_|l/2
1+ c

One obtains thus the following general result: if one must on the
fin have v = v, the value of the function U(Z) is given by the formula
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o 1(1-72)(1 - @) - 2\(2 « A1 + 272)

u(z) = =21
L+ + D '
22 |evo + 220 - A (- 7)
B(1 + c2)E<i-_°> P \/(22 + c2) (1 + 228
+ 02

(1v.83)

One will see that in the case where vp—0 and 02——>l, one finds,
at the limit, the result foreseen in the case where the fin bisects the
Mach cone (4.3.2.1); and -that, if c—>0, one falls back on the solution
of section 3.2.2.1 (equation (III.57)). One may then calculate the pres-
sure coefficient on the wing (Z real and positive), and finds

Cp = EEQ X + Arc cos \Kgi- xz)(l - 72i] +

B |2

2 W, 2
_L_Evo _Yoq ce)K] 1 - x
BE (,,1 - 72) P (1 - 92) + 92

putting

x:.-e_p_. 7=__2c—._

1l + 92 1+ c2

k,3.3 - Crossed Wings

To terminate these few remarks regarding the calculation of the
effects of dihedral, we shall give a few indications regarding the case

of crossed wings.

Let us consider a cone flattened in two directions of the
planes Ox3xp, Oxlx3. The function w on the two faces of the tri-

angle OAA' and the function v on the two faces of the triangle OBB'
are known. .

Let us suppose that OB and OB' are symmetrical with respect to
Oxyxp, and that OA and OA' are symmetrical with respect to Oxlx3;

under these conditions the flow around the crossed wing is obtained in a
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particularly simple manner. It suffices to superimpose the flow which
is infinitely flattened into the plane Oxlx3 and realizes the desired

values for v, and the flow which is infinitely flattened into the
plane Oxyxp, and realizes the desired values for w. In fact, due to

the symmetry, the first flow gives a value of zero for w in the
plane O0xyxg5, and the second a value of zero for v in the plane ‘Oxlxj.

The case where the crossed wing does not admit two planes of sym-
metry cannot be treated as simply in the general case. Particularly,
the case where the bounding generatrices are all entirely inside the
Mach cone leads doubtlessly to analytical solutions which can be explic-
itly expressed only with difficulty, even in the elementary case. How-
‘ever, as in all these problems concerning the effect of dihedral, the
solution is facilitated by the utilization of -conformal representations.
Although they are hard to obtain in explicit analytical form, they may
be determined accurately by judicious utilization of the general method
of electric analogies.
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APPENDIX

No. 1 - Theorem of Existence and Singularities
of the Solution for & Flow Infinitely
Flattened in One Direction

1. Generalities.- The source method which should be called more
exactly the "method of the.fundamental solution of Hadamard" permits the
general investigation of the flows about obstacles which are infinitely
flattened in one direction. Several authors (compare refs. 1, 2, 3,
and 4 of the references for the appendix) have independently investigated
this problem. We ourselves have studied this question in collaboration
with M. R. Bader. Since the corresponding report (ref. 5) has not been
officially published, we shall give here the results which seem to us
original with regard to the investigations quoted. With the same nota-
tions as in the text the problem may be formulated in the following
manner (see fig. l)

Find a solutlon w(xl,xe,x3) satisfying the equation

2 P9 o

L(p) = p2 &2

axl

and the boundary conditions:
(1) at infinity upstream: ¢ = 0, grad @ = O;

(2) on (8), projection on Oxyx, of the obstacle:

o

SLoKlar)  fr =0
o - _

5%; =k (xl,x2) for Xz = =0

k* and k-~ are known functlons which satisfy the conditions of regu-
larity (II) relative to B¢/3x5 which will be spec1f1ed below: :

*FigureS'for this appendix are found on PP. 332-333.
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In order to pose the problem correctly, one must furthermore state
exactly the hypothesis of regularity which one imposes on the solution;
we shall denote by (R) the portion of Oxyxp which corresponds to the

wake of the flattened body on (S).

(1) 9 is contiﬁuous, except for, eventually, across the
plane x; =0 on (S) and (R).

(II) The first and second derivatives of ¢ exist and are generally
continuous outside of (8); a possible exception may occur across certain
characteristic surfaces where the derivatives may have either disconti-
nuities of the first kind at a regular point or infinities at an excep-
tional point. Nevertheless, they may have infinities on (S) 1in order
to satisfy the hypothesis of linearization; o9 Bx5 can become infinite

only on parts of the boundary of (s) and only when one approaches it
by remaining outside of (S). .

Furthermore, we shall assume SQ/BXB and Bq/éxl to be continuous.
if one traverses Ox;x, at a point outside of (8). This hypothesis
has an immediate physical significance for BQ/BXB; the same holds true
for Bq/bxl if one recalls that this quantity is proportional to the
pressure. In other words, only BQ/BXE can have a discontinuity of the
first kind across O0Oxyxs.

Finally, ¢ can be divided (as in chapter III) into its odd and
even parts with respect to X3 . If ¢ 1is odd in X3 (symmetrical

problem), BQ/BXB 0 outside of (S). If ¢ is even in xg (1ifting
problem), Bq/axl 0 in .0xyx, outside of (S) as it results from
the hypothesis (II).

"

2. Fundamental formula.- We shall utilize the generalized formula

of Green
ﬂj:, EJL(V) - vL(u)]dT = - ffZE g—: -v %"ﬂdo

E is the surface having an element dc which bounds the volume V

having an element dT; the derivatives d/dv are the derivatives in the
transverse direction. Thus one has, if is defined by

F(xl,xg,x5) = 0 with F(xl,xe,x5) > 0 outside of V
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4 _@® B3 _F B _F D

T dv Oxy Oxy B dxp OXp Bx3 BXB

Finally, utilizing the conception of the "finite part" of an integral
originated by Hadamard, one may apply Green's formula to functions u
and v which cause the employed integrals to become infinite. One
then writes

ffﬁ EJL(V)-VL(uﬂd'r:- ffZEl%-Vg—i]dc

Let us consider at a point P(gl,§2,§5) (g5 > 0 for instance), the
Mach forecone I' and let us intersect it by the plane x; = -A where
A is positive and very large, and by the plane Xz = 0. We determine

thus a volume V 1in the region X3 > 0, bounded by a surface ZE:.
Admitting the existence of ¢, we apply Green's formula to the pair

u = @ (x),%p,%3)

,\](51 - %)% - 8 [(52 - %)% (b5 - Xﬁ)ﬂ

H is the fundamental solution, in tﬁe sense of Hadamard, for the
wave equation.

o

We cannot discuss here all the details and all justifications but
we shall note the principal stages of the demonstration.

(a) It is shown that the generalized formula of Green can be applied
effectively to the pair @, H, even if the derivatives of ¢ present
discontinuities of the first kind, owing to (II) which informs us that
these discontinuities occur on characteristic surfaces.

(b).For the part of :E: situated on x; = -A, the double integral

becomes zero due to the boundary conditions.

(c) On the cone I the double integral must be taken at its finite

part. Let us introduce the cone I'. with the equation
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B2 Exe - 52),2 + (x3 - 55)2] = - e)e(xl _ 51)2

and the plane Pg
Xl=§l-6 (6>O)

Since € and ® are small, one will calculate the double integral on
the surface adjoining :E:, formed on one hand by [, and on the other

by the circle C.g, with the section of T, made by the plane Pg. One
can easily show that the contribution due to I has a finite part of
zero, and that the one due to C.5 is -2np(P). Consequently, one
obtains, denoting by h the section of (I') by x5 = 0, the relation

d
o(P) =Lﬂ o SH_ do-—l—ff 1% 4o
21 h BXB 2n h 5x3

(d) In order to eliminate ¢ in the second term, one may apply the
image method utilized by V. Volterra in an analogous problem. Let P'
be the symmetric point of P with regard to Ox;xp; let us apply Green's

formula to the volume V situated in xz > 0, bounded by the
planes xp = -A, Xz = 0, and the Mach forecone of P' by putting

u = Q(xl,xe,XB) v = H = H(P')

One thus obtains

and since for Xz = 0

|

il

=
Q/
=]
Q/
==}
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one has

ff 8x3 do = ff S5 °°

Combining this result with the preceding one, one obtains the desired
fundamental formula

(P)=-—ff do = L ffcpaH do
8x5 8x3

3. The theorem of existence for the symmetrical problem.- In a
symmetrical problem Op/Ox3 1is known on every face of x3 = 0; conse-

quently ¢ may be calculated in the entire space. The existence of
the solution will be established if one verifies that this function ¢
satisfies L(9) = 0, the boundary conditions, and the conditions of

regularity.

(a) L(®) = 0, for the functions k(xj,x,) satisfying the

hypothesis of regularity; one may calcuiate the derivatives of ¢ by
deriving under the sum sign with respect to the coordinates of P.
Since only H depends on these coordinates and H satisfies L(H) =
the result follows from it as Hadamard has shown in a very general
manner.

(b) In order to verify the boundary conditions, one must show that

3 | 3
Lim 5e, (B1st2sts) = lim ' %ff glg; aij a0 = K*(81,82)

t5 —> 0 %3 E5 —> 0
(e5 > 0)

This verification is easy if one puts

BEz
(l - u)sin @ *2

xl=§ =§2-§5C0t9

in the integral and then going to the indicated limit.

(c) Verification of the conditions of regularity leads to a careful
study of the behavior of @ and its derivatives. We can give here only
the conclusions of this study.
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A. In the plane Ox;x,, let P* and P~ be two points lined up
with P so that

PP = PP = ¢

(1) If there are only isolated points of discontinuity of 5¢/8x5
on the Mach lines ahead of P, and if 8?/6x5 is continuous at P

?(P*) = ¢(P~) + 0(e)

that is, @ 1is continuous at P, of the order €. An analogous result
is valid for the first derivatives am/axl, aq/axe.

(2) If there is only a finite number of points of discontinuity on
the Mach lines ahead of P and if P is a point of a supersonic line
(compare chapter IV) of discontinuity for 5@/8x3, @ 1is continuous of

the order e, but BQ/Bxl and quaxe have discontinuities of the

first kind. 1In particular, if the tangent to the line of discontinuity
at P forms with O0x; ‘the angle w, the discontinuities of B@/axl

and of— 8?/8x3 are connected by the well-known relation

‘A(égL) - tan w oP )
Bxl JBetanew -1 5x3

(3) If there is only a finite number of points of discontinuity on
the Mach lines ahead of P, and if P is a point of a subsonic line of
discontinuity, the first derivatives of @ become infinite as log €
when one tends toward P. ,

(%) If there is a discontinuity of B?/5x5 on an entire segment
of one of the Mach lines ahead of P, the first derivatives of ¢ become

there infinite as e'l/e.

B. Outside of the plane Ox3xXp one has the following results:

(1) If the boundary of h is not at any point tangent to a line
of discontinuity of 89/8x3, and does not contain any finite part of

such a line, the first derivatives of ¢ are continuous and of the
order €.
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(2) If the boundary of h 1is at certain points tangent to a line
of discontinuity of B?/8x5 without containing any finite part of

such a line, P is situated on the characteristic surface which has
this line of discontinuity as directrix, and the first derivatives of
¢ admit discontinuities of the first kind at P when traversing this
surface.

(3) If in exceptional cases the boundary of h contains a part of
a line of discontinuity of Op/Oxz, the first derivatives of @ become

infinite as 6‘1/2; besides, such a point is necessarily isolated.

All these results taken together show that the conditions of regu-
larity are satisfied which proves the existence of the solution found
in this manner.

4. The theorem of existence for the lifting problem.- We shall
insist less on the calculation of the solution, which one can find in
the published memoranda quoted before, particularly in reference L, than
on the study of its singularities. However, in order to make this
investigation, we must indicate briefly the procedure of the calcula-
tion; we shall do so for the simplest case, the one where the edges of’
the wing are independent. (Compare fig. 2.) '

The fundamental formula permits the calculation of the potential
when one knows 5?/5x5 on the entire plane Oxyx5.

It is clear that this quantity is zero upstream from the line AMMy,
with MM; |Dbeing the characteristic tangent to the leading edge of the
wing.

In order to calculate this quantity in the regions where it remains
provisionally unknown, it is advisable to make the change of variable

Xy = Bxo = A
k(x{l;xe) = K(\,1)

|
=

X + Bx2 =

If u=p(A) and u-= us(N\) are the equations of the arcs AM
and MNQ, one has at a point %O, Ho ©Of the region M;MNNy (since in

this region ¢ 1is zero) the equation
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A ko(N)
I(Aosko) = f S _a f = kOua
JX - A J -1
)‘M 0 Hl()\) *o "

: f“ _@_fuo ®_ __a
ox
\’7\ - A 5\,; - M
w VO Ho () °-"

this equation entails the equality

Ho e dp o () K1) 40 2 o

A A
R TR Fon "

which determines 8@/6x5<)\0,u0> by the inversion of an equation of
Abel. One finds (ref. 4)

w2 (M)
o _ 1 K(host")y#2(Po)
3wl - Ha(No) o

k1 (Po)

thus one knows Bq)/ BXB in the region M;MNN,.

At a point where cp()\b,uo) is not zero (for instance on the wake),

one has

'QTTB(PO\.Q;HQ) = 1(7\o;|-10)

which gives, after a double Abel inversion
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ko uo(Mo)
3 (0, u) = - L2 o KrgsH)dn

This equation contains two unknown functions, and in general it will be
impossible to determine them both without introducing a supplementary
hypothesis. But if one supposes that:

29— is continuous in Oxjxp when traversing the subsonic trailing edge,
X
p)
it will be seen that it is easy to calculate first ¢ on the wake, and
then 6@/8x§ in Oxyxp. The preceding equation is written

Q@_ 7\2:P) dp

o (N2)
.1 Koy
3x3 g J o - ko (Ap) \’He Ao) -
o(A
1 2) K ?\2)“ du
on 0 m 572
(M2

21{- ua (o) J—— w1 () "o " )3 2

2 W Porka(®)]
2B g -
\l 2 - Hp(N2) Ao - Wo
Ko )\2 1
2_6 dp.o d q>)\o ( O’HO) _}\0

X
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If one makes up tend tuward ue(kz) with € obpeing a small quantity,
one sees that, according to the previous hypothesis, the second term of
the second member tends toward B¢/8x5(%2,u2) whereas the third tends
toward zero. Let us moreover make the provisional hypothesis that the
last term tends toward zero (this hypothesis will have to be verified
later on), and we obtain

o(n A
() Kf?\e,u}du v 2 29 Do’“a 2)] D
k1 (M2) Fa(d) - My 2 = o

However, since ¢ maintains in the wake a constant value on the lines
parallel to O0x,, it suffices to know, for instance, the values of the

potential on the straight line QI (fig. 2) in order to know them every-
where. In accordance with this remark

Ap1
f P’ !)\O,p,g z “’2( P) K(?\PI,P-) au
- -}\O 26 . 2 }\P' - K
p‘l(?\P') ( )
or
po(Apn)

P?(No> =
( 0] “‘Q) 21(5 ’?\O - IJ'Q(?\P)

if one defines %P' by

A - )\Pc = }J.Q - |.12(7\P|)

We note that the c1rculat10n along the subsonic trailing edge is thus
calculated.

It remains to be verified that the provisional hypothesis adopted
in the course of the calculation is well founded which can be accomplished
without difficulties. One sees thus how the solution of the lifting
problem can be determined.
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In order to establish that the calculated solution completely ful-
fills the problem that is the theorem of existence, one proceeds as in
the symmetrical case; thus the whole matter finally amounts to an inves-
tigation of the singularities of this solution; this investigation per-
mits a verification a posteriori of the conditions of regularity. In
order to make this investigation, it is necessary to study first of all
the behavior of BQ/BXB in the plane Oxyx,. As before, we shall indi-

cate the results without demonstration.

(a) Study of 5@/5x5 in Ox;xp.- First, one sees immediately that

8@/8x5 increases indefinitely as 6_1/2 when one tends toward the sub-

sonic leading edge MN, remaining outside of (8). On the other hand,
according to hypothesis, this quantity is continuous on the subsonic
trailing edge NQ. We shall now specify its behavior along the charac-

“teristic NNj; a rather simple calculation which we cannot reproduce

here, in order to avoid postponement of publication, permits to show that:

Along the line N = Ny, H >y, 8¢/8x§ undergoes a discontinuity
of the first kind equal to

oA
Sl 2 Q(N)_E(ML@
b1¢

g VA 7

The manner in which B?/BXB is calculated shows then readily that
8%/8x3 has no other discontinuities in the plane 0xyXp, outside of
(8), of course.

(b) Study of the solution in 0x1%5.- What has been said for the

symmetrical problem remains valid by means of the following modifica-
-1/2

tion: First of all, 39/dx; and 39/dx, become infinite like e

along the subsonic leading edge. On the other hand, a very important
fact, the derivatives Bq/axl and BQ/BXQ undergo discontinuities of

the first kind along the characteristics issuing from the boundary points
between subsonic leading edge and subsonic trailing edge. [?or b@/axl,
however, such a discontinuity can occur only on (S)J

(c) Study in space.- The only really new fact to be pointed out is
that across the Mach cones behind the boundary points between subsonic
leading and trailing edges, the first derivatives undergo a discontinuity
of the first kind.
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5. Final remarks.-

(a) We have adhered to demonstrating the existence of the solution,
but the employed procedure of demonstration shows at the same time that
the solution is unique. Consequently, every solution which corresponds
to the hypothesis found by other methods (particularly by the method of
conical and homogeneous flows) represents the unique solution to the
problem posed.

(b) One will also note that the supplementary hypothesis introduced
along the subsonic trailing edge in the case of a lifting problem may
also be expressed by saying that the pressure remains continuous along
this line. This is an immediate consequence of the investigation of the
behavior of the solution.

(¢) We have not attempted to investigate here the most general type
of surface (S). In general, the method can be applied by means of a
few precautions (compare ref. U or ref. 5). Nevertheless, there exist
cases where the application of this method actudlly fails, for instance,
the case where the wing does not possess a supersonic leading edge, or
also for certain dispositions of the trailing edge. Figure 3 shows such
examples; if one traces a few Mach lines, one will understand immediately
the reason for this failure.

(d) One of the advantages of the method just described is the fact
that it may be effectively applied to very general problems. Neverthe-
less, it does, in our opinion, not minimize the advantages of the method
of conical flows, since in many particular problems arising in aeronau-
tics, the method of conical flows (and the method of homogeneous flows)
lead in a simpler manner to the desired result.

(e) The method of the fundamental solution has the great merit of
permitting the study of the general conditions of the flow, particularly
the study of certain pressure discontinuities which one encounters on
the surface of the wing in certain lifting problems.

No. 2 - On Homogeneous Flows

We developed the theory of homogeneous flows58 and gave a few
applications in a recent article (ref. 7). We shall give here a few
supplements to the general study made in section 1.5. If one puts

5BSim.ultaneously, this problem has formed the subject of an article
by M. Poritzky (ref. 6). However, this author does not seem to us to
have gone as far as we have in the investigation of the homogeneous
flows.
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o(n) A

(p+q+r=n)
(P,Q;r) axl Bx an

the ¢§;)q r) depend in a homogeneous flow of the order n only on
P

X and 6. Inside of the Mach cone (I') these quantities may be con-
sidered as the real parts of analytic functions of the variable 2

. defined except for an additive purely imaginary constant which we shall

denote

o ()
(P)Q;r) (Z)

A pfoblem of homogeneous flows is treated for the nth derivatives.
These nth derivatives are connected by the relations of compatibility
which may be expressed in the following manner:

All the expressions

2 ao(®)

(Y () () e

are identical whatever the integers p and q may be which satisfy the
inequalities

OLKp+axgn

In order to express the bdundary conditions with the nth derivatives,
and to enter the nth derivatives into the calculation of the potential

or of the pressure (Cp = —u), one will utilize a generalization of
Euler's identity N
(1) (1) GO
= X
? = arfa%,0,0) ¢ 2(0,1,0 " (0,0,1)

a formula in whlch one must use the following convention concerning the

o(6)
W P, Y1) T L (prarr)
IEP(]-;O;O;I Ep(o,l,O)iI lEP(O,O,lZI CP(P:Q)r)
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One will find in the quoted article an application of these general
principles to the case of the flows flattened in one direction. The
methods used in chapter III can be generalized without any difficulties;
also, one may utilize in this investigation the analogy of the electro-
lytic tank. A superposition of homogeneous flows permits, in a very

simple manner, the investigation59 of a rather large group of A wings:
"the A wings with affine sections."

No. 3 - On the Methods Utilized in Chapter III

The exposition of certain problems of chapter III could be somewhat
simplified not only by omitting certain intermediary calculations of
wholly elementary character which we have mentioned to facilitate the

reading, but also by employing slightly different methods6o. First of
all, as we have remarked in the text, certain simplifications appear if
one places oneself in the plane 2z. Thus the symmetrical problem may
be solved by the same formulas whatever the éosition of the obstacle
may be with respect to the Mach cone. Nevertheless one has to be very
careful regarding the determinations of the solution when one passes
from one case to another since the solution should be characterized by
continuity. We have elected to utilize here the plane Z because the
relations of compatability in Z do not cause the appearance of multi-
form functions and the theoretical difficulties are, consequently, of
distinctly lesser importance even though the calculations may sometimes
be a little lengthier. Particularly, the demonstration of the theorems
of sections 3.1.1.3 and 3.1.1.4 is markedly simpler if one utilizes the

plane Z. Summarizing one may say that the plane Z is simpler theo-

retically while the plane 2z 1is simpler for t'.: calculations6l.

Mr. Ward has stated the solution of certain elementary problems
relative to obstacles flattened in one direction using a very elegant
method (ref. 8). His study is based on a solution of the equation of
cylindrical waves given by Whittaker. With our notations

59One will also refer to the article of.Mr. Fenain which will
appear shortly in "la Recherche Aéronautique'; in it one will find a
complete study of a certain number of these particulars.

60In conferences at the 'Centre d'Etudes supérienres de mécainque
(1949) we have made an exposition regarding conical flows flattened in
one direction which is very different in form from the one given in
this report.

61The same may hold true for the electric analogies (compare on
this subject the article of Mr. Fenain quoted before).
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LQ = qu (Xl - Bxp ch u + ifxz sh uOf(u)du
C

is the potential of a conical flow provided that the contour C Jjoins
two points u; and uy, so that u; and u, are roots of the equation

x| - Bxp ch u + in5 shu=20

In contrast, the function f(u) is arbitrary.

This very refined expression for @ furnishes the relations of
compatibility and permits solution of the particular problems. The
homogeneous flows are given by the solutions of the wave equation of
the form

X1 - BXs ch u + iPxz sh u)f(u)du
Clx2 3

In the case of homogeneous problems of the order n, it seem$ neverthe-
less difficult to state the boundary problem clearly and to solve it by
this method without falling back on methods strictly equivalent to those
reemployed.

No. 4 - On the Complementary Hypothesis at the
Subsonic Trailing Edge

The question posed in section 3.3, which we left pending, seems to
admit a practically definitive answer; one must maintain the flows of
the type II which give rise to a discontinuity of the potential along
the wake of the wing. But as we have said before, this results from a
hypothesis clearly formulated in the appendix No. 1 which may be stated
as follows:

The gradient of the potential is continuous across a subsonic
trailing edge. All the remarks made in section 3.3 concerning the con-
sequences of this hypothesis remain valid.

The most decisive argument in favor of this hypothesis is that it
appears to be the simplest of all one may set up that insures the con-

tinuity of .
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In the case of conical flows infinitely flattened in one direction,
we have seen that it entails a line of singularities following 0%y

along which w 1s infinite when the body has a trailing edge. Such an
occasion does not arise in the general case (compare appendix No. 1).
A1] methods of chapter III can be applied to the calculation of the
conical flows for which this complementary hypothesis must be taken

into account. In particular, we have indicated elsewhere62 how one must
operate in this case for the analogical calculation of the solution.

No. 5 - Remark on Sweptback Wings

With Subsonic Leading Edge65

The formula (IV.37) may be written also

C. = L cosgy(l + 2 sin27 - Mzcosey) 1
b

1
= - 3/ a(x)dx\/; a(g)loglx - gldg

sin 7(1 - M2c052ﬂ

This formula lends itself well to an investigation of the optimum. We
shall search, in fact, for the profile which, in delimiting a given
area, provides a minimum drag; putting

e(x) = fx at)dt
0

one is led to seek the minimum absolute value of the integral

1 1
f de(x)f de(k)log lx - §|
0] 0

62Communication to the Tth Congrés International de Mécanique
appliquée (1948).

5This remark has been made by the author in the course of his'
communication to the Tth Congres International de Mécanique appliquée
(1948), quoted above.
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It is easily seen, and the fact is well-known to aerodynamists, that the
solution of the function e(x) of this problem has the. form

e(x) = R\E - x°

that is, that the desired profile is an ellipse.

The train of thought which leads to (IV.37) cannot be applied to
the case where the profile has a tangent normal to the symmetry axis;
but according to a remark already made more than once, one may neverthe-
less assume that the obtained result does not lack connection with
reality.

This leads to the idea that, for a wing with subsonic leading edge,
it may be practical to utilize profiles with rounded leading edges.

One will note that this is not the case in supersonic regime. If
one takes up this problem for a wing of infinite span normal to the wind,
one finds readily that the optimum profile is formed by two symmetrical
parabolic arcs.

No. 6 - Remarks on Lifting Sweptback Wings With
Sonic and Subsonic Leading Edges

(Compare Section 4.1.2.3.2)

The formula (IV.69) may also be written by putting

ﬂox'é'z(“o’“yx)]_ 2 2 (ng + ¥) 1

X + v 1+ t2 X 1+ tg

2

in the form
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One could make the calculation of the C; of the plate studied in sec-

tion 4.1.2.3.2 in a different manner by obtaining first the preceding
integral, and integrating the pressures along the plate. Thus one finds
that the Cp has in the region AA'A" of figure 88 the simple value

o _ 21 2o+ %)

P B\ x - 29X

Along AA" there exists therefore a pressure discontinuity equal to

AC. = 21 X -2y%
P ]-[B .
x(x - 2yx)

Besides, this discontinuity may be calculated immediately from the
formula giving the Cp 1in making tQ tend toward zero since it is
clear that the integral tends toward a finite value when tg tends

toward zero.

If the leading edge is subsonic, the same theory is applicable. In
this case, the CP cannot be expressed with the aid of elementary func-

tions6u. However, the pressure discontinuity along the Mach line issuing
from A may be calculated directly. One will compare this important
phenomenon with the general investigation made at the end of the appen-
dix 1 which anticipates the existence of such discontinuities on the
Mach cones which have as vertices the ends of the subsonic leading edges.

No. 7 - Calculation of Fuselage Shaped Bodies
With Infinitesimal Opening Angle

At the end of section 4.2.4 we indicated that by composition of
conical flows one could give a complete study of any arbitrary spindle-
shaped bodies with infinitesimal cone angle. In a communication to the
Tth Congres International de Mécanique appliquée (September 1948),

Mr. Ward described an elegant method based on a solution of the wave
equation with the aid of symbolic calculation; this report has been pub-
lished (ref. 9). We shall show here the accuracy of our anticipation by

61*Com.pare an investigation of this problem with numgrical applica-
tions in an article to appear shortly in "La Recherche Aeronautique."



282 : NACA ™ 1354

establishing through the method of composition of conical flows the
fundamental formulas given by Mr. Ward.

The notations which are not defined here are the same as those of
chapter II. In this chapter we have shown that in the neighborhood of
the obstacle, the complex velocity U(2) had the form

= Ap
U(Z)=Aologz+§ i
1
with the A, being numerical coefficients depending on the shape of
the cone. Let us put
z = rel®

as in the neighborhood of the obstacle

|

e
w»
N

oz b z
2Xl

S
5
l—-’

and

© T o
B Ap'xy
U(z) = A.{log 2z + log — ] +
(2) 0< g g 2X1) zl -

with the A,' Dbeing new coefficients. Hence one deduces that the
potential of perturbation has the form

¢ = f_io@o(z)]

with
X
l 00
A"x n+l
= A 1 + 1oz B-at| + n 1
Ko(z) = Ag|xy log z ) og El =
\

with the A" denoting new numerical coefficients.



NACA TM 1354 283

More generally, the potential of the conical flow with infinitesimal
cone angle, the vertex of which is situated in x; = o, r =0, can be

expressed (in the neighborhood of the obstacle)
= BO[KU(Z)]

Xl—O'

Ks(z) = Ag(o) (xl - o)log z + log =
0}

with

n+l

LN ZAn (0)(X1 - 9)

A superposition of conical flows the vertices of which are situated on
Oxq causes a flow which in the neighborhood of the obstacle depends on

= Ro[r(z)] (1)

the potential

where f(z) has the form

o

[ee]
£(z) = ag log z + bg + E -—3 (2)
z
1

the coefficients ag, by, &, being defined by the integrals

ag = L 1 (xl - c)d.AO(o)
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One will remark immediately that

X X9 -0
B 1 1
by = ag log = - dAg(o) log t dt
e 0 0
= a log\2 - f log(xl - G)daf dAy(t)
0 0
or
X
_ B _ - l dao
by = ag log > L/; T 1og(gl - c)do (3)

Reciprocally, it is clear that under very broad conditions a func-
tion f£(z) like (2) (in which the coefficients agy, by, a, are func-

tions of . Xy, &g, and by connected by (3)) determines by (1) the

potential of a flow with infinitesimal cone angle in the neighborhood
of the axis Ox;. This constitutes the fundamental result of Mr. Ward.

Thus we are in a position to construct such flows. The only theo-
retical question to be examined is the following: Can one determine the
coefficients an(xl) so that @ represents the potential of a flow

around a given obstacle. We shall see that, visualizing the boundary
conditions, we may answer this question in the affirmative.

Let us designate by
r=F (9,xl>

the equation defining the obstacle by Cxl the section of the

abscissa x; and by wxl the function of the two variables r and 6

obtained by considering x; in ¢ as parameter.

The normal derivative of ¢xl along Cxl is given by

dp 1 dF o9
d(pxl= or ~ F 38 08

5
W2+ (0F/20)2
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Now the boundary conditions along Cxl are written, taking into

account the usual approximations,

P _LF X _F

dr ~ F 6 30 3xy
hence the relation
F oF
d(pxl - éxl
dn

JF2 + (3F/30)2

Thus one has, denoting by s and wxl, respectively, the arc of Cxl

and the conjugate function of @xl

d
G R JTY
ds dxy ds

The coefficient aqg 1is given by

the coefficients a are

S(x;) denotes the area delimited by C n

X+
1
then obtained by solving an exterior Dirichlet problem for the con-

tour Cxl' Thus the flow around any obstacle with infinitesimal opening

angle can be completely determined.

Mr. Ward (ref. 9) has given in his memorandum splendid applications
of these results. In particular, he has shown, taking for expressing
the pressure the formula (I.11), that the total lift is uniquely expressed
as a function of the coefficient a; of the terminal section of the

obstacle and that the drag depended only on the coefficients a, of

this section.
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A
{ Theoretical Q -values
Theoretical P-values
b
O\ 20\*0, €0 891501120 130 160 180
Theoretical Q-values
-1
6 |o 15 30 45 60 75 90
P |1 |046402|-0.19675|-0.38774|-0.33333| -0.22262 -0.12
, T,%or_ o0 |-0.74721 |-0.62067|-0.24845 o 0.11856 | 0.16
Fig23| O |-075021 |-0.61574 |-0.25236| 0.00370| 0.11576 |0.16244
Q' |-4 |-1.0119 1.3893 | 1.2470 | 0.6667 | 0.2755 |0.0640
-3 i
6 105 t20 | 135 150 165 180
P 1-0039230.02041]0.06247] 009023| 0.406 |o.11111
- Q '
4 Theor | 016098 | 014139 | 0.11142 | 0.07627 | 003864] O
Fg o3| 045919 | 014287 0.11041 | 0.07697| 003830 ©
Q" 100443 [-00991]-0.1267 |-01402 |-0.1463 |-0.1482
o |
|
&(f-values given by the table figure 25
/ -
O\ 20 40 ~60 80O 100 120 140 160 180 @

Figures 22 and 23
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Q A Q' starting from Q(6)

starting
from P (9) 1 .
| 1
0

- \
20// 40 so\aomo 120 140 160 180 O

\—_—-_—

g 0 15 30 | 45 60 75 | 90
(P(Q)) |-3.99116 |-101411 [1.38752 |1.24875
J

0.66398 [0.27769| 0.06192
(Q?B)) -398588(-1.02029(1.38995 {1.24883 | 0.66429|0.27767

0.06207

6 105 - 120 135 150 165 180

Q ’

1 (P (9))[-0:04262|-0.10076 |- 0.12529}-0.44163 |- 0,14515
\]

-014948
(QQ(B)) -0.04265 |-010060{-0.12531 |-0.14150}-0.14517 |- 0.14932

Figure 24
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