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TECENICAL MEMORANDUM 1351

ON THE DESIGN OF AIRFOILS IN WHICH THE TRANS ITION
OF THE BOUNDARY LAYER IS DEIAYED™

By Itiro Tani
INTRODUCTION - ILAMINAR-FILOW AIRFOILS

1. In high speed flight conditions, the drag of an airfoil is
almost exclusively due to skin friction. Therefore, if further reduc-
tion in drag -is des1red, it is neceseary to delay as much as possible
the transition from laminar to turbulent flow in the boundary layer along
the surface, thus decreasing the extent ,of the turbulent boundary layer
which gives considerable skin friction. As the factors that may affect
the transition, we will consider the stream turbulence, the surface
roughness, the surface pressure distribution, and so on. In actual
flight conditions, however, the effect of turbulence seems to be unex-
pectedly small, so that, so far as smooth surfaces are concerned, there
remains only the shape of the airfoil section in relation to pressure
distribution as the most important factor affecting transition. :We call
a laminar-flow airfeil that airfoil in which the shape of the section
~is suitably designed sc as to delay the transition of the boundary
layer flow,

2. It is evident that the laminar separation of the boundary layer
may cause the transition, as will be mentioned in the appendant part of
the paper, paragraphs 35-40. We cannot éxpect, therefore, to maintain
laminar flow beyond the separation point.. Summarizing the results of
flight experiments on airfoils hitherto made (refs. 8 to 12), we have
the conclusion that the observed transition coincides approximately with
the calculated laminar separation point at small Reynolds numbers, while
it moves upstream toward the minimum pressure point as the Reynolds
number increases. However, no example has ever yet been observed in
which the transition moves ahead of the minimum pressure point. We
therefore arrive at the supposition that the laminar-flow airfoil may be
most simply realized by designing the airfoil in which the minimum pres-
sure occurs well downstream. .

i .

"KyBkalso no Sen'i o okuraseru Yokugata ni tuite.' Report of the
Aeronautical Research Institute, Tokyo Imperial University, No. 250
(vol. 19, no. 1), Jan. 1943.



2 , NACA TM 1351

DESIGN OF SYMMETRICAL AIRFOIIS IN WHICH THE MINIMUM

PRESSURE OCCURS DOWNSTREAM

3. Following Professor Moriya (ref. 13), we write the coordinate

along the chord in the form x = % (1 + cos £), and assign x = O,

€ = n to the.leading edge, and x =1, & =0 +to the trailing edge.
o]

Expressing the ordinate of the mean camber line by M = 5:: a, cos nE,
0 .

and the half-thickness measured normal to the chord by T = é b, sin né l:
1

the pressure distribution around the airfoil in the’ two-dimensional

potential flow is given by
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1The ordinates of the upper and lower surfaces are given by M + T
and M - T, respectively.
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where a 1is the angle of attack, p 1is the pressure acting on the air-

foil surface, measured from the static pressure of the undisturbed streéam,

and q is the dynamic pressure of the undisturbed stream. We assume that
o

the trailing edge is sharp, so that E:: nb, = 0. We 1limit the range-of
1 .

the variables £ between O and =, and assign the upper and lower
parts of the double sign for the upper and lower surfaces, respectively.
Writing f for the maximum value of M (the maximum camber) and e for
the maximum value of 2T (the maximum thickhess), we put -

if: 1 - cos né Efi gin nt aM
fA = -2 nan T ————————— fAs = -2 nan ————— = em G
¢ 1 sin & 1 gin £ . dx
© sin ng ’ ® ‘ , » _
By = 2 ] — eB, = 2 nbhﬂ%:-ﬁ‘ﬂ
1 sin & T sin ¢ dx

The 1lift coefficient is glven by

[o2]
CL =25 {:éin a -2 E;: na, cos a

We consider first only the thickness of the airfoil (the camber of
the center line will be considered in the next section, paragraphs &
to 11). Namely, we consider the. symmetrical airfoil section set at zero
angle of attack, with a view to obtaining the mlnimum pressure well
downstream,

4, We adopt as the typical example of the commonly used symmetrical
airfoils the NACA symmetrical airfoil (ref. 14)

Ce {1.n8u5ﬁ - 0.6300x - 1.7580%2 + 1.k215¢3 - o. 5075x‘+}

The maximum thickness is located at x = 0.3, the leading-edge radius is
l.leg, and the trailing-edge slope -(dT/dx)x=l is 1.17e. The pressure
distribution for the case e = 0.1 1is shown in figure 1. The minimum

pressure is located at x = 0.1, and the laminar separation point,
determined by the approximate method due to the author (refs. 15 and 16),



h . . NACA ™ 1351

at x = 0.61. If the transition point of the boundary layer would not
move upstream beyond the laminar separation point, we might expect to
maintain a laminar boundary layer for more than half the surface of the
airfoil. The flight experiments hitherto made, however, appear to give
- negative evidence for such a conjecture.

5. Now, in order to shift the minimum pressure backward, it is
required to shift the position of maximum thickness (x = m) backward

For designing such airfoils, we represent the shapes of parts before
- and after the maximum thickness by two algebraic expressions.’ For the

forward half (O Sm

V2hx + hyx + h2x2

while for the rear half (m S x S 1)

T =e {}.01‘+ dl(l - x) + dg(l - x)2 + d3(1 - X)%}

where
o 2" 3\hm ,  \2m -1
1=~ . he-‘?nz—
1.47 - 247(1 - m) - d;(1 - m) - 0.98
d = | d3 = ,
: (1 - m)? | (1-m3

and we assign arbitrary values for three parameteré, m, h (= leading-
edge radiusﬂfeeg),,and d; (= trailing-edge slope % e). Although the
method has the drawback that the two expressions give different values

of d?T/dxe at x = m, where dT/dx becomes zero, we mevertheless
adopt it because we are in a position to vary the forward and rearward
parts most simply and independently.

6. First, we fix the forward half with m = 0.5 and h = 0, 5, and
vary the rear half by giving d the values 1.7, 2.0, 2.5, and 3.0

respectively. The shape of the section and the pressure distribution
for e = 0.1 are shown in figure 2, We find from this result that, as
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dy increases, the minimum pressure point moves backward and the gradient

of préssure rise following the minimum pressure steepens. We also find
that the pressure distribution in the neighborhood of the minimum pres-
sure exhibits a wavy indentation when the value of dy; 1is too small or

too large, and that there exists a certain value of d; for which the

pressure distribution is flat and smooth. Such a value of d; 1is about
2.5 in this case, We therefore fix the rear half with d; = 2.5, and

vary the forward half by giving h the values 0.35, 0.5, 0.70, and
1.05, respectively. The shape of the section and the pressure distri-
bution for e = 0.1 are shown in figure 3. From this comparison, we
find that the negative pressure bump immediately behind the leading
edge decreases as h decreases, and that the maximum permissible value
of h is about 0,7. -

The effect of thickness is shown in figure 4, in which curves of
pressure distribution are given for different values of e, 0.06, 0.10,
and 0.1k4, but for a fixed set of parameters, m = 0.5, h = 0.5, and
d] = 2.5, It is seen that the characteristics of the pressure distri-
bution do not materially change with thickness. There is, however, a
slight change in the pressure distribution, the maximum permissible
value for h slightly increasing as the thickness increases.

To see the effect of the position of maximum thickness, we give m
values ranging from 0,35 to 0.60, varying at the same time values of dy;
and h 8o that the pressure distribution becomes flat and smooth. The
result of calculation is given in figure 5, which shows a considerable
change in the position of minimum pressure. ' The change is not purely
due to the effect of m, but it is at any rate to be noticed that the
value of m 1less than O.4 is not sufficient for shifting backward the
minimum pressure, while increasing the value of m beyond 0.5 is of no
advantage, since the backward shift is then almost saturated, only the
adverse pressure gradient being increased.

T. From the results of calculation, we thus arrive at the conclusion
that m must be between O.4 and 0.5 and h must be less than 0.7 in order
that the minimum pressure occurs well downstream. Smaller values of h
are desirable, but, on the other hand, we should like to make h as
large as possible, because a large value of h will be advantageous in -
increasing the maximum 1ift coefficient and in preventing the inception
of adverse pressure gradient when the angle of attack is 8lightly changed.
Even if we give h the maximum permissible value 0.7, the leading-edge
radius amounts to only 60 percent of that for the conventional NACA sym-
metrical airfoil of the same thickness. In order to increase the leading-
edge radius, it is required to increase the thickness, which in turn is
accompanied by an increase in adverse pressure gradient following the
minimum pressure. The adverse pressure gradient should be kept within a
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certain limit, so that it becomes necessary to make a compromise between
conflicting requirements. Thus, we are no longer in a position to
require the farthest possible rearward location of the minimum pres-
sure. We should also use a value of d; which is somewhat smaller

than that mentioned previously.

Taking these requirements into account, we finélly arrive at the
design of a series of symmetrical airfoil sections, the parameters of
which are given in' the following table:

. : Position of
Section | m hopdy o miﬁg:um-;re:suré
I 0.500 | 0.35| 2.384 . 0.63
J 500 | .54 | 1.800 .55
. K L7510 .56 1.575 .51
L 450 | .58 1,400 | A7
M Lo0 | .62 1.1%0 .37
N . .35 | .66 1.000 S .2k

Although section I is the most ideal for  delaying the transition, in
practice, its extraordinarily sharp nose and blunt tail are drawbacks.

On the other hand, section N is too much compromised. Sections K or L
seem to be suitable as laminar-flow airfoils for practical use. The
ordinates of these six sections are given in table 1, while the auxiliary
functions By and B. associated with the pressure distribution (see

paragraph 3) are given in tables 2 and 3, respectively. The shapes of
the airfoil sections and the pressure distribution for e = 0.1 are
shown in figure 6.

DESIGN OF MEAN CAMBER LINE SUITABLE FOR IAMINAR-FLOW AIRFOILS

8. A symmetrical airfoil set at zero angle of attack has no lift.
In order to obtain lift, the center line of the symmetrical airfoil must
be curved with a suitable camber. Since the effects of thickness and
camber are nearly additive with regard to the pressure distribution, the
mean camber line which maintains the nature of the pressure distribution
of the symmetrical airfoil will be such that it shall give a uniform dis-
tribution of pressure difference when the thickness is removed. Evidently,
the center of pressure is then located at x = 0.5, so that such a camber
line has the drawback that the travel of center of pressure is consider-
able. To reduce the travel of center of pressure, the uniformity of pres?
sure difference should be satisfied only in the forward part of the chord.
From the standpoint of designing the laminar-flow airfoil, however, it is
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only required that the distribution of pressure difference is uniform
from the leading edge to that point corresponding to the minimum pres-
sure of the symmetrical airfoil.

9. When the angle of attack o is small, the expression for pres-
sure distribution given in paragraph 3 may be put into the form

[E} + eBg) <fAC + & =X a) - <fAB t eB.)a

1+ (£ag ¢ eBc)2

=1 -

a I\

Since the effect of the term (fAs : eBc) is very small, the quantity

l - x
X

G = fA, + a

is required to be constant in order that the camber line shall not change
the nature -of the pressure distribution of the symmetrical section. The
range of constancy is at least up to the position of minimum pressure of
the symmetrical section. Putting cos & = u = 2x - 1, and considering
for simplicity the case when the minimum pressure is located at u = 0,
we prescribe that

soos’ -l§u§0

[p]
1]
WA

»

constant = Go for 0

A
Y,

A
A

Go(1 _~u2)m, m20 for 0.5

[ep}
[

1, 0fus

See figure 7. Moreover, since

o l-cosn l1-cost
G = -2 E nap s nt + - a
1 sin ¢ gin &

a cannot be arbitrary, but must be so chosen that the right gide of the
equation does not become infinite at the leading edge, € = n. It is
given by
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where (') denotes that only odd integers should be'taken for n. This
is the so-called ideal angle of attack due to Theodorsen (ref. 17).
Using the assumption of the thin wing theory, we neglect the terms eB

8
and (fAs t eBC). We -then have.

ﬂ/2

cp =2(1 + op)fGo - Op =/€) pin®®*lE gt

' 1+ (1 +maoy
Coo = - CL
(1 + m)(1 + op)

. m. o
- L
a=2 na, + —

3 e+ 5

where QmO is the moment coefficient about the leading edge (positive

when nose up) at Cy, = 0. Although m =0 corresponds to the case of

making G uniform up to the trailing edge, it seems to be impossible
to realize a finite pressure difference at the trailing edge. Moreover,
the quantity "CmO/CL (which represents the degree of center of pres-

sure travel) is as largé ag 0.25 in this case. If m >0, G vanishes
at the trailing edge, and 'CmO/CL decreases as m increases, tending

to O as m approaches w, m = o corresponds to the case when G =0
in the rear half of the chord. Increasing the value of m, however,
steepens the pressure gradient, so the value of m from 3 to 5 seems to
be adequate.
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Now, since

to

) 2 C C
stin§=EZnancosn§-QZnan+—-L— cos & + =
1 1 - 2n 2n

the slope of the camber line having the prescribed distribution of G
is given by '

00
: gin nt 1 p" ® ‘ ag!
2 E na, = - ;L 2 El nap cos nt'

1 gin £ cos & -~ cos &'

1&g

. l -
L L log +(l-1.12)mlogl L
2n 1+ ooy 1l 4+ u u

pestiaer s,

u-v 1

: The ordinate of the camber line is obtained by the integration

X
M= .dﬁdx
0 dx

00
Z na, may be determined by the condition that M =0 at x = 1. We
1 .

call Dy the camber line thus determined. The equations for camber
lines for m =0, 1, 3, 5, and =, namely Do, Dj, D3, Ds, and D,
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are given below, their important characteristics being summarized in the
table. It is to be noted that f is the maximum value of M, ¢ 1is
the absolute value of the zero-1lift angle, and € and a are measured
in radians.

m| ofCy | €/Cr | f£/cL -Cmo/CL,
01j0 0.1592 | 0.0552 0.2500
, 11 .0380 1211 0711 1750
3| .0609 | .0983| .0790 .1213
5| .0703 | .0888| .0816 .0979
00 .1103 .0L88 L0874 0]
Do %‘= 1 - T log 5 -{(l -u) log (1 -u) + (1 +u) log (1 + u)}
b 1 3 1
D . — M = - l 2 - — - 3 -
1 a3 (5 + g) og 5 (l +u) log (1 + u) + 5 u’ log Iu'

1 (1 - w2 + u) log (1 - u) + 1 (1 - w)
2 R

b

. Dy =M= 1 Vi e
3 & 5l»{§“,+'19u) log 2 51*(1 + u)vlog (1 f‘u) +

- '5’?3(35 a1 ¢ su“)ilssé.: lfi I-

'EI (l - u)h(lé + 29u + 20u2 + 5u3) ‘log (l -u) +

e ée‘ (- u )(176 - 81u -'1721:2 + 30u3 + 60u1*)
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Dé: gi-M = 5%5 (949 + 437u) log 2 - gg% (1 +u) log (1 +u +
) .
5 w3 (1155 - 1386w + 990u* - 38506 + 63u8) 1og [u] -
5%5 (r - u)6(256 + 843u + 1218u° + 938u3 + 378ult +
63u5) log (1 - u) + -——L—-(l - u2)(35072 - 28535u - 66088u° +
113880 _
31680u3 + 68792u* - 17430u5 - 36220u6 + 3780uT + 7560u8)
M 1 .
D: == .{(1 +u) log 2 - (1L +u) log (1 +u) + u log |u|}
T log 3 |

Shapes of these camber lines are shown in figure 7, the ordinates
of them are given in table h and the auxiliary functions A. and Ag
(see paragraph 3) and the pressure difference distribution G are given
in tables 5, 6, and T, respectively.

10. The calculation made previously is only approximate, neglecting
the thickness. It is therefore desirable to check the result by actually
calculating the pressure distribution for the specified angle of attack
taking both camber and thickness into account. As an example, we con-
struct an airfoil by applying the thickness form K with e = 0.15 nor-
mal to the chord around the camber line Ds with f = 0.02 (the
resultlng airfoil is designated as D5K - 2015) We calculate the pres-

sure distribution by the formula of paragraph 3 for the optimum design
condition a = 0.99° and Cp, = 0.245, The result is shown in figure 8.

The nature of the pressure distribution remains similar to that of the
symmetrical airfoil, so we may consider that the approximate determina-
tion neglecting thickness gives results sufficiently accurate for practi-
cal purposes.

11. In designing the camber line Dp, we have assumed for simplicity

that the pressure difference G 1is constant for u < 0. This corresponds
to the case when the symmetrical airfoil has its minimum pressure in the

.
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neighborhood of u = 0. Therefore, the camber line Dy is adequate to
be combined with the symmetrical section J or K. If, however, the
symmetrical section is adopted in which the minimum pressure is located
further upstream, it is not only not necessary to maintain G constant
up to u = 0, but also of disadvantage because it makes it difficult to
reduce the value of 'CmO/CL-

To reduce the range over which G

‘ should be maintained constant,
we may proceed in the following way.

Assuming for instance that G

should be constant from u= -1 to u-= - %, and using a new variable
up = % (1 + 3u), we prescribe that
G =

Go

Go(1 - w?2)3

]
n

for - 1 Suf
3

The

The cember line lying in

The calculatidn}may be performed similarly to the case of D_.
resulting camber line is designated as F3.
the middle between F3 and D5, is also designed, and designated‘as E).

Their important characteristics are given in the following table together
with those of D5 Other numerical data for these camber lines are glven

in tables 4 to 7.

Camber line | o/c | efcr | £/cp |-Cmo/cr
Ds 0.0703 | 0.0888 | 0.0816 | 0.0979 '
E), 0752 | .084%0 | .0813 | .0859
F3 L0764k | 0827 .0795 .0833

Since the camber lines Ey end F3 enable us to maintain G con-

stant up to the point x = 0,42

and x = 0,33, respectively, they are
adequate to be combined with the symmetrical sections I and M, respec-
tively. The pressure distribution is shown in figure 10 for the alrfoil
obtained by applying the thickness form M with e = O. 15 around the
camber line F3 with f = 0.02. The optimum design condition corresponds

-to @ = 1.10° and Cp, = 0.252.
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EXPERIMENTS ON IAMINAR-FLOW AIRFOILS

12, In order to ascertain whether it is possible to prevent the
forward movement of the’ boundary layer transition by shifting the mini-
mum pressure on the airfoil surface, we have to perform experiments in
a low turbulence wind tunnel or on the actual airplane in flight. When
the Reynolds number is not too large, however, we can still use a con-
ventional wind tunnel in which the stream turbulence is relatively small.
So we made at first comparative measurements on two symmetrical airfoils,
NACA 0010 and L.B. 24 in the 1.5 m wind tunnel of the Aeronautical
Research Institute. L.B. 24 is a laminar-flow airfoil of 10 percent
thickness, already shown in figure 3. The theoretical pressure distri-
bution is also given in figure 11. The minimum pressure is located at
X = O.6h, and the laminar separation at x = 0.77. The wind tunnel was
of the lowest turbulence level available for the author, the critical

Reynolds number of a sphere being 3.66 X 10° and the transition Reynolds

number of a flat plate 1.05 x 103 (see paragraph 28). In order to raise
the Reynolds number as high as possible, unusually large models were

used. They were made of laminated mahogany, of highly polished surface,
of 0.8 m span, of 1.2 m chord, and fitted with end plates 1.3 m X 0,6 m,
Since the model was large compared with the size of the tunnel and the

end plates were not sufficiently large, the results for a given airfoil
may not correspond even approximately with those for the same airfoil in
an undisturbed two-dimensional flow. Our object, however, was merely

to ascertain the relation between pressure distribution and transition,
and it seemed reasonable to expect that the relation will not be seriously
affected by limitations in the conditions of the experiments. As a matter
of fact, marked difference was found in the calculated and measured dis-
tributions of pressure, the latter of which was measured along the median
section of the model with a static tube of 1 mm diameter (fig. 12).2

This discrepancy, however, is immaterial, since our object was merely to
compare the two airfoils, both of which are affected quite similarly by
experimental limitations.

13. The angle of attack of the model was zero, and the wind speed
was varied from 6 to 4O m/s. The local drag of the median section was
determined from wake measurements, that were made in the section 11 cm
" behind the trailing edge. Measurements of static and total pressures in
the wake were made, respectively, with a static tube of 2.5 mm external
diameter and a pitot tube with a flattened mouth of 0.65 mm external
depth and 2.6 mm width. The profile drag coefficient CDO was obtained

2The measured values are those for a Reynolds number of about 2 X 106.
The distribution of pressure changes but little with the Reynolds number.
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from the measured pressures by Jones' formula (ref. 18). Figure 13 3
presents CDO plotted against Reynolds number R referred to chord

length. For a lower range of R, the drag of L.B. 24 is higher than
that of NACA 0010, the reason probably being that a turbulent boundary
layer associated with the laminar separation is ‘established at a higher .
Reynolds number for the former airfoil than for the latter. For a higher
range of R, however, the condition is reversed, L.B. 24 giving a drag

less than half that of NACA 0010 for R higher than 2 X 106. This is
probably due to the fact that the transition may occur much later for
L.B. 24 than it does for NACA 0010, as also observed from the compari-

son of wake conditions for the two airfoils (fig. 1k4).%

14, In order to verify the aforementioned supposition, a pitot tube
with a flattened mouth of external depth 0.9 mm and width 2.7 mm was
placed in contact with the airfoil surface, and the wind speed, and con-
sequently the Reynolds number R, were determined at which the indicated’
total pressure G* divided by the dynamical pressure q of the undis-
turbed stream begins to rise suddenly. The results are shown in fig-
ure 15, From this figure, the dependence of the transition point on
Reynolds number as shown in figure 16 is obtained. At the same Reynolds
number, the transition occurs much farther from the leading edge for
L.B. Eh than for NACA 0010. Even at the highest Reynolds number reached,
L.B. 24 has a transition as far back as = 0.80. This is somewhat
beyond the laminar separation point, x O 77, which is calculated from
the theoretical pressure distribution. However, this is not contradictory,
because the actual pressure distribution differs from the theoretical one
in a manner to delay the transition (fig. 12).

15.. With further increase in Reynolds number, the transition may
move toward the leading edge, but it seems improbable that the transition
moves forward beyond the minimum pressure. It is highly desirable to
. check this point also by wind tunnel experiments, but all the wind tunnels
now available to the author are of no use for making measurements at
sufficiently high Reynolds numbers, because the transition is prematurely

3In this figure, the curves L and T represent the drag of a
flat plate when the boundary layer is entirely laminar and entirely
turbulent, respectively. The curves NV and NF represent the drag
of airfoil NACA 0009 measured in the NACA Variable-Density Wind Tunnel
and NACA Full-Scale Wind Tunnel, respectively.

hIn this figure G and p are the total and static pressures in
the wake, respectively, and Gp is the total pressure outside the wake,

all being measured from the static pressure of the undisturbed stream.
Y is the distance across the wake, and t 1is the chord of the model.
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induced by the turbulence of the stream (see paragraphs 27 to 29). It
seems urgent to build a special wind tunnel of low turbulence level.
For the present, however, it is simplest to rely upon experiments in
actual flight. Such a hope of the author was fortunately realized by
the specially planned flight experiment, which was performed at the
Navy Aeronautical Technical Arsenal (ref. 19).

16. The airplane used for the experiment was a biplane; two portions
of the lower wing, each of 1.1 m span, were covered with the airfoil to
be tested. The test portions were of chord 2.4 m, made of Japanese Hinoki
highly polished, and fitted with a partition fence of small height at
both ends. Two test portions were placed symmetrically, pressure distri-
bution and wake measurements being performed on the starboard portion,
while the boundary layer was observed on the port portion. The airfoil
section was not one of the most appropriate design now considered, because
it was required to put it on the original section of the airplane, and,
moreover, to determine the section before completion of the final design
calculation. It has the following characteristica:

s

Mean camber line: M = 0.06672(1 -x)(1 - x +x2), £ =0.0125

Thickness distribution: e = 0.12, m = 0.45, h = 0.56, 43 = 1.60

The camber line is similar to Dy of paragraph 9, but there exists a

slight lack of uniformity of G 1in the neighborhood of leading and
trailing edges. The thickness distribution is similar to L of para-
graph 7, but the trailing edge slope is somewhat ‘larger than L.

17. Results of flight experiments are summarized in figure 17
and 18. In figure 17, the section 1ift coefficient CL, obtained by
integrating the pressure distribution curve, is shown by a broken line
Plotted against the Reynolds number R referred to the flight speed
and chord length, and C, is again shown by a solid line plotted against

the profile drag coefficient CDO determined from the wake measurements. .

In figure 18, the measured pressure distribution is shown in comparison
with the theoretical one (two-dimensional potential flow) having the
same value of Cj,., The transition pPoints estimated from the change in
boundary layer velocity profiles are also marked. Generally speaking,
the measured pressure distribution agrees fairly well with the theo-

- retical one, although a slight difference appears when C1, becomes
large. An adverse pressure gradient is found on the lower surface when
C;, 1is small, thus resulting in the transition point being observed
unexpectedly far forward. Such a discrepancy in pressure distribution
"as- compared with the theoretical one seems to be probably due to the
fact that the span of the test portion was not sufficiently large. As
8 result, the profile drag coefficient CDO hag the minimum value 0.0042
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at about Cp, = 0.26, which is larger than the value Cp, = 0.18 theo-

retically estimated on the assumption that the transition occurs far
back on both upper and lower surfaces. Therefore, the observed value
of CDO, although much smaller than that of the conventional airfoils,

seems to be still somewhat large when compared with the optimum case.

At any rate, however, no transition was found to occur upstream of the
minimum pressure. It is important to note that such experimental evi-
dence was obtained on an airfoil section in which the minimum pressure

is located further downstream than on the conventional one. This finding
will give valuable data to establish a basis for design of the laminar-
flow airfoils.

ESTIMATION OF THE DRAG OF LAMINAR-FIOW AIRFOILS

- 18. As mentioned previously, the results of flight experiments
seem to support the basis for the design of laminar-flow airfoils,
namely, the possibility of maintaining the boundary layer laminar at
least up to the minimum pressure point. It is interesting, therefore,
to estimate the drag of laminar-flow airfoils by assuming a laminar.
boundary layer from the leading edge to the mlnimum pregsure point and
a turbulent boundary layer downstream to the trailing edge.

For the laminar boundary layer, the momentum thickness is given by

s
62 - O.hhv f ull} a8
ul5 0 :

with a sufficient approximation (ref. 16), where wu; is the velocity

outside the boundary layer and s 1is the distance measured along the
airfoil surface from the forward stagnation point. Writing t for the
chord length and V for the veloc1ty of the undisturbed flow (ve1001ty
of flight), and putting

uy = uv s = ot - R = ==

we have the nondimensional expression
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%" b [ ) e ~
t2 RUa 0 Ua

where the subscript a refers to the point of minimum pressure,
Applying then the solution due to Buri (ref. 20) for a turbulent
boundary layer assumed to extend from the minimum pressure point to
the trailing edge, we ‘have the result

K%)S/huu/ﬂ:b = 0.0162R"l/lL fcb * 4o

‘where the subscript b refers to the trailing edge. The numerical
values originally given by Buri are slightly modified so as to agree
with measurements when applied to the flat plate.

According to Squire and Young (ref. 21), the profile drag coeffi-
cient is given by

CDo = § (6u + 02) 072

where the subscripts u and 1! refer to the upper and lower surfaces,
respectively. The exponent 3.2 of Up has been obtained by assuming

the ratio of displacement and momentum thicknesses equal to 1l.4. But the
ratio seems to exceed 1.4 near the trailing edge, so we replace 3.2 by
3.4 with a view to improving the accuracy and at the same time to
simplifying the algebra. Since

6 o 17/4 . o 4/5
Tb'Ub3'h = _(t_a)5/l+U8 ", 0.0162R l/hﬁ P gt dg‘
a
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we have

- Cpy = 0.07r"Y/> (1.@,‘3/8 + Tu>h/5 N .(LZR'-3/8 N Tl)h/5

where

= 37U39/8 l;/:a u* 4o 7 = f u* do

If the velocity distribution wu; = UV is calculated by assuming the

potential flow of an ideal fluid, it is desirable to modify the distri-
bution to take account of the effect of separation near the trailing
edge. We tentatively modified the distribution of U such that the

Buri pqrameter T = (G/ul)(dul/ds)(ule/v)l/h at the trailing edge for

the case when the boundary layer is assumed turbulent from the leading
edge, namely

| > v
r _ 0.0081 (ﬂ) f LI
Ub6 do /y Jo _

shall not become smaller than -0,06, In almost all the céses, values
of Ub_ thus modified are found in the range between 0.95 and 1.00.

19. Applying this method of calculation, the profile drag coeffi-
cient CDO is estimated first for a series of symmetrical airfoils sget

at zero angle of attack. The series consists of the gix symmetrical
airfoils, I, J, K, L, M, N, as given in paragraph 7 and the NACA con-

ventional airfoil. Values of CDO at R =2 x 107 for three different

thicknesses (maximum thickness in terms of chord e = 0.10, 0.15,JO.20)
- are shown in figure 19 plotted against the position of minimum pressure.
CDO seems to decrease almost linearly as the minimum pressure is shifted

backward, the most ideal airfoil I giving a value about half of that of
the NACA conventional airfoil. If it is desired to realize a profile
drag of two-thirds of the conventional airfoil, it will be required to
use the symmetrical airfoil L with the maximum thickness located at

45 percent chord from the leading edge.
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Effect of camber is relatively small. If, for instance, the
center line of the symmetrical airfoil X with e = 0,15 is curved
into the camber line D5 with f = 0.02 (see paragraph 9), the esti-

" mated increase in profile drag at the optimum angle of attack is only
0.0001., For f = 0,0k, it is 0.0003.

Finally, we compare the laminar-flow airfoil with the most exten-
sively used airfoil, NACA 23012, for which the leading-edge radius is
0.0158, and the optimum 1lift coefficient corresponding to the minimum
profile drag coefficient is about 0.15. If we consider the symmetrical
airfoil section K (h = 0.56) combined with the camber line Ds, it is

necessary to use the thickness e = 0.15 in order to obtain the same
magnitude of leading-edge radius, and the camber f = 0.012 in order to
realize the optimum 1lift coefficient 0.15.5 Therefore we construct an
airfoil by applying the symmetrical form K with e = 0.15 normal to
the chord around the camber line Ds with f = 0.012. We call it

DsK - 1215. The angle of attack corresponding to Cr, = 0.15 is 1.56°

for NACA 23012 and 0.60° for D5K - 1215. The pressure distribution for
that condition is shown in figure 20.

We then estimate CDo for the two airfoils by the method explained

previously. The results are shown by broken lines in figure 21. 1In

. order to check the results, measured values taken from various sources .
for the two airfoils and similar airfoils are also plotted in the same
figure by different marks. The mark o refers to the value obtained

by flight experiments on a smooth surface, and e refers to that
obtained by wind tunnel experiments where the stream turbulence has no
effect on transition. The mark + refers to the flight experiment on

a rough surface, while X refers to the wind tunnel experiment where

the stream turbulence causes the transition to occur prematurely. There-
fore, only o and e are adequate for our present purpose. Drawing
curves through these points and extrapolating to higher Reynolds numbers ,
we find that the result agrees fairly well with the estimated values.
Therefore, we may consider that the method of estimating CDO is suffi-

ciently accurate at the Reynolds numbers corresponding to actual flight

JThe calculation developed in paragraphs 8 to 11 refers to the poten-
tial flow of an ideal fluid, so that it gives the slope of 1lift curve
ac &€,
da
only 80 to 90 percent of the theoretical value. If we take this effect
into account, we have to increase the necessary amount of f by 10 to
20 percent in order to realize the given lift coefficient. However,
such a slight change in the value of f will scarcely affect the esti-
mation of CDO'

= 2x. In real fluids, however, the slope of lift curve amounts to
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conditions. Comparison of two airfoils, laminar-flow and conventional,
also suggests the possibility of Lo percent reduction in profile drag
by using a fairly practical laminar-flow airfoil.

CONSIDERATION OF THE AIRFOIL WITH UNIFORM DISTRIBUTION OF PRESSURE

20, The fact that, so far as flight experiments with smooth wings
are concerned, the boundary layer transition occurs only in the region
of rising pressure, not only warrants the principle-of designing the
laminar-flow airfoil by shifting the minimum pressure backward, but
also suggests the possibility of delaying the transition by using an
airfoil with uniform distribution of pressure. Therefore, in para-
graphs 21 to 23, the shape- of such a symmetrical airfoil is determined
by a method similar to that used for designing the camber line of laminar-
flow airfolls, and the airfoil was examined by wind tunnel experiments.
In paragraphs 24 to 26, a calculation is made to inquire about the method -
of sucking away the boundary layer over the region of riging pressure in
such a way that the boundary layer velocity profile shall remain the same
as that for the point of minimum pressure. '

2l. Consider the symmetrical airfoil set at zero angle of attack.
According to the formula of paragraph 3, the pressure distribution is

given by
% sin nt 2
1 +2 E:: nbn ——
1 gin &

1+ 23 mp, =22
1 sin &

= l,-

Qld

where p 1is the pressure acting on the airfoil surface, measured from
the static pressure of the undisturbed stream, q 1is the dynamic pres-

sure of the undisturbed'stream, X = % (1 + cos &) is the coordinate

along the chord, and the half-thicknegs of the airfoil is expressed in
the form '

[

T =) b, sin nt
1 :
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If the thickness is sufficiently small, the square of

2 cos né
5‘2 = -2 E nbn ————
dx 1 gsin &

may be neglected, so that the condition of uniform distribution of pres-
sure is satisfied by putting all the coefficients b,, other than by,

equal to zero, namely, by an elliptic section. In order to take the
thickness into account approximately, we substitute the value of aT /dax
for the elliptic section into the denominator of the expression for p/q.

Then, writing e  for the maximum thickness in terms of the chord, we
get

2
00 - -
gin & + 2 zz: nb, sin né
1
fi: 1 -
8in®t + e2coslt
hence
oo
2y nb, Bin nk = - gin & + Bd,sinzé + e®cos?t
1

. 1/2
where B is the constant value of (1 - p/q) / . We have therefore
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]

7 ) ' t
in &' gt
sin ¢ a _ . E-Jf 2 E nb, sin né! 2 d
7 '
0 1 cos £ - cos &

T [ £
iu/‘ gin &' - quinzg' + e“cogt’ sin & at
b1 1
0 cos £ - cos &

2ku cos'le +

I

o

1
A6

JI‘:—EEZE Jog (1 + u)(f - X°u + eJl - k2u2)
(1 - u)(l + k2u + eql - keug)

where
u=-cos €& =2x -1 k=\1-e°

Upon integrating we get

| | R N L, (L w (1 - ¥u + \1 - x22)

e L log du

an J-1 \ 1-w? (1 - u)(l + XU 4+ edl - k2u2)

| The integral is evaluated by a numerical method, and the value of the

constant B determined from the condition that T = %e when u = 0,

The numerical results for three values of e are given in table 8, T
and dT/dx being expressed in terms of those for the elliptic section.
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P +

The shapes of the airfoils are shown in figure 22, The shape resembles
an elliptic section, although it is somewhat fuller at the ends. It will
also be seen that the constant B, as shown in the following table, is

slightly smaller than 1 + e, the maximum value of (1 - p/q)l/2 for the

elliptic section. Since the‘valuéé of (dT/dx) - (-eu/ 1 - ue) are not far
- different from 1, it seems to be sufficiently accurate to .substitute

the value of dT/dx for the elliptic section into the denominator

of 1 - p/q.

e B
0.1 1.097
.2 1.188
.3 1.273

22. The uniform distribution of pressure requires, however, an
infinite pressure gradient at both leading and trailing edges. In order
to see to what degree such a sharp pressure gradient may be realized in
actual fluids, measurements were made on a model of the airfoil section
with uniform distribution of pressure with e = 0.1 (we call it U.P. 0010)
in the 1.5 m wind tunnel of the Aeronautical Research Institute. The
model was made of laminated mahogany, of 0.8 m span, of 0.8 m chord, and
fitted with end plates 1.3 m X 0.6 m. Measurements of pressure distribu-
tion, wake traverse and boundary layer transition were similar to thoge
already mentioned in paragraphs 12 to 1k. '

The pressure distribution along the chord is shown in figure 23
for three values of R, the Reynolds number referred to chord length.
The observed value is somewhat high compared to the theoretical

value g = -0.203, the discrepancy probably being due to the excessive

8ize of the model in proportion to that of the wind tunnel. At any rate,
however, the pressure distribution is nearly uniform., The lack of uni-
formity exists at both edges due to the impossibility of realizing the
infinite pressure gradient. The boundary layer separates near the
trailing edge, but the effect of separation becomes small asg the Reynolds
number increases. This scale effect seems to be of the same nature as
that responsible for the sudden drop in sphere drag; the boundary layer
separates in a laminar state when the Reynolds number is low, while it
‘becomes turbulent before geparation when the Reynolds number is high,
thus being able to proceed against a larger pressure gradient, This is
also seen from the measurements in the wake, where the indentation of the
curve of total pressure distribution is shallow and wide for low Reynolds
numbers, while it becomes deep and narrow as the Reynolds number increases.
As a result, the profile drag coefficient CDO decreases considerably
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as the Reynolds number increases, as shown in figure 24, Transition to
turbulence was found very near to the trailing edge, occurring downstream
of x = 0.9 in the range of measurements. Measured values of the drag
of the model when a piano wire of 0.5 mm diameter was placed at x = 0.8
and x = 0.9, respectively, are also plotted in the same figure. The
drop in drag occurs at a lower value of the Reynolds number when the
surface is roughened by the wire.

23. The profile. drag coefficient of the airfoil U,P, 0010 is shown
below in comparison with other symmetrical airfoils at R = 2.2 X 106:

NACA 0010 CDO = 0.0064 (fig. 13)
L.B. 2k ' , 0.0032 (fig. 13)
U.P. 0010 : 0.0059
U.P. 0010, a wire at x =0.9 0.0044

All the airfoils are of 10 percent thickness. NACA 0010 is a conventional
airfoil, and L.,B. 24 is a laminar-flow airfoil with far back minimum
pressure. The drag of U.P. 0010 is between that of these two airfoils,
the drag when a wire is placed being nearly the mean of the two. This
result seems to be interesting in that the drag of an airfoil with a
blunt tail is smaller than commonly considered.

The airfoil with uniform distribution of pressure will also probsbly
be favorable when used at high subsonic speeds. Even if the shock wave
occurs at high subsonic speeds, the increase in drag will remain small
when the boundary layer does not separate. This expectation was really
verified by the experiment due to Kawada and Kawamura (ref. 22), the
drag of the airfoil U.P. 0010 being smaller at high Mach numbers as
compared with other airfoils.

24, From the fact that the boundary layer transition occurs only in
the region of rising pressure, we may also expect guction of the boundary
layer to delay transition. For example, 1f the boundary layer is sucked
into a slot, there is a well-known sink effect (ref. 23) which relieves
the adverse pressure gradient somewhat. upstream of the slot. We may con-
sider an alternative possibility. That 1s, we assume that the boundary
layer is laminar in the region of falling pressure, and that it remains
"laminar also in the region of rising pressure provided that the boundary
layer profile is the same as that at the minimum pressure point. We
then ask what suction arrangement must be applied in order to realize
such a condition. ’

25, We denote by s the coordinate measured along the surface,

y perpendicular to the surface, & +the boundary layer thickness, u
the velocity in the boundary layer, uj; the velocity outside the boundary

Ay
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dp . '
layer, =— = -pul(dul/ds) the pressure gradient, and T( = -u(au/aw)y=o
the skin friction®at the surface. Assuming the surface (y = 0) is made

porous, through which the fluid is sucked with the velocity c, we have
the equation of continuity

e}
W-cC= ij/“ u dy (a)
ds J

and the equation of momentum

o) .
d o dp
U, w - _ uc dy = 19 + 5 —
puy pdsj; y 0 18 | Cb)

where w is the velocity of fluid entering the boundary layer through
Y = 8. The equation of motion reduces to

a 2 .
. @z) S L v<é_2) | (c)
Y iy= 8 Oy 0 : o

for y = 0.

Now, the velocity profile in the boundary iayer may be approximated
by the Pohlhausen polynomial

3 G '
= L.o ¥ ¥
U= uy <2 £-2 3 + " (a)

when neither pressure gradient nor suction exists. For this profile we
have

u
1
To = 2p i (e)

pugw = % T (1)



26 NACA TM 1351

To simplify the Ealculation, we assume that the expressions (d), (e),
and (f) still hold when both pressure gradient and suction exist. Then
we have from (b) .

as _ 630 v iohidul (2)
ds 37 wd 367 u; ds

Integrating we have

2 2 ] 8
ulIn ST = (ulm -SV—) + 1260 ulm'l ds (n)
8=80 37 Jsp
208 , '
where m = —g?, and sy 1s the initial position of suction, which is
3 .
the minimum pressure point in the present cage. We have also from (a)
du
_ 1841 duy 8 (1)
3670 ds .

If we substitute (d) and (i) into both sides of the equation (c) ho#ever,
the left and right sides become 1.003u1(du1/ds) and ul(dul/dsj, respec-

tively. This contradiction is evidently due to the crude assumption of
using (f) 'in spite of the presence of pressure gradient and suction, but
we may overlook the error because it is small, ’

26, We apply the calculation to the symmetrical laminar-flow air-
foil of 10 percent maximum thickness, L.B. 24, set at zero angle of
attack. The velocity distribution u; /V calculated from the potential

flow of ideél fluids is used,6 the maximum velocity:  (minimum pressure)
being located at 64 percent of the chord from the leading edge (90 = O.65t).

Applying a distributed suction downstream of the minimum pressure point
so as to maintain the velocity profile in the boundary layer the same as
at this point, we have the boundary layer thickness & and the required

6It is assumed that the velocity distribution is not affected by
the suction. Theoretically uj; should be O at the trailing edge, but
the distribution was somewhat modified so as to give wuj = 0.85V there.

The effects of these assumptions appear to be too small to affect the
result materially. )
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suction velocity ¢ as shown in figure 25. It is to be noted that s
is measured along the surface from the leading edge, and R 1is the

Reynolds number based on the chord length t and the velocity of the
undisturbed stream V. Integrating the area under the curve of c, we

have the total amount of suction l.3v¢§ per unit span of the two sur-
faces, If we assume span = 35m, t=5m, V =200m/s, V=0.15cn’/s,
the total amount of suction amounts to 5.6 m3/s, which will require an
exit area of only 0.028 m? when discharged with the velocity equal to V.,
Integration of Tg gives the drag coefficient CDO = 0.0005. - This value
may be compared with CDo = 0,0003 for the flat plate with laminar
boundary layer, Cpy = 0.004k for the flat plate with turbulent boundary

layer, and Cpy = 0.0025 for L.B. 24 without suction. If the thickness

of the airfoil is doubled (20 percent chord), then the amount of suction
will be nearly doubled; the drag is however almost unchanged.

It should be noticed again that the calculation is based on the
assumption that no transition occurs if the velocity profile in the
boundary layer maintains the form at the minimum pressure. It is the
purpose of the calculation to show that extraordinarily low profile drag
may- be expected with a relatively small amount of suction under such a
condition.

PREMATURE TRANSITION OF BOUNDARY LAYER - EFFECT OF STREAM TURBULENCE

27. Although the transition of the boundary layer occurs only down-
stream of the minimum pressure, so far as flight experiments on smooth
airfoil surfaces are concerned, there are many examples of wind tunnel
experiments in which the transition moves upstream of the minimum pres-
sure. This seems to be due to the premature transition caused by the
turbulence in the wind tunnel stream. For example, the transition on
_the airfoil L.B. 24 was found only downstream of the minimum pressure
in the range of Reynolds numbers covered by the author's wind tunnel

experiments (the Reynolds number based on chord length up to 3 X 106;
see paragraphs 12 to 14); as a result very low values of the profile drag
coefficient Cp, were observed. The same airfoil, however, when tested

with a larger model of 2 m chord in the 2.5 m wind tunnel of Kawasaki
Aircraft Company, Gihu, gave the result as shown in figure 26, in which

CDo increases considerably when the Reynolds number exceeds 5 X 106

(refs. 2k and 25). There is reason to believe that the increase in drag
is due to the effect of stream turbulence. The boundary layer observa-
tion at the Kawasaki wind tunnel shows that the transition is found at

50 percent chord (x = 0.5) for the Reynolds number 6 X 100 and moves
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further forward as the Reynolds number increases. The boundary layer

. N *
velocity profile observed at transition has a form factor %r =2,6

(6% and 6 are the displacement and momentum thicknesses of the
boundary layer), which is very near to the value for the case of zero
pressure gradient. This result seems to suggest that the transition is
at least not correlated with the laminar separation (ref. 1).

28. In order to verify this conjecture, it is desirable to show
that the transition in the boundary layer along a flat plate occurs
under the same condition, because that transition may be considered to
be independent of the laminar separation. Unfortunately, however, no
flat plate was measured in the Kawasaki wind tunnel. Therefore we pro-
ceed in a somevwhat indirect way. We assume that the degree of stream
turbulence is represented by the conventional criitical Reynolds number
of the sphere, Rg, and the condition of transition due to turbulence

: e .
represented by the local Reynolds number, Rg = E&—, at transition on a

flat plate, where uj is the velocity outside the boundary layer:and

6 is the momentum thickness of the boundary layer. It is generally
accepted that the turbulence in the wind tunnel stream will give a
fluctuation of pressure gradient, as a result of which an instantaneous
and intermittent separation will occur. Such an instantaneous and inter-
mittent separation, however, does not necessarily lead to the transition
into turbulence; for the transition really to occur, it seems probably

necessary that the Reynolds number Rg which represents the ratio of

inertia pu12 to viscous stress qul/G exceed a certain critical value.

It is also expected that the critical value depends on the degree of tur-
bulence; it must increase as Rg increases. .This is really shown by

the experimental data hitherto published, which are given in the following
table and also by white circles (o) in figure 27. The available data are
scanty, especially because the experiment on a flat plate is very diffi-
cult. It was necessary for the author to perform a new experiment (ref. 30)
with a view to adding one point in the range of high Rg.

Rc Rg Wind Tunnel Reference
1.40 x 105 [0.21 x 103 | National Bureau of Standards 26
2.75 % 107 | .70 x 103 | National Bureau of Standards 26
2,20 x 102 | 42 x 103 | N.P.L. Compressed Air Tumnel 27, 28
[3.66 x 102 | 1.05 x 103 | Aero. Res. Inst. 1.5 m Tunnel | 29, 30
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29. Now, we calculate the value of Rg at transition of the air-

foil L.B. 24 tested in the Kawasaki wind tunnel, and correlate it with
the critical Reynolds numberA RC of that tunnel. We analyze similarly

the other available data, and summarize the result in the following
table. The values of the form factor 5*/6, not shown, were all found
in the range from 2.1 to 2.7. We then plot the data also in figure 27
by black circles (0). The black circles are seen to define a single
curve together with the white circles already mentioned., This result
seems to support the supposition that the transition under consideration
is mainly caused by the stream turbulence, but not correlated with the
laminar separation,

Re Rg Model Wind Tunnel [Reference
1.85 x 10°]{0.41 x 103|Symmetrical airfoil|N.P.L. T ft 31, 32
2.10 x 109 .56 x 103|Airship model M.IT. B £t 33, 3k
3.50 X 102| .95 x 103|Airfoil N-22 NACA Full-Scale| 12, 35
3.65 x 10°]{1,08 x 103|Airfoil L.B. 2k Kawasaki 2.5 m 2k, 25

In reference 12 (the third line in the preceding table), the same
airfoil was examined both by the full-scale wind tunnel and by the flight
testg. We calculate the form factor &%/8 from these tests and plot the
values against s/t in figure 28, where +t  is the chord length and s
is the length measured along the surface from the leading edge. The
value of 8%/6 at transition is 2.6 in the wind tunnel, while it reaches
as high as 3.1 and drops sharply in the flight test. The minimum pres-

sure is located at % = 0.18, and the laminar separation calculated from’

the measured. distribution of pressure at %-: 0.36. This example is very

interesting because the cause of transition is quite different in the two
cases (namely, it is due to the stream turbulence in the wind tunnel,
while it is related to laminar separation in the flight test), although
the positions of transition are almost the same. ‘

PREMATURE TRANSTITION OF BOUNDARY IAYFR - EFFECT OF SURFACE ROUGHNESS

30. Up to this point, we have only considered the case when the sur-
face of the airfoil is smooth. If the surface is rough, however, there
is a possibility that the transition may also be caused prematurely by
surface roughness. So, it is important in practice to estimate the
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approximate order of magnitude of the permissible roughness in the lami- |
nar bowndary layer. Nothing has been known concerning this problem,
except a mere conjecture or fragmentary data. Schiller (ref. 36) sug-
gested that a local separation occurs and hence leads to transition

when the Reynolds number kuk/v exceeds a certain critical value Rcritl

where k is the height of projection and wuy, 1is the velocity at the

top of projection. The exact value of R.p.i¢ 1is not known, but it is
not likely to differ much from the critical value of the Reynolds number,
above which vortices are shed from the obstacle of the same shape as that
of the projection placed in a uniform stream. The experimental result
due to Wieselsberger (ref. 37) shows that such a critical Reynolds number
is roughly 50 for a circular cylinder. Assuming that the height of pro-
Jjection k 1is small, and that the presence of the projection in no way
alters the character of the flow, we have the shearing stress at the

surface 7o = pV(uk/k). Using the so-called friction velocity v, = QTO/p

instead of wuy, we have then kv*/v = Vkuk/v. The permisgsible roughness
“is therefore given by kv,/V = {R.pnqt, OF, With' R p4¢ = 50, kvy/v = T.
On the other hand, according to Nikuradse's experiments on roughened

pipes (rgf. 38), the critical Reynolds number is E%ﬁ = 4, above which

the roughness projections disturb the laminar sublayer of the turbulent
boundary layer and hence increase the pressure drop. It appears there-
fore that the permissible roughness. is smaller in the turbulent boundary
layer as compared with the laminar boundary layer. This is confined by
a British flight experiment (ref. 39) on the airfoil section of 10 feet

chord (Reynolds number 1.8 X 107), because the effect of camouflage paint
of 0.001 inch thickness increased the drag by about 6 percent without
moving the transition forward. At any rate, however, such a estimate is
nothing but mere conjecture, With a view to making the estimate more
definite, we performed wind tunnel experiments, although of small scale,
of quantitative character (paragraphs 31 to 32).

31. A polished aluminum plate, 80 cm long, €0 cm wide, and 3 mm thick,
was held horizontally in the 1.5 m wind tunnel of the Aeronautical Research
JInstitute. So that the flow at entry would not be disturbed, the leading
edge of the-plate was rounded, and the plate slightly tilted so that the
forward stagnation point was on the same surface as that where the observa-
tion was made. The tilting, however, was so slight that the static pres-
sure was observed to be practically uniform along the plate. The plate
was roughened by a wire, which was stretched across the flow, in contact
with the plate. The diameters k of the wire were 0.25, O.4, and 0.7 mm,
respectively, and the distances x of the wire from the leading edge were
15, 30, 45, and 60 cm, respectively. When the wind speed V was low, the
boundary layer was laminar all along the plate, but from a certain speed
upward, the transition to turbulent flow was observed at that point where
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the wire was placed. Transition was detected by a sudden change in the
value of the total pressure G* in terms of the dynamic pressure q of
the undisturbed stream, G¥* %being indicated by a small pitot tube with
a flattened mouth of 1 mm external width and 0.3 mm width, which was
Placed in contact with the plate at a point 70 cm behind the leading
edge. A sample record of measurements for k = O.4% mm is shown in
figure 29,

When a flat plate is placed along a uniform stream of velocity V,
the Blasius solution (ref., 40) of the laminar boundary layer equation
gives

v )-3/’+

vy = O, 576V(7x-

for a point of distance x from the leading edge. Writing K for the
critical value of kv*/v, the permissible height of projection k 1is

given by
k Vx '3/h
0.576 = = K(T>

We determine V from the wind speed corresponding to the kink of the
curve as shown in figure 29, plot 0.576(k/x) in a logarithmic scale
against Vx/V, and draw a straight line of the slope -3/h through the
points (fig. 30). We thus obtain K = 13, which is far greater than
the value K = 7. estimated previously.

32, Similar measurements were also performed on an airfoil section
L.B. 2k, The model was of 0.8 m span, of 1.2 m chord, fitted with end
plates 1.3 m X 0.6 m, and set at zero angle of attack in the same wind
tunnel. Wires of various diameters (k = 0.25, O.h, 0.7 mm) were attached
parallel to the span, in contact with the surface, at 10 percent of the
chord from the leading edge (x = 0.1). Transition was detected by the
sudden change in total pressure as indicated by a pitot tube with a
flattened mouth of 2.7 mm external width and 0.9 mm depth, which was
placed in contact with the surface at 50 percent of the chord from the
leading edge. Results of measurements are shown in figure 31, where

R = %}, and t 1is the chord length.

The friction velocity may be generally expressed In the form

Vy = AVR-l/u
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where A is a function of s/t (s 1is the length measured along the
surface from the forward stagnation point). We can calculate A by
applying either the Pohlhausen approximate solution (ref. 41) or the
simplified method due to the author (refs. 15 and 16). The permissible
height of projection is then determined by

" -3/4
A%-=KR'

Applying the Pohlhausen method to the theoretically calculated
distribution of pressure, we get the values of function A, as shown
in figure 32. Since A 1is 1.23 at the position of wire (x = 0.1),
the value 1.23(k/t) 1is plotted in a logarithmic scale against R 1in
figure 33, R Dbeing the Reynolds number corresponding to the kink of.
the curve as given in figure 31. It will be seen that although the
measured points are on a straight line of the slope -3/&, they give
K = 15, which is somewhat higher than the value found for the flat plate.

33. Now we apply the preceding result to the fragmentary data
‘hitherto known in order to check the adequacy of the estimate. First,
we examine the results of wind tunnel experiment on a symmetrical
laminar-flow airfoil L.B. 27,7 on which various projections are attached
at 3 percent of the chord from the leading edge (x = 0.03). The model
was of 0.8 m span, of 1.2 m chord, and set at zero angle of attack.

The profile drag was measured by the method similar to that for L.B. 2k
(see paragraphs 12 to 13). The results are shown in figure 3k , from
which we find that the rubber tape of 0.07 mm thickness gives no effect
over the range of Reynolds numbers R covered by the experiment, while
the piano wire of 0.5 mm diameter gives a completely turbulent friction.
The effect of the wire of 0.25 mm diameter begins to appear at

R = 1.3 X 100, Inserting the values k = 0.25mm, t = 1.2m and
A =1.95 in the formula A %-: KR'3/h, we get K = 15.5, which is in

good agreement with the result in paragraph 32. The value A = 1.95
was read from figure 32, since the leading edge portion of L.B. 27
almost coincides with that of L.B. 24, Profile drag coefficients of
both airfolls are also the same over the range of Reynolds numbers
examined. ° '

34, In connection with the determination of boundary layer transi-
tion on airfoils in the NACA full-scale wind tunnel (ref. 42), an aux-
iliary measurement has been reported, in which the effect was examined

7L.B. 27 has a maximum thickness of 10 percent of the chord at
€0 percent of the chord from the leading edge. See figure 5 of paragraph 6.



NACA TM 1351 ' : 33

of rubber tapes attached at 5 percent of the chord (x = 0.05) from the
leading edge of the model. The airfoil section was NACA 0012, the chord

was T2 inches, and the Reynolds number R was 4.18 X 106. No effect
was found when the tape was 0.003 inch thick, some effect began to
appear when it was 0.006 inch thick, and. the transition moved right to
that position where the tape of 0.009 inch thickness was attached.
Assuming A = 1.6 and K = 15, we estimate from the preceding formula
the value 0.007 inch for the permissible thickness, which seems to agree
well with the observation.

If we further assume that the value A = 1.6 is also applicable
to the case of the British flight experiment mentioned in paragraph 30,
we find 0.004% inch for the critical height for transition with

t = 10 feet, R = 1.8 x 107, and K = 15. On the other hand, we esti-

kv
mate the permissible limit in turbulent boundary layer by —;ﬁ = b,

“which may be written in the form

k_ |2 Vi
k-

Cf 'LllR

by the relation v*2 = %-éfulg, where u; is the local wind speed and

cg 1is the coefficient of local skin friction. If we assume u = 1.2V
and cf = 0.003 (which is equal to the coefficient of mean skin friction

for a flat plate at R = 1.8 x 107), we obtain 0.0006 inch for the per-
missible roughness thickness. Since the thickness of the camouflage
paint is reported to be about 0.001 inch, it may be concluded that the
paint increases only the friction in turbulent boundary layer, without
affecting, however, the transition to turbulent flow. This is in good
agreement with the experimental results. '
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APPENDIX
TRANSITION CAUSED BY LAMINAR SEPARATION

. 35. As 1is well-known, the phenomenon of sudden decrease in drag of
a sphere at a certain value of the Reynolds number R = %% (V 1is the

speed of undisturbed stream and d 1is the diameter of sphere) is
explained by supposing that the boundary layer separates while it is
laminar when R 1is low, but it separates after transition to turbulence
when R " is high, thus resulting in diminishing the so-called dead water
; region. Probably the transformation from laminar separation to turbulent
separation may proceed as follows:

When the laminar boundary layer separates from the surface, the
detached layer remains also laminar at first, but it is so unstable that
it becomes turbulent at a short distance. This transition from laminar
to turbulent flow is considered to occur when the local Reynolds number -
based on the width of the detached layer and the velocity outside the
layer exceeds a certain value, so that the transition moves upstream
toward the separation point as R increases. When the transition
approaches sufficiently near the separation point, it becomes possible
for the detached layer to come back again to the downstream surface,
because the turbulence produced will drive the flow forward. The layer
reattaches to the surface as a turbulent layer, and accordingly the drag
‘ coefficient begins to decrease. The distance between the separation and
| the first turbulent boundary layer decreases as R increases, and finally
| the fully developed turbulent boundary layer commences just downstream
1 : of the separation point. The drag coefficient then ceases to decrease.

-36.'Now, in order that the separated layer reattach to the surface,

. . u,6 :
it seems necessary for the local Reynolds number Ry = —%r- at separation

| to exceed a certain critical value, where uj; 1s the velocity outside

the boundary layer, and 6 1is the momentum thickness of the boundary
layer. This may be explained as follows: According to the laminar
boundary layer theory, the separation occurs when the quantity

exceeds a certain value, suggesting that the pressure rise (dp/ds)6
becomes too large in proportion to the shearing stress at the sur-
face pv(ul/e). Assuming analogically that the separated layer leaves
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the surface when the pressure rise becomes too large in proportion to
the momentum pula, we then find that Rg at the separation point must

exceed a certain critical value in order that the separated layer
reattach to the surface.

37. In order to determine the critical value of Ry, we consider
in detail the condition where the coefficient of sphere drag begins to ’

decrease. This condition corresponds to the point B of the curve of
figure '35, which represents an idealized variation of the drag coeffi-

cient CD[% drag < (pVe/Q)(nde/hZ] or the pressure difference coeffi-

cient Ap/q[% difference of pressures at the forward stagnation point

and the point corresponding to the central angle 157,5° = (pve/zi] with

the Reynolds number R. Within the range AB, the pressure distribution
around the sphere is approximately independent of R; the typical example
may be found from the experiments due to Fage (ref. 43). Fortunately,
the boundary layer calculation has also been performed for that distri-
bution of pressure by Tomotika and Imai (ref. 44), so that the local
Reynolds number Rg 1is given by

Rg = 0.400R

at the separation point. Although the calculation has originally been

made for a particular Reynolds number, R = 1.57 X 105, the preceding
relation may be applied for any value of R 1in the range of AB, Putting
the value of R at B, and writing

we have Recrit as the critical value of‘ Rg above which the separated
laminar layer reattaches to the surface. Conventionally the Reynolds

number Ry corresponding to Cp = 0.3 (or Ap/q = 1.22) has been used,
instead of Rg, for representing the degree of stream turbulence, but it
is not so difficult to estimate the value of Rg from the measured curve

of Cp (or Ap/q) against R. For example, we have from the experiments
of towing spheres in the free atmosphere (ref. 35)

R = 3.6 X 10° R, = 3.85 x 107 Ry = 240

crit
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Since these values refer to the case of very low turbulence, it will be
seen that Ry = 240 represents the highest possible value. It is
- cri

' R
also to be noted that §§.= 0.9% in this example and that almost the

same value has been obtained by the author's experiments on spheres of
various diameters (ref. 29).

3§.AIf the stream turbulence is not low so that Rg is less than
5 ' -
3.85 X 107, then Recrit will be less than 240. Assuming the ratio Rg/Rc

to be constant, we can estimate the corresponding value by

" On the other hand,.we'pan also esfimate the value of Rg_ ... directly

cri
from the boundary layer measurements. The results of the analysis for a
sphere as well as circular and elliptic cylinders are summarized in the
following table, where Recrit is the critical value Rg estimated

from Rp by the preceding formula, Resep is the value of Ry observed
at the separation point when the boundary layer really separates while

it is laminar, and Retrans is the value of Rg observed at the calcu-

lated laminar separation point when the boundary layer separates after

transition. The fact that Rg . lies between and :
_ crit “Vgep- trans

seems to suggest the adequacy of the preceding consideration.

Body ke Rocrit | Fogep | ROtrans | Reference
Sphere 2,5 % 102 | 190 160 220 43
Circular cylinder |1.5x 102 | 1%0 140 225 45
Elliptical cylinder |2.7 x 102 | 200 160 4oo | 46, k7

39. We now proceed to apply our result to interpreting the effect of
Reynolds number on maximum 1ift of airfoils. For the angle of attack
near the stall, the flow separates shortly downstream of the leading edge.
while the boundary layer is laminar. JIf the flow fails to reattach to
the surface as a turbulent layer, the maximum 1ift coefficient CLmax of
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s

the airfoil will be almost independent of the Reynolds number R. At
the separation point, similar to the case of a sphere, the relation of
the form

= x\R

holds, where R = %} is the Reynolds number referred to chord length t,8

and k .is a constant depending on the shape of airfoil and the value of

CLmax' If R is lpw so that Rg 1is less than the critical value Recrit'

~ then CLmax will be independent of R. Assuming the same value of
RGCrit for the sphere as for the airfoil, we obtain

for the Reynolds number aboie which CLm begins to increase with the

Reynolds number. Therefore, the ratio of the Reynolde number corresponding :
to. a certain value of Clmax of an airfoil and the critical Reynolds
number of sphere in the same stream, Rg or Rz, becomes independent of

the stream turbulence. Denoting the values for a reference tunnel with
asterisk, we have ‘

*
R ..
R

<§°|c§°

which in turn means that the ratio of Reynolds numbers corresponding to
a certain value of Clmax is equal to the ratio of critical Reynolds

numbers of a sphere. This is useful for comparing the values of CLmax

obtained in two different wind tunnels. Considering the reference condi-
tion to be the free flight in the atmosphere, we find

¥*
R* = R x 2C_
- RC ] []

81t is to be noted that R is referred to t, while Rpg and Rg

are referred to d.
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as the free flight Reynolds number which will give the same value of
CLmax as that observed in a wind tunnel. .This is just what is called

the effective Reynolds number. Strictly speaking, such an argument as
mentioned before should apply only to the Reynolds numbers near the
~critical value, but there are many experimental evidences showing the
usefulness of the concept of effective Reynolds number for most practi-
cal purposes, as far as the commonly used airfoils and range of Reynolds
numbers of both wind tunnel and free flight are concerned.

40, Finally, we consider a more quantitative example to show the.
adequacy of the preceding argument. In figure 36, C for various
Lnax

NACA symmetrical airfoils are plotted against the effective Reynolds

number R¥*, the experimental data being taken from the results of the
NACA variable-density wind tunnel (ref. 48). As already mentioned, up
to a certain value of R¥, CLmax is almost independent of R¥, This

corresponds to the condition in which the laminar separation just behind
" the leading edge fails to reattach to the surface, resulting in a con-

giderable dead water region above the airfoil surface. The value of

CLmax is approximately 0.9, irrespective of the thickness; it is almost

equal to the value for a flat plate of vanishing thickness. Theory of
discontinous flow, when applied to the flat plate, seems to give a 1ift
coefficient close to 0.9 (ref. 49). We idealize, therefore, the experi-
mental curve as shown by dotted lines in figure 36. Then, the point
where the dotted line meets the line CLmax = 0,9 will be considered to

correspond to Recrit = 240, In order to determine this point, we calcu-

late the value of Re/Jﬁ at the laminar separation point for a 1lift
coefficient Cy, = 0.9, and the value of R which gives Rg = 240, We
first calculate the pressure distribution by the formula of paragraph 3
for the two-dimensional potential flow around the airfoll section.
Although the formula may be applied to any arbitrary airfoil section,
we have determined the pressure distribution only for the airfoil

T = 0.287e¢x(1 - x)(5 - 4x)

in order to simplify. the calculation, because no great exactitude is
required in the present problem. x is the coordinate along the chord,

.x =0 and x =1 corresponding to the leading and tralling edges,
respectively, T 1is the half-thickness, and e 1is the maximum thick-
ness in terms of chord length. The airfoil represented by the preceding
expression coincides with sufficient accuracy with the true NACA symmetri-

cal airfoil except near the trailing edge. The value of Re/fﬁ at the

laminar separation point was then determined for the calculated pressure
distribution by applying the approximate method due to the author (refs. 15
and. 16) . .
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The critical values R¥ crit thus calculated are shown by a solid

line in figure 37, while the corresponding values taken from figure 36
are shown by white circles. The agreement is fairly good, and especially
satigfactory when the thickness of the airfoil is small. In general, the
thickness of the boundary layer near the trailing edge increases as Cr,

increases. If Cy 1is further increased, however, a laminar separation

suddenly occurs near the leading edge when the thickness is small, while
the trailing-edge turbulent separation moves a considersable extent for-
ward before the leading-edge laminar separation occurs when the thickness
is moderate. Therefore, the assumption of the analysis is more satis-
factorily realized in the case of small thickness, thus bringing the
calculated and observed values in close agreement.

In conclusion, the author wishes to acknowledge his indebtedness
for the assistance given by Messrs. C. Noda, S. Mituisi, I. Shinra,
S. Asaka, R. Hama, and K. Takeda.

Translation by Itiro Tani
University of Tokyo
Tokyo, Japan
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TABLE 1.- ORDINATES FOR SYMMETRICAL SECTION.

NACA TM 1351

VALUES OF T/e

X I J K L M N

0 0 0 0

,003 .0465 .0563 05Tk L0584 .0606 L0627
.006 L0661 .0793 .0808 .0823 | .0854 .0886
.0125 .0962 .1135 .1158 .1180 L1226 L1275
.025 <1374 .1589 .1620 L1652 .1720 L1794
.05 .1963 .2208 2252 .2298 .2396 .2508
075 2h1h .2663 L2716 L2771 .2892 .3031
.10 .2789 .3029 .3089 .3151 .3288 .3uk7
.15 3394 3599 . 3667 .3738 .3893 LoTe
.20 .3865 4026 .h097 L4170 | 4328 4503
.25 JL236 4353 JLho2 oo .1638 4788
.30 4523 L4601 4663 Ry palt L8uk [ .hokg
.35 L4737 4783 .4833 .4881 L4962 . 5000
40 .4885 .1906 Jugho R Telal . 5000 4953
45 4972 Jor7 | Ju99k | L5000 | LLgh8 | 4818
.50 - . 5000 . 5000 499k .4931 L4797 L1604
.55 4970 Lokl 4873 4781 4558 4320
.60 4871 L4778 L4656 4522 okl .3975
.65 4691 4509 Ju3k2 175 .3856 .3578
" T0 L4418 4139 %3939 .3751 .3413 .3138
.75 .14038 .3675 .3455 .3258 .2921 . 2664
.80 .3538 | .3121 .2899 .2706 .2393 .2165
.85 .2908 2481 L2277 .2105 .1836 .16%0
.90 .2133 | .1762 .1598 L1464 L1262 .1128
.95 .1201 | - .0966 .0870 .0793 .0680 .0609

1.00 .0100 .0100 .0100 .0100 .0100 .0100
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TABLE 2.~ AUXILIARY FUNCTION By ASSOCIATED WITH THE

. PRESSURE DISTRIBUTION OF SYMMETRICAL SECTIONS

x I J X L M N
0.0125 0.59 1.10 1.13 1.16 1.20 1.24
.025 .66 1.06 1.09 1.13 1.20 1.26
.05 .75 1.0k4 1.07 1.11 1.20 1.29
.10 .86 1.03 "~ 1.07 1.11 1.21 1.33
.20 .96 1.03 1.08 1.12 1,22 1.36
.30 1.02 1.04 1.09 1.1k 1.23 1.33
ko 1.05 1.05 1.10 .| 1.15 1.23 1.22
.50 1.08 1.17 1.19 1.19 1.14 1.0k
.60 1.12 1.18 1.11 1.05 .92 .80
.70 1.09 .98 .88 .79 .63 .51
.80 .89 .65 e L2y .28 .19
.90 .33 .06 -.03 -.10 -.18 -.22
.95 -.32 b7 -.50 -.52 ~-.53 -.5
975 -.95 -.93 -.91 -.89 -.84 -.78
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TABLE 3.- AUXILIARY FUNCTION B, ASSOCIATED WITH THE

PRESSURE DISTRIBUTION OF SYMMETRICAL SECTIONS

x I J K L M N
0.0125 =4.,0k4 -4 .40 -4.88 -4,90 -5.20 -5.30
.025 -2.86 -3.08 -3.20 -3.22 -3.37 -3.55
.05 -2.04 -2.08 -2,13 -2.17 -2.28 -2.39
.10 -1.39 -1.33 -1.35 -1.37 -1l.k2 -1.48
.20 -.83 -.Th -.Th -.Th -.7h -.70
.30 -.50 -.43 -4 -.39 -.31 -.21
4o -.24 -.19 -.17 | -.12 .00 18
.50 .00 .00 L1l .22 .39 |. .50
.60 27 b .53 .60 .70 .75
.70 .65 .83 .89 .92 .94 .91
.80 1.11, 1.19 1.18 1.15 1.09 1.02
.90 1.70 1.52 1.41 1.31 1.16 1.0k4
.95 2.03 1.66 1.50 1.36 1.16 1.03
975 2.20 1.73 | 1.54 1.38 1.15 1.02
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TABLE L.- ORDINATES FOR MEAN CAMBER LINES.

VALUES OF M/f

X Do D D3 D5 D, E)_,_ F3
0 0
.003 .0295( .0282( .0292| ,0300{ .0371| .0313] .0327
.006 .0529]1 .0509( .0526| .0540| .0666] .0564| .0589
.0125 L0969} .091k| .0969( .0995| .1220 .1039| .1081
.025 .1687( .1636] .1695| .1740( .2119| .181k .1887
.0%0 28641 2797 .2897| .2973| .3585] . 3093] .3212
075 3843 .3772( .3907| .4oo6| .k787| .hK161 4315
.10 .4690| .hé20| 4784 .hgo2| .5808 5084 | .5266
.15 .6098] .60u5| .é2%e| .6396] . 7443 6615 .6831
.20 - 72191 .T7191| .7kl .7579| .8638| .7812| .8041
.25 8113 8112 .8353( .8507| 9451 .8733| .89%
.30 .8813( .8838| .9067( .9207| -.9898| .9387 .9586
.35 93411 .9384| .9579| .9688| .9963| .9826 .9939
4o -9710[ .9758| .9892f .9953| .9589( .9998| .9973
.45 -9928[ .996211.0000| .9988| .8625| .9872 .9679
.50 1.0000| .9988| .9881| .9761| .6300 .9387! .9085
.55 -99281 .9813| .94T2| .9178| .3885 .8561| .8238
.60 -9T10( .9W1L| 8735 .8192{ .2646| .T4T3 . 204
.65 <93h1| .8794| .7704| .6903| .1811 .6259| ,6056
.70 .8813| .7878| .64s59| .5h7h .1207] .4918| .4871
.75 .8113] .6898] .5108| .Lo78 0772] .3682) .37°1
.80 - T219| .5673f .3766| .2847 .0k59] .2590( .2669
.85 .6098] .4305| .2535| .1846| .o02Lko| 1686 L1761
.0 -4690| .2845| .1493| .1071| .0101 .0973| .1020
.95 2864 | .1366{ .0651| .ok72| .002k 0Lk25) okl
1,00 0 0
|x for M/ =1| .00 | 482 | .4s0 | .433 | .333 [ .umo6 | .381
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NACA T™M

TABLE 5.- AUXILIARY FUNCTION A, ASSOCIATED WITH THE

PRESSURE DISTRIBUTION OF MEAN CAMBER LINES

‘1351

X Do Dy D3 Dy Ey F3
0.0125 | 4.53 | -0.53 | -2.50 | -3.17 | -5.49 | -3.51 | -3.62
.025 4,53 .88 -.47 -.91 | 2,27 | -1.07 | -1.08
.05 | k.53 1,89 .99 .71 .22 .67 .Th
.10 4.53 2.61 2.03 1.88 1.94 1.93 2.05
.20 4,53 3.15 2.80 2.75 3.20 2.85 3.01
.30 k.53 3.140 3.17 3.15 3.79 3.29 3.46
1o k.53 3.56 3.40 3.41 4,18 3.57 3.61
.50 4,53 3.68 3.57 3.61 L. 46 3.50 3.10
.60 - 4,53 3.61 3.21 2.95 | -1.03 2.35 2.14
.70 k.53 3.19 2.07 1.31 -.33 1.00 1.04
.80 4.53 2.43 .15 05 -.63 03 .17
.90 k.53 1.34 -.05 -.26 - b2 -.26 -.22
.90 4.53 .68 -.15 -.20 -.29 -.21 -.21
975 k.53 .33 .08 A |- =20 .15 -.15
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TABLE 6.- AUXILIARY FUNCTION Ag ASSOCIATED WITH THE

PRESSURE DISTRIBUTION OF MEAN CAMBER LINES

b'4 Do Dy D3 D5 Dy Ey F3
0.0125 { -6.31 | -6.13 | -6.35 | -6.52 | -7.92 | -6.79 | -7.07
.025 -5.28 | =5.18 | -5.37 | -5.50 | -6.61 | -5.73 | -5.94
.05 =b.25 | -k.21 | -b.36 [ -4.46 | -5.25 | -4,63 =k, 79
.10 -3.17 | -3.19 | -3.29 | -3.36 | -3.78 | -3.46 | -3.55
.20- -1.99 | -2.05} -2,09 | -2.10 | -2,00 | -2.11 | -2.11
.30 -1.21 | -1.27 | -1.22 | -1.18 -.52 1.09 -.99
R To) -.58 -.58 -.43 -.31 1.26 -.07 .26
.50 0 .14 .50 .76 © 1.33 1.46
.60 .58 1.02 1.79 2.32 2.00 2.38 2.21
.T0 1.21 1.90 2.63 2.87 1.02 2.30 2.36
.80 1.99 2,61 2,60 2,24 .52 2,00 1.97
.90 3.17 2.97 1.88 1.35 .21 1.25 1.31 |
.95 k,25 2.91 1.63 1.05 .10 .91 1.01
975 5.28 2.75 1.59 .94 .05 .82 | .88
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TABLE 7.~ PRESSURE DIFFERENCE DISTRIBUTION G FOR MEAN CAMBER LINES
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