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NATIONAL ADVISORY CO MITTEE FOR AERONAUTICS 

TFXHNICAL MEMORANDUM 1351 

ON TEE DESIGN OF AIRFOIlS IN WHICH THE TRANSITION 


OF TEE BOUNDARY lAYER IS DEIAYED* 

By Itiro Tani 

INTRODUCTION - LAMINAR-FlOW AIRFOIlS 

1. In high speed flight conditions, the drag of an airfoil is 
almost exclusively due to skin friction. Therefore, if further reduc-
tion in drag is desired, it is necessary to delay as much as possible 
the transition from laminar to turbulent flow in the boundary layer along 
the surface, thus decreasing the extent ,of the turbulent boundary layer 
which gives considerable skin friction. As the factors that may affect 
the transition, we will consider the stream turbulence, the surface 
roughness, the surface pressure distribution, and so on. In actual 
flight conditions, however, the effect of turbulence seems to be unex-
pectedly small, so that, so far as smooth surfaces are concerned, there 
remains only the shape of the airfoil section in relation to pressure 
distribution as the most important factor affecting transition. We call 
a laminar-flow airfoil that airfoil in which the shape of the section 
is suitably designed so as to delay the transition of the boundary 
layer flow. 

2. It is evident that the laminar separation of the boundary layer 
may cause the transition, as will be mentioned in the appendant part of 
the paper, paragraphs 35_14.O. We cannot expect, therefore, to maintain 
laminar flow beyond the separation point.. Summarizing the results of 
flight experiments on airfoils hitherto made (refa. 8 to 12), we have 
the conclusion that the observed transition coincides approximately with 
the calculated laminar separation point at small Reynolds numbers, while 
it moves upstream toward the minimum pressure point as the Reynolds 
number increases. However, no example has ever yet been observed in 
which the transition moves ahead of the minimum pressure point. We 
therefore arrive at the supposition that the laminar-flow airfoil may be 
most simply realized by designing the airfoil in which the minimum pres-
sure occurs well downstream. 

*11.
Kyokaiso no Sen'i o okuraseru Yokugata ni tuite." Report of the 

Aeronautical Research Institute, Tokyo Imperial University, No. 250 
(vol. 19, no. 1), Jan. 1914.3.
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DESIGN OF SYMMETRICAL AIRFOILS IN WHICH THE MINIMUM 

PRESSURE OCCURS DOWNSTREAM 

3. Following Professor Moriya (ref. 13), we write the coordinate 

along the chord in the form x =	 (1 - cos ), and assign x = 0, 

= it to the.leading edge, and x = 1, 	 = 0 to the trailing edge. 

Expressing the ordinate of the mean camber line by M = 	 a cos n, 

and the half-thickness measured normal to the chord by T =	 b sin n 

the pressure distribution around. the airfoil in the two-dimensional 
potential flow is given by

2 

cos a	 sin +	 na (1 - cos n) ;	 nb 

-	

a	 (i - cos	

- : +	

n C: 

1 sin2 +	 na sin n +	 nb cos n

1 + (fA3 ± eBc)2 

iThe ordinates of the upper and lower surfaces are given by M + T 
and M - T, respeetively.
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where a. is the angle of attack, p 18 the pressure acting on the air-
foil surface, measured from the static pressure of the undisturbed stream, 
and q is the dynamic pressure of the undisturbed stream. We assume that 

the trailing edge is sharp, so that	 nb = 0. We limit the range of 

the variables	 between 0 and it, and assign the upper and lower 
parts of the double sign for the upper and. lower surfaces, respectively. 
Writing f for the maximum value of M (the maximum camber) and e for 
the maximum value of 2T (the maximum thickness) 1 we put 

l-cosn 
fAc = -2

1	 sing 

sinn 
eB5 = 2	 nb 

1	 sin

sinn	 dN 
fA8 = -2 L_ fln	 = - - 

1	 sing	 dx 

eBc = 2	
nbh cs n = - 

1	 s1n 

The lift coefficient is given by 

CL = 2 it	 in ci - 2	 na coa 

We consider first only the thickness of the airfoil (the camber of 
the center line will be considered in the next section, paragraphs 8 
to 11). Namely, we consider the. symmetrical airfoil section set at zero 
angle of attack, with a view to obtaining the minimum pressure well 
downstream. 

ii. We adopt as the typical example of the commonly used symmetrical 
airfoils the NACA symmetrical airfoil (ref. i1i) 

T = e {l. 1 81 5 - O.6300x - 1.7580x2 + l . 1215x3 - O.5075x'} 

The maximum thickness is located at x = 0.3, the leading-edge radius is 
l.le2 , and the trailing-edge slope _(dT/dx)x1 is l.17e. The pressure 

distribution for the case e = 0.1 is shown in figure 1. The minimum 
pressure is located at x = 0.1, and the laminar separation point, 
determined by the approximate method due to the author (ref s. 15 and 16),
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at x = .0.61. If the transition point of the boundary layer would not 
move upstream beyond the laminar separation point, we might expect to 
maintain a laminar boundary layer for more than half the surface of the 
airfoil. The flight experiments hitherto made, however, appear to give 
negative evidence for such a conjecture. 

• 5. Now, in order to shift the minimum pressure backward, it is 
required . to shift the position of maximum thickness (x = m) backward. 
For designing such airfoils, we represent the shapes of parts before 
and after the maximum thickness by two algebraic expressions.' For the 
forward half (0 x in) 

	

T = e	 + hjx + 

while for the rear half (m x ^ 1) 

T=e0.Ol+d1(1_x) +d2(l_x)2^d3(l_x)3 

where

= 
2 2m	 =	

1 

	

- 2d1(l - in)	 d1(1 - in) - 0.98 
d2 =	 d3= 

(i_m)2	 .	 (l-rn) 

and we assign arbitrary values for three parameters, in, h (= leading-
edge radius ..L e2), and d1 (= trailing-edge slope .- e). Although the 
method has the drawback that the two expressions give different values 
of d2T/dx2 at x = m, where dT/dx becomes zero, we nevertheless 
adopt it because we are in a position to vary the forward and. rearward 
parts most simply and independently. 

6. First, we fix the forward half with in = 0.5 and h = 0.5, and 
vary the rear half by giving d 1 the values 1.7, 2.0, 2.5, and 3.0, 
respectively. The shape of the section and the pressure distribution 
for e = 0.1 are shown in figure 2. We find from this result that, as
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d1 increases, the minimum pressure point moves backward and the gradient 

of pressure rise following the minimum pressure steepens. We also find 
that the pressure distribution in the neighborhood of the minimum pres-
sure exhibits a wavy indentation when the value of d 1 is too small or 
too large, and that there exists a certain value of d 1 for which the 

pressure distribution is flat and smooth. Such a value of d1 is about 
2.5 in this case. We therefore fix the rear half with d1 = 2.5, and 
vary the forward half by giving h the values 0.35, 0.O, 0.70, and 
1.05, respectively. The shape of the section and the pressure distri-
bution for e = 0.1 are shown in figure 3. From this comparison, we 
find that the negative pressure bump iediately behind the leading 
edge decreases as h decreases, and that the maximum permissible value 
of h is about 0.7. 

The effect of thickness is shown in figure 11-, in which curves of 
pressure distribution are given .for different values of e, 0.06, 0.10, 
and 0.111. , but for a fixed set of parameters, m = 0.5, h = 0.5, and 

= 2 .5. It is seen that the characteristics of the pressure distri-
bution do not materially change with thickness. There is, however, a 
slight change in the pressure distribution, the maximum permissible 
value for h slightly increasing as the thickness increases. 

To see the effect of the position of maximum thickness,' we give m 
values ranging from 0.35 to 0.60, varying at the same time values of d1 
and h so that the pressure distribution becomes flat and smooth. The 
result of calculation is given in figure 5, which shows a considerable 
change in the position of minimum pressure. The change is not purely 
due to the effect of m, but it is at any rate to be noticed that the 
value of m less than 0. li. is not sufficient for shifting backward the 
minimum pressure, while increasing the value of m beyond 0.5 is of no 
advantage, since the backward shift is then almost saturated, only the 
adverse pressure gradient being increased. 

7. From the results of calculation, we thus arrive at the conclusion 
that rn must be between 0.11. and 0.5 and h must be less than 0.7 in order 
that the minimum pressure occurs well dOwnstream. Smaller values of h 
are desirable, but, on the other hand, we should like to make h as 
large as possible, because a large value of h will be advantageous in 
increasing the maximum lift coefficient and in preventing the inception 
of adverse pressure gradient when the angle of attack is slightly changed. 
Even if we give h the maximum permissible value 0.7, the leading-edge 
radius amounts to only 60 percent of that for the conventional NACA sym-
metrical airfoil of the same thickness. In order to increase the leading-
edge radius, it is required to increase the thickness, which in turn is 
accompanied by an increase in adverse pressure gradient following the 
minimum pressure. The adverse pressure gradient should be kept within a
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certain limit, so that it becomes necessary to make a compromise between 
conflicting requirements. Thuth, we are no longer in a position to 
require the farthest possible rearward location of the minimum pres-
sure. We should also use a value of d1 which is somewhat smaller 

than that mentioned previously. 

Taking these requirements into account, we finally arrive at the 
design of a series of symmetrical airfoil sections, the parameters of 
which are given in the following table: 

Section m .h d1	 -.
Position of 

minimum pressure 

I 0.500 0.35 2.3814 o.63 
J .500 .514 1.800 
K .1475 .36 1.575 .51 
L .14o .58 i.1400 .147 
M .1+oo .62 1.150 .37 
N .350 .66 1.000 .214

Although section I is the most ideal for delaying the transition, in 
practice, its extraordinarily sharp nose and blunt tail are drawbacks. 
On the other hand, section N is too much compromised. Sections K or L 
seem to be suitable as laminar-flow airfoils for practical use. The 
ordinates of these six sections are given in table 1, while the auxiliary 
functions B5 and B associated with the pressure distribution (see 

paragraph 3) are given in tables 2 and 3, respectively. The shapes of 
the airfoil sections and the pressure distribution for e = 0.1 are 
shown in figure 6. 

DESIGN OF MSAN CAMBER LINE SUITABLE FOR LAMINAR-FLOW AIRFOILS 

8. A symmetrical airfoil set at zero angle of attack has no lift. 
In order to obtain lift, thecenter line of the symmetrical airfoil must 
be curved with a suitable camber. Since the effects of thickness and 
camber are nearly additive with regard to the pressure distribution, the 
mean camber line which maintains the nature of the pressure distribution 
of the symmetrical airfoil will be such that it shall give a uniform dis-
tribution of pressure difference when the thickness is removed. Evidently, 
the center of pressure is then located at x = 0.5, so that such a camber 
line has the drawback that the travel of center of pressure ia consider-
able. To reduce the travel of center of pressure, the uniformity of pres-
sure difference should be satisfied only in the forward part of the chord. 
From the standpoint of designing the laminar-flow airfoil, however, it is 
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only required that the distribution of pressure difference is uniform 
from the leading edge to that point corresponding to the minimum pres-
sure of the symmetrical airfoil. 

9. When the angle of attack a. is small, the expression for pres-
sure distribution given in paragraph 3 may be put into the form 

2 
+ eBs) ± (fAc 

H	 \	
± eBc) +	 a.)-- x	 / 

q

1 (r 8 ± eBc)2 

Since the effect of the term (fA5 eBc) is very small, the quantity 

Ii - fGfA ^ 	 a. x 

is required to be constant in order that the camber line shall not change 
the nature'of the pressure distribution of the symmetrical section. The 
range of constancy is at least up to the position of minimum pressure of 
the symmetrical section. Putting cos = u 2x - 1, and considering 
for simplicity the case when the minimum pressure is located at u = 0, 
we prescribe that 

G = constant =	 for
	 0x0.5, -luO 

G = G0(l -. U2), m 0	 for
	 O.5xl, 0ul 

See figure 7. Moreover, since

•1 

	

f_2Inan_C08	 l-cos 
+	 a. sin	 sin 

a. cannot be arbitrary, but must be so chosen that the right elde of the 
equation does not become infinite at the leading edge,	 = t. It is given by
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a=2Inan 

where (') denotes that only odd integers should betaken for n. This 
is the so-called ideal angle of attack due to Theodorsen (ref. ii). 
Using the assumption of the thin wing theory, we neglect the terms eB8 

and ( fAa ± eBc). We then have 

C L = 2 (1 + am) fGo	 am = J	 52m+l d 0 

1+(1+m)a 
CmO =_

	

	 CL 
+ m)(1 + am) 

co	 C L 

1	 2,t 

where C	 is the moment coefficient about the leading edge (positive 

when nose up) at CL = 0. Although m = 0 corresponds to the case of 

making G uniform up to the trailing edge, it seems to be impossible 
to realize a finite pressure difference at the trailing edge. Moreover, 
the quantity C Q/C (which represents the degree of center of pres-

sure travel) is as large as 0.25 in this case. If m > 0, G vanishes 
at the trailing edge, and _CmO/CL decreases as m increases, tending 

to 0 as m approaches co • m =	 corresponds to the case when G = 0 
In the rear half of the chord. Increasing the value of m, however, 
steepens the pressure gradient, so the value of m from 3 to 5 seems to 

be adequate.



NACA TM 1351
	

9 

Now, since

na + - cos + - 
CL	 CL 

-	 .	 1	 1	 2ir 

the slope of the camber line having the prescribed distribution of G 
is given by

sinn	 1	 IC 

2	 na	 = - - [ 2	 na cs n 
1	 8ifl	 itJO	 1	 cos-cos' 

CL r	 1	 cog	 + (1 -	 _____ =	 Ii+	 ___ u2)l 
1-u


	

og	 + L l + am	 •1+u 

m 1 (i_u') _(i_v2)
dv	 +2 1 

The ordinate of the camber line is obtained by the integration 

pX 

M= I —dx

Jo dx 

El nan may be determined by the condition that M = 0 at x = 1. We 
call Dm the camber line thus determined. The equations for camber 

lines for m = 0, 1, 3, 5, and	 , namely DO, D1, D3, D5, and. DD,,
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are given below, their important characteristics being summarized in the 
table. It is to be noted that f is the maximum value of M, € is 
the absolute value of the zero-lift angle, and € and a. are measured 
in radians. 

m CL/CL E/CL f/CL _CmO/CL 

0 0 0.1592 0.0552 0.2500 
1 .0380 .1211 .0711 .1750 
3 .0609 .0983 .0790 .1213 
5 .0703 .0888 .0816 .0979 

.1103 .0 14.88 .0871i. 0

D0 :	 = 1 -	 1	 1(1 - u) log (1 - u) ^ (1 + u) log (1 + u)} 2 log 2 

D1 :	 M = 1 (5 + u) log 2 -	 Ci + u) log (1 + u) + u log lu I - CL .	 5	 5.	 5 

! (i - u) 2 (2 + u) log (1 - u) + 1 (1 - u2) .5	 -	 5. 

D3	 M=(51+19u)1og2_2(1+u)log(1+u) 

-1u3(35 - 21u2 + 5u) 10	 - 
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D:	 =	 + l37u) log 2 -	 (1 + u) log (1 + u) + 

	

5 CL	 99	 99 

u3 (iss - 1386u2 + 99Ou - 385u6 + 63U8) log lul - 

-.- (1 - u) 6 (256 + 81.3u + 1218u2 + 938u3 + 378u + 911.9 

63u5 ) log (1 - u)	 (1 - u2) (35072 - 28535u - 688u2 + 
113880 

31680u3 + 68792u11. - l711.30u5 - 36120u6 + 3780u7 + 7560U8) 

D :	 =	 1(1 + u) log 2 - (1 + u) log (1 + u) + u log I u I} log3 I 

Shapes of these camber lines are shown in figure 7, the ordinates 
of them are given in table 11., and the auxiliary functions Ac and A5 
(see paragraph 3) and the pressure difference distribution G are given 
in tables 5, 6, and 7, respectively. 

10. The calculation made previously is only approximate, neglecting 
the thickness. It is therefore desirable to check the result by actually 
calculating the pressure distribution for the specified angle of attack 
taking both camber and thickness into account. As an example, we con-
struct an airfoil by applying the thickness form K with e = 0.15 nor-
mal to the chord around the camber line D 5 with f = 0.02 (the 
resulting airfoil is designated as D5K - 2015). We calculate the pres-

sure distribution by the formula of paragraph 3 for the optimum design 
condition a = 0.99° and CL = 0.211.5. The result is shown in figure 8. 

The nature of the pressure distribution remains similar to that of the 
symmetrical airfoil, so we may consider that the approximate determina-
tion neglecting thickness gives results sufficiently accurate for practi-
cal purposes. 

11. In designing the camber line ]D, we have assumed for simplicity 

that the pressure difference G is constant for u 0. This corresponds 
to the case when the symmetrical airfoil has its minimum pressure in the
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neighborhood of u = 0. Therefore, the camber line 11m is adequate to 
be combined with the symmetrical section J or K. If, however, the 
symmetrical section is adopted in which the minimum pressure is located 
further upstream, it is not only not necessary to maintain G constant 
up to u = 0, but also of disadvantage because it makes it difficult to 
reduce the value of _CmO/CL. 

To reduce the rangn over which G should be maintained constant, 
we may proceed in the following way. Assuming for instance that G 

should be constant from u = -1 to u = - , and using a new variable 

u1 =	 (i + 3u), we prescribe that 

G=G0	 for	 -1u-, .j4u1O 

G=G0(l_ul2 ) 3	 for	 -1ul,Ou1l 

The calculation may be performed similarly to the case of Dm. The 
resulting camber line is designated as F3 . The camber line lying in 
the middle between F 3 and D5 is also designed, and designated as 
Their important characteristics are given in the following table together 
with those of D 5. Other numerical data for these camber lines are given 
in tables 4. to 7. 

Camber line a/CL E/CL f/CL _CmO/CL 

D5 0.0703 0.0888 o.o8i6 0.0979 
.0752 .08140 .0813 .0859 

F3 .O6!i. .0827 .0795 .0833

Since the camber lines E14. and F3 enable us to maintain G con-
stant up to the point x = 0.14.2 and x = 0.33, respectively, they are 
adequate to be combined with the symmetrical sections L and M,respec-
tively. The pressure distribution is shown in figure 10 for the airfoil 
obtained by applying the thickness form M with e = 0.15 around the 
camber line F 3 with f = 0.02. The optimum design condition corresponds 
to a = 1.100 and CL = 0.252. 
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XPERIMFINTS ON lAMINAR-FlOW AIRFOILS 

12. In order to ascertain whether ILt is possible to prevent the 
forward movement of the' boundary layer transition by shifting the mini-
mum pressure on the airfoil surface, we have to perform experiments in 
a low turbulence wind tunnel or on the actual airplane in flight. When 
the Reynolds number is not too large, however, we can still use a con-
ventional wind tunnel in which the stream turbulence is relatively small. 
So we made at first comparative measurements on two symmetrical airfoils, 
NACA 0010 and L.B. 24 in the 1.5 in wind tunnel of the Aeronautical 
Research Institute. L.B. 211. is a laminar-flow airfoil of 10 percent 
thickness, already shown in figure 3. The theoretical pressure distri-
bution is also given in figure 11. The minimum pressure is located at 

= 0.611. , and the laminar separation at x = 0.77. The wind tunnel was 
of the lowest turbulence level available for the author, the critical 
Reynolds number of a sphere being 3.66 X 1O and the transition Reynolds 
number of a flat plate 1.05 X io (see paragraph 28). In order to raise 
the Reynolds number as high as possible, unusually large models were 
used. They were made of laminated mahogany, of highly polished surface, 
of 0.8 in span, of 1.2 in chord, and fitted with end plates 1.3 m x 0.6 m. 
Since the model was large compared with the size of the tunnel and the 
end plates were not sufficiently large, the results for a given airfoil 
may not correspond. even approximately with those for the same airfoil in 
an undisturbed two-dimensional flow. Our object, however, was merely 
to ascertain the relation between pressure distribution and transition, 
and it seemed reasonable to expect that the relation will not be seriously 
affected by limitations in the conditions of the experiments. As a matter 
of fact, marked difference was found In the calculated and measured dis-
tributions of pressure, the latter of which was measured along the median 
section of the model with a static tube of 1 mm diameter (fig. 12).2 
This discrepancy, however, Is immaterial, since our object was merely to 
compare the two airfoils, both of which are affected quite.similarly by 
experimental limitations. 

13. The angle of attack of the model was zero, and the wind speed 
was varied from 6 to 11.0 in/s. The local drag of the median section was 
determined from wake measurements, that were made in the section 11 cm 
behind the trailingedge. Measurements of static and total pressures in 
the wake were made, respectively, with a static tube of 2.5 mm external 
diameter and, a pitot tube with a flattened mouth of 0.65 mm external 
depth and 2.6 mm width. The profile drag coefficient CD0 was obtained 

2The measured values are those for a Reynolds number of about 2 X 106. 
The distribution of pressure changes but little with the Reynolds number.
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from the measured pressures by Jones' formula (ref. 18). Figure 13 3 
presents CD0 plotted against Reynolds number R refefred to chord 

length. For a lower range of R, the drag of L.B. 2is higher than 
that of NACA 0010, the reason probably being that a turbulent boundary 
layer associated with the laminar separation is established at a higher 
Reynolds number for the former airfoil than for the latter. For a higher 
range of R, however, the condition is reversed, L.B. 2 J. giving a drag 

lees than half that of NACA 0010 for R higher than 2 X 106. This is 
probably due to the fact that the transition may occur much later for 
L.B. 2 1f than it does for NACA 0010, as also observed from the compari-

son of wake conditions for the two airfoils (fig. l4-). 

lii. In order to verify the aforementioned supposition, a pitot tube 
with a flattened mouth of external depth 0.9 mm and width 2.7' mm was 
placed in contact with the airfoil surface, and the wind speed, and con-
sequently the Reynolds number R, were determined at which the indicated 
total pressure G* divided by the dynamical pressure q of the undis-
turbed stream begins to rise suddenly. The results are shown in fig-
ure 15. From this figure, the dependence of the transition point on 
Reynolds number as shown in figure 16 Ls obtained. At the same Reynolds 
number, the transition occurs much farther from the leading edge for 
L.B. 2 than for NACA 0010. Even at the highest Reynolds number reached, 
L.B. 214 has a transition as far back as x = 0.80. This is somewhat 
beyond the laminar separation point, x = 0.77, which is calculated from 
the theoretical pressure distribution. However, this is not contradictory, 
because the actual pressure distribution differs from the theoretical one 
in a manner to delay the transition (fig. 12). 

15. With further increase in Reynolds number, the transition may 
move toward the leading edge, but it seems improbable that the transition 
moves forward beyond the minimum pressure. It is highly desirable to 
check this point also by wind tunnel experiments, but all the wind tunnels 
now available to the author are of no use for making measurements at 
sufficiently high Reynolds numbers, because the transition is prematurely 

31n this figure, the. curves L and T represent the drag of a 
flat plate when the boundary layer is entirely laminar and entirely 
turbulent, respectively. The curves NV and NP represent the drag 
of airfoil NACA 0009 measured in the NACA Variable-Density Wind. Tunnel 
and NACA Full-Scale Wind Tunnel, respectively. 

In this figure G and p are the total and static pressures in 
the wake, respectively, and G0 is the total pressure outside the wake, 
all being measured from the static pressure of the undisturbed stream. 
y is the distance across the wake, and t is the chord of the model.
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induced by the turbulence of the stream (see paragraphs 27 to 29). It 
seems urgent to build a special wind tunnel of low turbulence level. 
For the present, however., it is simplest to rely upon experiments in 
actual flight. Such a hope of the author was fortunately realized by 
the specially planned flight experiment, which was performed at the 
Navy Aeronautical Technical Arsenal (ref. 19). 

16.,The airplane used for the experiment was a biplane; two portions 
of the lower wing, each of 1.1 m span, were covered with the airfoil to 
be tested. The test portions were of chord 2.11 m, made of Japanese Hinoki, 
highly polished, and fitted with a partition fence of small height at 
both ends. Two test portions were placed symmetrically, pressure distri-
bution and wake measurements being performed on the starboard portion, 
while the boundary layer was observed on the port portion. The airfoil 
section was not one of the most appropriate design now considered, because 
it was required to put it on the original seétion of the airplane, and, 
moreover, to determine the section before completion of the final design 
calculation. It has the following characteristics: 

Mean camber line: M = 0.0667x(1 - x)(l - x + x 2), f = 0.0125 

Thickness distribution: e = 0.12, m = 0.11.5, h = o.6, &l = 1.60 

The camber line is similar to D0 of paragraph 9, but there exists a 
slight lack of uniformity of G in the neighborhood of leading and 
trailing edges. The thickness distribution is similar to L of para-
graph 7, but the trailing edge slope is somewhat larger than L. 

17. Results of flight experiments are summarized in figure 17 
and 18. In figure 17, the section lift coefficient CL, obtained by 
integrating the pressure distribution curve, is shown by a broken line 
plotted against the Reynolds number R referred to the flight speed 
and chord length, and CL is again shown by a solid line plotted against 
the profile drag coefficient CD0 determined from the wake measurements. 
In figure 18, the measured pressure distribution is shown in comparison 
with the theoretical one (two-dimensional potential flow) having the 
same value of CL. The transition points estimated, from the change in 
boundary layer velocity profiles are also marked. Generally speaking, 
the measured pressure distribution agrees fairly well with the theo-
retical one, although a slight difference appears when CL becomes 
large. An adverse pressure gradient is found on the lower surface 'when 
CL is small, thus resultingin the transition point being observed 

unexpe±tedly far forward. Such a discrepancy in pressure distribution 
as compared with the theoretical one seems to be probably due to the 
fact that the span of the test portion was not sufflclently large. As 
a result, the profile drag coefficient CD0 hae the minimum value 0.0011.2
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at about CL = 0.26, which is larger than the value C L = 0.18 theo-
retically estimated on the assumption that the transition occurs far 
back on both upper and lower surfaces. Therefore, the observed value 
of CD0 , although much smaller than that of the conventional airfoils, 

seems to be still somewhat large when compared with the optimum case. 
At any rate, however, no transition was found to occur upstream of the 
minimum pressure. It is important to note that such experimental evi-
dence was obtained on an airfoil section in which the minimum pressure 
is located further downstream than on the conventional one. This finding 
will give valuable data to establiah a basis for design of the laminar-
f low airfoils. 

ESTIMTI0N OF THE DRAG OF LAMINAR-FLOW AIRFOILS 

18. As mentioned previously, the results of flight experiments 
seem to support the basis for the design of laminar-flow airfoils, 
namely, the possibility of maintaining the boundary layer laminar at 
least up to the minimum pressure point. It is interesting, therefore, 
to estimate the drag of laminar-flow airfoi]s by assuming a laminar 
boundary layer from the leading edge to the minimum pressure point and 
a turbulent boundary layer downstream to the trailing edge. 

For the laminar boundary layer, the momentum thickness is given by 

e2 - o.1a.v 

u15 O u
1 ds 

with a sufficient approximation (ref. 16), where u1 is the velocity 

outside the boundary layer and a is the distance measured along the 
airfoil surface from the forward stagnation point. Writing t for the 
chord length and V for the velocity of the undisturbed flow (velocity 
of flight), and putting 

u =UV	 s=t	 R=!.. 
V 

we have the nondimensional expression
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=	 ra ()14. 
da 

t2	 RU J 0	 \,a 

where the subscript a refers to the point of minimum pressure. 
Applying then the solution due to Burl (ref.. 20) for a turbulent 
boundary layer assumed to extend from the minimum pressure point to 
the trailing edge, we-have the result 

) 
"u7"j 

Gb 

aa
= o.o162R	 rGb 

Jaa 

where the subscript b refers to the trailing edge. The numerical 
values originally given by Burl are slightly modified so as to agree 
with measuremerrs when applied to the flat plate. 

According to Squire and Young (ref. 21), the profile drag coeff i-
cient is given by

CD0 = . (e + 

where the subscripts u and 1 refer to the upper and lower surfaces, 
respeätively. The exponent 3.2 of Ub has been obtained by assuming 

the ratio of displacement and momentum thicknesses equal to 1.14.. But the 
ratio seems to exceed 1.14 . near the trailing edge, so we replace 3.2 by 
3.14. with a view to improving the accuracy and at the same time to 
simplifying the algebra. Since 

Ua	 + 0 0162R r Ub 
0b	 3.14 =	 )5/1 l7/11	 _l/1l. r°°
	

d1'5 L' Ga
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we have 

-	 CD0 = 0.O7Rh/5	 R18 + T)/5 + (L_3/8 + T1)/5] 

where

5/8 
L3Ja9I8aUkd	 T= I 

1	
(-\ab 

Lo	 Jaa 

If the velocity distribution u1 = UV is calculated by assuming the 

potential flow of an ideal fluid, it is desirable to modify the distri-
bution to take account of the effect of separation near the trailing 
edge. We tentatively modified the distribution of U such that the 

Burl parameter r = (e/ul)(dul/ds)(ulo/v) 1/'4. at the trailing edge for 

the case when the boundary layer is assumed turbulent from the leading 
edge, namely

r = 0.0081 "dU2' r IJ d 

Ub6 

shall not become smaller than -0.06. In almost all the cases, values 
of Ub thus modified re found in the range between 0.95 and 1.00. 

19. Applying this method of calculation, the profile drag coeffi-
cient CD0 is estimated first for a series of symmetrical airfoils set 

at zero angle of attack. The. series consists of the six synunetrical 
airfoils, I, J, K, L, M, N, as given in paragraph 7 and the NACA con-

ventional airfoil. Values of CD0 at R = 2 X l0 for three different 

thicknesses (maximum thickness in terms of chord e = 0.10, 0.15,0.20) 
are shown in figure 19 plotted against the position of minimum pressure. 
CDQ seems to decrease almost linearly as the minimum pressure is shifted 

backward, the most ideal airfoil I giving a value about half of that of 
the NACA conventional airfoil. If it is desired to realize a profile 
drag of two-thirds of the conventional airfoil, it will be required to 
use the symmetrical airfoil L with the maximum thickness located at 
4-5 percent chord from the leading edge.



NACA TM 1351	 19 

Effect of camber is relatively small. If, for instance, the 
center line of the symmetrical airfoil K with e = 0.15 is curved 
into the camber line D5 with f = 0.02 (see paragraph 9), the esti-
mated increase in profile drag at the optimum angle of attack is only 
0.0001. For f = o.01., it is 0.0003. 

Finally, we compare the laminar-flow airfoil with the most exten-
sively used airfoil, NACA 23012, for which the leading-edge radius is 
0.0158, and the optimum lift coefficient corresponding to the minimum 
profile drag coefficient is about 0.15. If we consider the symmetrical 
airfoil section K (h = 0.56) combined with the camber line D 5, it is 

necessary to use the thickness e = 0.15 in order to obtain the same 
magnitude of leading-edge radius, and the camber f = 0.012 in order to 
realize the optimum lift coefficient 0.15. 5 Therefore we construct an 
airfoil by applying the symmetrical form K with •e = 0.15 normal to 
the chord around the camber line D5 with f = 0.012. We call it 
D5K - 1215. The angle of attack corresponding to CL = 0.15 15 i.56 
for NACA 23012 and 0.63° for D5K - 1215. The pressure distribution for 
that condition is shown In figure 20. 

We then estimate CD0 for the two airfoils by the method explained 

previously. The results are shown by broken lines in figure 21. In 
order to check the results, measured values taken from various sources 
for the two airfoils and similar airfoils are also plotted in the same 
figure by different marks. The mark o refers to the value obtained 
by flight experiments on a smooth surface, and • refers to that 
obtained by wind tunnel experiments where the stream turbulence has no 
effect on transition. The mark + refers to the flight experiment on 
a rough surface, while X refers to the wind tunnel experiment where 
the stream turbulence causes the transition to occur prematurely. There-
fore, only o and • are adequate for our present purpose. Drawing 
curves through these points and extrapolating to higher Reynolds numbers, 
we firfd that the result agrees fairly well with the estimated values. 
Therefore, we may consider that the method of estimating CD0 Is suff 1-
clently accurate at the Reynolds numbers corresponding to actual flight 

SThe calculation developed in paragraphs 8 to 11 refers to the poten-
tial flow of an ideal fluid, so that it gives the elope of lift curve 
dC L 
- = 2it. In real fluids, however, the slope of lift curve amounts to 
dct 
only 80 to 90 percent of the theoretical value. If we take this effect 
into account, we have to increase the necessary amount of f by 10 to 
20 percent in order to realize the given lift coefficient. However, 
such a slight change In the value of f will scarcely affect the esti-
mation Of CD0.
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conditions. Comparison of two airfoils, laminar-flow and conventional, 
also suggests the possibility of 4O percent reduction in profile drag 
by using a fairly practical laminar-floi airfoil. 

CONSIDERATION OF THE AIRFOIL WITH UNIFORM DISTRIBUTION OF PRESSURE 

20. The fact that, so far as flight experiments with smobth wings 
are concerned, the boundary layer .transition occurs only in the region 
of rising pressure, not only warrants the principle-of designing the 
laminar-flow airfoil by shifting the minimtmi pressure backward, but 
also suggests the possibility of delaying the transition by using an 
airfoil with uniform distribution of pressure. Therefore, in para-
graphs 21 to 23, the shape-of such a symmetrical airfoil Is determined 
by a method similar to that used for designing the camber line of laminar-
f low airfoils, and the airfoil was examined by wind tunnel experiments. 
In paragraphs 24. to 26, a calculation is made to inquire about the method• 
of sucking away the boundary layer over the region of rising pressure in 
such a way that the boundary layer velocity profile shall remain the same 
as that for the point of minimum pressure. 

21. Consider the symmetrical airfoil set at zero angle of attack. 
According to the formula of paragraph 3, the pressure distribution is 
given by

2 
sin nl 

I1+2 E nbn	 I 
L	 1	 sin]


q
2 

1+ I21	
cosni 

nb	 I 

L 
1 

where p is the pressure acting on the airfoil surface, measured from 
the static pressure of the undisturbed stream, q is the dynamic pres-

sure of the undisturbed 'stream, x = . (i + cos ) Is the coordinate 

along the chord, and the half-thickness of the airfoil is expressed in 
the form

T =	 bn sin n
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If the thickness ie sufficiently small, the square of 

cos n 
= -2 > nb 

dx	 sin 

may be neglected, so that the condition of uniform distribution of pres-
sure is satisfied by putting all the coefficients b, other than b1, 

equal to zero, namely, by an elliptic section. In order to take the 
thickness into account approximately, we substitute the value of dTfdx 
for the elliptic section into the denominator of the expression for p/q. 
Then, writing e for the maximum thickness in terms of the chord, we 
get

+ 2	 S in n2 

q	
sin2 + e2cos2 

hence

2 '	 nb 'sin n = - sin . + Bsin2 + e2cos2 
1 

where B is the constant value of (1 - p/q)1/2 We have therefore
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sinY d' dT	
- . I 2 sin	 =	 JO	 1	 COB - COB Y 

1 p it	 ___________ Bin ' d' 

= -j	 - BsinY + e2cos2	
- 

= u -	 ku cose + 

it t 	 ____ 

- ku2 log (1 
+ u) (i - k2u + e1l - k2u2) 

(1 - u)(1 + k2u + e1 - k2u2)J 

where

U = COB	 = 2x - 1	 k = \ji- e2 

Upon integrating we get 

Tm .kcos_1e_\J1_u2_ 

B	 UI1_k2u2	 (1+u)(1_k2u^e1_k2u2) 
log	 ________ du 

1 - U2	 (i - u)(l + k?u + e1 - k2U2) 

The integral is evaluated by a numerical method, and the value of the 

constant B determined from the condition that T =	 when u = 0. 

The numerical results for three values of e are given in table 8, T 
and dT/dx being expressed in terms of those for the elliptic section.
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The shapes of the airfoils are shown In figure 22. The shape resembles 
an elliptic section, although it is somewhat fuller at the ends. It will 
also be seen that the constant B, as shown in the following table, Is 

1/2 slightly smaller than 1 + e, the maximum value of (1 -p/q) 	 for the 

elliptic section. Since the values of (dT/dx) .- (_eu/1. - 2 ) are not far 
different from 1, it seems to be sufficiently accurate to substitute 
the value of dT/dx for the elliptic section into the denominator 
of 1 - p/q. 

e B 

0.1 1.097 
.2 1.188 
.3 1.273

22. The uniform distribution of pressure requires, however, an 
infinite pressure gradient at both leading and trailing edges. In order 
to see to what degree such a sharp pressure gradient may be realized in 
actual fluids, measurements were made On a model of the airfoil section 
with uniform distribution of pressure with e = 0.1 (we call it U.P. 0010) 
in the 1.5 m wind tunnel of the Aeronautical Research Institute. The 
model was made of laminated mahogany, of 0.8 m span, of 0.8 m chord, and 
fitted with end plates 1.3 m X 0.6 m. Measurements of pressure distribu-
tion, wake traverse and boundary layer transition were similar to those 
already mentioned in paragraphs 12 to i1.. 

The pressure distribution along the chord is shown in figure 23 
for three values of R, the Reynolds number referred to chord length. 
The observed value is somewhat high compared to the theoretical 

value	 = -0.203, the discrepancy probably being due to the excessive 

size of the model in proportion to that of the wind tunnel. At any rate, 
however, the pressure distribution is nearly uniform. Thelack of uni-
formity exists at both edges due to the impossibility of realizing the 
infinite pressure gradient. The boundary layer separ4es near the 
trailing edge, but the effect of separation becomes small as the Reynolds 
number increases. This scale effect seems to be of the same nature as 
that responsible for the sudden drop in sphere drag; the boundary layer 
separates in a laminar state when the Reynolds number is low, while it 
becomes turbulent before separation when the Reynolds number is high, 
thus being able to proceed against a larger pressure gradient. This is 
also seen from the measurements in the wake, where the indentation of the 
curve of total pressure distribution is shallow and wide for low Reynolds 
numbers, while it becomes deep and narrow as the Reynolds number increases. 
As a result, the profile drag coefficient CD0 decreases considerably 
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as the Reypolds number increases, as shown In figure 2. Transition to 
turbulence was found very near to the trailing edge, occurring downstream 
of x = 0.9 in the range of measurements. Measured values of the drag 
of the model when a piano wire of 0.7 mm diameter was placed at x = 0.8 
and x = 0.9, respectively, are also plotted In the same figure. The 
drop in drag occurs at a lower value of the Reynolds number when the 
surface is roughened by the wire. 

23. The profile drag coefficient of the airfoil U.P. 0010 is shown 

below in comparison with other symmetrical airfoils at B = 2.2 X i06: 

NACA 0010	 CD = 0.0061i. (fig. 13) 
L.B. 211-	 0	 0.0032 (fig. 13) 
U.P. 0010	 0.0059 
U.P. 0010, a wire at x = 0.9 

All the airfoils are of 10 percent thickness. NACA 0010 Is a conventional 
airfoil, and L.B. 211 . is a laminar-flow airfoil with far back minimum 
pressure. The drag of U.P. 0010 is between that of these two airfoils, 
the drag when a wire is placed being nearly the mean of the two. This 
result seems to be interesting in that the drag of an airfoil with a 
blunt tail is smaller than conmionly considered. 

The airfoil with uniform distribution of pressure will also probably 
be favorable when used at high subsonic speeds. Even if the shock wave 
occurs at hIgh subsonic speeds, the increase in drag will remain small 
when the boundary layer does not separate. This expectation was really 
verified by the experiment due to Kawada and. Kawamura (ref. 22), the 
drag of the airfoil U.P. 0010 being smaller at high Mach numbers as 
compared with other airfoils. 

211. From the fact that the boundary layer transition occurs only in 
the region of rising pressure, we may also expect suction of the boundary 
layer to delay transition. For example, if the boundary layer is sucked. 
into a slot, there is a well-known sink effect (ref. 23) which relieves 
the adverse pressure gradient somewhat. upstream of the slot. We may con-
sider an alternative possibility. That is, we asBume that the boundary 
layer is laminar in the region of falling pressure, and that it remains 
laminar also in the region of rising pressure provided that the boundary 
layer profile is the same as that at the minimum pressure point. We 
then ask what suction arrangement must be applied in order to realize 
such a condition.	 - 

27. We denote by s the coordinate measured along the surface, 
y perpendicular to the surface, 	 the bounary layer thickness, u 
the velocity in the boundary layer, u 1 the velocity outside the boundary
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layer,	 = -pui (dul/ds) the pressure gradient, and 	 = 

the skin frictionat the surface. Assuming the surface (y = 0) is made 
porous, through which the fluid is sucked with the velocity c, we have 
the equation of continuity

p8 
w-c=.ii	 ud.y	 (a) 

ds J0 

and the equation of momentum

5
dp PulwPf.u2d =
	 cia 

	

y TQ+5-	 (b) 

where w is the velocity of fluid entering the boundary layer through 
= 5. The equation of motion reduces to 

- ()	
=u	 (c) 

1 ds 

for y = 0. 

Now, the velocity profile in the boundary layer may be approximated 
by the Pohlhausen polynomial 

	

UU1 2+L	 (ci) 

when neither pressure gradient nor auction exists. For this profile we 
have

(e) 

pU]w=-_T0	 (f)
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To simplify the calculation, we assume that the expressions (d), (e), 
and (f) still hold when both pressure gradient and suction exist. Then 
we have from (b)

(g) 
ds 37 u15 367 u1 ds

I 
Integrating we have 

m52 	 ( m62\ -	 1260 
1	 = 1	 +	 f U1	 ds	 (h) 

so 

where m = 2._, and	 is the initial position of suction, which is 
367 

the minimum pressure point in the present case. We have also from (a) 

l8l du1 c=
3670 ds 

If we substitute (d) and (i) into both sides of the equation (c) however, 
the left and right sides become l.003u 1(du1/ds) and ui(dul/ds$, respec-

tively. This contradiction is evidently due to the crude assumption of 
using (f) in spite of the presence of pressure gradient and suction, but 
we may overlook the error because it is small. 	 - 

26. We apply the calculation to the symmetrical laminar-flow air-
foil of 10 percent maximum thickness, L.B. 2, set at zero angle of 
attack. The velocity distribution ul/V calculated from the potential 

flow of ideal fluids is used, 6 the maximum velocity(minimum pressure) 
being located at 61- percent of the chord from the leading edge ( so = o.65t). 
Applying a distributed suction downstream of the minimum pressure point 
so as to maintain the velocity profile in the boundary layer the same as 
at this point, we have the boundary layer thickness 5 and the required 

is assumed that the velocity distribution is not affected by 
the suction. Theoretically u1 should be 0 at the trailing edge, but 
the distribution was somewhat modified so as to give ul = O .85V there. 

The effects of these assumptions appear to be too small to affect the 
result materially.

(i)
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suction velocity c as shown in figure 25. It is to be noted that a 
is measured along the surface from the leading edge, and R is the 
Reynolds number based on the chord length t and the velocity of the 
undisturbed stream V. Integrating the area under the curve of c, we 

have the total amount of suction l. 3v ü per unit span of the two sur-
faces. If we assume span = 35 in, t = 5 m, V = 200 m/, V = 0.15 cm2/s, 
the total amount of suction amounts to .6 m3/s, which will require an 
exit area of only 0.028 m2 when discharged with the velocity equal to V. 
Integration of T0 gives the drag coefficient CD0 = 0.0005. This value 
may be compared with CD0 = 0.0003 for the flat plate with laminar 
boundary layer, CD0 = 0.0011.4 for the flat plate with turbulent boundary 
layer, and CD0 = 0.0025 for L.B. 24 without suction. If the thickness 

of the airfoil is doubled (20 percent chord), then the amount of suction 
will be nearly doubled; the drag is however almost unchanged. 

It should be noticed again that the calculation is based on the 
assumption that no transition occurs if the velocity profile in the 
boundary layer maintains the form at the minimum pressure. It is the 
purpose of the calculation to show that extraordinarily low profile drag 
may be expected with a relatively small amount of suction under such a 
condition. 

PREMATURE TRANSITION OF BOUNDARY lAYER - EFFECT OF STREAM TURBULENCE 

27'. Although the transition of the boundary layer occurs only down-
stream of the minimum pressure, so far as flight experiments on smooth 
airfoil surfaces are concerned, there are many examples of wind tunnel 
experiments in which the transition moves upstream of the minimum pres-
sure. This seems to be due to the premature transition caused by the 
turbulence in the wind tunnel stream. For example, the transition on 
the airfoil L.B. 21 1. was found only downstream of the minimum pressure 
in the range of Reynolds numbers covered by the author 'a wind tunnel 

experiments (the Reynolds number based on chord length up to 3 X io6; 
see paragraphs 12 to 14); as a result very low values of the profile drag 
coefficient CD0 were observed. The same airfoil, however, when tested 

with a larger model of 2 m chord in the 2.5 m wind tunnel of Kawasaki 
Aircraft Company, Gihu, gave the result as shown in figure 26, in which 

CDO increases considerably when the Reynolds number exceeds x io6 
(ref s. 211. and 25). There is reason to believe that the increase in drag 
is due to the effect of stream turbulence. The boundary layer observa-
tion at the Kawasaki wind tunnel shows that the transition is found at 

50 percent chord (x = 0.5) for the Reynolds number 6 x 106 and moves
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further forward as the Reynolds number increases. The boundary layer 

velocity profile observed at transition has a form factor -. = 2.6 
(5 and 0 are'the displacement and momentum thicknesses of the 
boundary layer), which is very near to the value for the case, of zero 
pressure gradient. This result seems to suggest that the transition is 
at least not correlated with the laminar separation (ref. 1). 

28. In order to verify this corIjecture, it is desirable to show 
that the transition in the boundary layer along a flat plate occurs 
under the same condition, because that transition may be considered to 
be independent of the laminar separation. Unfortunately, however, no 
flat plate was measured in the Kawasaki wind tunnel. Therefore we pro-
ceed in a somewhat indirect way. We . assume that the degree of stream 
turbulence is represented by the conventional critical Reynolds number 
of the sphere, RC, and the condition of transition due to turbulence 

represented by the, local Reynolds number, R9 =	 at transition on a 

flat plate, where ul is the velocity outsidethe boundary layer'and 
6 is the momentum thickness of the boundary layer. It is' generally 
accepted that the turbulence in the wind tunnel stream will give a 
fluctuation of pressure gradient, as a result of which an instantaneous 
and intermittent separation will occur. Such an instantaneous and inter-
mittent separation, however, does not necessarily lead to the transition 
into turbulence; for the transition really to occur, it seems probably 
necessary that the Reynolds number H0 which represents the ratio of 
inertia pu12 to viscous stress pvu1/0 exceed a certain critical value. 
It is also expected that the critical value depends on the degree of tur-
bulence; it must increase as R 2 increases. This is really shown by 
the experimental data hitherto published, which are given in the following 
table and also by white circles (o) in figure 27. The available data are 
scanty, especially because the experiment on a flat plate is very diff i-
cult. It was necessary for the author to perform a new experiment (ref. 30) 
with a view to adding one point in the range of high BC. 

BC B6 Wind Tunnel Reference 

i.-o x io5 0.21 x io3 National Bureau of Standards 26 
2.75 x i 5 .70 x 10 3 National Bureau of Standards 26 
2.20x 10 .14.2	 X io3 N.P.L. Compressed Air Tunnel 27, 28 
3.66 x i0 5 1.05 x iO3 Aero. Res.. Inst. 1.5 m Tunnel 29, 30
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29. Now, we calculate the value of R0 at transition of the air-
foil L.B. 21 tested in the Kawasaki wind tunnel, and correlate it with 
the critical Reynolds number R of that tunnel. We analyze similarly 

the other available data, and summarize the result in the following 
table. The values of the form factor 5*10, not shown, were all found 
in the range from 2.1 to 2.7. We then plot the data also in figure 27 
by black circles (.). The black circles are seen to define a single 
curve together with the white circles already mentioned. This result 
seemm to support the supposition that the transition under conBideration 
is mainly caused by the stream turbulence, but not correlated with the 
laminar separation. 

Model Wind Tunnel Reference 

1.85 x i 5 0)1-1 X 103 Symmetrical airfoil N.P.L. 7 ft 31, 32 
2.10 X 105 .6 x io3 Airship model M.I.T.	 7	 ft 33,	 311. 
3.50 X io 5 .95 X 103 Airfoil N-22 NACA Full-Scale 12, 35 
3.65 x 10 5 1.08 X io Airfoil L.B. 2 Kawasaki 2.5 m 24, 25

In reference 12 (the third line in the preceding table), the same 
airfoil was examined both by the full-scale wind tunnel and by the flight 
test. We calculate the form factor 5*10 from these tests and plot the 
values against a/t in figure 28, where t is the chord length and s 
is the length measured along the surface from the leading edge. The 
value of 5/0 at transition is 2.6 in the wind. tunnel, while it reaches 
as high as 3.1 and drops sharply in the flight test. The minimum pres-
sure is located at	 = 0.18, and the laminar separation calculated from 

the measured. distribution of pressure at 	 = 0.36. This example is very 
interesting because the cause of transition is quite different in the two 
cases (namely, it is due to the stream turbulence in the wind tunnel, 
while it is related to laminar separation in the flight test), although 
the positions of transition are almost the same. 

PREMATURE TRANSITION OF BOUNDARY lAYER - EEFFXJT OF SURFACE ROUGHNESS 

30. Up to this point, we have only considered the case when the sur-
face of the airfoil is smooth. If the surface is rough, however, there 
is a possibility that the transition may also be caused prematurely by 
surface roughness. So, it is important in practice to estimate the 
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approximate order of magnitude of the permissible roughness in the lami-
nar boundary layer. Nothing has been known concerning this problem, 
except a mere conjecture or fragmentary data. Schiller (ref. 36) sug-
gested that a local separation occurs and hence leads to transition 
when the Reynolds number kuklV exceeds a certain critical value Rcrit, 
where k is the height of projection and Uk is the velocity at the 
top of projection. The exact value of Rcrit is not known, but it is 
not likely to differ much from the critical value of the Reynolds number, 
above which vortices are shed from the obstacle of the same shape as that 
of the projection placed in a uniform stream. The experimental result 
due to Wieselsberger (ref. 37) shows that such a critical Reynolds number 
is roughly 50 for a circular cylinder. Assuming that the height of pro-
jection k is small, and that the presence of the projection in no way 
alters the character of the flow, we have the shearing stress at the 

surface	 = pv (uk/k). Using the so-called friction velocity v = 

instead of 11k' we have then kv / V = kuk/V . The permissible roughness 
is therefore given by kv*/V = j Rcrit or, with Rcrit = 50 ' kv /V = 7. 
On the other hand, according to Nikuradse's experiments on roughened 

pipes (ref. 38), the critical Reynolds number is 	 = #, above which 

the roughness projections disturb the laminar sublayer of the turbulent 
boundary layer and hence increase the pressure drop. It appears there-
fore that the permissible roughness. is smaller in the turbulent boundary 
layer as compared with the laminar boundary layer. This is confined by 
a British flight experiment (ref. 39) on the airfoil section of 10 feet 
chord (Reynolds number 1.8 x io7), because the effect of camouflage paint 
of 0.001 inch thickness increased the drag by about 6 percent without 
moving the transition forward. At any rate, however, such a estimate is 
nothing but mere conjecture. With a view to making the estimate more 
definite, we performed wind tunnel experiments, although of small scale, 
of quantitative character (paragraphs 31 to 32). 

31. A polished aluminum plate, 80 cm long, 63 cm wide, and irma thick, 
was held horizontally in the 1.5 m wind tunnel of the Aeronautical Research 
Institute. So that the flow at entry would not be disturbed, the leading 
edge of the plate was rounded, and the plate slightly tilted so that the 
forward stagnation point was on the same surface as that where the observa-
tion was made. The tilting, however, was so slight that the static pres-
sure was observed to be practically uniform along the plate. The plate 
was roughened by a wire, which was stretched across the flow, in contact 
with the plate. The diameters k of the wire were 0.25, O.1., and 0.7 mm, 
respectively, and the distances x of the wire from the leading edge were 
15, 30, 1l 5, and 60 cm, respectively. When the wind speed V was low, the 
bouhdary layer was laminar all along the plate, but from a certain speed 
upward, the transition to turbulent flow was observed at that point where
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the wire was placed. Transition was detected by a sudden change in the 
value of the total pressure G* in terms of the dynamic pressure q of 
the undisturbed stream, G* being indicated by a small pitot tube with 
a flattened mouth of 1 mm external width and 0.3 mm width, which was 
placed in contact with the plate at a point 70 cm behind the leading 
edge. A sample record of measurements for k = 0.Ii. mm is shown in 
figure 29. 

When a flat plate is placed along a uniform stream of velocity V, 
the Blasius solution (ref. li.0) of the laminar boundary layer equation 
gives

= O.576V()" 

for a point of distance x from the leading edge. Writing K for the 
critical value of kv*/V, the permissible height of' projection k is 
given by

0.576 = K('3" 

We determine V from the wind speed corresponding to the kink of' the 
curve as shown in figure 29, plot 0 .576 (k/x) in a logaritlimic scale 
against Vx/V , and draw a straight line of the slope -3/ li. through the 
points (fig. 30). We thus obtain K = 13, which is far greater than 
the value K = 7 estimated previously. 

32. Similar measurements were also performed on an airfoil section 
L.B. 24. . The model was of 0.8 span, of 1.2 m chord, fitted with end 
plates 1.3 m x 0.6 m, and set at zero angle of attack in the same wind 
tunnel. Wires of various diameters (k = 0.25, 0)4. , 0.7 mm) were attached 
parallel to the span, in contact with the surface, at 10 percent of the 
chord from the leading edge (x = 0.1). Transition was detected by the 
sudden change in total pressure as indicated by a pitot tube with a 
flattened mouth of 2.7 mm external width and 0.9 mm depth, which was 
placed in contact with the surface at 50 percent of the chord from the 
leading edge. Results of measurements are shown In figure 31, where 
R = 3., and t is the chord length. 

The friction velocity may be generally expressed in the form 

= AVR
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where A is a function of s/t (a is the length measured along the 
surface from the forward stagnation point). We can calculate A by 
applying either the Pohihausen approximate solution (ref. i) or the 
simplified method due to the author (refa. 15 and 16). The permissible 
height of projection is then determined by 

A = 

Applying the Pohlhausen method to the theoretically calculated 
distribution of pressure, we get the values of function A, as shown 
in figi.ire 32. Since A is 1.23 at the position of wire (x = 0.1), 
the value l.23(k/t) is plotted in a logarithmic scale against R in 
figure 33, R being the Reynolds number corresponding to the kink of 
the curve as given in figure 31. It will be seen that although the 
measured points are on a straight line of the slope _3/14., they give 
K = 15, which is somewhat higher than the value found for the flat plate. 

33. Now we apply the preceding result to the fragmentary data 
'hitherto known in order to check the adequacy of the estimate. First, 
we examine the results of wind tunnel experiment on a symmetrical 
laminar-flow airfoil L.B. 27,1 on which various projections are attached 
at 3 percent of the chord from the leading edge (x = 0.03). The model 
was of 0.8 m span, of 1.2 in chord, and set at zero angle of attack. 
The profile drag was measured by the method similar to that for L.B. 214. 
(see paragraphs 12 to 13). The results are shown in figure 314., from 
which we find that the rubber tape of 0.07 mm thickness gives no effect 
over the range of Reynolds numbers R covered by the experiment, while 
the piano wire of 0.5 mm diameter gives a completely turbulent friction. 
The effect of the wire of 0.25 mm diameter begins to appear at 

R = 1.3 X 106. Inserting the values k 0.25 , t = 1.2 in and 

A = 1.95 in the formula A =	 we get K = 15.5, which is in 

good agreement with the result iii paragraph 32. The value A = 1.95 
was read from figure 32, since the leading edge portion of L.B. 27 
almost coincides with that of L.B. 2 1i. Profile drag coefficients of 
both airfoils are also the same over the range of Reynolds numbers 
examined. 

31.1.. In connection with the determination of boundary layer transi-
tion on airfoils in the NACA full-scale wind tunnel (ref. 14.2), an aux-
iliary measurement has been reported, in which the effect was examined 

TL.B. 21 has a maximum thickness of 10 percent of the chord at 
. percent of the chord from the leading edge. See figure 5 of paragraph 6.
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of rubber tapes attached at 5 percent of the chord (x = 0.05) from the 
leading edge of the model. The airfoil Bection was NACA 0012, the chord 

was 72 inches, and the Reynolds number B was 11..l8 x io 6 . No effect 
was found when the tape was 0.003 inch thick, some effect began to 
appear when it was 0.006 inch thick, and. the transition moved right to 
that position where the tape of 0.009 inch thickness was attached. 
Assuming A = 1.6 and K = 15, we estimate from the preceding formula 
the value 0.007 inch for the permissible thickness, which seems to agree 
well with the observation. 

If we further assume that the value A = 1.6 is also applicable 
to the case of the British flight experiment mentioned in paragraph 30, 
we find. 0.0011. inch for the critical height for transition with 
t = 10 feet, R = 1.8 X 10, and K = 15. On the other hand, we esti-

mate the permissible limit in turbulent boundary layer by 	 = 11, 

-. which may be written in the form 

._ 1Iv'i. 

by the relation v2 = . cu12 , where u1 is the local wind speed and 

cf is the coefficient of local skin friction. If we assume u1 1.2V 
and cf = 0.003 (which is equal to the coefficient of mean skin friction 
for a flat plate at R = 1.8 x 10 7), we obtain 0.0006 inch for the per-
missible roughness thickness. Since the thickness of the camouflage 
paint is reported to be about 0.001 inch, it may be concluded that the 
paint increases only the friction in turbulent boundary layer, without 
affecting, however, the transition to turbulent flow. This is in good 
agreement with the experimental rsuits.
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APPENDIX 

TRANSITION CAUSED BY LAMINAR SEPARATION 

35. As is well-known, the phenomenon of sudden decrease in drag of 

a sphere at a certain value of the Reynolds number R = 	 (V is the 

speed of undisturbed stream and d is the diameter of sphere) is 
explained by supposing that the boundary layer separates while it is 
laminar when R is low, but it separates after transition to turbulence 
when R is high, thus resulting in diminishing the so-called dead water 
region. Probably the transformation from laminar separation to turbulent 
separation may proceed as follows: 

When the laminar boundary layer separates from the surface, the 
detached layer remains also laminar at first, but it i so unstable that 
It becomes turbulent ata short distance. This transition from laminar 
to turbulent flow is considered to occur when the local Reynolds number 
based on the width of the detached layer and the velocity outside the 
layer exceeds a certain value, so that the transition moves upstream 
toward the separation point as R increases. When the transition 
approaches sufficiently near the separation point, it becomes possible 
for the detached layer to come back again to the downstream surface, 
because the turbulence produced will drive the flow forward. The layer 
reattaches to the surface as a turbulent layer, and accordingly the drag 
coefficient begins to decrease. The distance between the separation and 
the first turbulent boundary layer deceases as R increases, and finally 
the fully developed turbulent boundary layer commences just downstream 
of the separa.tion point. The drag coefficient then ceases to decrease. 

36. Now, in order that the separated layer reattach to the surface, 
u10 

it seems necessary for the local Reynolds number Re = -v-- at separation 

to exceed a certain critical value, where u 1 is the velocity outside 

the boundary layer, and e is the momentum thickness of the boundary 
layer. This may be explained as follows: According to the laminar 
boundary layer theory, the separation occurs when the quantity 

Q!=e 2...pV! 
V ds	 ds	 •	 9 

exceeds a certain value, suggesting that the pressure rise (dp/ds)O 
becomes too large in proportion to the shearing stress at the sur-
face pv(ul/9). Assuming analogically that the separated layer leaves
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the surface when the pressure rise becomes too large in proportion to 
the momentum pu12 , we then find that Re at the separation point must 

exceed a certain critical value in order that the separated layer 
reattach to the surface. 

37. In order to determine the critical value of I, we consider 
in detail the condition where the coefficient of sphere drag begins to 
decrease. This condition corresponds to the point B of the curve of 
figure 35, which represents an idealized variation of the drag coeff i-
dent CD[= drag .. (pv2/2) (ltd2/14,)] or the pressure difference coeff i-

cient zp/q = difference of pressures at the forward stagnation point 

and the point corresponding to the central angle 157.5° .- ( pv2/2)1 with 

the Reynolds number R. Within the range AB, the pressure distribution 
around the sphere is approximately independent of R; the typical example 
may be found from the experiments due to Fage (ref. 43). Fortunately, 
the boundary layer calculation has also been performed for that distri-
bution of pressure by Tomotika and Imai (ref. 44), so that the local 
Reynolds number Re is given by

= o.koi 

at the separation point. Although the calculation has originally been 

made for a particular Reynolds number, R = 1.57 X 105, the preceding 
relation may be applied for any value of R in the range of AB. Putting 
the value of R at B, and writing 

1crjt = 
0.40 B 

we have Re 	 as the critical value of B0 above which the separated 
laminar layer reattaches to the surface. Conventionally the Reynolds 
number Bc corresponding to CD = 0.3 (or p/q = 1.22) has been used, 
instead of RB, for representiug the degree of stream turbulence, but it 
is not so difficult to estimate the value of RB from the measured curve 
of CD (or ip/q) against H. For example, we have from the experiments 
of towing spheres in the free atmosphere (ref. 35) 

RB = 3.6x 10 5	 Rc=3.85x105	 Recrit=240
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Since these values refer to the case of very low turbulence, it will be 
seen that 1crit = 2140 represents the highest possible value. It is 

also to be noted that	 . = 0.911. in this example and that almost the 


same value has been obtained by the author's experiments on spheres of 
various diameters (ref. 29). 

38. If the stream turbulence is not low so that Hc is less than 

3.85 x i05, then Rejt will be less than 2140. Assuming the ratio RB/RC 

to be constant, we can estimate the corresponding vaLue by 

	

I	 R 

	

Recrit = 21l.0I	
C 

3.85 X 10 

On the other hand,. we can also estimate the value of ROcrit d1rct1y 

from the boundary layer measurements. The results of the analysis for a 
sphere as well as circular and. elliptic cylinders are summarized in the 
following table, where ROjt is the critical value Re estimated 

from RC by the preceding formula, 
1sep 

is the value of R6 observed 

at the separation point when the boundary layer really separates while 
it is laminar, and Retrans i the value of Re observed at the calcu-

lated laminar separation point when the boundary layer separates after 
transition. The fact that Re • lies between Re	 and R6 crit	 sep	 trans 

seems to suggest the adequacy of the preceding consideration. 

Body 'C Recrit sep ROtrans Reference 

Sphere' 2.5 X 10 5 190 160 220 14.3 

Circular cylinder 1.5 x lO 150 1140 225 
Elliptical cylinder 2.7 X 105 200 160 14.00 1i.6,	 14.7

39. We now proceed to apply our result to Interpreting the effect of 
Reynolds number on maximum lift of airfoils. For the angle of attack 
near the stall, the flow separates shortly downstream of the leading edge 
while the boundary layer is laminar. If the flow fails to reattach to 
the surface as a turbulent layer, the maximum lift coefficient 	 of 
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the airfoil will be almost independent of the Reynolds number R. At 
the separation point, similar to the case of a sphere, the relation of 
the form

Re = kUR 

holds, where R =	 is the Reynolds number referred to chord length t,8 

and k is a constant depending on the shape of airfoil and the value of 
Ci	 . If R is low so that R0 is less than the critical value R0 ulaX	 .	 crit 
then C	 will be independent of R. Assuming the same value of 

R9	 for the sphere as for the airfoil, we obtain 
crit

0.16 
R=	 RB 

k2 

for the Reynolds number above which C	 begins to increase with the 

Reynolds number. Therefore, the ratio of the Reynolds number corresponding 
to. a certain value of 	 of an airfoil and the critical Reynolds 

number of sphere in the same stream, RB or Rrj, becomes independent of 
the stream turbulence. Denoting the values for a reference tunnel with 
asterisk, we have

- 

RR 

which in turn means that the ratio of Reynolds numbers corresponding to 
a certain value of C,-	 is equal to the ratio of critical. Reynolds 

#ilax 
numbers of a sphere. This is uaeful for comparing the values of 

obtained in two different wind tunnels. Considering the reference condi-
tion to be the free flight in the atmosphere, we find 

* 
= R x 

is to be noted that R is referred to t, while RB and R 

are referred to d.
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as the free, flight Reynolds number which will give the same value of 
C as that observed in a wind tunnel. .This is just what is called. 

the effective Reynolds number. Strictly speaking, such an argument as 
mentioned before should apply only to the Reynolds numbers near the 
critical value, but there are many experimental evidences showing the 
usefulness of the concept of effective Reynolds number for most practi-
cal purposes, as far as the commonly used airfoils and. range of Reynolds 
numbers of both wind tunnel and free flight are concerned. 

i-O. Finally, we consider a more quantitative example to show the. 
adequacy of the preceding argument. In fIgure 36, C

	

	 for various

-nax 

NACA symmetrical airfoils are plotted against the effective Reynolds 
number R*, the experimental data being taken from the results of the 
NACA variable-density wind tunnel (ref. 11.8). As already mentioned, up 
to a certain value of R* , C J,Jfl	 is almost independent of R*. This 

corresponds to the condition in which the laminar separation just behind 
the leading edge fails to reattach to the surface, resulting in a con-
siderable dead water region above the airfoil surface. The value of 

is approximately 0.9, irrespective of the thickness; it is almost 

equal to the value for a flat plate of vanishing thickness. Theory of 
discontinous flow, when applied to the flat plate; seems to give a lift 
coefficient close to 0.9 (ref. 11.9). We idealize, therefore, the experi-
mental curve as shown by dotted lines in figure 36. Then, the point 
where the dotted line meets the line C 1	 = 0.9 will be considered to 

correspond to 'crit = 214.0. In order to determine this point, we calcu-

late the value of Ro/f at the laminar separation point for a lift 
coefficient CL = 0. 9, and. the value of R which gives R6 = 211.0. We 
first calculate the pressure distribution by the formula of paragraph 3 
for the two-dimensional potential flow around the airfoil section. 
Although the formula may be applied to any arbitrary airfoil section, 
we have determined the pressure distribution only for the airfoil 

T = 0 . 287e x( l - x)(5 - x) 

in order to simplify, the calculation, because no grat exactitude is 
required in the present problem. x is the coordinate along the chord, 

= 0 and x = 1 corresponding to the leading and trailing edges, 
respectively, T is the half-thickness, and e is the maximum thick-
ness in terms of chord length. The airfoil represented by the preceding 
expression coincides with sufficient accuracy with the true NACA symmetri-

cal airfoil except near the trailing edge. The value of Re/	 at the


laminar 'separation point was then determined for the calculated pressure 
distribution by applying the approximate method due to the author (ref s. 15 
and.l6).
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The critical values R* . t thus calculated are shown by a solid 

line in figure 37, while the corresponding values taken from figure 36 
are shown by white circles. The agreement is fairly good, and especially 
satisfactory when the thickness. of the airfoil is small. In general, •the 
thickness of the boundary layer near the -trailing edge increases as CL 

increases. If CL Is further increased, however, a laminar separation 

suddenly occurs near the leading edge when the thickness is small, while 
the trailing-edge turbulent separation moves a considerable extent for-
ward before the leading-edge laminar separation occurs when the thickness 
is moderate. Therefore, the assumption of the analysis is more satis-
factorily realized in the case of small thickness, thus bringing the 
calculated and observed values in close agreement. 

In conclusion, the author wishes to acknowledge his indebtedness 
for the assistance given by Messrs. C. Noda, S. Mituisi, I. Shinra, 
S. Asaka, R. llama, and K. Takeda. 

Translation by Itiro Tani 
University of Tokyo 
Tokyo, Japan
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TABLE 1.- ORDINATES FOR SYMMETRICAL SECTION. VALUES OF T/e 

x I J K M N 

0 0 0 0 0 0 0 
003 .oli.65 .0563 .05711. .05814 .0606 .0627 

.006 .0661 .0793 .0808 .0823 .08514 .0886 

.0125 .0962 .1135 .1158 .1180 .1226 .1275 

.025 .13711. .1589 .1620 .1652 .1720 .17911. 

.05 .1963 .2208 .2252 .2298 .2396 .2508 

.075 .214.114. .2663 .2716 .2771 .2892 .3031 

.10 .2789 .3029 .3089 .3151 .3288 .31411.7 

.15 .33911. .3599 .3667 .3738 .3893 .14.072 

.20 .3865 .14026 .11.097 .14.170 .li328 .14503 

.25 .11.236 .11.353 .141422 .1411.92 .14638 .14788 

.30 .14523 .146oi .14663 .147214. .11.8414. .149249 

.35 .14737 .14783 .14833 .14881 .11.962 .50(J() 
.14885 .14906 .149142 .14971 .5000 .14953 

.14.5 .14.972 .11.977 .14994 .5000 .14948 .14818 

.50 .5000 .5000 .149914 .14931 .14.797 .1#6O1i. 

.55 .4970 •14914.4 .14873 .14781 .14558 .14320 

.60 .14871 .14778 .4656 .14522 .14241. .3975 

.65 .14691 .14.509 .14.314.2 .14.175 .3856 .3578 

.70 .1414i8 .14139 '.3939 .3751 .314.13 .3138 

.75 .14038 .3675 .314.55 .3258 .2921 .26614 

.80 .3538 .3121 .2899 .2706 .2393 .2165 

.85 .2908 .21481 .2277 .2105 .1836 .1650 

.90 .2133 .1762 .1598 .14614 .1262 .1128 

.95 .1201 .0966 .0870 .0793 .0680 .0609 
1.00 .0100 .0100 .0100 .0100 .0100 .0100
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TABLE 2 • -, AUXILIARY FUNCTION B 8 ASSOC IATED WITH THE 

PRESSURE DISTRIBUTION OF SYMME'TRICAL SECTIONS 

I J K L M N 

0.0125 0.59 1.10 1.13 1.16 1.20 1.211. 
.025 .66 1.06 1.09 1.13 1.20 1.26 
.05 .75 1.011. 1.07 1.11 1.20 1.29 
.10 .86 1.03 1.07 1.11 1.21 1.33 
.20 .96 1.03 1.08 1.12 1.22 1.36 
.30 1.02 1.011. 1.09 1.111. 1.23 1.33 
.11.0 1.05 1.05 1.10 1.15 1.23 1.22 
.50 1.08 1.17 1.19 1.19 1111. 1.011. 
.60 1.12 1.18 1.11 1.05 .92 .80 
.70 1.09 .98 .88 .79 .63 .51 
.80 .89 .6 .52 .112 , .28 .19 
.90 .33 .06 -.03 -.10 -.18 -.22 
.95 -.32 -.11.7 -.50 -.52 -.53 -.52 
.975 -.95 -.93 -.91 -.89 .811. -.78
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TABLE 3..- AUXILIARY FUNCTION Bc ASSOCIATED WITH THE 

PRESSURE DISTRIBUTION OF SYMMETRICAL SECTIONS 

J K L M N 

0.0125 -le.OIi. _Il..140 -.88 14.90 -5.20 -5.30 
.025 -2.86 -3.08 -3.20 -3.22 -3.37 -3.55 
.05 _2.O1l -2.08 -2.13 -2.17 -2.28 -2.39 
.10 -1.39 -1.33 -1.35 -1.37 -1.12 -i.li8 
.20 -.83 -.74 -.7k -.7k -.7k -.70 
.30 -.O .1I3 .111 -.39 -.31 -.21 

-.19 -.17 -.12 .00 .18 
.50 .00 .00 .11 .22 .39 .50 
.EiD .27 .11.14 .53 .60 .70 •75 
.70 .65 .83 .89 .92 .914. .91 
.80 1.11 1.19 1.18 1.15 1.09 1.02 
.90 1.70 1.52 1.11.1 1.31 i.i6 1.011. 
.95 2.03 1.66 1.50 1.36 i.i6 1.03 
.975 2.20 1.73 1.514- 1.38 1.15 1.02
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TABLE 4. - ORDINATF.S FOR MEAN CAMBER LINES. VALUES OF M/f 

x D0 D3 D5 D Ej4. F3 

O 0 0 0 0 0 0 0 
.003 .0295 .0282 .0292 .0300 .0371 .0313 .0327 
.006 .0529 .0509 .0526 . o 54o .0666 .0564 .0589 
.0125 .0969 .0914 .0969 .0995 .1220 .1039 .1081 
.025 .1687 .1636 .1695 .1714.0 .2119 .1814 .1887 •	 .050 .2864 .2797 .2897 .2973 .3585 .3093 .3212 
.075 .3843 .3772 . 3907 . li.006 .4787 .4161 .4315 
.10 .14.690 .4620 .4784 .4902 .5808 .5084 .5266 .15 .6098 .6045 .6252 .6396 .7443 .6615 .6831 .20 .7219 .7191 .7424 .7579 .8638 .7812 .8041 .25 .8113 .8112 .8353 .8507 .94 51 . 8733 .8952 .30 .8813 .8838 .9067 .9207 .9898 . 9387 .9586 
.35 
.40

.9341 .9384 . 9579 .9688 .9963 .9826 .9939 
.45

.9710 

.9928
.9758 
.9962

.9892 
1.0000

.9953 

. 9988
.9589 
.8625

. 9998 

.9872
.9973 
.9679 

.50 1.0000 .9988 .9881 .9761 .6300 .9387 .9085 

.55 .9928 .9813 .9472 .9178 .3885 .8561 .8238 .60 .9710 .914.14 . 8735 .8192 .2646 .7473 .7204 .9341 .8794 .7704 .6903 .1811 .6259 .6o6 .70 .8813 .7878 .6459 .5474 .1207 .4918 .4871 .75 
.80

.8113 .6898 .5108 .4o8 .0772 .3682 .3721 
.85

.7219 

.6098
.5673 
.4305

.3766 

.2535
.2847 
.1811.6

.0459 

.0242
.2590 
.1686

.2669 

.1761 .90 
.95

.14.690 

.28611.
.2845 
.1366

.1493 

.o6i
.1071 
.0472

.0101 

.0024
.0973 
.0425

.1020 

.0442 1.00 
x	 for	 M/f = 1

0
.500

0
.482

0
.4o

0
.433

0
.333

0
.1406 0

.381
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TABLE 5.. AUXILIARY FUNCTION Ac ASSOCIATED WITH TIlE


PRESSURE DISTRIBUTION OF MEAN CAMBER LINES 

x D0 D1 D3 D5 D E4 F3 

0.0125 14.53 -0.53 -2.50 -3.17 -5.49 -3.51 -3.62 
.025 14.53 .88 -.47 -.91 -2.17 -1.07 -i.08 
.05 14.53 1.89 .99 .71 .22 .67 .74 
.10 14.53 2.61 2.03 1.88 1.94 1.93 2.05 
.20 4.53 3.15 2.80 2.75 3.20 2.85 3.01 
.30 4.53 3.40 3.17 3.15 3.79 3.29 3.46 
. 1 0 11.53 3.56 3.40 3.41 4.18 3.57 3.61 
.50 4.53 3.68 3.57 3.61 4.46 3.50 3.10 
.60 4.53 3.61 3.21 2.95 -1.03 2.35 2.14 
.70 4.53 3.19 2.07 1.31 -.83 1.00 1.04 
.80 4.53 2.43 .75 .05 -.63 .03 .17 
.90 14.53 1.34 -.05 -.26 -.42 -.26 -.22 
.90 4.53 .68 -.15 -.20 -.29 -.21 -.21 
.975 4.53 .3 -.08 -.14 -.20 -.15 -.15
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TABLE 6.- AUXILIARY FUNCTION A8 ASSOCIATED WITH THE


PRESSURE DISTRIBUTION OF MEAN CAMBER LINES 

x D0 D1 D3 D5 D Ei1. F3 

0.0125 -6.31 -6.13 -6.35 -6.52 -7.92 -6.79 -7.07 
.025 -5.28 -5.18 -5.37 -5.50 -6.6i -5.9l1 
.05 -J4.25 -l1.21 14.36 _14.l6 -5.25 11.63 -l1.79 
.10 -3.17 -3.19 -3.29 -3.36 -3.78 -3.li6 -3.55 
.20- -1.99 -2.05 -2.09 -2.10 -2.00 -2.11 -2.11 
.30 -1.21 -1.27 -1.22 -1.18 -.52 1.09 -.99 .11.0 -.8 -.8 .113 -.31 1.26 -.07 .26 
.50 0 .111. .50 .76 133 1.11.6 
.60 .58 1.02 1.79 2.32 2.00 2.38 2.21 
.70 1.21 1.90 2.63 2.87 1.02 2.30 2.36 
.80 1.99 2.61 2.60 2.214. .52 2.00 1.97 
.90 3.17 2.97 1.88 1.35 .21 1.25 1.31 
.95 14.25 2.91 1.63 1.05 .10 .91 1.01 
.975 5.28 2.75 1.59 .914. .05 .82 .88
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TABLE 7. - PRESSURE DIFFERENCE DISTRIBUTION G FOR MEAN CAMBER LINES 

X D0 D1 D3 D5 D00 El4. F3 

0.0125 14.53 11.22 14,314. 4.14.7 5.72 li..70 1i..93 
.025 14.53 14.22 14.314. 14.147 5.72 14.70 11.93 
.05 14.53 14.22 14.314 14.47 5.72 4.70 14.93 
.10 11.53 4.22 11.314. 14.147 5.72 14.70 14.93 
.20 14.53 4.22 14.31i. 14.14.7 5.72 14.70 14.93 

.30 14.53 4.22 14.34 4.14.7 5.72 4.70 11.93 

.140 14.53 14.22 11.34 14.147 5.72 4.70 14.78 

.50 14,53 4.22 11.311. 14.11.7 5.72 14.14.2 14.06 

.60 4.53 14.05 3.814. 3.65 0 3.10 2.92 

.70 14.53 3.511 2.57 1.87 0 1.60 1.67 

.80 4.53 2.70 1.14 .1i.8 0 .11.9 .65 

.90 4.53 1.52 .20 .03 0 .05 .11 

.95 4.53 .80 .03 .00 0 .00 .02 

.975 14.53 .141 .00 .00 0 .00 .00
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Figure 6
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