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TECHENICAL MEMORANDUM 134l

ON THE THEORY OF THE TURBULENT BOUNDARY LAYER

By J. Rotta
INTRODUCTION
(By A. Betz)

In view of the high specialization of scientific research many papers,
basically Important for further progress, are of interest only for a rela-
tively small circle of close colleagues. In normal times, such reports
nevertheless could be published in scientific periodicaels without diffi-
culty. The periodicals published papers from various fields and thus
offered to a relatively large circle of readers sufficiently valuable
material. Today, this procedure is faced with considerable difficulties
which can be traced back to two main reagons: Scientific work has devel-
oped enormously so that periodicals had to he greatly increesed in number
and volume. Thus, on one hand, it takes the reader a great deal of time
to follow the literature of his special fleld; on the other hand, sub-
scription to periodicals represents a heavy financial burden. In addi-
tion, almost all sclentlsts, especially in Germany, are greatly impover-
ished and can no longer carry the increasing financial load; the sale of
periodicals is thereby reduced and the costs rise still further.

Looking for a wey out of this difficulty I thought 1t desirable to
relleve the periodicals, first of all, of reports which address only a
relatively small circle of interested parties and yet, to be understand-
able, have to be somewhat extensive. For such reports the considerable
cost expenditure required for issue of a good periodical does not pay;
such expenditure is in order only in case of a correspondingly large -
circulation. In order to acquaint the few specialists with such reports
and to make those reports accessible for later need, one can economically S
recommend only a reproduction method which is relatively cheap also in
case of small circulation. On the basis of these considerations, I have
decided to print such reports which originate In the Max-Planck-Institute
for flow research and, also, a few older reports from this field, which
are no longer avallable by Rota printing method, and to edit them in
informal sequence as communicetions of the institute. Herewith, I glve
to our colleagues the first issue of these communicatlions. May it fulfill
the tasks described. - - -

Gottingen, March 1950.
Albert Betz

LT
"Uber die Theorie der turbulenten Grenzschichten." Mitteilungen aus

dem Max-Plenck-Institut fur Stromungsforschung (GSttingen), No. 1, 1950. CoT
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SURVEY

As g rule, a division.of the turbulent boundary layer is admissible:
a division into a part near the wall, where the flow is governed only by
the wall effects, and into an outer part where the wall roughness and
the viscosity of the flow medium affects only the wall Bhearing stress
occurring as boundary condition but does not .exert any other influence
on the flow. Both parts may be investigated to a large extent independ-
ently. Under certain presuppositions there result for the outer part
"similar" solutions. The theoretical considerations give a cue how to
set up, by appropriate experiments and their evaluation, generally valid
connections which are required for the approximste calculation of the
turbulent boundary layer according to the momentum and energy theorem.
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SYMBOLS

coordinates (x, z parallel to the wall; y perpendicular
distance from the wall)

density
of the flow medium
kinematic viscosity

Velocities and pressures, stresses:

u,v,wW velocity components of basic flow (average values in

time) (U in x-direction, V in y-direction,

W in z-direction)
Ug flow velocity in x-direction, outside of the boundary layer
u,v,w components of the turbulent fluctuation velocities
P mean value in time of the static pressure ~
D fluctuations of the static pressure o
Oxs0ysTg> normal stresses

(mean values in time)

TxysTxz2Tyz shearing stresses

(in section 3 following Tyy 1s written Ty = T)
To wall shearing stress
v¥ = To/p shearing-stress velocity
cpt = 2(v*/Ul)2 local friction coefficient

Turbulence quantities:

B
s
pQ-xJ pr: QQZ

D=f s dy
. 0

kinetic turbulence energy (per unit mass) R
energy dissipation (per unit mass)

components of the energy diffusion (energy
flow per unit time and unit area) (in sec->nwi§ Xi;:es
tion 3 following Qy is written Qy = Q)

dissipation function
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z characteristic length of the large turbulence elements

(statement 1 = ky; k ~ O.k)

k,kq,c dimensionless factors according to equations (3.16),
(3.17), (3.18). (Characterized for the universal

boundary-layer flow in the range &y S y << & by the

index "O")
Thicknesses of the boundary layer:
& total thickness
By thickness of the sublayer directly affected by the
viscoslty and the wall roughness

. - |
81 =k/; (1 - U/Ul)dy displacement thickness

Bp = f W(U/Ul) (1 - yuy)dy momentum-loss thickness
o .

0 2
B3 = f (U/Ul)[l - (U/Ul)]dy energy-loss thickness
0 .

Hip = 81/82
form parameters
H32 = 83/82
Similer solutions:
¥ stresm function -
N =y/x dimensionless coordinate
m exponent of the law prescribed at the outer edge (eq
le )
Rey = -~ Reynolds number formed with the coordinste x

. (5.4))

vy,
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Empirical boundary-layer profiles:

MTJ']_ - 1?2 yv¥*
I, = —| a
oL Y 5191
3

~

o[U; - U]
_ 1 yv*
2= [, 55| )
o 11
~/

L form parameters

Lo —

c constant of the velocity profile near the wall (eq. (L.8))
X constant of the outer velocity profile (eq. (6.8))

U:8q:
Rep = =1 Reynolds number formed with the displacement thickness 8

Ui 1
B=v—*-—E-ZnRel=C+K

A form parameter in equation (6.12)
¢ =D/v*> - L 1n Re
Py 1

1. INTRODUCTION

For evaluation of the flow conditions about a body and in particular

for estimation of its flow drag, the behavior of the flow layer bordering

on the body, which may be either laminar or turbulent, is of very high
importance. Whereas, for the laminar boundary layers, the physical rela-
tions have been clarified and the mathematical problems, too, have been
worked out sufficiently to have calculation methods at disposal which are
serviceable in practice, there are, for the turbulent boundary layers,
above all still problems of a physical kind to be solved.

From the basic hydrodynemic. equations, one may derive relations for
the time averages of the flow quantities in turbulent boundery leyers
which are similar to those valid for laminar boundsry layers. Further-
more, a relation for the energy balance of the turbulent movement is at
disposal which was given first by L. Prandtl (ref. 1). In spite of
these equations, an exact calculation of the turbulent boundary layers
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is not possible since one has not yet succeeded in setting up formulas
for essential processes in the mechanism of the turbulent movement. Thus
the question arises whether there 1s, under such circumstances, any sense
in a discussion of the boundary-layer equations. Actually, however, a
few statements are poseible on the basis of the means at disposal, if one
considers the following two empirical facts which may be regarded as
absolutely certain today:

(1) The total processes are affected by the kinematic viscosity v
and the geometrical properties of the wall (wall roughness) only in a
very thin layer in the neighborhood of the wall; in thg'remaining domain
of the boundary layer, the flow appears to be practically independent of
the viscosity and the wall roughness. If the thicknessfof the layer in
which these influences are effective is cslled 8, and the thickness of

the boundary layer &, one has therefore, as a rule, &, <<3B&.

(2) Because of B8, << ® one may expect the conditions for wall
distances y‘§ &y Tto be independent of the flow conditions at the outer
edge of the boundary layer (y —3 8). Inside of the layer &, there

exists, therefore, a velocity law affected solely by the geometrical
properties of the wall; the wall shearing stress To represents the

essential parameter.

Wilth these assumptions, one may separate the influénce of the kine-
matic viscosity and that of the wall properties from the other influences.
Thereby, it becomes not only possible to dlscuss various properties of the
turbulent boundary layers but also to determine empirically, with the =id
of similarity relations, from suitable measurements, the quantities needed
for the development of approximation methods for calculation of turbulent
boundery layers. Such series of measurements with gll requilred quantities
are not avallable In a desirable form at present; however, 1t 1s possible
to perform them with today's test techniques.

In the following sections only flows of an incompressible fluld are
considered which are steady on the average.

2. ENERGY BALANCE OF TURBULENT FLOWS

Since following the motion to the last detail is not possible in
turbulent flows, a statistical treatment must be applied. The flow ]
quantities will be expressed by arithmetical mean values, and the aver-
aging in time will be simplest where one deals on the average with

stationary flows. The time-averaged velocity with the components U, V,
end W in x-, y-, and z-direction is called basic flow. Superimposed

ra
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on it is the disordered turbulence motlon fluctuating with time with the
components u, Vv, and w, which is always three-dimensional even when
the basic flow may be regarded as two-dimenslional. The velocity fluctu-
ations cause fluctuations of the static pressure which will be denoted
by 5, whereas the time average of the static pressure is expressed

by bp.

If one sets up, for the purpose of theoretical treatment, the
Navier-Stokes equations of motion for turbulent flows and performs the
time averaging, a few mean-value expressions formed from the fluctu-
ation velocities, which are to be regarded as new unknowns, remain in
the equations. In the search for further relations, in order to estab-
lish a mutual connection between these unknowns as well as a comEction
with the other flow quantities, one can derive from the Navier-Stokes
differential equations further equations which partly convey very inter-
esting insight into the turbulent flow phenomens. It is not the purpose
of this report to discuss this more closely; but an lmportant equation
among those mentioned above, which descrlbes the balance of the kinetic
energy contained in the veloclty fluctuations and for that reason is
physically the most graphic one, is utilized subsequently to a very great
extent. Since it is not yet to be found in exact form in literature, it
will be given herein for general three-dimensional flows.

With the occurrence of shearing and tensile or compressive stresses,
kinetic energy is withdrawn from a basic flow which partly reappears as
kinetic energy of the disordered turbulence motion. Let the time average
of this turbulence energy, referred to the unit mass, be

g =22 "22 + W2 (2.1)

with the bars signifying the time averaging. Owing to the viscosity of
the fluid, kinetic energy is withdrawn continually from the basic flow

as well as from the turbulence motion and is converted into heat (dissi-
pation 8); moreover, because of the turbulence motion in general, an
exchange of turbulence energy takes place between various points of the
flow space. If one deals with nonhomogeneous turbulence, which is mostly
the case, these exchange processes do not balance and an energy %rans—
port pQ occurs which one could compare to a diffusion process. An
energy balance for the coordination of these single effects (as first
formulated in this manner by L. Prandtl (ref. 1)) expresses that the sum
of these contributions equals the total (substantial) variation of the
turbulence energy. For a three-dimensional basic flow with the
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components U, V, and W this energy balance reads in the stationary

case quite generally:
— + V — 4+ W = OE
oy oz

Total variation of the turbulence energy

- ou ov oW oU , oV U , oW oV . W
T Ty T2 T T <ay ax)” (az ax)”ﬂ(az By)

Energy withdrawn from the basic flow -

0Qx BQy dQy
- 2.2
pS Bx By * dz ( )

Dissipation Energy diffusion

Thereln

Ox = p(2v -g—li - uE)
ov 2
= 2y @ 2.
%y p( S ¥ ) ? (2.3)
W _Z
o'z=p(2va_z_ )
W/

are the time-averaged normal stresses and
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_ I
U , oV —
"xy”"(srs;)'“‘]
L
R U , oW ]
sz=pv(—+—)—ﬁ (2.4%)
- dz ox | >~
oV . oW —
Tyz=pv(—+—->—W
o dz Oy S

are the time-averaged shearing stresses. For the dissipation the
expression

oo () - 2(2) +=(8) - () -

QU oW 2 v U 2 du 2 ov 2 S 2
- W
(é‘z‘““a_x) +<a—x+$) +2<$> +2('a?> +2(8_z) ¥

2 2 2
ow , ov ou , ow ov , du ‘
(ay * az) * <az M BX> * <Bx * BY) (2.2)

is valid, and the camponents Q, Q,y, and Q, of the energy diffusion
have the following form

y R— "
_v(a_E_+8u +Buv+3uw)+u(u2+v2+w2+g)

% = ox Ox oy dz 2 p
(&, . B ow (u2+v2+w2 5)
Q'Y_-V<$+ax +By +az>+v S +3 > (2.6)

_ _o[2E , dwu , dww o (u2+v2+w2 n_i}_)
%z "(az+ax+ay+az>+“ 5 *5

-/
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Equation (2.2), the derivation of which would be too lengthy here, 1s
attained by addition of the three Navier-Stokes equations of motion
after they have been multiplied by u, v, and w, respectively. By
application of the continulty equation and several transformastlions one
finally obtains, after having formed the mean values, the form (2.2)
with the expressions (2.5) and (2.6).

After this explanation which applies quite genefélly for turbulent
flows, we shall deal with the special problem of turbulent boundary-
layer flow.

3. EQUATIONS OF THE TURBULENT BOUNDARY LAYERS

3.1. Basic equations

In the following, the x-axis is assumed to lie parallel to the wall
and y to be the vertical distance from the wall. The three-dimensional
turbulence motion with the components u, v, W 1s assumed to be super-
imposed on the components U and V of the two-dimensional basic flow
in x- and y-direction. The boundary-layer equation -for a two-dimensional
flow along a plane wall resulting from the Navier-Stokes equations of

motion then reads with the slmplifications introduceddby L. Prandtll

U ol op . BT
( dx tv By) "= ’ (3.1)

, l'I‘he theory developed by L. Prandtl in 1904 at first for laminar
boundary layers starts from the fact that the processes producing the
friction drag take place in a very thin layer on the body. Accordingly,
one may assume, for simplification of the problem, that the velocity
component V normal to the wall is small compared with the component U
acting parallel to the wall; furthermore, the static pressure p may be
assumed to be independent of the wall distance. An estimation of the
order of magnitude then indicates which terms in the equations may be
neglected. In case of turbulent boundary layers the mean value p 1is

influenced by the velocity fluctuations (p =Py - pv2; Pg =P for y = O)'
in the derivation with respect"to x +this slight Influence is partly com-

pensated by the term -Bu%/éx neglected in equation (3 1) so that Jp/dx
may be regarded as independent of Y.
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Furthermore, one uses the continuity equation for the basic flow

W, W

=0 3.2
ox OJy (3.2)

The contlinuity condition must of course be satisfied also by the fluctu-
ating motion u, v, W which is already taken into consideration in the
following formulas. In case of turbulent boundary-layer flows, there
applies for the shearing stress T 1n the xy-plane the exXpression

T = p(v %% - EV) (3.3)

Herein uv 1is the time mean value of the product of the fluctuation
components u _and Vv acting verticelly to one another. The
expression -puv 1s also denoted as Reynolds stress.

We now include into our congiderations as & further equation the
energy balance of the turbulent flows given in section 2. For steady
two-dimensional boundary layers expressions (2.2), (2.5), and (2.6) are

simplified, under the customary assum.ptions2 to

p<U %% +V %%) =T %% - pS - np %% (3.4)
2 2 2 2
oU du ov ow
S = = 2{ = 2( — 21 =
A& (%) 2 (S) (B
o o) 2 9 o 2 o) o) :
ow , oV ou , oW ov , ou .
<By * Bz) * (Bz * ax> * <Bx * By) (3.5)

_ fE  »® (u2+v2+w2 '5)
Q= v(ay + a;f>-+ v 5 + s (3.6)

2See also footnote 1. T 1is put equal to Txy and Q 1is put equal

to Qy. The indices may be omitted here as before in equation (3.1) and
later on, since & confusion is quite impossible.



12 B NACA ™ 134k

The boundary-layer equations (3.1), (3.2), end (3.4) have to satisfy
the following boundery conditions:

y=0: U=0; V=0; u2=v2=w2=0

y—>8: U —Uy; ?%0;?—)0;- w_é-—eo (3.7)

U, 1is the velocity outside of the boundary layer which is assumed to be
Prescribed as & function of x.

These reletions are valid under the assumption of a sufficiently
smooth wall. For uneven wells the formulation is considerably more
camplicated. In sectlon 4 we shall revert to the trestment of rough
walls where unevennesses of a certaln mean magnitude are statisticelly
distributed over the surface.

3.2. Momentum end Energy Theorem

If one introduces the quantities ' =

oo
Displacement- thickness &, =k/n ( - LL)dy (3.8)
o\ U1
® U
Mcomentum-loss thickness 8o =‘jp ll( - ——)dy (3.9)
o U1 U

and wall shearing stress To =7 for y =0, one mey derive from equa-
tlons (3.1) and. (3.2) the momentum equation

d( 2 ) Uy T
U85 } + UyBy —= = 2 | .10
dx 1%z 1-1 dx (o] (3 )

vhich has proved to be advantageous for the -approximeted integration of
the boundary-layer equation, and which has the sasme form for turbulent
as for laminer boundary layers.
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By integration over y one may develop from equation (3.4) a corre-
sponding energy equation. The partial Integration of the left side of
equation (3.4) yields, with use of equation (3.2)

f ( aE+v3’*‘3)<1:>r_—y/ﬁ UE dy (3.11)
0 ax

Furthermore there epplies for the basic flow the relation to be derived
from equation (3.1) (cf. the reports by K. Wieghardt, ref. 2)

Wy pd [ U2 2 .12
/; U ay pdxfo (0,2 - v?) ay (3.12)

The diffusion term in equation (3.4) dissppears in the integration

NE

since the components u, v, w tend toward zero for y = 0 as well as
for y —> 8. After introduction of the energy-loss thickness

and of the dissipation function L
>~}

D = f S dy (3.14)
0

one then obtains as the energy theorem

%%(Uf’ag)) = D + d%/; UE dy  (3.15)
A A A\
(ﬁnergy flow loss of ) (Dissipatiggj (Increase of the )
the basic flow per turbulent energy
unit length : flow per unit
length

This equation is significant for the behsvior of turbulent boundary
layers. The energy losses of the basic flow essentially are first con-
verted into kinetic turbulent energy which in turn is transformed into
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heat by friction; however, the converslon of-the basic -flow energy into
turbulent energy, and the transformation of the turbulent energy into
heat need not take place at the same location and at the same time. This
state of affeirs is expressed in equation (3.15). Very frequently the
increase of the turbulence energy flow cohtributes only slightly to
equation (3.15) — thus, for instance, in case of ordinary plate flow
without pressure gradient — however, there are also cages where thils )
term gains more significant influence besides the dissipation function.

3.3. Supplementary Considerations Regarding Boundary-Lsyer Turbulence

By qualltative considerations one obtains a survey of the connec- |
tione still lacking between the quantities E, uv, S, sand @ occurring
in the energy balance (eq. (3.4)). We shall limit ourselves especislly
to the region y 2 8, where the viscosity of the flow medium mey be

regarded as arbitrarily smsell. First of all, the terms with Vv 1n equa-
tions (3.3) and (3.6) are hereby eliminated; whereas, in equation (3.5)

the contribution V(BU/By)2 of the basic flow to the dissipation
“becomes negligibly small.

The amount E of the kinetic energy of the turbulence, which is a
quentity sultsble for dimensional considerstions, is composed of the
contributions of a very lerge number of turbulence elements of many
different orders of magnitude; however, there exist for turbulence two
characteristic lengths. One is the characteristic length 1 for the
dimensions of the large turbulence elements, which for boundary-layer
flows 1s glven gpproximately by the pertinent dlstance from the wall.
The second is the diameter 1y of the smallest turbulence elements,

which is determined by the quotient of the kinematic viscosity and the
mean fluctuation velocity — thus, approximately by V/VE. For the fol-
lowing considerations, the fact is important that the kinetic energy B
1s contained chlefly in the large elements and thet, therefore, the
momentum and energy exchange phencmena are essentleslly caused by the
large elements. If the viscosity is sufficiently small or, more accu-~

rately, if the Reynolds number i%l of the turbulence 1s sufficiently

large, which 1s the case in the region y 2 &, we need in our consider-
ations only to refer to the one characteristic length 1 which corre-
sponds to the dimensions of the large elements to meke The total effects
of turbulence independent of the viscosity. h

The apparent shearing stress puv caused by the turbulent fluctu-
ation velocities may be traced back to a momentum transport which can be
expressed by the form used by L. Prandtl (ref. 1)

T _ = _ a_U e .
5= "W xVE? Sy - (3.16)
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wherein k 1is a dimensionless factor. The product kVEL represents

an apparent kinetic viscosity (mm2/éec) or, respectively, an exchange
quantity — concepts first introduced by J. Boussinesqg and W. Schmidt.

By considerations similar to those on which .equation (3.16) is
based, one arrives for the energy transport Q caused by exchange phe-~
naomena at the expression introduced by L. Prandtl (ref. 1)

- - oE
Q = -k VEL 5

Since, however, the turbulence elements of different order of magnitude
have different energy density, an energy diffusion takes place, not only
vhen an energy gradient is present but is obviously possible -also when
the turbulence at adjacent locations differs only by the linear dimensions
or by the structure (for instance, the energy spectrum). With this inter-

pretation the expression
a<quE3/2)

Q = -—=

(3.17)

is justified,3 which originates by teking the exchange quantity kVEL
for the energy transport under the differentisl sign. Prandtl's form
is contained in expression (3.17) a8 a speciel case. Here again kg

is a dimensionless factor which like k in equation (3.16) is chiefly
determined by the structure of the large turbulence elements.

In contrast, the energy dissipatlion is caused mainly by the small
elements. If one combines again the influences dependent on the struc-
ture (that is, the spectrum) in a dimensionless factor c1, one obtains

according to equation (3.5), with omission of the contribution V(BU/By)e,
the relation

3The expressions (3.16) and (3.17) cannot yet lay claim to full
general validity. A further discussion of these questions is not pos-
sible within the scope of this report and will, therefore, be the subJject
of another publication. For the present problem, the expressions (3.16)
and (3.17) are, at any rate, sufficient.
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Herein cl 1s determined chiefly by the amall turbulence elements and is

independent of the Reynolds number only for very small J—i (cf. ref. 3).

For sufficiently large Reynolds numbers, we ay express the dissipation
process as a wandering of the kinetic energy (taking its course inde-
pendently of the viscosity) from larger to smaller eleménts whereby,
however, the energy content of the turbulence motion doés not change.
The extent of transformation into heat, occurring almost exclusively in
the smallest turbulence elements, is guided by the smount of energy
supplied to them by the larger elements (cf. the reports by C. F.

V. Welzsdcker (ref. 4) and W. Heisenberg (ref. 5)). Thus for large
Reynolds numbers, one mey replace in the given expression for S the
kinematic viscoslty by an epparent kinematic viscosity of the dimension
VEl one then obtains the relation

g3/2

S =c¢ - (3.18)

which 1s valid for y 2 By The magnitude of the factor c¢ appearing

The dimensionless gquantities k, kq, and c, (appearing in equa-

tions (3.16), (3.17), and (3.18)) which depernd on the structure of the
turbulence, will generally assume amounts differing from point to point;
however, for sufficlently large Reynolds numbérs, they are independent
of the kinematic viscosity. Their calculatlion presupposes complete
theoretical mastery of the statistic behavior of the turbulence motion.
This goal, for turbulence research, however, is still far remote. For
the followlng investigations, k, kq, and c¢ are therefore introduced

formally as functions of the location although without selection of
special statements. However, it wlll be posgsible to assume offhand that
they are continuous functions and do not become infinite at any point.

For the characteristic length 1 in equations (3.16), (3.17), and
(3.18) for the large turbulence elements, there is, with consideration
of the regions near the wall, the expression

1 =Ky (3.19)

of advantasge where k 18 a general constant. In this form, the length 1
is in the region B8, S y << & identical with the mixing length introduced

by L. Prandtl (ref:- 6). For the sake of simplicity, the expression (3.19)
is used for the entire boundsry layer, although the dimensions of the
large turbulence elements for larger distances from the wall no longer
increase in proportion to y. The deviations between the actusl dimen-
sions of the large elements and the expression (3.19) one may assume as
taken into considerstion in the factors k, kq, end c.
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By introduction of the relatiomns (3.16), (3.17), (3.18), and (3.19)
into the boundary-leyer equations, one may obtain a few statements
regarding the behavior of the solutions; no limitation of the general
validity seems to be connected with it.

4. THE UNIVERSAL TURBULENT BOUNDARY-LAYER FLOW

For wall distances which are small compared with the boundary-layer
thickness &, the shearing stress does not noticesbly deviate from the
value To of the wall shearing stress and the flow conditions are here

practicaelly independent of the pressure gradient Bp/ax. It has already
been mentioned in the introduction that the viscosity and the wall rough-
ness exert an immedlate influence on the flow phenomens only in a layer

of the thickness &, adjacent to the wall. If this thickness 8, 1s

sufficilently small, there will certainly exist wall distances y larger
than B8y, yet so small compared with the boundary-layer thickness & that

in this region a universal boundary-lsyer flow results for which all flow
quantities are determined by only two quantities which have physical
dimensions, namely, the shearing stress velocity

= [fore (4.1)

and the absolute distance y from a plane of reference which practically
coincides with the wall surface. This flow is influenced by the viscosity,
the wall properties, and the pressure gradilent Bp/ax only insofar as
they determine the magnitude of v*. Aside from this influence, the flow
in thie region i1s not affected by either the outer boundary conditions or
the wall properties and the viscosity. The velocity varlation of the
basic flow is prescribed for &, y << ® by the known relation (ref. 6).

kY U _ v . (4.2)

Therein kK ~ 0.4 is a universal constant which is identical with the
value k in equation (3.19).

Not only the velocity variation is known, however, but also important
statements are possible concerning the turbulence energy and dissipation.
Within the validity range of the universal boundary-lasyer flow no value
of y 1is in any way distinguished. The structure of turbulence (energy

spectrum, etc.) is therefore similar in all sections parallel to the wallh.
J

With the exception of the smallest turbulence elements.
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Owing to this similarity and the equality of the shearing stress Tg = -pﬁ?,
the energy E has s value independent of the wall distance y so that the
turbulence at different wall distances of this reglon differs only in its
linear dimensions.

The factors k, kg, c in expressions (3.16), (3.17), and (3.18)

become for 3 s ¥y << 8 generally valld constants which we shall emphasize

by the subscript "O (ko, kqo, co). With -u¢ = v*° eand 1 = ky there
follows from the relations (3.16) end (L4.2)
2
% .
E = (Y—) (""'3)
ko

With this value, the expression (3.17) then ylelds for the energy trans-
port Q caused by exchange a value also independent of ¥

k
. -- (k1)

which obviously corresponds to an energy flow in the direction toward the
wall. Since, furthermore, under the presuppositions named, the terms on

the left side of equation (3.4) become, in first approximation, small com-
pared with the expressions on the right side and finally (because Q = Const:)
the last term on the right side disappears, the dissipation is, for

y << 8, equal to the energy withdrawn from the basic flow:

s =90 %Q-= v*2 U B (4.5)

Hence results with expressions (3.18), (3 19), (L. 2), end (4.3) the
relation :

co = ko (4.6)

which like equation (4.3) was found by L. Prandtl (ref. 1); on the basis
of measurements, the value of k, was estimated to be kg = O. 56.

-



NACA TM 134k 19

The existence of the universal boundary-layer flow in the region
BW.§ ¥y << 8 suggests the division of the boundary-layer flow into a

part near the wall (O € y << &) and an outer part (y > 8y). The flows
of both parts merge asymptotically into the universal boundary-lasyer
flow: The flows of the first part with increasing y, those of the
second with decreasing y. The advantage attained by this division is
that one is now able to investigate the flow phenomena in each part
separately with reduction of the influencing quantities (experimentally
or theoretically) end to combine both parts, as occasion demands, since
both have the same asymptotic variation at the point of Junction.

For the part near the wall (0 S y << 8), there exists a velocity
law of the general form (ref. 6)

*.
U= v*f(vv—y) (4.7)
V* . ‘V'*
wherein the function f<ﬁaz) is dependent not only on "Vz but, in

general, also on the wall roughness. The existing experimental results
on smooth and rough walls may be understood and represented in formulas
(ref. 7) directly up to the wall, and with aid of L. Prandtl's mixing-
length expression. Here we are interested only in the asymptotic form
for y >8, which results from relation (4.2) by integration:

U =V*E ln$+gl (4.8)

Therein the constent C 1is a function of the wall roughness.

The outer part (y > 8y) has to satisfy the boundary-layer equations
glven in section 3.1; using the relatiohs named in section 3.3, one may,
however, neglect herein the kinematic viscosity. In flow problems of
the practice, the desideratum usually is the boundary-layer flow, with
the velocity at the outer edge U;(x) eand wall properties and viscosity

prescribed. For theoretical investigations, the problem may be formulated
differently: beside Uj(x), the shearing stress velocity v* is pre-

scribed es a function of x and the desideratum is the wall condition
required in order to produce this variation +v¥*(x). Instead of the
boundeaery conditions indicated in section 3.1, in this problem the fol-
lowing conditions for 1lim y —>» 0 at the wall (y = 0) must be satisfied
for the outer part (y > dy) in order to guarantee the connection with
expression (4.8):

£\2

lim ou Ef; V = 0; E = (X—) (4.9)
y—>0% k¥ ko
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2 - -
Since on one hend the value <%t) which corresponds to the local
l .

friction coefficient cp'

(ﬁ) L IR - (4.10)

may be estimated quite satisfactorily, according to existing approxi-
mation formulas (for instance, ref. 10), even without exact knowledge
of all boundary-lsyer detalls end varies only slowly with x, and since
on the other hand the velocity profile of the outer pert in case of
appropriate normalizetion seems to be dependent on v*/Ul only to a

comparatively slight extent, as will be shown later, & treatment of the
boundary leyer in this menner where the outer part is simply determined
with v¥*(x) and Uj(x) prescribed promises soame prospect of success

also for the first-named problem of practice.

The presuppositions for the division into two mutually independent
regions are, in most cases, satisfactorily fulfilled. This is, however,
by no means self-evident and is, therefore, to be checked for the indi-
vidual case. For this purpose, we add the following orders of magnitude:
The thickness &y 1s for smooth walls B, ~ 100 V/v¥*; the pertinent

Reynolds number of the turbulence for y =38, is JEZ/V ~ 100. For

pronounced wall roughness, &, 'is determined by the dimensions of the

roughnesses. According to the experiments of J. Nikuradse (ref. 8) on
sand-rough pipes, 5w is approximetely equal to the grain size of the

roughness; the y-values are measured in this case from a plane of refer-
ence in which U, on the average, disappears.

5. EXISTENCE OF SIMILAR SOLUTIONS

5.1. Differential Equetions and Boundary Conditions

It will now be shown that under certain assumptions so-called similar
golutions exlst for turbulent boundary layers, too, similar to the case
of laminer boundary layers — that is, solutions for which the wvelocity
profile along the wall 1s distorted only a¥ffinely. We Investigate the
solution of the boundary-layer equations to be expected, with neglect of
the viscosity, in the range ¥ >’&w. In order to satisfy the continuity

-
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condition, we introduce for the basic flow the stream function ¢ from

which the components U and V are deri'ved.5 by the'relationé
U=’4{; V=_~qr

After substitution of this function into the equation of motion (3.1),
there follows

=1 - (T
by - ¥ ==L, - (@), (5.1)

and the energy equation (3.4) assumes with the relatioms (3.17), (3.18),
and (3.19) the form -

— 3/2 3/2
wax - WxEy = 'uvay -c Eny + (nquE / )yy (5.2)
Finally, one obtains for uv according to equation (3.16)
-uv = deﬁywyy (5.3)

It may now be shown that for velocity distributions prescribed st -
the outer edge of the boundary layer of the form

Uy = ax® (5.4)

with & and m being constant quentities, and for a prescribed constant

v*/Ul there exist similar solutions for relations (5.1), (5.2), and.(5.3)6.

If the flow is unaffected by the viscosity, the geametric similarity of
the flow pattern requires that the boundary-layer thickness for similar

5Partial derivetives with respecﬁ to x end y in this section are
expressed by subscripts x and y.

6Constant v*/Ul signifies a constant local friction coefficient.

Under what clrcumstances and to what extent this assumption can be
practically satisfied is shown in section 5.2.
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solutions increese linearly
the dimensionless variable

-—  NACA TM 134k

with x!.
n = y/x and mseke the statements

For this reason, we introduce

(5.5)

~
¥ o= axm"'lE] - f(nﬂ
E = a2x0e(n) S
- = e2x Tp(n)

Therein f£(3), o(n), @(3) are only functions of the variable 7. 1In

order to satisfy the prescribed boundary condition (eq. (5.4))} in case

of large y, f(n) must for large v tend asymptotically toward = a
constant value — that is, Iim £*(n) = 0 must be time. Thus, there
N —>
follows fram equation (5.1) for 1§ —>
-1 = 2m-1 Z
5 Py = 82mx : (5.6)

which results also directly from relation (5.4) snd Bernoulli's equa-

tions.

After substitution of equations (5.5) and (5.6) into eque-

tions (5.1) to (5.3), one obtains after division by

—aExzm’l, a2x2m, a3x3u-1

respectively

2nft - mf1e
(1 - £')2mo

ot C
_q)f -

3/2 2 3/2)
o 4= [k
1 + oK _—§< qﬂ¢ &

¢ = -kkn|of"

- (m+ 1)(n - £)F" = 4@

+ (1L + m)(f - 5)0* =

(5.7)

"The same results also from the momentum theorem (eq. (3.10)).
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In this system of ordinary differential equations, x no longer appears
explicitly so that one actually has to expect systems of solution of
equations (5.5) where the boundary-layer thickness & increases line-

8

arly with x *.

For unequivocal determination of a solution, five boundary condi-
tions must be prescribed. In order to satisfy the three boundary condi-
tions (relations (4.9)) at the inner edge, one has to put

lim  £" =..l§§; £(0) = 0; o(0) = Po_ (5.8)

with ¢O = 9(0). Two conditions at the outer edge of the boundary layer
are added:

lim f' = 0; ®=0 (5.9)
N ——> o ) .

The first insures that the basic flow merges with the prescribed flow;
whereas, the second causes the turbulence intensity outside of the
boundary layer to die out to zero.

5.2 Properties of the Similar Solutions

Owing to the conditions at the inner edge, there appears, in addi-
tion to the parsmeter m occurring in equations (5.7), as a further
freely selectable quantity the value @5 which like the local friction

coefficient cp' is according to relation (%.10):

2 cp' T,
% = (zt) - -2 (5.10)
U, 2 pU

The solution of the system of equations (5.7) with the boundary condi-
tions (relations (5.8) and (5.9)) is, therefore, a two-parameter curve
family. The velocity profile of the outer part, most interesting in
these solutions, may be represented in the form

G-Uy 2

v V@0

8For instance, the displacement thickness 81 according to equa-
tion (3.8) is: By = xf(=).

(5.11)
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and is dependent on the two parasmeters m end v¥*/U;. Likewise, ‘there

results, of course, for the pertaining "turbulence profile,” that 1s
the plotting of the kinetic turbulence energy

E
;;g(ﬂ) = Eégl _ (5.12)

over 71, &also a two-parasmeter curve family dependent on m and v*/Ul.

For turbulent flows in a pipe or between parallel walls, the
velocity profile corresponding to equation (5.11), plotted over the
wall distance y divided by the pipe dlameter or, respectively, the
mutual distance of the walls (so-called "center law'), is independent
of the magnitude of the friction coefficient (compare, for instance,
ref. 8). It seems appropriate to point out this difference between
turbulent pipe and boundary-layer flow. Furthermore, attention should
be called to the difference compared to the leminar boundary layers
where the velocity profile is a function of only one parameter,
namely m. B

The solution of equations (5.7), valid only for wall distances y 2

must be supplemented by the wall profile (relation (L4.7)) in order to
obtain from it the complete velocity profiles. The condition for the
contimuous Junction of the outer part to relation (L4.7) is obtained by
elimination of the quantity U/v¥*, with the aid of relation (4.8), from
the asymptotic form

Ul - U 1 . v¥* -
e =) + K(m, .U_l-) (5.13)

resulting for small n-values by integration of f£" according to rela-
tions (5.8). In this menner, one obtains

Up 1., Uz ¥ 1, Ux B
T*+-EZHF-K<M,—)—-EZHT+C-- (5-lll')

The constant K(m, v*¥/U;) in equations (5.13) and (5.1%) may be deter-
mined, in case of prescribed parameters m and v*/U;, from the system
of equations (5.7).

The solutlions of the outer part hereln discussed héve real signifi-

U,x
cance only when the Reynolds number Rey = —%a end the wall roughness,

the effect of which is expressed in the quantity c, are such that equa-
tion (5.14) is identicelly satisfied for all x-values.
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For extremely large Reynolds numbers, there exists a linear rela-
tion between C and the logarithm of the length characterizing the

roughness (for instance, of the grain size k)9, so that the right side
of equation (5.14%) becomes independent of x when the grain size k 1is
proportional to x — that is, when k/x = Const. For hydrodynemically
smooth walls and for constant roughness where C 1is a constant, the
condition (eg. (5.14)) cannot be rigorously satisfied for all x-values.
This would be possible only in the case m = -1 which has, however, no
physical significance because then the flow separates from the wall.
However, since x in equation (5.14) appears in logarithmic form, it
will be permissible to regard, for sufficiently large x-values, the
expression on the right side of equation (5.14%) as epproximstely con-
stant from x-interval to x-interval alsoc for asrbitrary m. Under this
assumption, one may regerd the similar solutions with practically suf-
ficient accuracy as valid for the individual interval also for smooth
walls and for walls with constant roughness. It is, however, essential
that the value

be so small that the function (Ul - U)/v* at the point y/x = B, /%

actually deviates only slightly from the asymptotic form (eq. (5.13)).

Otherwise, the method selected, jolning the wall law (eq. (4.7)) to the
golutions obtained with neglect of the viscosity effect, does not lead

to useful results.

Since the required conditions are rarely satisfied in actual cases,
the similar solutions will evoke chiefly theoretical interest. One has
here a type of solution of the boundary-leyer equations which offers a
comparatively simple survey and is thus suitable for the study of theo-
retical problems. It could be shown that the solutions of the outer
boundary-layer part depend on v*/Ul. On the problem regarding the

extent of this influence, which is one of the next-to-most-important
ones, one can, at the time, obtain information only from experiments,
as will be shown in section 6. :

It is perhaps necessary to point out that the only assumption for
the derivation of these theoretical results was that the Reynolds number
of the turbulence should be sufficiently large (except in the thin sub-
layer Sw) so that the viscosity mey be neglected in the boundary-layer
equations; aside from the customary boundary-layer simplifications no

9For sand-rough walls, there spplies, for instance, according to

the experiments by J. Nikuradse (ref. 8): C = 8.5 - % in Z%k_
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restricting hypotheses were introduced. The findings thus have general
validity. However, if one wants to determine the solutions of equa-
tions (5.7) numerically, one cannot forego some hypotheses; that is,

one would have to introduce special formuldtions for ¢, k, and kq.
Thus, one would, for instance, insert constant values for the factors c,
x, kq. This we shall not do, however. Instead, we shall attempt to

obtain a survey of the solutions by empirical method by using the knowl-
edge sttained from existing test results. Since nowadays measuring
series exist where the wall shearing stress was determined by a special
measurement (refs. 9 and 10), a sorting of the experimental data can be
undertaken with greater success than was so far possible.

6. EMPIRICAL BOUNDARY-IAYER PROFIIES

6.1 Velocity Profiles

Theoretically, for the boundary layer on the plate with constant
external pressure (the constant external pressure appears as special
case m = O in the system of egs. (5.7)), a family dependent on the
local friction coefficient, thus a single-parameter family, would result.

Uy - U
However, the plotting of ot S against y/S according to F. Schultz-

Grunow (ref. 11) shows that the profiles within the considered Reynolds
number range may be represented with practically sufficient accuracy by
a single curve. Since the boundary-layer thickness -3 used for the
plotting 1s & quantity which can hardly be exactly défined, the expres-
sion yv*/(BlUl) instead of y/S is introduced as Feference value with

use of the displacement thickness ;. Thereby the abscissa scale is
fixed so thet the integral value becomes -

k/nw Yi-d d<?v* ) =1 . (6.1)

as one can see from & comparison with equation (3.8). In figure 1, the

U, - U R
values —;—;7— for the flat plate without pressure gradient were plotted
v

against log T The test points of the smooth plate according to

1Y1 —_— .j- : -
reference 11 fall almost into a single curve; nevertheless, close obser-
vation shows & small systemetic influence of the value v*/Ul. In con-

trast, the test points of the rough plate show according to reference 21
somewhat large deviations due to the greater variation of v*/U;. This
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investigation admits the conjecture that the magnitude of the local
friction coefficient ie, in case of appropriate normalization of the
y-scale, of only moderate influence on the velocity profile.

The boundary-layer profiles measured for variable course of pres-
sure at the wall may be represented in the same manner. Figure 2, in
which several profiles of the quoted measurements by H. Iundwieg and
W. Tillmann (ref. 10) are represented, shows that the pressure vari-
ation exerts s considerably stronger influence on the profile shape
than V*/Ul.

Performance of approximation calculations requires by no means
knowledge of the boundary-layer profiles to the last detail; it is,
on the contrary, quite sufficilent to be oriented regarding the rela-
tions between the individual parameters (displacement thickness )

momentum-loss thickness 8p, energy-loss thickness 83, and others).

Various authors (refs. 10, 12, 13, 1%, and 15) found empirically that,
for the profiles of turbulent boundary layers, for arbitrary pressure
increase, these relations ‘are almost unequivocal - that is, that the
boundary-layer profiles can be described approximately by only one
parameter. Further treatment of test material will be based on this
presupposition. The relation between the prescribed velocity distri-
bution Ul(x) and the profile parameter to be defined more closely is,

at first, not yet established. This relation is ascertained only by
application of the momentum theorem (eq. (3.10)) and of the energy
theorem (eq. (3.15)) - a method which, in principle, has been known for
a long time for the calculation of laminar and turbulent boundary leyers
and has been very successfully spplled in approximation methods. How-
ever, one should not forget that this type of single-parameter repre-
sentation is no more than an approximation as opposed to the fact that,
according to the theory, even in the simplest case of similar solutions
a8 two-parameter family is to be expected. The reason for the usefulness
of this approximation lies perhaps in the fact that (as was observed in
the case of the flat plate without pressure gradient) the influence of
one of the two parameters - namely, of the local friction coefficient -
is generally probably little noticeable if the y-scale has been suiltably
normalized.

The next step is bringing the desired parameters into a form which
rermits separate consideration of the influence of the viscosity and of
the wall roughnese. For the momentum-loss thickness 8o, there applies

according to equation (3.9)

S O RO VA e A
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which may also be written as

Bp = sl( - g—*l‘ Il) (6.3)

The value

kil U 2 )
L - )
L =fo [ v¥ ] d<51U1) .

is, under the assumptions, made practically independent of the veloclty
distribution for y < 8y. Iikewise there results for the energy-loss

thickness according to equation (3.13)

o 2 L o 2
8=f 11-£)d=zf -E-)d-3f 1--1)d+ —————
3 0U1[: (Ul Y o< o)™ 0( uy) 7

or

where . - -

3 _
_ °°Ul - U yv¥
I, _£ [ — jl d<8—lU-l-> (6.7)

also 1s practically independent of the profile form for y < &y;.

The profiles of the representatlon figures 1 and 2 have according
to equation (5.13) for y —> &, the form

U, - U % ’ .
1 N TP A (6.8)
v¥ K 51Uy
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with the quantity K of a different amount for every profile form.
Since, on the other hand, the velocity profiles have for smsll y-values
(3, Sy « ) ‘the form of expression (4.8), there results by substi-

tution of expression (%.8) into equation (6.8)

in Rey + B _ (6.9)
if

Rey = ——— | (6.10)
is the Reynolds number formed with the dlsplacement thickness and B is

B=C+K (6.11)

The quentities Iy, Io, and K are pure form parameters which can be

immediately derived from the profile form and do not depend on the form
of the wall law (eq. (4.7)) if the condition &; << & is sufficiently

satisfied. For & single-parameter profile family, there exists an
unequivocal relation between these gquantities which can be determined
empirically from existing measurements. For the following consider-
ations, we shall regard I as characteristic form parameter and

express the others as function of Ij.

In order to obtain some sort of numerical basis for this empirical
relation and thus to get away from the scatter of the test points, also
to facilitate. the extrapolation in the region not comprehended in the
measurements, the velocity profile (y 2 5w) is represented by a simple

approximation expression which starts out from the wall law (eq. (4.8))

U=v*[}]€'(znv—:z+A%>+(] (6.12)

A 1is a freely selectgble constant. The thickness & of the boundary
layer is defined for y = 8 by the condition U = U,, so that the quali-

fying equation for 3 reads

U = V*E_L(zn ¥ 4 4) + ﬂ (6.13)
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From expressions (6.12)} and (6.13), there follows for the outer part of
the velocity profile -

Up-U 2, 3\ 1.y _
—vTr-—E< -g)—-ﬁlng (6.114-)

For the displacement thickness, there results hence with equation (3.8)

A

B,U 1y, -0 L+3 =
211 1- d(z.) -2 - (6.15)
s  J, ~ v*  \B 5
Furthermore, the quadratures yield: -
2 3 1,2 )
I, = d<g = (6.16)
8,U; Jo v¥ _ m@_+ A
2
3 6 +2%p 4 1L 42 1,3
_ B (Ul U) ) -—2 € b 6.y
81010 \ v¥ \8 o n2(1 .\ é)
2

Thereby the relation between I, and I, is_given by a parameter

representation which is plotted in figure 3 for = 0.4 and comparedlo
with the quoted measurements by H. Ludwieg and W. Tlllmann (ref. 10) and
F. Schultz-Grunow (ref. 11).

For the quantity B in equation (6.9},

A
1+ 2

B=C+ % - % in - (6.18)

107me relatively large scatter of the test points fér small I;-values

is without practical significance because the term in equation (6.6)
dependent on I, contributes only a very small percentage to 83; the

scatter is explained by the fact that the experimental Ii— and Io-values

were not obtained directly by guadratures but were calculated backward
from the 8;-, 8o~-, and 63-va1ues determined by quadratures with use of

the experimentally ascertained v*/U; from equations (6.3) and (6.6).
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would result from expressions (6.12) and (6.13). Although the expres-
sion (6.12) renders the velocity profile on the average quite satis-
factorily, deviations do appeasr in details, which take effect chiefly
in the quantity K according to equation (6.8). Therefore, the B-value
is not satisfactorily represented by equation (6.18); the modified form

A
1+ 5

K

1

A .
B=2C+ 0.82 = - in (6.19)

is more appropriate, as shown by the comperison with messurements repre-
sented in figure 4 for C = 5.2 and k = 0.k,

Figures 3 and 4 may be regarded as a confirmation for the usefulness
of the representation dependent only on the form parameter I; eand of

the expression (6.12).

6.2. Turbulence Profiles

If one considers use of the energy theorem (3.15), one needs data
one cannot obtain from the velocity profile alone. In order to ascertain
the magnitude of the energy flow, one requires the turbulence profile
which in a dimensionless plotting corresponding to figures 1 and 2 is

represented as E/v¥2  over (yv*)/(SlUl). Herein E/v*2 tends in the
neighborhood of the wall y — o, toward the universally valid value
given by expression (4.3) and decreases for ¥y < By very rapidly to

zero. Although it is fundamentelly possible to determine, with known
hot-wire errangements, the quadratic mean values of all three fluctuation
components experimentally and hence, according to relation (2.1), E
numerically, eveluable measurements exist only for the component u
which, it 1s true, yields the most essential contribution to E. The

longitudinal oscillation profiles JEE/;* represented in figures 5
and 6 were meassured by means of the turbulence-messuring device of ~
W. Tillmenn (refs. 16 and 21) developed by H. Schuh. The conjecture
following from the universal boundary-layer flow and &; << & +that the

Ju?/;* tends toward & universal value in the same manner as E/v*2 for
Y —> 8, 1s only insufficiently confirmed by these measurements. The
reason probebly lies in inadequacles of measuring technique.

According to the considerations of section 5, two-parameter curve

families for E/v*2 would result for the similar solutions. If, how- _
ever, the Influence of the one parameter v*/Ul on the velocity profile

is small, which is probable according to the preceding section, one may
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conclude with some certainty from consideration of the third part of
equation (5.7) that this parameter exerts only slight influence on the
turbulence profile as well. Figure 6 confirms the correctness of this
reasoning for the longitudinal-oscillation profiles of,the plate flow
without pressure gradient for smooth and rough surfaces. Thus, the con-
Jjecture suggests itself that the quantities of interest 1n turbulence
profiles may, like the parameters of the velocity profiles, approxi-
metively be described by an unequivocal relation to the form parsm-

eter I,. This assumption is teken as the basis of the further

investigations.

As could be determined so far, the variation of the turbulence
energy flow mostly does not meke a very significant contribution for
two-dimensional boundary-layer flow, so that a somewhat liberal treat- .
ment of this influence seems, as a rule, permissible. From a few older’
measurements by H. Reichardt (ref. 17) in a rectangular channel, by
H. C. H. Townend (ref. 18) in a square pipe, and by A. Fage (ref. 19)
in a circular plpe, the order of magnitude of the v- and w-variation
components can be estimated. Near the wall, the v-component in particu-
lar is essentiglly smaller thaen the u-component; at larger distance from
the wall, the magnitudes of the v- and w-components approach that of the
u~-component. '

According to definition of the integral expressions practically
independent of the wall law (eq. (k.T))

o @ '
yv* Uy - U *
IT =f —:-E-é' d(—-—-—-) and IT =f L m E2 d(yv ) (6020)
1 Jo v \81U1 2 Jop V¥ = _\51U;

the turbulence-energy flow is determined to be

fm UE dy = alulev* Ip, - = Ip (6.21)
Jo 1 Uy P2

For the presupposed single-parsmeter condition, ITl and IT2 are only
functions of I;. According to the existing data, the relation

fm UE dy = 0.658,U;%v* (6.22)
0

seems to be useful for the estimation independently of I,; it is, there-
fore, teken as the basis for further evaluations and calculations.
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6.3. Dissipation Function

For determination of the dissipation function D occurring in the
energy theorem (eq. (3.15)) according to expression (3.1k4), one will
again attempt by means of the results represented in section 4 to
express separately the influence of the viscosity and of the wall rough-
ness. For this purpose, one may determine S from equation (3.4) and
perform the quadrature for the part near the wall (0 S y << 8) if one
puts T/p = v* = Const. end the left side of equation (3.%) equal to
zero which is admissible for small wall distances. One then obtains
for y<< B T

[ s a4yt - v2uty) - aty) (6.23)
0]

With U according to relation (4.8) and Q according to relation (4.4),
there results, hence, if the upper integration limit lies in the region
By Sy << B

~

¥ ok
f s ay' =v—*3%zn$+c+ni°. (6.23a)
0 kg3

For the outer part of the boundary layer y 2 8, , one obtains with

the relation (3.18)

/
\/ﬁm S dy' = Zfi ® . (E/;*2)3 2 d<?,v*> (6.24)

¥y B Jyvrsiuy (V) [(ByU) 811

Since, for B8, Sy << B, E/v*2 = l/ko2 is valid according to expres-

sion (4.3) and co = k03 according to relation (4.6), there results
from equation (6.24)

© . *3 i } —
k/; Sdy' =v (&s = in 81Ul> (6.24ka)

wherein the value of the integral expression

1 pe (E/v*2)3/2 vk 1 yv (6.25)
J. == d =1 25
° Rny*/alUl ) (y'v*)/(8101) (51U1> * .

Ed
9

=
'-l
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3/2 3 _
- because of co(E/v*e) = 1 1is independent of the lower integration

limit y 41f it lies in the range &, Sy «< 5. From equations (6.23a)
and (6.2ka), one finally obtains for D the form

D =..fm S dy = v*3<%'ln Req + G) (6.26)
0
with -
k
G=C+dg + Kk —39 _ (6.27)
ko3

We now agasin assume that for our single-parameter velocity and
turbulence profiles Jg, and, therewith for equal wall properties, G

as well, is only a function of the paremeter I; described by expres-

sion (6.4). Since nothing is known regerding the behavior of the func-
tion ¢, except for the region &, Sy 8, Jg canhot be calculated ‘

from expression (6.25), even if the turbulence profile is known. Thus,
there remsins only the possibllity of calculating the function D by
differentiation, by means of insertiorn of the experimentslly determinsble
quantities into the energy equation (3.15); this method suffers, however,
from serious uncertainties. The measuring series of F. Schultz-Grunow
(ref. 11)._on the plate without pressure gradient could be evaluated quite
satisfactorily according to this method. The result represented in fig-
ure T is to be evaluated as a satisfactory confirmation of the correctness
of the relation (6.26).

If boundaery-layer measurements with pressure increase sre made in s
wind tunnel of rectangular cross section, the occurring secondary flows
represent a disturbance, as shown by a very careful lnvestigation by
W. Tillmann (ref. 16). These secondary flows have the effect that the
flow is not two-dimensional (as had been assumed in the deriveation of
eq. (3.15)) but at the location of the measurement usually convergent
with respect to the planes parallel to the wall. A. Kehl (ref. 13) has
shown how to consider in the momentum theorem (eq. (3.10)) a convergence
or divergence influence. In & similar manner, the energy theorem
(eq. (3.15)) for wedge-shaped flow may be ascertained; it is given herein
without derivation (compare fig. 8)

d[‘ UE dy

o) 1222 -
E—d—}-c-UlS3 +§$—x= +—f UEdy-!-—--— (.2)
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In the evaluation of the quoted measuring series by H. Iudwleg and

W. Tillmann (ref. 10), the following method was applied: The mean
messure of convergence -——4%—;, which is to express summarily the
secondary-flow effects in equation (6.28), was estimated with the aid
of the momentum theorem given by A. Kehl since all quantities appearing
in it, with exception of the measure of convergence, were determined
experimentally. This measure of convergence then was introduced into
the energy theorem (eq. (6.28)) and, thus, the function D was deter-
mined., 1In this manner, it was possible to eliminate at least approxi-
mately the effect of the secondary flows. Aside from theseé méasure-
ments, four further measuring series performed by W. Tillmann in the

same wind tunnel but not published were treated in the same mannerll

The result of this evaluation, which for the first time conveys an
indicetion for the magnitude of the dissipation function as a function
of the profile shepe, is shown in figure 9. The scatter is sometimes
quite considerable; however, on the whole, the test points are grouped
fairly satisfactorily about a mean curve. Greater accuracy was hardly

to be expected in view of the circumstances describedl®, For large
I,-values, the results may be approximatively rendered by

= 7.5(1; - 8.2) (6.29)

In order to make s more reliable determination of the dissipation
function (which is very important for the development of approximation
methods for the calculation of turbulent boundary layers), measurements
would be required for which by avoldance of secondary flows easily sur-
veyable flow conditions exist. Measurements in a rotationselly symmet-
rical wind tumnnel probably ensure clear conditlons. These measurements
would have to include a very exact experimental determination of the
turbulence profiles, for instance, by hot-wire measurements. The reason
why turbulence measurements of boundary layers have been performed com-
paratively rarely can probably be found, smongst other reasons, in that
so far no immediaste need for quantitative measurements of this kind
existed.

1iThe magnitude of the wall shearing stress which had not been
experimentally determined in these measurements could be estimated by
means of the relations given by equations (6.16) and (6.19) and figure L,
respectively. T

12Particularly uncertain are the end points of the individual meas-
uring series which are denoted by "E" in figures T and 9 because the
variation of the curve to the differentlated is not exactly fixed at the
end of each measuring series.
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The energy equation in the form (3.15) will probibly stimulate
carrying out of further turbulence measurements. -

It would mean an essential progress in the determination of the
dissipation function if not only the wall shearing stress but also the
entire "shearing stress profile” could be determined experimentally.
Attempts to measure the mean value of the product uv, which is
according to expression (3.3) decisive for the shearing stress by means
of hot-wire probes, were made by H. Reichardt (ref. 17) and H. K.

Skramstad S, Besides, H. Reichardt (ref. 20) has tried to measure
mechanically the mean value uv with an angle probe. Further develop-
ment of methods of this type will be of greet advantage for the investi-
gation of turbulent boundary layers.

T. NUMERICAL ESTIMATION OF THE SIMIIAR SOLUTIONS

The relations determined from the existing test material may serve
for developing approximetion methods for calculation of turbulent bound-
ary layers with arbitrary pressure gradient. Here we shall use them for
gquantitaetively estimating the conditions for the similar solutions treated
in section 5 with the aid of the momentum equation (3.10) and the energy
equation (3.15).

In consequence of the results of section 5, according to which the
velocity distribution is prescribed in the form of a power law (rela-
tion (5.4)) and the boundary-layer thickness 8 increases linearly
with x, we make the statements : =

ax®
(7.1)
bx

therein a8 and b are quantities independent of x. 'If one tekes
into consideration that the form parameters of the velocity profiles
Hip = 81/82 and H32 = 83/82 are, according to presupposition, also

independent of x, there results by substitution of equations (7.1) into

Uy

B2

the momentum equation (3.10) and after division by the value'(axm)2

2 .
(2m + 1)b + mbHyp = (%E) (7.2)

3National Bureau of Standerds, Washington, D. C., USA.
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From the energy theorem (eq. (3.15)), one obtains in the same manner, '
with use of relastion (6.22)

3
32 v* Yy 2 .
( = - 0.65 o ng)(3m +1) = (U1> 3 (7.3)

For the momentum loss thickness &p, there follows from equation (7.2)

B _ . (/o)

4
x (2m + 1 + mHjp) (74

Since the calculation of the boundary layer for a prescribed velocity
distribution is troublesome, we choose a more convenient method and
determine for prescribed values of the boundary-layer profile the perti-
nent velocity variation along x, that is, the exponent m. For this
purpose, equation (T7.3) is, after elimination of b and with the aid of
relation (7.4), solved With respect to m:

L Ho/? - (w401 (03 + 0.658) (1.5)

3H3p/2 - (v*/Ul)[(z + Hyp)D/v*3 + 1.95}112]

This equation is evaluated by calculation of the quantity v*/Ul for
assumed values of the Reynolds number Re; = Ulal/v and of the profile
parameter I] with the aid of the relation (6.9) and figure 4. From
equation (6.3) then results Hyjp = 87/85. With equation (6.6) and fig-
ure 3, one may then proceed to calculate 83/81 and therewith

H3p = 83/85. Equation (6.26) and figure 9 make, furthermore, the deter-

mination of D/v*3 possible. With these quantities, it is finslly

possible to determine from equation (7.5) the exponent m, from rela-
tion (7.4) the momentum-loss thickness 8,/x referred to x, and from

relation (%.10) the friction coefficient cgp' E(V*/Ul) In figure 10,

the results of such a calculation are compiled for three different
Reynolds numbeéers, with the conditions of smooth walls teken as & basis
although they do not exactly satisfy the presuppositions of the similar
solutions.

It is an interesting result that a physically meaningful solution
does not exist for all m-values. This state of affairs is not immedi-
ately evident from the system of equations (5.7); it follows, however,
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at once from the momentum theorem. If 8, and cg' are to be positive,
one will according to equastions (3.8) and (3.9), because of U/Ul'g 1,
always have ©&; > 8o; thus, Hjo > 1. Negative values of &y and cp'

can occur only when reverse flow appears pear the wall. However, in
this case, the boundary-lasyer theory loses its physical significance
since the flow separates from the wall. According to relation (T7.L4),
m must therefore be grester than -1/3. Figure 10 shows that the sepa-

ration is to be expected approximately in the renge of m = -0.2.lJ+
For comparison, it should be mentioned that, for the corresponding
similar solutions of the laminar boundary layers, the separation takes
plece at m = -0.091. This confirms the well-known empirical fact that
turbulent boundary layers can overcome a larger pressure lncrease than
laminar ones.

Another noteworthy result is the dependence of the profile param-
eter Hjp coordinated to a certain m-value on the Reynolds number.

The smaller the Reynolds number, the larger is Hyp. This dependence

comes sbout chiefly due to the fact that the wall law (eq. (%.7)) corre-
sponding to the respective Reynolds number 1s adapted, according to equa-
tion (6.9), to the single-parameter profile of the outer part (y 2 8w

which ie independent of Reynolds number. In this manner, the first-order
effect of the Reynolds number on the velocity profile is included so that
figure 10 actually is based on a two-parameter profile family. The

dependence of the outer profile parts on v*/Ul, theoretically proved in

section 5, may be regarded as a Reynolds number effect of the second
order; this effect was not accurately expressed in the calculation for
figure 10. In an investigation by A. E. von Deonhoff and N. Tetervin
(ref. 15) who calculated similar solutions with the aid of the approxi-
mation method for calculation of turbulent boundary layers indicated by
them, a universal relation was found to exist between the exponent of the
the velocity law (eq. (7.1)) and the parameter Hpp; thus no dependence

on Re existed. However, as figure 10 shows, the influence of the
Reynolds number, the expression of which became possible only after one
had succeeded in the experimental determination of the wall shearing
stress, 1s rather important for the relation between Hj;o and m.

It need not be explained further that corresponding calculations
may be carried out for flows at rough walls as well. For this purpose,
one has merely to perform a conversion of the values B _and G dintro-
duced in section 6 corresponding to the modified constant €. In
principle, however, these calculations would not offer anything new.

1)+The test data at disposai is insufficient for exact &étermination
of the m-value corresponding to separation.
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8. SUMMARY : -

As equations of the turbulent boundary layer, this report indi-
cates the customary equation of motion, the continuity equation, and,
in addition, a balance for the kinetic turbulence energy from which one
mey derive for approximation calculations besides the known momentum
theorem also an energy theorem for turbulent boundary layers. S

Under the assumption (frequently confirmed by test observations)
that the influence of the kinematic viscosity and of the wall roughness
takes immediate effect only in a very thin layer &y at the wall, there
exists within the turbulent boundary layer a region (By S ¥y< B) in
which a universal flow prevails which is determined by the magnitude of
the wall shearing stress but, for the rest, is not influenced either by
the wall conditions or the velocity distribution Uj(x) prescribed at
the outer edge. The presence of this universal boundaery-layer flow -
enables the division of the boundary layer into a part near the wall T
(O Sys 8y) which is affected only by the viscosity and the wall prop-

erties and into an outer part (y’% 8;;) independent of the viscosity in
which the flow is essentially determined by the velocity distribution
prescribed at the outer edge. The flows in these two parts show a

mutual influence only insofar as the asymptotic behavior of the imner
flow represents a boundary condition for the outer flow.

With the aid of the indicated boundary-layer equations, it can be
proved that, for a prescribed velocity distribution Uy = a x@ and a

local friction coefficient which is almost independent of x, similar
solutions exist also for turbulent boundery layers; these solutions
depend on two parameters - the exponent m and the local friction
coefficient. The boundary-layer thickness increases linearly with x.

With consideration of the findings obtained, the evaluastion of
existing test data then yields empirically the relations between the
various quantities required for application of the momentum theorem _
and the energy theorem. Finally, the esteblished relstions are used to
perform, with the friction laws valid for smooth walls teken as a basis,
approximation calculations for the similar solutions.

Translated by Mary L. Mahler.
National Advisory Committee
for Aeronautics
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Figure 1.- Velocity profiles for constant pressure according to measure-
ments of F. Schultz-Grunow (reference 11) on smooth walls and of
W. Tillmann (reference 21) on rough walls.



NACA TM 134k

I — — 35
~ Hi2=1792;10g Re,=4.82,
1,= 20.0
4 30
Hp=l640; of U-u
log Re;=4.66 > \ vF
II= l5.‘8 \ \-k 28
! RN ~F
Hp= 1527, .
log Re;= 445, \ \,
I=120 \ N\ 20
. \x\ +
\
X +
~. wg{ \ 15
73 Nx
Hi2=1.367;log Re = 4,04, \><
[ )
1=75 \ o
Y
\
+ 5
\
1.
-E‘:ruu <
-4 -35 -3 F -2 -15 -1 -05 0
|og—y—— —
Yi

Figure 2.- Velocity profiles in case of pressure increase according to
measurements of H. Ludwieg and W. Tillmann (reference 10),
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Figure 7.~ Dissipation function for the boundary layer without pressure
gradient as a function of the Reynolds number according to measured

‘results by F. Schultz-Grunow (reference 11).
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