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TECHNICAL MEMORAIWUM 1341

APPROXIMATE HYDRODYNAMIC DESIGN OF A FINITE SPAR HYDROFOIL*

By A. N. Vladimirov

SUMMARY 

Some problems concerning the motions of a hydrofoil are discussed. 
The results of theoretical investigations on motions of different bodies 
under a free surface of a heavy perfect fluid are revised, and for all 
cases diagrams of forces acting on moving bodies are given. The problem 
solved by Lamb for the motion of a circular cylinder and several problems 
solved during the last three years in the Central Aero-Hydrodynamical 
Institute (Moscow) are discussed. The latter are: the work by L. 
Sretensky on the motion of a vortex, the work by N. Kotchin on the mo-
tion of an arbitrary contour of streamline form (in the present article 
only a particular case of motion of a circular cylinder with a circula-
tion around it is discussed), and the work by M. Keld.ysh and M. 
Lavrentiev on the motion of a plate and a circular aerofoil. 

The analytical solution of the problem of motion of a plate is 
applied to an approximate hydrodynamic design of a hydrofoil, and on the 
basis of this solution diagrams are plotted allowing the determination of 
the lift and wave resistance of an infinite span hydrofoil during its 
motion in a fluid without friction. 

Further, some considerations of the viscosity effect are given and 
a method of taking into account the finite span of the hydrofoil is 
suggested where an attempt is made at an approximate consideration of the 
effect of a free surface on the downwash behind a hydrofoil. 

Further, some descriptions and experimental data for a hydrofoil 
tested in the CAIII tank are given and a comparison of theoretical with 
experimental data is made. 

The described work forms a basis for an approximate hydrodynamic 
design of a finite span hydrofoil for small angles of incidence and for 
depths of immersion equaling arid somewhat exceeding the chord length. 

*priblizherr1yi gidrodinamicheskil raschet podvodnogo kryla konechnogo 
razmakha. Central Aero-Hydrodynamical Institute, Report 311, 1937.
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INTRODUCTION 

The hydrodynamic supporting forces act only on the lower surface of 
a planing boat. The supporting wings of airplanes are subject to the 
action of pressure forces on the lower surface and to suction forces on 
the upper surface. The motion of a planing profile inclined at a small 
angle of attack and the motion of the same body in infinite flow are 
considered here. The analogy established by Wagner (ref. 1) exists 
between the two flows considered. 

From this analogy, with an accuracy up to second-order smallness, 
it follows that a planing foil during its motion is acted upon by a lift 
force A, a spray-forming resistance r, and the sum of all other resist-
ances R, while a vane moving in an infinite flow is acted upon by a lift 
force 2A and the sum of all resistances 2R (all measured in kg); that 
is, it has no spray-forming resistance. The hydrodynamic efficiency of 
the planing foil k 1 is therefore equal to 

kl = R A	 (a) 

and the efficiency k2 of the foil entirely submerged is equal to 

k2=	 (i) 

that is,

k2 >k1	 (c) 

Investigations of the problem of increasing the speed of boats and 
lowering the power required by mounting hydrofoils on the bottom have 
been carried on abroad for some time. Investigations along this line 
are also being conducted in this country. The efficiency of hydrofoils 
decreases in the presence of the frontal resistance of the supports to 
which the vanes are attached. It is therefore desirable that during the 
motion of the boat the hydrofoils be located sufficiently near the free 
water surface. Because of the nearness of the free surface the hydro-
dynamic characteristics of the hydrofoil change; they do not follow the 
laws of motion of the same hydrofoil man infinite fluid. The need 
therefore arises for an available method for the hydrodynamic computa-
tion of a hydrofoil on the basis of which the designer, by a computational 
procedure, could obtain the hydrodynamic polar curves of the foil selected 
for its motion at various depths of submersion. It is customary for the 
designer to have available the aerodynamic polar curves for the hydrofoil 
of interest. 

If a body of streamlined shape, for example, a wing, moves in an 
infinite real fluid, the effect of the gravity force which shows up in
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the Archimedean law of buoyancy can very simply be taken into account and 
only the effect of the forces of inertia and viscosity need be considered. 
There then holds true the well-known Reynolds law of similitude on the 
basis of which the forces exerted by the fluid on the wing or body are 
expressed by the formulas 

Lift force A = CyPSV2 

Frontal resistance H CpSV2 

[NACA Translator's note: The more generally used coefficients today 
(1951) are twice the magnitude of the coefficients used in this report, 
since p is now replaced by p/2.] 

where the nondimensional coefficients Cy and. C are functions of the 

Reynolds number and the shape and position of the body. The scheme of 
an infinj-t flow of a weightless liquid is adopted in problems in which 
the flight dynamics of an airplane at large distance from the ground are 
considered. In studying the motion of a wing near the free surface of 
the water, it is necessary to take into account the action of the force 
of gravity on the fluid, because the wave disturbances of the free surface 
behind the wing alter in a fundamental way the hydrodynamics of the lat-
ter. It is known that in this case of motion, the 'forces exerted on the 
wing by the water are expressed by the formulas given. The nondimensional 
coefficients Cy and C, however, will in this case be functions not 
only of the Reynolds number but also of the Froude number. In the for-
eign literature on theoretical hydrodynamics there is very little inf or-
mation on the motions of bodies under the free surface of a heavy fluid. 
There is a particular lack of information on the problems of the motion 
of underwater wings (hydrof oils), and the papers available refer only to 
the circular cylinder. In regard to the history of this problem, a quo-
tation is presented from the work of L. N. Sretensky (ref. 2): 

"The problem here studied (the flow of a heavy fluid about an immersed 
circular cylinder)- is presented in literature. The problem was first 
posed by Keldysh in 1904 and was first solved by Lamb (ref. 3). The 
solution, given by Lamb, is approximate and consists of the addition to 
the potential of the infinite flow of a correction term, the object of 
which is to satisfy the condition at the surface. The introduction of 
this term, however, disturbs the conditions of flow about the cylinder. 

"The next step in the solution of the problem was taken by Havelock 
(ref. 4). Making use of the methods of conformal mapping, Havelock 
extended the equation of Lamb by the addition of new terms with the pur-
pose of setting up the conditions of flow about the cylinder. The solu-
tion of Havelock is also approximate, but the method indicated by him 

he remark in parentheses is ours.
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can give an unlimited approximation to the complete solution of the prob-
lem if the extreme complexity of the formulas is disregarded. And fur-
ther on, Lamb and Havelock, in presenting their approximate formulas, 
entirely omitted the velocity circulation about the cylinder.0 

There is still another series of papers by Havelock in which con-
sidered motions which give rise to the formation of waves are considered, 
but only the solution for the wave resistance is sought. Experimenta.l 
work on hydrofoils has been carried out abroad, but the vanes were consid-
ered only in combination with various types of boats. No test data on 
isolated hydrofoils have been reported. 

For the last three years work on the problem of the motion of bodies 
under the surface of a heavy fluid has made considerable progress at the 
CAEI. Approximate solutions have been given of the problems of the mo-
tion of a circular cylinder, a cylinder with velocity circulation about 
it, a thin plate, a circular disk, and, finally, an arbitrary profile of 
streamline shape. The workers at the CAll test tank conducted tests in 
1935 on the isolated underwater hydrofoil. The foil was towed at various 
angles of attack under various loads and measurements were made of the 
hydrodynamic forces (the lift and frontal drag) acting on the foil. The 
theoretical and experimental data available have been used in the present 
paper for investigating the essential character of the hydrodynamics of 
hydrofoils and for working out a method of the approximate hydrodynamic 
solution.

BRIEF REVIEW OF RESULTS OF THEORETICAL WORK 

Only the theoretical investigations of interest for present purposes 
are considered. The feature common to all these investigations is the 
statement of the problem and the assumptions which make the solution ap-
proximate but permit reducing it to practical formulas. The authors con-
sider the rectilinear and uniform motion of a body in a heavy, ideal, incom-
pressible fluid at a certain depth from its free surface. Below the free 
surface the fluid is infinite in extent. The flow is assumed irrotational 
and most frequently plane-parallel. The boundary condition for the free 
surface is satisfied on the line of the undisturbed free surface. The 
velocities of the fluid particles on the free surface are so small that 
their squares may be neglected. Since the fluid is an ideal one and the 
flow possesses a potential, the frontal resistance encountered by the 
moving body is the wave resistance. If the fluid is infinite there is 
no wave resistance. In all the solutions given by the authors, the change 
in the lift force on the body with change of depth of submersion is set 
up and in each individual case the law of this change is given. Individ-
ual problems will now be considered.
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Lamb considered the motion of a circular cylinder of radius r at. 
the distance h from the free surface. The flow at a large distance 
from the cylinder has the velocity V; there is no circulation about the 
cylinder. The same case of motion was considered by M. V. Keldysh (ref. 
5) . The formulas obtained by Keldysh are the following: 

- 

A - _4Tpa2 (l\3 
+ (1)2	 ^ 1 

(g)2 - 
(j)3e v2 Eil	 (1) 

- 2gh 

R= 42pa2 /g\3
	 v2 e	 (2) 

where 

A	 lift of cylinder, kg 

R	 wave resistance, kg 

2 a	 Vr 

V	 velocity of flow at infinity, m/sec 

r	 radius of cylinder, m 

d	 diameter of cylinder, m 

h	 distance from level of undisturbed surface, m 

p	 mass density of fluid, kg sec2/m4 

g	 acceleration of gravity, rn/sec2 

it	 ratio of circumference of circle to diameter 

integral exponent of function (ref s. 6 and 7) 

The same notation will be used in what follows. The system of co-
ordinates connected with the body is chosen in the usual manner; that is, 
the positive half-axis of ordinates y is directed upward and the posi-
tive half-axis of abscissas x is to the right. The flow past the cyl-
inder is from left to right; the cylinder itself is stationary and its 
center has the coordinates x = 0, y = -h. The x-axis is placed along 
the free surface of the undisturbed fluid. As may be seen from formula 
(i), the lift force of the cylinder, for infinite submersion, is equal to
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zero; that is, there is no velocity circulation about the cylinder. As 
the cylinder nears the free surface there first appears an insignificantly 
small positive lift force which then goes over into a negative one. The 
negative lift force increases monotonically in absolute value with de-
creasing depth. This is confirmed by the following considerations: 

2gh 
-=	 (d) 

There follows from formula (1)

3 
A = -4itpa2 - f(w)	 (e) 

where

f(T)++--_eE. (T)	 (f) 2	 3	 11 

Since

2 -	 iT	 1 

	

= C + in t +
	 +	 -- +	 + . . . +,	 ( g) 

where C is the Euler constant, it is clear that for small r 

f(T) > o	 (h) 

To small values of T there correspond small values of the depth 
h; therefore near the free surface the lift force of the cylinder is 
negative. 

For very large 't there is the asymptotic equation 

E(T) = eT	 1	 2!	 3! 1 +-+-+ -+ . . . + 

	

2	 3	 ) 

Substituting this value of E1 1('r) in the expression for f(T) 
gives

f(T) = -	 -	 -	 - . .	 - 

	

¶3	 't4 ¶5	 J 

from which it is clear that for large 'r 

	

f(t) < 0
	

(k)
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Hence, for sufficiently large depth, the lift force of the cylinder 
is positive. 

In order to study the behavior of the function . f('t), 

1	 1	 2	 3 ('t) - - - - -	 - - 

	

fr) = eTEi	
T -r 2	 r3	 -t4	

(i) 

must be found and the function g(t) = eft(t) 

T(l	 1	 2	 3\ g(T) = E1 (t) -e	 + -p. +	
+ -i,)	 (m) 

must be investigated. The range of small T is considered first. Since 
for small r, E 1 (t ) is of the order of in (r), it is clear that 

< 0
	

(n) 

and that

/3	 l2 g'(t)	 e' !- + —.1 > 0	 () 
T5) 

Hence g(t) increases monotonically in the range of small 't. 

The range of very large T is now considered. For this range, 

	

-E/3	 4!	 5! g(T) = e	 +	 + -. + . . . +,)
	

(p) 

that is,

g(T) > 0
	

(q) 

Hence g(T), and therefore ft(t), are negative in a certain interval 
O<'r<'r, and positive for	 that is, f(T) at first decreases and 
then increases. 

In figure 1 is plotted a curve which shows that at a very large 
depth the lift force of the cylinder is positive and has a maximum at 
-r	 3.8, that is, at the depth h = 3.8 V2/2g; at r =.2.8, that is, at 
the depth h = 2.8 V 2/2g, the lift force of the cylinder becomes zero, 
and with further decrease of the depth it becomes negative. 

Nondimensional magnitudes are used to construct the curves charac-
terizing the hydrodynamic forces acting on the cylinder. The following 
concepts are introduced:
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F— V
	

(r) 

the ratio

d 

and the nondimensional coefficients of the lift and wave resistance of 
the cylinder

Cyh =
	 Crh pdV2	

(s) 

From equations (1) and (2) are obtained 

cYh_[k3+kF+]_F6	
/F_2\l

(3) e k Ej	 k)j 

F -2 

Crh =F6e1	 (4) 

The curves of the lift coefficients of the cylinder as a function 
of the ratio h/d for two values of the Froude number are constructed 
on the basis of formula (3) as shown in figure 2. The position of tan-
gency of the cylinder to the undisturbed free surface corresponds to the 
ratio h/d = 0.5. As may be seen from the constructed curves the coeff 1-
cients of the lift force directed downward attain their largest values 
near the free surface, exceeding the maximum values of the lift coeffi-
cients of airfoils. As has been stated previously, the curves must 
intersect the axis of abscissas. The points of intersection were not 
shown on the figure, since for 	 = 1.5, Cyh = 0 only for 
h/a = 6.2; and for v/ /ã 5.0, Cyh = 0 for h/a = 70. 

The maxima of the positive lift coefficients are vanishingly small. 

The curves of the coefficients of the wave resistance of the cyl-
inder as a function of the Froude number for various ratios d/h are 
constructed on the basis of formula (4) in figure 3. 

The position of contact of the cylinder relative to the undisturbed 
free surface corresponds to the ratio d/h = 2. Each curve of wave 
resistance coefficients has one maximum, the position of which is deter-
mined by the ratio
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The wave resistance itself for h = constant has a maximum with 
respect to the velocity, and the position of this maximum is given by 

v= 

Far behind the cylinder the equation of the wave surface has the 
form

= - 4iigr2 - 2 sin
	 (5)e 

The maximum of the wave resistance corresponds to the maximum height 
of the wave which, as is easily seen, occurs at V 	 The velocity
of propagation of the waves is equal to V and the length of the wave is 

X = 2itV/g 

With this, the description of the results obtained for the motion of 
a circular cylinder without circulation is concluded. 

The problem of the motion of a circular cylinder has also been solved 
by Sretensky. In it he introduced the circulation about the cylinder. 
The approximate solution obtained by the author justifies the conclusion 
that a cylinder with circulation produces the same flow disturbance as a 
vortex placed at the same depth. This result was obtained because for 
the degree of accuracy assumed by the author the terms which characterize 
the motion of the cylinder without circulation were rejected. Since the 
results of the work of N. E. Kotchin who retained the terms of Lamb in 
the problem solved by Sretensky are to be presented, the solution of 
Sretensky will be considered as the solution of the problem of the motion 
of a vortex near the free surface of a cylinder. The formulas obtained 
by Sretensky have the form

- 2gh 
2 1 .._Le VE A = -p - pr [

	
il (p)]	

(6) 

- 2gh 

R = pg ()
2 e v	 (7) 

where r in square meters per second is the circulation about the vortex 
in its motion in an infinite flow. 

The system of coordinates is chosen as in the preceding problem. 
The positive value of the circulation I' corresponds to the counter
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clockwise rotation (if the velocity of the approaching flow is directed 
from the left to the right of the observer). Hence, the sign of the 
Joukowsky lift force (pr y) is opposite to the sign of the circulation. 
For constructing the graphs characterizing the hydrodynamic forces acting 
on the vortex, we go over, as in the preceding problem, to the nondimen-
sional magnitudes F and k. But for this purpose we first replaced, 
for convenience, the vortex by the supporting wing having the same cir-
culation. On the basis of the Joukowsky theorem on the lift of a wing 
and the formula expressing the lift in terms of the nondimensional coef-
ficient C, we then obtain

= CbV = bV	 (t) 

where b is the chord of the wing in meters and	 is the angle of 
attack of the wing in radians. 

Alter all transformations have been made, formulas (6) and (7) give 

A+pFV =

	
k - F 2 e kE	 (8) 

F2 
Crh 1 -2	 k 

c2 =F
	 e	 (9) 

y 

where F = V//2gb and k = b/h. 

The curves characterizing the change of the excess lift force of 
the wing, that is, the total lift after subtraction of the Joukowsky 
lift, are constructed as a function of the ratio h/b for two Froude 
numbers on the basis of formula (8) in figure 4. The constructed curves 
show that the free surface of the fluid gives rise to the appearance of 
an additional lift force (besides the Joukowsky force), the direction of 
which does not depend on the sign of the circulation (as is clearly seen 
from the structure of formula (6)). For small ratios h/b this addi-
tional lift force is directed downward; it then passes through zero and 
becomes positive. After forming a positive maximum it asymptotically 
approaches zero. On the basis of formula (9) there are constructed on 
figure 5 the curves characterizing the change in the coefficients of 
total resistance of the wing as a function of the Froude number for 
various values of the ratio b/h. Each curve has one maximum, the posi-
tion of which is determined by the ratio F = 

The wave resistance itself, as a function of the velocity, does not 
have a maximum and increases with increase in the velocity, asymptotically
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approaching a constant value. This occurs because for a wing the circu-
lation is proportional to the velocity only if the angle of attack and 
the chord are constant. If, however, the motion of a vortex is consider-
ed and the fact that the circulation about it F constant is taken 
into account, the wave resistance, as a function of the velocity, L1l 
have a maximum, the position of which is determined by the relation 

vf 
Far behind the vortex, the equation of the wave surface is of the 

form

2F	 v2	 . y=--e	 sin—
V	 V 

The maximum of the wave resistance corresponds to the maximum of the 
wave height, which, as is easily seen, occurs for V	 The veloc-
ity of propagation of the wave is equal to V and the wavelength 

A = 2mTV/g. 

With this the description of the results obtained by L. N. Sretensky 
for the motion of a vortex is concluded. 

N. E. Kotchin (ref. 8) gave general formulas for the hydrodynamic 
forces acting on profiles of arbitrary shape in a flow and selected the 
particular case of the motion of a cylinder of radius r with velocity 
circulation r about it. The formulas obtained by him for this partic-
ular case have the form

(9a) 

2gh 
3	 .---

(g\	 V
E i ()J - 

P	
[1 '2r 2 	 2g 

v2h - 

2 
A=pFV-4a2p	

)3+(1'2^ 1 (g\ 

[2h	 V2 

[ 1	 g	
2gh

/2gh\i pF2 	 -	 e	 Ei1 

L

	

	 j 

2 gh 

4g2 r2 -	 /2gh'\! e E	 t\21	 (10) 

j
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2gh	 2gh	 2gh -	
(r'\2	 4itpg2r2F - V2 R = 4ic2a2p ( \ e	 ________ + pg	 e	

+	 3	
e	 (ii) 

The system of coordinates is chosen as in the preceding problems, 
but the direction of motion is opposite to the others. The sign of the 
Joukowsky lift force therefore agrees with the sign of the circulation. 
If in formulas (10) and (11) r is set equal to 0, there remain only 
terms not depending on F, and the formulas agree with formulas (i) and 
(2) for the forces acting on the cylinder without circulation. If in 
formulas (10) and (11) r is set equal to 0, there remain the terms not 
depending on r and the formulas agree with formulas (6) and (7) for the 
forces acting on a vortex. 

The hydrodynamic forces acting on a cylinder with circulation will 
be described in somewhat greater detail. Formula (10) for the lift force 
may be written in the following form: 

A = pFV + Ar + Ar Arr	 (12) 

where pFV is the Joukowsky lift force, Ar is the lift force of a cyl-
inder of radius r without circulation (the same as by formula (1)), and 
A is the lift force of a vortex (the same as by formula (6)), and 

[	 - 2gh 

ArF = -pFV	 (v,) + 2
	 - 4g4r e v E1 (2gh	 (u) 

that is, the lift force depending simultaneously on the radius of the 
cylinder and on the circulatioh about it. 

From the preceding, the variations of the forces Ar and Ac are 
known. For very large depths of submersion of the cylinder, the force 
ArF has the same direction as the Joukowsky lift force; while for small 
depths it has the opposite direction. 

For an explanation of.this, it is necessary to consider the sign of 
the brackets in the expression for Are. 

Setting

2 gh
(v) 

leads to an investigation of the function 

1 
f(T) =	 + - - e	 E(T)	 (w) 

2T
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It is evident that, for small t, 

	

f(t) > 0	 (x)

since Ej1(T) is of the order of ln(t) 

For large T, the asymptotic formula 

1	 2!	 3!	

)	
() 

	

E1 ¶ -	 1+-^--+—+. . .+ 
1	 t	 T2	 E3. 

is used to obtain

1	 2!	 3! 

	

f ( T)	 - -. -	 -	 - . . .	 (z) 
2T	 t'-	 t 

so that

	

f(T) < 0
	

(a') 

Forming the derivative f'(t) and investigating the function 
g('r)	 ef'(') show that f'(t) < 0 in a certain interval 0 < ¶ 

and f'(T) > 0 for	 >m . Hence f(t) at first decreases and then 
increases, having a negative minimum. 

Formula (11) for the wave resistance may be written in the form 

R=Rr+Rr+Rrr	 (io) 

where 

Rr wave resistance of cylinder of radius r without circulation (same 
as by formula (2)) 

wave resistance of a vortex (same as by formula (7)) 

- 2gh 

R	 4icpg2r2r e	 -	 (b')rr 

and the wave resistance depends simultaneously on the radius of the cyl -
inder and on the circulation about it. For negative circulation the last 
part of the wave resistance	 is also negative, and. therefore the wave 
resistance of a cylinder with positive circulation is greater than the 
wave resistance of a cylinder with negative circulation. From formula 
(11) it also follows that under certain conditions of motion of the cyl-
inder at a finite depth its wave resistance may be equal to zero. This
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will evidently occur when the wave behind the cylinder will have a height 
equal to zero. Since the problem is solved on the basis of the linear 
theory of waves, the equation of the waves behind a cylinder with circu-
lation can be obtained by taking the sum of the amplitudes of the waves 
behind a cylinder without circulation and behind a vortex. The right 
sides of equations (5) and (9a) are combined to obtain the equation of 
the waves behind a cylinder with circulation: 

- 
V	 -	 e V2 (r + 2Tcgr2	 (14) 

v2 

The condition of motion for which the wave resistance of a cylinder 
with circulation is equal to zero is obtained by assuming the amplitude 
y 0.

r	 - 2tgr2 
V 

The same relation could have been obtained directly if the right 
side of expression (11) were set equal to zero. It is necessary to 
remark, however, that this condition does not give anything of practical 
value because it entirely fails to correspond to the real conditions of 
motion, at least in that the circulation I', and therefore the lift force, 
is negative. 

In figure 6 the curves of the lift force and wave resistance of a 
cylinder of radius 0.1 meter with circulation r = 0.25 square meter per 
second are constructed as a function of the submersion h for constant 
velocity of motion V = 6 meters per second. The forces A and R are 
represented by their component parts. In figure 7 analogous curves are 
constructed for the same cylinder but with negative circulation, 
r = -0.25 square meter per second. The forces Ar Ar, and Aj r on 
these curves do not become zero because the zero points lie at a depth 
greater than 1 meter. The curves are given as an illustration of what has 
been said concerning the forces acting on a cylinder with circulation. 
With this, the description of the results obtained by N. E. Kotchin for 
the motion of a cylinder with circulation is complete. 

The formulas for the hydrodynamic forces acting on a cylinder with 
circulation may be used to find the forces acting on a foil of chord b 
at angle of attack a moving with velocity V at depth h. For this 
purpose, the wing is replaced by a cylinder or diameter equal to the 
chord of the foil multiplied by a. The motion of the foil is considered 
under such small angles of attack that in the formulas for the forces it 
is possible to neglect the terms containing a. of degree higher than the 
second. Substituting in formulas (io) and (11) the values d. = ab and 
I' icabV gives the formulas for the lift and wave resistance of a foil:
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- 

	

A= abV2 {l - 
r b	 bg	 v2	 (2h)}	 (15) E 

-
V2 R	 t 2a2pgb2 e	 (16) 

In these formulas oniy the terms depending on the circulation about 
the foil were retained, that is, the possiblity of neglecting the terms 
with degree of a higher than the second justifies replacing the foil by 
a vortex. If the motion of the foil is considered at somewhat greater 
angles of attack, when in the formulas for the forces it is possible to 
neglect only the terms containing a of degree higher than the third, 
then formulas (10) and (11) after substitution of d = ctb and F 	 tabV
give

I	
rb bg	

2gh 

e	 E	 26hJ - A	 apbV2 ll - a 

L -	 ii 

a2 r	
+ b2 g2 - b2 g2	 v2 

L8h2 2V2h	 V4	

(2h}(l7) 
e	 Ei 

2 gh 
-;;--

R	 ta2pgb' e

- 2gh 

+ 2a3pg2b3 e (18) 

In these formulas only the Lamb terms are rejected. The rejected 
terms will be retained when it is necessary to take into account the 
fourth power of a; that is, the motion of a wing having a large value of 
ba is considered. 

The last paper to be presented is that of Keldysh and Lavrentiev 
(ref. 9) on the motion of a thin contour under the free surface of a heavy 
fluid. The circulation consists of a system of vortices replacing the 
contour. The distribution of the vortices is such that one of the crit-
ical points is located at the rear edge of the contour. The circulation 
is therefore determined, and. the hydrodynatnic forces acting on the contour 
in its motion in the flow are expressed in terms of the geometric param-
eters defining the dimensions and position of the foil, that is, in terms 
of its chord and the angle of attack. The formulas obtained by the authors 
for the lift force and the wave resistance of a plane foil have the form
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and the simplified formulas

2 gh 
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(21) v2	 ii(\)J] 
2 gh 

R	 t 2a2pgb2 e	 (22) 

Formulas (19) and (20) entirely agree with the formulas obtained if 
the aforementioned general solution of N. E. Kotchin on the motion of a 
contour of arbitrary shape is applied to the case of the plane foil. 

Expressions (19) and (20) for the forces acting on the foil are 
approximate since they were obtained on the basis of the linear theory of 
waves, but they are, of course, closer approximations than the formulas 
(15) to (18) which were obtained by replacing the foil by a circular cyl-
inder with circulation. This is explained by the fact that a cylinder 
with circulation is a system of a double source and vortex concentrated 
at one point, and no account is taken of the extension of the foil in 
the direction of the chord.
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The expression for the forces acting on the foil, replaced by a 
system of vortices, is used for the approximate hydrodynamic computation 
of an underwater foil having infinite span. The lift force will be com-
puted by formula (19) and the wave resistance by the simplified formula 
(22) which was obtained by replacing the wing by a vortex. The compüta-
tion of the wave resistance by the more accurate formula (20) is of 
practically no advantage in view of the smallness of the terms which 
render it different from formula (22). Before the couutation itself is 
presented, the difference is discussed between formula (18) of the wave 
resistance of a foil derived by replacing the wing by a cylinder with 
circulation and formula (21), obtained from the condition of replacing 
the foil by a system of vortices. On the basis of formula (18), the 
expression for the coefficient of the wave resistance of a foil replaced 
by a cylinder with circulation is 

Crh Mra2 ^ NrO3	 (2) 

where

2	 - 
Mr	 - F 2 e k	 (24) 

F -2 

Nr = ! F -4 e	 k	 (25) 

It is evident that, f or all values of the Froude number and the 
ratio b/h,

Mr>O and Nr>O 

Hence, with the coefficient of the wave resistance considered as a 
function of the angle of attack, 

Crh() > Crh(_a)	 (c') 

that is, for a wing replaced by a cylinder with circulation, the wave 
resistance for a positive angle of attack is always greater than for a 
negative angle of attack. On the basis of formula (20), an expression 
for the coefficients of the wave resistance of a foil replaced by a system 
of vortices is

Crh Mr 2 + Nra3	 (26) 

where
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F 2 /	 F2 

=	 F2 e k 1 - F -2 e k 

F 2	 F2	
(F2l 

NrF2ekF2	 k+F2ekEi1)j 

If as before

2gh
= 

v'. 

the sign of the brackets in the expression for Nr(28) always agrees with 
the sign of the expression 

f('r) = 'r + 4re	 Ei 1 ('r ) - 2	 (28a) 

Therefore

	

Crh(cL) > Crh( 1) if f(-r) > 0	 (e') 

	

Crh( 0 ) < Crh( L) if f(t) < o	 (ft) 

Formula (28) is used as a basis for constructing the curve of f(t) 
on figure 8. However, in both cases the effect of the terms Nr is 
very small. 

Three series of hydrodynamic polars of a hydrovane are constructed 
on the basis of formulas (19) and (22) on figure 9 to indicate the gen-
eral form of the hydrodynamic forces acting on the foil in its motion 
near the free surface of an ideal fluid. Each series corresponds to a 
definite constant Froude number. The different polars of a single series 
correspond to different values of the ratio b/h. The dotted curves pass 
through the points of the same angles of attack. For all Froude numbers 
an increase of the ratio b/h (which for constant b corresponds to a 
decrease in the depth of submersion) gives rise to a decrease in the 
absolute values of the lift coefficients and an increase in the wave 
resistance coefficients. The coefficient Crh does not depend on the 
sign of the angle of attack since the additonal terms were neglected, 
while Cyh for a negative angle of attack is always greater in absolute 
value than it is for a positive angle. The effect of an increase in the 
Froude number is to decrease the coefficients of the wave resistance of 
the foil while increasing the coefficients of the lift force in absolute 
value. This completes the review of results of theoretical work on the 
motion of bodies under the free surface of a heavy fluid.

(27)

(28) 

(dt)
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CONSTRUCTION OF COMPUTATIONAL GRAPHS FOR MOTION OF A

FOIL IN A PLANE -PARALLEL FLOW OF AN IDEAL FLUB) 

Formulas (19) and (22) are applied to the determination of the lift 
force and wave resistance of hydrof oils. For this purpose the nondimen-
sion.al lift coefficient Cyh and wave resistance Crh are employed. 
From formulas (19) and (22),

Cyh = a(M - Na.) (29) 

(30) 

2 gh 
g2b2 - 

+	 e V2 E 
2V4	 112)
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2gh 
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4gh 
4itg2 b2 -	 /2gh 

	

v4	
e	 Ei1 t\;; —) (32) 

where

--
itgb	 v2 M= 1 --e 
V2

2 gh 

N - b -	 e 
-	 v2

The question arises as to whether formulas (29) and (oo), derived 
for plates, may be applied to the arbitrary profiles of hydrofoils. It 
is evident that they may more reliably be used for the computation of thin 
syssnetrical profiles. In general, in the computation of each profile 
having a cross section different from that of plates, it is necessary to 
remember the following: In expression (29) the factor ita. is the coeff 1-
cient of the lift force of any profile in its motion in an ideal fluid 
for h	 . Formula (29) may therefore be written in the form 

Cyh	 C(M - Na.)	 (33) 

In the computation of definite profiles for C y it is necessary to 
take not the magnitude ita., but the wind tunnel results for this profile,



20
	

NACA TM 1341 

the lift coefficients having first been computed for infinite span. In 
this mariner the shape of the profile will be approximately taken into 
account. The section devoted to the consideration of the effect of the 
viscosity of the fluid will discuss this further. 

Formula (30) for the coefficient of wave resistance may be repre-
sented in the form:

--

Crh	 c 2	 e	 (34) 

The C 2 does not represent the magnitude it2a2 , but the square of 
the actual resistance coefficient of the wing of infinite span. Graphs 
were constructed for the convenient and rapid application of formulas 
(33) and (34) to the hydrodynamic computation of the hydrofoils. The 
magnitudes M and N are plotted as functions of the Froude number on 
the basis of formulas (31) and (32) for various values of the ratio b/h 
(figs. 10 and ii) to aid in computing the lift coefficients. To compute 
the coefficients of the wave resistance, the curves Crh/Cy2 were con-
structed on the basis of formula (34) also as a function of the Froude 
number for various ratios b/h (fig. 12). The variations of the mag-
nitudes F and. k in the constructed graphs were taken in ranges which 
permitted obtaining the lift force and the wave resistance of hydrofoils 
of infinite span for.all cases of motion of practical interest. The 
graphs constructed on figures 10, 11, and 12 representing formulas (33) 
and (34) thus permit obtaining approximately the lift force and wave re-
sistance of a foil of infinite span moving near the free surface of an 
ideal fluid provided the lift coefficient for the motion of the wing in 
an infinite flow is known (e.g., from wind tunnel test data). 

Effect of Viscosity of Fluid 

A method for taking into account the effect of the viscosity of the 
fluid is now considered. The lift force of a foil in its motion in a 
real fluid depends little on the viscosity of the fluid since the lift of 
the foil is entirely determined by the potential circulatory flow about 
it. The viscosity appears to be only one of the factors giving rise to 
the circulation (ref. 10). The lift of the foil may therefore be obtained 
by the classical methods of hydrodynamics without introducing any correc-
tions for the viscosity. A confirmation of this statement may be found 
in the comparison of the theoretical and experimental results on the 
determination of the lift of the wing. Betz (ref. ii), for example, 
carried out a computation of the pressures on the surface of wings of the 
Joukowsky type on the basis of the potential flow of an ideal fluid about 
the wing. He also made a comparison between his obtained results and
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experimental data for the same wings. Good agreement was obtained. The 
slight increase of the theoretical lift force above that actually obtained 
is explained as caused by a separation of the flow which occurs at the 
upper surface of the wing not far from its trailing edge and this somewhat 
lowers the total pressure on the wing. All that has been said relative 
to the small dependence of the magnitude of the lift force of the wing on 
the viscosity of the fluid refers to the motion in an infinite flow. In 
the motion of the wing near a free surface, however, the effect of the 
viscosity on the lift force may likewise be regarded as practically 
absent because the change in the lift of the wing in its motion at a 
finite depth is brought about by a different pressure distribution on the 
wing different from the distribution which occurs in the motion at in-
finite depth (and gives the Joukowsky theorem). The other pressure dis-
tribution is due to the fact that the wave disturbances of the fluid 
remain behind and. is not connected with the viscosity. It is true that 
in a real fluid the wave disturbances are damped, but this damping may be 
neglected for the case of water. 

In the preceding section it was stated that Cy does not represent 
the magnitude ma but rather the result of wind tunnel tests on the foil. 
With this understood, the change in the lift of the wing due to the effect 
of the viscosity in its motion in an infinite flow is taken into account. 
The fact that no added corrections are made for the effect of the viscos-
ity on the lift of the wing means only that the effect of the free sur-
face on the lift is not connected with the viscosity. Thus in computing 
the lift force of a hydrofoil moving in a real fluid it is permissible to 
use the formula obtained for an ideal fluid without introducing any cor-
rections for the viscosity except interchanging ic with the magnitude 
0y obtained experimentally. 

Accounting for the viscosity of the fluid for a certain total frontal 
resistance of the hydrofoil must be considered. For the present, the 
well-known considerations for the case of motion of a wing in an infinite 
flow are adduced. If the fluid is an ideal one, the foil during its mo-
tion is not subject to any frontal resistance, since it is known that in 
a potential flow the pressure at the forward part of the wing is equal in 
magnitude to the pressure at the after part. By a potential flow is here 
meant a nonsepa.rated, nonvortical flow about the foil. The viscosity of 
the fluid is primarily the cause of the appearance of frictional resist-
ance which is represented by the sum of the horizontal components of the 
forces tangential to the surface of the foil. Moreover, the viscosity 
brings about a general change in the potential flow about the wing. To 
these changes must be ascribed the formation of the boundary layer and 
the appearance of circulatory motions. Because of these changes in the 
flow, there is a change in the initial pressure distribution over the 
wing such that a frontal pressure resistance appears. The pressure. 
resistance, together with the frictional resistance, is termed the form 
resistance. For wings of finite span the form resistance is divided into
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the profile and induced resistances. As has already been said at the 
beginning of this paper, in the motion of a wing in an infinite flow the 
fluid may be considered as weightless and the Reynolds law of motion will 
then be valid. For the total frontal resistance of the wing the Reynolds 
law of motion gives the formula

R = CpSV2 

where the resistance coefficient C is a function of the shape of the 
foil, its position in the flow, and the Reynolds number. The similitude 
law of Reynolds consists of the following: If two wings are geometrically 
similar and their similar elements are inclined by equal angles to the 
direction of motion, and if the Reynolds numbers are equal, then there is 
complete similarity of the motions. In this case the drag coefficients 
for the two wings are the same. The values of the resistance coefficients 
of the wing for the different angles of attack are obtained from model 
tests in the wind tunnel, the tests being conducted at some single value 
of the Reynolds number near full scale. This is sufficient for the reason 
that at large angles of attack the drag coefficient depends little on the 
Reynolds number, while at small angles of attack when the flow is poten-
tial and the resistance is practically only the frictional drag, a cor-
rection for the change in the Reynolds number may be made by the known 
formulas for the resistance of a flat plate. It is understood, of 
course, that test results are entirely applicable when the foil model 
is tested for different values of the Reynolds number. 

The motion of a wing in a real fluid near its free surface is now 
considered. Total frontal resistance of the foil is represented as the 
sum of three resistances: frictional, pressure, and wave resistances, 
although, generally speaking, such decomposition must not be made. It 
would be more correct to combine the pressure and wave resistances into 
one since they are similar in character; that is, they are brought about 
by the forces normal to the surface of the foil. Such formal decomposi -
tion must be considered, however, because of the absence at the present 
time of a solution of the problem of the motion of a foil near a free 
surface of a heavy real fluid. The manner in which the form resistance, 
that is, the pressure and frictional resistance considered apart from the 
wave resistance, varies in the transition of the foil from an infinite 
flow to the region near a free surface must be studied. The distribution 
of the streamlines changes and the velocity of the flow about the foil 
will be different. These changes in the flow give rise to changes in the 
frictional and pressure resistances; that is, it is necessary to take into 
account the fact that the dependence of the form resistance coefficient 
on the Reynolds number will be different from the corresponding relation 
for the motion of the same foil in an infinite flow. In reference to the 
nonvalidity of the separation of the wave resistance from the pressure 
resistance, there is no experimental possibility of separating these two 
resistances from each other and thereby obtaining the dependence of the
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form resistance coefficient on the Reynolds number. On the basis of all 
that has been said there remains only the possibility of assuming that 
the coefficient of form resistance is the same as in the motion of the 
foil at infinite depth as it is at finite depth (of course, for the same 
Reynolds numbers) and that its dependence on the Reynolds number is in 
both cases expressed by the same law. 

It can be said that the wave resistance arises from only the force 
of gravity and vanishes with increasing depth although the fluid continues 
to remain viscous. In a viscous, incompressible, heavy but infinite 
fluid, waves behind the moving foil cannot arise because their formation 
necessitates two layers of fluid of different densities. The viscosity 
will not be considered as the damping factor of the wave motions, since 
the motion of the wing in water where such damping may be practically 
neglected is considred. In this manner the wave resistance of the foil 
is assumed to not depend on the viscosity; and for determining the mag-
nitude of the wave resistance, use is made of the theoretical formula 
obtained for the motion in an ideal fluid. For determining the over-all 
frontal resistance of a hydrofoil of infinite span, it is necessary to 
add to the wave resistance the form resistance, which is obtained from 
aerodynamic wind tunnel tests on the wing, initially computed for infinite 
span. If the data are available, corrections are made on the form resist-
ance thus obtained for different Reynolds numbers in tests on the foil in 
a tunnel in relation to its motion in water. 

Effect of the Finite Span of Hydrofoil 

The finiteness of the span in its motion in an infinite fluid is 
taken into account by applying the theory of bound and free vortices. 
This theory was developed by L. Prandtl The basis for this theory is 
the theorem of Joukowsky on the lift force of a wing applied to a wing 
of finite span and the theorem of Helmholtz on vortices. The physical 
picture of the formation of vortices may be obtained from the following 
considerations: In the presence of a lift force on the wing and there-
fore of a circulatory flow about it, there is a difference between the 
pressures on the upper and lower surfaces of the wing. Hence, at the 
tips of the wing the fluid will move from one surface onto the other in 
the direction of lower pressure. This transition of the fluid, because 
of its steady character, gives rise to the formation of a system of free 
vortices. Since, according to the theorem of Helmholtz, the vortices 
consist of the same particles of the fluid, the wing in its motion leaves 
behind it free vortices having a length equal to the path traversed by 
the wing. By the theorem of Helmholtz, the vortices cannot break away 
within the fluid; hence in the motion of the wing in an infinite flow the 
vortices either travel on with their ends at infinity or adhere to each 
other behind the wing to form closed systems. In the presence of a free 
surface of the fluid, the vortices may support themselves on the free
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surface. The system of free vortices leads to the motion of the surround-
ing fluid and gives rise to a deflection or downwash of the flow approach-
ing the wing. The downwash decreases the actual angle of attack and de-
flects the lift force behind the perpendicular drawn to the true direction 
of the motion of the wing. The projection of the lift force thus deflected 
on the direction of motion is the induced resistance of the wing. It is 
identical with the energy required to maintain the motion of the vortices. 
For all practical cases of the motion of a wing, the free vortices may be 
taken as half-filaments, that is, may be assumed as infinitely long, not-
withstanding the finite interval of time from the starting instant of the 
motion. Actually, the velocity W induced by a segment of length c of 
the free vortex at a point distant h from its forward end is expressed 
by the formula

Wc -	 .	 C	 (35) 
- 7th	 ,/c2+h2 

If c c, that is, the vortex is a half-filament, then

(36) 

Set c = nh and obtain the ratio W/W: 

wc	 n (g') 
= ,\/l + n2 

If, for example, n = 5, that is, if the length of the vortex is five times 
as large as h, Wc/W=O.98 ; that is, the velocity induced by a finite 
vortex of length c = 5h is 98 percent of the velocity induce.d at the 
same point by a half-filament. If the free vortex is supported on the 
free surface, its final length may be assumed as equal to a half-filament, 
since the point of support of the vortex remains in its place while the 
wing moves; therefore the length of the vortex rapidly attains practically 
an infinitely large value. The quantitative results of the theory of 
induced resistance are based on the magnitude of the induced velocity due 
to a straight vortex half-filament at any point of the surrounding fluid. 
For an infinite flow this velocity is expressed by formula (36). For a 
free vortex shed from the foil in its motion near a free surface, formula 
(36) is no longer applicable because the usual circular distribution of 
the streamlines about the vortex will be distorted by the presence of the 
free surface, and the magnitude of the induced velocity at any point of 
the fluid will therefore be other than in an infinite flow. The effect 
of the finite span of a hydrofoil is now considered. For simplicity, the 
wing of finite span is replaced by a horseshoe vortex which will consist 
of the actual vortices satisfying the theorem of Helmholtz. The horseshoe 
vortex moves near the free surface of the fluid. The resistance of the
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free vortex is determined by theoretical formula (34) and there remains 
only to take into account the change in the flow about the principal 
vortex produced by the presence of the two free-vortex filaments remaining 
behind the foil. By the theorem of Helmholtz the vortices consist of the 
same particles of fluid, so that the free vortices do not follow behind 
the foil; that is, they do not have the property of forward motion in the 
direction of motion of the foil. If the effect of the free surface on 
the velocity field about the free vortices behind the foil is accurately 
taken into account, the problem will be a three-dimensional one. Wave 
disturbances remain behind the foil, and, considering some cross section 
of the free vortices in a plane perpendicular to the direction of motion 
of the foil, the level of the liquid will fluctuate because of waves from 
the foil. This wave motion will be neglected, however, and in considering 
the section of the free vortices in the above-mentioned plane, it is 
assumed that the foil does not leave behind it any wave disturbances; the 
problem will thus be a two-dimensional one. Moreover, the vortices are 
assumed to be stationary relative to the disturbed free surface. Each 
vortex is, in fact, situated in the velocity field of the other vortex 
and therefore they both have a tendency to move in a direction opposite 
to the direction of the lift force. This motion will be neglected in the 
same way it was in considering the flow downwash in aerodynamics. The 
free vortex is then considered as rigidly attached at the depth h under 
the free surface of the fluid. 

Depending on the strength of the vortex, there will exist two limit-
ing boundary conditions for the free surface of the fluid. For small 
values of circulation, the first boundary condition, which consists of the 
requirement that vertical velocities of the particles of the fluid on its 
free surface be absent, is obtained. In this case the free surface may be 
replaced by a rigid wall and the effect of the free vortex, by the effect 
of a pair of vortices of equal strength situated symmetrically with re-
spect to the rigid wall and rotating in opposite directions. For large 
values of circulation, the second boumiary condition, which consists of 
the requirement that horizontal velocities on the free surface be absent, 
is obtained. In this case the effect of the free vortex may be replaced 
by the effect of a vortex pair of equal strength situated symmetrically 
relative to the undisturbed free surface but rotating in the same direc-
tion. For the practical cases of motion of hydrof oils, the first boundary 
condition is more nearly applicable; but we shall nevertheless present 
both variants for taking into account the finiteness of the span in cor-
respondence with the two boundary conditions with a view toward evaluating 
these variants in considering experimental data. The direct computation 
of the velocity induced by the free vortex will be discussed next. The 
characteristic stream function for a vortex pair of opposite rotation 
located at the points 

x= 0, y= -ih and x 0, y= ih 

where x + iy = z, has the form
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w	 rz^hi	 () 1	 2iti	 z-hi 

The characteristic stream function for a vortex pair of the same direc-
tion of rotation located at the same points is 

	

= T ln(z2 + h2 )
	

(38) 

Consider the point of the fluid lying at the distance h from the 
level of the undisturbed free surface with abscissa x and find the 
velocity induced by the half vortex at this point. For this purpose the 
well-known relation

- - = u - iv
	

(39) 

is used, where u is the horizontal velocity of the particles of the 
fluid, and v is the vertical velocity of the particles. 

Applying this preceding relation to formulas (37) and (38) gives 
the corresponding vertical velocities induced by the half vortices: 

r 1 l	 x 

	

V 1 =	
- x2 + 4h2)	

(40) 

r (1	 x
(41) 

In the case of the infinite flow, that is, f or h 	 , the expression 

V 

would be obtained in place of expressions (40) and (41). 

Consider the foil at depth h with two free vortices trailing from 
its edges. Let the span of the foil be equal to 7.. In order to avoid 
obtaining, in the further computation, an infinitely large mean induced 
velocity over the foil span, it is necessary to assume that the distance 
between, the free vortices 1' > 7. On the basis of equations (40) and 
(41), the mean value of the induced velocity over the wing span is 
obtained:

Vm	 .L r	 + - 1	 t2 + 2 2 + 21t + 4h21	
(42) L27+ln	

t2+4h2
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where
7. -i 

t= 1 2	 (ht) 

The minus sign refers to the first variant and the plus sign, to the 
second variant for taking into account the effect of the finite span. 

It is known from tests that for the majority of foils, 

7,i + 7. 
in

	

	 4	 (j')
7,i - 7. 

whence

t	 0.0257.	 (it)

Moreover, in the numerator of the second term of expression (42) the 
magnitude t2 may be neglected because of its smallness. Then 

Vmh[ -1	 12+27.t^4h21
4+	

t2+4h2 ]	
(43)

Replacing t by 0.025 7. in expression (43) and introducing the 
chord of the foil b, the ratio k b/h, and the aspect ratio A 7./b 
give the final expression for the mean induced velocity over the foil 
span

vm=[iin l.05A2k2 ^4 1 

	

0.000625A2k2 + 4]	
(44) 

For an infinite flow, the induced velocity is computed by the 
formula

Vm 

The downwash angle of the flow 13m and the induced drag Cjh 
(coefficient of induced drag) can now be readily found according to the 
physical sense of the downwash angle and the coefficient of induced drag 
tobe

Vm 
ih	 Cih	 ihCyh	 (kt) 

where V is the velocity of motion of the foil. Hence, on the basis of 
expression (44) for the mean induced velocity, the expressions for the 
downwash angle and induced drag of the foil moving at depth h from the 
free surface are found to be
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2Cyh [	 1	 l.o5A2k2 + 4 1	 (45) ih	 1 8
	 O.000625X2k2 + 4J 

	

2C2 r1
	 in	 1.o5X2k2 +	 (46) ih	

°' L	 8	 O.000625X2k2 + 4 
As seen from formulas (45) and (46), the angle of downwash and the 

induced drag of an underwater foil are either smaller or greater than the 
values of these magnitudes in the motion of a foil in an infinite flow 
depending upon the vortex scheme applied - either a vortex pair of oppo-
site direction of rotation or one of the same direction of rotation. On 
figure 13 have been constructed the curves ih/1j 	 f(h/b) for X = 6 
for the two variants under consideration. The same curves represent, of 
course, also the relation

	

Cih	 (h 
C i 

To reduce the computation of the angle of downwash and the induced 
drag of a hydrofoil according to formulas (45) and (46), these formulas 
are rewritten in the form

2Cyh 

	

ih	 x (1 ± )	 (45a) 

2C2yh 

	

C jh	 (1 .i )	 (46a) 

where

	

in	 l.O5X2k2 + 4	 (46b)
O.000625A2k2 + 4 

On figure 14 the magnitude has been constructed as a function of 
the product Ak 2/h. The use of this curve in the computation is clear 
from formulas (45a) and (46a). 

Next, the relative error incurred if the usual formulaE are used for 
determining the downwash angle and the induced drag of a hydrovane, with 
rio account taken of the effect of the free s'irf ace on the magnitude of 
the induced velocity, will be obtained. For this purpose the following 
table is used:

(i')
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A = 2/b b/h = 0.5 b/h	 1.0 b/h = 2.0 

I Method II I II I II 

2 3 3 11 9 2517 
5 15 11 33 20 67 29 
10 33 20 67 29 93 32 
15 52 25 111 34 190 40

For the various aspect ratios of the wing A and ratio of wing 
chord to depth, the relative error is computed in percent for the down-
wash angle and the induced drag of the hydrofoil, using in place of 
formulas (45) and (46) the aerodynamic formulas. As may be seen, the 
relative error may attain a large value at large values of b/h, that is, 
near the free surface. The relative error increases with increasing A 
but the absolute values of the angle of downwash and the induced drag 
decrease, and therefore the absolute error decreases with increasing A. 
In considering the problem of accounting for the finiteness of the span 
of the hydrofoil, the following should be added: The downwash angle and 
the induced drag of hydrofoils must, as a rule, be determined by formulas 
(45) and (46) because the aerodynamic formulas would give a considerable 
error even for submersions equal to twice the chord of the wing. Such 
depth of submersion is already equal to the maximum suitable for use. 
Before anything can be said in regard to the final choice of boundary 
condition on the free surface determining the direction of rotation of a 
fictitious vortex, the experimental results must be considered. A com-
putational example of a hydrofoil will be given also. 

TANK TEST ON A HYDROFOIL 

In 1935 tests were conducted by A. N. Vladimirov and V. G. Frolov at 
the CAll tank on a plane underwater foil. The object of the test was to 
obtain the hydrodynaznic characteristics of the foil at various submersions 
with a view toward mounting this foil on a seaplane. A thin symmetrical 
NACA 0.0009 profile of rectangular plan form having a chord b = 0.14 
meter, span 2 = 0.84 meter, and therefore aspect ratio A = 6 was tested. 
The thickness cf the foil was 9 percent of the chord. On figure 15 are 
given the coordinates of this profile taken from the mentioned report. 
On figure 16 are given the aerodynamic characteristics of the profile 
obtained in the high pressure wind tunnel for a value of Reynolds number 
of 3.2xlO6 , whereby A and B are denoted, as everywhere below, 
A = C,pSV2 and R = CSV2 . For the tests in the tank the foil of the 
given dimensions was constructed of kolchugaluminum (an aluminum alloy) 
and was supported by two steel brackets which at their bases were fitted 
into the body of the foil from above, being attached to them by counter-
sunk rivets and having at the places of juncture with the surface of the 
foil a smooth form. The scheme of arrangement of the brackets on the 
foil is shown in figure l7', The test was conducted on a special apparatus 
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which permitted measuring the lift and the frontal resistance of the foil 
with the brackets. The moment due to the hydrodynac forces was not 
measured. The test setup is given on figure 18. The upper hinge axis 
of the vertical frame of the apparatus had one degree of freedom, that 
is, it could be displaced over an arc of sufficiently large radius. The 
impossibility of the deflection of the vertical frame toward one side was 
secured by a special device. For this reason the foil, being itself at 
constant angle of attack, that is, immovably connected with the vertical 
frame, had two degrees of freedom. The angle of attack of the foil was 
determined with an accuracy up to ±8 minutes. The required depth of 
submersion of the foil was first approximately determined at standstill 
and in motion was measured with an accuracy up to ±1 millimeter. By the 
depth of submersion of the foil is meant the distance of the geometric 
center of the foil from the level of the undisturbed free surface. The 
total frontal resistance of the foil with the submerged part of the 
brackets was measured by a contact dynamometer of the Gebers system. To 
the drum of this dynainometer was attached the towing rope, care being 
taken that the rope was always horizontal during the motion. Since the 
vertical frame was subjected to pressure from the air stream, this part 
of the resistance was experimentally taken into account. The hydrodynamjc 
lift force of the foil was measured by a spring dynamometer with an 
accuracy up to ±1 kilogram. For this purpose one measurement was made at 
standstill, that is, the load on the foil (weight of the structure) was 
determined, and another measurement was made during motion. The differ-
ence between the values of these measurements gave the magnitude of the 
lift force of the foil. The box on the vertical frame shown in the 
sketch was intended for the loads in the case where the positive lift 
(force directed upward) exceeded the weight of the structure. The length 
of' the towing rope was so regulated that the axis of the principal frame 
of the apparatus occupied a vertical position. In the test setup used 
there was only one position of the foil when its center of pressure was 
displaced away from the vertical. The lift force was then somewhat de-
flected and therefore gave an additional resistance, which was taken into 
account by a special correction. The frontal resistance of the hydrofoil 
without support brackets was determined as the difference between the 
measured resistance of the foil with the brackets and the resistance of 
the brackets. The resistance of the brackets was computed by the formula 
R CjSV2 , and C was determined from the air polars since the brackets 
constituted aeronautical profiles. The area S of the brackets was a 
function of the depth of' submersion of the foil. It was assumed that 
there was no interference effect between the foil and the brackets. Since 
a wave remained after each test, an interval was required between the 
tests during which the surface of the water regained its caLu. 

The basic tests were conducted at constant towing velocity V = 6 
meters per second. The depth of submersion of' the foil was varied over 
a range from zero to the chord of the foil, and angle of attack was var-
ied from _l80 to +180 . For small submersions the tests were restricted
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to small angles of attack in order to maintain as far as possible complete 
submersion of the foil. Since the actuaLtowing velocity for each test 
differed from V = 6 meters per second with a deviation up to 0.2 meter 
per second in either direction, all values of the lift force and resist-
ance of the foil obtained in the measurements were recomputed for V = 6 
meters per second on the assumption that in the interval of deviation of 
the velocity the hydrodynamic forces acting on the foil were proportional 
to the square of the velocity. Positive angle of attack was assumed in 
the usual sense of this term. For example, at an angle of attack of +12° 
the lift of the foil is directed upward; at -12° it is directed downward. 
In addition to tests at constant velocity, curves were obtained for the 
lift and drag of the foil as functions of the velocity for two different 
submersions h1 and h2 . The angle of attack was here taken as constant 

and equal to 4, and the velocity was varied in the range from 2 to 12 
meters per second in 2-meter-per-second increments. All tests were con-
ducted for constant submersion of the foil, that is, for each run the 
amount by which the load exceeded the lift was determined and the raising 
or submersion of the foil during the motion occurred only within the 
limits of the compression or extension of the springs of the dynamometer 
measuring the lift. The results of the tests on the hydrofoil are pre-
sented in the figures. On figures 19 and 20 are constructed the curves of 
the lift force A (in kg) and frontal drag R (in kg) of the hydrofoil 
as a function of the depth of submersion h (in mm) for various angles of 
attack a for constant towing velocity V 6 meters per second. On 
figure 21 are constructed the curves of hydrodynamic efficiency of the 
hydrofoil as a function of the depth of submersion for two angles of 
attack a +40 and o. = _40• In this case, too, the towing velocity 
was constant (V = 6 m/sec). On figures 22 and 23 are constructed the 
curves of the lift force A (in kg) and frontal resistance R (in kg) of 
the hydrofoil as a functon of the towing velocity for two different 
submersions h1 = 41 and h2 82 millimeters. The angle of attack was 
here constant and equal to 40 For the present, an analysis of the 
experimental data obtained is not of concern, and the characteristic 
features of the constructed curves will not be explained; the discussion 
will be restricted to the presentation of the data. A comparison will 
subsequently be presented of the theoretical and experimental data, and 
it will then be easier to note the laws which govern the hydrodynamics 
of a hydrofoil. 

The data obtained from the tank tests on the hydrofoil were valuable 
in that they brought out with particular clearness the effect of the most 
important factor, namely, the depth of submersion. The fact that the 
test was made on a thin symmetrical profile was a favorable circumstance. 
As a result, the conditions of the test very closely approached those for 
which the problem was theoretically solved. These favorable conditions 
were obtained in other tests on hydrofoils. For example, in the tank at 
Dumbarton (ref. 13), tests were conducted on a series of profiles for the 
scale effect, a part of the profiles being tested in a vertical position
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and a part in a horizontal. The chord of the profiles tested in the 
horizontal position was equal to 16 centimeters and the submersion was 
constant at 60 centimeters, almost four times as large as the chord. 
The tests on the profiles under the free surface of water were in gen-
eral repeated several times for the purpose of investigating the per-
formance of propellers. The free surface of the water was, however, a 
necessity only in that it was unavoidable, and attempts were made to go 
as far as possible below the surface. In the present tests, however, an 
attempt was made to approach nearer the surface, and for this reason the 
possibility existed of clarifying the effect of the free surface and of 
comparing the experimental results with the theoretical. 

HYDRODYNAMIC C0UTATION PROCEDURE FOR TUE HYDROFOIL 

The first step is to recompute the air polars of the hydrofoil pro-
file from finite to infinite span. On figure 24 are shown the curves of 
the lift coefficient of the foil for A = 6 and the recomputed values 
for A = . The foil of infinite span has no induced drag so that the 

	

profile drag of the foil for A =	 is obtained from the total drag for 
A 6 wIth the induced drag subtracted. After proceeding to the motion 
of the foil in a plane-parallel flow, the foil is transferred from the 
air to the water for, at first, infinitely great depth. There is a change 
in Reynolds number which, in agreement with a preceding section, must be 
taken into account. The air polar was obtained for a value Ee = 3.2x1O6. 

In the water there is first of all a change in the coefficient of 
kinematic, viscosity Y. For a temperature of the tank t 18° C, 
v = 0.013 (cm2/sec). Since the foil chord b = 14 centimeters, the ve-
locity V = 600 centimeters per second is the following value for the 
Reynolds number Re Vb/v = O.6XlO6. 

The lift force of the foil is assumed not to change with the change 
in Reynolds number, and only the profile drag and that part of the pro-
file which constitutes the friction drag are recomputed. The formula of 
Prandtl for the frictional drag coefficient of plane surfaces is used for 
this purpose (ref. 14). This formula includes the range of motion for 
the Reynolds numbers under consideration. The formula of Prandtl is of 
the form

0.074	 1700 

	

Cf=5	
- Re	 (47) 

Recomputing by this formula the frictional drag of the foil gives 
the curve of profile drag for water. In figure 25 are constructed the 
profile drag curves for water and for air as functions of the angle of 
attack.
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It should be remarked that the efficiency of the profile according 
to wind tunnel test data at the Reynolds number Re 3.2 X106 was equal 
to 23 at an angle of attack of 4°. The hydrodynamic efficiency of the 
same profile for the Reynolds number Re 0.6 x106 was equal to 18.2 as 
a result of the increase in the profile drag. 

It is interesting to note that if the coefficient of the frictional 
drag of the foil is determined in its motion in air by formula (47), that 
is, for the same Reynolds number for which the air polar was obtained, 
then

100 Cf = 0.32 

while the actual profile drag coefficient of the foil for zero angle of 
attack is equal to

100 C = 0.40 

as seen from figure 25. 

The total drag of the foil in its motion in air at zero angle of 
attack consists therefore of 80 percent frictional drag and 20 percent 
pressure drag arising from the thickness of the foil. At the same time, 
the value 100 C	 0.32 indicates the good agreement of the value of 
Cf obtained by the formula of Prandtl with the actual values and justi-
fies the application of the Prandtl formula. 

Since curves for the different towing velocities are still required, 
the curve of the profile drag of the foil as a function of the velocity 
in water at angle of attack of 4° has been constructed on figure 26. 
After the first stage of the computation, the hydrodynamic forces acting 
on a foil of Infinite span moving in an infinite fluid are known. 

It is now necessary to consider the motion of the foil when near the 
surface of the water. For this motion waves are formed behind the foil, 
the lift force of the foil changes, and a wave drag appears. The lift 
coefficient of a foil moving at depth h is obtained by means of the 
formula

Cyh = C(M - Na.)	 (33) 

and the graphs shown in figures 10 and 11. The value 	 entering the 
formula is taken from the curve for A = 	 shown in figure 24. The 
coefficient of wave resistance of the foil is obtained by means of the 
formula
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--

C	 :=C 2	 e	 2	 (34) rh	 Y2 

and the curves constructed in figure 12. 

In the tank tests on the hydrofoil, the depth of submersion was var-
ied starting from zero. For comparisons however, the theoretical curves 
were constructed for only the submersion starting from 50 millimeters, 
since for smaller submersions formulas (33) and (34) will not give a 
correct result because the term

(b/2h)3 

and terms of higher degree were neglected in these formulas. The formulas 
may therefore be used only for those values of b/2h which satisfy at 
least the inequality

b/2h < 1 

Since the chord of the foil was b = 140 millimeters, the limiting case 
obtained for which these formulas may still be considered as valid is for 
a value of the submersion depth of 

h 70 mm 

In the conutations deviations are made from the value h 70 milli-
meters by another 20 millimeters. A closer approach to the free surface 
does not give anything even formally, since for this value M and N 
approach infinitely large values. The hydrody-namic forces acting on a 
foil of imifinite span moving near the free surface of the water are now 
known. 

The finite span of the foil must be taken into account; the change 
of its lift force due to downwash and the value of the induced drag are 
determined. The correction for the finiteness of the span was made for 
two variants corresponding to the two boundary conditions at the free 
surface. For the first variant, in which the free surface is replaced by 
a rigid wall, the downwash angle ih is always less at finite depth 
than the downwash angle for infinitely large depth. In both cases, of 
course, the same lift force is considered. For the second variant, in 
which the effect of the free surface is replaced by the effect of a vortex 
pair rotating in the same direction, the downwash angle 3ih at finite 
depth is always greater than the corresponding angle at infinitely large 
depth, again for the same lift forces. 

The downwash angle behind the foil is found from the formula 

2Cyh 
ih = itA (1 -	 )	 (45a)
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and the curve on figure 14, where the magnitude 	 entering formula 
(45a) has been constructed as a function of the product Ak. For the 
foil tested in the tank A = 6 and k = b/h depend on those depths h 
for which computational data are to be obtained. For each depth of sub-
mersion h there is a different downwash angle. The difference between 
one variant and the other is the fact that for the same depth of submer-
sion of the foil, different values of the downwash angle are obtained. 
Having, for a given depth h, the lift curve of a foil of infinite span 
as a function of the angle of attack and knowing for this depth the mag-
nitude of the downwash angle it is easy to construct the curve of lift 
force against the angle of attack for a foil of finite span, making use 
for this purpose of the usual graphical methods applied in aerodynamics. 
The computation is therefore individual for each depth. 

The formula

2Cy2 

ih - itA	
(1 -	 )	 (46a) 

and the curve	 = f(Xk) constructed in figure 14 are used to determine 
the induced drag of the foil. The computation is again conducted for 
each depth and, since the magnitude 	 entering the formula for Cjh is
known, no difficulties are encountered. It is here likewise necessary to 
make use of the graphical methods applied in aerodynamics. A comparison 
of the thoretical curves with the experimentally obtained data will now 
be made.

CONPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS 

The lift forces are considered first. On figure 27 are given the 
theoretical curves for the lift force coefficients of the foil as a func-
tion of the submersion h in millimeters, and the test points are shown 
in the same figure. All data were reduced to the velocity V = 6 meters 
per second. There may first of all be observed the qualitative agreement. 
The lift force of a hydrofoil at all angles of attack decreases in abso-
lute value with decrease in depth of submersion. A somewhat different 
character is possessed by the curve for zero angle of attack where the 
reverse phenomenon is indicated. Theoretically, for negative angles of 
attack the lift force should be greater than for the positive in absolute 
value, but this was not confirmed experimentally. In general, it must 
be said that the quantitative agreement of the theoretical with the ex-
perimental results is better the smaller the angle of attack and tbe 
larger the depth of submersion. This is understandable since the theo-
retical solution based on the linearized wave theory gives a better 
approximation when the foil produces a small disturbance. Best agreement 
of the results is given by the first variant ( ih <
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Two theoretical curves and one experimental curve for the constant 
depth of submersion h = 82 millimeters and constant angle of attack 4 
are constructed on figure 28 for comparison; these curves show the effect 
of the velocity of motion of the foil on its lift coefficient. From 
theoretical considerations it follows that the lift coefficient of the 
foil should increase with increasing velocity. The experimental curve 
actually has this tendency; however, it is only weakly indicated. The 
quantitative agreement very clearly speaks in favor of the first variant 

(ih< 

The data on the total drag of the hydrofoil are now compared. The 
theoretical curves of the coefficients of total drag of the foil are 
constructed as a function of the submersion h for the constant velocity 
of motion V = 6 meters per second on figure 29, and on the same figure 
are sbown the test points. First noted is a characteristic feature of 
the theoretical and experimental results, namely, the increase of the 
drag coefficient of the foil with increase in depth of submersion. The 
increase is ascribed to the increase in the induced drag of the foil 
corresponding to the increase of its lift force with increased submersion. 
It is seen that starting from a certain depth the increase in the drag is 
discontinued and a drop begins as a result of the decreasing wave resist-
ance. That such is the case is clear from the mutual positions of the 
curves and asymptotes. The quantitative agreement for positive angles of 
attack is as before better the smaller the angle of attack and the greater 
the depth of submersion. In comparing the drag for negative angles of 
attack, the opposite result is obtained. From the theoretical curves, it 
follows that

CXh(0) < CXh(0) 

which is explained by the fact that theoretically the lift force is 
greater for negative than for positive angles of attack, a fact which 
gives rise to the corresponding inequality in the induced drags. Experi-
ment shows, however, that

Cxh( 41) > CXh(t) 

In the given case the experimental data obtained are assumed to be cor-
rect and the following explanation is given: 

First of all, it is assumed that in taking account of the finite 
span the free surface is replaced by a solid wall. As has previously 
been pointed out, the downwash angle then decreases with approach of the 
foil (and therefore also the free vortices) to the surface; and for 
h -+ 0, ih also -Q. It was remarked also that the free vortices must 
possess a motion directed opposite to the lift force. Hence, for nega-
tive angles of attack the free vortices moving upward may approach very
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near the free surface of the water and the downwash angle, and therefore 
also the induced drag, will be very small. From this it follows that the 
total drag of the hydrofoil for negative angles of attack will always be 
less than for positive angles. There is, unfortunately, as yet, no math-
ematical theory of this problem, nor does the possibility exist, on the 
basis of the above supposition, of finding the relation between the mag-
nitude of the downwash angle for negative angle of attack and the depth 
of submersion of the foil. 

On figure 30 are constructed two theoretical curves, and the test 
points of the drag coefficients of the foil are plotted for a constant 
submersion of the foil h 82 millimeters and constant angle of attack 
4°. From these data it is possible to learn the effect of the velocity 
of motion of the foil on its total drag coefficient. The theoretical 
curves give a decrease in Cxh with increase in velocity and a sharp 
increase in Cxh at small velocities. This is explained by the fact 
that for small Froude numbers, the coefficients of wave drag sharply 
increase. This was not confirmed experimentally. In the range of veloc-
ities starting from V = 6 meters per second and higher, good quantita-
tive agreement is observed between the experimental data and the theoret-
ical curve for the first variant ( jh < 13). 

On figure 31 are given the theoretical curves of the hydrod.yxiamic 
efficiency of the hydrofoil as a function of the depth h for a. 4° 
and velocity V 6 meters per second. The test points are indicated 
also. The position of the test points confirms the general character of 
the theoretical curves. The quantitative agreement is better for the 
curve of the first variant, as has already been observed f or the curves 
used as a basis for obtaining the curves of hydrodynamic efficiency. 

On figure 32 the two diagrams are constructed so as to illustrate 
clearly the relations and changes in the parts of the total drag of the 
hydrofoil with change in depth of submersion of the wing. The curves 
are theoretically constructed for angle of attack 	 = 40 and velocity 
V = 6 meters per second.

CONCLUSIONS 

The comparison here given between the experimental and theoretical 
results of an investigation of the hydrodynamic forces acting on a hydro-
foil has shown that the theoretical solution based on the theory of small 
waves gives an essentially correct representation of the phenomena occur-
ring in the actual motion. The agreement of the results is less favorable 
with increase in angle of attack (in absolute value) and decrease in 
depth of submersion.
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An attempt has been made in this paper to take into account approx-
imately the finite span of the hydrofoil. The proposed method of finding 
the angle of downwash behind the hydrofoil is given simultaneously in two 
variants. For the velocities of motion considered the more accurate 
variant is that in which the free surface of the fluid is replaced by a 
rigid wall. 

The viscosity of the fluid is taken into account in the usual manner, 
which is also approximate. 

On the basis of the results obtained, it may be said that a reliable 
hydrodynamic computation of a hydrofoil may be made for those conditions 
of motion for which the absolute value of angle of attack is small and 
the depth of submersion is not less than the chord of the hydrofoil. 
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TABlE I. - VALUES OF M AND N FOR FORMUlA (33) 

b V 
F= N b 

- 
k--

V 
F=- M N 

h jT2gb 

0.998 0.100 0,910 0.600 

10.0 0.982 (1118 10.0 0.892 0.622 

7.5 0.972 0.122 7.5 0.881 0.62 

02 5.0 0.948 0,113 12
0.846 0.618 

3.0 0.910 0.046 3,0 0.735 0.52 

2.0 0.897 -0.073 2.0 0,650 0.255 

1.75 0.909 -0,119 1,7.5 0,620 0,121 

1.50 0.933 -0.159 1.50 0.594 -0.037 

0,990 0.200 0.878 0.700 

10.0 0.974 0,224 10.0 0.859 0.721 

7.5 0.963 0.229 7,5 0,848 0.726 

04 5.0 0.935 0.228 14 5.0 0.813 0.713 

3,0 0.865 0.166 3.0 0,697 0.600 

2.0 0.814 0.039 2.0 0.608 0.293 

1.75 0,806 -0.027 1.75 0.579 0.132 

1.50 0.808 -0.091 1.50 0.550 -0.069 

0.978 0.300 0.840 0,800 

10.0 0.961 0.324 10.0 0,821 0,81 

7.5 0.948 0.331 7.5 0.810 0,82! 

06 5.0 0.913 0,333
1 6 5.0 0,773 0.81u 

3.0 0.834 0.282 3,0 0.653 0.676 

2,!) 0.768 0.108 2.0 0,561 0.3l 

1.75 0.748 0.025 1.75 0.522 0,13 

1.50 0.739 -0.108 I ,5() 0.495 -0.117 

0.960 0.400 0.798 0,96q 

• 10.0• 0.943 0.425 10,0 0,778 0,917 
7.5 0.930 0,131 7,5 0767 0.919 
5,0 0.900 0.430 .5,0 0.730 0,87 
3,0 0,804 0,359 3,0 0.605 0,152 
2,0 0.730 0,17 I 2.0 0,509 0,311 
1.75 0,704 0,092 1.75 0.471 0.131 
1.50 0,684 0.003	 1 

0.500

1,50 0,139 -0,154 

o.938 - 0.750 1,000 
10.0 0920 0.524 10.0 0.730 1,015 
7,5 0,908 ('.530 7.5 0,718 1,014 

1.0 5.0 0.875 0.527	 2.() 5,0 0,68! 0.990 
3.0 0.77! ((.446 .0 0,552 0.824 
2.0 0,6) I 0.216 2.0 0,151 0,368 
1.75 0,662 0,111 1,75 ftl 12 0,130 

- 1.50 0.631 -0.003	
L

1.50 0. -0,20k
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TABLE II. - VALUES OF Crh/Cy2 FOR FORMUlA (34) 

k
-	 V 

-

c 
___

b V 

F = Vb C,21, 

7.50 0.080 1.75 0.935 

5.00 0.161	 0.6 1.50 1.042 

4.00 0.226 1.29 1.840 

3.00 0.314 

2.50 7.50 0.086 

02 2.23 .00 0,188 

2.00 4,00 0.285 

1.75 o.:116 3.00 0.476 

1.50 0.236 2.50 

1.20 0.100 2.0() 0.900 

0.80 0.8 1.75 1.070 

1.50 1,253 _________ ________________ 

7.50 0.084 1.12 1.450 

5.00 0.178 0.90 1.280 

4.00 0.264 0.70 0,805 

0.116 0.60 0.414 

2,50 0.530 0.50 0.110 

2.00 0.660 

0.4 1.75 0.712
7.50 0.086 

1.58 0.725 5.00 0.189 

1.50 0.720 4.00 0.290 

L2() 0.610 3.00 0.490 

L0O 0.3l0
2.50 0.674 

1.0 

0.151 2,00 0.960 

0.60
1.75 1.162 

______ ____________ _______ 1.50 1.403 

7.50 0.1)85 1.00 1,815 

5.1)0 0.184 0.60 1.840 

4.0(1 0.277 
0.6 7.50 0.860 •, 0.456

5.00 0.191 
2.50 ().604	 I 2

4.00 0.292 
2,00 l),1	 I 3.00 0,500



42
NACA TM 1341 

TABLE II. - Concluded. VALUES OF Crh/Cv 2 FOR FORMUlA (34) 

k= F=*b k=j F=j 

2.50 0.691 7.50

__ 

0.087 

2.00 1.000 5.00 0.19 
1.2 1.75 1.22 4.00 0.298 

1.50 1.510 3.00 0.515 
__________ 0.91 2.170

1.8
2.50 0.723 

7.50 ().0S7
2.00 1.07? 

5.00 0.191
1,75 

-t .( H) 0.29-I
1.50 1.710 

3M) 0.505
0.74 3.260 

2.50 0.705
0.54) 2.170 

2.00 1.032 _______________ ________ 

1.75 1,275 7.50 0.087 
1.4

1,50 1.590 5.00 0.193 

1,00 2.430 4.04) 0.298 

0.84 •'54() 3,04) 0.517 

0,70 2.320 2.5) 0.7.10 

0.60 1 ,s6o 2.00 

0.50 1.190 1.75 
___________ 0.40 000 4.50 1.750 - 

7.50 0,087
2.0 1.20 2.400 

5.00 0,193 .00 3.020 
4.00 0.296 0.80 3.560 
3.0() 0.510 0.70 3.630 

1.6
2.50 0.715 0,60 3.440 
2.00 1.057 0.50 2.660 
1.75 1,311 0.45 4,950 
1.50 1.660 0,40 0.424 
0.79 2.900 0,30 0.020 
0.50 0.402 - __________ _______________ _________ 

...L. - vi-two ur ç .iun ui viuj 	 (,45a) AND (46a) 

Ak--- Ak=-f __________ 

.0.5 0,007 tO 0.413 1,0 0.023 2u 0,575 2.0 0.090 2 0h20 
5.'	 - 0252 :o 0.670
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TABLE IV. - HYDRODYNANIC CHARACTERISTICS OF HYDROFOIL MEASURED 
IN TOWING TESTS 

Point V,m/sec h,nnn 
________

a, deg B, kg a, kg
Values of 

Visec, 
kg

Values of 

V6rn/sec, 
kg 

6.07 ±2 0 1.71 - 1.70 - 

2 6.05 ±2 - 2 1.18 -- 1.16 - 

3 6.04 1 2 2.90 - 15 2.6 --	 11.8 
6.00 0 4 4.79 - 4 4.79 - 4 
6.01 -5 8 9.60 24 9.60 24 

6 6.O II - 2 2.38 - 40 2.3:3 -- 39.6 

7 6,05 11 0 1.52 - 19 1.49 - 13.6 

8 6.0 9 2 1.62 2 1.58 1,95 
g 6.06 8 4 2.19 24 2.14 23,4 

0 6,05 5 8 8,23 17 8,30 16.7 

6.05 7 8 8.67 59 8,36 58 

12 6,04 5 8 10.55 16 30,4 15.7 

13 6,08 1 7 4 2.39 31 2,26 29.1 

14 6.06 19 2 1,62 7 1,58 6.8 

15 6.10 22 0 3,33 - 11 1,23 - 10.6 

16 6.05 22 - 2 1.87 31 1,83 - 30,4 

6,05 42 - 2 1.76 - 23 1,73 -- 22,5 

18 6,96 41 0 1,11 i,-n --	 2,86 

39 6,06 38 2 I.BI 20 1.77 19,5 

20 6,06 36 4 2.82 39 2.76 38 

21 6,05 18 8 6.79 10 6,6-I 9,7 

22 6.03 80 0 1.48 2 1.46 1,97 

23 6.04 75 4 3.68 50 3.62 49.2 

24 6,01 67 8 9.16 92 9,16 91 

25 5,95 58 12 27.11 121 27.5 12.3 

26 5.94 58 16 41.28 121 12.0 121 

27 5,94 51 44.85 116 45,6 1 1 

28 5.93 59 34 31.33 1.i 8.2 131 

29 6,01 85 - 4 2.60 - II 2.19 •-	 -13,8 

30 6,01 87 - 8 6,62 - $9 6,t ---

31 5.94 82 -12 18.05 __i: 13.3 --339 

32 5,93 69 -36 38,61 -i; . 159 

33 5.94 68 -18 37.54 - 91; 38 - 9. 

34 5.98 83 -16.5 49.38 -33' 19,2 --168 

35 6.22 83 -16.5 46.65 -1t1 44.2 ---349.5
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TABIE IV. - Concluded. HYDRODYNAMIC CHARACTERISTICS OF HYDROFOIL
MEASURED IN TOWING TESTS 

Point V,m/sec Ii,	 tian a, deg R,kg a, kg 

j

Values of 

kg

Values of 

V-6rn/sec, 
kg _______ _________ ________ ________ ________

_________ ---- 1 - 
36 t..l5 83 -16.5 46.55 -16! 44.0 -153.4 

37 5.93 120 0 1.52 0 1.55 0 

35 5.95 115 4 3.73 56 3.78 56.8 

39 5.9 97 8 10.33 108 10.40 109 

40 6.01) 99 12 29.38 1-16 29.38 146 

41 5.95 91 16 44.4S 136 45.2 138 

42 5.93 91 16 44.38 136 45.2 138 

43 5. 90 17.5 48.17 121 48.8 126 

44 6.02 94 14 38.75 145 38,5 144 

45 6.04 25 - 4 2.70 - 58 2.66 - 57.2 

46 5.98 127 - 8 7.18 - 110 7.2 -111 

47 5.97 125 -12 21.00 -151 21.2 --153 

-IS 6.00 119 --16 42.86 -171 42.86 -171 

-tO 6.02 112 20 54.SO -'151 54.4 -150 

St 6.08 150 0 1,72 0 1.67 0 

51 6.03 142 4 3.88 59 3.82 58.4 

52 6.04 137 S 10.80 113 10.6 111 

.53 6.01 127 12 30.50 143 30.-I 142 

51 6,04 121 6 46.70 138 46 136 

55 3.95 123 17.5 50,33 132 50.6 133 

36 6.04 155 .- 4 2,8() - 5-I 2,76 - 53.2 

57 6.09 136 - 5 7.68 -122 745 -118 

6.00 54 -12 23.50 -166 23,5 -106 

59 6.00 15! -16 -15.47 -P174 45.47 -174 

60 141 -18 51,85 -173 52.6 -175 

8! 1,98 43 4 (1.28 4 - - 

62 4.05 39 4 1.25 17 - - 

63 6.08 43 4 2.90 43 - - 

64 8.05 4! 4 4.83 50 - --

65 0.10 44 4 7.18 124 - - 

66 12.12 35 4 9.80 165 - - 

67 2.04 85 4 0.38 6 - 

-(12 52 4 1.60 o; - - 
69 6.15 8! 4- 3,37 - - 

70 8.06 82 4 5.77 102 - - 

7! 1,20 85 4 8.41 153 - - 

72 12.10 77 4 13.S9 240 - -
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TABLE V. - CHARACTER OF FLOW ABOUT HYDROFOIL IN TAI'IK TESTS 

Point Condition of motion Remarks 

Spray film from leading edge of foil 
h=O, 0=00, in upward direction.	 Foil undergoes 
V=Grn/sec vertical vibration with amplitude of 2 

millimeters. 

h=O, m=-2° Spray film from leading edge inclined 

2 V=6 n/sec somewhat backward.	 Vertical vibration 
as under 1. 

h-O	 40
Spray film from leading edge inclined 

3 -	 '	 /	 ' V=6 rnsec
somewhat forward.	 Vibration of foil 
discontinued. 

h=ll	 -2° From the leading edge of the foil a 
6 v=6 rn/sc	 '

film adhering to the upper surface 
is formed. 

From the trailing edge of the foil a 
film is formed having a horizontal 

h=5 mm, a8 direction.	 From the leading edge a film 
10 V=6 n/sec is formed making with the chord an angle 

of 450 and forming a water arch over the 
foil. ______ ____________________

The flow about the foil is smooth, a 
vertical film being formed at each bracket. 

_AO 
Lf	 mm,	 CL.-	 , This smooth character of the flow occurs in 

13 V=6 rn/sec all cases where the angle of attack is not 
too large and the foil is submerged at a 
sufficient depth. 

h=58 mm, n=12°, Behind the foil there is a depression 
25 V=6 rn/sec which, after 3 meters, ends in turbulence. 

Behind the foil there is	 depression coy -

h=58 mm, C=16, ered with jets running off the foil. 	 At a 

26 V=6 rn/sec distance of about 1 meter the jets are trans-
parent and beyond that point have a foamy 
structure. 
From the middle of the foil over the entire 
span vortical filaments similar to systems of 

27
h=51 mm, a17.50, free vortices are formed. 	 A group of such 
V=6 rn/sec vortices does not adhere strongly to the foil 

and periodically breaks away, and in its plac 
new vortices are formed. 

From the lower surface of the foil (the low-
h=68 mm, m=-18° pressure surface), a vortex film periodically 
V=6 rn/sec breaks away as under 27. 	 This phenomenon is 

the cause of the vertical vibration of the 
foil.	 -
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TABLE V. - Concluded. CHARACTER OF FLOW ABOUT HYDROFOIL IN TABK TESTS 

Point Condition of motion Remarks 

h125 mm Flow about the foil is smooth.	 Immediately 

cLrl2° behind the foil a ridge is formed which at 

V=6 m/sec approximately l	 meters becomes a depression. 

h=119 mm, 
48 cL=-l6° , The same as under 47. 

V=6 rn/sec 

h=112 mm, Immediately behind the foil a ridge is formed 
going over farther into a depression.	 Behind 

v=s m/sc the foil vortical filaments were observed 
which, however, started not from the foil itself 
but approximately 1 meter behind the foil. 

h=137	 m, The flow about the foil is smooth.	 Immediately 

52 behind the foil is a shallow depression ending 
V=6 rn/sec in surf. 

61 The flow about the foil is very smooth and the 
to 40

course is constant.	 A small vertical film is 
72 formed at each bracket.
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1(r) 

Figure 1. - Effect of w = 2gh/V 2 on lift 
force of a cylinder without circulation. 

Figure 2. - Dependence of lift force 
coefficient of a cylinder without 
circulation on h/d and
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30 

a'

a, 

a, 

1;'

=O5 

/0	 20

V 

Figure 3. - Dependence of wave drag coefficient of a cylinder 
without circulation on d/h and V/L/.
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Figure 4. - Dependence of lift of a foil replaced 
by a vortex on h/b and V//. 

C?.. 

q 

Figure 5. - Dependence of wave drag coefficient 
of a foil replaced by a vortex on b/h and V/L/. 
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Figure 8. - Effect of = 2gh/V 2 on f( g) from formula (28a). 
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Figure 9. - Polars of foil of infinite span moving in ideal fluid. 
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i.i__-__ I	 I - I	 1	 I	 I	 I	 __________ 
5 6 7 

- Dependence of principal term of formula (33) on k = b/h and V. 

so 

'V 
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oil
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Figure 16. - Aerodynamic characteristics of profile I'IACA 0.0009. 
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Figure 17. - Scheme of arrangement of supporting 
brackets on hydrofoil.

for measuring 
lift force 

Instrument for measuring 
depth of submersion of foil

Ig 
Lever-s

	

\	 Instrument for measuring 
angle of attack 

	

To dynamometer_	 Towing
P1ace of attachment of steadying device 

_:_	 ___ 

Figure 18. - Set-up for testing the hydrofoil in 
tank.
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Figure 19. - Dependence of lift of foil on depth 
of submersion and angle of attach for V = 6 
meters per second (test data).
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kg

Figure 20. - Dependence of total frontal drag of hydrofoil on depth 
of submersion and angle of attack for V = 6 meters per second 
(test data).
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A

Figure 21. - Dependence of hydro-
dynamic efficiency of the 
hydrofoil on depth of sub-
Inersion for a = ±40 and V = 6 
meters per second. (test data). 

A, kg

= 

/ODH 

I,__ --- . : p,, 

Figure 22. - Dependence of lift of hydrofoil on velocity 
for a = 40 and for two depths of submersion (test 
data).
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/C8Cp 

Figure 25. - Dependence of profile drag coefficient 
on angle of attack and Reynolds number. 

OOCp

Figure 26. - Dependence of profile drag coefficient 
on velocity foi a = 40
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Figure 30. - Comparison of experimental and theoretical 
coefficients of total drag of a hydrofoil for a = 40 and 
V = 6 meters per second. 
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Figure 31. - Comparison of experimental and theoretical 
hydrodynamic efficiencies of a hydrofoil for a = 40 and 
V = 6 meters per second. 
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i0oC

£	 /02 /50 - 2U0 2W ' 300 350 4W' 

Figure 32. — Effect of depth of submersion of a 
hydrofoil on the components of its frontal drag 
for a = 40 and V = 6 meters per second, and X = 6 
(theoretical data).
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