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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL MEIMORMIDUM 1335 

MOTION OF A CYLINDER UNDER THE SURFACE OF A HEAVY FLUID *


By L. N. Sretensky 

1. INTRODUCTION 

The present work on the theory of the motion of a solid body in a 
fluid having a free surface consists of two parts. 

In the first part (sections 2 to 8), general equations are given 
for the determination of the flow of a heavy fluid of infinite depth 
about a submerged circular cylinder. The problem of the motion of a 
cylinder under the surface of a heavy fluid presents considerable dif-
ficulties in its solution. These difficulties were first pointed out 
by Kelvin. A solution is given herein for the simplest part of the 
problem of Kelvin, namely, setting up the equations of the problem and. 
obtaining certain approximations of their solution. The approximate 
solution obtained replaces the moving circular cylinder by a certain 
vortex. 

T. H. Havelock (reference 1) in a recent paper considers the prob-
lem of Kelvin under the same general assumptions as are herein con-
sidered, but gives a more advanced approximate solution. 

In the second. part of the paper (sections 9 and 10), the cylinder 
is replaced by a dipole of a certain strength, and an equation is set 
up for the computation of the wave resistance of a circular cylinder 
moving in a fluid of finite depth. 

2. DERIVATION OF BOUNDARY CONDITIONS OF PROBLEM 

In order to study the problem of the motion of a cylinder under the 
surface of a fluid, a system of Cartesian coordinates XOY is intro-
duced. The OX-axis is placed along the undisturbed surface of the 
liquid with its positive direction coinciding with the velocity c of 

*tDvizhenie tsilindra pod poverklmostyu tyazheloi zhidkosti." 
CARl Rep. No. 346, 1938, pp. 3-27.
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the flow at infinity, and the 01-axis is taken vertically upward. The 
radius of the cylinder is denoted by a; and the ordinate of its center 
by h. The origin of the XOY system is chosen directly above the 
center of the cross section of the cylinder. 

The fluid moves with the velocity potential 4' and the stream 
function *. The disturbance (due to the presence of the cylinder) of 
the horizontal projection of the fundamental flow velocity c is 
denoted by ü; the disturbance of the vertical projection, by v. If 
c is the horizontal velocity of the flow at infinity, the following 
expression can be obtained for the projection of the total velocity v 
of the particles of the fluid:

U+C, V	 (i) 

The equation of Bernoulli can now be written, if the motion is assumed 
to be steady:

.=ç_gy_-v2	
(2) 

where	 is the mass density of the fluid. 

Along the free surface the pressure has the constant value p0. 
Equation (2). is applied to the particles of the free surface lying far 
ahead of the cylinder, that is, to those for which x = - . For 
x = - , V = c and y = 0; therefore, 

Equation (2) can then be written 

=—gy-

But

= (ii -- C)' + ye 

hence

gy - (u' + V2 + 2cuJ	 (3) 

The increments u and v are now assumed to be so small that their 
squares may be neglected. With this assumption, the accurate equa-
tion (3) becpmes the approximate equation 

p--pl) -	
—gy----cu
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When this equation is applied to the free surface, 

-

	

	 (4) 
g 

This equation can be used. to determine the shape of the disturbed sur-
face of the fluid. 

The fact that the velocity of the particles moving along the surface 
is directed along the tangent to the surface is now taken into 
consideration:	 - 

	

dy	 V
dx u-f-c 

This relation may be represented in the form 

Ii__ , _ v r1	 U	 U 

-	 dxc 

If the terms of the . second and higher order smallness are rejected, 

dy v
(5) 

Eliminating the ordinate y by combining equations (4) and (5) yields 

dx 

	

ôâ_ -	
(6) 

By introducing the potential p(x,y) and the stream function (x,y) 
of the disturbed velocities, this condition may be given another form: 

- - 
dx	 Oy

(7) 

dyd,c 

The functions cp and 4r are harmonic conjugate functions. Substi-
tuting expressions (7) in condition (6) yields 

	

o'i!	 g&
	

(8) 

A second simplification of the problem is now introduced by requiring 
that y be replaced by zero. Equation (8) will then be satisfied
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along the axis of abscissas. Integrating along this axis gives 

- g 

	

dyc	 (9) 

where the constant of integration is zero from the consideration that 
the zero value of the stream function Y was ascribed to the surface, 
and moreover, for x = - , U = - i/y = 0. 

Condition (9) is the first. boundary condition of the problem. The 
conditions on the surface of the cylinder will now be discussed. Let 
the cylinder be washed by the streamline y = a. Since the relation 
between y and ir is given by 

q•= cy+' 

the condition Y = a on the cylinder will take the form 
= + cy 

where a> 0. 

The determination of the motion of the fluid thus depends on the 
integration of the Laplace equation 

Ox Oy 

for the following boundary conditions: 

.=4 .	 for yO	 (I) 

•=+•cy for x2+(V+h)2=a	
(II) 

3. ThANSFORMA!PION OF FLOW REGION IMPO CIRCULAR RING 

In order to obtain the integral of the Laplace equation correspond-
ing to conditions (I) and (II),. a conformal mapping of the complex var-

	

iable plane z = x + iz on the plane 	 = + ir is carried out by 
setting
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(i) 

where

(2) 

When the complex variable z is varied along the OX-axis from - to 
+eo the point	 describes, starting from the point 	 = 1, the circle 

+ ri 2 = 1 in the cloàkwise direction. 

If z = - hi + aeT1 is set next in formula Ci) and the angle y 
is varied from zero to 2jt, the surface of the cylinder will correspond 

to the circle 2 + ii2 = p2 of the plane of the complex variable . 
The radius p of this circle is determined in terms of a and h .by 
the formula

(3) 

or
___	

(3') 

The number p is evidently less than one; h > a. 

The region occupied by the flow is thus transformed into the space 
enclosed between the two concentric circles RI = 1 and RI = p. 

The numlers A and p introduced previously have simple geome±ri-
cal meanings: A is the length of the tangent drawn from the origin of 
coordinates to the cylinder,ànd p is the tangent of the cuarter 
angle 2 subtended by the cylinder at the origin. 

From formula (1) z is determined:

(4) 

and from this value are found the values of x and y in terms of the 
argument w and the modulus r of the complex number t:
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-	 2Arstnw X-•	
1-2rcosw+r 

	

-_________	 (5) 
' 1-2rcosw+rt 

¶ax 
rSlflw--	

(5') 

- _______ rcosw—	 * 

The transformation of boundary conditions (I) and (ii) of the problem 
follow. 

ConditiOn (II) will be considered first. Formula (5) shows that 
this condition may be written as

c?. (1 - p2) 
E4'Ir=+ 1-2pcose+p	 (III) 

In transforming condition (i) it is noted that from formula (5) 
there follows for y = 0

s'dr 
dy=-

1—cosw 

from which condition (i) assumes the following form: 

'+	 1 
H	 1—COSW jr-i	 (I') 

where

= - 

Conditions (ii') and (I') may be given another form by introducing the 
complex stream function:

(6)
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The conditions then assume the following forms: 

Ima.2Lw+(1 CY'} =0 for = I	 (I'') 

!mag.(•w—cz)= for	 (II'') 

The function w is holomorphic at all points of the ring p< I< 1, 
but it will be assumed that the flow around the cylinder has a definite 
circulation. The function w will therefore not be single-valued in 
the ring under consideration. 

In order to obtain the required function w(), the form of the fol-
lowing infinite series will be used:

+ 
w=qInp,, m	 (7) 

with the undetermined coefficients m and q. 

4. COMPUTATION OF COEFFICIENTS OF SERIES

REPRESENTING FUNCTION w() 

First considered are the relations obtained when condition (iitt) 
is required to be satisfied by the function w(). 

In the notation

Pm4m+Bm 

*
(8) 

q	 r 
2'i 

the coefficients Am and B. are real numbers, and r is the circu-
lation of the flow about the cylinder. 

Condition (II'') then easily transforms into
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:: Iflp+ m (Bm COS mwFAmsinF?l)_CR(l -L2 -22{	 )= 

from which the following relations are obtained:

(9) 

± D. m —2,c'J"

rn=1, 2, 3...	 (10) 
m4_ m O 	 - 

Condition (I'') is now considered. When the following formulas are 
used

Imag. (2iw) = 2B0 ± 2!t(Bm -f-- B. m) COS	 +(4 m A - m) sin 1n) 

Irnag. 

1mag.(in ± l ).Pm	 --2mp,, -f-(n - l)pm-

no difficulty is encountered in representing the condition 

..	 . I_	 -. 

in the form of the fllowing trigonometric series: 

2iB.+Z
mj

+(rn-1):B_!jcoSmw+ 

!(m + 1)Au,+i —2mA.,+(in.--- 1)Am_i sin mw}==O 

This equation gives a series of relations between the coefficients Am 
and Bm:
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B1—B0=!r_2B,.	 (ii) 

(12) 
(Bm +B_m )= m(Bm 

m_I(BB)	

(13) 
tm=24,6...}	 - 

m±1. (Am+I+A_(m+l)) 

m 1(Am_i+Am_i)	
(14 

(m= 1, 2. 3, 4, 5, 

The last of these recurrent relations will be discussed first. From 
recurrent relation (10)

A - = pbnA 

as a result of which relation (14) may be written 

rn—i (1 +P 2)Am_i + [(1 plm) m(1 
+ pm)J A, ± 

(1 +p"2)A,,,+1 = 0 

(m=1,2.3,.. •J 

For briefness,

(15) 
2p ______ 
m1±p'
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With these notations the obtained relation can be rewritten in the fol-

lowing form:

(16) 
tm=1,2,3,...J.	 - 

The coefficient A0 is a certain finite number so that kt3 = 0. 

Relation (13) is now considered. Eliminating from this relation 
the numbers B with negative indices and making use of relation (10) 
yield

rn—i
(1 +r	 2)B,,4+I(1_p2tt)..._.m(I +c m)1 B,N+ 

2

fm—I m+1 _! t_. (1 + p2m )B,+ i = 2). cpt' [ 22 ±	 2 p2-m - 

For brevity,

- (1 + p2") B = X,,,	 '(17) 

is written to obtain for Xm the following relation: 

Xm_l.+S,nX+Xu,+J =2icp	 m_I+ m l P_m_tLj	
(18) 

f m=2, 3, 4, 5... 

If

xo 
= 

F	

(19) 

relatin (18) for m = 1 gives condition (12). 

The system of recurrent relations (16) and (18) is thus obtained 
for the coefficients

A1, A 2 , A 3 , . . 

B1 , B2 , B3 , . 

To these relations there must be added relations (9) axid (ii).
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5. INVESTIGATION OF RECURRENT RELATIONS BETWEEN 

NUMBERS km 

The relation

k,,,1 + Sm km + km+i = 0 

Im=I, 2,3,. :i	
(16) 

may be used. to set up two functional relations between the two 
functions

F ()= EA,, c

(20) 

of the complex variable . 

First of all

cx 

	

F()-2	 km ._c:. 
-	 m 

or

	

F()=2J	
km 

l+pim 
O=1 

The ne'i function s() is introduced 

co 

	

S()—	
k,, rm 

	

-	 1pm	 (21) 

from which

F()=25S().4	 (2?)
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The function s() is connected with the function a() by the fol-
lowing obvious relation: 	 - 

S(C)+S(p2)= ()	 (23) 

Together with this relation there is still another obtained from the 
following considerations. Replacing km on the right side of equa-
tion (20) by

- s,_ 1 km_i - km\ 

yields

2Sm_ik,n_i Crn_km_2hT+ki 

or

(1 + ) () k1 C -	 2Srn_i k,_1 m1	 (24) 

Transforming the infinite sum on the right side gives 

cc	 cc 

s ,,	 k,_1 .m 
1 

= 2p.	 km_i	 - 
(C) 

or

	

km_Im_l = 2iJ	 --::: k;_1 rm1	 —2(C) 

The function under the integral may be expressed as follows in terms 
of the functions a() and S(): 

1— IaN! 
km_iCmI=2s()a()
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hence

V $	 ' lPt 1 - 2 5 25(C) - (C) dr 2 () F m-1'nz-1	 -
C 

-	 0 

Substituting in equation (24) the obtained value of the infinite sum 
produces a new relation between the functions s() and a(): 

(1 _)	 d 

Rewriting this relation in the differential form, 

d 10 - cr ( 1 --2 2S(C)—a()	
25 

C 

and. adding to this differential equation the functional equation 

S (C)-4- S (p2 )=() (23) 

furnish the two necessary equations for the determination of the func-
tions i() and s(). The function s() being determined from these 
equations, the function F() may be obtained with the aid' of rela-
tion (22) or the relation

')I+J 1) :	 ( 221) 
The function

F1()=A_,,1 

may be represented through the function F() as follows:
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F1€)=F(4-) 

The complex stream function (7) is represented. thus: 

W-W1+iW.,	 (26) 

Setting	

-	

(27) 

and

(28) 

the function w1 () may be constructed from the function F() by the 
formula

/

•(27') 

or

w () = A0 +A (can + 

In the variable z this function may be written 

w (z) = A0 + A 
(z )Im+ (z + JV" 

(z2 ± )2)m 

m=1 

The function w2 must now be investigated.
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6. II'WESTIGATION OF RECURRENT RELATIONS BETWEEN MJNBERS x 

In the previously obtained recurrent relation 

n_l+S,,IXm+,n+I21(P [ 

rn—I + rn-i-I

(29) 
-	 [m=1,2,3,.	 1 

	

the three functions of the complex variable 	 may be considered: 

F'(Z)=''B'n

cc 
S' () -	 - 

	

1+72m 	 - 
m-=I 

Between these functions there exist the following two easily obtained 
relations:

S' ()+ S' (pu) = ' (')	 (30) 

	

F'(Z)==2jS'()."	
(31) 

Equation (30) gives the first relation between the functions st() 
and a'().; for obtaining the second relation, the recurrent relations 
(29) . are used as follows: 

m=2 

or

L () = 2Ac	 21t 

[_

m - 1	 m 
+ I - --
	

(32) 
2p2	 2 --I
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Transforming this relation gives 

But

m-it	
2S'(C)--3'() 

(by the computations of the preceding section). Hence 

(1_:)2'()=_21 2S(-

from which is obtained 

d [(1---)2a'(C) 1	 2	
2S'()—'()	 d [LG) 1 

0	
LJ	 (33) 

The function L() may be represented in finite form: 

I	 L G) - ,2 ( -- 1)2	 ________ 

2ic	 2(1 _2Y)2	 2	 i-

whence

dL()	 p2 (1 -- p )(-- 1)	 _____ 
2,c d	 -	 (I _2)3 

Substituting this value of the derivative 	 L() in equation (33). 
yields

__gi_	 (1	 :)'G) I 
d	 -	 I	 .-

J	 -"	 (34) 

.), C,!	 G_1 __:t 

(1	 (1	 p2 )2
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This equation together with equation (30) may serve for the determina-
tion of the functions a'() axid s'(). The function st() being 
found, F'() may be computed. by formula (31). 

The function w2 of the. preceding section may be written as follows: 

W,(C)= B, +	 BIS	 (35) 

The second sum may betransformed into

	

•	 aD 

B_C'	

8(p3)_ +2cphh1 

or

BC—m =_()+_: 

Thus

2Ap1 
+F'(C)_F'(j-)	 (36) 

2i	 C—p2 

or	 -

	

w, (C) = B0 +	 In C	 + £ B,,, ( -	
( 37) 

In the variable z this expression may be written 

	

1'	 z—?i	 2)cp2(z+)i)	 + m' 2 (z) B0+ --
	 + ( 1 .—pt)z--).i(1 +2)	

(38) 
(z -	 - 1, m (z ± 

E)2m 

L'm	
(z' + 'Y'1 

m= I
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7. FORMULA FOR COMPLEX STREAM FUNCTION 

On the basis of formulas (27t) and. (36), the expression for the 
function w() may now be stated 

w()-= (A(,+ i B)---	 In :-;- 
2 '.c i• _ jL! 

F(:)1..F(J	 ±;1F'G)F)]	

(39) 

or

zc'()=(A0+iB0)+	 nZ+	 1±	 Pm'"±Prn (4-)	
(39t) 

The number	 is the conjugate complex of the number 

PmAm+jB 

Equations (9) and (ii) permit the determination of the coef-
ficient B0 and the number a:

B-JL 
B0=12

(40) 
,	 r 

1---2 

The number A0 remains arbitrary, and the circulation r 1ikeise 
remains arbitrary. 

Formula (39t) may be given a more symmetrical form by introducing 
in place of the coefficient new coefficients rm and rm by the 
formulas

Pm - ' C 

-	 -	 (41)
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to obtain

w()=(A0__iB0)±__In:^ .cç
2 ±	 ).c	

+ 2r	 c—p	 1—h. 

rm1-r;,,	

(39tt) 

8. APPROXIMATE SOLUTION OF PROBLEM OF DEEPLY SUBMERGED CYLINDER 

The problem of determining the flow of a heavy fluid about a cir-
cular cylinder is thus reduced to the solution of the two systems of 
the functional equations (23), (25), (30), and (34). 

Since it is not possible to solve these equations without the aid 
of infinite series or in a finite combination of elementary functions, 
an approximate treatment of the equations of the problem is proposed. 
For this purpose the number p 2 must be considered. In the following 
table are given various values of the ratio a/h and the corresponding 
values of p 2 and p4. 

0.5(X) 60 0.0718 0.005151 
423 5$3° .0492 .002416 
242 40D 03II .000966 
.259 30' .0173 .0003(X) 
.171 2o" .0077 .000059 
.087 100 .0019 .000004

This table shows that for a ratio a/h les.s than 0.342 1/3, the 
number p4 does not exceed 0.001, which justifies the rejection of all 
powers of p2 starting with the second in considering the motion of 
the stream for a/h < 1/3. The results here obtained are in somewhat 
complicated form; therefore only formulas which are suitable for the 
condition at which it is permissible to reject the components with p2 
are presented. The preceding table shows that this can be done by 
starting, for example, with a/h < 1/3. 

By rejecting the terms with p 2 equations (23) and (25) may be 
rewritten as follows:

S( 

d	 (1	 )2(Z)
2t 
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from which

_____ 

The function F() is defined 

,-'	 •tjL2
3 

from which 

Equations (30) and (34) are now considered. These, with the preceding 
approximation, may be ritten as 

(1—'i(C)	 '(c) 

from which

	

,'()=	 e 1_ . [ l 	 rfe1-_d } 

The function F'() is now obtained: 

	

F' () = 2 1	 = •.•- Ji. - !. r (I	 ' () - C	 ILL 

•	 F'(7)=O
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The complex stream function may now be found. For this purpose for-
mula (39) is used to obtain

2 

w()='(A0 f .iB0)+ ''n-	 i!. - *' e'+ 

2p 
!Ti	 r	 t 

e	 1e	 'd. 
2it	 ) 

0 

The constant B0 may be determined by formula (40). Since B, = 2x1 
(by relation (17)),

.1 
2x 

I) 
0o	

1--2 

In order to determine the remaining constants k 1 and x1 the con-
dition of the absence of disturbance of the flow ahead of the cylinder 

	

is used. The original variable z in formula (41) is used: 	 - 

___	 ___-

_!!.j .rc2 - c'	 dz 
e +—e	

fe (z+:)t 
Al 

Integrating by parts,

V ri -i:r' r e. 
—e	 I	 -dz 

Al 

But	 z	 - co+A(	 z 

e	 dz==I	 4-
J z ± ).i	 .J 
Al 

i-;	 -- 2'. sin-

=1-	 '!2 
C dI ie'L-J edZ 

t	 'r.	 ,	 z	 ii 
0	 -D)

(41)
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Hence

k	 r'j\	 Ui	 z.,i 
:.--f-

2.	 z-1 iz 

r. 
I-	 f	 g.	 ..g cos ---	 2i sin 

[ 

k1--x1i ei _. Fe	 dj 

z	 ge:. 
Ui	 gz,	

e' 
- e	 dz 

z--,.t 

The condition at which the function ! becomes zero for y = 0 and 
x = —	 will be satisfied if the brackets are equated to zero: 

3 , 
k 1	 :tFe 

cJ. 

Icos---2? sink 
:	 - . C	 C 

d 
.1 

0 

and in addition the imaginary part of the parentheses is equated to 
zero:

I' 

The number A0 is arbitrary; the real part of the terms in the paren-
theses is also equated to zero to give 

In this way all the constants have been determined and the complex 
stream fimction of the total flow may be written

•z gz1 
F	 Z-Ai	 —' 1e W = cz —	 In	 — — e	 i	 . d Z	 (42) 2it	 z +	 j 

—c
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Hence for the case here considered of the deep submersion of the cylinder, 
the flow consists principally of the circulation of the velocity about 
the cylinder. The sources of different strengths entering the general 
formula (39t1) located at the point z = Xi begin to be effective only 
at . small depths of submersion of the cylinder. 

The vortex representing the cylinder is situated at the point 
z = Xi, this point being somewhat displaced with reference to the 
center of the cylinder. 

Now formula (42) is applied to the computation of the pressure of 
the stream on the cylinder. 

Denoting by	 the mass density of the fluid and by X and Y 
the components of the resultant force yields, by the formula of 
Chap lygin,

Y+iX==	 dW 

The integral is taken over a closed contour surrounding the cylinder: 

dW	 Ff1	 1 \ 
= dz	 27t1 \Z-1---!.t	 Z—L1) 

gz Fg, e	 I	 e'	 dz 
• 1	 Z+I.t 
—co 

Substituting the preceding in the formula of Chaplygin and applying the 
theory of residues yield

2gA 
goF

e 
C-

Y	
(43) 

e1JdJcoss1n*i
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The first formula determines the wave resistance of the cylinder 
and the second, the lift force. 

For	 = -	 the second formula gives the theorem of Joukowski. 

By. formula (4), section 2, it is now possible to find the form of 
the free surface of the fluid. The equation of the surface of the fluid 
may be written in terms of the function W in the following form: 

Making use of formula (42),

Sin (x 
—d 

or

itc	 gx (cos-+sIn4 
rY cos	 i	 Cjp. 

p_I 
- 

gx-
C 

!co 

Making x approach ao gives

gA 
2r - i	 gx 

y=----e SIn--

Hence, far behind the cylinder the surface of the fluid carries steady 
waves of length L = 2icc2/g. 

The amplitude of these waves is

gX
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For determining the wave resistance, energy considerations are applied. 
The wave resistance R is determined in terms of the energy E of the 
steady wave by the formula

c—U .E 

where U is the group velocity, and 

U = C 

The energy E is determined by the formula 

E= 

Making use of all these results formula (43) is again found: 

2gX 

R - gr2 et' 

9. MOTI ON OF CYLINDER UNDER SURFACE OF 

FLUID OF FINITE DEPTH 

Under consideration is a circular cylinder of radius H moving 
with constant velocity c under the surface of a fluid of depth H. 
The problem is proposed of finding its wave resistance as a function 
of the submersion depth h of the center of the cylinder. This prob-
lem is solved under the assumptions of Lamb; that is, the magnitud. 
h/R is assumed to be small and the entire cylinder is replaced by a 
dipole of moment -2ncR2. 

The motion of the fluid is studied in relation to a system of 
axes of coordinates x and y displaced uniformly together with the 
cylinder. The velocity of the approaching flow at infinity is c. 
By 4(x,y). is denoted the potential of the wave velocities. The har-
monic function c '(x,y) satisfies for y = - H the condition 

a.	 (1)
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Along the free boundary .y = 0 the function (x,y) satisfies the fol-
lowing condition:

ô2c1	 göd0 
üx2 +_+ij	 (2) 

The expression i > 0 is the Rayleigh coefficient of the dissipating 
forces. 

Near the point y = - h, that is, near the center of the cylinder, 
the function 4(x,y) on the basis of the above considerations must have 
the following form:

cR2x 

-

cR2x 3 

cI2x	
4 2 - x2 + Lv - h)2 

where	 is the velocity potential of a certain fictitious dipole 
situated at the point y = h. 

In place of the function 	 a new function p(x,y) is introduced, 
which is valid for the entire region occupied by the fluid, setting 

=4 I±2+9	 -	 ( 5) 

The harmonic function cp(x,y) satisfies the following conditions on 
the boundary of the fluid: 

-_=-- o	
--fory==----H	 (1') 

-1	 -1--k - = --	 2 for —0	 (2 ox! 	 Ox ct Oy	 c2 Oy	 - 

Then 

and
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The function p(x,y) is obtained in the form of the following definite 
integral: 

f(Acoskx ± Csinkx)cosh. kYdk+JBcoskx±Dsinkx)sinh Rydk	 (6) 

where A, B, C, and D are unknown functions of the variable param-
eter k. To determine these functions condition (2t) is first considered: 

___ _2_coshRR,(uflkXdk 
y	 (x' + h'	 j 

Substituting this result and (6) in condition (2t) yields 

k2A + 1&kC + B) cos kx + (-- k'C kA ± 4 D) sin kxldk 

_2 fkeslnkxdk 
C	 j 

0 

This relation gives the following two equations: 

C- (7) 

?A+kC
C-	 C 

Employing condition (1') gives

cR2ke(h'sjnkxdk 

	

2cR2x(H±h)	 cR 'kesinkk 

	

L 
dy j , ,,[x2_(H+h)!I2	 J



28
	

NACA TM 1335 

Applying the results to condition (it) yields 

J[k(BcoshkH-- A.sinhk)cos kx 4- k(Dcosh kH C Sins kH) sin kx] dk 

=2cR2 Jke hlksinh kh sin kxdk. 

from which

B cosh k/-f- Asinhk/1=O. 

D cosh k/-f-- C sixth k/I == 2cR2e 11k sin.h. k/i 

or

B=AtanhkH

(8) 
- D C tanh kH + 2cR2e 

ilk sinhkh 
coshkh 

These equations together with equations (7) permit determining the 
unknown functions A, B, C, and D. 

From equations (7) and (8) the two equations for A and C are 
found:

(k - tarih k/I) 4— =0: 

coshk/I_h) 
C	 coshk/j 

Solving these equations determines A and C
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2g .coshk(l-i'—/z)
/? TcoshkH 

A==IL±(k_i;:tafli;;_;! 

C;1	

tih 

tanh kl-f) 

Equations (8) then permit finding B and D. In this way the func-
tion cp is determined, which makes it possible to obtain the velocity 
potential '. The complex potential of the absolute velocities must 
be found: 

First

= Reel	 -. 
z+1l1i/ 

= Reel 

PReeIfI(A +Di)cokz±(c_Bj)sjflkzJdk 

	

where z = x + iy. Hence	 I 

Co 

'cRhi

	

H	 [(A-1-Di)coskz±(c_Rj)sjflkzJdk
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The complex potential W of the relative velocities is obtained by 
adding to the right side the term -cz. In terms of this potential 
the pressure of the stream on the cylinder is obtained by the formula 
of Chaplygin:

X 

where the integral is taken: over a contour containing the dipole 
z = - ih.

10. COMPUTATION OF WAVE RESISTANCE 

The problem of finding wave resistance is restricted only to the 
computation of X, and therefore only to the imaginary part of the inte-
gral of the formula of Chaplygin:

(9) 

The function W mar be written

+0(z) 

The function G(z) is holomorphic about the point z = hi: 

0(z) = —cz ±--	 + Di) cos kz +(C—Bi) sin kzl dk 	 (10) 

From formula (9) is obtained

= cR	 (z 
dz (z+hi)
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from which

j

• /dW'	 2cR 
--) dz f (z-{- hi) 0' (z) dz= 4icR0" ( - 1k) 

Therefore

Xr= - 2 rRc . Reej 0" (-- ih)J 

Making use of formula (10) the real part of the second derivative of 
the function G(z) at z = - ih is determined: 

Reel [G"(-ih)]=- fk2 (A cosh kh B sinh kh)dk 

from which

X = 2Rrc ( k(A coshk/z - B sinh kh)dk 

But, as was found in formula (8), B = Atarih kh. Hence 

X=2rRc	 coshk(H/l)dk 
coshkH 

U 

Replacing A by its value gives 

cosh k(H— h)	 kdk ____ --
X=4gR4L /
	 coh2kH	 -f-(k--4tarth.kHY 

which is the formula for the wave resistance in the presence of dis-
sipative Rayleigh forces. Freed from these forces
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L r11m I	
coshk(H--/i)	 kdk 

cosh2kH	
L-H-(k___tanhkH) 

A new variable of integration	 is introduced, setting kil = 	 and 
with the following notations:

gH z=x	 - 
C-

/1 

LIj == 

In this notation L is rewritten 

urn f .	 (ii) H!	 cosh 

If the number x is less than unity 

c>3/jJi 

then	 L = 0 and the wave resistance is equal to zero.	 When	 x > 1 
the roots of the equation in	 are considered:

i2+(—xtanh=O	 -	 (12) 

This equation may be resolved into the two following equations: 

X taflJ ---1j 

E=x tanh—u.1j 

Only the first of these equations will be considered. In view of the 
fact that x > 1, the equation	 = x tanh	 has_one real root which 
is denoted by c• Equation (11) has one root	 , approaching 
as jt approaches zero;	 = urn . By applying these notations, the 

left side of equation (12) is expanded in a series about the point	 : 
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t-4(_. tarth )-= (---xtanh—ti 1 jJ [—xtarth -L-1iJ 

=2i1j -- E_xtanh_LIiL,	
...	 (13) 

/ 
=-=2t 1 fl 1—

	

	 \(— )-l--.
cosh2, 

The integral (ii) may be represented as the sum of a certain contour 
integral taken along the path OIK and a residue multiplied by 2iti 
of the function under the integral relative to the point 	 = 

L	
1iOJ(oIK)	 Oh1	 I 

The first component on the right side gives zero in the limit. From 
series (13) the limit of the second component can likewise easily be 
found. The following expression is finally found: 

L	
2 cosh'(l 

H2 cosh0—z 

For the expression for X, 

4rgR4 02coshY(1-2)0	
(14) 

X= H2	 cosh0—x 

is now obtained. This is the formula for the computation of the wave 
resistance for velocities c less than the critical velocity 
The value	 is the real root of the equation 

-.	 == 
-I tarih
	

(15) 

From formula (14) is readily obtained the formula of Lamb for the 
wave resistance of a cylinder moving under the surface of a fluid of 
infinite depth. When H is very large, the root	 of equation (15) 
is	 = x, from which
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2cosh(1	
- cosh',—x - 

Substituting this expression in formula (14), the formula of Lamb is 
obtained:

2g1, 

Xr -= 4g3	 e 

Now formula (14) is investigated. In place of	 is written . In 
the second factor on the right side x is replaced by /tarth 	 to 
obtain

8r.gR4 2 tai . cosh(I -1) 
X_ t18 	 sinh2-2	 (16) 

The parameter x varied from 1 to 	 so that	 will vary from zero 
to infinity. For	 = 0 the second factor on the right side of this 
formula has a value equal to 3/4. It will be shown that this value is 
a minimum or maximum. Denoting by A the investigated, factor gives 

•	 cosh(1 -i)' 2 

2 sinh2-2E 

Then

1	 E2 sinh2	 3	 7 
2•

2	

- 2(2--2)---cosh 

from which

[1 H_2_)2 ..-..•1 
which shows that
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0 
d 

dA\	 37	
1 

-	 dj	 2 [5	
z(2--2)j 

Thus for	 = 0 the wave resistance will be an extreme value. It will 
be a minimum if a < 1 - -J8/15; for larger values of a the wave 
resistance is a maximum. 

For	 =	 the factor A becomes zero. This investigation 
explains the general features of the dependence of the wave resistance 
on the velocity.

11. CONCLUSIONS 

Formula (16) obtained in section 10 for the wave resistance of a 
cylinder of radius R moving under the surface of a fluid of finite 
depth H led to the following conclusions with regard to the change in 
the wave resistance with velocity of motion and with depth h of its 
submersion: 

The magnitude 

was computed for a series of values of a = h/H: 

II -,-•	 ,	
1—'1, 

tAa; !36 O4) O5, ---; t:;1 
for the Froude number f = c/-J	 varying between zero and 1. The 
results of the numerical computations are given in figure 1. 

The curves of this diagram show a considerable wave resistance 
for small depths of submersion of the cylinder. With increased sub-
mersion of the cylinder the wave resistance drops shajply for most of 
the values of the Froude number. 

For the value of the parameter a = 1 - -./ 7T, the character of 
the maximum or minimum changes at the point f = 1. For values of
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a < 1 - -/8/15 the curves of the wave resistance have a sharply formed 
maximum. With a increasing from ero to 1 - - / 7Ti5 this thaximum 
decreases. The presence of this maximum shows up also on the curves 
corresponding to values of a somewhat less than the number 1 - -J8/l5; 
the curves of wave resistance for a between 1 - -/7T and 0.3 
(approximately) have two peaks, one at the point f = 1 and. the other 
near the point f = 0.55. For values of a > 0.3 the wave resistance 
increases monotonically with increasing velocity; the rate of increase 
of the wave resistance is considerable for Froude numbers f near the 
critical number f = 1. 

In regard to the prblem of the first part of the paper (sections 2 
to 8), the results may be described as follows: Tiflien the motion of a 
circular cylinder under the surface of a fluid is studied, the cylinder 
may be replaced by a vortex if the ratio of the radius of 'the cylinder 
to the depth of submersion of its center is less than 1/3 (see table). 
In the composition of the flow and the lift force the principal part is 
played by the circulation of the velocity about the cylinder. However, 
by considering the general solution of the problem the terms obtained 
by Lamb and Havelock in their work are found. The effect of these 
terms is appreciable only for small depths of submersion of the 
cylinder; for larger depths the circulation of the stream velocity 
plays the fundamental part. 

Translated by S. Reiss 
National Advisory Committee 
for Aeronautics
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