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CALCULATION OF THE BENDING STRESSES I N  

HELICOFTER ROTOR BLADES* 

By P. de Guillenchmidt 

INTRODUCTION 

The problem of determining the s t a t i c  and dynamic s t resses  on the 
blades of rotary-wing a i r c r a f t  i n  forward f l i g h t  has occupied the at ten-  
t i o n  of many engineers of every country f o r  a long time. Up t o  within 
the  last f e w  years, however, no sat isfactory solution has been found f o r  
blades having a dis t r ibut ion of mass and r ig id i ty  varying along the span. 
I n  France, M r .  Dorand had f o r  many years (1932 with the Breguet-Dorand 
gyroplane) used a graphical method which gave sa t i s fac tory  resul ts ;  how- 
ever, it was too long and cal led for  precise diagrams on account of the 
graphic double derivations involved. More recently, American engineers 
have developed several  methods which, while affording correct solutions 
i n  the general case, a l so  require a volume of calculation, which increases 
a t  an appalling r a t e  when the number of points examined on the blade a re  
t o  be increased or higher harmonics fo r  the external forces acting on the 
blade are  t o  be introduced. Accordingly, it has been necessary t o  intro- 
duce more approximate methods, and it i s  these methods which a re  usually 
employed i n  design. 

The purpose of the present report i s  t o  describe a comparatively 
rapid method of calculation which gives a correct theore t ica l  solution 
of the problem i n  the most general case. This method i s  the r e su l t  of 
collaboration between the Bureau of Calculation of the Helicopter Division 
of the National Societies of Airplane Construction f o r  South Eastern and 
fo r  Central France, s e t  up within the Committee of Rotating Wing Units 
of the French Association of Aeronautical Engineers and Technicians, 
(A.F.I.T.A.), on the inst igat ion of Col. G a r r y ,  Chief of the Section of 
Rotating Wing Units of the Technical Service Division of the A i r  Ministry. 

The method i s  based on the analysis of the properties of a vibrat ing 
beam, and i t s  uniqueness l i e s  i n  the simple solution of the d i f f e ren t i a l  
equation which governs the motions of the bent blade. It i s  applicable, 
whatever the l imiting conditions may be (blades hinged, blades clamped, 
blades f i t t e d  with dampers, e tc .  . . .). It requires, s t r i c t l y  speaking, 
t he  preliminary calculation of the natural  frequencies and mode shapes of 
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the  blade i n  rotation. 
be shown later, i n  a cer ta in  number of cases, t o  the calculation of the 
na tura l  frequency of the first model, which reduces the calculation 
required t o  some extent. 

This calculation can be reduced, however, as w i l l  

For the  explanation of the method, l e t  us take the case of a hinged 
blade i n  flapping motion and impose the usual r e s t r i c t ive  asumptions, 
which are: 

(a) The twisting deflections of the blade a re  negligible. 

(b) The blade i s  r ig id  i n  i t s  plane, t ha t  i s  t o  say, the drag 
deflections are negligible with respect t o  the deflections 
normal t o  the plane of the blade. 

( c )  The deflections and the flapping angles a re  small, hence t h e i r  
higher powers can be disregarded and we may assume 

cos p - 1 s i n  p - t an  p - p 

(d) The bending deflections of the blade do not influence the aero- 
dynamic forces act ing on the blade. Included, however, i s  a 
term f o r  the aerodynamic damping due t o  the fac t  t ha t  the vibra- 
t i o n  of the blade produces, f o r  each element, a change i n  the 
r e l a t ive  velocity, and consequently e? the angle of attack. * 

SYMBOLS 

R 

r 

X 

radius of rotor  

distance of blade element from axis  of rotat ion 

abscissa, along axis  OX o f t h e  r i g i d  blade, of an element of 
the e l a s t i c a l l y  deflected blade, with the flapping axis as 

or igin ( f ig .  1) 

5. abscissa along axis OX 

Y ordinate of a point of the e l a s t i c a l l y  deflected blade along 

lThe "mode 0" i s  tha t  which corresponds, fo r  a hinged blade, t o  a 
an axis OY normal t o  axis OX 

vibrat ion without bending, t h a t  is, t o  flapping f3. The m o d e  1 f o r  such 
a blade i s  then t h a t  which corresponds t o  a vibration of one node. 

%his damping term has, obviously, no significance when there i s  
separation of flow, because beyond angle of separation the normal l i f t  
coeff ic ient  is  prac t ica l ly  independent of the angle of attack. 
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distance of the flapping hinge from the axis  of rotat ion of 
the rotor 

flapping angle of the r ig id  blade 

mass of the blade per  u n i t  length a t  a point under consideration 

blade chord 

Young's modulus of the blade material  

moment of i ne r t i a  of a normal section of the blade 

angular veloci ty  of the blade 

t i m e  

azimuth angle of the blade a t  t i m e  t 

phase difference of the azimuth angle due t o  damping 

forward speed of helicopter 

resul tant  veloci ty  of the a i r  on a section of the  r i g i d  blade 

normal component of velocity v 

tangent ia l  component of veloci ty  v 

angle of attack of a blade section 

angle of the resul tant  velocity v with the normal plane 

angle of veloci ty  v with the resul tant  veloci ty  on the 
f cos cp deflected blade ( ) 

angle of the normal plane with the forward veloci ty  

(" :; "1 r a t i o  of advance 

a i r  density 

l i f t -curve slope of the prof i le  

acceleration of gravity 
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cp 

?li 

v1,o 

vi ,w 

h i  

n 

na, nb 

s t a t i c  moment w i t h  respect t o  

of the blade located beyond 

coeff ic ient  of damping due t o  
text. ) 

the ax is  of rotat ion of the p a r t  

the abseissa x 

deflection of the blade. (See 

natural  deflection function of order i 

natural  frequency of the order i of the nonrotating blade 

natural  frequency of the order i of the blade caused by 
ro ta t ion  with angular veloci ty  o 

auxi l ia ry  functions, dependent on time only 

order of a harmonic i n  Fourier se r ies  

subscripts of terms i n  cosine and s ine of a Fourier se r ies  

THEl EQUATION OF DEFLECTION OF THE BLADE 

L e t  us consider the forces which act a t  S on a blade element of 
span dx i n  the plane YOX. (See fig.  1.) These forces are: 

(2) A corrective term of the  damping of the l i f t  force due t o  the  
f lexura l  e l a s t i c  deformation of the blade. This term i s  of 
the form 

(3) The w e i g h t  dp = m'g dx, the components of which along OX and 
OY are, respectively 

m'g s i n  !3 dx (negligible) 

h i s  elementary l i f t  already includes, according t o  the def ini t ion 
of VN, a term due t o  the aerodynamic damping of the flapping r i g i d  blade. 
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(4) The centrifugal force of rotat ion ml$r dx, the components of 
which along OX and OY are, respectively 

m f o 2 ( a  + x cos N mt(u2r d~ 

and 

m t a ? ( a  + x s i n  p ) a ~  z r n t d r p  d~ 

( 5 )  The force of i n e r t i a  of flapping: 

(6) The force of i n e r t i a  of deflection: 

- m t i j  d~ 

-m'y d~ 

S t r i c t l y  speaking, the following forces should a l so  be included: 

(7) The centrifugal force of flapping: mtxb2  d~ 

(8) The Coriolis force due t o  the simultaneous act ion of blade 
deflection and flapping motion: 

-2&d  dx 

however, we s h a l l  disregard them i n  re la t ion  t o  the centrifugal force of 
rotation. 

For the blade element d t  t o  be i n  equilibrium, it i s  necessary t o  
add t o  these forces the unknown actions of the adjacent elements on the 
element under consideration. 

Calculation of Ki 

vT - cur + V cos a s i n  $ v = - -  
cos cp cos cp 

2 i cos cp - - 
cu1: + V cos a s i n  $ 
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dC 
2 d i  

K = E 1 3 (m + v cos a s i n  $) 

Since the calculation can be made only when the coefficient of the 
damping term due t o  the deflection i s  independent of t i m e ,  the periodic 
p a r t  i n  V s i n  $ wi l l  be disregarded. This reduces the problem t o  the 
corresponding mean speed of the a i r  with respect t o  the blade element. 

Hence 

The d i f f e ren t i a l  equation of the blade then reads 

The dots s i g n i e  the derivatives with respect t o  t i m e .  

This equation of the p a r t i a l  derivatives must be completed by four 
l imit ing conditions which define the integrat ion constmts,  namely, 

y = O  f o r  x = O  

d2Y 
dx2 

E I - = O  f o r  x = O  a n d f o r  x = X - a  

= O  f o r  x = R - a  
dx 
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METHOD OF SOLUTION 

7 

The foregoing deflection equation i s  composed of a first member with 
terms dependent on the deflection, and of a second member which is  inde- 
pendent of deflection. This second member comprises the aerodynamic 
forces, the weight and the forces of i n e r t i a  of rotation, and flapping 
act ing on the r i g i d  blade. 
of the blade and fo r  each one of i t s  azimuth positions after the equation 
of flapping p of the r i g i d  blade has been solved. We sha l l  waive t h e i r  
calculation and ident i fy  the second member of the preceding equation by 
the  function F td(x , t ) .  W e  fur ther  put 

These forces a re  eas i ly  computed f o r  each point 

-ICR m'(a + 6)dE = s 

so  tha t  the preceding equation reads 

This i s  an equation of p a r t i a l  derivatives with second member, 
representing the forced vibrations of the blade with damping. 

To resolve it, we introduce the natural  functions of the deflections 
of the blade, that is, the vibrations obtained by solving the foregoing 
equation of the  p a r t i a l  derivatives above without second member. 

Consider f irst ,  fo r  simplicity, a s t a t e  of forced vibrations with- 
out damping a r i s ing  from the  deflections of the blade. 
the  term K$ i s  disregarded.) 

( In  other words, 

When we consider the moment, Mrig, of the forces exerted on the  
assumedly r i g i d  blade, t h i s  moment is, a t  a point of the blade, a func- 
t i o n  of t i m e  only and can therefore be developed i n  se r i e s  of periodic 
functions of $ = ClTt 
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This moment is  none other than the moment of the dis t r ibuted outside 
forces F'd appearing i n  the second member of the preceding equation. 

Let us  resolve these forces a t  each ins tan t  i n  series o f  distribu- 
t ions  such tha t  they each impart t o  the blade a deflection taking the 
form of a natural  mode of deflection of the corresponding order. 

It can be shown tha t  an a rb i t ra ry  deflection of the blade may always 
be resolved i n  ser ies  of natural  functions by reason of the re lat ions of 
orthogonality exis t ing between the natural  functions of continuous beams, 
whatever t h e i r  l imiting conditions. (Physically, it means that the dif-  
ferent  natural  vibrations a c t  independent of each other without mutual 
interactions.  ) 

The proposed resolution has the form 

where gi i s  a function of time only and v i  i s  the natural  function 
of the deflection of the blade of the order i. 

The deflection of the order i of the blade a f f ec t s  then, a t  each 
instant ,  the  form of the function v i ,  t h a t  is ,  it will be given by 

where hi i s  a function of the time only. The t o t a l  deflection is, by 
v i r tue  of the relat ions of orthogonality invoked above, obtained by 
superposition of the various natural  deflections of the blade vibrat ing 
a t  the corresponding natural  frequencies, w i t h  amplitudes and phase dif-  
ferences defined by the function hi, which, i t s e l f ,  is  obtained by 
putting the expression 
derivatives. 

yi = hivi i n  the equation of the p a r t i a l  

Hence, for a frequency of the order i 
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Now it i s  known tha t  an equation of the  form 

representing the natural  vibrations of a f ree ly  vibrat ing blade and 
involved i n  rotat ion with an angular veloci ty  
number of solutions of the form q s i n v t ,  sat isfying 

w permits an i n f i n i t e  

and the l imit ing conditions. Every solution qi i s  the natural  func- 
t i o n  of order i corresponding t o  the natural  frequency vi,w. 

Therefore, when vi i s  a natural  function, it simultaneously 
s a t i s f i e s  the equation (4) and the equation 

where 
with a speed of rotat ion w. 

Vi,co i s  the corresponding natural  frequency of the blade actuated 

Hence, a f t e r  simplification 

Since the functions hi and g i  are periodic with respect t o  Jr,  
they can be developed i n  harmonic ser ies  
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The d i f f e ren t i a l  equation 

Li 5 (.I %) - him2 d2 (s 2) + '* him' q ] = gim'qi 
i =O dx dx dx i = O  

therefore resolves i t s e l f  by ident i f icat ion of the coefficients, and 
l imit ing i.t t o  the t h i r d  harmonic, it reduces t o  the system 

hi, 2b(v2i,w - h2) = gi,  2b 

Each function g i  i s  well defined. 

To determine it, simply multiply the two members of equation (3) 
by q i  and integrate  Over the blade. 

Owing t o  the conditions of orthogonality 
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it leaves 

hence 

11 

The bending moment exerted on the e l a s t i ca l ly  deformable blade i s  
computed next. 

"he e l a s t i c  deformation due t o  a s ingle  harmonic of the outside 
forces, such as 

i s ,  as shown previously, 

On replacing the terms h i  by t h e i r  values obtained from equation (?), 
the  corresponding bending moment reads 
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On making the exact calculation of the natural  functions 
found tha t  they vary very l i t t l e  with 
of the order i, f o r  w = 0, can be compared with the sane natural  
function f o r  the normal speed 

qi, it i s  
LU and t ha t  a natural  function 

LU. 

This simplification is  not exact, but the resul t ing e r ro r  i s  small 
(less than 3 percent f o r  the first natural  function i n  the case of the 
blade c i t ed  i n  the  example hereinaf ter) ,  being of the same order as 
those committed i n  the d is t r ibu t ion  of the masses and the f lexural  
s t i f fnes s  of the blade. 

In  t h i s  case, the natural  function q i  s a t i s f i e s  both 

and 

Hence 

d27 i E1 - by i t s  value i n  ( 7 ) ,  the coeff ic ient  of the On replacing 
dxz 

harmonic n of the e l a s t i c  moment which, i n  fact ,  bends the f lex ib le  
blade, i s  given by the expression 
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The value g i  is  computed by (6) f o r  the values of Jr f o r  which F'd 
is  given. The development of gi i n  Fourier series defines the 
coefficient 

The natural  functions vi and the integrals  m y q i  dx ds can be J 
computed by a c lass ica l  method such as the i t e r a t ion  method (Stodola) , 
o r  the Galerkin method. 

There i s  no occasion t o  be preoccupied with normalizing the natural  
functions. 
the e f fec t  of the scale disappears later i n  the product 

For the amplitude of qi, any convenient scale is suitable;  

The calculation f o r  cu = 0 is  made while remembering the previous 
statement that the deflection i s  prac t ica l ly  unmodified by rotation. 

If the i t e r a t ive  method is  used f o r  computing the natural  functions 
of the deflection, the natural  frequencies of the blade not rotat ing and 
of the blade rotat ing a t  angular veloci ty  0) can be computed by applying 
Rayleigh's method t o  the obtained natural  deflection. 
rigorous solutions, converges rapidly, and avoids the solution of n equa- 
t ions  with n unknowns t o  which the Gtzlerkin method leads. 

This method affords 

- Note: The bending moments could a l so  be computed by direct 
application of equation (7). This method i s  predicated on the 
exact knowledge of d2q i /b2  which prohibits the use of the approxi- 
mation vi,,, = 

a substant ia l  e r ror  i n  i t s  second derivative. The calculations of 
the natural  deflections are quite complicated. On the other hand, 
the function y being defined by dots, it i s  not possible t o  derive 
it d i r ec t ly  t o  obtain d2y/aX2. 

because a slight e r ro r  i n  a function can cause q i , O  
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SIMPLIFICATION OF TRE CALCULATIONS 
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Numerous calculations made on blades of various helicopters with 
d i f fe ren t  plan forms and dis t r ibut ions of masses and d i f fe ren t  amounts 
of r ig id i ty  have shown that ,  i n  cer ta in  cases - blades of moderately 
conical shape, l i t t l e  twist, and l i gh t ly  loaded a t  the t i p  - the natural  
functions, other than the first, exert l i t t l e  influence on the maximum 
bending moments exerted on the blade, and consequently on the maximum 
al ternat ing fatigue s t resses  t o  which the blade i s  subjected. This i s  
because the dis t r ibut ions of the outside forces (curves F'd = f(F) 

the various J I )  f o r  such blades represent the  behavior of the f i rs t  
natural  dis t r ibut ion (curve 
also because the natural  functions of higher orders present a l l  the 
''loops'' and "nodes" i n  continuously increasing number, matching poorly 
the greater deflection which the maximum moments produce. 

f o r  

m'q  = f ( F ) )  i n  a sa t i s fac tory  manner and 

It i s  only i n  cases of small deflections tha t  the "parasite remainder" 
of the higher frequencies, a r i s ing  from the f ac t  t ha t  the dis t r ibut ions 
of the outside forces never have a curve exactly ident ica l  with the first 
natural  distribution, can play a s ignif icant  par t .  

When the blades have pronounced camber and twist and a re  l i gh t ly  
loaded a t  the t ips ,  the forces of i n e r t i a  can become more important than 
the aerodynamic forces a t  the blade t i p  i n  the en t i re  sector  of the swept 
disk corresponding t o  the advancing blade. The dis t r ibut ions of the out- 
s ide forces F td  = f(r) 
the second natural  dis t r ibut ion (curve J I ,  
and, i n  tha t  case, the second and sometimes the t h i r d  natural  functions 
must be taken in to  consideration i n  the calculation of the maximum 
moments exerted a t  the blade. 

can assume, therefore, the curves approached by 
m'q2)  f o r  an en t i r e  se r ies  of 

Examination of the curves F'd = f(r) permits one t o  determine, 
with a l i t t l e  practice,  when resolution of the outside forces can be 
l i m i t e d  t o  the f i rs t  natural  d i s t r ibu t ion  and the deflection of the 
blade t o  tha t  corresponding t o  the first natural  function. 

In  the la t ter  case, the calculations a re  considerably simplified. 

The d is t r ibu t ion  of the outside forces i s  reduced t o  
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"he bending moment on the e l a s t i c  blade becomes 

On comparing t h i s  bending moment with the moment of the outside 
force d is t r ibu t ion  F'd exerted on the assumedly in f in i t e ly  r ig id  blade, 
we get 

It i s  seen t h a t  the bending moment on the e l a s t i c  blade i s  obtained 
by multiplying the coefficients of the harmonics of the same order o f  
moment on the r i g i d  blade by a fac tor  

2 
l , o  An = 

v2 - n*w2 
1,UJ 

which i s  constant Over the blade for a given harmonic. 

% It i s  no longer necessary t o  calculate the natural  functions 
and the natural  frequencies V l,o and Vi,cu. "hey can be readily and 
closely approximated by the Rayleigh method applied t o  a curve repre- 
senting approximately the deflection of the blade while s t i l l  sat isfying 
the  l imit ing conditions rigorously. 

A s  regards the various harmonics t o  be kept f o r  the moments on the 
r i g i d  blade, it seems t h a t  no advantages a re  gained by going beyond the 
third,  which is  already re la t ive ly  small. 

The bending moment, a t  a point on the abscissa x, on the r i g i d  
blade is  then given by the expression 

Mrig = MQ + Ma cos $ + Mb s i n  Jr + M2a cos 24f + 

M2b s i n  24r + M3a cos 3$ + M3b s i n  34f 
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The effect ive moment bending the actual  e l a s t i c  blade a t  the same 
point i s  obtained by the simple re la t ion  

2 2 l ,o  l , o  
Melast. = - Mo + ( M ~  cos + + Mb s i n  +) t 

V 2  1, V21,u3 - uj! 

CALCULATION INCLUDING AERODYNAMIC DAMPING DUE TO 

DEFLECTION - GENERAL METHOD 

In  t h i s  case, the term Ki disregarded i n  equation (2) must be 
included. 

It has been shown tha t  

r The term - 2 - i s  homogeneous t o  a dis t r ibuted mass. P dc Z 

2 d i  

Putting 

Zr dCz qX) = E - - 
2 m t  d i  
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gives 

17 

i s  a dimensionless coefficient. Since, as a ru le  2 - r %) ' 2  di where 

(XI 
i s  not proportional t o  the dis t r ibuted mass m', the coeff ic ient  @ 

i s  a function of x. 

Having already permitted one approximation f o r  K by including 
only the corresponding mean speed on a blade element, another simplifica- 

along the t i o n  i s  effected by bringing only the mean value of 

span of the blade in to  the first member of the equation of motion. 
9x1 

Accordingly, equation (2) reads 

With the symbols already employed, we get 

The foregoing system of equations ( 5 )  i s  therefore replaced by 
another of the  form 

hi,na@*i,Lu - I12&) + hi,nbn& = &i,na 

hi ,  nb(v i, u) - I12uj?)- hi,nanG@ = gi,nb 



l a  

whence 

Put t ing 

the re fore 

= s i n  @i,n 

NACA TM 1312 
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C ons e quent ly 

19 

The calculation i s  then carried out i n  the same way as without 
damping; the deflection due t o  a single harmonic n of the  outside 
forces being always 

i= CQ 

s i n  nq) 
i=l 

Replacing h i  by i t s  value gives 

i=l 

gi, nb 

Hence, as before, the term of the harmonic n of the  moment which, i n  
fact ,  bends the  f lex ib le  blade 

Ei , na cos 4Ji+ - 
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o r  a l so  

NACA rn 1312 

with 

I f ,  as previously, the d is t r ibu t ion  of the outside forces i s  l imited 
t o  the f i r s t  d i s t r ibu t ion  and the deflection of the blade t o  tha t  corre- 
sponding t o  the first natural  function, the following ru le  results:  The 
e f fec t ive  bending moments act ing on an e l a s t i c  blade, with damping, are 
obtained from the bending moments acting on the assumedly r ig id  blade, 
each harmonic of which i s  modified as follows: 

(1) Its amplitude i s  multiplied by a coefficient equal t o  

(2)  There i s  a forward phase difference of qn, s o  t ha t  
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PRACTICAL PROCElSURE OF CALCULATION I N  THE CASE OF THE GENERAL METHOD 

(The Double Resolution of the Outside Forces Being Limited t o  the 

Third Natural Distribution and t o  the  Third Harmonic i n  $) 

The first step i s  t o  determine the natural  functions of the 
blade ql, q2, and q3 = f(r), as well as the corresponding natural  
frequencies v ~ , ~ ,  V 2 , 0 ,  and v ~ , ~  of the nonrotating blade and the  
vl,,,, v2,,,, and v3 of the blade rotat ing a t  angular veloci ty  LD. 

9LD 

Next, it i s  necessary t o  evaluate the quantit ies 

and then p lo t  the curves 

- 
against  r. 

Then determine the outside forces on the r ig id  blade F t a  = f ( Y )  
Jr (eight posit ions spaced 43' apart  must be explored). f o r  different  

Next evaluate for each posit ion 

Thence one obtains 

f o r  each position. 
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g17 g27 g3 i n  Fourier series (by the Runge method, f o r  

example) and stop with the t h i r d  harmonic of \Ir: 

whence 

Calculate 

g1,o %,a gl,b * g1,3b 

. . .  
Q2,o g2, a '2, b g2, 3b 

g3, 0 g3,a . '3,b '3,3b 

the bending moments on the blade f o r  d i f fe ren t  s ta t ions  
x = K.R by the formula 

i = 3  

~x = 7 Mi,x 
i=l 

with 

where 

gi, nb 
g i  , na 

tan  qi,n = 
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PRACTICAL ExAMpIz;E 

Hereinafter follows an application of t h i s  method t o  the calculation 
of the bending moments exerted on the blade of the helicopter N.C. 2001 i n  
forward f l igh t ,  with p = 0.43. 

The mechanical character is t ics  of the blade, which has a radius of 
R = 6.85m, a re  given i n  figure 3. Figures 4 and 5 give the natural  
functions q and the blade dis t r ibut ions m'q.  Figure 6 gives the 
natural  frequencies of the  nonrotating blade and of the blade rotat ing 
a t  angular veloci ty  u) f o r  the different  modes of vibration. Figure 7 
gives the d is t r ibu t ion  of the aerodynamic forces, and figure 8 the dis- 
t r ibu t ion  of the t o t a l  outside forces 
several  azimuth positions of the l a t t e r .  

Fld on the r i g i d  blade f o r  

According t o  figure 8, the dis t r ibut ions of the outside forces f o r  
t he  positions 
the  second natural  dis t r ibut ion 
i n  figures 9 t o  12, the importance of the bending moments computed with 
the  second natural  function included. 

cp = 45O, go0, l 3 7 O ,  and 180° have c lear ly  the shape of 
m'q2, which explains, as w i l l  be seen 

Figure 13 shows the bending moment d is t r ibu t ion  f o r  several radii 
p lo t ted  again $, and figure 14  the enveloping curve of the maximum 
bending moments exerted on the blade. 
bending moment curve acting on the blade of the S.E. 3000 helicopter 
(R = 6m, p = 0.41), whose mechanical character is t ics  a re  shown a lso  i n  
figure 3. It i s  seen tha t  f o r  t h i s  blade, which presents an average 
camber and is  l i g h t l y  loaded at the t i p ,  the e r ro r  made i n  the maximum 
bending moment by l imit ing the dis t r ibut ions of the outside forces t o  
the  first d is t r ibu t ion  does not exceed 6 percent, which j u s t i f i e s  the 
simplification of the calculation indicated previously. 

Figure 14 a l so  shows the maximum 

For the blade of the NC.2001, the maximum bending moment i s  severely 
subjected t o  the influence of the second distribution, but, by way of 
compensation, it i s  prac t ica l ly  c lear  of t ha t  of the t h i r d  dis t r ibut ion 
(except at  the t i p ) .  

However, it should be noted that  the l a t t e r  assumes a s ignif icant  
pa r t  i n  the evaluation of the  negative maximum bending moment, expressed 
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by 
the maximuin alternating fatigue, defined by 

Mfin (see figs. 10 and l3), and consequently in the appraisal of 

where W - I is  the resistant modulus of the particular section. - v  

Translated by J. Vanier 
National Advisory Committee 
for Aeronautics 
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.Blade N.C.2001 
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Figure 3.- Plan forms and distribution of mass and rigidity of the S.E 
and N.C.2001 helicopter rotor blades. 
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Figure 4.- N.C.2001 blade - natural elastic deflection curves of the blade. 
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Figure 5.- N.C.2001 blade - natural distributiork m'v2q = 

for  Y = 1. 
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Figure 6.- Natural frequencies of the N.C.2001 blade. 
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Figure 7.- N.C.2001 blade - distribution of aerodynamic forces F' on 
the rigid blade. 

A 

80 

60 

40 

20 

0 

-2 0 

-4 0 

-60 

-8 0 

-100 

-120 

-140 

*1 -2 -3 .4 .5 .6 .7 .8 -9 1.0 

Figure 8.- N.C.2001 blade - total forces F'd distributed over the rigid blade. 
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Figure 9.- N.C.2001 blade - blade bending moments for  ~r = 0. 
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Figure 10.- N.C.2001 blade - blade bending moments for ~r = 90'. 
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Figure 11.- N.C.2001 blade - blade bending moments for  J I  = 180'. 

Figure 12.- N.C.2001 blade - blade bending moments fo r  Jr = 270'. 
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Figure 14.- Maximum bending moments. 

NACA - Langley Field, Va. 


