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* 
OF A FREE JET ISSUING FROM A NOZZLE 

By W. Szablewski 

PART I.- THE FLOW FIELD IN THE CORE REGION 

ABSTRACT: 

For the flow field of a free jet leaving a nozzle of circular cross 
section in a medium with straight uniform flow field, approximate formulas 
are presented for the calculation of the velocity distribution and the 
dimensions of the core region. The agreement with measured results is 
satisfactory. 

OUTLINE

I. INTRODUCTION AND SURVEY OF METHOD AND RESULTS 
II. CALCULATION OF THE FLOW FIELD 

(a) Velocity Distribution in the Core Region 
(b) Dimensions of the Core Region 

III. COMPARISON WITH MEASUREMENTS 
IV. SUMMARY 
V. REFERENCES 
VI. APPENDICES 

No. 1 Calculation of the Transverse Component 
No. 2 For Calculation of the Dimensions of the Core Region 

I. INTRODUCTION AND SURVEY OF METHOD AND RESULTS 

Knowledge of the flow field of a free jet leaving a nozzle is of 
basic importance for practical application. 

Investigation of such a flow field is a problem of free turbulence. 

In theoretical research the following specialized cases of our 
problem have already been treated: 

(a) The mixing of two plane jets, the so-called plane jet boundary. 
These conditions are encountered in the immediate proximity of the nozzle. 

*t lZur Theorie der Ausbreitung eines aus einer Dse austretenden freien 
Strah1s. Untersuchungen urid Mitteilungen Kr. 8003, September 1944.
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(b) The spreading of a rotationally-Symmetrical jet issuing from a 
point-shaped slot in a wall, the-so-called rotationally-symmetrical jet 
spreading. This state defines the conditions at very large distance 

from the nozzle. 

In considering a free jet leaving a nozzle of circular cross sec-
tion, we may subdivide the spreading procedure, according to an essential 
characteristic, into two different regions: 

(i) Region where a zone of undiminished velocity is still present 
(the so-called jet core). We shall call this range, which extends from 
the nozzle to the core end, the core region. For the immediate proximity 
of the nozzle the conditions of the plane jet boundary exist. 

(2) The region of transition adjoining the core region which is 
characterized by a constant decrease of the central velocity. This 
region opens into the region of the rotationally symmetrical jet 
spreading mentioned above. 

So far, there exists only an investigation concerning the core 
region '(reference i) it is limited to the case where the surrounding 
medium is in a state of.rest. 

Method and Results 

In the present paper, the spreading of a jet in the core region is 
treated for the general case where the surrounding medium has a straight 
uniform flow field (or, respectively, where the nozzle from which the 
jet issues moves, at a certain velocity through the surrounding medium at 

rest). 

The theoretical investigation is based (reference 2) on the more 
recent Prandtl expressiOn for the momentum transport 

E(x) = b(x) umax - Umin 

One then obtains in the rotationally symmetrical case the following 
equations: 

Continuity:

(r)	 (r) - 
+ r -
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Momentum transport:

--
	 (-^-r-2.

2
U 	 + V + 

-r orj 

where

= b(x)(u - u0) 

u1 = velocity at the jet core 

uO = velocity of the surrounding medium

(Ui> uO) 

With reference to the present problem 

we introduce, instead of r,

r - 

x 

as independent variable. We obtain: 

Continuity

( + i) (	
-	 r\

0 + — k---- = - x	 -	 + v + 
(71

3



14.	 NECA TM 1311 

Momentum transport	 - 

/2—	 - 
€(x)j u	 1	 u 
x2	 rO 

Velocity distribution in the Core Region 

We limit our considerations at first to small disturbances of the 
flow field; that is, to relatively small differences in velocity 
(u1 -u0	 - 

small quantity). The partial differential equation for the 
Ul 

momentum transport may then be linearized 	 - 

	

-

	
Mr2—

..— +r
dx 	 r2 

where

6(x) = b(x) u
1 - U0 

Ul 

(It should be noted that by the transformation 	
= r	 this equation 

	

-	 -	 V€(x) 
is transformed into the equation 

2— -	 - 
u	 ulu _o 

which represents a heat conduction equation.) With	 =r x roinstead 

of -r one obtains from the equation of momentum 

2—	 --	 -1	 2 
3u	 uIl	 x	 ix	 - 

+	 r0 +	 6(X) 	 '€(x) 

-11L 	 X 

- -	 r0 /
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This equation Is a linear partial differential equation of second order 

(ro
 

of parabolic type. For the plane case	 - co) this results in the 

equation

d2u dii fx	 - 
-	

Tx_
	 - 

a2 di )2L_-O 
ro - 

with

(€)	 = c (U1 UO) 

b(x) ' 	 S	 ul-uC therein c = lim	 i and s to be regarded as a function of x	 u1 

r0 	 S	 - 

With the boundary conditions taken into consideration, the integration 
yields

=	 (	 -
ra0 

e02 d(a0) 	
+ U0 V\u1	 /J 0	 2	 u1 

with

1 
a	 _

0•
u1 

We now obtain an approximate solution of our prob1em by generalizing 
the plane velocity distribution and setting up the following formulation: 

=	 -	 rLa	 el21 d	 +	 +	 + u	 f5\ul	 j j0	 ,	 l	 2j 2	 Ul
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With

1 
1(x) =

/2 ul
	 b 

U1

X 

1 I ( 1
 for/---d

a2(x) = 42K 	 Ui	 0 / f_\ 	 r)V x 

ro 

we obtain a function which corresponds to the exact-solution for small 

as well as for large positive r, thus in boundary zones of the 
r0 
region of integration as well as in the interior of the region along the 

jet T = 0. 

If we now consider larger disturbances, the solutions obtained for 
small disturbances are to be regarded as a first approximation. 

ui-u0 
For the plane case the solution for arbitrary	 already 

U1 

exists, compare G6rtler (reference 3). It is found that, purely with 
respect to shape, even the first approximation represents a very good 
approximation. The velocity distribution calculated by G6 'rtler still 
shows an uncertainty insofar as u(r + a), with u(q), also represents 
a solution. This uncertainty here may be eliminated, because for the 
jet core vanishing of the transverse component v is required. There-
with the initial profile of the velocity distribution for arbitrary 

u1 - U0 is then unequivocally fixed. 

U1

If we limit ourselves, with respect to shape, to the first approxi-
mation, the initial profile is 

u1	 fit \U1	 J 'Jo	
2 \	 u1. 

where

	

=	 - 0.36 
(Ui uo)
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and

1 a = _______ 0 I(ul_- 
Y	 \	 Ui 

For the further development of the profiles starting from this initial 
profile the regularity found for small disturbances is then taken as a 
basis

-11 f e_* dll* +	 + - 1 Z jj-	 1fU0	 \	 11*	 2	 i(  

lD	 2	 ' 

where

=-,0.36 
(U1 

-_u0 + a2 
u / 

ul-uO —30, thi For	
u	 s function is transformed into the approxi- 

mation function constructed for small disturbances. How far it may be 
considered an approximation In the region for arbitrary disturbance is 
not investigated in more detail. 

The functions appearing in the integral a1(x), a2( x) result from 
the approximation calculation for the dimensions of the core region, 
carried out on the basis of the momentum theorem. 

Calculation of the Transverse Component 

The transverse component v of the flow is determined from the 
continuity equation 

= -fr 
(r)dr	 (rIO) 

- 1	 r0f jj 
or v - /
	 r\ J (TI+ - )(x - - ii -)di respectively, with our 
TI+

X	 - 

approximate function being substituted for U.
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- The integration constant is determined from the requirement that 
at the jet core the transverse flow component vanishes. 

In order to avoid complication of the calculation, rectilinear 
course ofthe mixing width b(x) is assumed. This assumption proves 
approximately correct as results from the calculation 3f the dimensions 
of the core region. 

Dimensions of the Core Region	 - 

The dimensions of the core region (jet core and width of the 
mixing zone) are calculated according to a formulation of the momentum 
theorem 

-	 - uO)r 	 u)r dr	 (= rTxy) f 	 - 
- 
r(x)u(Kb/ 1 - u )[ -

indicated by Toilmien (reference 4). 

The occurring integrals as well as the - defining the shearing 

stress are determined approximately with the course of the velocity 
distribution assumed rectilinear

(u1)( - ) 

- Then there result for the limiting curve d(x) of the jet core and the 
width b(x) of the mixing zone two ordinary differential equations of 
the first order which can be reduced to one equation 

f(x)	 (y = f f (x) dx) 
This integral can be represented with the aid of elementary functions; 
however, for simplicity its calculation here is performed by graphical 
method. 

ic appears as the only empirical constant which results by compari-
son-with measurements given by Toilmien (reference .) as K = 0.01576.
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Comparison with Measurements 

In order to carry through a comparison between theory and experi- 

Ui - UC 
meat, a measurement for the case	 = 0.5 was performed with the 

ul 
test arrangement described In reference 5. 

The comparison with the theory offers satisfactory results if one 
takes into consideration that the effective radius of the nozzle flow 
referring to a rectangular velocity distribution Is different from the 
geometrical radius.

II. CALCULATION OF THE FLOW FIELD 

(a) Velocity Distribution in the Core Region 

We base the theoretical investigation on the more recent Prandtl 
expression for the turbulent momentum transport 

(x) = b(x) lmax - Umin 

where K = dimensionless proportionality factor, b measure for width 
of the mixing zone, and 	 temporal mean value of the velocity. 

We have at our disposal, for calculation of the flow field, the 
continuity equation and the momentum equation for the main direction of 
motion, which read in rotationally-symmetrical rotation 

Continuity

+ (r) = 

Momentum transport

-' u — +v— = 6

r2 

where

E(x) = b(x)(ul - uO)
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u1 = velocity of the issuing jet 

u0 = straight uniform velocity of the surrounding medium 

U1 > U0 

We may integrate the continuity equation by Introduction of a flow 

potential 4'

-	 - 
ru=c—  or	

ry	
7x 

The momentum equation then is transformed into 	 - 

ir	 ,	 1	 e(x) J (r 	 - r2! •1 —  —r 7r 

where E(X).= b(x)1 Ul'°) 
if we make the velocity dimensionless by 

division by u1. According to a method applied by G grtler (reference 3) 

we set up for	 the expression 

( UI -	 (Ui -
 

u1 )l+	 ui ) 

developing	 in powers of the parameter
 (ul Uo ) 

Therein	 is

the potential of an undisturbed flow (ui = uo); thus 

f0 
-	 —=ru1
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If we enter with this formulation into the differential equation, we 
obtain

*0 - uO	 *l 1 It'
 - uO (ul

Ui	 :xr ( ul

 u 

[*_O
U1U0\ 1V1

[̂2 
'Vo

2u1u0\1V1

ciX \	 u	 ,i ciX
] r2 \	 U1	 /	 r2

	

1 Vo	 (Ui -	 \ i	 1r*0 (ul - u0) 
+	

+	 U' )	 +	 + 	 Ui )	 + 

= E(X)r0 + (U_—
	 i 

L [r3	 Ui 

Ul	

- 

-	 \	 (ul -	 \	 i 

	

r2 +	 u1	 r2 + •	
+	 +	

, )	
y' 

f 
If one arranges according to powers of 

ui - U0\ 

) 
one obtains a series 

of differential equations for 	 *2 

For

(2*
	

2*1 I*\	 2* 
('o 

-	 2 

i
 (

62*0-,\ 	
I	 (*)	 1	 (6*6 i 

r2	 r Z^r— ^7x— 	 –r ^5-x— Z^r—) 

I'	
2*	

1	 l 
= €(x)r	

- r2 + 
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or, taking

'vO
rul	 0 

into consideration 

2

- r = c(x) ( r

2* 
+	 Ir 

r3	 r2	
r 

etc. 

On the Theory of Small Disturbances 

In the following, we shall limit ourselves at first to small
disturbances of the flow field; that is, relatively small differences 

/ 
in velocity U1 UO

111	
small quantity 

The velocity field is then defined by the flow potential 

- 
Since	 = ru, the above equation for V1 may be written as 

follows:
-	 /-	 2 

/	 (u 
r	 = € x)	 + r

 
Tr

1 u1 - U0 
€(x) = Ib(x)I \
	 ) u1 

Therewith we have attained for small disturbances a linearization of 

the equation of motion. 

(It should be noted at this point that by the transformation 

= r	 our equation is transformed into 

2	 3i 
+	 -	 0
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With reference to Reichardt's discussions (reference 6), It is of 
interest to point out that this equation is of the type of a heat 
conduction equation.) 

In view of the conditions existing in our problem 

Mixing region 
ro

Jet core 

(r0 = nozzle radius, x = distance from the nozzle in direction of the 

jet axis), we introduce instead of r the variable	
= r	

0 This 
coordinate transformation yields 

?3: fl. 
r	 x

a 
G
U )

Tl=c Onst +	 =	 - j X 

thus the equation 

(x ^ rO)  
ru 

	B."	
1	 2.. 

-	
x)	

E(x)[j.	 +(xr + r) 

(^u )r-const

 

or respectively, for i + -2 4 0

-
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___
rô	 E(X) I -	 E(x) = 

__ __ 2	

(TiTJ  

+—	 I 
x

/ UI — U0 
€(x) = Kb (x) 	 1 

This equation Is a linear partial differential equation of the second 
order of parabolic type. 

The solution of this differential equation Is fixed unequivocally 

by the initial condition that for

	

	 —+0 the velocity distributionro 
of the plane jet boundary appears. 

We first derive (for small disturbances) the velocity distribution 
of the plane jet rim. 

For -- ---->0 we obtain with the expression u(T) the equation 
ro

durx 
— + — iU	 =0 

di1	
--=
r0 

with

I-IETX71
	 1 

-	 U1UO 
—=0 KC

U1

UlU(3 
Therein c = lim b(x) and is to be regarded as a function of 

x	 U1 

r0 
With the boundary conditions 

-	 Ul 
for ¶-.---—co 

u-
uO for -Ti--9 4-oo
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taken into consideration, the integration yields 

•	 I =	 -	 - e02 d(a0) +	
+ Ui \J\U	 1j0	 2\	 Ui 

with

ao
1 

r
2K c (uIlul 

Turning now to our problem, we can expect great difficulties in con-
structing the exact solution. We limit ourselves therefore to forming 
an approximate solution. For this purpose we generalize the plane 
velocity distribution (the initial profile) and set up the following 
expression 

(U0
l(x)q+a2(xij	

d1(x)r + i2 (x + 

)r 
U1 

1. 
2\	 Ui 

This formulation insures at the outset a reasonable shape of the 
approximation solution. 

For al,a2 there immediately result, because of the initial 
condition, the requirements 

urn	 1(x) =	 urn a2(x) = 0

r0 

Nov the following equation is valid: 

	

1	 1 

V2KC(Ul 
-_	

---40 
I (ui - 

u1 ) r0	 u1 )x



16
	 NACA TM 1311 

- Accordingly, we put

a1(x) =	
1 

t[
 (ul - Ub 
2c	 1 

 - /u1 -	 b	 1 

L
x -	

u )L(x)

= 2a12j 

Furthermore we take care that our approximation statement for small r0 

yields the exact solution. This will be the case when the ME) 
rO 

of the approximation statement agrees with the-) to be calculated 

from the differential equation for -- = 0. r0 

According to the differential equation: 

- 
- E(x))u	 uI 1	 x 

- x )2 +	 r +	 €(x) 

Thus

	

__ 
	

x 1 
= lim

	

x22	 r	 E(xJ 
x r0	 r0 

or, with

E(x) - 1

	

x	 2a 

	

1 - 	 - 	 ii1 
-+- -q 2a1 

\	 urn  

+ U T,	 (-20) r0	 r0
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We now enter into this equation with our approximation expression; that 
is, we put (except for a coon factor) 

Lii	 -ii--°j a1 

[]2 [ 2(cr,Tj	
\ 21  

— =e -	 + a2)a1 _ 

eM 2 a, I+ 

We then consider the relations 

urn a1 a0L 	 1	 1	 urn a2 = 0 
•	 L hKc(1 uoj 

0	 \ uJ	
r0 

furthermore, we assume

ilin a1 = 0 

—*0 r0 

The last relation signifies that the width b of the mixing zone is, 
in the proximity of the nozzle, of rectilinear character, an assumption 
which seems justified considering the fact that we approach, in the 
proximity of the nozzle, the conditions of the plane jet boundary. 

We then obtain for the left side of the equation 

urn	 --- = e° 2 a2t(o) 
x
—>0 r0 

ro
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for the right side

2	 - 
u22 

urn	
1 T	 + 2 

___ 
 

2c
(TO	 ro 

ri  

rO	
OTIL_. 

Equating yields the equation

2 -T 

2ciO3L0 - 2aQ2a2
v(O2je_0 

2 
2'(0) =

	

	
kalo - 2 o U21(0])

2o 

or respectively,

	

2, (0)	
IFUO

 

1 /x \	 x 
This results	 2 =	 (-) for small 

This guarantees first of all that our approximation expression 

for -- -_) 0 represents the exact solution. 
ro 

If we enter with the approximation expression thus constructed into 
the differential equation, we recognize immediately that the latter (due 

to the factor e	 is satisfied also for 	 -oo (and 

arbitrary ro).
 

Thus our approximate expression with a,, U2 fixed in the above 
manner yields .a function which corresponds in boundary zones of the 
region to the exact solution. 

As to the behavior of our function in-the interior of the region, 
it is found that the function in case of suitable "continuation" Into 
the interior of the region satisfies the differential equation along r = 0. 

For r = 0 the differential equation reads 

	

E (x) (r_2 	 + ix

;AL	 (TO- ) 
ro
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If one enters with the approximation expression and considers 

E(x) - 1 
x	 2 

one obtains

a2t =	 ( )E 2a2al2 + a1 (5j 2aj 

or

	

1	 1 

	

a2'+a,-FX	 2 : 	 a1 

As solution one obtains

X 

1 1 r'o (,X-)-Lfx 
di

2 FTXO--)J0

	 oa1 

For small

	

	 one has again
ro

1 1 fx ) - I 
-ro 

We may also write

X 

	

1 j(u -	 i r rO/	 x 

= r	 ul )(\J	 d() 

ro 

Therewith we have obtained for small disturbances the following 
approximation function

19 

i (uO - \
 fnlT+a2] e12I' d(af + a2)+ (l +

:T=T 	)2	 U1
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where

c1(x) =
1 

/2 (Ul uo)I 

X 

fu - U\	 rro (\fx\ 
=	

_1 
Ui ) ( x\J0	 ro)rx  r) 

r) 

To sum Up: This function satisfies the differential equation with 

the initial conditions prescribed for small --- as well as for large 
ro 

positive ri; in the interior of the region it satisfies the differential 
equation along the jet n = 0. Therewith we have constructed an approxi-
mate function which in boundary zones of the region of integration and 
in its interior along the jet i = 0 is to be regarded as exact solution. 

On the Theory of Larger Disturbances

Ui - uO 
Let us now consider larger disturbances 	 not a small 

U1 

quantity 

First, we shall treat the problem of the initial profile. 

G&rtier t s calculations (reference 3) showed that even the first 

(for	
Ul-ucj\ 

approximation 	 small	 ) represents, purely with respect to 

shape, a very good 'approximation. This applies, however, only to the 
shape of the distribution curve - not to its position. The velocity 
distribution calculated by Grtler is unequivocally fixed by the 

- 
arbitrary requirement that 	 = u

1 u0 

2	
However, Grtler 

points out that with ii(T1), V(T), the equations u* = i(r + a), 
= V(r + a) - aii(ri + a) also represents a system of Solution. But 

this remaining uncertainty is here eliminated by the fact that for the 
jet core the transverse component v must vanish as follows from the 
continuity. 

If	 i), 'V(n) is the velocity distribution calculated by G6'rtler 

which is characterized by (o) =
	

2	
the quantity .a must there-

fore be determined in such a manner that v 1 - au1 = 0 which
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vi 	 • 1 
yields a = -. Taking Gortlerts calculations as a basis, one obtains 

U1 
in first approximation

Vi 	 i = - .giui	 tb0)o.36 

thus

aa = -
	 (Ui UO 

Ui ) 

Therewith the initial profile for all

	

	 is unequivocally 
ul 

determined. If we base the shape representation on the first approxi-
mation, the initial profile is

uO =	 -if e2 d +	 + U1	 \U1	 / 0	
2\	 UJ 

where

= con - 0.36 
1

ul 

and

1 

If	 (u-u 
112 pcc 
y	 \ Ui 

For the further development of the profiles in the core region, 
starting from this initial profile, we take as a basis the regularity 
found for small disturbances. 

i	 1 f
1

	
I1* 

T .2 - 1 	 e_* dl1* + (i + 
UUl ul) 

a0 =
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where

= a1	 0.36	 + a2
Ui 

with the terms a1(x), a2 (x) determined before. 

This function therefore yields the initial profile in first approxi-
mation. How far it may be regarded as approximation In the region is 

not investigated in more detail here. For	 —O It is trans-



formed into the approximate function found for small disturbances. 

Our approximate function generalized to arbitrary disturbances 
therefore reads

	

- • r	 e 2 dl* + 1(1 + 
Ui	 Jit\Ul	 JJ 0	 ?	 uij 

where

=a Tj - 0.36 
U1 

1u0 + a2 

with

1 

r2K(Ul-

 
Ul/X 

a2(x) = 2K (l :) (x)f ()d(fl 
ro 

The coordination to i is obtained by 

u - 
+ 0.36

a2 

a1	 a1
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where

x 

fo
r 

a21 i O	
r0flx 1r0 

al 2 2	 x 

r ) 'f 

Thus the curves result from one another by similarity transformations. 

Calculation of the curves requires, furthermore, knowledge of the 
functions a1 (x), a2 (x) and, respectively, of the mixing width b(x) 
and the constant K. These quantities result from the approximate 
calculation (carried out with the aid of the momentum theorem) for the 
dimensions of the core region. 

Figure 1 contains for the parameter values 

Ui - £	 = 1.0; 0.8; 0.6; O.4; 0.2 
U1 

the velocity distributions -- calculated for -- = 0 and the core end. 
u1	 r0 

In figure 2 the functions a 1 (x) and a2 (x) are plotted for the 

parameter values named above, as functions of	 up to the core end. r0 

Calculation of the Transverse Component 

The transverse, component V of the flow is determined from the 
continuity equation

(ri)  + '(r) - 
Tr - 

and, respectively

-
	ff	 \v=--1	 r'—,dr	 rO 
r\ cix/
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r - r0 
Transformation of r into r = 	

results in 

1	 1	 r\(	
(	 r 

-

	

rO \ f ( + ) x	 -	 )d	 x 

xI 

The integration constant is determined from the requirement that in 
the jet core the transverse component V must vanish. 

	

As the lower limit we choose accordingly the	 determined by the 
bounding of the jet core (concerning the dimensions of the core region, 
compare next paragraph). 

In order to avoid complicating the calculation, a rectilinear course 
of the mixing width b(x) was assumed. This assumption is approximately 
correct. (Compare fig. ii.) 

For the velocity distribution -- we substitute our approximate 
Ul 

function. The performance of the calculation (appendix no. i) yields 
the following final formula. 

_____ 11 fu 	 r1	 x\1j+iJii11 + ul - - ( +	 - i)	
(ro)t J	 2 l	 Jj 

x) 

(	 2)  

( uO - l) 1 ()fI} + 
1  

where 

fi =	

e	
+ eO2 - (a

2 - 0.36 
u 	 + F11) 

	

JI I[Fl	 + F1'
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U -_'Ve[]2 + e LI 0) + e12 + [] e2+ 2(a2 - 0.36 1 1 

[.+ (a
2 - 0.36 

Ui - Uo)9 
( Fl t [] +Flt[])

U'	 J 

Therein

r]= (

	

	
0.361+a2)

U1 

(a 1-0.36 
1 -	

+	
) u1 	 2 

2[]2 
e	 dO Fi=f. 

and F1' 
11	 LJ 

and F1 t _ 1 -1 O , respectively, signify the values of the error 

integral taken at the points [J and Oo respectively. 

In figures 3 to 7the distributions of the transverse component for 

a section (T
XO
-)= 0.1 near the nozzle and a section of 3/4 of the core  

Ur 
length are plotted for the parameter values 

U-i 
	 = 1.0, 0.8, 0.6, 0.4, 

0.2.	 U1 

u - u. 
In the case	 = 1.0 there are shown, moreover, the distri-

butions for the sections 1/4 of the core length and the core end itself: 

(Remark: The transverse components calculated for the core end seem 
to yield too small values of the approach flow; the reason is that the 
poor approximation of the velocity distribution, an essential charac-
teristic of the Prandtl expression, in the boundary zones takes the more 
effect in the calculation of the v component the more one approaches 
the core end.)

Ui - UC 
For small	 , the transverse component becomes very small 

(note the different scales in the various representations).



ro
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(b) The Dimensions of the Core Region 

The dimensions of the core region are defined by the limiting curve 
of the jet core d(x) and the width of the mixing zone b(x) or, 
respectively, the outer limiting curve of the latter b(x) + d(x). 

According to Kuethe's procedure (reference 1) we take as a basis 
the theorem of momentum in Tolimien's formulation (reference 4). 
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If one marks off a control area in the indicated manner, one 
obtains in the rotationally symmetrical case

=rTxy
 

u ^U - u,,) r 

dd 1fr 
u0 = velocity of the medium surrounding the jet. 

According to the more recent Prandtl expression 

= b(x) ( 1 -	 3Ti 

Thus we obtain, if we, furthermore, take the limits of the mixing 
zone into consideration

E d+b

uO) r d]r (u -	 -	 -	 =	 - U) 
Lr 

According to the existing conditions we transform (according to Kuethe) 
with

r - d(x)
b(x) 

Then

- r - d  
Ti-	 b(x) 

r = bTi +.d 

If we make, in addition, the assumption that 	 depends only on Ti, 
not on x, there follows 

pd+b	 1	 -	
bb' - Ti(bd ' + b'd) - dd u0j"[ 

T_ 
T1(u 

r
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For v we finally insert the continuity equation 

- 1!	 1 cu v=-- I	 ir'z—dr rj	 ox 

1 TI 

= - (b + d) J	 E 2 bb' - (bd' + b'd) - dd di1 

For approximate calculation, we write for the velocity distribution the 
sample expression

- uo - (u - 
' l - 

U 	 -\ U] 

r - d(x) 
•1	 b(x) 

This expression, which may be regarded as a first rough approximation 
for the velocity distribution, ,will probably lead to not too large errors 

	

for the integral calculation. The value	 determining the shearing 

stress also will probably result in a usable approximation for the 
central region of the mixing zone. 

The result is

ul 

2	 - 

Ty 17: 1̂1- ' )(l

______ 

2	 )_ 
u1

uO/ul -UO 
ul	 ) \ 

u1 

_____

(i) We now put r = 0. The momentum theorem is then transformed by 
integration into the form of the theorem of conservation of momentum 

f

b+d 
u(u - u 0)r dr = const 

28 

or
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or

p0 d(x)	 d-4-b	 2
ro J	 u(u - uO) r dr +f 	 - U0) r dr = ul(ul - 

- u0)	
+1	

- u0 )(ib+ d)b d	 ui(ui -
2 fo 

	 UO ) 2 

1 fU1 - U0\	
2\ + b2f	

(u - Uo)	 rl 2
i d+bdJ	 U0 d O 1 )(d - r0 )	

0 U1	 U1	 0 u
1\ u1 I 

If one inserts	
= (Ui - UJ 

ul	 u ) 
one obtains

and carries out the integration, 

1( 2	 2	 2	 -	 1 U0	 u1 - U0	 U0 1 - r0 )+b	
1

U0	
+bd(	

1	 +_) =0 12 ul 

or

b2	 1 1 - U••j + bd - 1fu1 - U01 + d2
	 2 

	

Ui 	 Ui 

(2) In order to obtain a second equation between b and d, we 
put r = r0. 

If one performs the somewhat .lengthy elementary alcu1ation, one 
obtains finally (compare appendix no. 2) 

bb
tt Ui	

(ro 
b	 )	 b ) - 

	

ui-	 1 (r0 - d)

	

1 i(rO - d 2 
(b'd + 

bdt) t( Ui r

	

b	 +	 +	 b ) - 

ddt[(°b d) -	
= - r0(U1_- 

Ui I
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The theorem of conservation of momentum reads in differentiated 
form. (Compare (i).)

[21 bb'
[.31

-1(U1_-	
('d + bd t ) - -u 

i J  6 Ui 

By addition of the two equations one obtains 

bb'(-
bO	

1u1-	 r0-d\	 ____ 

- 	 ) -	 u1	 b	
+ (b'd + bd?)(0b d)

2 - 

- u0\ 	 t _____ ____l(ul	
__ ___

(ui-)

U1	 d + ddt ro b J = - r0
	 1 

(3) We now proceed to determine b and d from the two equations 
obtained. We replace b in the second equation by the expression for 
the function which we obtain by solving the first equation with respect 
to b.

	

b	 d	 T	 d2 
= a(_) + Va1 - 82( 

where

1 -
	 -_UO\ 

Ui I 

a1 = -	 - 

2	 Ui 

- 

3	 9	 3\ Ui / 
a2=	 ifUi\	

1 l
Ui -

 
UO 

u1 )	 - 2 u1J
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a2 	
\ b' = (a0 -

	
- a2) d' 

Substitution then yields 

= [fl -
( 

ul- uO\ 1
= -

uluO\. 

)

with

1 -
	

1(d)J =	 ( + -
	 a2(_) I 1	 rO) 

1	 I I	 /d	 d
	

so( d

+al - a2(_)J L
d 

(TO 1 I	 a2) I	 - (TT 
roij 0 V1 + i L  f'2	

3	 6	 2 

(so
ro

0 )
	 ) 

We obtain 2L as a function of ---r0	 r 

d(x) = - 	
(Ul U0\( 

U	

l -
	 -	

f)d(d) _______	 U1 

	

'	 ) - 

/ x \ - 1	 1	 rro l
uO f2) d 

	

- - 
K (Ul- u J 1	 U, ro 

1  / 

The evaluation of the integral could, in itself, be carried out 

by analytical method since the integrand is built rationally in -- and 
r0 
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a square root. However, the breaking up into partial fraction which 
has to be done in this procedure is very troublesome. Hence it is 
advisable to perform the evaluation graphically. 

For = 1 the integrand	 [fl _(ui _uO)j
assumes the indefi-

r0 Ul 
nite expression §.	 The limiting value is 

I	 a\	 ( 

l08O)^1(u1uO0a0) 
urn (10) ul	 2	 6 Ul	 J 3 ai) 

a1
(

r0
(aO)

	 (al
ao 

If
d - was determined, analytically or graphically, as a function 

Of -x, b x)	 results from r0

I— -- 
b	 d	 I	 /d - = a0 - + Ia1 - 
r0	 r0 

y	
r0 

The relation

(u1 - u0	 a2\ 
(L)--	 a 

=o -
	 )( 

0	
lim 

1 a  (111 
1)f2 r0

r0 

(which by comparison with measurements on the plane jet boundary may 

serve for the determination of ç) also is of interest. 

The symbol K appears as the only empirical constant. 

With the measured results on the plane jet boundary with zero outer 
velocity (given by Tollmien (reference 14)) as a basis,' there results 
with

(.'3	3 = 0.255 
\dxJx0 

ro 
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1 
0 .255	 -	 o.i85 

Ic = 0.01576 

Examples: 

In figure 8 the dimensions of the corresponding core region are 
represented for the parameter values 

u.l - u0 -
1.0, 08 1., 	 0.6,	 .1i., 0.2 

U1 - 

Figure 9 contains the core lengths 
Xk
-, figure 10 the mixing 

bk	 r0 U1-U0 
widths - at the core end as functions of 

r0 

Figure 11 shows the mixing widths ..-. for the various parameter 
ui -u0	 0 

values of	 as functions of -. 
U1	 r0 

Figure 12 represents the angle of spread of the respective mixing 
db region c = I 1— \dX x0 

r0 

Figure 13 represents a0 - r

2nwc

as a function of 
U1 

Ui - u0	 Ui-u0 
with Tollinien's value c 0.255 for	 = 1 being the U1'	 U1	 - 

defining quantity.

(u1 - u	
) the quantityFigure l# shows for the medium at rest 

as a function of c = (). Figure 15 shows a0 = as a 

\ro 
function of c = fdb 

r0
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Figure 16, finally, contains the limiting value 

urn 
r.fu1uo\ 

1\	 Ui )j 
r0 

necessary for calculation of the integrand in 

Is 

_- - 	
r	

(ul_-_ )f]2 uO 	 d(--
- -K.(ul- 	 L -	 ul 	 r) U1 I 

III. COMPARISON WITH MEASUREMENTS 

Measurements on a free jet issuing from a nozzle and spreading in 
moving air of the same temperature do not exist so far. 

In order to test the theory by experiment, a measuremnt for the 

case 
U1uO.= 

0.5 was performed at the Focke-Wulf plant. 
ul 

The measurements were carried out with the test arrangement with 
the 5 millimeter nozzle described in reference 5. A certain experi-
mental difficulty was experienced in producing temperature equality in 
the two jets; it was achieved by regulation of the combustion chamber 
temperature with the test chamber pressure Pk and the probe pres-
sure p5 kept constant. However a perfect agreement of the jet tem-
peratures could not be accomplished inasmuch as the temperature measure-
ment performed with a thermoelement is rather inaccurate in this low 
region. 

The test data were:

Outer jet: 

Static pressure	 -100 mm Hg
(Measured relative to atmospheric pressure) 

Room temperature
	 t0= 20° 

Barometer reading	 p0 = 754.5 mm Hg
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Inner jet: 

Total pressure	 p = 340 mm Hg
(Measured relative to atmospheric pressure 

Stagnation temperature	 t5 = 79° 

The evaluation of the measured values was made according to the 
adiabatic

T1 =
 2(p2) 

and the efflux equation 

Ui	

[- (P2)	 j 

with constant static pressure assured in the mixing region. 

Due to the imperfect readability of the thermoelement which, as 
mentioned before, is too rough for smaller temperature differences, it 
was impossible to measure the distribution of the stagnation tempera-* 
tures over the mixing region. For the evaluation a linear drop of the 
stagnation temperatures along the mixing width was assumed. 

For the outer jet there results 

t  
= 90	

= 151 meters per second 

for the jet issuing from the inner nozzle 

t1 = 13	 Ui 302 meters per second 

The inner jet therefore has, compared to the outer jet, an excess 

0U]U0 
temperature of 4 . For the velocity ratio the result 	 = 0.5 

Ul 

was obtained.

	

P8	 k - 

Figure 17 shows the total pressure distribution

	

(PS
	 k\ 

+	 )central PB
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made dimensionless with the central value, for the various test sec-
tions. The section near the nozzle which still shows the character of 
a turbulent pipe flow is represented in figure 18. Figure 19 shows, 
in addition, the variation of the total pressures along the jet axis. 

Figures 20 to 22 contain the corresponding representations for the 
velocities made dimensionless by the velocity u1 of the jet issuing 
from the nozzle. 

As to the comparison with the theory, it must be noted that the 
velocity distribution at the exit from the nozzle is not rectangular, 
as assumed in the theory, but that it represents the profile of a 
turbulent pipe flow. (Compare fig. 21.) Hence it proves necessary to 
Introduce the conception of the "effective diameter" in contrast to the 
geometric diameter. 

We define the effective nozzle diameter as the width of the 
rectangular velocity distribution of the amount u1 which is equiva-
lent to the existing momentum distribution. That is, we calculate the 
effective nozzle diameter from the equation 

2 

ul	
r effect.r	 - u0 )r dr 

2	 J0 

with the Integral, which according to the theorem of conservation of 
momentum represents a constant, to be extended over an arbitrary cross 
section. 

In our case the integration over the cross section near the 
nozzle yields

reffect = 0.945rgeom. 

Whereas the plotting over i = r - rgeom.
 x	 lets the test points appear 

as still lying on one curve, the plotting over ri = r - 
reffect

 x 
results in a stagger of the velocity distributions with Increasing --

r0 
toward negative r. This stagger toward negative Tj expresses the 
immediately obvious fact that the isotacs of the flow field are curved 
toward negative ii (toward the jet axis).

x Figure 23 contains the theoretical curves for - = 0 and x- 
r0	 0 

(the core end); in addition, the test points of the sections x = 10 mil-
limeters and x = 45 millimeters were plotted. The agreement appears
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to be good as far as the velocity gradient and the orientation in 
space in the central mixing region are concerned; the agreement in the 
transitions toward the jet core and the surrounding medium is less 
satisfactory. Deviations in these transitions are essential charac-
teristics of the more recent Prandtl expression, but are caused here 
probably mainly by the approximation character of our developments. 

For the core length there results according to the theory a value 
Of Xk = 22.Oreffect, whereas the measurements along the jet axis 
(compare fig. 22) result in about xk == 20.lrff. 

It has to be noted that the experimental determination of the core end 
is affected by some uncertainty. 

IV. SUMMARY 

The spreading of a free rotationally symmetrical jet issuing from 
a nozzle represents a turbulent flow state. 

The theoretical investigation is based on the more recent Prandtl 
expression €	 cb Ix - iLthjriI for the momentum transport. The 

continuity equation and the equation of momentum are at disposal for 
calculation of the velocity distribution. In case of limitation to 

f 
small disturbances ( 

u1 -u0
 small quantity, where u1 is jet exit 
\ U1 

velocity, u0 velocity of the surrounding medium) the equation of 
momentum may be linearized  

-

	
(2_^

- 
r - €(x)- + r 

An approximate solution is constructed which is characterized by 
the fact that in boundary zones of the region as well as along the jet 

= 0 in the interior of the region it has to be regarded as exact 
solution. 

For arbitrary disturbances (	 arbitrary > 0) the initial u1  
profile which corresponds to the velocity distributions of two mixing 
plane jets is determined by the fact that the transverse component In 
the jet core vanishes. The regularity found for small disturbances is 
taken as a basis for the further development of the profile from this 
initial profile.
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The transverse component of the flow is determined from the con-
tinuity equation, with the use of the approximate function for the 
velocity component in the main flow direction. For simplicity a linear 
course of mixing width is assumed. 

The dimensions of the mixing region (limiting curve of the jet 
core d(x) and mixing width b(x)) are approximately calculated from 
the theorem of momentum 

	

(ii - uC)vr -
	 J .	

- u)r dr	 (= rr)

= rb(x)(u1 - u0) - 

under assumption of a rectilinear course of the velocity distribution 

- 
over q, where	

= 

r d
 

In order to test the theory by experiment, a measurement was 

ul - uO 
performed for	 = 0.5 with a 5 millimeter nozzle. In order to

Ul 
carry out the comparison with the theory, the conception of the èffec-
tive nozzle diameter is introduced which complies with the deviation 
of the effective velocity distribution for an issuing jet from the 
rectangular velocity distribution 

2 
r effect.

	

 
u1(u1-	

- 
urj r dr 

2	
f000

The agreement between theory and experiment is satisfactory.
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APPENDIX

NO. 1. CALCUlATION OF THE TRANSVERSE COMPONENT 

-	 1
'I r0_1 

Tl+)	 k 
x

I	 r\f ff 
+	 - T1	 dTj 

1
1

il rO\IrO)f _d+f —dI+ 

( T + -ii	 kr0	 k r0 
x /L_ 

or

We substitute

1 r i -i 

	

/ r0 	 f + - -)	 I 

i[]	 []2 

e
Ui) 

[] = 

	

(cr,Tl - 0.36 
Ui	

+ a2)

2 
/u1 _

	

-	 - 1 e
-[1	 + a) +

rix u1	 )Eal
r0

____ 1 LU0	
\ []2 

=--_)	 a1
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If we assume a rectilinear course of the mixing width b(x), we 
have a1 

We then obtain

2 y	 +
f-Tlk

 e 

	

U1 - - /	 r \	
- 1) a2 [(-x {32 d + 

(11 +—) 
X/

a1	 e	 11 T+_f e	 T1 d]Tj 

Tj 

1	

(	
-	

r	 [32 

2d	
r	 [32 

+U1	

k	
x L- 

	

/	 r0  

X/ 

The evaluation of the integrals yields 

(a)

fe2 dTj
	 fe12 e-11

2

 d[J 
Cri 

[]= (a1i - 0.36 Ui	

+ a2)	 - 

thus

2 = f[] 02e	
d	

e 	
d [ 

UO 

E1k -
	

/1
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rEl	 0+[ 1	 -L:I	
rr = r 1 0

D O 	 L
Jo	 Jo	 Jo 

f
e

[1 [ ] 2 

0	
d[]=[F1j 

where 

Fl	 e- [J2 d[]
41-C 1

	

 
0	 error integral 

TI	re []2
	

(F
-[10) 

,	 d 
J_T1	 2 1	 1 

k 

thus

(b)

TI	
2 

Ui - 110 
1] = a1 - 0.36	 u1 + a2 

Ui - 10 
[] + 0.36 	 - 

11= a1 

This results In

Ui - 110 

d	 f	
al 

	

[] + 0.36	
1 - 2 d(a1) 

a1

u - U0\ 
(a2 - 0.36 1 

	

a 1 J	
[1 dD -
	 al2 

Ui )feD2 
CIE I
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APPENDIX 

NO. 2. FOR CALCULATION OF THE DIMENSIONS OF THE CORE REGION 

The theorem of momentum with r = r0 reads 

- u j \	 /.\	 - UO)r d	 = u1)	 ()	 r.	 U 

	

r=r0 	 r=r0	 r0 

/ Il' 
/u1 - u0\(j\ 

r0Kbç U1 ))r=r0 

With the coordinate transformation 	 = r- d
 b	 we obtain 

r0-d 

r bdj/u1[ 
Ui)	 - r0 J0	 d	 - (bd' + b'd) - dd dTj 

d+b/1 d\l	 Ird t 	 Ui )ij E bb ' - (bd' + b'd) -	 dil 
rQ  

We substitute 

-	
ii-uo	 u1-uO\ 

U1	 =	
1 )(1-T1) 

(71ul(- 
T,= 
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T- [2^ = - 2(	
- U(U	

) - 

^k) (u1_- 

	

Tr—-j	 ui ) 

This results in

b Lu uluo)	
)fbbtJ T

\ul)rr	 -U1) \	 A ui L 0 

	

(bd' + b'd)	 d + dd' jr d 

	

Jo	 0	 •I 

d+b	 -	 -	 2 

U!	 I2(°) (i-)+ 
Tx-rr 	 ,r 

	

Lro 1\ l / ] r0-d L	 l 
b 

	

u0 fu1 -u	
PTIbb 

	

1	
+	 + b'd) +	 CITI

 

	

u1 I	 (Ui -	
2 

u1 )	 r	
- rOK(\ Ul )
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If one evaluates the Integrals, one obtains 

fu1 -	 /	 r0 - d [j^b r0 - d\3 
u1	 r=r 0-	 1 ) 1 	 b )( b ) + 

fbd' + b'd  
2	 ) ( b	 b 
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r d+b : /U - uo 	 ____ 
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 Lr  

u0 (u1 - Uo) 

fri	
2d + (b'd+ bd') 

U1 - 

)fri
-	 + 

B

2 

U1\U1 0-d 	 l	
-d 

bj	 S 	 _ 

uo/ui - uo)f

ro-d	
+ dd' ul	

1	 —1	

[u'-uQ\2 
 U1 ) fro-d (1 - ) d + 

uO(ul 1)fd d 
= bbIl2( 

1 l)2 

E - 

1 r	 d) + 

1 r0 -d uo( ui- uoij 1r0-d 2 
-	

E 

u u )•(	 b + (b'd + bd?)f( l
Ui 

1(r0_ d\2 lfro_duo(ul_rl(ro_d2 
b )	 b )J Ui 2b 

I 2fl 
ddt2(

ui i.(r0d fui-E r- 

Ui	 )	

- ( rO- d) ______ +	

b
_ 

u	 IL	 (	 b



NACA TM 1311 

If we insert these expressions into the equation of momentum and 
order, we obtain 

El Ui -	 2(r - d)3	 U1 - \ 2 (ro - d\	 1fu1 -2 UO
bb' L ( Ui 	

b	 +Ui )b ) -	 Ui ) + 

2	 3	 2	
/Ul_UO 2 (ui_ u0\(rO_ d	 i(uiu0\(rQ-d\	 iUcJ( 

3\ Ui	 b )
	 )	

b )
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1	 b	
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which finally leads to 

I(ui	
(-b

r0- d	 1' 1-d3i
bb 

Ui
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)L 	 )	 0 b ) 

(b e d + bd')(
u1-u0J1r0d3	
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!+ 
ul	 b )	 ro-d\2 

- b )	 2 

d\ L( -b  r,c(Ul - UO I 

) -	 =	 0 \	 U1 / 

Translated by Mary L. Mahler 
National Advisory Committee 
for Aeronautics
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