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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL MEMORANDUM 1277

PRESENT STATE OF DEVELOPMENT IN NONSTEADY MOTION
OF A LIFTING SURFACE *

By P. Cicala

A summary is given of the principal results thus far obtained
from studies of the nonsteady motion of a lifting surface in an
incompressible fluid; the methods followed by various investigators
are indicated.

The aerodynamic problem of the nonsteady motion of an airfoil
has been the subject of numerous investigations, which in 20 years
have brought a degree of development such that an entire branch
(that of two-dimensional motion) may be said to have been completely
solved. The mass of existing publications is very large and among
these naturally many overlap; moreover, the study of the problem has
produced a variety of methods such that the same phenomenon is
endowed with rather diverse aspects that, although of considerable
speculative interest, do not always facilitate the task of those who
wish to learn only the results of the research. A synthetic deduc-
tion of the results thus far obtained is given hereinl in order to
expound the principles of the various methods of investigation and
particularly to collect the latest results in & form that is best
suited to application. .

As previously stated, the two-dimensional problem has been
exhaustively studied. In this field, the problems of unsteady motion
reduce to computations that at times are laborious » but which can
always be conducted without uncertainties of the approximations and
which are considerably facilitated by existing teabulations. Only a
few attempts have been made to develop a rigorous computation for
the wing of finite aspect ratio inesmuch as the existing methods
present approximate solutions that contain many inaccuracies.

In part I of this report, the results relative to the wing of
infinite aspect ratio are described, always with the agssumption of a
rerfect and incompressible fluld with regard to the components of

. *¥"Lo Stato Attuale delle Ricerche sul Moto Instazionario di Una
Superficie Portante." Estratto Da "L'Aerotecnica" Vol. XXI, N. 9-10,
- Settembre-Ottobre 1941, XIX. :

lmme analytic developments have been shortened and the rigor of
the demonstrations has at times been. relaxed.
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of the normal force on the wing plane. In part II, procedures are
indicated for the computation of the wing of finite aspect ratio;

a comparison is made of the various approximations thus far employed.
In part ITI, the results are given relative to the force component
in the direction of motion (propulsive or drag). In part IV, the
results of experimental investigations are considered. In each part
an evaluation 1s given of the existing publications, which may serve
as a guide to a more detailed study of any aspect of the problem.

Once a reference system is established with respect to which
the fluid is motionless at infinity, it is assumed that a fixed
Plane exists from which the points of the lifting surface are at
distances that may always be considered very smmll with respect to
the dimensions of the projection of the surface on the plane. The
thickness and the curvature of the profile are therefore consgidered
infinitesimal, as are the displacements along the normal to the
fixed plene. Almost all the investigations up to the present time
on the nonsteady motion of & wing use simplifications that are .
derived from the preceding assumption and thus assume that the sin-
gularities in which the body in motion is schemstized are permanently
contained in the fundementel plane. In this plane lie the orthogonal
axes x and y, which are displaced with respect to the fixed refer-
ence and remain parallel to themselves with a velocity V parallel
to the x-axis dbut opposite in direction; the z-axis is at right angles
to the x,y-axes. With respect to these axes, which follow the motion
of the wing, the relative velocities of the points of the wing are
small with respect to V. It is thus assumed that the perturbations
produced by the motion of the wing are sufficiently small. Hence, in
the relations that are used, all terms of higher order than the linear
terms in the velocities induced by the motion of the obstacle in the
surrounding fluid are neglected. This fundamentel simplification
gives the problem under consideration the advantages of the linear
theories (the most important of which is the principle of superpo-
sition) from the effects of which by the analysis of particularly
simple motions, solutions can be obtained that through linear combi-
nations make possible the study of motions of a more complicated
character. '

The velocity V is assumed to be small compared with the velo-
city of sound although investigations have been conducted that consider
the compressibility of the medium (reference 1).

The variations in time or space must frequently be measured.
The symbols occurring in.the derivations herein are therefore defined
in the following paragraph: )
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let q ©be any magnitude that is a function of a point and that
for every point varies in time. The symbol dq/dx (or dgq/dy)
denotes the dependence of the law of variation of q as a function
of x (or of y), measured by giving to q, at each point, the
values that correspond to a certain fixed time +. The symbol
dq /ot indicates the rate of variation of q at a fixed point:
relative to the x, y, and 2z axes, which in the absolute refer-
ence system is displaced with the velocity V. In general, with
the assumed linearization, the derivative also represents the rate
of variation of q at a fixed point of the wing because the velocity
of a point of the wing wlth respect to the moving axes 1s very small;
if the gradient of q 18 not too great, the variation of q 1in time
will be the same whether measured at the fixed point relative to the
moving axes or measured at the point that follows the 1lifting surface.
In order to express the rate of change in time of a q always
measured at the same point of the stationary reference, the symbol
d'q/dt is used. Because of the assumed linearization, the previous
derivative coincides with the derivative that measures the change in
q with time for the same material point. Inasmuch as the absolute
velocities of the fluid particles are very small, if the gradient of
q 1is not too largse, the change of q with time will be the same
whether measured at the fixed point or following the molecule. It is
preferred in this report to use a distinctive sign in d'q to differ-
entiate the local derivative from the derivative of the gquantities
that depend for the problem under consideration only on the time param-
eter; for this problem the notation dq/dt is used.

PART I. - TWO-DIMENSIONAL PROBLEM

1. The results of modern research on the two-dimensional problem
will first be described. The simplification introduced by the assump-
tion that the phenomenon develops in the plane of the x- and z-axes
is such that 1t can be stated that each problem within this range
can be reduced to the computation of integrals that, with graphical
procedures aided by analytical considerations, can be computed with
suitable accuracy (limited to the approximetion of the existing
tables), which eliminates the expansion into series. In the three-
dimensional case (the wing of finite span), except for some parti-
ular problems, only approximate solutions exist.

In order to simplify the expressions of the two-dimensional
problem, the semichord of the wing is assumed to be of unit length.
The abscissas of the leading and trailing edge of the wing are assumed
to be given by x = -1 and x = 1, respectively. In order to define
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the points of the profile, the parameter ¢ is introduced. The
variation with x 1s shown by the relation

X = - cos ¢

The vaiues O and = of the parameter therefore correspond to
the leading and trailing edges of the wing, respectively.

The coordinate 2z, normal to x, is considered positive in the
downward direction (fig. 1). The vertical component w of the velo-
city of the fluld is therefore considered positive if turned in the
direction of positive z. The difference in pressure p between the
two faces of the wing has the positive sign directed upward. The
same sign conventlon is true for the vertical force P, the lift of
a segment of unit chord. The moment M on the same segment is con-
sidered positive if it is a diving moment.

2. Condition of tangency. - The condition that the profile be
impenetrable to the fluid is expressed by making the relative velo-
city of the fluid, with respect to the wing, tangent to the profile;
or, in other words, the absolute velocities V. of a point on the
contour and V¢ of the fluid particle in contact with the contour
have the same projection on the normal n (fig. 2). Inasmuch as
only the linear terms in the coordinate 2z of the points of the con-
tour and their derivatives, or in the velocities (perturbations)
created in the fluid by the motion of the wing are considered, the
component on n of the velocity Ve may be supposed equal to the

component w of the velocity of the fluid particle, which is parallel
to z. By using the simplification of neglecting the quadratic terms
in the computation of the projection on n of the velocity Ve

which has the components V and 0z/0t, there is obtained

vay . (1)

3. Circulation and pressure on profile in steady motion. - Under
the conditions of steady motion, it is known that the relative velo-
cities of the fluid with respect to the profile, even if the profile
is considered to be of infinitesimal thickness, are, in general,
different on the two surfaces. In the motion under consideration,
if Vi and V2 are the velocities at the corresponding points of
the two surfaces (fig. 1), the pressure rise P between the surfaces
is given by the Bernoulli equation
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1 v VZ'FVl
P =5 P(VE,-VE)) = p(V2-V1) —5— = pVu

vhere it may be assumed, because of the linearization hypothesis, that
the average of the velocities Vy; and V2 is V, and u denotes

the difference between them.

If the wing is in the positive aspect, the smallest velocity is
found at the bottom surface. The velocity difference u 1is con-
sidered positive under these conditions end the positive pressure p
1s therefore in the opposite direction to positive . In order to
represent the field created by the wing, the skeleton of the wing
.compogsed of a vortex film is considered; this system of singularities
ie capable of giving the existing velocity increment u between the
two surfaces i1f the circulation in an element dx 1is equal to wu dx.

4. Circulation and pressure on profile in unsteady.motion. -
For the case where the motion 1s unsteady, the velocity increment may
be represented by a vortex distribution of intensity g€ = u. The only
difference, when compared with the preceding case, is in the fact that
the discontinuity in the velocity field exists not only on the points
of the wing but also in the wake behind the wing. In order to describe
this phenomenon, consider two fluid layers that pass above and below the
profile. Because of the linearization assumption, the distances of the
points of the profile from the x-axis can be neglected in the following
discussion. It can easily be verified that the terms of the second
order will therefore be neglected. The difference between the momen-
tums of the two layers is computed (fig. 3)2 at the time top and at

the time tp + dt and therefore the variation that the difference has

undergone in the interval 4t is also computed. This variation,
divided by the interval dt, must be equal to the difference between
the forces along x that are applied to the two layers. Inasmuch as
tangential actions do not exist (perfect fluid), and because no pressure
difference exists on the anterior face (upstream of the profile), the
previously mentioned momentums will be given by (p)-p2) dy = p dy.

The difference in the momentums of the molecules of the two'layers,
which is given by the product of the mess and the difference in the
velocities u, varies in the interval dt because:

2The two layers are indicated in figure 3 by hatched lines in the
two directions; the position of the leading edge of the profile is
Indicated by a semicircle. ‘
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1. New molecules come in contact with the profile3 and there-~
fore acquire the velocity increment u = g.

2. The increment for a given point of the profile varies with
time . ' .

If the graphs of g relative to t =ty and t =ty +dt on

the same position of the profile (fig. 3) are plotted corresponding

to the two causes, respectively, it is found that the area (which
gives the difference in the momentums when multiplied by e dy) varies
in the interval dt by the amount

.
gV dt + dt g%dx
-1

The first term is indicated in figure 3 by the obliquely hatched
area (which, except for infinitesimels of higher order, is equivalent
to a rectangle of base V dt and altitude equal to the value of g
corresponding to the abscissa x of point P); the second term is
indicated by the vertically hatched area. Equating the impulse to
the variation of the momentum and dividing by p dy dt yield?

x
P. 9

The first term on the right side measures the pressure at P,
which is obtained under the conditions of steady motion; this pres-
sure depends on the local value of the wvelocity increment. By the
effect of the other term, the pressure under the conditions of non-
steady motion depends on the variation that g undergoes at the
instant considered in the entire strip ahead of P.

SThe difference of the momentums of the two layers is observed to
be zero before erriving at the wing because the velocity increment in
front of the wing is zero if there are no other 1ifting surfaces.

4‘I‘his relation is obtained by another method in differential
form in reference 2. :
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5. Vorticity of wake. - If at the instant t = ty the point P
coincides with the trailing edge of the wing, equation (2) still
holds, but the first term becomes zero because a difference in pres-
sure cannot exist where there 1s no wing surface. It follows that
the increase in velocity &g existing in the points of the wake,

which is zerc in the case in which the distribution of g on the
wing is independent of the time, is given by

dX
8s = T ¥ at (3)

where . .

- 1
K = g dx
-1

i1s the circulation about the wing and the derivative is measured at
the instant at vwhich the trailing edge passes through the point of
the wake under consideration. In other words, in the distance V dt
that the wing moved in the time interval dt a vorticity is distri-
buted equal to the variation that the circulation about the profile
_has undergone in the same time. This conclusion can also be derived
from the ‘principle of the conservation of vorticity.

In figure 4, the diagram of the vorticities on the profile and
in the wake is given for the case in which the wing executes a trans-
latory oscillation with frequency () related to L and V by

QL = 2v

The curve a refers to the instant in which the wing crosses
the middle position; b refers to the position at the end. The
scale of the vortices is indicated by assuming the vertical meximum
velocity of the profile to be unity. For comparison, figure 4 shows
the graph of the circulation g' corresponding to the maximum veloc-
ity in the case of steady motion. The increment of velocity 1n the
wake is considerable. In the theories of a wing in nonsteady motion,
it 1s generally assumed that this velocity increment remains in the
position in which it originated, or, in other words, that the vortices
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shed by the wing maintain their original position and intensity
unaltered. in time. It is evident that the error inherent in this
assumption, from which the real phenomenon certainly deviates,
impairs to some extent the results of the theory.

6. Bound and free vortices. - An original physical interpre-
tation of equation (2) was given by Birnbaum (reference 3). By
setting

= 2
X
. .1 og
€ =3 g{dx (5)
-1
Equation (2) is written as
g =7+¢€ (6)

With the aid of this relaticn, the value of the total vorticity
g at a point on the profile at which the velocity increment between
the corresponding points of the top and bottom surfaces is divided
into two parts:
(l) The bound vorticity 7y, which is sustained by the aerody-
namic action

(2) The free vorticity €, which trails in the fluid in its
relative motion and which therefore gives no pressure
rise

In order to clarify the relation between the free vortices and the

bound vortices, equation (2) is differentiated with respect to x
after g 1is expressed in terms of equation (6). Thus,

? 5+ Vg—c % (7)
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This relatiorn indicates that the variation undergone in an inter-
val of time by the vortex € at a point of the fluid is equal (and of
" opposite sign) to the variation undergone in the same time by the
bound vortex at the point of the profile in contact with it. In
other words, the bound vortices leave at each instant, in the fluid
with which they come in contact, an effect represented by a vorticity
of intensity equal to that which they have produced at that instant.
According to this representation, each of the inducing elements at
the wing is considered in isolation and therefore produces & pres-
sure rise expressed by equation (4) and has a proper vortex wake.

The free circulation at -any point on the wing or downstream of it
is given by the sum of the circulations of the wakes corresponding
to the bound vortices that are upstream of the point considered.

The decomposition of the total circulation in the two vortex
systems previously described is shown in figure 4. It can be seen
that the graph of the free circulations on the chord are joined in a
continuous manner with the system of the wake at the point where the
free circulation is equal to the total circulation.

7. Relations between circulations and normal velocities. -
Ordinarily, the law of variation of w along the chord and with time
is known from equation (1), with the aild of which these quantities
are derived from the characteristics of the motion. The vorticities
on the wing and in the wake must induce at each instant on the points
.of the chord the assigned w; that is,

The integration is extended from the leading edge of the wing
to the entire part of the wake in which the passage of the wing has
created the vorticity discontinuity.

It 1s known that, for the wing in steady motion, the field of
motion would not be determined if the point of separation (trailing
edge of the wing) were not fixed. This condition is also assumed .
for the wing in unsteady motion and is translated into the analytical
condition that g ©be finite at the trailing edge of the wing.

The vorticity in the wake is connected with that at the wing
by equation (3). When equation (8), which is completed by the condi-
tion of separation and by equation (3), is solved the total vorticity
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g is obtained. The pressures are then obtained by making use of
equation (2). As will be shown in more detail in section 17, this
scheme ie follcwed by various procedures of solution by Theodorsen,
who makes use of conformal transformations (reference 4), Schwarz
(reference 5), who makes use of Betz's solution of equation (8), and
Séhngen (reference 6). Wagner and Glauert also refer to the total
vorticity, but determine the total action on the profile and not the
pressure distribution (as do von Kermdn and Sears, reference 7).

When a different method is used, the free circulation on the
chord and in the wake can be expressed as a function of 7y by
making use of the integrated equation (7) and thus transforming
equation (8) so that only the unknown function 7 appears in it.
Then the pressures can be directly obtained by means of equation (4).
This procedure was followed by Birnbaum (reference 3), by Kussner
(reference 8), and by Cicala (reference 9).

8. Acceleration potential. - A different interpretation of the
same problem can be made on the basis of the acceleration potential.
For a perfect and incompressible fluid, the equation of Euler

.P
= - q =
a gra o

expresses the equality between the force of inertia, which corresponds
to the acceleration a of the fluid particle, and the resultant of
the forces that are transmitted to the particle by the medium surround-
ing the particle. The Euler equation also permits stating that the
components of the accelsration can be obtained from the function p/p
through the same operations of differentiation with which the com-
ponents of the velocity are deduced from the corresponding potential.
The generating singularities are arranged on the surface of discontinu-
ity (wing + wake) for the acceleration field whose potential satisfies
analytical properties similar to those of .the velocity potential in
the same manner as for the velocity field. The singularities are
arranged where the discontinuity exists in the pressures; that is,

on the lifting surface. The simplification that is introduced by

this concept is not, however, as great as might appear from the fact
that the singularities (which are called the dipoles of the pres-
g're) are limited only to the wing. In each case, it is necessary

tu pass from the acceleraticn field to the velocity field and this
vacsage requires an integration through which the effects of all the
preceding states of motion are felt and which, according to the
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vortical representation, leaves a trace in the system of free vortices.
In other words, the veloclty field of the pressure dipoles depends
on the history of the formation of the dipole.

The relation between the vortex representation of the phenomenon
and that based on the pressure dipoles is already implied in the con-
cept of Blrnbaum of the vortices shed from all the points of the
airfoil that is the only source of the bound vorticity vy, which is
proportional to the difference in pressure between the two faces of
the profile. A method will be shown, on the basis of the concept of
vortices, for the derivation of some fundamental relations that in
other publications are justified with the procedure of the accelera-
tion potential.

The system of bound vortices induces at a point O at the
instant t = T a velocity that is denoted V,; at a succeeding

instant t = 7T + AT, at a point that occupies, with respect to the
wing, the same position that O occuﬂhed in the first condition,

there will be a velocity differing from V, by an amount denoted

by AV,. The velocity AV, will depend on the variation in the con-

stitution of the induction system or, with changed sign, will be the
velocity induced by the system of vortices that, at the instant con-
sidered, are freed from the bound system and constitute the trace
that the bound system has left in the fluid with which it has been

in contact. The quantity AYa/AT » a8 AT>0 as a limit, represents

the derivative Bza/ét; Hence, if it is desired to express analyti-
cally -the property that the actual velocity Vg of the fluid parti-

cles results from the sum of the velocities induced by the actual
configuration of the bound vortices and from those freed at the pre-
ceding instants, then

Ysza- EdT (9)

where Vg and Vf are computed at the point and at the instant t,

az/ét being computed at the point of the fixed space being considered,
and the gystem cf bound vortices is in the corresponding position at
the instant T preceding +t. In the case of translational motion
~or, more precisely, in the linearization assumed, the terms of the
second order in the velocities of the points of the wing relative to

a system that is displaced with translational motion with velocity V
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are neglected; the term agg/at is measured by having the point

of induction at the abscissa x-V(t-7), or, with respect to the
point O of the abscissa x to which the velocity Vs refers,

in a position upstream, advanced by the quantity v(t-1) if V is
assumed constant.

The following relation can be obtained from equation (9):

d'Vf _ OVa

T % (10)
The quantity V, 1is the welocity induced at O at the constant

t by the bound-vortex film layer. From the instant t-dt to the

instant t, the vortex system changes only in the number of the bound

vortices leaving a trace and that occupy the position ¢orresponding

to the time t. The variation thaﬁ the veloclity Vs of the fluid

has undergone at the point O of the fixed space because of the

effect of this change (local variation d'Vey/dt dt) is that which

would be measured by leaving the vortices y in position and moving
the point of induction of the segment dx = Vit so that the point

of induction occupies the position that corresponds to the instant t;
the variation that is msasured in this manner is expressed by

dVa/0x dx and is thus added to equation (10), which equates the two
expressions of the variation.

Relations (9) and (10) are equivalent5 to the relations derived
by Possio, which are based on the concept of the acceleration poten-
tial, if it is.assumed that the stationary field C, defined in
reference 10, coincides with the field produced by the system of
bound vortices in a uniform stream V. Inasmuch as the concept of

-sEquation (10) is derived directly if the acceleration field is

considered to depend only on the actual values of the pressures on the
profile and, with the pressures equal, has the same configuration as

though the motion were steady. In this case, according to equa-

tion (4), the actual pressures would be obtained by having only the
actual values of 7y on the profile: the velocity of the fluid would
be Vg and the acceleration that, by the assumed linearization, is
computed from d'Ya/dt (and not from the derivative formed in following
the fluid particle) would be expressed by d'Va/dt = dVa/dx V (without
dza/ét because this virtual field is steady). When the acceleration
of this virtual field is equated to the effective acceleration, which
is written d'Yf/dt, equation (10) is obtained, which when integrated,
gives equation (9). ‘
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the acceleration potential lends itself less to physical interpre-
tations than the concept founded on vortices although some simpll-
fications can be obtained in the analytical development, it is
preferred, in the following sections, to employ the classical method
of description.

9. Cases of total zero circulation. - If the total circulation
about the wing is constant in time and the system has no vortices in
the wake, the induced velocities can be computed on the basls of the
total circulation about the wing at the instant considered in the
gsame manner as for steady motion. From the analysis relative to this
case (reference 11, p. 185), it is known that if the circulations are
represented by one of the following functions

g = cotlg -2 sin d

(11)
g, = - 2 sin n$ (n=2,3,...)
the corresponding velocities are respectively given by
1
. Wy =35 + cos ¢
(12)
. W, = cos n¢d

Inasmuch as the values of g, represented by equation (11)
satisfy the condition '

1
gdx =0
-1

=
1

' the preceding result holds for any motion because no wake exists down-
stream of the body. Thus,
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where Ap are quantities independent of ¥4 ©but functions of time.
The total circulations are represented by the corresponding sum

g8 =ZAp gn : (13)

The corresponding bound vortices are represented by a.yn, whers,
as derived from equations (5) and (6),

9 - ; '
= - - ' in ¢ i
7y = A (cot 5 - 2 sin 8) +A';(sin ¥ + sin ¥ cos ¥)

: (14)
sin(n+1)% in(n-1
Tn=-2A, sinn-8+A'n( n~(+131.+) -S:Erll )'9')(p=2, 3, eee)
A = .._d‘_AB.. ) (15)

ovadt

In general, the values of w can be expressed by expanding in
a Fourier series:

[}

=5Ap + ZAn cos ny (16)

~

The coefficients Ap, general functions of time, can be obtained by
harmonic analysis by setting

W=w- ZApn wn
There is easily obtained

¥ = % (Ao - A1) N (17)

-

It is therefore concluded that, if the vertical velocities on
the profile are developed in Fourier series, the circulations and
the pressures can be directly computed with the aid of equations (13)
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and (14) if Ag = A;. In the general case, it will be necessary to
sum the circulations (equation (13)), which correspond to the
velocity

T
w ix[‘ w(l - cos §) dv (17')
0

b1

which is & function of time, but is constant over the chord.

10. Case of velocity w constant over chord. - Applying eque.-
tion (10) for the potential on the z-axis, inesmuch es w is the
projection of Vg, yields

d'w

oV
Tt - 3 | (18)

where Vg is the projection of the vector Vg on z.

Because at each instant w assumes, for all the points of the
chord, the value w, the following relation is obtained:

A
t dt

and, therefore, from equation (18), integrating along the chord yilelds

aw
Va—.v—E-EX'fC
where C 1s a constant with respect to x, dbut is a function of time.
From the analysis of steady motion, it 1s known that the distribution

of the vorticity capable of giving velocities satisfying the condition
at the edge is given by

iw 4
70—2m51n‘8+20.00t5 (19)
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In order to investigate the dependence of C on the condition
of motion, the elementary case is considered in which W, which has
been zero for an indeterminate time, suddenly acquires, at the
instent t', the value AW and mainteins it unchanged. For such
a case, for t > t', C, which must be proportional to AW, may be
put in the form

€= (1R) &% : T (20)

where R is a function of the space passed through by the wing
gince the instant +t'. Because, with the passing of time, the phe-
nomenon tends toward the steady conditions for which the circula-
tion tends to assume the distribution

3
7o = 2 AV cot 3 (21)

the asymptotic value of R must be zero. The law of the variation
of R was studied in one of the first publications on the wing in
unsteady motion (reference 12, which gives a resumé of the work of
Pistolesi to whom reference is made). The more general case is
. obtained from the elementary case by superposition of the effects.
According to equation (20), the second term of expression (19) is
decomposed into the asymptotic term (equation (21)) and a term that
" contains the function R and represents the distribution of the
circulation that would be realized if «w poesessed, from an indeter-
minate time, the value Aw up to the instant t', and then for
t > t', ¥ = 0. The pressures corresponding to this term, which
represents the effect of the preceding variation and diminishes to
zero with time, can be referred to as “transitory pressure.” :

In the computation of C 1in a general case, summing the effects
of all the increments that « has received from the start of the
motion, when it may be supposed w = O (so that ‘ZAw = W), there is

obtained
-
C=w - R dw (22)
0
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The integral is taken as the sum of the products of all the vari-
ations that W has undergone in the preceding instants (the procedure
is not modified whether the variations are abrupt or gradual) for the
corresponding values of R. The distance traveled by the wing,
measured from an arbitrary origin, is denoted by s; the value of s
for the position at which the pressures are measured is denoted by
so and the value of s for the distance sp-s referred to the semi-

chord is denoted by ¢ . The values of the function R(o) are given in
table I. These values have been obtained from the recent tabulations
of Kussner and Schwarz (reference 13).

1l. General solution. - When the expressions of the two pre-
ceding sections are collected, the resultant pressures for a general
cagse of motion may be computed. If the values of w are expressed
by the series of equation (16), which is put in the form

W ; + ZAn wn ’ (168.)

the pressures cbrresponding to the first term, according to equa-l
tions (19) and (22), are given by

v :

v - J
= pV — o w - il
. p=p 2 Tt sinv + 2\ Ww \J; R dw fcot 3

vhereas, the values of w +that constitute the summation of equa -
tion (16a) correspond to the pressures

p =pV Z7n
where 7y, 1s expressed by equation (14).

It is convenient to divide the total pressures into a part that
depends on the history of the motion and has been denoted as the
transitory pressure given by

w
57 2 cot 3 R &% (23)
0
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and into & part D, which depends only on the actual values of the
perameters that characterize the motion and is denoted by the
"instantaneous" pressure, given by

p d dw
5p—=2$cot§+2_msin6+ Z7n

When equations (14) and (17) are used, this relation assumes
the form '

. (=)
A' - A' - .
F o coti-zz:(An+ n+12n nl)sinnG (24)

For the computétion of the pressures on the profile, the fol-
lowing operations are therefore required:

(I) From the law of motion there is obtained, with the aid
of equation (1), the expression for w as a function
of time and of the coordinate 4.

(II) By developing w 1in a Fourier series, the values of A
as functions of time are computed.

(IITI) From the instentaneous values of A and the derivatives,
the values of P are computed from equation (24).
When w has been determined from equation (17), the
values of P are computed by equation (23) end hence
the resultant pressure p = P + B. The total force
and moment are obtained by the simple integrals

1

P = p dx
-1
1

M= px dx
-1
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The formulas given here are also valid without change if V
varies from one instent to the next. In such a case, 1t is con-
venient to assume as a reference variable instead of time the dis-
tance s traveled by the wing. Therefore

Ay = EE—; where ds =V dt.

In the calculation of the transitory pressures, the expres-
sion (23) is usually computed by graphic integration. When the dia-
gram of W as a function of O is known and the value of R 1is
obtained from table I, it is convenient to draw the graph of W(R)
(fig. 5), which is obtained by laying off, for each ordinate W,
the corresponding value of -R for the same position. The area
enclosed by this curve, by the vertical axis, and by the two hori-

. zontal lines through the ends (one of which is the axis W = 0)
represents the integral of equation (23) (cross-hatched area in

fig. 5). If when tracing around the contour from & to b the

area 1s on the right, the area is considered positive; in figure 5
the value would be considered negative. Even though the graph of w
presents abrupt variations (as in the case of the figure), no compli-
cations are thereby introduced.

When it is possible to proceed by the analytic method in com-
puting the preceding integral, it is convenient to assume as the
variable of integration the distance s. Equation (23) is there-
fore written as

8
0]
2 _ . 3 - dw - '

ov = 2 cot 5 is R(sg-s) ds (231)

- QO
or ag

[ ]

D ot S '9 ‘1“ S ORE (23")
PV o

12. Example of application. - Let it be assumed that the wving
always displaced with constant velocity in magnitude and direction
undergoes a sudden small rotation (of small amvlituds) about a point

.
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of the chord. Let there be determined the law of the variation of
1lift and of the focal moment at the instant of the rotation.

It ie convenient first to assume that the rotation occurs in
a finite interval of time and then passes to the limit to let the
interval approach zero. ILet a be the angle of rotation, ¢ the
final value of a, and ¢ = § the coordinate of the axis of rotation.

While the wing travels through the distance from s = 0 to s =4,
the angle a increases contlnuously. ILet

for s <0, - w=0

da
for 0 <s< A, w=nV+aE(coséo - cos 9)
and for 8 >4, w =9V

Hence,

Ao da
—2—=V(o.+a-5coséo)
da

AM=-Vas
—_ da
V{ V(O«‘I‘I’E)

1 .
r=—2'+008 170

for s beitween zero and A the rotation is W = V9. In the first
phase,

= : 2
dw ,(d_a. +T Q..ﬁ)v
ds ds as?
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and in the second phase, d#W/ds = O. If s = sy (the position for
which the pressures are measured), let Ry, R'g ... be the values
of R and the derivatives for O = sy. Equation (23') is then written

by expanding R in a power series in s:

A
'I->=2F3V2 cotgﬂf (Ro-sR'OA+...)(g%+r
0

Then

|
o
[}
R3]

o
a
@
H
S

and moreover, the quantities

for A approaching zero become zero at AT.

dza,
— lds 25
e e
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Thus, from equation (25), for A approaching zero,
= 2 9 R
-P = 209V° cot E.(RO - r R'g)

From this relation it is concluded that the transitory pressure
decreases according to the function R if r =0 or if the rota-
tion occurs about the neutral rear point. If r is different from
zero, a term'is added in the law of veriation of p that decreases
as the derivative of R; this term corresponds to the pressure dis-
tribution that is created on the wing in uniform rectilinear motion:
and that executes an instantaneous displacement in the direction
normal to the trajectory and then continues with the initiel speed
and direction.

The pressures P after the rotation are given by

B = 209V2 cot %

Hence, the 1ift after the rotation is expressed by

P =L (3 + p) dx = x0I¥> (1 - R + TR') (254)

where 1L 1is twice the chord of the profile and R and R' are the
function of table I end its derivative, respectively, both approaching
zero with an increase of the independent varieblse, which is repre-
sented by the distance of the actual position from that at which the
rotation has occurred.

In take-off of the wing, that is, when the wing starts its
motion from rest, , .

v =Vy

In the interval 0 <s< A, V passes from zero to its final
value VO For A—0,
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A
aw
limJ; R ds is = Ro 9V,

and the 1ift is therefore still expressed by equation (25a), in which
the factor in parentheses reduces to 1-R (Wagner's case). For ‘the
moments, because the pressures are always proportional to cot 19/2 ;

MF-J-i (§+;)(x+%)dx-0

In the preceding computation, the impulsive pressures that are
generated at the lnstant of the rotation and cease when rotation
has occurred were congidered. The valuee are therefore immediately
obtained with the aid of equation (24).

13. Computation in finite terms of instantaneous pressures. -
For the determination of the instantaneous pressures » & convenlent
expression 1s given by Sohngen, by means of which these expressions
are obtalned directly from w without expanding in a Fourier series.
The expression, modified to conform with the notation used herein ’
-may be given in the follc;wing form:

b: 4
= - §_ - _2_ H(19' S) a9
P/p v Ao cot 3 - sin ¢ cos s‘: - co8 O (26)
0
where
x' .
H(¥,8) = w(x',s) +f . %g dx (27)

and where x = - cos ¥ 1s the coordinate of the point to which P 1is
referred and x' = - cos §' is the variable of integration.
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The lower limit of the integral in equation (27) is arhitrary,
80 that H 1is defined except for an additive constant. This arbi-
trariness does not affect the results because

asd =0
cos ¥ - cos '80

0

The proof of equation (26) can be given in a manner that is not,
however, entirely satisfactory from the mathematical point of view
by substituting the expression of equation (16) for w in equa-
tions (26) and (27) and verifying that the relation thus obtained
agrees with equation (24).

, The pré.ctical computation of the integral that occurs in equa-
tion (26) presents difficulties for the singularity of the function
Integrated at the point ¢ = 190. For cases that are encountered in

practice, however, by dividing the chord into & certain number of
strips it is found that in each strip H can be represented by a
combination of a few terms of the type cos nd, Hence, to simplify
the applications, Sohngen gives the following formula, which in this
case permits conducting the computation in closed form:

x .
£ as' _cos nd 1 [ 1-cos(9-52) [1-cos(9+91)]
sin ¢ e In X = +
cos ¥ - cos 9 2 [l-cos(\‘)ﬁ"z 1-005(8-191)]
. n=1 1 ‘ _
2 Z];; sin(n-v) $ (sinvd, - sin V&) + (9, - 1) sin n¥ (28)
v= . .

where
f=0 for 0 <d < :
‘3,’31
f = cos nd for -31 <0<82

P =0 for §, <d< g
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In each case, by means of a few terms of this type, the func-
tion H can be expressed and the pressures can therefore be com-
puted as a sum. The computation of the resulting actions involves
easy integrations. In order to simplify this part of the computa-
tion, Schngen gives the expression

1l
fln [l-cos(&-a.)] sin nd d% = —5 cos n ¥ - g gin no +
a .

n-1l

2 Z cos [(n- v) & ""’d‘] +2 (cos na - cos ng) -ln[l-cos(&-a,)]
- n n- v "' n I | :
l R

, The use of these expressions will be clear from the examples
that follow. ' o

14. Examples of application. - Let the expressions of the pre-
ceding section be applied to the determination of the instantaneous
pressures corresponding to the rotation of the elevator; that is,
it is assumed that the forward part of the wing, corresponding to
values of ¥ between O and ¥, remains immovable while the rear

part rotates rigidly about the hinge located at the point of the
abscissa x = - cos ¥g. The angle of the elevator is denoted by B

25

(positive downward) and the primes denote the derivatives -p! -,dB/ds ’

B' = d28/ds2. EHence,

z = B(cos B ~ cos ¥)
and therefore, from equation (1),

w/V =B+ B (cos 9 - cos V)

9 :
H= w+vf (Br+p" cos ¥ 5-B" cos ¥) sind ad =By+B; cos d + By cos 29

%
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where
. 1. B
By =V B+ 2B coséo+25 +4cos&90

By = - V (2B + B" cos ¥;)

1 . C , 4
BZ=V4B cos 2190 . *

For each of the three terms of the expression of H, equation (28)
is applied wlth n =0, n = 1, and n = 2, respectively, and with
V] = ¥, ¥2 = n. Making the substitutions yields

v P .
. Hdd'
sin$ o co8 3' - cos 9

= '-—(Bo+Blcos 15+Bgcosz-3)1nl-008(§+*30)+
1 - cos (9 - 9,)

(x - ¥) (B) sin ¥+ B, sin 29) - 2 By sin ¥ sin &

On the other hand,

. 2(x - 99)
T -
Ao:% wd\9=——-—o—(6+ﬁ'cos-30)+—'-sinw90

%
0
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There is thus finally obtained. from equation (26)

n §/2 ove = B(m-9g) + B'I:sin 190 + (n-95) cos 190] cot g +

[ZB'(n-ao) + B"(x-9g) cos & + % sin 60] gin - -64: (n-9,) sin 24 +

. ' 1 . s z:l -+ 1-cos(d+dg)
5[3 + 2B (cos ¥y - cos ¥) + 5 B"(cos ¥y - cos $)” [ In I-cos(¥-%;y)

As a second example, the pressures in the case of the stationary
gust are computed; that is, the wing is assumed displaced with the
velocity, which is constant in magnitude and direction, encountering
air layers that move in a vertical direction perpendicular to V
with velocities that, at each point of the fixed space,.are main-
teined constant in time. The graph of w along the wing trajectory
(shape of the gust) is assumsd given and P is a general point of

the chord that is indicated by the positions corresponding to t = tg
and t = tg + dt in figure 6. For the point considered, the value

X .
of I w dx 1s represented at the first instant by the obliquely
-1 A

hatched area and in the succeeding instant by the same area increased
by the horizontally hatched strip and decreased by the vertically
hatched part. The intervening variation in the interval considered
will be represented, except for infinitesimals of the higher order,
by the quantity (w)-w) ds. Hence,"

3 X
H=w+$ lwdx=wl

The quantity H 1is therefore constant for all points of the
chord. The same concluslons evidently hold for the point P if
the point P has not yet entered the gust. (The only difference
with respect to the preceding case is that in this case w = 0.)
Hence, from equation (26) (the expression for p), the only nonzero
term will be cot 4/2, It is therefore concluded that for the wing
that crosses a stationary gust, whatever the form of the gust, the
pressures are distributed proportionally to cot 6-/2. The same result
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could also be deduced by considering equation (18), for which, in
this case, the first member should be zero from the hypothesis that
w does not vary in time. The result given by Kussner that the
asrodynamic actions on the wing that enters a stationary gust have
a resultant passing through the focal point is thereby obtained.
This result holds for the case where the values of w do not vary
locally; in general, in agitated air the velocitles vary rapidly
with time. ' .

By following ths analysis of the problem of the stationary gust,
the case of the elementary gust (the step diagram in fig. 7) is first
considered. During the time in which the front of the gust lies
within the wing, . ‘

t . a3 '
Fodlosindl

where x'. = -cos §' is the ébscissaréf the gust froﬁf. When the

entire wing is enveloped by the velocity Aw,

AO=2AW Ay =0

The instantaneous pressures are therefore represented by

$

np = 20V awd' cot > in the first case,
and by

- ' S .

P = 2oV Aw cot - in the second.

2
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For the computation of equation (23), only during the phase of
the crossing of the gust front is dw different from zero, and there
it hes the value

a7 = B¥ (l-cos §') ad = A¥ [L+x' 4.,
: n - n V1l-x!

If 8 denotes the distance of the midpoint of the wing at the
actual positlion from the gust front, for which the valuss of p are
measured, at this instant

1
-1 3/oV aw cot‘%— = ZI R(s-x") dx'
-1

The pressure may therefore be computed as a function of R, in
the case of the gust, by means of a simple integration. The resultant
pressures may therefore be expressed in the form

= d
P =T+ D =pV AW R} cot 3 (29)

where Rl is a function of the distance 81 = s +1 of ﬁhé front

of the gust from the leading edge of the wing. The function is
evaluated in table 2; the wvalues .are obtained from reference 13.
When s; 1is negative, then evidently Rl

From the solution relative to the elementary case, the solu-
tion for a gust of any shape cen be obtained by substituting in equa-

w
tion (29), in place of 'Ry Aw, the quantity \I‘ Ry dw (taken as
0

the sum of the products of all the variations that the values of w
undergoes for the corresponding values of Rl)‘

15. Profile in harmonic oscillatory motion. - The same relations
vermit solving the case of harmonic motion. Assume V constant.
Using the complex variable notation yields '

v = weiQt
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‘vwhere £} is the fregquency and W 1is a function of ¢ but not
of t. FEquation (26) for this case ylelds -

N - x X _W@') s
n P/@Vemt = °°t%f, Wad - sin 'SJ‘» cos(é' )- cos 9
0 0

L . o o |
w sin § o5 3T — cos GJ' W(x) ax (30)
0 : 0
| where
wai%g x' = - cog &
| . ‘
R For w,
K e ® W constant)

¥ = We
~ (For the position s - g,
) - C e -Wo

w(s-g) = v(s)e_-wq = We:‘lm ‘e

(Hence, from equation (23"),

®

5/2)ﬁem§ cot % = GJ.‘

R(0)eWI9 40 (31)
0 ' o

The same problem can be attacked by making use of the general
relations initially given. . By procedures that are developed in:
numerous publications and that, in part » are hereln presented, rela-
| tions are arrived at that are equivalent to equations (30) and (31).
: In this manner, which is more rapid than direct computation, it is
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found that the quantity that enters the second member of equa-

tion (31), a function of the reduced frequency W ={L/2V, is iden-
tified with the quantlty denoted by A in references 2 and 9 and is
therein expressed by means of the Henkel function of parameter W :

i (2)

A=
2@ i,

Reference 14 gives a tabulation of this function, which is rather
important in the study of the aerodynamic phenomenon for the oscil-
lating wing and which is reproduced in table 3. Kissner uses instead
the function T correlated with )\ by the relation

(2)

T=1-2\

vhereas in the paper by Kassner and Fingado (reference 15), the func-
tion P =1 - A is used with argument V = /2.

American publications use the function C introduced by Theo-
dorsen, which has the same definition as P.

By means of equations (30) and (31), the pressures are easily
computed for any type of oscillation (for example, translatory, rota-
tional of the entire wing, or rotational of the flap). The coeffi-
cients of the aerodynamic actions have been determined in various
publications. A complete tebulation for the case of a wing with a
flap hinged at the forward edge 1s found in reference 16, the com-
putations for which were developed by the national institute for
theoretical applications on the basis of the formulas of Kussner.

In a recent publication by Kussner (reference 17), the case of the
profile with a flap and with a tab hinged to the flap is treated.

The fact that the hinges of the two movable parts can be retracted
wlth respect to the corresponding leading edges is taken into account.

16. Analysis of pressures on airfoil in motion in nonperturbed
air. - Equations (27) end (28) are considered, with the assumption
that the values of w are due only to the motion of the wing and can
therefore be expressed by equation (1). It is first assumed that - v
is constant. Then :

1{* ow 3z dz 1| % 3% O * dz
H=w+;,—J‘ &dx=v§+g+{ é?—dx+&f &dx_
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Inasmuch as adding a constant to the value of H does not
change the result of equation (26), : . .

X bz

z
5_
and therefore

X
N2 . o
H=v ayz +2 yaz 1 | -—gtg ax - | - (32)

The first term in the second member together 'with the corres-
ponding term contalned in Aj gives rise to the pressures that are
denoted by pg:

T ~ Tt A
npo/2PVE = cot 5_ 48" - sin 9 0x cos o' - cos ¥

- 2 .

(33)

where 8z/Bx is computed at the point of integration =x! .= - cos ¢§°'.
These pressures are those that are obtained if the wing in the actual

configuration is under the conditlons of steady motion.§~v

The second term in the second member of equation (32) with the
corresponding term contained in Ag. gives ‘the pressures that are .
denoted by 1py: )

az ',az a8 . :
np1/2oV = cot zj; 3 dG' - 2 sinx? o 3t 505 3 o5 3 (34)

These actions, which are proportional to the vertical velocities
of the points of the wing, have. the charsacteristic of damping ‘forces
and can, in part, be interpreted by kinematic considerations. Thus,
if the wing is displaced without rotation with vertical velocity Vs

GIn. fact, substituting in this expression the value of ‘u/V given
by equation (37) of reference 11 for 0z/dx and develoring the.computa-
tion yields the value of | Y =.p/PV expressed by equation (31) pre-
sented herein. . '
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the intultive result that the wing 1s in the same condition as if it
wsre at an -angle of attack v/V 1is obtained from equation (34).
Also, in regard to the effect of a torsional motion, a qualitative
interpretation of p; can be given. If the wing is, for example,

in diving rotation, it behaves with respect to the fluid as though

it were curved upward. It is seen from such considerations that the
focal moment thet arises from this effect is twrned in the opposite
sense to the angular velocity (damping action). This consideration
of the dynamic curvature has been put at the basis of the numerous
apyroximate investigations on the aerodynamic coefficients of the
vibrating wing (reference 9). These considerations would lead in
substance to the computation of the values of py; with the same rela-

tion (equation (33)) that holds for pgy, in which 0z/V Ot is substi-

tuted for 0z /dx. This procedure leads to results that are quantita-
tively in error because it is necessary to halve the second term in
the expression of p;.

The third term of equation (32) gives rise to the pressures Po:

1S : x!
as" %z
cos 4 - cos & dt2

0 -1

pg/ZD = gin ¢

dx (35)

These pressurses, which result independently of the vertical
accelerations of the points of the wing, represent an inertia effect
of the mass of the circulating air. As evident from equation (35),
‘the pressures ps do not depend directly on the local values of the

accelerations, but on the entire distribution. Thus, in the case of
the oscillation of a flap, although the forward part of the wing
remains fixed, there are pressures over the entire chord. There can
therefore,be no distribution of masses that are apparently capable-
of reproducing the inertia effect of the medium.

The result of equation (35) is of interest for the rigid motion
of the airfoil. 1In the case of translational oscillation, pressures
are obtained that are distributed proportionately to sin § and give
rise to the same resultant as though the mess of the cylinder of air
circumscribed about the wing underwent the motion of the wing. It
is easy in such a case to compute also the actions on a part of the
chord. In the case of the rotetional oscillation of the profile
about the mean point, the pressures of inertia still correspond to a
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system of masses distributed according to sin ¢, but the total mess
in thie case is equal to one-half that of the preceding case. The

" rigid wing thus undergoes in its motion an inertia action that can be
thought of as reduced to two masses, each of a value equal to one-
half of the mass of the circumscribed cylinder of air concentrated at
a distance L/A32 from either side of the mean point (always in
regard to the computation of the resultant actions).

It is observed that the pressures ps hsve values that are

independent of the velocity of advance and must therefore be sustained
- in air at rest. For such conditions, the results would not rigour-
ously apply because the assumption of the smallness of the perturba-
tions, as compared with YV, does not hold. The results nevertheless
agree with those that, for any perticular case; have been obtained
without the preceding essumptions and moreover apparently reproduce.
sufficiently well the actual phenomenon as it is found from some
measurements by Cicala, in which the periods of the oscillation of

e wing model in rarefied air and at normal pressure were compared.
‘In the case of the phenomenon of the wing vibrations, the inertia
pressures are not of great importance, whether because the additional
messes represent a small part of the mass of the structure or because
the previously described.actions, which exist independently of the
velocity V, can be directly included in the computation if measure-
ments of the mass of the structure are made by dynamic procedures.

\

Equation (35), which permits computing the inertia pressures
in closed form, is derived in reference Z, and the expression for p;
is contained in the same reference. The expression for p) presents

a certain difference when compared with equation (34) in that it con-
tains a term that in the preceding scheme is added to the transitory
pressure.

- If the velocity V 1is not constant in the expression for H,
there 1s derived from the term \J~ Ou — dx, in addition to the

X s
quantity expressed by equation (32), the term %%J\ gﬂ dx, which

because H 1s defined except for & constant is written 2z dv/dt.
Hence, to the preceding computed pressures there are added the pres-
sures Pz, glven by

z dd'
cos § - cos S

av
P3/2 zx = sin &
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From this relation, there is obtained, for example, the following
result: If the rectangular wing is displaced with velocity V not
constant and with angle of attack’ «, which is constant, there is a
force normal to the flight path represented by the distridution

av
= 200 Ty sin &

which corresponds to the mass of the cylinder of alr circumscribed
about the wing subjected to the acceleration dv/dt.

It is emphasized that the pressures P = Po+Py+Pp+P3 are still

added to the transitory pressures, depending on the values that the
gquentity W has assumed in the preceding instants. If the values
of w are distributed linearly over the chord, W represents the
value of w at the neutral rear point. The instantaneous pressures
have.the resultant passing through the focel point.

The decomposition of the total pressures intc instantansous end
trensitory pressures has no absolute character in the sense that a
part of the instantaneous pressures can be combined with the transi-
tory (not vice versa, because a term containing the history of the
motion is clearly distinguishable from the terms depending on the
actuel values). It nevertheless appears that the definition given
herein is more natural because in the limiting cese of steady motion
the actions resulting from the group comprised of the 1natantaneous
and the transitory pressures become zero.

17. Remerks on treatment of unsteady motion of wing in two-
dimensional cese. - The first investigator tc study the aerodynamic
problem of the oscillating wing was Birnbaum, who made use of the
. concept indicated in Section 6 of the splitting of the circulation
about the wing into bound and free components. Equation (7) is
integrated for harmonic motion. By use of the complex variable
notation, in this cese,

=y (x) oIt

¢ =¢ (x) e:th
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As is easy to verify, equation (7) is obtained if
c(x) = -uJe*”fJ\x r(x') X' qx! ' ' (386)
where
w = iQMN

Inasmuch as the free circuletion is zero in correspondence with
the leading edge of the profile (if no other sources of vortices
occur upstream of the wing), in order thet x = -1 and ¢ = O, the
lower limit of the integral in equation (36) must be equal to -l.
For the points of the wake, the integration is evidently limited to
the chord, beceuse Y 1is zero outside the wing.

On the basis of thesé results equation (8) assumes the form

| - X
2mwy =f e - Tax' .
-Qo

x!'-x ey xTex

1 x! ™ l. '
w e dx! ewx" 7(1" ) ax' - w dx! eUJX" 7(}8' ) ax"
-1 -1 1 -1

where x' and x' are variables of integration and w = woe“7t.

Birnbaum takes into account the condition of separation by
expressing Y- by meens of a combinstion of functlions that seatisfy
this condition. The solution is sought in the form of a series expan-
sion in powers of the reduced frequency E)L/ZV. The series converge
rather slowly so that the results of Birnbaum are applicable only to
rather low values o the reduced frequency.

Wegner (reference 12) considered the problem of unsteady motion
of the wing of infinite span. In the first pert of reference 12, the
treatment refers to the cese in which w is constant over the entire
chord out variable in time, a cese of fundemental importance, as has
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been stated in Section 10. Making use of the condition of separation
that imposes the clrculation of the wing capable of giving rise to

a finite velocity at the trailing edge, Wagner arrived at an integral
equation that defines the circulation in the wake of the wing. With

a procedure based on the moment theorems, Wagner gave an expression
for the computation of the 1lift and of the moment on the wing on the
basis of the circulation in the wake. In particular, the computa-
tions were developed for the take-off motion of the wing. The case

of rotation of the wing about a point of the chord was also considered.

The problem of the unsteady motion of a wing was also considered
by Glauert. 1In an initial paper (reference 18), he made use of the
hypothesis that the circulation remains constant, a hypothesis that

considerably limits the importance of the results.” In a succeeding
paper (reference 20), he took into account the variation of the
circulation. In contrast to Birnbaum, Glsuert sought to obtain
directly the total circulation of the wing, which is divided into a
part that would correspond to the case in which the vortex wake would
be absent, and into & circwlation induced by the vortices downstream
of the wing. It is simple to show the equlvalence of the relstions
assumed by Glavert for computing the 1ift P and the moment M with
respect to the center point of the wing with the relations that are
obtained on the basis of the bound circulation. From equation (4),

! - . 1
PJov = (g-¢) dx = K - € dx
. J-1 J=1
1 - (37)
(g=€) x dx

MV =
Cd

Considering that for x = -1, € = 0, and for x = 1, according
to equation (3), Ve = - dK/dt, integration by parts yields

1 1 ‘
dK d¢€
L“‘" KT

7Iamb (reference 19) also treated the problem with the same
restriction.
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With the aid of these relations, equations (37) become

| 1 N\
P/o = VK + %% + g% gx dx '
-1
X | . ? (38)
Mlp =V gx dx + % %% - % g% gx? dx
-1 -1 J

considering that, according to equation (5),

and thet the sign of the differentlation can be taken outside the
integrals because the limits are independent of the time. Equa-
tions (38), which are the equations used by Glauert, serve for the
computation of the resulting aerodynamic ections but do not lend
themselves directly to the determination of the pressure distribution,
g computation that is necessary if it is desired to know the actions
on part of the wing (flap). The equations obtained by Wagner are
also subjJect to the same limitation. :

With the values of g expressed with the aid of the instantansous
characteristics of the rigid motion of the wing on the basis of the
circulation existing in the wake, Glauert determined the 1lift and the
moment with the aid of equations (38) and arrived at expressions
agreeing with those of Wagner. For harmonic motion, in which the
circuletion is distributed in the wake according to the sinusoidal
law, the solution of the problem reduces to the determination of
certain integrals that Glauert obtained by approximate procedures
that 1limit the results to values not much higher than the reduced
frequency. ' ‘

On the basis of the work of Birnbaum, Kussnsr (reference 8) agein
took up the problem of the oscillating wing, assuming for the bound
circulation the functions that are used for steady motion (refer-
ence 11, p. 184). The corresponding w, expressed as a function of x,
consists of a polynomial and of a trigonometric function multiplied
by a factor depending on {, which Kussner computed by means of a
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power series. After rather laborious computations, Klissner obtained
the pressure distribution on the wing corresponding to the motion of
translational or rotational oscillation of the wing and also, approx-
imately to the motion of the flap, for which he derived the coeffi-
cients of the aerodynamic actions for the field of variation of 3,
which is of interest for the phenomenon of wing vibration. :

Connected with the investigations of Wagner and Glauert ie the
theory developzd by Theodorsen (reference 4), in which there are
separately determined by use of the methods of conformal transfor-
mation ‘the potential function on the wing for simple fundamental
motions of the wing with flap. From the potential function, Thsodorsen
devermined the pressures with the aid of the Bernoulli's equation
generalized for nonsteady motion (reference 11, p. 38):

vZ . X _ .
R Al - ()

(wvhere @ 1is the potential function).

In the computation of the difference in the pressure between the
lower and upper surfaces of the wing, it is necessary to consider,
‘according to equation (39), the quantity derived from the variation
with time of the difference in potential existing between the two sur-
faces of the wing. This difference is measured from the circulation
of the velocity, which is determined by following e path (fig. 3) that
Joins the two points situated on the opposite surfaces and passes,
always in the proximity of the wing, through the forward edge of the

x
wing, thus obtaining the quentity \I‘l g dx; it 1s thus seen that

the second term in the second member of equation (2) represents the
corresponding term in 09/dt in equation (39).

Theodorsen's treatment of the problem represents a marked advance
with respect to the preceding work because it determines the distri-
bution of the pressures on the wing and hence, in contrast to the work
of Glauert and Wagner, permits the computation of all the coefficients
of the aerodynamic actions for the wing with a flap. Also, because
the integrals with which the effect of the vortical system of the wake
1s computed are solved by means of Hankel functions, all restrictions
on the value of the reduced frequency are thus eliminated by use of
the existing tabulations.. '

.
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Independently of Theodorsen, and elmost eimultaneously, Cicels
arrived at the solution of the problem of oscilletory motion of a
deformeble wing with any law by the same method followed by Birnbaum
and Kussner. In reference 9, it is proven that a class of functions
exists, depending on the reduced frequency, that represents the dis-
tribution of the bound vortices, which correspond to the velocity w
distributed over the wing by a particularly simple law. The first
of these functions, corresponding to constant w on the chord, con-
tains the Hankel functions of the reduced frequency; the others are
essentially represented by the 7y, of equation (14) and give rise to

the values of wp in equation (12). In this manner, relations were
obtained by means of which the coefficients of the Fourier series of
the bound circulation on the wing can be computed in closed form es

a function of the coefficients of the series for w. The coefficients
of the aerodynsmic actions for the wing with flap were thus computed.

- In a succeeding report (reference 2), it was also shown how the pres-

sures depending on the second power of the reduced frequency (inertia
pressures) and those proportional to the first power (pressures pl)

could be computed in closed form without developing them into Fourier
geries. . . .

At the same time, Kussner arrived at the solution of reference 9
by a procedure described in reference 21, some results of which were
anticlpated in reference 22. The general case of nonsteady motion
was also treated in reference 21, where the discontinuous motion was
studied on the basis of the solution for the harmonic motion with the
uge of the Fourier integral. The case of & stationary gust was studied
and tests were conducted (reference 23) confirming the result obtained
that the focal moment remains zero during passage through the gust.
The solution of Kissner was used by Dietze (reference 24) to compute
the resultant of the actions on the flap (in the preceding papers
only the hinge moments were computed); it was also used by Krall
(reference 16) to elaborate, with the aid of the National Institute
for Applied Computations, the tables of the aerodynamic coefficients
for the oscillating wing, and was used by Dietze agnin (reference 25)
for the computation of the coefficients for the wing with a flap and
a tab hinged to the flap.

Kassner and Fingado (reference 15) also succeeded in computing
the actions corregponding to the oscilletory rigid motion of the wing,
making use of the Wagner's expressions by which, in the case of har-
monic motion, the ‘evaluation of the integrals relative to the effects
of the vortices in the wake was investigated with the aid of Hankel
functions by Borbély (reference 26). With the aid of the Wagner's
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expressions, Ellenberger computed the resultant actions on the wing for
a flap rotating according to a general function of time (reference 27).

In a summarizing note, Jaeckel (reference 28) establisched a coor-
‘dination between the procedures of Glauert, of lamb, and of Birnbaum-
Kussner for the solution of unsteady motion of wings and considered
also the case of the wing with & variable chord. Jaeckel also pub-
lished a systematic derivation (reference 29) of the results that were
given with rather synthetic Jjustification by Kussner. A clear review
of the thecries on the wing in unsteady motion was given by Lyon
(reference 30).

The results of the preceding studies, with some further develop-
ment, are treated by von Karmdn and Sears (reference 7); a derivation _
procedure is developed that presents in an intuitive form the mathemati-
cal fundamentals of the investigation. The computation is restricted to
the determination of the 1ift and the aerodynamic moment, which are
computed with the aid of the expressions, respectively,

P/

[

d el A

EZ 't x3 | (40)
14 o -

Mp =5 a3 I I, X%, | (40")

The second member of the first expression represents the rate of
variation of the moment of circulation of the system measured with
respect to a fixed point; in an intervel of time dt, this moment
should vary as the bound vortices are displaced by the amount V dt,
while the position of the free vortices and therefore the moment with
respect to the fixed axis have not changed. The total variation will
therefore be given by the product of the total bound circulation and
V d&t and therefore, when multiplied by the density and divided by dt,
will give the 1lift. By analogous reasoning, the second of equa-
tions (40) is verified. Thus, the square of the distance from the
fixed point varies by the amount 2VX dt for the bound vortices while
it remains constant for the free vortices. Hence, the variations of
the second member of equation (40") will be represented by the moment
of the bound circulation or the aerodynamic moment except for the
factor p.

From these relations, von Karmdn and Sears derived expressions for
the 1ift and the aerodynamic moment, which present a better generali-
zation than those of Glauwert inasmuch as they can also be applied to
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the deformable profile; but the relations still do not permit compu-
tations on parts of the wing. The authors divided the total circula-
tion into 2 part that would be obtained in the absence of the vortex
wake (so-called quasi-stationary system) and into the induction of the
vortices of the wake. The case of the general motion of the profile
end of a stationary gust is also considered.

Garrick (references 31 and 32) dbrought out the relation (Iaplace
transform) that exists between the Wagner function, which gives the
circulation by the elementary discontinuity, and the function that
holds for the harmonic motion and proposed the use of approximate
expressions to represent the function of Wagner, which would be use-
ful in the anslytic solution of verious problems of unsteady motion.

Possio, making use of the acceleration potential, considered the
problem of the discontinuous motion of a wing (reference 10) and the
case of the stationary gust.

In a recent publication (reference 17), Kissner and Schwarz indi-
cete the relations with which the pressures on the profile. can be
computed without meking useé of Fourier series but using integrations.
These equations were applied to the determination of the aerodynamic
coefficients for the wing with {lap and hinged tab on the flap, when
the caee is considered in which the hinges are set back relative to
the leading edge of the moving parts. The same relation for the com-
putation of the pressures on the oscillating wing was derived in a
different manner in & report by Schwarz (reference 5), in which a
clear and rigorous derivation of the known solution of the aerodynamic
problem of the oscillating wing is developed.

In reference 13, Kissner gives the general solution of unsteady
motion in the two-dimensional case and the functions of Wagner and
those relative to the aerodynamic actions produced by a gust are com-
puted with greater precision.

The general case of unsteady motion has also been treated in a
report by SGhngen (reference 6). The solution is put in substantially
the form indicated in Section 13.
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PART II. - WING OF FINITE ASPECT RATIO

The relations that connect the velocities induced by the vor-
ticity of the inductor system of a wing of finite aspect ratio are
derived herein and a form for these expressions is sought that lends
- 1tself to a future refinement of the investigation that, up to the
present, has been conducted with approximate procedures. An evalus-
tion 1s then given of the various approximations that have been used
in the theory of the finite wing in unsteady motion.

- The consideration is restricted to essentially rectilinear »
motion of the lifting surface; that is, it is assumed that the velo-
city of the points of the wing give small deviations relative to a
mean value YV, which maintains its direction unchanged with respect
to the motionless fluid at infinity. It is assumed that V 1s small
compared with the velocity of sound. The origin of the orthogonal
axes X, y, and 2z 1s located at the point at which the induced velo-
city is measured (point of induction). The x-axis is taken parallel
to V and in opposite direction; the y-axis is normal to the x-axls
and is contained in the fundamental plane that, during the motion, is
at a very smell distance from the points of the lifting wing, which
1s assumed to be of infinitesimal thickness and curvature; the z-axls
is perpendicular to the x- and y-axes and directed downwards. The
vortices having an axis parallel to the x-axis (longitudinal vortices)
and to the y-axis (trensverse vortices) are considered positive if
turned in the sense that carries the positive directions of x and y
on z. In the middle section of the wing is located the origin of the
{- and n-axes parsllel to x and Y- The semispan of the wing is
denoted by b, so that for the polnts -b <n1<b, ¢ and no denote

the coordinates of the point of induction, hence
x=8-8,
y=1-"1g

Let £n(n) be the equation of the leading edge; £p(n) the equa-
tion of the trailing edge; fp-bn = L the chord;  the pulsation;
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w the imaginary factor i1Q/V; & the reduced frequency {L/2V;

L the integral taken over the chord from the leading to the trailing
edge. The other symbols are defined in the text or in Part I.

18. Inductor elements in tridimensional case. - Let P (fig. 8)
be a polnt of the wing that moves relative to the fluid with vector
velocity ¥ of magnitude v and having any direction; the linear ele-
ment 41 through P normal to y supports the bound vorticity [';
that is, supports the aerodynamic action pv['dl. In the interval
dt that precedes the actual instant, the polnt P starting from P!
is displaced by the segment 40 = v dt. The total inductor is then
changed in that the bound vorticity element has come to occupy the
position 1-2 from the position 3-4, lsaving behind it free vortices
and simultaneously creating the two longlitudinsl elements 2-3 and 1-4
of equal circulation I'. There is thus added to the preexisting
inductor system a closed vortex element 1-2-3-4; on the side 3-4, which
at the instant t there exists the vorticity element of intensity
-dT' liberated from the bound vortex, it may be assumed that there
simultaneously exist the vorticity I'- gr—s d0, which existed at the
time t-dt and the element of intensity [' with oppositely directed
sign constituting the fouwrth side of the circult 1-2-3-4.

With the aid of the formula of Blot, it i1s found by simple com-
putetion that the closed vortex element induces, at a point 0 at
‘distance r from P, a velocity that, except for infinitesimals of
the higher order, may be written as8

a% = - I' a1 do/amrd

Whatever happened in the interval dt occurred in a1l the pre-
ceding time starting from the instent at which a force on the lifting
element has arisen; that 1s, since an element of the bound vorticity
was created. In the problems that ordinarily present themselves, it
is assumed that v always has the same direction parallel to the
x-axls, or more precisely, the devistions with respect to this direc-
tion are considered sufficiently small. Iet do and dl therefore

8’I’he ‘s8ymbol i 1s used to indlcate a quantlity that, divided by

the product Al AC, has a finite limit when these elements approach zero,
With the assumed signs, w 1s directed upwerd and is therefore
negative.
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be parallel t¢ x and Yy, respectively. The symbol o denotes the
distance measured from the point P of coordinates x and Yy,
parallel to x, assuming that the circulation [' on the element of
the lifting surface considered is expressed as a functlon of O.
Summing the effects of the closed vortex elements created in the
preceding time, the velocity at O 1is obtained:

S
dw = - 7

’ o
['do dy lao '
= - 41
ff S| e -
0

The velocity induced by the bound-vortex element and by the
system generated by it for r # O is identical to that which is
obtained on the basls of the concept of the acceleration poten-
tial and which is defined as the field of the pressure dipoles
(reference 33).

The particular case of steady motion (I' constant) is con-
gidered. Inasmuch as

*® X + Ol

(42)

do = !; 1 -
Ny N 2, <2
o (x+0)¢ + § (x+ol) +y
a quantity that is denoted by ff§+01,y), then from equation (41),
- 4x dw = I'2(x,y) &y (43)

where dw denotes the velocity induced 5y the elementary horseshos
vortex of frontal side dy and circulation I'. The velocity (fig. 9b)

induced by the semivortex 2« is % ( - X and therefore,
y 2 1 52

summing the velocity corresponding to the other semivortex, which
has the opposite sign to the first, there is obtained, except for
infinitesimals of higher order, the quantity

v 330-9] e[ 502
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Adding to this quantity the velocity corresponding to the
frontal segment yields the value of dw given in equation (43).
The equivalence, which in this case holds between the inductor
system of the pressure dipole and the elementery horseshoe vortex,
can also be seen by considering that the sides parallel to y of
the continuous vortex circuits (indicated by the small circles in
fig. 9(a)) are canceled if ] has the same value for all. This
inductor element is called a bivortex and e section of it closed
in front and behind is called a segment of a bivortex.

Meking use of equation (42) and integrating by parts yields,
from equation (41), '

(-]

~4n dv =TI f(x,y) dy + dyf gp—a f(x;i-o,y) d o (44)
0

The operation that leads from equation (41) to equation (44)
transforms the inductor system constituted by the closed circuits
into a system of bivortices: a generating bivortex originating
on the wing, denoted as a bound bivortex, and a row of free vortices.
In a distance 40 of the wake of the bound bivortex, free bivortices
originate the circulation of which is represented by the variation
thet the intensity of the bound bivortex has undergone in passing

ar

through the distance doO; that is, i do.

For harmonic moticn, e

Pufreiﬂt’

where I 1is constant and Q is the frequency of the motion. In
this case, V 1is always assumed constant. The circulation of
element 12 at the time in which the point P of the wing was set
back with respect to the actual position by the amount g 1is repre-
sented by ,

I"(o‘) = Te-1{0fV

that is, with respect to the actual circulation I, a lagging phase
shift represented by X% /V = ao. Making use.of this result and
denoting by @I'dy the velocity induced by the bound bivortex and
by the system of the wake in the case of harmonic motion yield
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- 4 = e do 5 (45)
N(x+0)2 + y@
0 o
By setting

X =Qx/v F=Qy/v o = Qofv
equation (45) can be written in the form
4nf = WP O (46)

vhere ¢ 1s the function of two variables ¥ and Y defined by the

relation
_ ® -13 4 '
¢ (5,7) = o - (46e.)
L [:(§+'5)2 + yzj 3/2

For X = O, this function has been computed by Miller (refer-
ence 34, p. 36). For X # 0,

T -iun
_ 1 _
0 (5F) =e 1 9(0,7) - e _du

o (u2+§2)372

With the aid of this relation, which 1s easily obtained from
equation (46a), the computation is reduced to the tabulated function
end to an integration between finite 1limits that cen be carried out
by graphical or numerical methods. The computation of ¢ was carried
out for ¥ = 2. When

=Pt + 10"

there are plotted as abscissas and ordinates in figure 10 the real
and imaginary perts ¢' and ®" of the function and the curve with
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’

the values of X drawn. This curve serves for the computation of

the velocity induced by the pressure dipole at the points of a sec-

tion at distance y = 2V/Q0 from the inductor elements. The point
= 0 is at the origin of the dipole. The polnts that are found

-upstream correspond to the positive values of X. For this segment,

the values of %# decrease continuously but all have slightly dif-
ferent pheses. Proceeding toward the downstream region, the points
shifted back with respect to the front of the bivortex generator

(X < 0) encomnter velocities that vary little in magnitude but rela-
tively more in phase. It is evident that at a great distance from
the origin the velocities vary on the parallel considered by e sinu-
soidal law and therefore the representative point of figure 10 for
negative values of x increasing in absolute value will approach a
certain limiting circle with center at the origin.

19. Correction of divergent expressions. - The expressions of
the preceding section are sufficiently well adopted for the computa-
tion of the velocities corresponding to the inductor system of a wing.
Special methods ere required, however, for the points of infinity that
are presented by the functions under the integral sign present.

The case of steady motion is first considered. A bound vortex
filament AB (fig. 11(a)) of circulation [' varying from point to
point is considered and with this filement is associated the system
of longitudinal vortices that is shed from the points of AB according
to the condition of Helmholtz. The velocity that these elements
induced at a point O, which is outside the vortex wake of the fila-
ment AB, can be computed by means of the relation

A
- 4xw n\[‘ I f(x,y) ay (47)
B .

where x and y are the coordinates of a point of the filament AB

. at which [' is the circulation. This expression reduces the inductor

elements to a system of bivortices that originate on the filament AB
(scheme of fig. 11(b) for A—>0). The demonstration of this equa-
tion is given in reference 35. An intultive Justification is obtained
from figure 11 (b). The segments of the dotted vortices in the limit
reproduce the effect of the generator filament AB, whereas the other
longitudinal elements conetitute the system of the marginal vortices;
each peir of contigous elements function as a single inductor ele-
ment of circulation equal to the difference of the circulations of

the two elements that compose it.
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This expression is applied to an indefinite vortex of unit cir-
culation at a distance Xg from the point of induction. If X, is

positive, f alweys remains finite. In fact,

lim_}_l-_—_xi———-gl

y—>0 y2 /\/xzo + 32 2x%g

If x5 1is negative, f increases indefinitely for y—>0.

Hence, in a singuler integreal, it 1s necessary in computing eque-

tion (47) to exclude from the integration the smell segment from
y=-08 to y =+d and ther make 5 approach zero. The expression
that is thus obtained, however, hes no limit, as is intuitively evi-
dent from an examination of figure 12. The bivortices (fig. 11(=a)),
into which equation (47) trensforms the inductor system when the ele-
ments contained in etrip 25 (which includes the point O) are
excluded, are equivalent to two angular vortices (fig. 12(d)) (because
the semivortices Joined by the small circles are canceled) and these
elements, on approaching O, induce & velocity that increases without
‘1imit. For this reason, the integral equation (47) diverges if the
abscissa x; from the point at which the filament AB cuts the x-axis

is negative, as in the simplified case of figure 12; in the computa-
tion of the principal value of the singular integreal, an expression
ig obtained that increases indefinitely and that represents the velo-
city indueced by the two semivortices, which are indefinitely removed
"from the point 0. (See fig. 12.)

In order to eliminste the previously discussed divergence, the
following artifice may be applied: There are added to the elements
of the fileament AB those of the indefinite vortex I (fig. 1ll)
passing through the point Q@ at which the x-axls through the point O
intersects the filement AB and having the circulation -I'g, where
I'yp 1is the value of [' at Q. The system thus obtained gives a velo-

city et O that is denoted by Dw and, according to equation (47),
is represented by

4% Dw = fmtro f(xo,&) - I'e(x,3)] ay | (48)

The first term of this integral represents the effects of the
bivortices having their origin on vortex I; the second term refers
to the bivortices having origins on filament AB (hence the integra-
tion is extended from y of the point A +to that of B). The two
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terms are divergent when taken separately, but give a correct expres-
sion when added. The intuitive reasoning for this lies in the fact
that the two semivortices that, according to the scheme of fig-

ure 12, include the point O and arise from the vortex I find
compensating terms in the elements arising from the filament AB.

The veloclty induced by'the vortex I is then added to Dw.

In the case of a system X of 1nducfor elements analogous to

the filament AB with corresponding marginal vortices, the following
procedure mey be used:

1) The trensverse vortices cut out from the section by the
induced points are prolonged indefinitely, thus obtaining a system
L, the induced velocity of which w' is computed by the formulas

of the two-dimensional motion.

II) The quentity Dw, which constitutes the velocity induced
by the system Z2 = L - Z] obtained by superposing on the inductor

system T the system I, with reversed sign, is computed with the
ald of egquation (47) and added to w'.

The advantage of the preceding procedure lies in the fact that
both w' and Dw have a homogeneous inductor system (indefinite
vortices for IZj, bivortices for ZI,) and therefore free or bound

longitudinal and transverse vortices need not be separately considered.
The advantage is reflected in the simplicity of the formulation of w
and in the rapidity with which the results of the existing theories
for the approximate solution of the problem under consideration are
derived from this scheme.

The same procedure can be applied if the motion is unsteady.
The bound-vortex system impresses on the fluid an lmprint.represented
by a similar vortex configuration corresponding to the variation of
the intensity of the generating system. These vortex systems carried
by the stream may be treated as shown for the bound system. The
plane system 21 including the free vortices can be analyzed by the

formulas of part I. The system X2 is made up of bound vortices

with the corresponding wake of the row of free elements (that is,
pressure dipoles) and can therefore be analyzed with the aid of
equation (48).

20, Vortex system of wing. - The velocities induced by the vortex
system of a wing can thus be computed by adding to w', induced by
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the plane system that would obtain if the transverse vortices cut
out from the section through the point of induction were indefinitely
extended, the velocities Dw that, as & function of the bound vor-
tices, are written as

Dvruf & ax ay - 7,® dx dy (49)
Js Sq

If harmonic motion is considered, the functions w can be

derived from equations (45) and (46).9 If the intensity of the gen-
erator bivortex varies according to a different lew, it is necessary
to make use of equation (41), for which the function ['(0) must

be known. From this relation the function ® = dw/dy I'(0) 1is
obtained, which, in general, varies with time.

The first of the two integrals of equation (49) 1s extended to
the surface S of the wing, 7 being the bound vorticity, the
second integral ls extended to the strip S; included between the

lines 17 and tl parallel to y Passing through the points at

which the chord through the point O cuts the leading edge 1 and
trailing edge +t; the vorticity 7o ©on thls strip is that which is

on the wing at the section through O. On each element of the sur-
faces S and S; there originates a bound bivortex of circulation )

y dx dy counected with the pressure, which acts on the element by
the relation

P = PVy

In the computation of Dw, as in the computation of w', the
total circulation g along y can be referred to instesd of 7
the two quantities being connected by the relations of part I. When
the effects of the elements of a section y = constant are consldered,
a system of bivortices will be obtained the origins of which are dis-
tributed either on the chord or in the wake, the intensity of the dis-
tribution being represented by g. The expressions are restricted to
harmonic motion and are written as

ns the reduced frequency  increases, the modulus of o

decreases and therefore also Dw, which represent the correction
velocities due to the finite span.
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g =) o

K-j g dx = K(n) 1%
L

In the wake at a distance O from the rear edge in a segment do,
bivortices originate that have the circulation

d K(9)

30 ao

equal to the change that the total circulation K has undergone in
the interval in which the rear edge has passed through the distance dO
et the time %-0/V in which KX(0) was displaced with respect to the
actual value by Qo /v: :

K(o) = K e~ @9

The velocity induced by the elements of the section considered
is therefore proportional to '

w m
- ‘
j gf dx +J‘ a(ke™®) p go= | gf dx -wK | e~%Ifrdo - (50)
L o 49 L 0 | -

The symbol xP denotes the abscissa of the rear edge of the
chord (that is, xp = §p - £(), therefore

£1(x,y) = £(x,5) - £(xp,¥)

It ie easily found by using equations (44), that equation (46)
can be written in the form

(-]
-wld = f(x,y) - wf f£(x+0,y) el a0
0
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Hence, equation (50) can be transformed to
j g ax - WO (%p,7) (50°)
L

The expression for the velocities Dw at the point Eo, o 1is
therefore obtained:

b
- 4% Dw =j dnj‘ g(t,m) £ (x,y) d € -
-b L(n)

f“an f a(tono) £ (x,y) at -
- L(ng)

'wsz¢(%;i) - () +w2f°°®(fo,i) ‘K dn (51)
-b . - '

whereJ;‘(n) indicates the integral taken from ta(n) and £5(n),
end vith x, the quantity [gp(qo) - gé] Qp.

The first of the integrals in the second member of equation (51)
represents the induction of & system of segments of bivortices having
thelr origin on the points of the wing and ending on the rear edge of
the chord, and which are of intensity equal to the total vorticity at
the point of origin. The second integral represents the effects of
the analogous inductor system existing in the strip 8- The third

integral expresses the induction of the wake system constituted by a
gystem of pressure dipoles with origin on the trailing edge of the
wing. The fourth integral refers to the elements of the wake having
their origin on the line t '

It o ‘

G(€,n) =f€ g(gt,n) age (52)
ta(n) '
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the first two terms in the second member of equation (51), which
corresponds to the velocity denoted by ws, can be transformed by

integretion by parts so as to assume the form

b
- AfWo = QJ‘ G(En) dt _J‘wgﬂ G(E,mg) dn
2 e rd 2 3
y y
-b L(n) -

L(ﬂo)

where

r =nfx2+y2

It is then observed that, in regard to the effects of the ele-
ments of the wake, the difficulties arising from the divergence of
equation (47) cennot appear because all the points of the wing are
loceted upstream of the line from which the system of the wake
originates. Hence, for these elements the decomposition into the
systems Zj; end Z2 can be avoided and the total w = w' + Dw can
be directly computed. The velocity denoted by w3z is thus obtained
and is expressed by

2 b o 2 K(“o)
4y = w b®(xp,y) * K(n) an - m

If w) denotes the velocities induced by the plane system that

is obtained by indefinitely prolonging the total vorticities cut by
the section containing the point O; that is, if

ey = f gtk o) 4
L(no) x

the resultant velocities are expressed by the sum w = LANRAA PR P

In general, w; must represent the preponderant part of w, which

facilitates development of the methods of iteration for the computa-
tion of the function g for an assigned w. The velocities Wo,

which represent the part whose computation presents the greatest
analytical complexities, are independent of the reduced frequency and
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are therefore determined only once for any frequency of oscillation.
The values of w3z, which depend on the frequency of the motion, are

expressed by simple integrals and are, moreover, zero for all the
distributions of the circulation (equation (11)) for which the
integral X 1is zero.

2l. Approximste theories. - A first approximate treatment of
the problem of unsteady motion of the finite wing was developed by
Cicala (reference 36). The principle of approximetion there assumed
finds simple formulation if reference is mmde to the expressions of
the preceding section. Although use is made of the exact solution
regarding w', in the computation of Dw the segments of the bivor-
tices of Zp, to which the first two terms of equation (51) correspond,

are neglected and, moreover, it is assumed that on every chord the
velocity induced by the system of the wake is constant and equal to
that which would obtain-if the system started at the point of induc-
tion. Hence, referring to equation (51), in addition to neglecting
the first two terms of the second member, in the computation of the
other two by ¢, e function of the abscissa and of the ordinate of
the point of t with respect to 0, the value corresponding to

x = 0 1is substituted. As a consequence of the first approximation,
Dw = 0 i1f K = 0. Hence, if g is represented by a linear combi-
nation of gn of equation (11), the corresponding velocities are the
wp of equation (12) and the pressures are obtained from the ’n
defined by equation (14). Reciprocally, if the vertical velocities
on the various chords can be represented by a combination of Vn»
the corresponding circulations and pressures can be cbmputed on the
various chords, section by section, as though the motion were two
dimensional. This fundemental simplificetion permits reducing the
tridimensionael problem to a single case; for example, that of ver-
tical velocities constant on the different chords: any distribution
of w that is developed in the series of equation (16) (in this
case, Ap 1s a function of the coordinate measured along the

span) requires particular examination only for the circulation
corresponding to the % defined by equation (17) (this simplifica-
tion is also,in general, variable from one section to the next).

The bound circulation corresponding to the velocity
W = ¥ = constant over the entire chord i1s obtained on the basis of
equation (19) in which, if harmonic motion is considered, according
to equation (22) and the results of Section 15, the following rela-
tion must be substituted:

C = W(1-N)
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From 7y, € is then computed with the aid of equation (36)
and then the total circulation ylelds

| .xzj‘ (y+€) dx
L

, When the computations are made, it is found that between W _
and K or between the total emplitudes of the quantities W eand K
there exists the relation

T @@, - 1r(2))) 19§ - A

vhere H is the Henkel function of parameter'a .

The velocity W is that induced by the system Z3; to this
quantity is added the velocity due to the system 22 » which, for the

essumed simplifications, is also constent on every chord. With the

computations developed in reference 35, equation (51) is transformed
into the relation - '

b
-4x DV = =N dy (53)
-b

where

1 | coordinate measured from middle section of wing parallel
to y (vhich is measured from point O0)

N=2-uF

y

F function of variable y ={Qy/V defined by
. 3

-tuf 2,1 f1 1
F = e (u-i-y. ,/2+_2 du‘

u J
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This function is computed by this relation for y > O. For
y< 0, F(y) = ~F(~-y). The function F is tabulated in reference 37;
in a recent report by Kissner (reference 33), the function N is
tabulated.

Adding the velocities induced by the systems 2:;|_ end Z2 yields

— b
_,(2 . = _
— w(H( )0)' in(2))) o0 K 1 4K
W= 2L "Wm| T

dn (5¢)

This equation, on the basis of known values of W, defines the
distribution of the total circulations along the span. For ®@ = O,
this reduces to the integrodifferential equation of Prandtl. Inasmuch
as, for the simplificetions assumed, the distribution of 7y over the
chords is similar to that of the two-dimensional motion, on the basis
of the values of the total circuletions, the problem is completely
golved. Given the series of equation (16) on w, the circulations
and the pressures corresponding to the part that 1s developable in
the series of wn 1s computed as if the motion were two-dimensionsal,
vhereas for the remminder W, the circulations are distributed on the
chord as if the motlon were two-dimensional and along the span of the
basis of the solution of equation (54).

In a succeeding note (reference 37), the procedure was applied
to the determination of the aerodynamic coefficients for the oscil-
lnting wing.

Independently of reference 36, Borbély proposed a type of approxi-
mation for the computation of w for the finite wing (reference 38).
Reference 35 shows that the expressions that.Borbély eleborated for
the computation of Dw in the particular case of the ellipticel
distribution of K along the span agree with the results that, for
this case, were derived on the basis of equation (53).

Possio, concerned with the problem of the stablility of small
oscillations of the wing considered as a rigid body, also esnslyzed
the problem of the oscillating wing of finite span. Maeking use of
the concept of acceleration potential, he derivedAequations (9) and
(10), which, however, as has been shown in Section 8, are also Justi-
fiable on the basis of the concepts of vortices. The solution is
expressed by Possio in the form of a power series of the parameter
Qb/V. The value limited by this parameter end the smallness of the
ratio L/b (large aspect ratios) in the series containing the powers
of (}L/ZV Justify, for the computation of the w' corresponding to
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the system 2, the introduction of simplifications that were not

adopted in references 36 and 37. The assumed simplificetion in the
computation of Dw, when it is reduced to the scheme represented by
equation (49), cen be thus defined: The function ¥ 1s computed

by means of eguation (46), substituting for ¢ +the value that,
according to equation (46a), corresponds to X = O and that is there-
fore constant for the slements of each chord. Reference 39 contains
the principles of the procedure. Some of the results are described
in reference 40 and in greater detail in reference 41. More general
cases Of the mbtion are considered in references 42 to 44. Refer-
énce 44 analyses the law of variation of the 1ift on a rigid wing of
ellipticel plen form during the start of the motion (the seme problem
that was studied by Wagner in the two-dimensionsl field). In the
computation of the velocities induced by the transverse vortices,
there was assumed (in the simplification of equation (14) of refer-
ence 44) an epproximation different from that used in reference 43;
the approximation gives for the case considered a greater precision
of the results.

Sears (reference 45) also studied the problem of the oscillating
wing of rectengular plan form with epproximate procedures. Reducing
the computetions to the scheme of the preceding section, the simpli--
fication assumed conslsts of the suppression of w2, while a rigorous

computation is proposed for wsz, and meking use of the results that

are obteined for the infinite wing with sinusoidal distribution of the
circulations along the spen. The computation, which is intended to
eliminate the errors inherent in the approximate theory of refer-
ences 36 and 37 criticized by Sears, does not give results more accu-
rate then thet theory. As an example, the effects of the inductor
elements of a chord L, for the case w =1 0, are considered with
the point of induction at & distance y = L. Apart from factors that
need not be considered in & comparison, the induction can be expressed
by the equation (50'), which can be written as

1
= | & dx
5[

where ¥ is the nondimensional factor

loln the cases of wing vibrations encountered in practice, the
reduced frequency turns about this value. -
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Q .
9 (xy) = 5P [f'(x,y) - w? O(n—vxz: —%):I =0y + 10"

x being the abscissa of the point, with the vorticity g and xp
the abscissa of the rear end of the chord measured with respect to
the position of the point of induction. The quantity ¢ was com-
puted for the elements of the circulation g at the leading edge,
at the middle, and at the rear edge of the chord considered, and in
the three cases, on modification of the position of the induction
point, there were obtained (see fig. 13, in which are drawn as the
abscissas and ordinates the real and imaginary parts of @3,

respectively) the curves I, II, and III in the figure with the values
of X = xp/L. If the approximetion thet was made in reference 36

is assumed, in the three cases, for any position of the induction
point, the end of the representative vector is the point indicated

by the double circle; with the aid of the approximation of Sears

for 211 three cases, the representative points are those of curve III.
The serror with either approximation is large. If the greater com-
plexity of the computations required by the solution of Sears is
consldered, the advantage of his approximstion is questionabdle.

In a recent publication (reference 33), Kiissner, making use
of the .acceleration potential, developed a new approximate theory
of the oscillating wing of finite span. The approximstion assumed
is easlly related to the expressions of the preceding section;
referring to equation (49), the value of ¥ given by equation (45),
setting u = x + 0, can be written in the form

@©
-
- 4xf = “X o __du (45¢)

. /\/(uz + y2)3 ’

Kusener's solution can be obtained by setting the lowsr 1limit
of this integral equal to zero. The Dw, on the basis of this
assumption, are proportional to e-¥E (where £ is the coordinate
measwred parallel to x from a fixed origin of the wing in an arbi-
trary position); that is, the values of Dw are distributed by the
sinusoidal law over each chord. If the distribution of the vorticity
is considered, which on the basis of the solution of the two-dimensional
motion corresponds to the velocities distributed according to this
lew, and if for this case the values of w of the system Z1 are -
summed, velocities are obtained thet can be represented by the
expression
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I L BT | (55)

where W 1is a function of M.

|

| - By obtaining, on the basis of the solution of the two-dimensional
problem, -the velocities induced by the system 21 and adding the

| values of Dw computed with the aid of equation (49), simplified
according to the preceding assumption with respect to the limit of

i the integral in equation (45) and transformed by operations analogous
| to those that led to equation (54) (see reference 35), the final equa-
i tion is obtained

o(m(2), - 1x(2) )K' |
W= (o 1 — N dn (56)
2L(Jp-1J1)
in which H and J are cylinder functions of the parameter T and

K ==j yewlat
L

This quantity has the same modulus as the total circulation K,
but has a certain phase displacement with respect to 1it.

By solving the integrodifferential equation (56), which has the
same kernel as equation (54), the law of distribution of the vorticlity
on the wing corresponding to the values of w given by equation (55)
can be obteined. If it is assumed that £ -Vt is the abscissa
negsured Iin a system of reference fixed with respect to the fluid, it
is concluded that equation (55) represents a distribution of velocity
heving local velues constant in time, as would be the case of dis-

. turbed air that presents, along the trajectory of the wing, vertical
currents of constant velocities in time (stationary gust). The solu-
tion indicated refers to the case of the stationsry gust of sinusoidal
form. The more general case of motion can be studied with the aid of
the preceding solution and the solution of the two-dimensional problem
when it is considered that, according to the approximation of Kissner
(as with the procedure of references 36 and 37), the values of Dw
are zero for the distribution of the g that glves riss to zero
values of the integrsl X and therefore of K', which hes the same
modulus as K. Hence, in this case, to the values of w represented
by & combination of wn expressed by equation (12) there correspond

1
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the values of g expressed by equation (11), as if the motion were
two-dimensional. On this basis, reference 35 indicates the extension
to general cases of the solution based on equation (56). Kilssner
mekes the generalization by a different principle, which leads,

. however, to expressions that, in the limiting case of the infinite
wing, give the exact solution already known.

The approximate theory of Kilsener therefore cannot be derived on -
the basis of the vortices concept developed in Section 18, as is true
for the solution proposed by Cicala, which is criticized in the pre-
ceding note by Kussner as presenting arbltrary assumptions; the disa-
greement between equations (54) and (56) finds its Justification in
the different principle of approximetion rather than in a fault of the
derivation method based on the vortex concepts, which, according to
Kissner, would lead to erroneous results. The approximations thus far
essumed all lead to a somewhat inexact value of the induced velocities,
ag 1s shown in reference 35; the theorles are all, except that of
Sears, constructed so as to converge in the case of steady motion to
the theory of the vortex filament of Prandtl, whose approximation has
thus far been proven sufficient. On anslytically examining some local
values of the errors committed;l all are shown to be of little pre-
cision, from the simplest to that of Sears, which consists of the most
laborious application, or that of Kussner, which is based on the
concept of pressure dipoles. Only the fact that in a limiting cese

111f the solution is expressed in the form of a decreasing power
geries of the aspect ratio A, it is found that the error in the
existing theories starts from the term in logh /A°. In reference 35,
rather then gnalyzing the order of megnitude of the error, it is pre-
ferred to carry out the computation for concrete cases so as to be
able to compare the various approximestions.

The comparison lg particularly evident by making reference to the
concept of pressure dipoles. According to the principle followed in
reference 39, the dipoles of the system I 2 are transported parsllel
to the direction of the x-axis up to the induction point; according
to the principle adopted in reference 33, these dipoles are given the
same displacment and, in addition, the same phase displacment
Q x/V (x is the abscissa of the dipole with respect to the induc-
tion point); according to references 36 and 37, these elements are
given the same displacement and phase shift il(x-xp)/v. It is shown
in reference 35 that the three approximations alter somewhat the
value of the velocity produced by the pressure dipole. The affinity
of the three principles is evident.
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the approximations lead to a theory that has shown iteself satis-
factory in applications indicates that e& compensation of the errors
will, in & certain measure, be found in the values of the resultants
of the actions. A solution of greater rigor would, however, be
greatly desirable. .
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PART III. - DRAG AND PROPULSIVE FORCE1Z

The component parallel to the velocity V of the aerodynamic
action of the wing of infinite aspect ratio in nonsteady motion can
"be readily computed on the basis of the solution of the problem of
two~dimensional motion, e&s given in part I. Under the assumptions
nede, for any law of motion of the infinite wing, the theory per-
nits computing the drag or propulsive force. For the hypothesis of
a perfect fluid, the profile drag is not consldered, nor are the
variations of this drag due to the unsteady motion computable with
the aid of this esnalysis. These actions are therefore sdded to
those that are here computed.

For the wing of finite espect ratio, in the problem under
condideration, the uncertainties mentioned in part II are also
encountered. The analysis will therefore be limited to the results

obtained for the two-dimensional motion.l3 :

Drag and thrust in unsteady two-dimensional motion. - The
symbol Ry is the instantaneous value of the force that arises in

the direction of V on & segment of unit chord of the wing in a
uniform flow of velccity V. With the notation of the preceding
perts and in the same range of valldity of the theory there given,
Rj, considered positive if it has the sign of a resistence and neg-

ative if it corresponds to a propulsive force, can be computed with
the aid of the expression given by Birnbaum (reference 3).14

oz
Ry = pvJ; 5 7 ax - npall/4 (57)
where
2a =limg_ - 7 sin 3 (58)
12

The numbers of the figures, the equations, and the paragraphs
follow from the preceding part,

131he treatment of Schmeidler (reference 46) examines the aero-
dynamic action corresponding to assigned vorticity of the wing. The
method cannot, however, be generalized.

14The sign \J; indicates the integral taken over the chord of the

wing from the leading to the trailling edge.
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The aerodynsmlc ection on a segment dx of the chord is repre-
sented by the force pVy dx normal to the line of the axis end is
therefore inclined to the z-axis normal to V by the angle Jz/ox.
The integral in the second member of equation (57) therefore repre-
sents the action along x that is exerted on the points of the
chord. The negative term in the expression corresponds in every .
case to a propulsive force end erises from the suction that is
exerted at the leading edge by the surrounding fluld and produces
& lowering Iin pressure that becomes infinite for the wing of infini-
tesimal thickness. If 7y is expressed by meens of the customery
series of functions cot $/2, sin ¥, ..., sin nd, only the first
term can glve rise to a suction at the leading edge because tae
other terms represent circulations that vanish. The quantity a
defined by equation (58) gives the coefficient of the first term as
found when considering that for 4 —0, o

¢
lim sin. ¢ cot 5=2

-

The steady motion that 1s consldered corresponds to a chordwise
distribution of vorticity represented by the same 7 as for the
steady motion. Inasmuch as the suction at the leading edge depends
on the instantansous value of 7y, the value of 7y must be the
same for nonsteedy motion es for steady motion. In eddition, when
it is considered that for. steady motion the resultant force in the
. wing direction must be zero,

0w | (

where (0z/dx)o 1s the slope of the axis of the wing on which, under

the considerations of steady motion, the vorticity distribution 7
holds.

e

)o y dx - walL/4 (59)

If w

y denotes the velocity induced by these vortices, then

\T(ggg)o = w7
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From this relation and from equations (57) and (59),

oz
Ry = DL(V 5% - w-,) 7y dx . . (60)

which is a second form of equation (57) given by Jaeckel (refer-
ences 28 and 29) and is entirely equivelent to the equation given
in the development of the computetions.

Denoting by w; +the velocity induced by the free vortices and
taking accomnt of equation (1) yield

, 9z Oz
W=y +w =V 3% + 3%

Equation (60), on the basis of this relation, becomes

Ry =p Wiy dx - P 7 dx 61

This third form of equation (57) was used by Schmeidler (refer-
ence 46). It lends itself to interesting interpretations: If the
forces in the z-direction ere distributed with density pVy and
the corresponding velocities of the points of application are az/at,
the instantaneous power Ny absorbed by the motion of the points of

the profile in the direction normal to V i1s expressed by the
relation .

N =p L g%-y dz - (62)

It 1s noted that the values of z are assumed positive down-
ward, whereas the Pressures PVy s&are positive upward. Hence N;»

according to equation (62), is positive if work is done in overcoming
the aerodynamic action.
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When equation (62) is considered, it is observed that the
second term in the second member of equation (61) represents the pro-

pulsive force (or thrust)lS that would arise if the phenomenon occurred
without dissipation of energy; that is, without increase in the kinetic
energy of the fluld surrounding the wing. The first term represents
the drag Rg that must be overcome by this phenomenon, or in other
'words, by the creation of the vortex wake.

The computation of the instantaneous values R4 and Ny and,
successively, of the mean values Hm and KRp of the same magnitude,

in the case of harmonic motion, is immediately obtained on the basis
of the expressions given in part I. Poggl (reference 47), on the
basis of the investigations of Glauert (reference 20), computed the
propulsion and power corresponding to a rotary oscillation and, as a
limiting case, to the translatory oscillation of the wing. Kussner
(reference 21) determined these values for the wing in translational
and rotary oscillation of the wing or flap. The same computations
were made by Garrick (reference 48), who made use of equation (61)
and of the energy interpretation of the term

| 2 .
Ry = ZoIve [ 2 J 7| +9 (63a)
- 2 nw Hl(ét) + iHo e) .
- Nn = ’-zprvs ) . (63Db)

where

15this 1s the quantity called "Vortrieb" by Schmeidler; the
first term is called "Widerstand."
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2 —
g, (2) 57,

=X J32 -
Hl(27 + mo(z)

dz Z
nJ :J;(E + 21“"f) (1 - cos 9) ad

ndy 2_;‘7"_ LZd19+:rJ2

ngzg_iﬂ 7 cos & dd
L Ji

and 2z = Zemt is the ordinate of a point of the wing according to
the complex notation with & (C), |C[, and C the real part, the
modulus, and the conjugate complex, respectively, of the complex
quantity C, with' H the Hankel function of reduced frequency

w =Q1/2v.

The first addend that appears in the parentheses of the expression.
of Ry corresponds to the resistance Ry. If E denotes the ampli-

tude of the sinusold that represents the distribution of the free vor-
ticity in the wake, it is found that, according to equation (63), the
following relation holds:

Rg = PLEZ/16 w

Thié relation can slso be derived by considering that the work
done by the resistance Ry during the displacement 2aV/(Q corres-

ponding to an entire oscillation of the wing must be equal to the
increment that the kinetic energy of the fluid has received in the

same time, and therefore to the.kinetic energy of the fluid (considered
stationary at infinity) in a strip included between two parallels to
the z-axis at 2aV/() distance from each other and located in the wake
at a great distance downstream of the wing. '
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Applications to pa.rbicula.r cases of ogcillatory motion. In the
case of a nondeformable wing (a wing in motion of translation and
_rotation),

Z =2y - 29 cos 9

in which Zp represents the complex amplitude of the oscillation of
the middle point of the wing and Zy the amplitude of the incident

oscillation., Equation (63) yields, by simple computations,

‘ Ry = 2 ova[gz(J'z'.oK) < [J] 2] (64a)
Ny =3 va3[¢ (JZpK) - k |4 2] (64b)

where

ngo+1wzm+%_1wz,o

H1(2) 1
K = (1-10) + = 1w
Hl(Z) + iHG(Z) 2
(2) |?
h = !

. R )

-

31(2)
k=f
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. The quantities K, h, and k are functions of the reduced
frequency. The variation of h and k as functions of w are
shown in figure 14. In figure 15, the real part is plotted on the
abscissa of the gquantities K/h and K/k and the imaginary part
‘on the ordinate assuming the segment OA as unity and the positive .
sign of the imaginary axis in the downward direction. The polnts
on the curve give values of the reduced frequency. :

In the particular case of tramnslatory oscillation (Zp=0), from
equation (64), denoting by v =§)|Zm| the maximum velocity corres-
ponding to this oscillation,

-Bp = % pLvh (65a)

NfA

Np = & pLvekV , (65b)

The force that arises in this type of motion is a propulsive one.
The efficiency of the wing considered as a means of propulsion is
h/k, which 18 equal to 1 for w=0 and decreases continuously toward
0.5 as w 1Increases.

If a wing of velocity v; normal to the wing velocity V 1is

considered under conditions of steady motion, the lift P, the coeffi-
cient of which is equal to nvl/V, under the usual assumptions gives

a component in the difection V represented by
Pv,/V = :tva2
1 1l

for a segment of unit chord. This component is directed forward
whether v] 1is directed downward or upward. On varying vy harmo-

nically, if it werse valid to apply at each instant the expressions of
the steady motion, vi would be the mean value of the propulsive force
glven by equation (65a), in which h = 1. It is therefore concluded
that the exact analysis corrects this approximate consideration by
reducing the propulsive force by a factor depending on the reduced
frequency. This factor approaches 1 when the reduced frequency is
decreased and approaches 1/4 when w 18 decreased. The power absorbed
is reduced according to a factor that varies from 1 to 0.5 with an
increase in w.
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Tt 1is of interest to examine how, by combining a torsional motion
with translational and oscillatory motion, the propulsive force can be
increased. By simple computations, it 1s found, on the basis of equa-
tion (64a), that for a given amplitude 2p of oscillation of the rear

neutral point of the wing, for every reduced oscillation frequency a
certain value of the amplitude and of the phase of the torsional motion
exist for which the propulsive force is a maximum. If K' and K"
denote the real and imaginary parts of the quantity K/h, respectively,
the component f of the rotation in phase with the translatory motion
is given by ‘

‘Zp wKk" :
£ = Tm (66&.)

The component in quadrature ié expressed by

Zp 2K

The propulsive force under these conditions is given by

K'2 4+ K"2

I oLveh .
Ry = > pLv“h -ZTET:IT_ _ (67)

' With respect to the propulsive force of the purely translatory
oscillation expressed by equation (65a), the effect of the rotation
introduces the factor dependent on the reduced frequency
(K'24K"2) /4(K'-1). This quantity assumes decreasing values with
increases in the reduced frequency, tending asymptotically to the
value 1.125. For w = 0.5, this value is equal to 1.445; for
reduced frequencies not too small, the adding of the torsional motion
does not greatly modify the value of the meximm obtainable propulsive
force, the base value of which is always that of the purely flectional
motion. For sufficiently small reduced frequencies, there are con-
siderable increases. By neglecting the higher powers of the reduced
frequency, the expression for Ry can be assumed

Rm = % ZPVV
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On decreasing w, the torsional motion that must be combined with
the flectional motion to obtain the maximum propulsive force tends to
essume & phase displacement of 90° ahead with respect to the trans-
latory oscillation (that is, in the phase in which the translatory
velocity is & maximum upward, the wing is nearest its maximum negative
incidence angle).

The analysis of the variation of the propulsive force as a func-
tion of the flectional motion for a given amplitude of the torsional
motion was given in reference 49 by means of a graph that permits
computing directly from the propulsive force (or drag) and the power
absorbed (or emitted) in the oscillation. All the values of the
efficliency from 1 to O can be obtained by suitably varying the ampli-
tude and the phase of the flectional motion. The region of maximum
efficiencies is nearest the point J = 0, which corresponds to the
motion without drag and without absorbed pover, with zero vorticity
in the wake. Under these conditions, for & small w, the torsional
motion is displaced by about a 90° lag with respect to the flec-
tlional motion; that is, in the phase in which the translatory velo-

cityls upward 1s a maximum, the wing is nearest the maximum positive
incidence. This result, in relation to that of the analysis of the
maximum propulsive force previously indicated, leads to the conclu-
slon that the conditions of maximum efficiency are not compatible
with those of maximum efficiency of the wing considered as a propul-
slve means, which can be obtained with a certain loss in efficiency.-

On the basis of equation (63), it may also be determined whether,
by combining with the flectional motion a deformastion that alters the
curvature, any advantage in the value of the thrust can be obtained.

When

Z =2m+ Zp cos 24
then

J =225 + A

,Hl(z) + m0(27

Rp = | 2% (JZ2

-nl3|2(. £ oy

16More precisely, the velocity of the rear neutral point.
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In this case, results are obtained that are entirely analogous
to those of the motion of translation and rotation. When

222 = (f+1q) 2Zp

there are obtained for f and q the same expressions of squa-~
tion (66) in which K' and K" are substituted for the real and

imaginary parts of Hl(z)/h(H1(2)+iHO(z)). With this modification,
the factor of increase in the maximum thrust has the same exypres -
8ion as for the preceding case. This factor, which can be expressed
by 1/4(k-h), has the value for w—>% and the value 1.148 for

w= 0.,5. In this case also, for & not very small w, no great
Increases are obtalned in the thrust as compared with the purely
translatory motion. As in the preceding case s for a gilven frequency
of oscillation on increasing the wing velocity, then maximum thrust
for a glven translatory amplitude first increases rather slowly; .
only when sufficiently low values of the ratio QL/2V are obtained
does the maximm thrust tend to increase linearly with the velocity.
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PART IV. - EXPERIMENTAL INVESTIGATIONS

The experimental investigations that have thus far been conducted
on the aerodynamic actions on & wing in unsteady motion are not as
numerous as would be required by the complexity and importance of the
problem. It is from the measurement of the forces on the osclllating
wing that conclusive data are expected that would permit a reliable
computation of the critical velocities of the wings and tall swrfaces,
Various problems relative to the stresses of the wing structures
during flight in agitated air also require experimental clarification.
The experimental investigation should furnish the necessary control
for the fundamental hypotheses of the theory of wings of infinite
aspect ratio and for the finite wing, the actual theory that makes
ugse of approximations that have not yet been completely checked should
be integrated. The research presents, in addition to the difficulties
comon to all problems for which forces variable in time are to be
measured, serious obstacles for the requirement of absolute regularity
of the stream in which the experiment is conducted. Small fluctuations
in the velocity and in the direction of the wing, which do not have
any great effect in the measurements of a steady flow, can render the
measurements of the forces on the oscillating wing entirely unreliable.

In this part, the results obtained up to the present by various
experimentors will be discussed, and the results compared with theory.

English tests. - The firat series of tests was. conducted by
Duncan at the National Physical Leboratory and published in 1928
(reference 50). The object of the tests was to check the mechanical
theory of the wing oscillations. From these measurements Duncan
obtained, for a particular wing model, the values of the aerodynamic
coefficlients to be introduced in the expression of the velocity in
order to compare the calculated value with the experimental veloclty
obtained. The greater part of the tests was conducted on a model
that wes deformed during the oscillation, according to an incompletely
defined law. The tests therefore do not lend themselves to a check
of the serodynamic theory, a check with which the experimentor weas
not concerned, as he did not then have the results of the theory.

A series of tests were, however, conducted by Duncen on a model that,
during the oscillation, rotated rigidly about an axis parallel to the
span, The wing was rectangular, with RAF 15 profile, 152-millimeter
chord, and 686-millimeter span. The axis of rotation was at 1/10 of
the chord from the leading edge. The damping of the oscillations was
measured in the presence of a wind and in still air for various angles
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of attack and frequencies of oscillation. Inasmuch as the oscilla-
tions did not have very rapid damping, the results can be compared
with those of the theory on harmonic motion. According to the theory,
the moment of the aerodynamic force due to the rotational oscillation
possesses a component in phase with the motion and a component

in quedrature and therefore in phase with the angular velocity gq;
the moment Mq, which has its sign opposite to gq, therefore consti-

tutes a damping action and may be put in the form
My = npbg L2VS

where S 1s the wing area. For a segment of an infinite wing, the
-coefficient b depends on the reduced frequency and on the position

of the axis of oscillation. Od increasing the reduced frequency, b
tends to the valuel7

v-1(e-1)° ~(e8)

where £ is the distance of the axis of rotation from the focus cone-
sidered positive if the axis is in the rear.. For the finite wing, b
depends glso on the plan form. Its values for not-toc-small reduced
frequencies are not, however, considerably removed from that given by
equation (68). For the position of the axis of rotation of the tests
of Duncan, this gives b = 0.211. The values of b obtained on the
basis of the damping moments measured by Duncan are given in figure 16.
For the computation of * b, the value of the aerodynamic damping
moment 1s considered to be the difference between the measured values
in the presence of wind and in still air. The values are all below
that given by equation (68). For equal velocities, these values indi-
cate a decrease with a decreasing w, as would also be given by theory
for positions of the axils of rotation ahead of the focus. For equal
frequency, on decreasing the velocity (hence on increasing w), the
experimental values in general, indicate a decrease that can be
ascribed to the effects of the Reynolds number. There 1s also a
decrease on decreasing the angle of attack (at least in the region
investigated). For angles of attack from -4° to -50, Duncan found

17ymich can be derived on the basis of the expressions given in
references 2 and 21.
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a vanishing of the aerodynamic damping. This phenomenon, called by
Studer "oscillations of separation,” cennot be studied by the theory
of the preceding parts.

The measurements conducted by Duncan of the damping of the
oscillations of the flap also lend themselves to & comparison with
theory. In these tests, the damping due to the friction of the
suspension is rather large. By assuming for this case also that the
aesrodynamic damping can be obtained from the difference between that
measured with wind and that measured in still air, it is found that
the experimental value of this damping is equal to about one-1alf the
theoretical. - This disagreement should not be surprising, becauss the
derivatives relative to the flap are always markedly less than the
theoretical values. In the tests conducted by Duncan, the value of
the derivatlive of the hinge with respect to the angle of the elevator
under conditlions of steady motion was equal to 0.6 of the theoretical
value.

Tests conducted at the Laboratorio di Aeronautica di Torino, -
The aerodynamic actions on the oscillating wing were measured by Clcala
in the free-jet wind tunnel of 600-millimeter dlemeter at the
Laboratoria di Aeronautica di Torino. The chord of the models on
which the tests were conducted was about 13 centlimeters and the span
about 50 centimeters. Because of the relatively small dimensions of
the jet, which was free in the region in which the model was located,
the wing operated with a rather low effective aspect ratio; the
value of Bcp/Ba under steady conditions (referred to pVé) was equal

to about 0.5% because the wing projected from a plane that was placed
tangent to the Jet in order to mask the suspension and measuring
apparatus. This rather low value of the aspect ratio is one dis-
advantage of these tests, which are described in references 14, 51,
and 52,

In a first serles of tests (reference 14), the asrodynamic
damping of the flectional oscillations (rotation of the model about
an end chord) and the damping of the oscillations about the axis con-
taining the foci of the various sections (also a rigid rotation) were
measured. The measurements relative to the flectional motion were of
little importance because of imperfections in the construction of the
model and of the measuring apparatus. These tests were later repeated
" (reference 52). The measurements relative to the torsional oscilla-
tions gave for b a value of about 0.11 (against 0.125 given by equa-
tion (68) for £ = 0), which was almost constant when the reduced
frequency was varied as required by theory. This value was confirmed,
at least for the range of not very large angles of attack, by succeeding
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tests on a model different from the one described in reference 14,
this model also belng of symmetric profile but of greater rigidity.
The principle of the measuring apparatus for these tests and for
those of series III can be briefly described as follows: The oscil-
lation of the model was controlled through an intermediary element
that pogssessed two simultaneous motions, a rotation depending on the
displacement imposed on the model and a rotation about an axis per-
pendicular to the first rotation and depending on the magnitude of
the force transmitted. This element carried a mirror that reflected
on sensitive paper a luminous point that, by describing the motion

of the intermediary, gave the force-displacement diagram (and there-
fore the moment-rotation diagram). The test conducted for equal fre-
quency in still air and in the presence of wind permitted isolating
the asrodyneamic action. 1In figure 17 are given some of the oscillo-
grams thus obtained that give the simultaneous values of the angular
position of the wing and of the moment transmitted. The field of

the coordinates can be retained as Cartesian, so that the diagrams
are approximately ellipses. The enclosed area measures the work
absorbed in the oscillation. In the figure are given the scale of
motions and also the lines o = constant corresponding to the extrems
positions for one of the oscillograms obtained for a wing velocity of
9.4 meters per second and for a number of oscillations equal to 570.
For each measurement, the oscillogram was obtained by pernitting the
luminous point to run through two or three cycles. The paper was
successively advanced, thus intercepting the light point. In order
to obtain a reference point of the angles of attack for each oscillo-
gram, a point in a fixed position was marked (points F in the figure).

In the third series of tests (reference 52), the damping measure-
ments of the translatory flectional oscillation (in the sense pre-
viously defined) were repeated. The component of the 1ift in phase
with the displacement of the wing can be expressed by the derivative

1 oC
x S(vi) - %2

vhere v 1s the translational velocity normal to V and v/V is

the corresponding variation of the angle of attack. According to the-
theory of the infinite wing, the factor az varles from -1 to -0.5
on increasing the reduced frequency (always negative because the vari-
ation of the 1ift has a sign opposite to the vertical velocity).
According to the approximate theory of the finite oscillating wing,
the range of variation of this factor is reduced, starting from
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W = 0, from the corresponding value of the steady motion computed
with the aid of the vortex-filament theory of Prandtl. The tests
gave for a2 a value nearly constant and equal to 0.43 for not

too small a velocity within the range of reduced frequency in which
the tests were conducted (0.2 < w <0.6). At small velocities, a
decrease of a, was found that was ascribed to the effect of the

low Reynolds number.

The 1ift component in phase with the flectional motion and the
focal moment in phase with the torsional motion were rather small,
as required by theory, the aerodynamlc inertia effect being included
with the measurements of the mass of the model on the basis of the
osclllation data in still ailr,

The variations of 1ift that arise from an oscillation of the
wing about the focus were also measured (reference 51). By expressing
the 1ift component in phase with the rotation by means of the derivative

oC

1%,

values of about 0.52 were obtalned for this coefficlent for all the
reduced freguencies at which the tests were conducted (0.1 < w <0.7).

The component Pq of the 1lift, proportional to the angular velo-

city q and therefore in quadrature with the motion, can be expressed
by means of the relation

Pq = npayqSLV .

The coefficient a4, which, according to the theory of the wing

of infinite aspect ratio, has values increasing with w and approaching
to 0.5, was found from the tests to be almost always equal to 0.38.

The principle of the apparatus for the measurement of the 1lift
due to the torsional moment was the following: The wing was put in
forced torsional oscillation by guiding, according to the harmonic
law, a point of an end section while a point of the same section was
attached by means of a steel wire. Under these conditions, in addi-
tion to the torsional motion, a flexlonal motion of rotation arose
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about the chord of this section. In another section, a force having a
component in phase and one in quadrature with the excited motion, was
introduced, the amplitudes of which could be varied during the test.

In the presence of wind, the amplitudes of the two components were
controlled so as to eliminate the flectional motion and to balance the
asrodynamic action and the inertla force. TFrom the tests conducted at
equal frequency in still air and with wind, the aerodynamic forces were
obtalned. By the same principle, the focal moment due to the flectional
motion was measured. In agreement with theory, the value of the
flectional motion was so smsall that it could not be measured.

For all the asrodynamic derivatives expressed in the preceding
form, almost constant values were thus obtailned In these tests by
varying the reduced frequency. The theory of the wing of finite aspect
ratio developed in reference 37 Justifies this result for the range
of not-too-small reduced frequencies and low aspect ratios at which
the tests were conducted. In figure 16, the dotted line gives the
value of the coefficient b that would be obtained by these tests,

a value that does not diverge much from the tests of Duncan.

American tests. - Tests have recently been conducted in the
United States for the measurement of the aerodynamic forces on the
oscillating wing to check the theory of the infinite wing. An
interesting series of tests was conducted by Reid and Vincenti at

the Guggenheim Laboratory (reference 53). The model used had a chord
of 38 centimeters and therefore permitted the attainment of suffi-
clently high Reynolds numbers. The span was not large (about 91 cm).
Nevertheless, a large aspect ratio was obtalned because the model was
placed between two walls normal to the plane of the wing. The wing
of NACA 0015 profile was put in oscillation about an axis at a dis-
tance of 4/10 chord from the leading edge. At the opposite edge to
that at which the motion was excited, the aerodynamic action was
measured. The wing support, consisting of a ball bearing, was sus-
tained by a rigid spring the inflections of which were recorded by
means of mechanical and optical amplification on a strip of sensi-
tive paper with uniform forward motion. On the same strip were marked
the instants at which the wing occupled the extreme and middle posi-
tion. With the aid of a harmonic anelysis of a graph of the forces,
which were necessarily irregular, the amplitude and the phase of the
fundamental harmonic with respect to the motion of the wing were
derived and thus the ratio r of the amplitude of the 1lift under
conditions of oscillatory motion and the ratio corresponding to the
steady motion for equal rotation and phase angle (leading)

between the 1ift and the rotational motion were measured. The
results are plotted as a function of the reduced frequency in

figures 18 and 19 and compared with the theory of wings of infinite
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aspect ratiol8 (continuous curve) and with those that were obtained

in the Torino tests. The Torino tests must necessarily present a con-
giderable divergence from the American tests because of the difference
in aspect ratio. The phase displacements predicted by theory are
somewhat greater than the.experimental values. A considerable devi-
ation is presented by the theoretical and experimental curves of the
ratio r.

A gsimilar series of tests was conducted by Silverstein and
Joyner (reference 54). The model had a chord of 13 centimeters,
considerably smaller than that used in the tests by Reid. In this
case also, a large aspect ratio was attained by using end walls.

The oscillation axis passed through the forward quarter chord and
the aerodynamic 1ift force was measured by means of an apparatus
based on the same principle as previously described, In these tests,
only the phase displacement between the 1ift and the rotation was
measured and the values shown in figure 20 were obtained; the con-
tinuous lines give the values of the theory of the infinite wing and
the dotted line give the values obtained from the Torino tests. The
scatter of the test points is large for the high values of w; that
1s, for the tests conducted at low velocity.

Because of the small number of the results that are available,
no deductions of a conclusive character can be given. The different
condltions under which the tests were conducted also doss not provide
a good basis for comparing the different results.

The tests in which the conditlons for a check of the theory of
the oscillating wing of infinite aapect ratio were best realized are
those of the Guggenheim laboratory. The comparison is not, however,
completely satisfying. The probable cause of the divergence encountered
seems to lie in the agglomeratlion and dissipation of the wake vortices,
the mutual positions and intensities of which the theory assumes to
be maintained indefinitely. The problem should be investigated more

18The theoretical curves of the graphs of reference 53 do not
coincide with those given in figures 18 and 19 because the aerodynamic

inertia effect represented by the terms in <u2 in the expressions of
the derivatives is not considered. In fact, this action, which remains
unchenged with and without wind, is already compensated in the pre-
liminary operation of putting the center of gravity on the axis of
rotation, a compensation that, it seems, was effected under dynamic
conditions. The correction 1s small and makes the test points

approach the theory more closely. ‘
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thoroughly, especially in an experimental masnner. The verification
of the theory of the infinite wing is less urgent, however, than the
investigation of the finite wing, particularly for the phenomsnon of
wing vibration, in which, because the motion 1s more pronounced toward
the tip of the wing, the conditions are considerably removed from two-
dimensional motion. This limiting case is also difficult to obtain
experimentally because of the considerable importance assumed by the
wake over a large distance behind the wing. The Torino tests make
use, however, of low aspect ratios for which the approximations of

the theory of reference 31 are less Justified for giving an account

of the results of such tests. There would therefore be: required :
First, a perfecting of the theory of the oscillating wing of finite
aspect ratio; and second, the extension of tests to wings of greater
espect ratio. The range of angle of attack within which the coeffi-
clents can be held constant must be defined and the field of coeffi-
cients relative to the oscillating wing with flap must be investigated.

Translated by S. Reiss
National Advisory Committee
for Aeronsutics.
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TABLE I
L] R R o
0 0, 5000 1.7 0, 3490 7.5 0. 1588
0.1 0.4878 1.8 0. 3497 8.0 0.1509
0.2 0,4762 1.9 0, 3366 8.5 0.1436
0.3 0. 4651 2.0 0.3307 9.0 0.1368
0.4 0.4545 2.1 0. 3250 9.5 0.1307
0,5 0.4443 2.2 0.3195 10 0,1250
0.6 0. 4346 3.3 0.3141 11 0,1147
0.7 0.4253 2.4 | ' 0.3088 12 0.1058
0.8 0.4163 2.5 0.3038 15 0. 0852
0.9 0.4077 3.0 0, 2805 20 0.0634
1.0 0. 3994 3.5 © 0, 2600 25 0.0499
1.1 0,3914 4.0 0.2420 30 0.0408
1,2 0, 3837 4.6 0, 2261 40 0.0298
1.3 0.3763 5.0 0.3118 50 0,0232
1.4 0, 3691 5.5 0, 1990 100 0.0109
1.5 0, 3622 6.0 0.1875 500 0.0020
1.6 0. 3656 6.5 0.1770 1000 0.0010
7.0 0.1675 © 0.0000
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TABLE II

8 - R, s R, $3 R,
0 0.0000 L7 1,0356 8.5 1. 6642
0.1 0.2824 1.8 1,0586 9.0 11, 6817
0.2 0. 3961 1.9 1. 0806 9.5 1,6976
0.3 0,4812 2.0 1.1016 10 1,7123
0.4 0.5513 2.5 1.1942 10,5 1,7268
0.5 0.6116 3.0 1.2703 11 1,7382
0.6 0.6649 3.5 1.3344 12 1.7603
0.7 0.7128 4.0 1.3891 .16 1,8235
0.8 0.7563 4.5 1.4364 20 1,8624
0.9 0.7964 5.0 1.4771 25 1.8934
1 0.8334 5.6 1.5140 30 1.9135
1.1 0.8678 6.0 1, 5463 40 1,9380
1.2 0.9001 6,5 1,5750 50 1,9520
1.3 0.9303 7,0 1.6008 100 11,9778
1.4 0. 9588 7.6 1.6241 500 11,9958
1.5 0. 9858 80 16451 1000 19980
1. 6 1,0113 — — 0 2, 0000
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TABLE I
s 1— ¥ . 1—x x
0 1,0000 0 0,62 0,5757 0,1354
0.002 0, 9967 0.0126 0.64 0.5721 0.1330
0.01 0,9826 0.0456 0.66 | 0,569 0.1308
0,02 0.9637 0.0752 0,68 0,5673 0.1286
0.04 0,9267 0.1160 0,70 0. 5648 ©0.1264
0.06 0,8920 0. 1426 0.72 0. 5624 0.1243
0.08 0,8604 0.1604 0.74 0, 5602 0,1223
0.10 0.8319 0.1723 0.78 0. 55681 0.1203
0.12 0.8063 0, 1801 0.78 0.5561 0.1184
0.14 0.7834 0.1849 0.80 0, 5541 0.1165
0.16 0.7628 0,1876 0.82 0,6523 0.1147
0.18 0.7443 0.1887 0.86 0. 5490 0.1112
0.20 0.7276 0.1886 0,90 0.5459 0.1078
0.22 0.7126 0,1877 0.94 0.5432 0.1047
0,24 0.6989 0.1862 0,98 0.5406 0.1017
0,26 0.6865 0.1842 1.00 0.5394 0,1003
0.28 0.6752 0.1819 1.1 0, 5342 0,0936
0.30 0.6650 0,1793 1.2 0. 5300 " 0,0877
0.32 0, 6556 0,1766 1.3 0,5265 0,0825
0.34 0.6469 0.1738 1.4 0.5235 0.0778
0,36 0.6309 0.1709 1.5 0.5210 0.0736
0,38 0.6317 01679 1.6 0.5189 0.0697
0,40 0,6250 0.1650 1.7 0.5171 0,0663
0.42 0.8187 0,1621 1.8 0,5165 0,0632
0.44 0.6130 0.1592 1.9 0.5142 0.0603
0.46 0.6076 0, 1563 2.0 0,5130 0.0571
0.48 0,6026 0.1535 2.6 0, 5087 0.0473
0.50 0.5979 0.1507 3.0 0,5063 0.0400
0.52 0.5936 0, 1480 3.5 0,5047 0,0346
0. 54 0.5895 0.1454 4.0 0.5037 0.0305
0.56 0.5857 0,1428 4.5 0.5029 0.0273
0.58 0.5822 0.1402 5,0 0.5024 0,0248
0.60 0.5788 01378 10,0 0.5006 0,0124
>10 0.5000 4 1183
+1/18358
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Fig. 13.
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o V=18.3m/s
« V=13.72

+ V=9.15

o V=6.25

Fig. 17.
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