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NATIONAL ADVISORY COMMIPXE FOR AERONAUTICS 

TECHNICAL ME!WK)RANDUM 1277 

PRESENT STATE OF DEVELOPMENT IN NONSTEADY MOTION 

OF A LIFTING SURFACE * 

By P. Cicala 

A sumry is given of the principal results thus far obtained 
from studies of the nonsteady motion of a lifting surface in an 
incompressible fluid; the methods followed by various investigators 
are indicated. 

The aerodynamic problem of the nonsteady. motion of an airfoil 
has been the subject of numerous investigations ., which in 20 years 
have brought a degree of development such that an entire branch 
(that of two-dimensional motion) my be said to have been completely 
solved. The mass of existing publications is very large and among 
these naturally many overlap; moreover, the study of the problem has 
produced a variety of methods such that the same phenomenon is 
endowed with rather diverse aspects that, although of considerable 
speculative interest, do not always facilitate the task of those who 
wish to learn only the results of the research. A synthetic deduc-
tion of the results thus far obtained is given hereinl in order to 
expound the principles of the various methods of investigation and 
particularly to collect the latest results in a form that is best 
suited to application. 

As previously stated, the two-dimensional problem has been 
exhaustively studied. In this field, the problems of unsteady motion 
reduce to computations that at times are laborious, but which can 
always be conducted without uncertainties of the approximations and 
which are considerably facilitated by existing tabulations. Only a 
few attempts have been made to develop a rigorous computation for 
the wing of finite aspect ratio inasmuch as the existing methods 
present approximate solutions that contain many inaccuracies. 

In part I of this report, the results relative to the wing of 
infinite aspect ratio are described, always with the assumption of a 
perfect and incompressible fluid with regard to the components of 

*"Lo Stato Attuale delle Ricerche sal Moto Instazionario di Una 
Superficie Portante." Estratto Da "L'Aerotecnica" Vol. XXI, N. 9-10, 
Settembre-Ottobre 1941, XIX. 

i-The analytic developments have been shortened and the rigor of 
the demonstrations has at times been. relaxed.
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of the normal force on the wing plane. In part II, procedures are 
indicated for the computation of the wing of finite aspect ratio; 
a comparison is made of the various approximations thus far employed. 
In part III, the results are given relative to the force component 
in the direction of motion (propulsive or drag). In part IV, the 
results of experimental investigations are considered. In each part 
an evaluation is given of the existing publications, which may serve 
as a guide to a more detailed study of any aspect of the problem. 

Once a reference system is established with respect to which 
the fluid Is motionless at infinity, It is assumed that a fixed 
plane exists from which the points of the lifting surface are at 
distances that may always be considered very small with respect to 
the dimensions of the projection of the surface on the plane. The 
thickness and the curvature of the profile are therefore considered 
infinitesimal, as are the displacements along the normal to the 
fixed plane.. Almost all the investigations up to the present time 
on the nonsteady motion of a wing use simplifications that are 
derived from the preceding assumption and thus assume that the sin-
gularities in which the body In motion Is schematized are permanently 
contained in the fundamental plane. In this plane lie the orthogonal 
axes x and y, which are displaced with respect to the fixed refer-
ence and remain parallel to themselves with a velocity V parallel 
to the x-axis but opposite in direction; the z-axis Is at right angles 
to the x,y-axes. With respect to these axes, which follow the motion 
of the wing, the relative velocities of the points of the wing are 
small with respect to V. It is thus assumed that the perturbations 
produced by the motion of the wing are sufficiently small. Hence, in 
the relations that are used, all terms of higher order than the linear 
terms in the velocities induced by the motion of the obstacle in the 
surrounding fluid are neglected. This fundamental simplification 
gives the problem under consideration the advantages of the linear 
theories (the most important of which is the principle of superpo-
sition) from the effects of which by the analysis of particularly 
simple motions, solutions can be obtained that through linear combi-
nations make possible the study of motions of a more complicated 
character. 

The velocity V is assumed to be small compared with the velo-
city of sound although investigations have been conducted that consider 
the compressibility of the medium (reference 1). 

The variations in time or space must frequently be measured. 
The symbols occurring in the derivations herein are therefore defined 
In the following paragraph:



NACA TM 1277	 3 

Let q be any magnitude that is a function of a point and that 
for every point varies in time. The symbol	 /x (or qjy) 
denotes the dependence of the law of variation of q as a function 
of x (or of y), measured by giving to q, at each point, the 
values that correspond to a certain fixed time t. The symbol 
q./t indicates the rate of variation of q . at a fixed point 
relative to the x, y, and z axes, which in the absolute refer-
ence system is displaced with the velocity V. In general, with 
the assumed linearization, the derivative also represents the rate 
of variation of q at a fixed point of the wing because the velocity 
of a point of the wing with respect to the moving axes is very snail; 
if the gradient of q is not too great, the variation of q in time 
will be the same whether measured at the fixed point relative to the 
moving axes or measured at the point that follows the lifting surface. 
In order to express the rate of change in time of a q always 
measured at the same point of the stationary reference, the symbol 
d' qjdt is used.. Because of the assumed linearization, the previous 
derivative coincides with the derivative that measures the change in 
q with time for the same material point.. Inasmuch as the absolute 
velocities of the fluid particles are very snall, if the gradient of 
q is not too large, the change of q with time will be the same 
whether measured at the fixed point or following the molecule. It is 
preferred in this report to use a distinctive sign in d t q to differ-
entiate the local derivative from the derivative of the quantities 
that depend for the problem under consideration only on the time param-
eter; for this problem the notation dq/dt is used. 

PART I. - TWO-DIMENSIONAL PROBLEM 

1. The results of modern research on the two-dimensional problem 
will first be described. The simplification introduced by the assump-
tion that the phenomenon develops in the plane of the x- and z-axes 
is such that it can be stated that each problem within this range 
can be reduced to the computation of integrals that, with graphical 
procedures aided by analytical considerations, can be computed with 
suitable accuracy (limited to the approximation of the existing 
tables), which eliminates the expansion into series. In the three-
dimensional case (the wing of finite span), except for some parti-
ular problems, only approximate solutions exist. 

In order to simplify the expressions of the two-dimensional 
problem, the semichord of the wing is assumed to be of unit length. 
The abscissas of the leading and trailing edge of the wing are assumed 
to be given by x -1 and x 1, respectively. In order to define
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the points of the profile, the parameter 6 is introduced • The 
variation with x is shown by the relation 

X = - cos 

The values 0 and it of the parameter therefore correspond to 
the leading and trailing edges of the wing, respectively. 

The coordinate z, normal to x, is considered positive in the 
downward direction (fig. 1). The vertical component v of the velo-
city of the fluid Is therefore considered positive if turned In the 
direction of positive z. The difference inpreasure p betveen.the 
two faces of the wing has the positive sign directed upward. The 
same sign convention is true for the vertical force P, the lift of 
a segment of unit chord. The moment N on the same segment is con-
sidered positive if it Is a diving moment. 

2. Condition of tangency. - The condition that the profile be 
Impenetrable to the fluid Is expressed by malting the relative velo-
city of the fluid, with respect to the wing, tangent to the profile; 
or, in other words, the absolute velocities Ve of a point on the 
contour and Vf of the fluid particle in contact with the contour 
have the same projection on the normal n (fig. 2). Inasmuch as 
only the linear terms In the coordinate z of the points of the con-
tour and their derivatives, or In the velocities (perturbations) 
created In the fluid by the motion of the wing are considered, the 
component on ii of the velocity V may be supposed equal to the 

component w of the velocity of the fluid particle, which is parallel 
to z. By using the simplification of neglecting the quadratic terms 
in the computation of the projection on n of the velocity V, 

which has the components V and z/t, there is obtained 

z	 z	
(1) 

3. Circulation and pressure on profile In steady motion. - Under 
the conditions of steady motion, it is known that the relative velo-
cities of the fluid with respect to the profile, even if the profile 
is considered to be of 1nfinitesinal thickness, are, in general, 
different on the two surfaces. In the motion under consideration.. 
if Vl and V2 are the velocities at the corresponding points of 
the two surfaces (fig. 1), the pressure rise p between the surfaces 
Is given by the Bernoulli equation
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v2+vl 
P = p (v2 -v2 1 ' P(v2-vl) 2 = 2	 PVu ' 

where it may be assumed., because of the linearization hypothesis, that 
the average of the velocities Vj and V2 is .V, and u denotes 
the difference between them. 

If the wing is in the positive aspect, the smallest velocity is 
found at the bottom surface. The velocity difference u is con-
sidered positive under these conditions and the positive pressure p 
Is therefore in the opposite direction to positive z. In order to 
represent the field created by the wing, the skeleton of the wing 
composed of a vortex film is considered.; this system of singularities 
is capable of giving the existing velocity increment u between the 
two surfaces if the circulation in an element d.x is equal to u dx. 

4. Circulation and pressure on profile in unsteady motion. - 
For the case where the motion is unsteady, the velocity Increment may 
be represented by a vortex distribution of intensity g - U. The only 
difference, when compared with the preceding case, is in the fact that 
the discontinuity in the velocity field exists not only on the points 
of the wing but also in the wake behind the wing. In order to describe 
this phenomenon, consider two fluid layers that pass above and below the 
profile. Because of the linearization assumption, the distances of the 
points of the profile from the x-axis can be neglected in the following 
discussion. It can easily be verified that the terms of the second 
order will therefore be neglected. The difference between the momen-
tums of the two layers is computed (fig. 3)2 at the time t0 and at 
the time t0 + dt and therefore the variation that the difference has 

undergone in the Interval dt is also computed. This variation, 
divided by the interval dt, must be equal to the difference between 
the forces along x that are applied to the two layers. Inasmuch as 
tangential actions do not exist (perfect fluid), and because no pressure 
difference exists on the anterior face (upstream of the profile), the 
previously mentioned momentums will be given by (Pl-P2) dy - p dy. 
The difference in the momentums of the molecules of the two layers, 
which is given by the product of the mass and the difference in the 
velocities u, varies in the interval d.t because: 

2The two layers are indicated in figure 3 by hatched lines in the 
two directions; the position of the leading edge of the profile is 
indicated by a semicircle.
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1. New molecules come in contact with the profile 3 and there-
fore acquire the velocity increment u = g. 

2. The increment for a given point of the profile varies with 
time.

If the 'aphs of g relative to t = t0 and t t 0 + d.t on 

the same position of the profile (fig. 3) are plotted corresponding 
to the two causes, respectively, it is found that the area (which 
gives the difference in the momentums when multiplied by P dy) varies 
in the interval d.t by the amount

x 

gV dt + dt 

The first term is indicated in figure 3 by the obliquely hatched. 
area (which, except for iafinitesimals of higher order, is equivalent 
to a rectangle of base V dt and altitude equal to the value of g 
corresponding to the abscissa x of point P); the second term is 
indicated by the vertically hatched. area. Equating the impulse to 
the variation of the momentum and dividing by p d.y dt yield4

(2) 

The first term on the right side measures the pressure at P, 
which is obtained under the conditions of steady motion; this pres-
sure depends on the local value of the velocity increment. By the 
effect of the other term, the pressure under the conditions of non-
steady motion depends on the variation that g undergoes at the 
instant considered in the entire strip ahead of P. 

3The difference of the momentums of the two layers is observed to 
be zero before arriving at the wing because the velocity increment in 
front of the wing is zero if there are no other 1iting surfaces. 

4Th1s relation is obtained by another method in differential 
form in reference 2.
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5. Vorticity of wake. - If at the instant t = to the point P 
coincides with the trailing edge of the wing, equation (2) still 
holds, but the first term becomes zero because a difference in pres-
sure cannot exist where there is no wing surface. It follows that 
the increase in velocity g5 existing in the points of the wake, 

which is zero in the case in which the distribution of g on the 
wing is Independent of the time, is given by 

where

K=	 gdx
J-1 

Is the circulation about the wing and the derivative Is measured at 
the Instant at which the trailing edge passes through the point of 
the wake under consideration. In other words, in the distance V dt 
that the wing moved in the time interval dt a vorticity is distri-
buted equal to the variation that the circulation about the profile 
has undergone.in the same time. This conclusion can also be derived 
from the principle of the conservation of vorticity. 

In figure 4 1 the diagram of the vorticities on the profile and 
in the wake Is given for the case' in which the wing executes a trans-
latory oscillation with frequency Q related to L and V by 

QL=2v 

The curve a refers to the instant in which the wing crosses 
the middle position; b refers to the position at the end. The 
scale of the vortices is indicated by assuming the vertical maximum 
velocity of the profile to be unity. For ' comparison, figure 4 shows 
the graph of the circulation g' corresponding to the maximum veloc-
ity in the case of steady motion. The increment of velocity In the 
wake is considerable. In the theories of a wing in nonsteady motion, 
it is generally assumed that this velocity Increment remains in the 
position in which It originated, or ., in other words, that the vortices
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shed by the wing maintain their original position and Intensity 
unaltered In time. It Is evident that the error Inherent in this 
assumption, from which the real phenomenon certainly deviates, 
Impairs to some extent the results of the theory. 

6. Bound and free vortices. - An original physical interpre-
tation of equation (2) was given by Birnbaum (reference 3). By 
setting

(4) 
PV 

x iI	 g 

=-	 dx	 (5) 

J-1 

Equation (2) Is written as

(6) 

With the aid of this relation, the value of the total vorticity 
g at a point on the profile at which the velocity increment between 
the corresponding points of the top and bottom surfaces is divided 
into two parts: 

(1) The bound vorticity y, which is sustained by the aerody-
namic action 

(2) The free vorticity C, which trails in the fluid in its 
relative motion and which therefore gives no pressure 
rise 

In order to clarify the relation between the free vortices and the 
bound vortices, equation (2) is differentiated with respect to x 
after g is expressed in terms of equation (6). Thus, 

^ = 6C + V C d'C
(P7)
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This relation indicates that the variation undergone in an inter-
val of time by the vortex C at a point of the fluid Is equal (and of 
opposite sign) to the variation undergone in the same time by the 
bound vortex at the point of the profile in contact with it. In 
other words, the bound vortices leave at each Instant, in the fluid 
with which they come in contact, an effect represented by a vorticity 
of intensity equal to that which they have produced at that Instant. 
According to this representation, each of the inducing elements at 
the wing is considered in isolation and therefore produces a pres-
sure rise expressed by equation (4) and has a proper vortex wake. 
The free circulation at any point on the wing or downstream of It 
Is given by the sum of the circulations of the wakes corresponding 
to the bound vortices that are upstream of the point considered. 

The decomposition of the total circulation in the two vortex 
systems previously described is shown in figure 4. It can be seen 
that the graph of the free circulations on the chord are joined in a 
continuous manner with the system of the wake at the point where the 
free circulation is equal to the total circulation. 

7. Relations between circulations and normal velocities. - 
Ordinarily, the law of variation of w along the chord and with time 
is known from equation (1), with the aid of which these quantities 
are derived from the characteristics of the motion. The vorticities 
on the wing and in the wake must In&uce at each instant on the points 
of the chord the assigned w; that is, 

w 	
= lfg(x') dxt	

(8) 
X , -x 

The integration is extended from the leading edge of the wing 
to the entire part of the wake in which the passage of the wing has 
created the vorticity discontinuity. 

It is known that, for the wing in steady motion, the field of 
motion would not be determined if. the point of separation (trailing 
edge of the wing) were not fixed. This condition is also assumed 
for the wing in unsteady motion and is translated into the analytical 
condition that g be finite at the trailing edge of the wing. 

The vorticity In the wake is connected with that at the wing 
by equation (3). When equation (8)., which is completed by the condi-
tion of separation and by equation (3), is solved the total vorticity
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g is obtained. The pressures are then obtained by making use of 
equation (2). As will be shown in more detail in section 17, this 
scheme is followed by various procedures of solution by Theodorsen, 
who makes use of conformal transformations (reference 4), Schwarz 
(reference 5), who makes use of Betz t s solution of equation (8), and 
Söhngen (reference 6). Wagner and Glauert also refer to the total 
vorticity, but determine the total action on the profile and not the 
pressure distribution (as do von Kth'mn and Sears, reference 7). 

When a different method is used, the free circulation on the 
chord and in the wake can be expressed as a function of y by 
making use of the integrated equation (7) and thus transforming 
equation (8) so that only the unknown function y appears in it. 
Then the pressures can be directly obtained by means of equation (4). 
This procedure was followed by Birnbaum (reference 3), by Kussner 
(reference 8), and by Cicala (reference 9). 

8. Acceleration potential. - A different interpretation of the 
same problem can be made on the bais of the acceleration potential. 
For a perfect and incompressible fluid, the equation of Euler 

a = - grad 

expresses the equality between the force of inertia, which corresponds 
to the acceleration a of the fluid particle, and the resultant of 
the forces that are transmitted to the particle by the medium surround-
ing the particle. The Euler equation also permits stating that the 
components of the acceleration can be obtained from the function p/p 
through the same operations of differentiation with which the com-
ponents of the velocity are deduced from the corresponding potential. 
The generating singularities are arranged on the surface of discontinu-
ity (wing + wake) for the acceleration field whose potential satisfies 
analytical properties similar to those of the velocity potential in 
the same manner as for the velocity field. The singularities are 
arranged where the discontinuity exists in the pressures; that is, 
on the lifting surface. The simplification that is introduced by 
this concept is not, however, as great as might appear from the fact 
that the singularities (which are called the dipoles of the pres-
s-. ,re) are limited only to the wing. In each case, it is necessary 
to pass from the acceleration field to the velocity field and this 
passage requires an integration through which the effects of all the 
preceding states of motion are felt and which, according to the
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vortical representation, leaves a trace in the system of free vortices. 
In other words, the velocity field of the pressure dipoles depends 
on the history of the formation of the dipole. 

The relation between the vortex representation of the phenomenon 
and that based on the pressure dipoles is already implied in the con-
cept of Birnbaum of the vortices shed from all the points of the 
airfoil that is the only source of the bound vorticity y, which is 
proportional to the difference in pressure between the two faces of 
the profile. A method will be shown, on the basis of the concept of 
vortices, for the derivation of some fundamental relations that in 
other publications are justified with the procedure of the accelera-
tion potential. 

The system of bound vortices induces at a point 0 at the 
instant t = I a velocity that is denoted 	 at a succeeding 

instant t = I + A T, at a point that occupies, with respect to the 
wing, the same position that 0 occupied In the first condition, 
there will be a velocity differing from V, by an amount denoted 

by A. The velocity AVa will depend on the variation In the con-

stitution of the Induction system or, with changed sign, will be the 
velocity Induced by the system of vortices that, at the instant con-
sidered, are freed from the bound system and constitute the trace 
that the bound system has left in the fluid with which it has been 
In contact. The quantity 1V/LT , as A T-+0 as a limit, represents 

the derivative av/t. Hence, if it Is desired to express analyti-

cally the property that the actual velocity If of the fluid parti-

cles results from the sum of the velocities induced by the actual 
configuration of the bound vortices and from those freed at the pre-
ceding instants, then

rt 
I	 v 

Yf !a	
OD

-dT 

where !a and Vf are computed at the point 'and at the instant t, 
a1T/at being computed at the point of the fixed space being considered, 
and the system of bound vortices is in the corresponding position at 
the Instant ¶ preceding t., In the case of translational motion 
or, more precisely, In the linearization assumed, the terms of the 
second order in the velocities of the points of the wing relative to 
a system that is displaced with translational motion with velocity V 

(9)
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are neglected.; the term 18jt is measured by having the point 

of induction at the abscissa x-V(t-1), or, with respect to the 
point 0 of the abscissa x to which the velocity Yf refers, 

in a position upstream, advanced by the quantity v(t-T) if V is 
assumed. constant. 	 - 

The following relation can be obtained from equation (9): 

V	 (10) 
at 

The quantity Va is the velocity induced at 0 at the constant 
t by the bound-vortex film layer. From the instant t-dt to the 
instant t, the vortex system changes only in the number of the bound 
vortices leaving a trace and that occupy the position ôorresponding 
to the time t. The variation that the velocity Vf of the fluid 
has undergone at the point 0 of the fixed space because of the 
effect of this change (local variation d'y/dt at) is that which 

would be measured by leaving the vortices y in position and moving 
the point of induction of the segment dx = Vdt so that the point 
of induction occupies the position that corresponds to the instant t; 
the variation that is measured in this manner is expressed by 
a/X dx and is thus added to equation (10), which equates the two 

expressions of the variation. 

Relations (9) and (10) are equivalent 5 to the relations derived 
by Posslo, which are based on the concept of the acceleration poten-
tial, if it is. ' assumed that the stationary field C, defined In 
referenb 10, coincides with the field produced by the system of 
bound vortices in a uniform stream V. Inasmuch as the concept of 

5Equation (10) Is derived directly if the acceleration field Is 
considered to depend only on the actual values of the pressures on the 
profile and, with the pressures equal, has the same configuration as 
though the motion were steady. In this case, according to equa-
tion (4), the actual pressures would be obtained by having only the 
actual values of y on the profile: the velocity of the fluid would 
be !a, and the acceleration that, by the assumed linearization, is 
computed from d'!a/dt (and not from the derivative formed in following 
the fluid particle) would be expressed by d'Va/dt aVa/ax V (without 

cVa/Ot because this virtual field is steady). When the acceleration 
of this virtual field is equated to the effective acceleration, which 
is written dtVf/dt, equation (10) is obtained, which when integrated, 
gives equation (9).
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the acceleration potential lends itself less to physical interpre-
tations than the concept founded on vortices although some simpli-
fications can be obtained In the analytical development, It is 
preferred, in the following sections, to employ the classical method 
of description. 

9. Cases of total zero circulation. - If the total circulation 
about the wing Is constant in time and the system has no vortices in 
the wake, the induced velocities can be computed on the basis of the 
total circulation about the wing at the instant considered in the 
same manner as for steady motion. From the analysis relative to this 
case (reference 11 ) p. 185), it Is known that If the circulations are 
represented by one of the following functions 

= cot	 - 2 sin 

gn = - 2 sin n (n=2,3, ...)}

(11) 

(12) 

the corresponding velocities are respectively given by 

1 
w1=+Cos a 

Wn = cos fl 

Inasmuch as the values of gn represented by equation (11) 
satisfy the condition

r' 
K =I	 gdx=O 

J-1 

the preceding result holds for any motion because no wake exists down-
stream of the body. Thus,

W =Z An W
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where An are quantities independent of 6 but functions of time. 
The total circulations are represented by the corresponding sum 

gAngn	 (13) 

The corresponding bound vortices are represented by E 7n' where, 
as derived from equations (5) and (6), 

= A1 (cot f - 2° sin 6 + A' 1 (sin + sin i COB 

= - 2	 sin n + A l
 ( sin(n+1)	 sln(n_1)&) 

n+1	 n-i
= 2, 3.....(l4) 

-  

At = dA	
(15) 

Vdt 

In general, the values of w can be expressed by expanding In 
a Fourier series:

w=A0+ Acosn	 (16) 

The coefficients A, general functions of time, can be obtained by 
harmonic analysis by setting 

-	 =W- Ann 

There is easily obtained

= - (AO - Al)
	

(17) 

'C 

It is therefore concluded that, If the vertical velocities on 
the profile are developed in Fourier series, the circulations and 
the pressures can be directly computed with the aid of equations (13)
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and (14) If A0 = Al. In the general case, it will be necessary to 
sum the circulations (equation (13)), which correspond to the 
velocity

W 

=	
w(l - cos ) d	 (171) 

JT 

which is a function of time, but is constant over the chord. 

10. Case of velocity w constant over chord. - Applying equa-
tiorI o) for the potential on the z-axis, inasmuch as w Is the 
projection of Vf, yields

d'w	 OVa 
Vdt	 (18) 

where Va is the projection of the vector Va on z. 

Because at each Instant w assumes, for all the points of the 
chord, the value w, the following relation Is obtained: 

dtw_di 
dt dt 

and, therefore, from equation (18), integrating along the chord yields 

Va =d.t + 

where C Is a constant with respect to x, but is a function of time. 
From the analysis of steady motion, It Is known that the distribution 
of the vorticity capable of giving velocities satisfying the condition 
at the edge is given by 

YO = 2 V dt sin 6 + 2 C cot	 (19)



16
	

NACA TM 1277 

In order to invest1te the dependence of C on the condition 
of motion, the elementary case 18 consld.ered in which V., which has 
been zero for an indeterminate time, suddenly acquires, at the 
instant t t , the value AV and maintains it unchanged. For such 
a. case, for t > t, C, which must be proportional to A, may be 
put in the form

C = (i-n) A'	 (20) 

where R' is a function of the space passed through by the wing 
since the. instant t'. Because, with the passing of time, the phe- 
nomenon tends toward the steady conditions for which the circula-
tion tends to assume the distribution 

y0 =2cot	 (21) 

the asymptotic value of R must be zero. The law of the variation 
of R was studied in one of the first publications on the wing In 
unsteady motion (reference 12, which gives a resume of the work of 
Pistolesi to whom reference Is made). The more general case is 
obtained from the elementary case by superposition of the effects. 
According to equation (20), the second term of expression (19) is 
decomposed Into the asymptotic term (equation (21)) and a term that 
contains the function R and represents the distribution of the 
circulation that would be realized If w possessed, from an indeter-
minate time, the value Aw up to the instant t, and then for 
t > t',	 = 0. The pressures corresponding to this term, which 
represents the effect of the preceding variation and diminishes to 
zero with time, can be referred to as "transitory pressure." 

In the computation of C in a general case, summing the effects 
of all the increments that 9 has received from the start of the 
motion, when it may be supposed w = 0 (so that 	 w = w), there is 
obtained

C=W_fRd	 (22)
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The integral is taken as the sum of the products of all the vari-
ations that 9 has undergone in the preceding instants (the procedure 
is not mbdified whether the variations are abrupt or gradual) for the 
corresponding values of R. The distance traveled by the wing, 
measured from an arbitrary origin, is denoted. by s; the value of a 
for the position at which the pressures are measured is denoted by 

and the value of a for the distance Bo-s referred to the semi-

chord is denoted by ; The values of the function R(o) are given in 
table I. These values have been obtained from the recent tabulations 
of Kussner and Schwarz (reference 13). 

11. General solution. - When the expressions of the two pre-
ceding sections are collected, the resultant pressures for a general 
case of motion may be computed. If the values of w are expressed 
by the series of equation (16), which is put in the form 

	

w V + ZAn V
	

(iSa) 

the pressures corresponding to the first term, according to equa-
tions (19) and (22), are given by 

P = PV 2 d
	

+ 2	
-	

d) cot
 f 

whereas, the values of w that constitute the summation of equa-
tion (16a) correspond to the pressures 

P pY 

where 7n is expressed by equation (14). 

It is convenient to divide the total pressures into a part that 
depends on the history of the motion and has been denoted as the 
transitory pressure given by 

i. 2cotl Rdi 
pv

Jo

(23)
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and into a part P ., which depends only on the actual values of the 
parameters that characterize the motion and is denoted by the 
"instantaneous" pressure, given by 

= 2 cot + ? v d.t	 sin & + Zi11 

When equations (14) and (17) are used, this relation assumes 
the form

A'+1 - A' 1 
= A0 cot - 2	 (A +	 - ) sin n	 (24) 

For the computation of the pressures on the profile, the fol-
lowing operations are therefore required: 

(I) From the law of motion there is obtained, with the aid 
of equation (1), the expression for w as a function 
of time and of the coordinate . 

(Ii) By developing v in a Fourier series, the values of A 
as functions of time are computed. 

(III) From the instantaneous values of A and the derivatives, 
the values of V are computed from equation (24). 
When v has been determined from equation (17), the 
values of T are computed by equation (23) and hence 
the resultant pressure p	 + D. The total force 
and moment are obtained by the simple integrals 

P=

pxdx 
J-1
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The formulas given here are also valid without change if V 
varies from one Instant to the next. In such a case, it is con-
venient to assume as a reference variable instead of time the dis-
tance s traveled by the wing. Therefore 

A' = d
	

where de = V dt. 
s' 

In the calculation of the transitory pressures, the expres-
sion (23) is usually computed by graphic integration. When the dia-
gram of ii as a function of	 is known and the value of R is 
obtained from table I, it is convenient to draw the graph of (R) 
(fig. 5), which is obtained by laying off, for each ordinate , 
the corresponding value of R for the same position. The area 
enclosed by this curve, by the vertical axis, and by the two hori-
zont'tl lines through the ends (one of which Is the axis 	 0) 
represents the integral of equation (23) (cross-hatched area in 
fig. 5). If when tracing around the contour from a to b the 
area is on the right, the area is considered positive; In figure 5 
the value would be considered negative. Even though the graph of w 
presents abrupt variations (as in the case of the figure), no compli-
cations are thereby introduced. 

When it is possible to proceed by the analytic method in com-
puting the preceding integral, it is convenient to assume as the 
variable of Integration the distance s. Equation (23) is there-
fore written as

= - 2 cot  

Bo 

2j	
de  R(s-s) dB	 (23') 

or as

= 2 cot 

tlo 

f_. R(0) d3	 (23") da 

12. Example of application. - Let it be assumed that the wing 
always displaced with constant velocity in magnitude and direction 
undergoes a sudden small rotation (of small amplitude) about a point



20
	

NACA TM 1277 

of the chord. Let there be determined the law of the variation of 
lift and of the focal moment at the instant of the rotation. 

It is convenient first to assume that the rotation occurs in 
a finite interval of time and then passes to the limit to let the 
Interval approach zero. Let a be the angle of rotation, cp the 
final value of a, and 	 o the coordinate of the axis of rotation. 

While the wing travels through the distance from s = 0 to s = 
the angle a increases continuously. Let 

for	 s<0,	 w=0 

for	 0 <s<  , v= -mV+ dC' (COB 150 - COB 
ds 

and for s >, 

Hence,

A0(

	
da	

10)  --=V a+ ds —cos 

A =-V da.— 
-I.	 ds

ds ) 

r	 + COB 

for $ between zero and A the rotation is 9- W. In the first 
phase,

! ..(	 + r 
ds	 ds	 ds2)
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and in the second phase, d/ds = 0. If s = s0 (the position for 

which the pressures are measured), let B0, 'o ... be the values 

of B and the derivatives for 3 s. Equation (231) is then written 
by expanding B in a power series in

r - ids	 (25) -	 v2 cot =fo 	 a 
(R - s B'0 

+	 d2 \ 
 •••) cL -: ^	 ds2,/ 

Then

f
 A 

dm 
de	 CP ds 

'A2 I	 dcs I —ds=0 
ds2 

Jo 

Is-_ds= I	 ds 
Jo 

and moreover ,, the quantities

Isds 
I	 ds. 

do 

f

fl+1d
2

ds 

for t approaching zero become zero at '.
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Thus, from equation (25), for a approaching zero, 

-	 2pcpV2 cot ± .(R0 - r R'o) 

From this relation it is concluded that the transitory pressure 
decreases according to the function P if r 0 or if the rota-
tion occurs about the neutral rear point. If r is different from 
zero, a termis added in the law of variation of p that decreases 
as the derivative ol' F; this term corresponds to the pressure dis-
tribution that is created on the wing in uniform rectilinear motion 
and that executes an instantaneous displacement in the direction 
normal to the trajectory and then continues with the initial speed 
and direction. 

The pressures V after the rotation are given by 

=2pW2 cot 

Hence, the lift after the rotation is expressed by 

P=$ ( +	 dx = p'LV2 (1 - R + rpt)	 (25d) 

where L is twice the chord of the profile and R and B' are the 
function of table I and its derivative, respectively, both approaching 
zero with an increase of the independent variable, which is repre-
sented by the distance of the actual position from that at which the 
rotation has occurred. 

In take-off of the wing, that is, when the wing starts its 
motion from rest,

= 

In the interval 0 <. s	 , V passes from zero to its final 
value 11g . For A-'O,
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Urn' R ds - = R0 CpV0 1J° 
and the lift is therefore still expressed by equation (25a), In which 
the factor in parentheses reduces to 1-R (Wagner's case). For the 
moments, because the pressures are always proportional to cot i/2, 

MF f	 +	 2 dx M 0 X + i )
	 - 

In the preceding computation, the impulsive pressures that are 
generated at the instant of the rotation and cease when rotation 
has occurred were considered. The values are therefore immediately 
obtained with the aid of equation (24). 

13. Computation in finite terms of instantaneous pressures. - 
For the determination of the instantaneous pressures, a convenient 
expression is given by Sb]mgen, by means of which these expressions 
are obtained directly from w without expanding in a Fourier series. 
The expression, modified to conform with the notation used herein, 
may be given in the following form: 

/PVltA0 cot _ !sin 3I	
H(&',$)d3'

(26) it	

Jo 

Cos	 Cos 6 

where

H(8,$) - w(x',$) +5	 dx	 (27) 

and where x = - cos 3 is the coordinate of the point to which B is 
referred and x' - - cos 3' is the variable of integration.
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The lower limit of the integral in equation (27) Is arbitrary, 
so that H is defined except for an additive constant. This arbi-
trariness does not affect the results because 

it
=0 

Cos
Jo 	

- COB JO 
The proof of equation (26) can be given in a mnner that is not, 

however, entirely satisfactory from the mathematical point of view 
by substituting the expression of equation (16) for w in equa-
tions (26) and (27) and verifying that the relation thus obtained 
agrees with equation (24). 

The practical computation of the Integral that occurs in equa-
tion (26) presents difficulties for the singularity of the function 
integrated, at the point t = . For cases that are encountered in 
practice, however, by dividing the chord into a certain number of 
strips it is found that in each strip H can be represented by a 
combination of a few terms of the type cos n& Hence, to simplify 
the applications, Shngen gives the following formula, which in this 
case permits conducting the computation in closed form: 

	

sin 6	 f 0' - COB n' in [ l-cos @-2)J [l_cos(i+i)] + fo cos	 - cos	 2	 [l_cos(ti42)J [lcos(3- .)]] 

n-i 

	

2	 1 sin(n-P)	 (sin ' i 2 - sin Vi1) + (62 - 'i) sin n 4(28) 

where

f=0	 for 0<9.< 

f = cos n for	 < 

f=0	 for
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In each case, by means of a few terms of this type, the func-
tion H can be expressed and the pressures can therefore be com-
puted as a sum. The computation of the resulting actions involves 
easy integrations. In order to simplify this part of the coinputa-
tion, Söhngen gives the expression 

S1n El-cos ( &m )3 sin ni d COB fl - Bin fl + 
n 

n-i 
2 ç" Cos [(n_) 1 +UO1 +' (cos am - cos no) ln[i-cos(8-a,)] 

n 
1 

The use of these expressions will be clear from the examples 
that follow. 

14. Examples of application. - Let the expressions of the pre-
ceding section be applied to the determination of the instantaneous 
pressures corresponding to the rotation of the elevator; that is, 
it is assumed that the forward part of the wing, corresponding to 
values of 0 between 0 and 0, remains immovable while the rear 
part rotates rigidly about the hinge located at the point of the 
abscissa x = - COB 00 . The angle of the elevator is denoted by 
(positive downward) and the primes denote the derivatives ' d3/ds, 
OP = d 2 3/ds2. Hence,

z	 (cos .I0 - Cos 6) 

and therefore, from equation (1), 

v/v = 0 + 31 (COB 0 - Cos O) 

H = w+V	 c0800-" COB 0) sinO 63 B0+B1 COB 10 + B2 cos 20 
Jo0
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where

B0 =V	 + 20 , cOs 0 + i off+
4 COB WO 

B1 = - v (23' + t3't cos 

B2	 Cos 260
4 
P"

For each of the three terms of the expression of E, equation (28) 
is applied with n 0 1 ii 1, and n 2 1 respectively, and with 

= 150, '2 = it. Making the substitutions yields 

sinI COB
 

V$1 - COB i 

= .-. (B
0 + B1 cos	 + B2 COB 2) )r.l - COB	 + Q) + 

1 -Cos ('6-60) 

(it - o) (B1 Bin + B2 sin 2) - 2 B2 Bin	 sin ' 

On the other hand, 

(1t 

A0 =	
w d = 2(ir - o)	 213' (13 +J3' cos 3) + - sin 

Jo
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There is thus finally obtained from equation (26) 

it /2 PV2 + t [sin 60 + (-) COB	 cot + 

[20 , (:K-,50 ) + "(n40 ) cos	 + 1 Bifl Bin 6	
('o) 

sin 26 + 

1-cos(t+t0) 
+ 2'(cos	 - COB	 +	 ' O - COB 

2]	
1-c08 (i.40)

ln 

As a second example, the pressures in the case of the stationary 
gust are computed; that is, the wing is assumed displaced with the 
velocity, which is constant in magnitude and direction, encountering 
air layers that move in a vertical direction perpendicular to V 
with velocities that, at each point of the fixed space,.are min-
tamed constant in time. The graph of w along the wing trajectory 
(shape of the gust) is assumed given and P is a general point of 
the chord that is indicated by the positions corresponding to t = 
and t = t0 + d.t in figure 6. For the point considered, the value 

rx 
of	 w dx is represented at the first instant by the obliquely 

'--1 
hatched area and In the succeeding instant by the same area increased 
by the horizontally hatched strip and decreased by the vertically 
hatched part. The Intervening variation In the interval considered 
will be represented, except for InfinitesIuls of the higher order, 
by the quantity (wl-w) dB- Hence,

tx 

	

H = w +
	

w dx = 

The quantity H is therefore constant for all points of the 
chord. The same conclusions evidently hold for the point P if 
the point P has not yet entered the gust. (The only difference 
with respect to the preceding case is that in this case w = 0.) 
Hence, from equation (26) (the expression for p), the only nonzero 
term will be cot 1/2. It is therefore concluded that for the wing 
that crosses a stationary gust, whatever the form of the gust, the 
pressures are distributed proportionally to cot /2. The same result
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could also be deduced by considerin equatIon (18), for which, in 
this case, the first member should be zero from the hypothesis that 
w does not vary In time. The result given by Kissner that the 
aerodynamic actions on the wing that enters a stationary gust have 
a resultant passing through the focal point is thereby obtained. 
This result holds for the case where the values of w do not vary 
locally; In general, In agitated air the velocities vary rapidly 
with time. 

By following th3 analysis of the problem of the stationary gust, 
the case of the elementary gust (the step diagram in fig. 7) is first 
considered. During the time In which the front of the gust lies 
within the wing,.

AO  
2f	 2  d'&

2,f:K A1 =	 w cos d6 2 S1n' 

sin 15'
AW 

It 

where x'.= -cos i5' is the abscissa of the gust front. When the 
entire wing Is enveloped by the velocity Aw, 

A0 2w	 A1=O 

The instantaneous pressures are therefore represented by 

irp = 2PVw15' cot in the first case, 

arid by

=	 '

 

= 2PV Aw cot in the second.
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For the computation of equation (23), only during the phase of 
the crossing of the gust front is d different from zero, and there 
It has the value

d =!.(l-cos i5') Of 	 ___ dx' 
It	 it4l-x' 

If a denotes the distance of the midpoint of the wing at the 
actual position from the gust front, for which the values of p are 
measured, at this Instant

P1 
-IC /PV Aw cot	 = 2 I	 R(s-x' )	 dx' 

J-1 

T1e pressure may therefore be computed as a function of R, in 
the case of the gust, by means of a simple integration. The resultant 
pressures may therefore be expressed in the form 

	

P = T + = PV Aw Rl cot	 (29) 

where R, Is a function of the distance s = a + 1 of the front 

of the gust from the leading edge of the wing. The function is 
evaluated in table 2; the values are obtained from reference 13. 
When sl is negative, then evidently P 1 = 0. 

From the solution relative to the elementary case, the solu-



tion for a gust of any shape can be obtained by substituting in eq .ua-

tion (29), in place of P1 Awl the quantity IR, dw (taken as 
¼J0 

the sum of the products of all the variations that the values of w 
undergoes for the corresponding values of 

15. Profile in harmonic oscillatory motion. - The same relations 
permit solving the case of harmonic motion. Assume V constant. 
Using the complex variable notation yields 

lQt W = We
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where Q is the frequency and W is a function of i but not 
of t. Equation (26) for this case yields 

X p/)Ve cot	 W d.i - Sill	
W(61 ) 

COB

d' 
- COB 

0 Jo 

(A) sin	 I	 - COB 
fW(x) dx	 (30) 
Jo	 fox 

where

w=i	 X' =•- COB&' 

For,

=	 = dews (d constant) 

(For the position s -

-(ax) 
w (s-a) - w(s)e	 We	 • e 

(Eence, from equation (23"), 

cot WW5R(o)SWQd.a	 (31) 

The sane problem can be attacked by n1dng use of the general 
re:làtions laitiafly given. By procedures that are developed in 
numerous publications and. that, in part, are herein presented, rela-
tions are arrived at that are equiva1ent to equations (30) and. (31). 
In this nmnner, which is more rapid. than direct computation, it is 
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found that the quantity that enters the second member of equa-
tion (31), a function of the reduced frequency =QL/2V, is iden-
tified with the quantity denoted by X •in references 2 and 9 and is 
therein expressed by means of the Hankel function of parameter : 

2) 
=

	 (2) - 1E 

Reference 14 gives a tabulation of this function, which is rather 
important in the study of the aerodynamic phenomenon for the oscil-
lating wing and which is reproduced in table 3. Kiissner uses instead 
the function T correlated with X by the relation 

T = 1 - 2X 

whereas in the paper by Kassner and Fingado (reference 15), the func-
tion P = 1 - X is used with argument V = 

American publications use the function C Introduced by Theo-
dorsen, which has the same definition as P. 

By means of equations (30) and (31), the pressures are easily 
computed for any type of oscillation (for example, translatory, rota-
tional of the entire wing, or rotational of the flap). The coeffi-
cients of the aerodynamic actions have been determined in various 
publications. A complete tabulation for the case of a wing with a 
flap hinged at the forward edge is found in reference 16, the com-
putations for which were developed by the national institute for 
theoretical applications on the basis of the formulas of Kussner. 
In a recent publication by Kussner (reference 17), the case of the 
profile with a flap and with a tab hinged to the flap is treated. 
The fact that the hinges of the two movable parts can be retracted 
with respect to the corresponding leading edges Is taken into account. 

16. Analysis of pressures on airfoil in motion In nonperturbed 
air. -Equations (27) and (28) are considered, with the assumption 
that the values of w are due only to the motion of the wing and can 
therefore be expressed by equation (1). It is first assumed that V 
is constant. Then 

rx	 1rx
- dx =w+J

	

	 —dx 
at
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Inasmuch as adding a constant to the value of 
change the result of equation (26),. 
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H does not

(32) 

and therefore

zz lC2z H V + 2	
+ jdx 

The first term in the second member together with the corres-
ponding term contained in A0 gives rise to the pressures that are 
denoted by P

= cot  
6z	 6z  

fo	 afo 
 d' -	

COB 
dt sin

where 3z/ax is computed at the point of integration X t . - 008 61. 
These pressures are those that are obtained if the wing in the actual 
configuration' Is under the conditions of steady motion.6. 

The second term in the second member.of equation (32) with the 
corresponding term contained in A0 . gives the pressures that are 
denoted by p1:  

Tr p1 /2V = cot	 5 4 d' -'2 fco (34) COS	 COB

These 'actions, which are prOportional to. the vertical veläcities 
of the points of the wing, have, the' characteristic of damping forces 
and can, in part, be interpreted by kinenatic considerations. Thus, 
if the wing is displaced without rotation with' vertical velocity v, 

61n. fact, substituting in this expression th6 value of u/V given 
by equation (37) of reference 11 for 6z/6x '-and developin . 'the.coinputa-
tion yields the value of 'y.=" .p/PV expressed by equation (31) pre-
sented herein. 
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the intuitive result that the wing is in the same condition as if it 
were at an angle of attack v/V is obtained from equation (34). 
Also, in regard to the effect of a torsional motion, a qualitative 
interpretation of p, can be given. If the wing Is, for example, 

in diving rotation, it behaves with respect to the fluid as though 
it were curved upward. It is seen from such considerations that the 
focal moment that arises from this effect Is turned in the opposite 
sense to the angular velocity (damping action). This consideration 
of the dynamic curvature has been put at the basis of the numerous 
approximate investigations on the aerodynamic coefficients of the 
vibrating wing (reference 9). These considerations would lead in 
substance to the computation of the values of p1 with the same rela-

tion (equation (33)) that holds for p 0, in which az/V 6t is substi-

tuted for 6z/3x. This procedure leads to results that are quantita-
tively In error because it is necessary to halve the second term In 
the expression of 

The third term of equation (32) gives rise to the pressures p2: 

(x' 

P2/ 2P sin o	
d'	 32Z 

- dx	 (35) cos i - cos 
Jo	 J-1 

These pressures, which result independently of the vertical 
accelerations of the points of the wing, represent an inertia effect 
of the mass of the circulating air. As evident from equation (35), 
the pressures P2 do not depend directly on the local values of the 

accelerations, but on the entire distribution. Thus, in the case of 
the oscillation of a flap, although the forward part of the wing 
remains fixed, there are pressures over the entire chord. There can 
therefore be no distribution of masses that are apparently capable 
of reproducing the inertia effect of the medium. 

The result of equation (35) Is of interest for the rigid motion 
of the airfoil. In the case of translational oscillation, pressures 
are obtained that are distributed proportionately to sin 9 and give 
rise to the same resultant as though the mass of the cylinder of air 
circumscribed about the wing underwent the motion of the wing. It 
Is easy in such a case to compute also the actions on a part of the 
chord. In the case of the rotational oscillation of the profile 
about the mean point, the pressures of inertia still correspond to a



p3	
dV

/2p at zd' 
Cos - cos
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system of masses distributed according to sin 45., but the total mass 
in this case is equal to one-half that of the preceding case. The 
rigid wing thus undergoes in its motion an inertia action that can be 
thought of as reduced to two masses, each of a value equal to one-
half of the mass of the circumscribed cylinder of air concentrated at 
a distance L/4	 from either side of the mean point (always in 
regard to the computation of the resultant actions). 

It is observed that the pressures P2 have values that are 

independent of the velocity of advance and must therefore be sustained 
in air at rest. For such conditions, the results would not rigour-
ously apply because the assumption of the smallness of the perturba-
tions., as compared with V, does not hold. The results nevertheless 
agree with those that, for any particular case, have been obtained 
without the preceding assumptions and moreover apparently reproduce. 
sufficiently well the actual phenomenon as it is found from some 
measurements by Cicala, in which the periods of the oscillation of 
a wing model in rarefied air and at normal pressure were compared. 
In the case of the phenomenon of the wing vibrationB, the inertia 
pressures are not of great importance, whether because the additional 
masses represent a small part of the mass of the structure or because 
the previously describedactions, which exist independently of the 
velocity V, can be directly included In the computation if measure-
ments of the mass of the structure are made by dynamic procedures. 

Equation (35), which permits computing the inertia pressures 
in closed form, is derived in reference 2, and the expression for p1 

is contained in the same reference. The expression for pl presents 
a certain difference when compared with equation (34) in that it con-
tains a term that in the preceding scheme is added to the transitory 
pressure. 

- If the velocity V is not constant in the expression for U, 
1rx-. 

there is derived from the term	 ° dx in addition to the VJ r 

quantity expressed by equation (32), the term dZ dx, which dtf Cx 

because U is defined except for a constant is written z dV/dt. 
Hence, to the preceding computed pressures there are added the pres-
sures P3, given by 
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From this relation, there is obtained, for example, the following 
result: If the rectangular wing is displaced with velocity V not 
constant and with angle of attack a, which is constant, there is a 
force normal to the flight path represented by the distribution 

p3 = 2pa	 sin t dt 

which corresponds to the mass of the cylinder of air circumscribed 
about the wing subjected to the acceleration dV/dt. 

It IS emphasized that the pressures 	 p0+p1+p2-t-p3 are still 
added to the transitory pressures, depending on the values that the 
quantity i has assumed in the preceding Instants. If the values 
of w are distributed linearly over the chord, W represents the 
value of w at the neutral rear point. The instantaneous pressures 
have, the resultant passing through the focal point. 

The decomposition of the total pressures into instantaneous and 
transitory pressures has no absolute character in the sense that a 
part of the instantaneous pressures can be combined with the transi-
tory (not vice versa, because a term containing the history of the 
motion is clearly distinguishable from the terms depending on the 
actual values). It nevertheless appears that the definition given 
herein is more natural because In the limiting case of steady motion 
the actions resulting from the group comprised of the instantaneous 
and the transitory pressures become zero. 

17. Remarks on treatment of unsteady motion of wing in two-
dimensional case. - The first investigator to study the aerodynamic 
problem of the oscillating wing was Birnbaum, who made use of the 
concept indicated in Section 6 of the splitting of the circulation 
about the wing into bound and free components. Equation (7) is 
integrated for harmonic motion. By use of the complex variable 
notation, in this case,

'.y = (x) eiQt 

c =(x) et
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As is easy to verify, equation (7) is obtained. if 

(x) = _.*)e JX Y(x') ewx ' dx'	 (36) 

where

W IQ/v 

Inasmuch as the free circulation is zero in correspondence with 
the leading edge of the profile (if no other sources of vortices 
occur upstream of the wing), in order that x = -1 and c = 0, the 
lower limit of the integral in equation (36) must be equal to -.1. 
For the points of the wake, the integration is evidently limited to 
the chord, because 'Y is zero outside the wing. 

On the basis of these results equation (8) assumes the form 

2	 = ( (1-f) dx' = f-1 7 dx' iw0	 X'-X	 ' X , -x 

("1	 rx'	 rl. I	 ' 
J	

e " Y(x") dx" - w	 e' dx' j
	

e " (f) df J X , -X	 f3i X'-X  -1 

where x' and f are variables of integration and w = w oe . 

Birnbaum takes into account the condition of separation by 
expressing 'Y by means of a combination of functions that satisfy 
this condition. The solution is sought in the form of a series expan-
sion in powers of the reduced. frequency QL/2V. The series converge 
rather slowly so that the results of Birnbaum are applicable only to 
rather low values of the reduced frequency. 

Wagner (reference 12) considered the problem of unsteady motion 
of the wing of infinite span. In the first part of reference 12, the 
treatment refers to the case In which w is constant over the entire 
chord but variable in time, a case of fundamental importance, as has
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been stated in Section 10. Making use of the condition of separation 
that imposes the circulation of the wing capable of giving rise to 
a finite velocity at the trailing edge, Wagner arrived at an integral 
equation that defines the circulation in the wake of the wing. With 
a procedure based on the moment theorems, Wagner gave an expression 
for the computation of the lift and of the moment on the wing on the 
basis of the circulation In the wake. In particular, the computa-
tions were developed for the take-off motion of the wing. The case 
of rotation of the wing about a point of the chord was also considered. 

The problem of the unsteady motion of a wing was also considered 
by Glauert. In an initial paper (reference 18), he made use of the 
hypothesis that the circulation remains constant, a hypothesis that 
considerably limits the importance of the' results. 7 In a succeeding 
paper (reference 20), he took Into account the variation of the 
clrculatioa. In contrast to Birnbaum., Glauert sought to obtain 
directly the total circulation of the wing, which is divided Into a 
tart that would correspond to the case in which the vortex wake would 
be absent, and Into a circulation Induced by the vortices downstream 
of the wing. It Is simple to show the equivalence of the relations 
assumed by Glauert for computing the lift P and the moment M with 
respect to the center point of the wing with the relations that are 
obtained on the basis of the bound circulation. From equation (4), 

Pl

	 f
P/PV =	 (g-) dx = K - C dx 

l
(37) 

Cl 
M/PV= 1 (g-c)xdx 

J-1 

Considering that for x = -1, c = 0, and for x = 1, according 
to equation (3), VC = - dK/dt, integration by parts yields 

Cl	 1 d.K 
Vdtj11d 

Cl	 ___ 1 dx	 2 I	 Cxdx_VdtIx 5x dx 
J-1 

7Lairib (reference 19) also treated the problem with the same 
restriction.
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With the aid of these relations, equations (37) become 

:1-

P/P TIC + dx
	 I gxd.x at + Ft

I M/PVI

P1 

	

dx + 1 dx 1	 f 9x2. at - F Ft 

considering that, according to equation (5), 

and that the sign of the differentiation can be taken outside the 
integrals because the limits are Independent of the time. Equa-
tions (38), whichare the equations used by G].auert, serve for the 
computation of the resulting aerodynamic actions but do not lend 
themselves directly to the determination of the pressure distribution, 
a computation that Is necessary if it Is desired to know the actions 
on part of the wing (flap). The equations obtained by Wagner are 
also subject to the same limitation. 

With the values of g expressed with the aid of the instantaneous 
characteristics of the rigid motion of the wing on the basis of the 
circulation existing in the wake, Glauert determined the lift and the 
moment with the aid of equations (38) and arrived, at expressions 
agreeing with those of Wagner. For harmonic motion, in which the 
circulation is distributed in the wake according to the sinusoidal 
law, the solution of the problem reduces to the determination of 
certain integrals that G].auert obtained by approximate procedures 
that limit the results to values not much higher than the reduced 
frequency. 

On the basis of the work of Birnbauiu, Kiissnsr (reference 8) again 
took up the problem of the oscillating wing, assuming for the bound 
circulation the functions that are used for steady motion (refer-
ence 11, p. 184). The corresponding w, expressed as a function of x, 
consists of a polynomial and of a trigonometric function multiplied 
by a factor depending on 3, which Küssner computed by means of a

(38)
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power series. After rather laborious computations, Küssner obtained 
the pressure distribution on the wing corresponding to the motion of 
translational or rotational oscillation of the wing and also, approx-
imately to the motion of the flap, for which he derived the coeffi-
cients of the aerodynamic actions for the field of variation of j5, 
which is of interest for the phenomenon of wing vibration. 

Connected with the investigations of Wager and Glauert is the 
theory developed by Theodorsen (reference 4), in which there are 
separately determined by use of the methods of conformal transfor-
mation the potential function on the wing for simple fundamental 
motions of the wing with flap. From the potential function, Theodorsen 
determined the pressures with the aid of the Bernoulli's equation 
generalized for nonstead.y motion (reference 11, p. 38):

(39) 
P.2	 E 

(where (P is the potential function). 

In the computation of the difference in the pressure between the 
lower and upper surfaces of the wing, it is necessary to consider, 
according to equation (39), the quantity derived from the variation 
with time of the difference in potential existing between the two sur-
faces of the wing. This difference Is measured from the circulation 
of the velocity, which is determined by following a path (fig. 3) that 
joins the two points situated on the opposite surfaces and passes, 
always in the proximity of the wing, through the forward edge of the 

J
x 
11 

wing, thus obtaining the quantity 	 g dx; it is thus seen that 

the second term in the second member of equation (2) represents the 
corresponding term In 6cp/6t in equation (39). 

Theodorsen's treatment of the problem represents a marked advance 
with respect to the preceding work because it determines the distri-
bution of the pressures on the wing and hence, in contrast to the work 
of Glauert and Wagner, permits the computation of all the coefficients 
of the aerodynamic actions for the wing with a flap. Also, because 
the integrals with which the effect of the vortical system of the wake 
is computed are solved by means of Hankel functions, all restrictions 
on the value of the reduced frequency are thus eliminated by use of 
the existing tabulations..
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Independently of Theodorsen, and almost simultaneously.. Cicala 
arrived at the solution of the problem of oscillatory motion of a 
defornble wing with any law by the same method followed by Birnbaum 
and K{issner. In reference 9, It is proven that a class of functIon8 
exists, depending on the reduced frequency, that represents the dis-
tribution of the bound vortices, which correspond to the velocity w 
distributed over the wing by a particularly simple law. The first 
of these functions, corresponding to constant w on the chord, con-
tains the Hankel functions of the reduced frequency; the others are 
essentially represented by the 7n of equation (14) and give rise to 

the values of W in equation (12). In this manner, relations were 
obtained by means of which the coefficients of the Fourier series of 
the bound circulation on the wing can be computed in closed form as 
a function of the coefficients of the series for w. The coefficients 
of the aerodynamic actions for the wing with flap were thus computed. 
In a. succeeding report (reference 2), it was also shown how the pres-
sures depending on the second power of the reduced frequency (inertia 
pressures) and those proportional to the first power (pressures p1) 

could be computed in closed form without developing them Into Fourier 
series. 

At the same time, Kissner arrived at the solution of reference 9 
by a procedure described In reference 21, some results of which were 
anticipated in reference 22. The general case of nonsteady motion 
was also treated in reference 21, where the discontinuous motion was 
studied on the basis of the solution for the harmonic motion with the 
use of the Fourier integral. The case of a stationary gust was studied 
and tests were conducted (reference 23) confirming the result obtained 
that the focal moment remains zero during passage through the gust. 
The solution of Kiissner was used by Dietze (reference 24) to compute 
the resultant of the actions on the flap (in the preceding papers 
only the hinge moments were computed); it was also used by Krall 
(reference 16) to elaborate, with the aid of the National Institute 
for Applied Computations, the tables of the aerodynamic coefficients 
for the oscillating wing, and was used by Dietze again (reference 25) 
for the computation of the coefficients for the wing with a flap and 
a tab hinged to the flap. 

Kassner and Fingado (reference 15) also succeeded in computing 
the actions corresponding to the oscillatory rigid motion of the wing, 
nmldng use of the Wagner's expressions by which, in the case of har-
monic motion, the evaluation of the integrals relative to the effects 
of the vortices in the wake was investigated with the aid of Eankel 
functions by Borbly (reference 26). With the aid of the Wagner's
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expressions, Ellenberger computed the resultant actions on the wing for 
a flap rotating according to a general function of time (reference 27). 

In a summarizing note, Jaeckel (reference 28) established a coor-
dination between the procedures of Glauert, of Lamb, and of Birnbawn-
Kissner for the solution of unsteady motion of wings and considered 
also the case of the wing with a variable chord. Jaeckel also pub-
lished a systematic derivation (reference 29) of the results that were 
given with rather synthetic justification by idissner. A clear review 
of the theories on the wing in unsteady motion was given by Lyon 
(reference 30). 

The results of the preceding studies, with some further develop-
ment, are treated by von Krmain and Sears (reference 7); a derivation 
procedure is developed that presents in an intuitive form the mathemati-
cal fundamentals of the investigation. The computation is restricted to 
the determination of the lift and the aerodynamic moment, which are 
computed with the aid of the expressions, respectively, 

P/P =	 Fj Xi	 (401) dt 

M/P =	 E F x2	 (4Q9) 

The second member of the first expression represents the rate of 
variation of the moment of circulation of the system measured with 
respect to a fixed point; in an interval of time dt, this moment 
should vary as the bound vortices are displaced by the amount V dt, 
while the position of the free vortices and therefore the moment with 
respect to the fixed axis have not changed. The total variation will 
therefore be given by the product of the total bound circulation and 
V dt and therefore, when multiplied by the density and divided by dt, 
will give the lift. By analogous reasoning, the second of equa-
tions (40).is verified. Thus, the square of the distance from the 
fixed point varies by the amount 2VX dt for the boind vortices while 
It remains constant for the free vortices. Hence, the variations of 
the second member of equation (40tt) will be represented by the moment 
of the bound circulation or the aerodynamic moment except for the 
factor P. 

From these relations, von Karmán and Sears derived expressions for 
the lift and the aerodynamic moment, which present a better generali-
zation than those of Glauert Inasmuch as they can also be applied to



42	 NACA TM 1277 

the d.eformable profile; but the relations still do not permit compu-
tations on parts of the wing. The authors divided the total circula- 
tion into a part that would he obtained in the absence of the vortex 
wake (so-called quasi-stationary system) and into the induction of the 
vortices of the 'wake. The case of the general motion of the profile 
and of a stationary gust is also considered. 

Garrick (references 31 and 32) brought out the relation (Laplace 
transform) that exists between the Wagner function, which gives the 
circulation by the elementary discontinuity, and the function that 
holds for the harmonic motion and proposed the use of approximate 
expressions to represent the function of Wagner, which would be use-
ful in the analytic solution of various problems of unsteady motion. 

Poselo, making use of the acceleration potential, considered the 
problem of the discontinuous motion of a wing (reference 10) and the 
case of the stationary gust. 

In a recent publication (reference 17), Kiissner and Schwarz indi-
cate the relations with which the pressures on the profile, can be 
computed without making use of Fourier series but using integrations. 
These equations were applied to the determination of the aerodynamic 
coefficients for the wing with flap and hinged tab on the flap, when 
the case is considered in which the hinges are set back relative to 
the leading edge of the moving parts. The same relation for the com-
putation of the pressures on the oscillating wing was derived in a 
different manner in a report by Schwarz (reference 5), in which a 
clear and rigorous derivation of the known solution of the aerodynamic 
problem of the oscillating wing is developed. 

In reference 13, Kiissner gives the general solution of unsteady 
motion in the two-dimensional case and the functions of Wagner and 
those relative to the aerodynamic actions produced by a gust are com-
puted with greater precision. 

The general case of unsteady motion has also been treated in a 
report by SImgen (reference 6). The solution is put in substantially 
the form indicated in Section 13.
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PART II. - WING OF FINITE ASPECT RATIO 

The relations that connect the velocities induced by the vor-
ticity of the inductor system of a wing of finite aspect ratio are 
derived herein and a form for these expressions is sought that lends 
itself to a future refinement of the investigation that, up to the 
present, has been conducted with approximate procedures. An evalua-
tion is then given of the various approximations that have been used 
in the theory of the finite wing in unsteady motion. 

The consideration is restricted to essentially rectilinear 
motion of the lifting surface; that is, it is assumed that the velo-
city of the points of the wing give small deviations relative to a 
mean value V, which maintains its direction unchanged with respect 
to the motionless fluid at infinity. It is assumed that V is small 
compared with the velocity of sound. The origin of the orthogonal 
axes x, y, and z is located at the point at which the induced velo-
city is measured (point of induction). The x-axis is taken parallel 
to V and in opposite direction; the y-axis is normal to the x-axis 
and is contained in the fundamental plane that, during the motion, is 
at a very small distance from the points of the lifting wing, which 
is assumed to be of infinitesimal thickness and curvature; the z-axis 
is perpendicular to the x- and y-axes and directed downwards. The 
vortices having an axis parallel to the x-axis (longitudinal vortices) 
and to the y-axis (transverse vortices) are considered positive if 
turned In the sense that carries the positive directions of x and y 
on z. In the middle section of the wing is located the origin of the 
- and ri-axes parallel to x and y. The sornispan of the wing is 

denoted by by so that for the points -b < 	 by o and rio denote 
the coordinates of the point of induction, hence 

x	
- 

y 7 1 - TQ 

Let t (r) be the equation of the leading edge; t p(r) the equa-
tion of the trailing edge; p-	 L the chord; 2 the pulsation;
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the imaginary factor 1L2/V; 	 the reduced frequency QL/2V; 

YL 
the integral taken over the chord from the leading to the trailing 

edge. The other symbols are defined in the text or in Part I. 

18. Inductor elements in tridimensional case. - Let P (fig. 8) 
be a point of the wing that moves relative to the fluid with vector 
velocity y of magnitude v and having any direction; the linear ele-
ment dl through P normal to i supports the bound vorticity F; 
that is, supports the aerodynamic action pvF dl. In the interval 
dt that precedes the actual instant, the point P starting from P' 
is displaced by the segment do = v dt. The total Inductor is then 
changed in that the bound vorticity element has come to occupy the 
position 1-2 from the position 3-4 1 leaving behind it free vortices 
and simultaneously creating the two longitudinal elements 2-3 and 1-4 
of equal circulation F. There is thus added to the preexisting 
inductor system a closed vortex element 1-2-3-4; on the side 3-4, which 
at the Instant t there exists the vorticity element of intensity 
-d ]P liberated from the bound vortex, it may be assumed that there 

simultaneously exist the vorticity 1' - 	 do, which existed at the do 
time t-d.t and the element of intensity F with oppositely directed 
sign constituting the fourth side of the circuit 1-2-3-4. 

With the aid of the formula of Blot, it is found by simple com-
putation that the closed vortex element induces, at a point 0 at 
distance r from P, a velocity that, except for infinitesimals of 
the higher order, may be written as8 

d.2w = - F dl do/4nr3 

Whatever happened in the interval dt occurred in all the pre-
ceding time starting from the instant at which a force on the lifting 
element has arisen; that is, since an element of the bound vorticity 
as created. In the problems that ordinarily present themselves, it 
is assumed that v always has the same direction parallel to the 
x-axis, or more precisely, the deviations with respect to this direc-
tion are considered sufficiently small. Let do and dl therefore 

8The symbol d.2 is used to indicate a quantity that, divided by 
the product Al, has a finite limit when these elements approach zero. 
With the assumed signs, v is directed upward and is therefore 
negative.
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be parallel to x and y, respectively. The symbol j denotes the 
distance measured from the point P of coordinates x and y, 
parallel to x, assuming that the circulation I' on the element of 
the lifting surface considered is expressed as a function of U. 
Summing the effects of the closed vortex elements created in the 
preceding time, the velocity at 0 is obtained: 

Fda	 (41) I 4J r3	 4 x.Fo)2 + 723 

The velocity induced by the bound-vortex element and by the 
system generated by it for r 0 is identical to that which is 
obtained on the basis of the concept of the acceleration poten-
tial and which is defined as the field of the pressure dipoles 
(reference 33). 

The particular case of steady motion (F constant) is con -
sidered. Inasmuch as 

I/\G^1)2 

da	 "L 	
x+a1

	

+ y23 Y2 	 + 2)	
(42) 

a quantity that Is denoted by f(*x+ai,y), then from equation (41), 

- 41 dv - Ff(x,y) dy	 (43) 

where dv denotes the velocity induced by the elementary horseshoe 
vortex of frontal side dy and circulation F. The velocity (fig. 91,) 
induced by the semivortex 2oD is 1 (i -	 X	 and therefore, 

	

Y	 A/x2+y2) 
summing the velocity corresponding to the other seinivortex, which 
has the opposite sign to the first, there is obtained, except for 
infinitesin1s of higher order, the quantity 

dy • r.	 '1 -	 T1 - dy
[-	

(	 -	
+ F 

nj 
LY

r	 r3j
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Adding to this quantity the velocity corresponding to the 
frontal segment yields the value of dv given in equation (43). 
The equivalence, which in this case holds between the inductor 
system of the pressure dipole and the elementary horseshoe vortex, 
can also be seen by considering that the sides parallel to y of 
the continuous vortex circuits (indicated by the small circles in 
fig. 9(a)) are canceled if j has the same value for all. This 
inductor element Is called a bivortex and a section of It closed 
in front and behind Is called a segment of a bivortex. 

Making use of equation (42) and integrating by parts yields, 
from equation (41), 

- 4n dv = F f(x,y) d + dyf	 f(x+o,y) d	 (44)do 

The operation that leads from equation (41) to equation (44) 
transforms the inductor system constituted by the closed circuits 
into a system of bivortices: a generating blvortex originating 
on the wing, denoted as a bound blvortex, and. a row of free vortices. 
In a distance do of the wake of the bound bivortex, free bivorticea 
originate the circulation of which is represented by the variation 
that the intensity of the bound bivortex has undergone in passing 

through the distance do; that Is, dr d. 

For harmonic motion, 

where F is constant and Q is the frequency of the motion. In 
this case, V is always assumed constant. The circulation of 
element 12 at the time in which the point P of the wing was set 
back with respect to the actual position by the amount a is repre-
sented by

- 

that is, with respect to the actual circulation F, a lagging phase 
shift represented by c/v = w,. Making use of this result and 
denoting by OF dy the velocity induced by the bound bivortex and 
by the system of the wake in the case of harmonic motion yield
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N -	 e	 do	
(45) - 4iEw -  

J
t/(y.)2 + 

By setting 

	

x=Qx/V	 3F=cy/v 

equation (45) can be written in the form 

41rL?	 (46) 

where 0 is the function of two variables i and y defined by the 
relation

(,y)fo

	

e'10 do 

 + 2]3/2
(46a) 

For x = 0, this function has been computed by i1ler (refer-
ence 34, p. 36). For 	 0,

1 

	

e	 e 	 du I (,y) = 1[(0) j
0 (u2+2)3/2j 

With the aid of this relation, which is easily obtained from 
equation (46a), the computation is reduced to the tabulated function 
and to an integration between finite limits that can be carried out 
by graphical or numerical methods. The computation of 	 was carried out for 7 2. When

= i + ir 

there are plotted as abscissas and ordinates in figure 10 the real 
and 1nginary parts	 and 0 1, of the function and the curve with
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the values of 5E drawn. This curve serves for the computation of 
the velocity induced by the pressure dipole at the points of a sec-
tion at distance y = ZV/0 from the inductor elements. The point 
I = 0 is at the origin of the dipole. The points that are found 
upstream correspond to the positive values of I. For this segment, 
the values of	 decrease continuously but all have slightly dif -

ferent phases. Proceeding toward the downstream region, the points 
shifted back with respect to the front of the bivortex generator 
(I < 0) encounter velocities that vary little in magnitude but rela-
tively more in phase. It is evident that at a great distance from 
the origin the velocities vary on the parallel considered by a sinu-
soidal law and therefore the representative point of figure 10 for 
negative values of x increasing in absolute value will approach a 
certain limiting circle with center at the origin. 

19. Correction of divergent expressions. - The expressions of 
the preceding section are sufficiently well adopted for the computa-
tion of the velocities corresponding to the inductor system of a wing. 
Special methods are required, however, for the points of infinity that 
are presented by the functions under the integral sign present. 

The case of steady motion is first considered. A bound vortex 
filament AB (fig. 11(a)) of circulation F varying from point to 
point is considered and. with this filament is associated the system 
of longitudinal vortices that is shed from the points of AB according 
to the condition of Helmholtz. The velocity that these elements 
induced at a point 0, which is outside the vortex 'wake of the fila-
ment AB, can be computed by means of the relation 

CA 
- 4itw =	 F.f(x,y) d.y	 (47) 

J B 

where x and y are the coordinates of a. point of the filament AB 
at which I' is the circulation. This expression reduces the inductor 
elements to a system of bivortices that originate on the filament AB 
(scheme of fig. 11(b) for A—*0). The demonstration of this equa-
tion is given in reference 35. An intuitive justification is obtained 
from figure 11 (b). The segments of the dotted , vortices in the limit 
reproduce the effect of the generator filament AB, whereas the other 
longitudinal elements constitute the system of the marginal vortices; 
each pair of contigous elements function as a single inductor ele-
ment of circulation equal to the difference of the circulations of 
the two elements that compose it.
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This expression is applied to an indefinite vortex of unit cir-
culation at a distance x 0 from the point of induction. If x 0 is 
positive, f always remains finite. In fact, 

xo	 1 

y— " o Y A/c+ y2J 2x20 

If x0 is negative, f increases indefinitely for y—O. 

Hence, in a singular integral, it is necessary in computing equa-
tion (47) to exclude from the integration the small segment segment from 
y = - S to y +5 and then make S approach zero. The expression 
that is thus obtained, however, has no limit, as is intuitively evi-
dent from an examination of figure 12. The bivortices (fig. 11(a)), 
into which equation (47) transforms the inductor system when the ele-
ments contained in strip 25 (which includes the point 0) are 
excluded, are equivalent to two angular vortices (fig. 12(b)) (because 
the semivortices joined by the small circles are canceled) and these 
elements, on approaching 0, induce a velocity that increases 'without 
limit. For this reason, the integral equation (47) diverges if the 
abscissa x0 from the point at which the filament AB cuts the x-axis 

is negative, as in the simplified case of figure 12; in the computa-
tion of the principal value of the singular integral, an expression 
is obtained that increases indefinitely and that represents the velo-
city induced by the two setnivorticea, which are indefinitely removed 
from the point 0. (See fig. 12.) 

In order to eliminate the previously discussed divergence, the 
following artifice may be applied: There are added to the elements 
of the filament AB those of the indefinite vortex I (fig. fl) 
passing through the point Q at which the x-axis through the point 0 
intersects the filament AB and having the circulation -t'0, where 
ro is the value of F at Q. The system thus obtained gives a velo-

city at 0 that is denoted by Dw end, according to equation (47), 
is represented by 

41tDw=f[rof(xoY) - Ff(x,y)Jdy 	 (48) 

The first term of this integral represents the effects of the 
bivortices having their origin on vortex I; the second term refers 
to the bivortices having origins on filament AB (hence the integra-
tion is extended from y of the point A to that of B). The two
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terms are divergent when taken separately, but give a correct expres-
sion when added. The intuitive reasoning for this lies in the fact 
that the two semivortices that, according to the scheme of fig-
ure 12, include the point 0 and arise from the vortex I find 
compensating terms in the elements arising from the filament AB. 
The velocity induced by'the vortex I is then added to Dv. 

In the case of a system Z of inductor elements analogous to 
the filament AB with corresponding marginal vortices, the following 
procedure may be used:	 - 

I) The transverse vortices cut out from the section by the 
induced points are prolonged indefinitely, thus obtaining a system 
, the induced velocity of which w' is computed by the formulae 

of the two-dimensional motion. 

II) The quantity Dv, which constitutes the velocity induced 
by the system Z2 = - i obtained by superposing on the inductor 
system Z the system E l with reversed sign, Is computed with the 

aid of equation (47) .and added to w' 

The advantage of the preceding procedure lies in the fact that 
both w' and Dv have a homogeneous inductor system (indefinite 
vortices for E l., bivortices for 2) and therefore free or bound 

longitudinal and transverse vortices need not be separately considered. 
The advantage is reflected in the simplicity of the formulation of w 
and in the rapidity with which the results of the existing theories 
for the approximate solution of the problem under consideration are 
derived from this scheme. 

The same procedure can be applied if the motion Is unsteady. 
The bound-vortex system impresses on the fluid an Imprintrepresented 
by a similar vortex configuration corresponding to the variation of 
the intensity of the generating system. These vortex systems carried 
by the stream may be treated as shown for the bound system. The 
plane system Z including the free vortices can be analyzed by the 

formulas of part I. The system Z2 is made up of bound vortices 
with the corresponding wake of the row of free elements (that is, 
pressure dipoles) and can therefore be analyzed with the aid of 
equation (48). 

20 Vortex system of wing. - The velocities induced by the vortex 
system of a wing can thus be computed by adding to w', induced by
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the plane system that would obtain if the transverse vortices cut 
out from the section through the point of induction were indefinitely 
extended, the velocities Dv that, as a function of the bound vor-
tices, are written as 

Dv =iJ' ,4 &x dy -

	

YOQ dx dy	 (49) 

If harmonic motion is considered, the functions w can be 

derived from equations (45) and (46). If the intensity of the gen-
erator bivortex varies according to a different law, it is necessary 
to make use of equation (41), for which the function I' (a) must 
be known. From this relation the function	 dy/dy F(o) is 
obtained, which, in general, varies with time. 

The first of the two integrals of equation (49) is extended to 
the surface S of the wing, ' being the bound vorticity, the 
second integral is extended to the strip S1 included between the 
lines 11 and t1 parallel to y passing through the points at 
which the chord through the point 0 cuts the leading edge 2 and 
trailing edge t; the vorticity yo on this strip Is that which is 
on the wing at the section through 0. On each element of the sur-
faces S and S1 there originates a bound bivortex of circulation 
y dx d.y connected with the pressure, which acts on the element by 
the relation

p = PV7 

In the computation of Dv, as in the computation of vt , the 
total circulation g along y can be referred to instead of 7, 
the two quantities being connected by the relations of part I. When 
the effects of the elements of a section y - constant are considered, 
a system of bivortices will be obtainedthe origins of which are dis-
tributed either on the chord or in the wake, the intensity of the dis-
tribution being represented by g. The expressions are restricted to 
harmonic motion and are written as 

As the reduced frequency w increases, the modulus of 
decreases and therefore also Dv, which represent the correction 
velocities due to the finite span.
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= g(,r) e ic)t 

K_rgdx.K() e
 ict 

JL 

In the wake at a distance 0 from the rear edge in a segment do, 
bivortices originate that have the circulation 

d. 1 L2 
do 

equal to the change that the total circulation K has undergone in 
the interval in which the rear edge has passed through the distance do 
at the time t-Q/V in which K(0) was displaced with respect to the 
actual value by Qo IV:

K() K e 

The velocity induced by the elements of the section considered 
is therefore proportional to 

	

fL
gf dx +	 d(Ke°) f do =f	 dx -WKe 0f do (50) 
 f0,00 do 	 Jo 

The symbol 1. denotes the abscissa of the rear edge of the 

chord (that is, Xp = p - o)' therefore 

f'(x,y) f(x,y) - f(xp,y) 

It is easily found by. using equations (44), that equation (46) 
can be 'written in the form 

	

-	 = f(x,y) - w
jo
. f(x+,y) e0 do
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Hence, equation (50) can be transformed to 

j

gf' dx - 2K'	 (50')

L 

The expression for the velocities Dy at the point to ,, TIO
 

is 
therefore obtained: 

	

- 4,x Dw fb
	

g() ft (x,y) 
db	 L(i) 

	

f
cii 1	 g(0) f'(x,y) d - 
 L(r0) 

w 2j(n) K(r) dr +w2f:(,Y)	 (o) th	 (51) 

where J ()	 indicates the integral taken from	 (Ti) and
and with XIJ the quantity [(to) - 

The first of the integrals in the second member of equation (51) 
represents the induction Of a system of segments of bivortices having 
their origin on the points of the wing and ending on the rear edge of 
the chord., and which are 0± intensity equal to the total vorticity at 
the point of origin. The second integral represents the effects of 
the analogous inductor system existing in the strip 81 . The third 
integral expresses the induction of the wake system constituted by a 
system of pressure dipoles with origin on the trailing edge of the 
wing. The fourth integral refers to the elements of the 'wake having 
their origin on the line t1 .	 S 

If

=	 g(',) d'	 (52)
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the first two terms in the second member of equation (51), which 
corresponds to the velocity denoted by w2 , can be transformed by 

integration by parts so as to assume the form 

-

	

	 =Ib a$

	 G(,i) d';'	 af	
G(0) dr 

y2	 r	 -I 2	 r3 
-b	 L(T1)	 -	 L(T10) 

where

It Is then observed that, in regard to the effects of the ele-
ments of the wake, the difficulties arising from the divergence of 
equation (47) cannot appear because all the points of the wing are 
located upstream of the line from which the system of the wake 
originates. Bence, for these elements the decomposition into the 
systems El and Z2 can be avoided and the total w w' + Dw can 
be directly computed. The velocity denoted by W3 Is thus obtained 
and is expressed by

2 
4nv 	

2f

b

	

K(ri0) 
(in)	 K(i) d1 - 

b 

If wi denotes the velocities Induced by the plane system that 
is obtained by indefinitely prolonging the total vorticities cut by 
the section containing the point 0; that is, if 

f(i0)	

, g(o) d 
2nw

 

the resultant velocities are expressed by the sum w = w 1 + W + V3. 
In general, w1 must represent the preponderant part of w, which 

facilitates development of the methods of Iteration for the computa-
tion of the function g for an assigned w. The velocities w2 

which represent the part whose computation presents the greatest 
analytical complexities, are independent of the reduced frequency and
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are therefore determined only once for any frequency of oscillation. 
The values of w3 , which depend on the frequency of the motion, are 

expressed by simple Integrals and are, moreover, zero for all the 
distributions of the circulation (equation (11)) for which the 
integral K is zero. 

21. Approximate theories. - A first approximate treatment of 
the problem of unsteady motion of the finite wing was developed by 
Cicala (reference 36). The principle of approximation there assumed 
finds simple formulation if reference is made to the expressions of 
the preceding section. Although use is made of the exact solution 
regarding w', in the computation of Dw the segments of the bivor-
tices of Z21 to which the first two terms of equation (51) correspond, 

are neglected and, moreover, it is assumed that on every chord the 
velocity induced by the system of the wake is constant and equal to 
that which would obtainif the system started at the point of induc-
tion. Hence, referring to equation (51), in addition to neglecting 
the first two terms of the second member, in the computation of the 
other two by	 , a function of the abscissa and of the ordinate of 
the point of t with respect to 0, the value corresponding to 
x = 0 Is substituted. As a consequence of the first approximation, 
Dw = 0 If K = 0. Hence, if g is represented by a linear combi-
nation of gn of equation (U), the corresponding velocities are the 
wn of equation (12) and the pressures are obtained from the y 
defined by equation (14). Reciprocally, if the vertical velocities 
on the various chords can be represented by a combination of w, 
the corresponding circulations and pressures can be computed on the 
various chords, section by section, as though the motion were two 
dimensional. This fundamental simplification permits reducing the 
tridimensional problem to a single case; for example, that of ver-
tical velocities constant on the different chords: any distribution 
of w that Is developed in the series of equation (16) (in this 
case, An is a function of the coordinate measured along the 
span) requires particular examination only for the circulation 
corresponding to the Tf defined by equation (17) (this simplifica-
tion Is also,in general, variable from one section to the next). 

The bound circulation corresponding to the velocity 
w = 9 = constant over the entire chord is obtained on the basis of 
equation (19) In which, if harmonic motion Is considered, according 
to equation (22) and the results of Section 15, the following rela-
tion must be substituted:

C
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From y, C Is then computed with the ald of equation (36) 
and then the total circulation yields 

K SL 
('+ x d 

When the computations are nude, It Is found that between 
and K or between the total amplitudes of the quantities W and 
there exists the relation 

(E	 - H(2)) e1	 27M 

where 11 is the Hankel function of paranieterW. 

The velocity 7 Is that induced, by the system Z1; to this
quantity is added the velocity due to the system T,2 j, which, for the 
assumed simplifications ., is also constant on every chord. With the 
computation's developed in reference 35, equation (51) Is transformed 
into the relation

-4Dwuf-b
	

NdT	 (53) 

where

TI coordinate measured from middle section of wine parallel 
to y (which is measured from point 0) 

y 

F function of variable y - Qy/V defined by 

OD 

F	 e	 ,+A du 
U	 U2 Y2 )
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This function is computed by this relation for y > 0. For 
y < 0, F(y) -F(-y). The function F is tabulated in reference 37; 
in a recent report by Kücsner (reference 33), the function N is 
tabulated. 

Adding the velocities induced by the systems E ]. and E2 yields 

- —	 (B2)) iH(2)l) e -° - K	 1 dK 
N dT	 (54) 

2L	 4:K f- b dil 
This equation, on the basis of known values of W., defines the 

distribution of the total circulations along the span. For Z5 = 0, 
this reduces to the integrodifferentlal equation of Prandtl. Inasmuch 
as, for the simplifications assumed, the distribution of 7 over the 
chords is similar to that of the two-dimensional motion, on the basis 
of the values of the total circulations, the problem is completely 
solved. Given the series of equation (16) on w, the circulations 
and the pressures corresponding to the part that Is developable in 
the series of wn is computed as if the motion were two-dimensional, 
whereas for the remainder i, the circulations are distributed on the 
chord as If the motion were two-dimensional and along the span of the 
basis of the solution of equation (54). 

In a succeeding note (reference 37), the procedure was applied 
to the determination of the aerodynaniic coefficients for the oscil-
lating 'wing. 

Independently of reference 36, Borbly proposed a type of approxi -
mation for the computation of w for the finite wing (reference 38). 
Reference 35 shows that the expressions that .Borb&y elaborated for 
the computation of Dv In the particular case of the elliptical 
distribution of K along the span agree with the results that, for 
this case, were derived on the basis of equation (53). 

Possio, concerned with the problem of the stability of snll 
oscillations of the wing considered as a rigid body, also analyzed 
the problem of the oscillating wing of finite span. Making use of 
the concept of acceleration potential, he derived. equations (9) and 
(10), which, however, as has been shown in Section 8 0 are also justi-
fiable on the basis of the concepts of vortices. The solution is 
expressed by Poseio In the form of a power series of the parameter 
g b/V. The value limited by this parameter and the smallness of the 
ratio LA(

 
large aspect ratios) in the series containing the powers 

of Q L/2V justify, for the computation of the w' corresponding to
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the system •, the introduction of simplifications that were not 

adopted in references 36 and 37. The assumed simplification in the 
computation of Dv, when it is reduced to the scheme represented by 
equation (49), can be thus defined: The function w is computed 
by means of equation (46), substituting for ' the value that, 
according to equation (46a), corresponds to	 0 and that is there-
fore constant for the elements of each chord. Reference 39 contains 
the principles of the procedure. Some of the results are described 
in reference 40 and in greater detail in reference 41. More general 
cases of the mbtion are considered in references 42 to 44. Refer-
ènce 44 analyses the law of variation of the lift on a rigid wing of 
elliptical plan form during the start of the motion (the seine problem 
that was studied by Wagner in the two-dimensional field). In the 
computation of the velocities Induced by the transverse vortices, 
there was assumed (In the simplification of equation (14) of refer-
ence 44) an approximation different from that used in reference 43; 
the approximation gives for the case considered a greater precision 
of the results. 

Sears (reference 45) also studied the problem of the oscillating 
wing of rectangular plan form with approximate procedures. Reducing 
the computations to the scheme of the preceding section, the simpli-
fication assumed consists of the suppression of v2, while a rigorous 
computation is proposed for w 3, and making use of the results that 

are obtainód for the infinite wing with sinusoidal distribution of the 
circulations along the span. The computation, which Is intended to 
eliminate the errors Inherent In the approximate theory of refer- 
ences 36 and. 37 criticized by Sears, does not give results more accu-
rate than that theory. As an example, tue effects of the inductor 
elements of a chord L, for the case W - 1 10, are considered with 
the point of induction at a distance y L. Apart from factors that 
need not be considered In a comparison, the induction can be expressed 
by the equation (501 ), which can be written as 

-r1dx 
YJj 

where i is the nondimensional factor 

101n the cases of wing vibrations encountered in practice, the 
reduced frequency turns about this value.	 -
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1 (x,y) = Y2	 (x,y) - 2	 ,	 1 + W) 

x being the abscissa of the point, with the vorticity g and Xp 
the abscissa of the rear end of the chord measured with respect to 
the position of the point of induction. The quantity l was com-
puted for the elements of the circulation g at the leading edge, 
at the middle, and at the rear edge of the chord considered, and in 
the three cases, on modification of the position of the induction 
point, there were obtained. (Bee fig. 13, in which are drawn as the 
abscissas and ordinates the real and imaginary parts of h, 
respectively) the curves I, II, and III in the figure with the values 
of x = xp/L. If the approximation that was made in reference 36 
is assumed, in the three cases, for any position of the induction 
point, the end of the representative vector is the point indicated 
by the double circle; with the aid of the approximation of Sears 
for all three cases, the representative points are those of curve III. 
The error with either approximation is large. If the greater com-
plexity of the computations required by the solution of Sears is 
considered, the advantage of his approximation is questionable. 

In a recent publication (reference 33), Kiissner, making use 
of the acceleration potential, developed a new approximate theory 
of the oscillating wing of finite span. The approximation assumed 
is easily related to the expressions of the preceding section; 
referring to equation (49), the value of 0 given by equation (45), 
setting u = x + j, can be written in the form 

- 4 a - e 
IN CO 

 
e _ LU du	

(45') 

J
'(u2 + 

Kizsner's solution can be obtained, by setting the lower limit 
of this integral equal to zero. The Dv,, on the basis of this 
assumption, are proportional to e T (where t is the coordinate 
measured parallel to x from a fixed origin of the wing in an arbi-
trary position); that is, the values of Dw are distributed by the 
sinusoidal law over each chord. If the distribution of the vorticity 
is considered, which on the basis of the solution of the two-dimensional 
motion corresponds to the velocities distributed according to this 
law, and if for this case the values of w of the system Zl are 
suxrned, velocities are obtained that can be represented by the 
expression
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- We 1Qt-w t	 eVt)	 (55) w= 

where W is a function of il. 

• By obtaining, on the basis of the solution of the two-dimensional 
problem, the velocities induced by the system El and adding the 
values of Dw computed with the aid of equation (49), simplified 
according to the preceding assumption with respect to the limit of 
the integral in equation (45) and transformed by operations analogous 
to those that led to equation (54) (see reference 35), the final equa-
tion is obtained'

fb (H(2)0-iH(2)1)Kt 	

- N drI	 (56) 2L(J0-iJ1)
b 

in which H and J are cylinder functions of the parameter Uy and 

K' 

This quantity has the same modulus as the total circulation K, 
but has a certain-phase displacement with respect to it. 

By solving the integrodifferential equation (56), which has the 
same kernel as equation (54), the law of distribution of the vorticity 
on the wing corresponding to the 'values of w given by equation (55) 
can be obtained.. If it is assumed that -Vt is the abscissa 
measured in a system of reference fixed with respect to the fluid, it 
is concluded that equation (55) represents a distribution of velocity 
having local values constant in time, as would be the case of dis-
turbed air that presents, along the trajectory of the wing, vertical 
currents of constant velocities in time (stationary gust). The solu-
tion indicated refers to the case of the stationary gust of sinusoidal 
form. The more general case of motion can be studied with the aid of 
the" preceding solution and the solution of the two-dimensional problem 
when it is considered that, according to the approximation of Kiissner 
(as with the procedure of references 36 and 37), the values of Dw 
are zero for the distribution of the g that gives rise to zero 
values of the integral K and therefore of K', which has the same 
modulus as K. Hence, in this case, to the values of w represented 
by a combination of wn expressed by equation (12) there correspond
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the values of g expressed by equation (ii), as if the motion were 
two-dimensional. On this basis, reference 35 indicates the extension 
to general cases of the solution based on equation (56). K{issner 
makes the generalization by a different-principle ,, which leads, 
however, to expressions that, in the limiting case of the infinite 
wing, give the exact solution already known. 

The approximate theory of Kiissner therefore cannot be derived on• 
the basis of the vortices concept developed in Section 18, as is true 
for the solution proposed by Cicala, which is criticized in the pre-
ceding note by Kssner as presenting arbitrary assumptions; the disa-
greement between equations (54) and (56) finds its justification In 
the different principle of approximation rather than in a fault of the 
derivation method based on the vortex concepts, which, according to 
Kissner, would lead to erroneous results. The approximations thus far 
assumed all lead to a somewhat Inexact value of the Induced velocities, 
as is shown In reference 35; the theories are all, except that of 
Sears, constructed so as to converge In the case of steady motion to 
the theory of the vortex filament of Prandtl, whose approximation has 
thus far been proven sufficient. On analytically examining some local 
values of the errors committed," all are shown to be of little pre-
cision, from the simplest to that of Sears, which consists of the most 
laborious application, or that of Ktssner, which is based on the 
concept of pressure dipoles. Only the fact that in a limiting case 

111f the solution is expressed in the form of a decreasing power 
series of the aspect ratio X, It is found that the error in the 
existing theories starts from the term in log X /X2 . In reference 35, 
rather than analyzing the order of magnitude of the error, It is pre-
ferred to carry out the computation for concrete cases so as to be 
able to compare the various approximations. 

The comparison is particularly evident by making reference to the 
concept of pressure dipoles. According to the principle followed in 
reference 39, the dipoles of the system E 2 are transported parallel 
to the direction of the x-axis up to the induction point; according 
to the principle adopted in reference 33, these dipoles are given the 
same displacnient and, In addition, the same phase displacment 
Q x/V (x is the abscissa of the dipole with respect to the induc-
tion point); according to references 36 and 37, these elements are 
given the same displacement and phase shift Q(x-xp)/V. It is shown 
in reference 35 that the three approximations alter somewhat the 
value of the velocity produced by the pressure dipole. The affinity 
of the three principles is evident.
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the approximations lead to a theory that has shown itself satis-
factory in applications indicates that a compensation of the errors 
will, in a certain measure, be found in the values of the resultants 
of the actions. A solution of greater rigor would, however, be 
greatly desirable.
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PART III. - DRAG AND PROPULSIVE FORCE-12 

The component parallel to the velocity V of the aerodynamic 
action of the wing of infinite aspect ratio in nonsteady motion can 
be readily computed on the basis of the solution of the problem of 
two-dimensional motion, as given in part I. Under the assumptions 
made, for any law of motion of the infinite wing, the theory per-
mits computing the drag or propulsive force. For the hypothesis of 
a perfect fluid, the profile drag is not considered, nor are the 
variations of this drag due to the unsteady motion computable with 
the aid of this analysis. These actions are therefore added to 
those that are here computed. 

For the wing of finite aspect ratio, In the problem under 
condideration, the uncertainties mentioned in part II are also 
encountered. The analysis will therefore be limited to the results 
obtained for the two-dimensional motion-13 

Drag and thrust in unsteady two-dimensional motion. - The 
symbol Ri is the instantaneous value of the force that arises in 
the direction of V on a segment of unit chord of the wing in a 
uniform flow of veiccity V. With the notation of the preceding 
parts and in the same range of validity of the theory there given, 
Rj, considered. positive if it has the sign of a resistance and neg-
ative if it corresponds to a propulsive force, can be computed with 
the aid of the expression given by Birnbaum (reference 3))4 

PvS 
z 

L	
y dx - nPa2L/4	 (57) 

where

2a = lIm ô_..,o y sin t5	 (58) 

12 The numbers of the figures, the equations, and the paragraphs 
follow from the preceding part. 

13The treatment of Scbmeidler (reference 46) examines the aero-
dynamic action corresponding to assigned vorticity of the wing. The 
method cannot, however, be generalized. 

14 The sign J indicates the Integral taken over the chord of the 

wing from the leading to the trailing edge.
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The aerodynamic action on a segment dx of the chord Is repre-
sented by the force PITy dx normal to the line of the axis and is 
therefore inclined to the z-axis normal to V by the angle 3z/6x. 
The integral in the second member of equation (57) therefore repre-
sents the action along x that is exerted on the points of the 
chord. The negative term in the expression corresponds in every 
case to a propulsive force and arises from the suction that is 
exerted at the leading edge by the surrounding fluid and produces 
a lowering In pressure that becomes infinite for the wing of infini-
tesimal thickness. If y is expressed by means of the customary 
series of functions cot 9/2, sin ', ..., sin ni, only the first 
term can give rise to a suction at the leading edge because the 
other terms represent circulations that vanish. The quantity a 
defined by equation (58) gives the coefficient of the first term as 
found when considering that for 6—)O, 

lim sin ô cot = 2 

The steady motion that Is considered corresponds to a chordwise 
distribution of vorticity represented by the same y as for the 
steady motion. Inasmuch as the suction at the leading edge depends 
on the instantaneous value of 7, the value of y must be the 
same for nonsteady motion as for steady motion. In addition, when 
It Is considered that for. steady motion the resultant force in the 
wing direction must be zero, 

f° dx - iPa2L/4	 (59)
 Fx ) 

where (az/x)o Is the slope of the axis of the wing on which, under 
the considerations of steady motion, the vorticity distribution y 
holds. 

If w7 denotes the velocity induced by these vortices, then 

I	 )0 
V 

z 
(..— vox

=w 7
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From this relation and from equations (57) and (59), 

Rj = Pf (V 3z - wy) y dx 

which is a second form of equation (57) given by Jaeckel (refer-
ences 28 and 29) and is entirely equivalent to the equation given 
in the development of the computations. 

Denoting by wi the velocity induced by the free vortices and 
taking account of equation (1) yield 

V = V + w	 z = V	 + z 

Equation (60), on the basis of this relation, becomes 

ILw27 dx - J	 7 dx 
This third form of equation (57) was used by Schmeld.ler (refer-

ence 46). It lends itself to interesting interpretations: If the 
forces in the z-direction are distributed with density PVy and 
the corresponding velocities of the points of application are 
the instantaneous power Ni absorbed by the motion of the points of 
the profile in the direction normal to V Is expressed by the 
relation

N1/V = P 5 Tt- y d 
	

(62) 

It is noted that the values of z are assumed positive down-
ward, whereas the pressures PV7 are positive upward. Hence Ni., 

according to equation (62), is positive if work is done in overcoming 
the aerodynamic action.

(60) 

(61)
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When equation (62) is considered, It Is observed that the 
second term in the second member of equation (61) represents the pro-
pulsive force (or thruat)15 that would arise if the phenomenon occurred 
without dissipation of energy; that Is, without increase In the kinetic 
energy of the fluid surrounding the wing. The first term represents 
the drag B5 that must be overcome by this phenomenon, or In other 
words, by the creation of the vortex wake. 

The computation of the Instantaneous values Bj and Ni and., 
successively, of the mean values Bzi and Nm of the same magnitude, 
in the case of harmonic motion, Is immediately obtained on the basis 
of the expressions given In part I. Poggi. (reference 47), on the 
basis of the Investigations of Glauert (reference 20), computed the 
propulsion and power corresponding to a rotary oscillation and, as a 
limiting case, to the translatory oscillation of the wing. Kiissner 
(reference 21) determined these values for the wing in translational 
and rotary oscillation of the wing or flap. The same computations 
were made by Garrick (reference 48), who made use of equation (61) 
and of the energy interpretation of the term 

(;2_W1

	 2
	
LV2Hi(2) + j0(2Tj +)
	

(63a) 

NmjDLV
	

(63b) 

where

15This Is the quantity called "Vortrieb" by Schmeidler; the 
first term Is called "Widerstand."
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= (Jj2 - H(2) 
H(2) + MOM ) 

r
 (LZ '	 + 2iw . )(l - cos 

= LJL do + xJ2 

=	
Z cos 0 dO 

and z = Ze	 is the ordinate of a point of the wing according to 
the complex notation with (C), ICI, and C the real parb, the 
modulus, and the conjugate complex, respectively, of the complex 
quantity C, with U the Hankel function of reduced frequency 
A =QL/2V. 

The first eddend that appears in the parentheses of the expression 
of Rm corresponds to the resistance R0 . If E denotes the ampli-
tude of the sinusoid that represents the distribution of the free vor-
ticity in the wake, It is found. that, according to equatIon (63), the 
following relation holds:

B5 = pLE2/16w 

This relation can also be derived by considering that the work 
done by the resistance B5 during the displacement 2itV/Q corres-
ponding to an entire oscillation of the wing must be equal to the 
Increment that the kinetic energy of the fluid has received In the 
same time, and. therefore to the . klnetlo energy of the fluid (considered 
stationary at infinity) in a strip included between two parallels to 
the z-axis at 2itV/Q distance from each other and. located In the wake 
at a 'eat distance downstream of the wing.
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Applications to particular cases of oscillatory motion'. In the 
case of a nondeformable wing (a wing in motion of translation and 
rotation),

Z = ZM -	 COB 

In which Zm represents the complex amplitude of the oscillation of 
the middle point of the wing and Z0 the amplitude of the Incident 

oscillation. Equation (63) yields, by simple computations, 

	

Rm = it LV2 [9(J OK) - h Jf 21
	 (64a) 

Nm =

	

it PLV3[ (JK) - k f JI 2]	 (64b) - 

where

J = Zo + IWZm + . j()Z 

Hi(2)	
(1-I) + I iw 

(2)	 (2) 
H] 	 +IHO

I2 
h=l111(2) 

- I H1 (2, + iH02 

k =g(	
H1(2)	

) +
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The quantities K, h, and k are functions of the reduced 
frequency. The variation of Ii and k as functions of w are 
shown in figure 14. In figure 15, the real part is plotted, on the 
abscissa of the quantities K/h and K/k and the imaginary part 
on the ordinate assuming the segment OA as unity and the positive 
sign of the imaginary axis in the downward direction. The points 
on the curve give values of the reduced frequency. 

In the particular case of translatory oscillation (z0=o), from 
equation (64), denoting by v = QIZaI the maximum velocity corres-
ponding to this oscillation,

Rm = . pLv2h 	 (65a) 

Nm = pLv2kV 	 (65b) 

The force that arises in this type of motion is a propulsive one. 
The efficiency of the wing considered as a means of propulsion is 
h/k, which is equal to 1 for w=0 and decreases continuously toward 
0.5 as w increases. 

If .a wing of velocity v 1 normal to the wing velocity V Is 

considered under conditions of steady motion, the lift P, the coeff 1.-
dent of which Is equal to nvi/V, under the usual assumptions gives 
a component in the difeotlon V represented. by 

Pv1/V = pLv21 

for a segment of unit chord. This component is directed forward 
whether vi is directed downward or upward. On varying V1 harmo-

nically, if It were valid to apply at each Instant the expressions of 
the steady motion, vi would be the mean value of the propulsive force 
given by equation (65a), in which h = 1. It Is therefore concluded 
that the exact analysis corrects this approximate consideration by 
reducing the propulsive force by a factor depending on the reduced 
frequency. This factor approaches 1 when the reduced frequency Is 
decreased and approaches 1/4 when w is decreased.. The paver absorbed 
Is reduced according to a factor that varies from 1 to 0.5 with an 
increase in w.
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It is of interest to examine how, by combining a torsional motion 
with translational and oscillatory motion, the propulsive force can be 
increased.. By simple computations, It is found, on the basis of equa-
tion (64a), that for a given amplitude Zp of oscillation of the rear 
neutral point of the wing, for every reduced, oscillation frequency a 
certain value of the amplitude and of the phase of the torsional motion 
exist for which the propulsive force is a maximum. If K' and K" 
denote the real and imaginary parts of the quantity K/h, respectively, 
the component f of the rotation in phase with the trans latory motion 
is given by

Zp wK" 
= r' -	 (66a) 

The component in quadrature is expressed by 

q = ZP 2-K' U)	 (66b) L K' -1 

The propulsive force under these conditions is given by 

K' 2 + K"2 
• pLv2h •4(K'-l)	 (67) 

With respect to the propulsive force of the purely translatory 
oscillation expressed by equation (65a), the effect of the rotation 
introduces the factor dependent on the reduced. frequency 
(K'2+K"2)/4(K'-l). This quantity assumes decreasing values with 
increases in the reduced frequency ., frequency, tending asymptotically to the 
value 1.125. For w = 0.5 1 this value is equal to 1.445; for 
reduced frequencies not too small, the adding of the torsional motion 
does not greatly modify the value of the maximum obtainable propulsive 
force, the base value of which Is always that of the purely flectional 
motion. For sufficiently small reduced frequencies, there are con-
siderable increases. By neglecting the higher powers of the reduced 
frequency, the expression for P. can be assumed 

Rmr.ZpVV
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On decreasing W. the torsional motion that must be combined with 
the flectional motion to obtain the maximum propulsive force tends to 
assume a phase displacement of 900 ahead with respect to the trans.. 
latory oscillation (that Is, in the phase in which the translatory 
velocity is a maximum upward, the wing Is nearest its maximum negative 
incidence angle). 

The analysis of the variation of the propulsive force as a func-
tion of the flectional motion for a given amplitude of the torsional 
motion was given in reference 49 by means of a graph that permits 
computing directly from the propulsive force (or drag) and the power 
absorbed (or emitted) in the oscillation. All the values of the 
efficiency from 1 to 0 can be obtained by suitably varying the ampli-
tude and the phase of the f].ectional motion. The region of maximum 
efficiencies Is nearest the point J = 0 1 which corresponds to the 
motion without drag and without absorbed power, with zero vortiolty 
In the wake. Under these conditions, for a small w, the torsional 
motion Is displaced by about a 900 lag with respect to the flec-
tional motion; that Is, In the phase In which the translatory velo-

city16 upward is a maximum, the wing Is nearest the maximum positive 
incidence. This result, in relation to that of the analysis of the 
maximum propulsive force previously Indicated, leads to the, conclu- 
sion that the conditions of maximum efficiency are not compatible 
with those of maximum efficiency of the wing considered as a propul-
sive means, which can be obtained with a certain loss in efficiency. 

On the basis of equation (63), it may also be determined whether, 
by combining with the flectional motion a deformation that alters the 
curvature, any advantage in the value of the thrust can be obtained. 

When

Z Z + Z2 cos 26 

then

= 2Z2 + IWZm 

Hl (2) 
Rm[2(J 2(2) +	 (2))_hIJJ2]. pLy2 

16More precisely, the velocity of the rear neutral point.
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In this case, results are obtained that are entirely analogous 
to those of the motion of translation and rotation. When 

2Z2	 (f+iq. ) Zm 

there are obtained for f and q , the same expressions of equa-
tion (66) in which K' and K" are substituted, for the real and 

imaginary parts of Hl(2)/h(Hl(2)+i(2)). With this modification, 
the factor of Increase in the maximum thrust has the same expres

-sion as for the preceding case. This factor, which can be expressed 
by 1/4(k-h), has the value for W---;Nw and the value 1.148 for 
U) 0.5. In this case also, for a not very small w, no great 
increases are obtained in the thrust as compared with the purely 
translatory motion. As In the preceding case, for a given frequency 
of oscillation on Increasing the wing velocity, then maximum thrust 
for a given translatory amplitude first increases rather slowly; 
only when sufficiently low values of the ratio QL/2V are obtained 
does the maximum thrust tend to Increase linearly with the velocity.
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PART IV. - EXPERIMENTAL INVESTIGATIONS 

The experimental investigations that have thus far been conducted 
on the aerodynamic actions on a wing in unsteady motion are not as 
numerous as would be required by the complexity and importance of the 
problem. It is from the measurement of the forces on the oscillating 
wing that conclusive data are expected that would permit a reliable 
computation of the critical velocities of the wings and tail surfaces, 
Various problems relative to the stresses of the wing structures 
during flight in agitated air also require experimental clarification. 
The experimental investigation should furnish the necessary control 
for the fundamental hypotheses of the theory of wings of infinite 
aspect ratio and for the finite wing, the actual theory that makes 
use of approximations that have not yet been completely checked should 
be integrated. The research presents, in addition to the difficulties 
common to all problems for which forces variable in time are to be 
measured, serious obstacles for the requirement of absolute regularity 
of the stream in which the experiment is conducted. Small fluctuations 
in the velocity and in the direction of the wing, which do not have 
any great effect in the measurements of a steady flow, can render the 
measurements of the forces on the oscillating wing entirely unreliable. 

In this part, the results obtained up to the present by various 
experimentors will be discussed, and the results compared with theory. 

English tests. - The first series of tests was, conducted by 
Duncan at the National Physical Laboratory and published in 1928 
(reference 50). The object of the tests was to check the mechanical 
theory of the wing oscillations. From these measurements Duncan 
obtained, for a particular wing model, the values of the aerodynamic 
coefficients to be introduced in the expression of the velocity in 
order to compare the calculated value with the experimental velocity 
obtained. The greater part of the tests was conducted on a model 
that was deformed during the oscillation, according to an incompletely 
defined law. The tests therefore do not lend themselves to a check 
of the aerodynamic theory, a check with which the experimentor was 
not concerned, as he did not then have the results of the theory. 
A . series of tests were, however, conducted by Duncan on a model that, 
during the oscillation, rotated rigidly about an axis parallel to the 
span. The wing was rectangular, with RAF 15 profile, 152-millimeter 
chord, and 686-millimeter span. The axis of rotation was at 1/10 of 
the chord from the leading edge. The damping of the oscillations was 
measured in the presence of a wind and in still air for various angles
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of attack and frequencies of oscillation. Inasmuch as the oscilla-
tions did not have very rapid damping, the results can be compared 
with those of the theory on harmonic motion. According to the theory, 
the moment of the aerodynamic force due to the rotational oscillation 
possesses a component in phase with the motion and a component Mq. 

in quadrature. and. therefore in phase with the angular velocity q; 
the moment Mq, which has its sign opposite to q, therefore consti-

tutes a damping action and. may be put in the form 

Mq = itpbq L2VS 

where S is the wing area. For a segnent of an infinite wing, the 
coefficient b depends on the reduced frequency and on the position 
of the 'axis of oscillation. On increasing the reduced frequency, b 
tends to the value17

b= i(i2 
2	 2) 

where t is the distance of the axis of rotation from the focus con-
sidered positive if the axis is in the rear.. For the finite wing, b 
depends also on the plan form. Its values for not-too-small reduced 
frequencies are not, however, considerably removed from that given by 
equation (68). For the position of the axis of rotation of the tests 
of Duncan, this gives b = 0.211. The values of b obtained on the 
basis of the damping moments measured. by Duncan are given in figure 16. 
For the computation of b, the value of the aerodynamic damping 
moment is considered to be the difference between the measured values 
in the presence of wind and in still air. The values are all below 
that given by equation (68). For equal velocities, these values indi-
cate a decrease with a decreasing W, as would also be given by theory 
for positions of the axis of rotation ahead of the focus. For equal 
frequency, on decreasing the velocity (hence on increasing w), the 
experimental values in general, indicate a decrease that can be 
ascribed to the effects of the Reynolds number. There is also a 
decrease on decreasing the angle of attack (at least in the region 
investigated). For angles of attack from _40 to -50, Duncan found 

17tjhich can be derived on the basis of the expressions given In 
references 2 and 21.

(68)
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a vanishing of the aerodynamic damping. This phenomenon, called by 
Studer "oscillations of separation," cannot be studied by the theory 
of the preceding parts. 

The measurements conducted by Duncan of the damping of the 
oscillations of the flap also lend themselves to a comparison with 
theory. In these tests, the damping due to the friction of the 
suspension is rather large. By assuming for this case also that the 
aerodynamic damping can be obtained from the difference between that 
measured with wind and that measured in still air, it is found that 
the experimental value of this damping is equal to about one• •'ialf the 
theoretical. This disagreement should not be surprising, becaus q the 
derivatives relative to the flap are always markedly lees than the 
theoretical values. In the tests cond.ucted. by Duncan, the value of 
the derivative of the hinge with respect to the angle of the elevator 
under conditions of steady motion was equal to 0.6 of the theoretical 
value. 

Tests conducted at the Laboratorlo di Aeronautica di Torino. - 
The aerodynamic actions on the oscillating wing were measured by Cicala 
in the free-jet wind tunnel of 600-millimeter diameter at the 
Laboratoria di Aeronautica di Torino. The chord of the models on 
which the tests were conducted was about 13 centimeters and the span 
about 50 centimeters. Because of the relatively small dimensions of 
the jet, which was free In the region In which the model was located, 
the wing operated with a rather low effective aspect ratio; the 

CL value of Cp/	 under steady conditions (referred to pV') was equal 

to about 0.5it because the wing projected from a plane that was placed 
tangent to the jet In order to mask the suspension and measuring 
apparatus. This rather low value of the aspect ratio is one dis-
advantage of these tests, which are described In references 14, 51, 
and 52. 

In a first series of tests (reference 14), the aerodynamic 
damping of the flectional oscillations (rotation of the model about 
an end chord) and the damping of the oscillations about the axis con-
taining the foci of the various sections (also a rigid rotation) were 
measured. The measurements relative to the flectional motion were of 
little importance because of Imperfections in the construction of the 
model and of the measuring apparatus. These tests were later repeated. 
(reference 52). The measurements relative to the torsional oscilla-
tions gave for b a value of about 0.11 (against 0.125 given by equa-
tion (68) for t = 0), which was almost constant when the reduced 
frequency was varied as required by theory. This value was confirmed, 
at least for the range of not very large angles of attack, by succeeding
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tests on a model different from the one described in reference 14, 
this model also being of symmetric profile but of greater rigidity. 
The principle of the measuring apparatus for these tests and for 
those of series III can be briefly described as follows: The oscil-
lation of the model was controlled through an Intermediary element 
that possessed two simultaneous motions, a rotation depending on the 
displacement Imposed on the model and a rotation about an axis per-
pendicular to the first rotation and depending on the magnitude of 
the force transmitted. This element carried a mirror that reflected 
on sensitive paper a luminous point that, by describing the motion 
of the intermediary, gave the force-displacement diagram. (arid there-
fore the moment-rotation diagram). The test conducted for equal fre-
quency In still air and In the presence of wind, permitted isolating 
the aerodynamic action. In figure 17 are given some of the oscillo-
grams thus obtained that give the simultaneous values of the angular 
position of the wing and of the moment transmitted. The field of 
the coordinates can be retained as Cartesian, so that the diagrams 
are approximately ellipses. The enclosed area measures the work 
absorbed in the oscillation. In the figure are given the scale of 
motions and also the lines a = constant corresponding to the extreme 
positions for one of the Oscillograzns obtained for a wing velocity of 
9.4 meters per second and for a number of oscillations equal to 570. 
For each measurement, the oscillograni was obtained by permitting the 
luminous point to run through two or three cycles. The paper was 
successively advanced, thus intercepting the light point. In order 
to obtain a reference point of the angles of attack for each óscillo-
gram, a point in a fixed position was marked (points F In the figure). 

In the third series of tests (reference 52), the damping measure-
ments of the translatory flectional oscillation (in the sense pre-. 
viously defined) were repeated. The component of the lift in phase 
with the displacement of the wing can be expressed by the derivative 

1	 Cp 

ô(v/V) = a2 

where v is the translational velocity normal to V and v/V is 
the corresponding variation of the angle of attack. According to the-
theory of the infinite wing, the factor a2 varies from -1 to -0.5 
on increasing the reduced frequency (always negative because the vari-
ation of the lift has a sign opposite to the vertical velocity). 
According to the approximate theory of the finite oscillating wing, 
the range of variation of this factor is reduced, starting from
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W = 0, from the corresponding value of the steady motion computed 
with the aid of the vortex-filament theory of Prandtl. The tests 
gave for a a value nearly constant and equal to 0.43 for not 
too small a velocity within the range of reduced frequency in which 
the tests were conducted (0.2 < W <0.6). At small velocities, a 
decrease of a2 was found that was ascribed to the effect of the 

low Reynolds number. 

The lift component in phase with the flectional motion and the 
focal moment in phase with the torsional motion were rather small, 
as required by theory, the aerodynamic inertia effect being included 
with the measurements of the mass of the model on the basis of the 
oscillation data in still air. 

The variations of lift that arise from an oscillation of the 
wing about the focus were also measured (reference 51). By expressing 
the lift component in phase with the rotation by means of the derivative 

values of about 0.52 were obtained for this coefficient for all the 
reduced frequencies at which the tests were conducted (0.1 < w <0.7). 

The component Pq of the lift, proportional to the angular velo-
city q. and therefore In quadrature with the motion, can be expressed 
by means of the relation

P 	 ipa4qSLV 

The coefficient a4 , which, according to the theory of the wing 

of infinite aspect ratio, has values increasing with W and approaching 
to 0.5, was found from the tests to be almost always equal to 0.38. 

The principle of the apparatus for the measurement of the lift 
due to the torsional moment was the following: The wing was put in 
forced torsional oscillation by guiding, according to the harmonic 
law, a point of an end section while a point of the seine section was 
attached by means of a steel wire. Under these conditions, in addi-
tion to the torsional motion, a flexional motion of rotation arose
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about the chord of this section. In another section, a force having a 
component in phase and one in quadrature with the excited motion, was 
introduced, the amplitudes of which could be varied during the test. 
In the presence of wind, the amplitudes of the two components were 
controlled so as to eliminate the flectional motion and to balance the 
aerodynamic action and the Inertia force. From the teats conducted at 
equal frequency in still air and with wind, the aerodynamic forces were 
obtained. By the same principle, the focal moment due to the flectional 
motion was measured. In agreement with theory, the value of the 
flectional motion was so small that it could not be measured. 

For all the aerodynamic derivatives expressed in the preceding 
form, almost constant values were thus obtained in these tests by 
varying the reduced frequency. The theory of the wing of finite aspect 
ratio developed in reference 37 justifies this result for the range 
of not-too-small reduced frequencies and low aspect ratios at which 
the tests were conducted. In figure 16, the dotted line gives the 
value of the coefficient b that would be obtained by these tests, 
a value that does not diverge much from the tests of Duncan. 

American tests. - Tests have recently been conducted in the 
United States for the measurement of the aerodynamic forces on the 
oscillating wing to check the theory. of the Infinite wing. An 
Interesting series of teats was conducted by Reid and Vincenti at 
the Guggenheim Laboratory (reference 53). The model used had a chord 
of 38 centimeters and therefore permitted the attainment of suffi-
ciently high Reynolds numbers. The span was not large (about 91 cm). 
Nevertheless, a large aspect ratio was obtained because the model was 
placed between two walls normal to the plane of the wing. The wing 
of NACA 0015 profile was put in oscillation about an axis at a dis-
tance of 4/10 chord from the leading edge. At the opposite edge to 
that at which the motion was excited, the aerodynamic action was 
measured. The wing support, consisting of a ball bearing, was sus-
tained by a rigid spring the inflections of which were recorded by 
means of mechanical and optical amplification on a strip of sensi-
tive paper with uniform forward. motion. On the seine strip were marked 
the Instants at which the wing occupied the extreme and middle posi-
tion. With the aid of a harmonic analysis of a graph of the forces, 
which were necessarily irregular, the amplitude and the phase of the 
fundamental harmonic with respect to the motion of the wing were 
derived and thus the ratio r of the amplitude of the lift under 
conditions of oscillatory motion and the ratio corresponding to the 
steady motion for equal rotation and phase angle (leading) B 
between the lift and the rotational motion were measured. The 
results are plotted as a function of the reduced frequency in 
figures 18 and 19 and compared with the theory of wings of Infinite
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aspect ratio18 (continuous curve) and with those that were obtained 
in the Torino tests. The Torino tests must necessarily present a con-
siderable divergence from the American tests because of the difference 
in aspect ratio. The phase displacements predicted by theory are 
somewhat greater than the experimental values • A considerable devi-
ation is presented by the theoretical and experimental curves of the 
ratio r. 

A similar series of tests was conducted by Silverstein and 
Joyner (reference 54). The model had a chord of 13 centimeters, 
considerably smaller than that used in the tests by Reid. In this 
case also, a large aspect ratio was attained by using end walls. 
The oscillation axis passed through the forward quarter chord and 
the aerodynamic lift force was measured by means of an apparatus 
based on the same principle as previously described.. In these tests, 
only the phase displacement between the lift and the rotation was 
measured and the values shown in figure 20 were obtained.; the con-
tinuous lines give the values of the theory of the infinite wing and 
the dotted line give the values obtained from the Torino tests. The 
scatter of the test points is large for the high values o±' LJ; that 
ia, for the tests conducted at low velocity. 

Because of the small number of the results that are available, 
no deductions of a conclusive character can be given. The different 
conditions under which the tests were conducted also does not provide 
a good basis for comparing the different results. 

The tests in which the conditions for a check of the theory of 
the oscillating wing of Infinite aspect ratio were best realized are 
those of the Guggenheim laboratory. The comparison Is not, however, 
completely satisfying. The probable cause of the divergence encountered 
seems to lie in the agglomeration and dissipation of the wake vortices, 
the mutual positions and intensities of which the theory assumes to 
be maintained indefinitely. The problem should be investigated. more 

18The theoretical curves of the graphs of reference 53 do not 
coincide with those given In figures 18 and 19 because the aerodynamic 

inertia effect represented by the terms in w 2 in the expressions of 
the derivatives is not considered. In fact, this action, which remains 
unchanged with and without wind, is already compensated in the pre-
liminary operation of putting the center of gravity on the axis of 
rotation, a compensation that, it seems, was effected under dynamic 
conditions. The correction is small and makes the test points 
approach the theory more closely.



NACA TM 1277 

thoroughly, especially in an experimental manner. The verification 
of the theory of the infinite wing is less urgent, however, than the 
investigation of the finite wing, particularly for the phenomenon of 
wing vibration, in which, because the motion is more pronounced toward 
the tip of the wing, the conditions are considerabl y removed from two-
dimensional motion. This limiting case is also difficult to obtain 
experimentally because of the considerable Importance assumed by the 
wake over a large distance behind, the wing. The Torino tests make 
use, however, of low aspect ratios for which the approximations of 
the theory of reference 31 are less justified for giving an account 
of the results of such tests. There would therefore bereq,uired: 
First, a perfecting of the theory of the oscillating wing of finite 
aspect ratio; and second, the extension of tests to wings of greater 
aspect ratio. The range of angle of attack within which the coeffi-
cients can be held constant must be defined and the field of coeffi-
cients relative to the oscillating wing with flap must be Investigated. 

Translated by S. Reiss 
National Advisory Committee 
for Aeronautics. 
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TABLE I

o R a R a 

0 0.5000 1.7 0.3490 7.5 

0.1 0.4&78 1.8 0.3427 8.0 

0.2 0,4762 1.9 0.3366 8.5 

0.3 0.4651 2.0 0.3307 9.0 

0.4 0.4545 2.1 0.3250 9.5 

0,6 0.4443 2.2 0.3195 10 

06 04346 2.3 0.3141 11 

0.7 0.4253 2.4 0.3088 12 

0.8 0.4163 2.5 0.3038 15 

0.9 0.4077 3.0 0.2805 20 

1.0 0.3994 3.5 0.2600 25 

1.1 0.3914 4.0 0.2420 30 

1,2 0,3837 4.5 0.2261 40 

1.3 0,3763 5.0 0.2118 50 

1.4 0,3691 5.5 0.1990 100 

1,5 0.3622 6.0 0.1875 500 

1.6 0.3555 6.5 0.1770 1000 

7.0 0.1675

0.1588 

0.1509 

0.* 1436 

0.1368 

0.1307 

0.1250 

0.1147 

0.1058 

0.0852 

0.0634 

0.0499 

0.0408 

0.0298 

0.0232 

0.0109 

0.0020 

0.0010 

0.0000 
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TABLE II

B1 S, B1 

0 0.0000 1.7 1,0356 8,5 1.6642 

0.1 0.2824 1,8 1.0586 9.0 11,6817 

0.2 0.3961 1.9 1.0806 9.5 1.6976 

0.3 0,4812 2.0 1,1016 10 1,7123 

0.4 0.5513 245 1.1942 10.5 1.7258 

0.5 0.6116 3.0 1.2703 11 1.7382 

0.6 0.6649 3.5 1.3344 12 1.7603 

0.7 0.7128 4.0 1.3891 16 1,8235 

0.8 0.7563 4.5 1.4364 20 1,8624 

0,9 0.7964 5,0 1.4777 25 1.8934 

1 0.8334 5.5 1.5140 30 1.9135 

1.1 0.8678 6.0 1.5463 40 1.9380 

1.2 0.9001 6,5 1,5750 so 1,9520 

1.3 0.9303 7,0 1.6008 100 1.9778 

1. 4 049688 7,5 1.6241 500 1,9958 

1.5 0.9858 80 16451 1000 1.9980 

1. 6 1.0113 - - 2.0000
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TABLE I 

I	 '-i'	 I
 

0 1,0000 0 0.62 0,5757 0.1354 

0.002 0.9967 0.0126 0.64 0.5727 0.1330 

0.01 0.9826 0.0456 0.66 0,5699 0.1308 

0.02 0.9637 0.0752 0,68 0,5673 0.1286 

0.04 0.9267 0.1160 0.70 0.5648 0.1264 

0.06 0,8920 0.1496 0.72 0.5624 0.1243 

0.08 0,8604 0.1604 0.74 0,5602 0,1223 

0.10 0.8319 0.1723 0.76 0.5581 0.1203 

0.12 0.8063 0.1801 0.78 0.5561 0.1184 

0.14 0.7834 0.1849 0.80 0.5541 0.1165 

0,16 0.7628 0.1876 0.82 0.5523 0,1147 

0.18 0.7443 0.1887 0.86 0.5490 0.1112 

0.20 0.7276 0.1886 0,90 0.5459 0.1078 

0.22 0.7125 0,1877 0.94 0.5432 0.1047 

0,24 0.6989 0.1862 0.98 0.5406 0,1017 

0.26 0.6865 0.1842 1.00 0.5394 0.1003 

0.28 0.6752 0.1819 1.1 0,5342 0.0936 

0,30 0.6650 0,1793 1.2 0.5300 0.0877 

0.32 0.6556 0.1766 1.3 0,5265 0,0825 

0.34 0.6469 0.1738 1.4 0.5235 0.0778 

0,36 0.6309 0.1709 1.5 0,5210 0,0735 

0.38 0.6317 0.1679 1.6 0.5189 0.0697 

0.40 0.6250 0.1650 1.7 0.5171 0,0663 

0.42 0.6187 0,1621 1.8 0.5155 0.0632 

0.44 0.6130 0.1592 1.9 0.5142 0.0603 

0.46 0.6076 0,1563 2.0 0,5130 0.0577 

0.48 0.6026 0.1535 2.5 0,5087 0.0473 

0.50 0.5979 0.1507 3.0 0,5063 0.0400 

0.52 0.5936 0.1480 3.5 0,5047 0.0346 

0.54 0.5895 0. 1454 4.0 0.5037 0.0305 

0.56 0.5857 0,1428 4.5 0.5029 0.0273 

0.58 0.5822 0.1402 5.0 0.5024 0,0246 
0.60 0.5788 0.1378 10,0 0.5006 0,0124 

>10 0.5000+ 1/8 
+1/16'
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