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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHENICAI, MEMORANDUM 1276

SIDESLIP IN A VISCOUS COMPRESSIBLE GAS*

By V. V. Struminsky

On the basis of an analysis of the solutions of the eguations
of Navier-Stokes, 1t 1s found that in the slip of a wing in an iso-
thermal or adiabatic flow of a compressible gas, the aerodynamic
coefficients c ., Cy12 and m , can be accurately determined

from the corresponding aerodynamic coefficients of the wing moving
without slip. In the general case the aerodynamic coefficients of
a sideslipping wing can be determined by the theory, developed in
the present paper, of the three-dimensional boundary layer in a
compressible gas.

I. In the flow about a rectangular wing of infinite aspect
ratio with sideslip, the velocity components u, v, and w,
presgure p, density p, and temperature T 1in a system of coor-
dinates attached to the wing (the z-axis parallel to the generator
of the wing) will depend only on x and y. In this system of
coordinates, the equations of Navier-3tokes and the boundary con-
ditions can be written in the following form:
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where u=v =0 on the surface of the wing; u = cos B cos a
and Vv = Ve cos 8 sin a at infinity;
ow ow 0 oW 0 ow
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where w = O on the surface of the wing; w = Ve sin § at infinity,
B is the angle of slip of the wing, and o is the wing angle of
attack.

In the case of isothermal flow (T = constant), the system of
equations (la) can be satisfied by

u = Ve cos B EO (x,y, Re cos B, Ma cos B,a) w
v = Vo cos B ;O (x,7, Re cos B, Ma cos R,a)
o y  (2)
P = Do VZQ‘J cos® B pg (x,7, Re cos §, Ma cos B,a)
P = P Og (x,7, Re cos B, Ma cos B,a) y

The nondimensional functions EO (X,¥,Re,Ma,a), vo(X,y, Re,Ma,a),
po(x,7,Re,Ma) and By are a solution of the corresponding two-

dimensional problem. The velocity component w(x,y,R) can be
determined from equations (lc) and (2).

In the case of adiabatic flow (u = A\ = 0), the system of
equations (la) and (1b) can be satisfied by
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u = Vo cos B EO (x,7, Ma cos B,a) . \
v = Vo cOS B ;O (3?,37, Ma cos B,a) g
0 5 - _ (3)
D = Py Vi co8” B py (X,¥, Ma cos B,x)
P =Py Eo (3?15; Ma cos B,cx,) J

In this case the velocity component w in the entire flow is
equal to w = Ve sin B. '

II. In order to determine the components along the coordinate
axes of the resultant force and resultant moment, the following
expressions are used:

X; = Xlo(Vmcos B,a)

Yy = ¥;9%(Ve cos B,a) & (2)
M,y = leo(V,,Dcos B,a)
Zl =§ Lw 4ds W
s
M = =\ gy Xds
vl S w
S S

ow - v
where W = § €08 n¥ + gb; cog ny.

Referring thes forces and moments to the flow velocity at infinity,
for isothermel flow, :

Cy1 = ,cos_z chlo (Re cos B, Ma cos 8,a)
cyl = cos? chlo (Re cos B, Ma cos 8,x) ' (8)
m,qy = cos® Bmzlo (Re cos B, Ma cos B,a)
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For adiabatic flow,
Cy1 = cos? chlo (Ma cos g,a)
Cyq = cos? Be,10 (Ma cos B,a) (7)
vyl vyl ’
m,y = cos? Bmzlo (Ma cos B,a)
For edlabatic flow moreover, o¢,q = I, =m,q = O.

Expressions (6) and (7) are direct consequences of the equations
of Navier-Stokes.

IIT. At large Reynolds numbers and at a Prandtl number equal to
unity, the following system of equations for the three-~dimensional
boundary layer in a compressible gas is obtained from equations (la),
(1b), and (1c):
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P ) s e ©
where u = v = w on the wing surface; u = U(x,\{, cos 38) and
W=W=Vgsin g on the outer limit of the boundary layver.

The term U(x,Ve cos B) is the .velocity of the adiabatic flow
on the outer limit of the boundary layer. The value of U(x,Ve )
can be determined by the method of 3. A. Christianovich (reference 1).
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In présent work,' in addition to the s8implifying assumption
"Pr =1, it is assumed that there is no heat transfer between the
gas .and the wing (BT/By)O = 0. In this case the simple integral

2 2

u” 4+ W
-—-—2—-—-—— = constant = ioo

of e’quation (8b) may be employed: IcpT =
By setting TO = iO/Icp as the temperature of sﬁagnation, the

112+'W

_ o _
relation T = Tg (l - T%1 ) is obtained. By the law of Bernoulll,
O .

X
B A
P ="Po 21,

From the equation of state,

—

( U+ Wz)k'l
1l -
2ipg

( : 2)
_u +w
210

Por what follows, the followling dependence of the wiscosity
on the temperature is assumed: p = pO(T/TO)n, where 0.5< n< 1.5.

We introduce the stream function pu = Y /dy, ov = -H/Ox and the
new independent variables ¢ and nq: & /ox = p/po, on/dy = p/po.

D=DO

A similar transformation was first applied by A. A. Dorodnitsyn in
his work (reference 2). By carrying out the transformation of the
variables in equations (8a) and (8¢c), the following system of equations
is finally obtained:

awazgg dy %y l1-a~p 4U d o1 3%y
on dfon ~ & i = PoT —ag - B, dg T MO n(l‘“'B)n S
(9)
OV ow _ dV ow _ ) - n-1 dw
Sy ST~ Sgan o[t e ®
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where o = u?/Zio, ag = UZ/ZiO, B = w2/210, and g = W2/210.

IV. The method of Karman-Pohlhausen is used %o solve the system of
squations (9). After simple transformations and integration of the
first equation with respect to n from O to & and the second
equation with respect to n from O to v,

*x ' L
T80 L T (omex 4 2o%k 4 B%) = — af)

a 2\ on
i OOU no
(10)
dy** T HO [ow
+——7**=_.
a¢ U poUW (5#)0
where
' 5 2ig - uz - Wl g\
0 2ig - U -~ W
8]
*¥ — u .4
SRR I E
> (11)

7H=§%('®m' J

In these equations, & 1s the thickness of the boundary layer for
the velocity component wu, and <y 1s the thickness of the layer for
the velocity component w.

By substituting in (11) and (10) the expressions

)1 -2 () ()
FCRIORo)

cls

12)
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" P 8fau/d
where A ¢

ko I -0 - BO a system of two ordinary differential

equations of the first order is obtalned for the determination of
the boundary-layer thicknesses B and 7.

It is seen from expression (12) that in a compressible gas the
direction of the velocity within the boundary layer does not coin-
cide with the direction on the outer limit of the boundary layer.
The flow is ag if it were twisted within the boundary layer by =a
certain angle which changes with the height of the boundary layer
and along the wing chord. Near the point of separation in the
lower layers of the boundary layer the flow 1s along the span of
the wing.

V. For a flat plate about which there is a flow with sideslip,
the system of equations (9) will have the following exact solution:

p
v = Zpo’\/:—Sch cos BEWO(T)

= VmsinﬁmgT)

(13)

where T ~Av/p o COS B/u n/2. The function q>O(T),satisfies the

ordinary differential equation

(-1(-1; |:l - aoch'oz(-r)]n'l X@"ol1)p = = 2 9plr Jo (1) (14)

and the boundary conditions = 0P (0) = 03 1 = ") = 1. For
B = 0, egquation (13) goes over into the solution of Dorodnitsyn for
the flat plate (refersnce 2).

On the basis of the expressions here gilven,

n-1

cpn (O) _
Cyq = 0 (é + £-§—£ Ma%) coszﬁ
/‘/ Re CO8 B

n-1
4cp"0(0)
Cz1 = =C08 B Lo+

)
sin 8 cos B
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where ¢"O(O), as follows from equation (14), depends on
- 1/2(k-1)Ma®
0 " 1 . 1/2(k-1)Ma?

The value of the drag coefficient of a flat plate is determined
from the expression

(0) Ea
4_cpn O _ )
Cy = Cyj CO8 B + Co1 gin B = 0 1 + k 5 L Ma2 cos B
Re,, cos B
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