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ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1276

SIDE3LIP IN A VISCOUS COMPRESSIBLE GAS*

By V. V. Struminslqy

On,the basis of an analysis of the solutions of the equations
of Navier-Stokes, it is found that in the slip of a wing in an iso-
thermal or adiabatic flow of a compressible gas, the aerodynamic
coefficients and can be accurately determined

cxl~ CYIY ‘z1
from the corresponding aerodynamic coefficients of the wine moving
without slip. In the general case the aerodynamic coefficients of
a sideslippin~wing can be determined by the theory, developed in
the present paper, of the three-dimensionalbouhdary layer in a
compressible gas.

I. In the flow about a rectangular wing of inffiniteaspect
ratio with sideslip, the velocity components u, v, and w,
pressure P) density P) and temperatt~re T in a system of coor-
dinates attached to the wing (the z-axis parallel to the generator
of the wing) will depend only on x and y. In this system of
coordinates, the equations of Navier-Stol\esand the boundary con-
ditions can be written in the following form:

apu apv =“0
&--+ aj--

av _ %x ap ,
—-

‘dt = + +
t

p = pRT J

(la)

*“Skolzhenie Kryla v Vyazkom i Szhimaemom Gaze.” Doklady Aksdemii Nauk,
SSSR, T. LIV, No. 9, 1946, pp 769-772.
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“[ )d u2+~2+Ic T . b(uP= + Vpxy) + a (UPYX
‘% 2 -P z ~ + ‘PYY

)+

where U=v=o on the surface of the wing; U.hcospcosa
and v = Va cos ~ sin m

..*)= .+*)+

where W.o on the surface of the wing; w .
~ is the angle of slip of the wing, and u
attack.

(lC)

V= sin 6 a-binfinity,
is the wing angle of

In the case of isothermal flow (T = constant), the system of
equations (la) can be satisfied by

P = PmFo (=,7, Re cos 13,Ma cos 13,u)
I

The nondimemional functions ) ~o(=,y, ~e,Ma,a),~. (~j~jRejMa,a ,

~O(~j~jRe:Ma) and F. are a solution of the corresponding two-
dimensional problem. The velocity component w(x,y,p) can be
determined from equations (lc) and (2).

In the case of adiabatic flow (w = L= 0), the system of
equations (la) and (lb) can be satisfied by



,... ---- .

NACA TM 1276 3

..

(3)

In this case the velocity component w in the entire flow is
equal to w . V= sin ~.

II. In order to
.exesof the resultant
expressions are used:

determine the components along the coordinate
force and resultant moment, the following

xl = Xf(v=cos 13,u) )
yl . YIO(Vmcos 13,a)

)

Mzl = MzlO(vm- B,u) J

aw

(4)

(5)

- ..
where Q1= ~ Cos nx += Cos ny.

Referring the forces and moments to the flow velocity at infinity,
for isothermal flow,

0 (Re cos B, Ma cos P,UCx1 = ,Cos2 Bcxl
0

C,y1 = COS2 13cylo(Re cos ~, Ma cos 13,cL)
}

(6)

= COS2 @mzlo (Re cos p, Ma cos B,u)‘z1 )

11-. .. . .. .. -------- ......
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For adiabatic flow,
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Cxl = COS2 BCXIO (Ma Cos f3,u) 1
cy~ = COS2 pc~lo (Ma cos B,a)

‘z1 . COS2 pmzlo (Ma cos 13,a)J

(7)

For adiabatic flow moreover, CZ1 . n$... mzl = O.

E@ressions (6) and (7) are direct consequences of the equations
of Navier4tokes.

III. At large Reynolds numbers and at a ITandtl number equal to
unity, the followin~ system OF equations for the three-dimensional
boundary layer in a compressible gas is obtained from equations (la),
(lb), and (lc):

(&a)

p = pRT
)

where u = v = w on the wing surface; u = U(xj& cos ~) and

lJ=W=V@sin@ on the outer limit of the boundary layer.

(8C)

The term U(x,Vm cos 13) is the velocity of the adiabatic flow
on the outer limit of the boundary layer. The value of U(x,vm )
can be determined by the method of S. A. Christianovich (reference 1).
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present work, in addition to the simplifying assumption
it is assumed that there is no heat transfer between the

the wing

of e’quation(8b)

By setting

relation T

(P=Pol–

= To

U2 +

(bT/by)o = O. In this case the simple integral

may be employd.: ICPT = ‘“ ; ‘L = Comtellt = i .
0

‘o = io/Icp as the temperature of stagnation, the

(Y2J:2)‘s‘btaina”‘Ythe‘aw”f‘ernou”i>
k

2io )

lRrom‘theequation of state,

= .Oti

; [xi:)

For what follows, the following dependence of the viscosity
on the temperature is assumed: w = Po(T/To)n, where 0.5<n< 1.5.

We introduce the stream function PU = al#/ay,pv = -~/ax and the
new independent variables g and v: d Dx = p/Po, bq/bY = P/Poo

A simtlar transformation was first applied by A. A. Dorodnftsyn
his work (reference 2). By carrying out the transformation of the

in

variables in equations (8a) and (8c),.the following system of equations
is finally obtained:
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u2/2i0, a. = U2/2io, B = #/2io, and PO = W2/2i0.where u =

IV. llnemethod of K&’m&-l?ohlhausen is used to solve the system of
equations (9). After simple transformations and integration of the
first equation with respect to ~ from O to 5 an. the second
equation with respect to o from O to Y,

where

(11)

In these equations, b is the thickness of the boundary layer for
the velocity component u, and y is the thickness of the layer for
the velocity component w.

By substituting in (11) and (10) the expressions

(12)
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PO $@d ~
where ~ = —uol-cLo-poY a system of two otiinary differential

equations of the first ozfieris obtained for the determination of
the boundary-l~er thicknesses b and y.

It is seen from expression (12) that in a compressible gas the
direction of the velocity within the boundary layer does not coin-
cide with the direction on the outer ltiit of the boundary layer.
The flow 5.sas if it were twisted within the boundary layer by a
certain angle which changes with the height of the boundary layer
and along the wing chord. Near the point of separation in the
lower layers of the boundary layer the flow is along the span of
the wing.

v. For a flat plate about which there is a flow with sideslip,
the system of equations (9) will have the following exact solution:

I

w = V=sin pcp’o(7)

where T. PO% Cos 13/vo57/2. The function

ordinary differential equation

(13)

‘90(T),satisfiesthe

d

{[
El 1 }-ao2~’02(T)‘-1X9’’O(T)=-2%(T)q’’o(T(14)

and the boundary conditions q = Ov(o) =O;~=’m q’~) =1. For
@ = 0, equation (13) goes over into the solution”of Dorodnitsyn for
the flat plate (reference 2).

On the basis of the expressions here given,

c“=7==~+‘Ma2)*“n‘ ‘Os‘

II
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where ~“0(0), as follows from equation (14), depends on

2 l/2(k-l)Ma2

ao=l. l/2(k-l)Ma2

The value of the drag coefficient of a flat plate is determined
from the expression

n-1
4“.(0)

( )

2-Z-

Cx = Cxl Cos p + c
“sinp=~l+k; ’Ma

Cos p
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