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- INTEGRAL MBTHODS IN THE THEORY OF THE, BOUNDARY LAYER*

By L., G, Loitsianskii

SUMMARY

The application of the well-known basic principle of
mechanics, the principle of Jourdain, to prodblems of the
theory of the boundary layer ,legds to an equation from
which the equations of Von Karman, Leibenson, and Golubev
are derived as special cases. The given equation may be
employed in other integral methods. The present paper
deals with the method of the variamtion of the thickness
of the boundary layer. A number of new approximate for-
mulas valuable in asrodynamic calculations for the fric-~
tion distribution are derived from this procedure, The
method tas been applied only to laminar boundary layers,
but it seems probable that it may be generalized to in—
clude turbulent layers as well.

The first step in the field of application of inte—
gral metgodg to the theory of the boundary layer was made
by Von Karman in 19221, The fundesmental idea of the
Von Karman method (reference 1) consists in replacing
the true velocity distribution in the boundary layer by
certain approximate velocity distributions satisfying the
differential eguations of the boundary layer only on the

~average. TFor the averaging method Von Karman applied the
‘usual integral mean over the layer, a procedure which led

to a certain integral condition which is no other than

. the theorem on the change of momentum of a fluid in a

volume element of the boundary layer, In the application
of this method fundamental significance is attached, of
course, to the choice of the system of functions that
replaced the true velocity distribution, a circumstance
analogous to the corresponding methods of the theory of

- relasticity (methods 'of Ritz, Galerkin, and others) and

presenting, in general’, great difficulties in using the ..
so—called "direct" methods. .

*Inst. of Mechanics of the USSR Academy of Scienges,
Applied liathematics and Mechanjcs, vol, V, no, 3, 1941,
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In attempting to employ pelynomial approximations
for the velocity distribution, Von Karman found it was

..-necessary to dispense -with the theory of the boundary
“layer of infinite thickness (asymptotic approach of the
velocity in the layer to the veloeity of the outer flow)

and introduce the concept of the layer of finite thick-
ness, If, instead of polynomisls, transcendental funec—
tions arae apnlted as the approximating functions, the

‘usual assumption concern1ng the asymptotic boundary

layer can he used.

The method of Von Ki:mén ceame inteo general use and
wes successfully applied in practice, At the same time,
however, a number of investigators have pointed out cer-
tain defects: namely, the regtricted field of sappliea-
tion and the =sbsence of any real basis (reference 2).

The existence of a single integral condition permits
making use of A family of functions approximating the
velocity profile in the layer with the functions having
only one parameter: namely, the thickness of the bound-
ary layer., The approxigpation is obtsined by making use
of the boundary conditions at the wall and at the edge of
the layer. The number of boundary conditions, both those
given in advance and those derived from the equations of
motion, is very limited; and, moreover, among these condi-
tions the value of the first derivative of the velocity
along the normal to the surface of the body does not
enter, This derivative is precisely the fundamental
unknown proportional to the frictional stress at a given
point of the body, The choice of any particular boundary
conditions leads to "external" solutions more naccurately
describing the phenomena near the outside edge of the
layer or to "internal® solutions approximating the flow
conditions near the walls, - (See reference 3.) The well—
known solution of Pohlhausen (refesrence 4) is an exter—
nal’ solution., In setting up the sapproximating poly-
nomial of the fourth degree three conditions were employed
(the valuos of the function and of the first and second

derivatives) at the outer edge and only two at the wall,

the first derivative being of necessity omitted from the
other two comditiong, only theé values of the function
and of its sgécond darivative being used. The Pghlhsusgen
solution gives an exaggerated friction and a retarded

- boundary -layer separation., At the ‘Huthor's suggestion,

A. N. Alexandrov (reference 5) applied a second system of
conditions leamding to an internal solution, a reduced
friction, and a -somexhat earlier separation. By making

uwge of a polynomial of the sixth degree a certain added

agcuracy could have been obtained,
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Further progress in the development of integral

methods was made by setting up equations which were 2~
R goneralization of the momentum equation given by Von
‘ ¥arman, L. S, Leibenson (reference 6) proposed ag =&
second integral condition the equation of the change of
the kinetic energy of an elgment of the boundary layer,
the conditisn being obtained by integration of both sides
of the Prandtl equation, first multiplied by the forward
velocity along the normal to the wall from the surface
of the body to the edge of the layer, V. V. Golubev
(reference 7) pointed out the infinite possibility of
other integral conditions obtained by the sgame device
of multiplying the two sides of the Prandtl equation by
successive lntegral powers of the forward velocity. The
same method for the patrticular case of a flat plate was
followyed by 7. Sutton (reference 8). HNome of these in-
vestigators made any attempt to indicate methods for mak-
ing use of the derived new integral conditions. Only
¥. Sutton gave an exsmple of the computation of the fric—
tion of a plate, making use of a ze* c¢f two equations,
It is not clear, hovever, whather azny of the proposed
conditions could be used individually or whether it was
necessary to usse two of them COmblned.

In the present paper use is made of 23 single genersnl
vrinciple of mechanics which, as far as is known, has not
vet been applied in hpdrodyﬁnmics and, in analytical me-—
chrnics bears the name of the Jourdain principle (refer—
ence 9). This principle, which is intermediate between
the well-known principles of D'Alembert and Gauss, is very
convenient for problems of hydrodynamiecs in the applica—
tions of Euler and, in particular, for obtaining "direct®
methods of the solutlon of boundary layer problems,

The assign:ng of a particular form for the velocity
verintion in the expression of the Jourdain principle leads
‘ to the equation of Von quuan, the system of eguations
] : of Lelbenson-Golubev, and other methods which may be use-

b ‘ful in applications,

i " 1. The principle of Jourdain is obtained from the
; principle of D'Alembert by differentiation with respect

to time, It is convenient to take the general equation
= - - - of- mechanigs in the form:

n
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-where my, wg, and ¥y &are, respectively, mass, accel-
eration, and givenforce for a.certain ith point and Sry .
1s a virtuesl displacement, By differentiating with re-

spect to time, there is odtained:
n

' n ‘
J d8r,
(mywy — Fy) —d 4 L (mywy — Py)br
;Z ivy i at Ej at 1V 1 1
i=2 ) =21

By the definition of virtual displacementat

d LJ
— 8 = 8y = 8v
at 1 i | i

aaere vy is the veloeity of the ith point,

Let the mactunl motion of the system at a given
instant be compared with a neighboring motion differing
from the true one in the velocities but not in the posi-~
tions — that is, let B8r3; = 0. Eauation (1.2) then

assumes the form:

s

;: (mywy - Pylsvy = 0

i=21

This is the general equation of the principle of Jourdain.
It is to be emphasized that F;y are given forces vhile

the reactions of the ideal connections iy
"the condition

n ‘
171 Gl’i = 0
i=1

satlsfying

do not enter equation (1.3), since by the foregoing eX~

planation

. €3 B

B L R S A

B T LS S L e TL D P

The frictional forces, as always, helong to the class of °

given forces,

In applying the Jourdain principle to the motion of
& viscous incompressibdble fluid the equation of the prin-
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ciple may be written in the following mqst general form:

ey e =

f(pw - PF + grad p - M_V2V)BV aT = 0 (1.4)

‘where 7T is an arbitrary volume of the fluid bounded by
the surface o; 8v 1is not sudbject to any restrictions
except the condition of the existence of the integral on
the left side of the eguation.

It may be noted that, on the part of the surface o
corresponding to a golid wall,vthe variation Ov should
not, in advance, be subject to the condition (8v), =

g
@ : since normal pressures enter the expression for the prin-
)P

\
8
.

ciple. 1In the same way, from the condition of the adher—
ence of the fluid to the wall it does not follow that Sv
‘must be set equal to zero because in the equation (1.4)
the frictional forces are taken into account.

If it is assumed that all the forces, both given and
reactions, constitute an independent system the fluid
may be regarded as a free system of points not subject to
any rg¢lations, The condition of the conservation of mass
for a constant density div v = 0 1likewise imposes no
restrictions on the variations of the velocity. Various
pagticular principles and theorems of mechanics will be
obtained Yy restricting the variation of the velocity,
Thus, for example, the momentum theorem is obtained by
setting Ov = ¢, where ¢ is an infinitely small vector
independent of the coordinates; the theorem on the change
in the kinetic energy is obtained by setting 68v = ve
where € ig an infinitely small scalar independent of
the coordinates. and so forth,

Considering only the case of steady motion and volu—-

metric forces having a potential IT the principle is
rewritten in the form :

J/q {rot v X v + grad B+ yprot rot v) v §7 = 0O (1.5)

where _
2
B = 2 4+ Tl + 4
2 p

- whence by simple vector transformations there is obtained
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J/n (rot v~X v)&v dT *J/n div(Bsv)dr - J/i div 8v 47
. T S - . N

T

+ v /‘div(rot v X 6v);d¢+u/ro’c v X8 rot vaT=0 (1.6)
.o .'T .

P s S g

In the second and fourth integrals, in passing from volume
to surface integrals, there is obtained

i . J/}rct v X v)8v d74'/ﬁ Bsv, do ~N//‘B div 6v 4T
‘ 'T k & . . E

T

+1;J/§(rot v X 8v)y do + %‘:GJ/Q rot v X rot v &7 = 0 (1,7)
5 U1 |

The velocity variation 8v now is sudbjected to the two
conditions:

1. The neighboring motion satisfies the condition of
incompressibility div §6v = 0,

2. On the boundary surface o the velocity variation
v is equal to zero.

Under these assumptlons the fundamental equation (1,7)
assunes the form.

[(rot vXv) 8v d.'f+§8frotv'xrotvd'f.=0. (1.8)
Sy . S . ‘

This is the variational form of the principle of Jourdatin

in hydrodynamics for very general restrictions imposed on
the velocity variation.

- FPor particular ceses of motion the principle takes a

=7 8t111 gimpler form, Consider, for example, the steady
motion of a viscous, incompressible fluid at very small
Reynolds numbers., The inertia terms in the hydrodynamic
egquations may be neglected, In equation (1;8) the first
integral drops out and this leaves
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sf rot v X rot v dt= 0 {1.9)

1

“which is no other than the known principle of the minimum

dissipated energy first enunciated by Helmholtz and
Rayleigh, ©Equation (1,9) maintains the same simple form
also for any Reynolds numbers if the motion occucrs with
vort%ces parallel to the veloeity ("free" vortices of the
Wing .

If equation (1,8) is rewritten in the equivalent form .

f(v X 8v) rot v T+ % v 8 ‘/ﬁr'ot v X rot v aT= 0 (1.10)
Jy Jq

1t is noted that, by subjecting the velocity variation to
still another restriction

v X8v = 0 i : (1.11)

that is, if it 1s required that the varied motion have the
gsame direction of the velocities at a given instant as the
true velocities, there is again obtained the principle in
the simple form (1,9), The general form of the velocity
variation now will be '

8v = velx, y, 2) (1.12)

where the infinitely small funetion €e(x, y, z) is arbi-
trary and is subdject only to the restriction .

div 8v = e div v+ v X grade= 0

vhich,for an incombressible fluid is transformed into
the condition. ! :

v X grade = 0O ‘ (1.13)

This condition has a simple meaning: namely, the stream—
lines should lie on the level surfaces of the functios.c.
In two-dimensional motion with axial symmetry this simply
means that ¢ should be an arbitrary function of the
stream funetion ¢ .~ that 13,
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v = v e () , (1,14)

The condition that the velocity variation become zero
at the boundary o reduces to the condition that the
closed surface o should be a surface .of flow.

In application, it is found simpler to make use of
the principle in its general form (1.4), since the impos—
ing of the above conditions on the velocity variation
involves great difficulties. Application of the principle
in the boundary layer'thaory will now be considered.

-.--.—--..-——--.- e s e e s Vg

o s g e e P

tions of the Prandtl theory with regard to the relative
smallness, for large Reynolds numbers, of the transverse

lengths and velocities lead to the principle of Jourdain
in the form

0y P dx by .

‘'wvhere o 13 an arbitrary region of the boundary layer.

Choosing for the region o the part of the layer bounded
by the straight lines x = x,, X = X3, the wall of the
body and the outer edge of the layer y = h(x) gives

Xz n(X) 3 : aa )
dx u .-..11.. + v E + 2‘- ,9-2 - P -—-—-}—21- Su d.y = 0 ( 202)
dx dy p dx dy .
X1 0 . . .

If 8u does not depend on the choice of x, and xp,
then from the condition of arbitrariness of x; and x;
the following equation will be obtained:

h(x) 5 - ) 72 o '
u Ju 1 dp a uj>

It is seen readily that for various values of 8u

" different integral conditions will be obtained including

the above—mentioned integral conditions of Von Karmap,
Leibenson, and Golubev, - Thus, for example, setting
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Su = e= constant

~yields, after integrating, the equation of Von Karmam:

h
- d

h
a
— 2 §y - U — | -n =2 ( > 2 o4
e pu? dy - dx‘jp pu &y = n g=o ( )
(o]

o]

where U(x) 4s the velocity at the outer edge of the
layer. In the same manner, setting (€ is an arbditrary,
infinitely small quantity not depending on the coordi—

" nates)

s =:euk

<

gives the system of integral conditions of Golubev:

d 2 o :
‘ Ox oy p dx dy

(k-= 0, 1, 2, . 0 o'@)

or, after some transformations:

h I+ 8 k h
a w" < yErr g4 g '
--JF dy - - Jr u dy
dx T+ 1 k + 1 dx
o} . : [o}

‘1 h h X 2 4
dp k-1 u .
R ﬁkdy - vk u | dy (2.6)
"
p X ay .

0 - -0

For Xk = 1, there is the equatlon of Leibenson.' In
deriving the system of equations (2.6), use was madé
of the arbitrariness of the variation 8u.

If in the system of equations (2.5) the author
passes from the variadles x and y to the variables
x and = uw/U(x), which, in the region of the layer

up to tae separation point, are in a reciprocal 1:1

relaticn, the system of equations thus obtained?
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| DE at= 0 k=0, 1, 2,...,
(o)

may be considered as the conditions of setting equal to zerxo
all the moments of the continuous function L(x, &), Thus

if possible to find a velocity digtridbution in the'boundary
layer which satisfies the infinite system of equation (2,5)
or (2,6) such profile would also satisfy the Prandtl equation —
that 1s, would give an exact solution of the problem of the
boundary layer,

The question as to convergence of the method in u31ng
a finite number of equation (2,5) requires, of course, in-—
dependent investigation in éach case, If such convergence
exists the condition of Von Karman would be the equation of
the fi}st'approximation, the combination of the equations of
Von Karman and Leibenson would correspond to the second approx—
imation, and so forth,

The equetion (2,3) may be considered as the integral
condition corresponding to the general principle of Jourdain,
In this equation the veloecity variation plays the part of the
"weight" of the 1ntegral mean, In the integral method of Von
Karman the weight is equal to unity, each element of the in-
tegral being assigned the same weight, In the Leibenson egua-
tion the velocity wu serves as the weight, Since the velocity
u becomes zero at the wall and assumes the maximum value at
the edge of the layer it may be expected that the velocity pro-—
file satisfying the single condition of Leibenson will approach
nearer the true value at the outer region of the layer than
near the wall, The same is true with regard to the condiuions
of Golubev for k = 1,

Wide use may be made of the arbitrariness in the choice
of the variation 8u for the purpose of obtaining any partic-
ular weight of the 1ntegral mean,

The equations of Leibenson—-Golubev, written in the form
(2,5) and (2, 6), as the equation of Von Karméh in the form
fv4£ﬁ4), may . be applied only t0 a layer with finite thickness,
In u51ng the more accurate theory of tH@ “geymptotic: layer -
these equations lose their validity because the integrals be-
come inflnlte dnother more convenient form of the equations
may be’ 1nd1cated valid for both the finite and the asymptotic
layers, . :
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.. To derive these equations it is necessary to pass, in

" the equations of the boundafy layer, from the veloecity -u

to the so-called "velocity defigiency" q = U - u where U
1s the velocity at the outer edge assumed in advance as =
given function of x, Use is made of the continuity equation

to obtain

e
- QU'Q_" U-.é.g: + ...2.. (q?).....,a-.. (gv)=~ v _3%

3% | ox oy oy

Multiplying both sides by qk and integrating with
respect to y Dbetween the limits zero to ‘the thickness of
the boundary h or to infinity in bath cases after simple
transformations and integration by parts there is obtained:

: ooy B k+1 ‘ @ h k+1
i [ k+a q) g q> k+1 f <q>
iz | f <U Q p )8 |+ e ' v v
& 0
,h . '
£ dq .
= (k+1)v f ¢ —z 4y (2.7)
oy
g

By analogy with the so-called "displacement thicknesgh
6* and "momentum thickness!" §»* equal, respectively, to

. °°vh -°°nh_. ’
5% = f(l..3>dy=f 24y
o U o U
mgh . - Oo,.h

e [ 3G-Dee [ 20D
g U U < U Y

are introduced the thicknesses

>, h k w,h . ‘ -
n * a dv = u .
Nl ""s‘*‘k“ S PR a?}n- N my S s Nt — Tj& ofm day: el e s
[ , )

. w,h .
[ rq q\
h, %% = = - =
I Bj (U) <1 U) ay
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"Equation“(2;7)~then~as&umes:the form

* %
k+2 dhirgy Skt
——— t »* Th*
U T+ (k+2) U Uthgs, + (k+1)U_ 'y h¥. .
o .
2
= (k+1) vf qkl..z. ay
. : k+2
Dividing both sides of this equation dy U finally gives:
dh** Ut
k+1 ¥ %
=~ + == |[(k+2) n + (k+1)h*
ax U [ e+ +1 |

= - (k+1) 2 f( ——> —é;—(>dy (2.8)

This system of equations cgrresponds to the general
equation (2,3) for s&su = (U—u) @ ¢ and, in contrast

with the equations of Leibenson-Golubev, may be applied both
to the layer of finite thickness and the asymptotic layer,

For k = O the thicknesses h¥ and h;** become the

usual displacement thickness 8* and momentum thickness

8%* and equation (2,8) passes over into the equation of Von
Xarman in the form zIn this paper to denote the thickness

of the layer the letter h, and not &, 1s used so as not.
to confuse this symbol with the variation sign, In equation
(2.9) $he usual notation is kept,) which is now best taken as:

To ‘ ' .
(25%* + 8%) = —t - (2,9)

C e m
dx o pU?

. wheres T, 1is the frlction stress at the wall.

( ) ‘ o

Equations (2,9) and (2,10) may be considered, respec—
tively, as the integral and differential (with respect to
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the coordinate  y) determinations of the frictional stresses

"for a given velocity distribution u(x ¥)s The approximate

differentiation of a giveh function u(x y) is a very in-
accurate operation for determining the frlction, ‘In general,
the integral method of determination (2,9) is to be preferred
The only exception may be the region where the velocity pro-
files rapidly change their shape and inaccuracy in deter—
mining the derivative d&**/dx may show up, This will bve
the case in the region near the separation of the boundary
layer, Thus, in determining the local frictional stresses,

it is recommended to use the integral method (2,9): everywhere
except in the region near the séparation, For determining
the separation point, however, it is necessary to obtain
internal solutions — that is, solutions which are nearer the
true values at the walls than at the edge of the layer and at
the separation point equate . to zero the friction determined
by the differential method,

From this point of view the Von ‘Karman method, based on
the application of equation (2,9), in which the right side is
replaced by (2,10), is no other than the condition that the
local frictional stress determined by the differential and
integral methods be the same, This condition, in using only
a single parameter (thickness of the boundary layer), is dif-
ficult to satisfy even by imposing on the velocity profile a
large number of boundary conditions because by using this con-
dition use is not made of the specific advantages of the dif-
ferential and integral expressions for the friction, But by
usé of a method of approximate.determination the,velocity pro-
file that does not involve the use of the Von Karman equation
it is possible to apply equation (2,9) as the integral expres—
sion of the local frictional stress,

These considerations apply entirely to the Leibenson-—
Golubev equations, since the Von Karman equation is included:
and is fundamental in the system of successive approximations
(setting the moment of zero order equal to zero),

As usual in the practicai applications of direct methods,
only the first approximation is of significance, since to ob-
tain the second and following approximations is a prodlem of

.&reat difficulty, It will be shown how, by making use of the’

general equation (2,3) and the integral expréssion for the
friction, it is possible to obtain g first approximation more
accurate than the solution of Von Karman-Pohlhausen

3 It 1s best to start with the simplest case of the
flow about a plate, Following the idea of a boundary layer
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of fihite thickness, the velocity distribution in a cross—
“section of the layer is expressed in .the form: L

u = Ug (n) = Ug, (v/n) | (3,1)

where U = constant is the velocity of the approaching flow
and g,(n) is a function satisfying some condition on the
surface of the plate (n = 0) and at the outer edge of the
layer (n = 1), If the thickness of the layer h(x) 1is the
fundamental and only parameter in the velOcity'distribution,
the velocity variation will be set up by varying this param-—
eter, Then ' '

Su = Ugyt (n) 8n = - Ungo! (n) %13 (3,2)

Simple computations give:

ou du 3%u z ht n gol!
dx oy oy n So ‘/p 8o 1 h2

o]

Substituting these expressions in the general equation (2,3)
yields, because of the arbitrariness of &h:

1

1
A v
- Uh'f ngo'® (f god.n) dn-—,-ﬁf ng,' o't dn= 0
o A ° '

o]

On the variation &n 1is imposed the condition of be-
coming equal to zero on the boundary of the interval n= 0,
n=1; for this by (3,2) it ig required that g,' (1)=0,
Then integrating by parts the second integral in the above
equation givesg ‘

d v
R "‘f'.".';_vha = Qa .-
g dx - : U N S PR

1 ’ 1 ‘ n
a? = {j‘,g»ole dn}:{ f 'ngc;'a <f go d_n) dn}=:c0nst;;.(5.3)
"0 . , o 0
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. For the condition h(0) = 0 there is obtained:

h = a vx/U ‘ (3,4)

The two equations (3,4) and (3,3) constitute a solution
of the problem of the thickness of the boundary layer,

The local frictional stress may be determined by the
differentiation method by the formula:

g,'(0) 3

. ’ U l
Ta = B (?E M E.g 1 (0) = s (3,5)
by y=o0 h ° . o X .

or by the integral method on the basis of (2,9);

1
2 d8** 2 dh 1 weU
rap vt B2 [ov* [ g (1 an]--=-as eUT (5.6)
i~ P dx [p Jr €o €o) dx =2 x
o
where B denotes the constant:
1
B = JF go(l—gy) dn (38,7)
0

In the assumed averaging the weight 6u Dbecomes zero
at the wall and at the outside boundary of the layer, It
should be expected here that the velocity profile obtained
will approach the true one in the middle part of the boundary
layer and give sufficiently accurate values for the friction
~determined integrally by equation (3,6)

The application of the simple parabolic distribution

€o = 2n — n®

satisfying the éahdiiiéﬁ"ﬁl5“6'L?3?“9?“"O;””ﬁ"=”U"and“
du/dy = 0 for y=h(x) gives, as simp computations show,
the friction formula '

Ty = 0,331 /upU%/x
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differing by only 0,3 percent of the accurate formula of

“Blasius,‘whlla‘application of the same distribution in the

Von Xarman method leads to the formula.'

To = 0,365 V[;pU /x

exceeding the exact solution by 10 percent

TABLE 1
) ' g—— e m— m—
g,{m) o | oTa Sy )T [ T°/}w
° | wpU wpU upT
an — 3n° + n° 3. 25 0,92 0,17 0.39
N 3.6 42 25 3,32
2 'ﬂ 2 ﬂ . L[] L3 [y
4 1,4
440 -1 3.8 14 35 .27 2,31
g Tz
sin %; 4,42 436 w81 ), 83
20 - n° 4,95 /440 W 331 ), 36
S 2n- 21" + n? 5,62 .36 331 ), 34
Blasius! exact o _

Iif go(n) is subjected to a 1arger number of conditions
by making use of the values of the second and third derivatives
at the wall and edge of the layer, another series of values of

- the cogfficients in the integral formula for the friction may

be obtained In- table 1 the resultsw~of- computations arranged
in the order of 1ncreas1ng thickness of the layer (coefficient
a) are given, As may be seen from the second and fourth col- -
umns, with increasing thickness of the layer (coefficient a)
the frictlon determined integrally at first increases to a
value near the true one and then decreases, In the last column




NACA TM No, 1070 | e

~are given the values of the friction coefficients according

" 'to Pohlhausen for which the rule Jjust given does not hold,
It may be easily shown that in the particular case of a
plate the friction coefficients according to Pohlhausen are
the geometric mean of our differential and integral coeffi-
cients,

4, It is not difficult to generalize the above device
of varying the thickness of the layer to the case of twow
dimensional flow about an arbitrary body,

It is well to start with the simplest example of =
parabolic approximation of the velocity profile in the bound—
ary layer, This, as has been shown, immediately leads to a
very simple formula for the solution in finite form of the
friction problem, In contrast to the plate where the velocity
of the outside flow is the same throughout, in the case of an
arbltrary body, the velocity U in the formula

u = Ugo(n) = ¥(2n - n%®) ‘4.1)

will be 2 given function U(x) of the abscissa x,

The value of the variation of the velocity 8u remains
the same as in the previous section, but the expression in
parentheses in the fundamental equatlon (2,3) will become
somewhat more complicated after substituting (4,1), This
expression will De given later in a general form, but for

the present it is enough  to show that, in the concrete case,
(4,1), after very simple computations, equation (2, 3) is
reduped to the differential equation:

17 13 Ut v

630 h- 126 U 3nly

)

With introduction, as is customary, of the function z=hZ/v
equation (4 2) assumes the form

4z _ p.e5 Ul 2 = 24,7 1 (4.3
dx U U

If the above equation is rewritten in the form

Wi
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dz _ 24,7 - 7,65 U'z

it is seen that if U(0) = 0 for =x = O +the point x = O
is a singular point of the equation, Imposing on the deriv—
ative dz/dx the condition that it be finite for x = O
regults in the equation.v'

24,7 - 7,65 Uytzy = O

for determining the initial value of Z%zg for =x = O, From
this equation 1t follows that the initial value of the pa+«
rameter of Pohlhausen A in the present case is equal to

Ao = Uglz, = 3,23 _ (4,4)

Thus to the equation (2.3) there is added the initial con-
dition

z = 3,23/Ust for x = 0

Equation (4,3) is linear and has the solution:
X

. 2 . .
z = %; = 24,7 U 7‘65Jf‘ue‘65 dx , (4.5)
Y ‘
If, as in the case of the plate, U # 0 for x = 0

the inlitial value of =z 1is equal to zero — that is, the
initial thickness Of the layer is equal to zero,

Azain making use of the integral determination of the
friction, equation (2.9) resulte in (g§** = 2h/156, &* = "h/3):

x
T

3,825 :
10,331 U v
i 1 \MWM~-_-_~_-JZ.NQ;;41”35U'U 7 - asJFu9°9?g%> (4.8)

. X
pU lN//st 65 4.
. 0 v

In the case of the plate (Ut = 0) formula (4,6)" reduces
to the formula previously obtained for the frlction at the
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plate, (The computations in the given example for the para-—

T b061ic approximation were carreid out by Stepaniantz, The
_latter also gives a generalization of formula (4,6) for the
case of a flow with axial symmetry about a body of revolution,)

Equation (4.6) gives & sufficiently accurate determina—
tion of the frietion in that part of the boundary layer where
U' is near zero, As has already been pointed out, the ac-
curacy for the plate exceeds 0,3 percent, Near the forward
stagnation point, however, and at the separation point where
Ut > 0 or U! < 0 the accuracy drops, the frie¢tion odbtained
is too low at the forward stagnation point and too large near
the separation point Since in practice in the diffuser part
a transition occurs from the laminar ‘to the turbulent layer,
this defect is not of great significance, Formula (4,6) may
be recommended for .practical computations in view of its
great simplicity, For the function U(x) graphically given
the integrals may be easily computed with the aid of mechanical
devices while the derivative U'(x) is determined by graphical
differentiation, The use of the method of Von Karman—Pohlhausen
for s parabolic velocity profile also leads to a simple fric-—
tion formula but one of very small accuracy (for a plate the
error, as has already been pointed out, is equal to 10 percent);
in the diffuser region it gives a greatly exaggerated friction
and no separation at all while formula (4,6) gives a separation
polint though somewhat retarded,

For a comparative estimate of formula (4,6) with the
formula of Van Karman—Pohlhauseq near the forward critical
point x = 0, U= 0 the Von Karman—~Pohlhausen formula is
given: : :

o. 365 U o

pUa )
v// d/‘U dax

'In the immediate neighborhood of the point x = 0 the
velocity of the external flow will be represented in the form
U = cx, Then, as simple computation shows, formula (4,6)
gives: ST : ! o

(4.7)

———

Ty o
._._?‘-é. = 1,08/
pU ' |

while formulsa (4,7) leads to the expression

Ml

(4.8)

al<
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T . v 1 S,
- T 1(6»./: s (4,81)
_ pU'B ’ V e x . ‘ S

In the simple case congsidered U = c¢x the accurate
solution may also be given (reference 10):

-595 = 1.»23254/%-’1; (4,9)
pU= L S |

It is seen that in the immediate neighborhood. of the
eritical point beth comparison formulas give lowered solutions
while the order of error is about 10 percent When U(x)
deviates from the straight line U = c¢x formula (4.6) gives
a solution closer to the true one than formula (4, 7), which
glves too great a value for the friction, Present velocity
profiles for flight angles of attack are such that only very
near to x = 0 1is there a region for which a straight line

. U = ¢x approximately holds true, ZEven for very small values
of x the curve rapidly passes over into a region of almost
reonstant value of the velocity U and therefore small U!,
For such a type of curve formula (4, 6) should give sufficiently
~accurate values for the friction,

In order to estimate the aceuracy of formula (4.8) in
the region beyond the maximum velocity (diffuser region),
consider the example of the profile

U=ty ~b x . (4,10)

representing the 51mp1est 1inear drop of the velocity of

the external flow beyond the maximum point, In equation (4,10)
“the coefficient Db, gives the maximum value of the velocity
“Us for x'= 0 and b, = - U! = constant, the slope of the

velocity curve, Substituting for X 2 new variable x* =
-~ b,x/b, gives o

x ' X*
Py, wavmaC::::oatf'Wu\aﬁ-hﬁ 4 R *‘b" 7 65 . . 65 . -
' "7« 65
b ‘ 7.65
Y]
= sl - (1—-x* ]
265 D C )

1
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uSubstituting the value of this integral in formula (4 6)

results in’

T, ]b v 1—x* 2,885 _
- 0.881 (1- ﬁ)f e [91,35(1~ x*)" 7" ®%]
oU?  /7.65 b, & 1-(1-x*)7- &5

Let the following magnitude independent of by and b,
be considered:: o i

T

i1 Ti 1
1l —x* Tl X
boa/u-pb

0,331 (1 —xw)?+%25

et s et~
Jv 85 J 1-(1~x*) 7+ €5

[9-1,.35(1-x*)"""%%] (4,11)

The magnitude Ty1/(1-x*) was obtained by Howarth

(reference 11) as a result of an accurate solution of the
problem for the velocity profile given, For comparison,. in
table 2, the values of this magnitude are given as computed
by Howarth and by formula (4.11).

TABLE 2
'According to Howarth By formula (4,11)

Tyt ‘ T
1 -~ x* 1 - x*

 0,0000 = o
., 0125 2,773 2,78

. 0250 1,817 1,82

. 0500 1,064 1,21
. 1000 345 . 645
He 22 L 000

The table shows that only for small values of x* —
that is, only at the start of the diffuser part 1s there

sufficlently good agreement between formula (4,6) and the
accurate solution, As the point of separation is approached
(x> = O.lz),_as.has been point out earlier, the method becomes
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increasingly inaccurate, ZFor x*=0,05 the approximate
solution. exceeds the accurate dby almost 15 percent, Setting
the right side of (4,11) equal to zero the abscissa of the
separatlon point xg* = 22 1ig found, while the accurate
value is xg% = 0,12, The Pohlhausen formula (4,7) gives a
greatly exaggerated friction and leads to the incorrect con-—
clusion of the absence of separation, Thus for a value as
small as x* = 0,0125 the increased friction, according to

-Pohlhausen, eonstitutes'about 25 percent,

In 1939 the new formula of Wright and Baily (reference
12) for the frictional stress appeared:

T 0,332 '
-2 (1 + 8.18 H’ﬁ§> (4.12) -

pUz ; UX/V

This formula, attractive on account of its extreme
simplicity, was der1Ved by Wright and Bailey on the basis
of an experimentally confirmed assumption of the possibility
(for small divergence and convergence) of substituting in
equation (2,9) for &*/8%* and 48**/dx the corresponding
values for the plate, Formula (4, 12) is accurately true for
a plate but contains an errer that is immediately evident
to the eye: namely, the friction is determined by the values
U and U' at a given point and does not depend on the pre-
vious development of the layer, It is readily seen that at
the forward part it is extremely .inaccurate, Thus if, as
before, U = cx there is obtained, by equation (4, 12)

" To  _ v 1
per: 3-°4./;3z

P

a result more than twice the accurate value (4,9), The

proposed formula (4,6) is almost as simple as the formula of
Wright and Baily and at the same time is free from the above—
mentioned defects,

More accurate approximations will now be considered,
5. As is known “the ve10city profile satisfying the

boundary conditions at the wall and at the outer edge of a
layer of finite thickness must be represented in the form:
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u= U (x) [gg () + Ag(m)] o - a(5.1)

where 7 = y/h{x) and A the known parameter of Pohlhausen
is given by

A= U Rt - (5.2)

The functions go(n) and g,(n) are two polynomials the
degree and coefficients of which depend on the choice of the
particular boundary conditions, '

The general form of relation (5,1) is kept and. the
fundamental equation (2,3) is set up, where use will be made
of the device of varying the thickness of the layer, or what
amounts to the same thing, varying the parameter A, This

will give the following equation (& dot above a letter

denotes differentiation with respect to 7n and a dash
differentiation with respect to x): ‘

su = U (8gg + ASg, + g, 5A)

. . 1 6 k .
= U (god-hgl) - 7?) + Ugy 6A

2
U ) . ) l . . l . - -
- 5 [(31 _ 3 ﬂg;) .Af‘" ‘2‘,"‘@0] 8A (5.3)
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The exrression in parenthesis in equation (2.3) may be -
given in the form:

L(u, v)—u +0-—-—UU"—- —'..=

=U(g,+2g1) [U(Io""-lﬁ)"“ UV — T"’.U(T""D‘)Go +7‘i1)_]_
n L]
_[u(jg.,dn-nj’,,dn)a- wfg,dn--.} U —&) na+2ra)+
L ] [ 3

.y U("'——ylj,:)(“‘godn"‘lflxd”)]U(Io"“‘:)— U—T(Io"'lll)( 5.4)

Removing parenthesis and making certain simplifications
yieldsa: .

1 ' ) LI
L(u, ”)=UU'( go’—j,fgodn-—il—-l)fUU'l (2fnlx_io.'.lnh—i:_[lodﬂ)—
° . * .

, 1 )
- U:J éo"‘UU'P(lx""fljlld”)"‘u'r(llh"‘io_[lld"’) +
] [}
) . .
+U’U’(z.’-—h f z.d»)—-f‘ =T e[ secbn—
[ ]

’ OR ]
—z Un(F "'—)(&Iﬁdﬂ*—ijlo )-—% PN(F =) i[53

Substitution of the obtained expression L{u,v) and Su
in equation (2.3) results in (for complete arbitrariness
of OA) a differential equation with respect to A:

!l_ v x(l)-'- e, (5.6)

where

7 ()= — ag + ay A+ @y A¥+4- ay A3 +- g4 M , ‘PO)- ¢.l+¢,.l‘+a,,l’+¢,,l‘ .5.7)

ag + ag h + a7 A¥ 4 ag A3 PeprapTy prapuy ¥ prupy

The coefficients a,, & , «+.«, & . gare constants de-

pending on the form of the functions g, and g, - that
is, on the choice of the boundary conditions. hese con-
stants are determined, respectively, as the integrals
with respect to 1N from O to 1 of the following func-
tions of n¢ - : :

— } S
@, == 3" g0 Lo

. ? ; ._ 1
“1="l""fo(lo’—iojlod"_‘l_l)_"(“_7,,")’

B a'——-_—"'. 2&';‘_11.[‘.“—'.I'l )

"'('ﬂ"%ﬂi:)(:. —z.fg.dn—g,—l)
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‘ . e - e
;,::—.—-;— .i.(g,’—-j,}g,dn)-’-(ﬁ—%' "lfl)(2Ioll_fljlod"‘—ioflxdﬂ)'
H i s .

3.=(:.—%ni.)(m’-—iljmdn). i=lng.’fx.dr..
5.=-—%néo,(z.z.—-éojg.dw)+-:—n§.(! '+lojfl )‘;
_%(,,_'_;.,@.)g.f,.an
G =—- nj.,(g,’z—"g,fg, dr.)-o—(x,—% nkx)(x;xx —é.fz. dt) +
ot o) ).
5.-—=(z.——;—nk.)(gx’—i,jgudﬂ)“%(gl—‘z"‘il)3"!"‘1’"
a.=——:-ng.'.f,.dv
5:--‘-‘—'—'1—ﬂfo(i:}&’od’""'iof&dt)+%(g,—l-ﬁkx)éofgodt.
Eu=—~'xoz,fx.dn+ (2—+ *m)(mfxo;-'-zojmdf)
¢u=~(z;-—téx)s".fx.dﬂ-

At request of the author, A. P. Krol has made computa-
tions for the boundary conditions:

u=0, g;—:—:l‘ff— for y=0, 58
ou . L ’
u=={J, ¥=O' -—‘?:-=0 for y.—:lg'

in satisfying which the functions gy(n) and gi(n)
have the form: :

Lor)=2n—20" 4%, g (n)=(n— I+ 3% —n')/6. 6
The values of the computed coefficients are given below:

The functions
advance

ag = — 037142857,
ay= 0.10224665,
ay = — 0.00806332,
oy = 0.00013143,
ag= 0.00000379

“o= o.mnon:

| ag=—000127521,
.x(A) and V(A)

a7 = —0.00003205,

ss = 0.00000047,
oy = — 001174048,
a == lem.
a = 0.000007,
g = ~— @.00000096.

may be tabulated in

25
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" the usual LrvestigatiOn shows that Ag. is the least positive
root of the numerator of x(A) and is equal to N T 6,73,
The second singular point will be the point x = xp, A =0
of the minimum pressure,

Equation (5,6) has the singular point x = O, A= 2Ag3

- As for the problem of the integral determination of the
friction T at the wall, there is first found:

(0,300000 ~ 0,008333A)h = a(A)h
€5,10)

S*% = (o 117500 — 0,001058\ — O, ooonoaxa)h -b(K)h

Then T is determined by formula (2,9):

T4 DAL, U . o
Pl e [b(x). -—U']-l--.-ﬁ- [2v(a) + a(}‘)],/U' (5.,11)

If desired, the differentiation may be carried out in
the first term on the right and the derivative of A with
respect to x from equation (5,6) substituted,

To estimate the relative accuracy of the method, it is
necessary to proceed as before, It is already known that
foxr small values of U' the integral formula (5,11) gives
excellent agreement with the accurate solution of Blasius
(difference about 0,3 percent, table 1, in which are given
the values of T3 for the plate).

The behavior of the friction near the forward critical
point must be considered next, It is noted that U'=c

Urt = 0, (d&/dx)' = 0. for U= e¢x and for sufficieauly

small x it may be assumed that neglecting powers higher
than the first — A = Ao = 6,73, Then by eguation (5,11)
there ig obtained:

1“' l« 1
;§3~~/7\ [zb(x)+a(h)l/——j1 ig f; (5 12)

a Tesult appfoximately'4 percent less than the accurate
(4,10), Thus the chosen polynomial of the fourth degree

&
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satisfying conditions (5,8) determines the friction near the
critical point with almost two-and—-a—half times the accuracy:

,0f the previously considered polynomial of the second degree

and in the remaining region (exéluding the region near the
separation point) gives the same accuracy (of the order of
0.3 percent), The same approximation, according to Pohlhau-
sen, gives near the critical point:

. ,
—_— = 1,20 v/r—
U=

that 1s, only 3 percent less accurate, while with increasing
distance from the critical point the accuracy of the solution
(5,11) considerably exceeds the accuracy of the Pohlhausen
solution, : :

(5,13)

al<
R

The method considered in the present and preceding sec—
tions of estimating the accuracy of the solution permits the
conclusion that the order of the error in the forward part
does not depend on the steepness with increasing U(x); the
absolute error of the proposed solutions will accumulate in
the region of increasing U(x) and will be smaller the
smaller the abscissa interval where the velocity approaches
its maximum value,

The computations conducted dy A, P, Krol for the diffuser
region showed that the friction computed by the method just
discussed is much nearer the true value than that computed by
the method of Pohlhausen and other methods, ©Only in the im-
mediate neighborhood of the point of separation does the mgthod
fail, The reasons for this fact require special investigation,

6o The method presented still requires additional im-
provement and simplification, It may be mentiocmned that L, G,
Stepaniantz generalized the method of varying tlde thickness of
the layer to the case of a flow with axial symmetry about a
body of revolution, The results obtained show that the metkod
may be successfully applied to the practical computation of
bodiocs of revolution (of airship form), ' ‘

It is hoped that later on the method of choice of the
most suitable forms of the velocity variagtions for a single

-and. several varying parameters will be made more accurate,

It is apparent that there are no objeétisdns in principle to
the application of the method not only to the laminar bdu}
also to the turbulent boundary layer,

Translation by §, Reiss,
National Advisory Committee
for Aeronautics,
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