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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL MEMORANDUM NO. 1021 

PREDICTION OF DOWNWASH AND DYNAMIC PRESSURE AT 

THE TAIL FROM FREE-rLIGHT M~ASUREMENTS* 

By E. Eujen 

SUMMARY 

The present measurements form a continuation of ear­
lier fli ght tests published in a previous report (refer­
ence 1) for predicting the do wnwash at the tail of an 
airplane. ~he method makes use of the tail itself as 
integrating contact surface to the extent that , beginning 
from the measurement of the self-alinement of the elevator. 
the mean downwash angle and dynamic pressure at the tail 
are determined. The results are satisfactory , provided 
certain assumptions are fulfilled . The i nl}t1'um ental 
accuracy is considerably improve d if the el~ \'a tor is 
completely separate from the controls during th e tests, 
becau se the effect of friction on the self-alinement of 
the elevator is then reduced to a minimum and a finer 
elevator weight bal ance is rendered possible. The struc­
tural design of the pu sh-rod uncoupling mechanism is 
described. 

The knowledge of the flow phenomena at the tail i s 
of great importance for the precalculation of the longi­
tudinal stability of a p rojec t ed type of aircraft. For 
the case of p ower-on fli ght . however. the only information 
available, u p to now, is almost exclusivel y restrict ed 
to an appraisal of experimental research. For this reason 
the investigations on this subject are to be continued. 

I. INT RODUCT ION 

In a previous report (reference 1) a flight test 
method was described for predicting do wnwash and dynamic 

*tlFlugmessungen tiber den Einfluss der laufenden Schraube 
auf Abwind und S~audruck am Hohenleitwerk.~ Luftfahrt­
forschung, vol. 18, no. 10, October 27, 1941, pp. 345-351. 
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pressure on the tail of an airplane. - Th e t wo aeromechan­
ica1ly important influence quantities a w and qH/q 
were obt a ined as avera ge value across the tail span by 
measurement of the self-alinement of the elevator. Since 
t h en, longitudinal stabilit y investigations with free 
elevator, afforded an opportunit y for a further try-out 
of the test method. Aside f ro m that, the test data form 
a co ntribution to the problem of wake characteristi cs on 
t h e tail, since the elucidat ion of this quest ion depends 
the same as ever lar g ely upon the statistical analysis 
of suita b le experimental mater i al . 

II . TESTI NG PROCEDURE 

The do wnwash recording method is based on the s et­
ting of a co mp letely weight - balanced free elevator inde­
pendent of the magnitude o f the air-stream velocity, on 
the assumption that the t ai l co nsists of geo metrically 
simil ar profile sections . The me a n ang le o f attack of 
the tail aH then follo ws fro m th e elevato r an g le ~R 

that is to be measured at 

For and 

o * (1) 

in t he region of s t ead y flow the quotient 

o cr/O 'r1R 

o c /0 a 
r H 

is a constant essentially defined by the r a tio of eleva tor 
chord to tail chord . It can be measured direct on aircraft 
with adjustable st a bilizer (on g round or in fli g ht) in a 
fli g h t test, by determini ng the chang e in elevator ang le 

*The elevator angle is indica ted with ~R to differentiate 
it from the stabilizer setting an g le 'r1D r elative to the 

fusela g e axis . For the rest the s y mbols follow the stand­
a rd DIN L 100. 
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for a predetermined stabilize~ setting (that is, a
H 

change) • But it must not be accompanied by a change in 
the fli ght attitude itself and consequently in the flow 

3 

at the tail - which can be accomplished by equalization 
of the action of the stabilizer setting with correspond­
ing displa cement of the cent er of gravity of the airplane. 
A further assumption of possible importance is that the 
reaction of the stabilizer setting on t he wing lift and 
hence on the downwash distribution at the tail itself 
as well as the effect o f the cha nge in height position 
of t n e stabilizer mass due to the setting, rgmains small. 
It affords 

= 

This quantity has a value independent of the flight atti­
tude as tail constant at constant elevator moment (inclu­
sive of the special case Mr = 0) for a tai l wi th geomet­
rically similar profile sec tions ac ross th e sp an. If 
in any manner a given moment abo t the elevat or axis is 
produced, the elevator setting is then not only depend­
ent u pon the angle of attack but also on the size of the 
dynamic pressure at t he tail. The tail he r eby assumes 
again the flig h t mechanically effective avera g e value 
from the ordinarily very uneven distribution of dynamic 
pressure across the span . 

Helmbold (reference 2) calls this average value the 
efficie ncy factor of the tail. \ ith the mean angle aH 
known fro m the previous do wn was h mea s urement for a spe ci­
fied fli g ht attitude, while ~R is to be measured, the 

equilibrium of t h e moments about the elevator hinge at 
a control force moment Mst give s 

where the average dynamic pressure is expressed by. the 
ratio qH/q multiplied by the tail const ants 

(3) 
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This fac;tor K is- not , cLir . .e;ctly .dete rl:n i na.ble by fli ght 
measu rements. But in order still to be able to indicate 
the a bso 1 ute v a lue 0 f ' the dynami c-pres s 'ure . r a t 'io in full­
throttl~ flight! a certai n ~ ss~mvtion (that is, qg/q = 1) 
must be made for the value qB/q of p ower-off fli ght. 

The present ' measu'rem'e n ts were made with t h e Messer­
schmitt Bf 108 type airp lane (fi g . 1) , t h e princip al data 
of which are as follo ws: 

Gross weight G = 1235 kg 

Wing area F = 16.7 m 8 

Wing loading G/F = 74 k g /m8 

Wing span b = 10.6 m 

A b 8 
6.72 = -- = 

F 
Aspect ratiQ 

En g ine Power 

Power loading 

Win g c h ord at root 

Mean a erodynamic chord at distance 
from body center 

2b 
3n 

No = 

G/N o 

t = 

Lm = 

240 hp 

= 5.14 

2.00 m 

1 .. 685 

Incidence of win g with re spect to fu se- E = 2 0 

lag e axis inside and o u tsi d e 

Airfoil section - inside NACA 2416 

Airfoil section - outside NACA 2413 

k g /hp 

m 

Test r a n g e of center-of-gra vity p osi- Xs = 0.288 to 0.505 L 
tions, referred to mean aerody n am ic 
chord 

Position of thrust axis relative t o zp = 0.19 t 
leading edge of profile at wi ng root 

Position of plane ~f propeller befor~ xp = 0,88 L 
the leading edge of · p rofile at wing 
root 

~. 
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Backward and height position of elevator 
relative to trailing edge of profile 
at wing root 

Distance of center of pressure of tail 
(tH/4) from leading edge of wing 
at root 

Elevator area 

Effective elevator span 

X H = 1.465 1 

zH = O. 5 1 

r H = 2.06 1 

FH = 2.73 m a 

bE = 3.096 m 
:a 

5 

Effective aspect ratio of tail AH = ::']1. = 3.51 
FH 

Ratio of areas FE 
F = 0.1635 

C ho rd ratio 
1r 

= 0.425 1,--
H 

Diameter of propeller D = 2.31 m 

( 'ore detailed data on the p ropeller are given in 
a subse quent report.) 

In conformity with the assump tions of the test method 
the external aerodynamic balance of the elevator was re­
moved and the tail, as far as possible (opening for the 
rudder!) ,given a constant spanwise elevator chord to total 
chord ratio (fig. 2). The elevator uncoup ling mechanism 
installed for the planned long itudinal-stability studies 
with free elevator was largely instrumental in the success 
of the measurements; first, bec a use it enabled a fine 
weight balance of the elevator about its hinge, second 
it afforded a pr a ctically frictionless elevator balance. 
The uncoup ling of the elevator was placed in the elevator 
push rod, as suggested in the p revious rep ort. The mech­
anism (fig 3) consists of t vr o telescop ic p ieces and a 
strong coil spring maintaining a p ositive connection when 
cou~ led. The uncoup ling of the elevator is a cco mplish ed 
by a piston under 6 to 8 at mospheres air p ressure, wh ich 
co mp resses the s p ring a n d frees a length of 22 millimeters 
for the p art of t he push rod connected it h the elevat or­
operating lever. 

This length of 22 millimeters corresponds,in the 
present case, to a free range of elevator angle of about 10°. 
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The end deflections are i ndi c a t ed, within the pu sh rod 
a cross t wo contacts actuat ed by a cam on the mo vable par t 
of the rod, in the pilotts seat. The elevator i s not co ~­

p letely free from external forces, even in the uncoupled 
co nd it i o n , because the we ight o f the pu sh rod itself pro­
d u c es a certain moment abo ut the elevator hinge, dep end­
ing up on the long itudinal inclination o f the aircraf t and 
the eleva tor setting . Ho wever , t~e mo s t unfavorable c ase 
f ail ed t o disclose a me a s urabl e effect on the self-aline­
ment of the e levator acc o rd i ng to an estimation. 

Fi gure 4 show s the instal l ation of t h e instruments 
comprising tw o DVL dup l ex recor ders f or dynami c pre ssure, 
stat i c p ressure, angle o f attack, and rotative speed, also 
a p endu~um banking indica to r. The elevator angle recorder 
wa s in this instance a m e ch~ni c al recorder with very long 
c y linder : the transmission between eleva tor and styl us 

. was c h osen so as t o utilize as far as p ossi ble the t otal 
r e cord height of 16 ce nt i me ter s f or recording the eleva­
tor ra ng e in question (1 em st ylus travel ~ 1 0 elevator 
ang le) . The pitot static tube co mbined ~ it h a dual-orifice 
nozzle f or recordi ng t h e an g le of a ttack waz mounted to 
an arm ext endin g bey o nd the tra iling ed ge for ins trumenta l 
reasons (fi g . 5). Bu t t he distan c e from the ~ing was not 
so gre~t t ha t an influence of the test data by the circu­
latio n a bout t h e wing t ip could no longer be expected. 
Henc e t h e read ing error had to be determined by calibra tion 
of the p itot tube by means of to tal head tube an d st at ic 
tr a il ing p itot . Because of · the incorrect re ad ing the 
p ressure differences reco rd ed by angular p ito t could not 
be u se d i mmed iat e ly for det erm:ning the angle of attack ; 
hence the conventional me thod i nvolving path an d longi­
tudina l inclination, with i t s inev itably g reater inaccu­
racies, was resorted to . 

A g iven mo me nt was appl ied to the elevator hinge by 
means of a lead weight placed on the elevator trailing ed g e. 
But, sinc e the elevator moment is not const an t by this 
arrang e ment but rather va rie s with the cosi ne of (~+ ~D + ~R)' 
t hi s fact must be reflected in the calculation of qg/q K 
according to equation 3. 

For the rest the tes t ing procedure was the same as 
described in t h e p r evi ou s rep or t (reference 1). 
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III, RESULTS OF TES~S 

The effect of the propelle r rotating on the mean down­
wash and dynamic pressure at the tail was obtained by a 
comparison of the 'flight-test data for power on and p ower 
off. The original plan was to make the tests with feather­
ing propeller rather than in p o wer-off fli gh t so as to ob­
tain a better basis ,of comparison for the theoretically 
defined do wnwash values. But due to failure of the arrival 
of the necessary adjustable pitch p rop eller this had to be 
temp orarily post p oned. The automatic wing slots with whichj 
the Bf 108 is normally fitted, were blocked in the closed 
position. 

The downwash angle at the tail for one of t he opera tin~ 

conditions follows, on the one hand, from the evaluation 
of the measurement of the lift coefficient in relatio n to 
the angle of attack,* and on the other, from the relations 
bet~een the self-alinement of the free elevator and the 
lift coefficient of the airplane det ermine d at t wo constant 
stabilizer settings. Neither the d rag coe ffic ie nts nor the 
airplane polars are of the mse lves necessary fo r the appra isal; 
they are but a secondary result of the measurements and were 
merely included for the sak e of co mp leteness (fi gs . 8, 9). 
Despit e the considerable scatter involving the evaluation 
of the time rate of change in barometric pressu re, a certain 
amount of balance was still obtainable with a greater num-

'ber of measurements. The scat ter of the test points in 
power-off flight attending the plotting of the coefficient 
of advance against the lift coefficient (fig. 10) is due 
to the f act that, on one hand , every error in the rotative 
speed measurement reacts inversely proportional to the 
square of the speed when co mput ing the coefficient of ad­
vance, and at the other. the engine in p ower-off attitude 
reacts more susceptibly to the state of the surrounding 
air. The angle of attack of the body axis aL at the 
tail is obtained ' from the mea surements with fully weight­
balanced elevator by the foregoin g method and from the 
definitions of the angles (fig. 13). It results in the 
curve. shown in figure 14. The difference aF ~ aL is 
the desired do n ash angle a w plotted against the airplane 
angle of attack Up in figure 15 for power on and power off. 

*The angle of attack referred to fuselage axis at the wing 
is indicated with aF to differentiate it from that of 
the fuselage axis at the tail a

L
, 
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The theoretical downwash without wake effect is sho wn as 
dashed curve. For the prediction of these do wnwa sh angl es 
the lift distri bu t i on o f the wing was defined by the 
Multhopp method (re f etenc e 3 ) o n th~ basis of the given 
s tructura l data. The "do wnwash angles themselves ere 
secured by i nterpolat ion -from t he design charts contained 
in NACA Report No. 648 . The oon spicuous difference in 
absolute valu es obse r ved in t h e comparison between the 
e xp er~ment al do wnwa s h in powe r-o ff flight and the theoret ­
ical downwash is largely due to the fact that the determi­
nation of the geometr i c angles on the airplane (angle of 
se t ting of wing and stabi lize r with respect to fuselage 
axi s ) is possible o nly with a l imited degree of accuracy . 
The o nly essential f a c t or for t he stability contribution 
o f the tail is th e slope of th e curves shown in figure 15 
i n form of the do wnwas h factor 

This a mounts to Al = 0.62 in t h e des i gna te d theoretical 
case as again st Al = 0. 65 for t b e power- o f f flight te st. 
The st ab ilizing effect of the tai l is acc o rdingly greater 
in po w0 r -off fli ght t han the calculation manifests. But 
this dif ference is a mere 5 percent and likely t o be due 
to a drop in wing li ft distribution which might be cause d 
by the eff e ct of th e ro tating propeller and the fuselage . 

The decreas e in st a b ilizing effect of the tail in 
full-throttle flight is p erceptible, although not as much 
as on t h e Klemm Kl 36 A (re ference 1). The downwash fac ­
tor in full-throttle fli ght for the Bf 108 amounts to 
Al = 0 . 52 in the midd le p ortion of the cur ve and drops 
to Al = 0.47 (aF = 10 0 ) at greater ang les of attack. 
The tendency in power-off flight is the opposite. 

Wool-tuft record s duri ng fli g ht ~nd observations in­
dicated that th e flow at the wing root is steady in full­
thrott le fli ght eve n at maximum lift coefficients (fig . 16). 
Separation phe nomena rat he r a p peared first at the flap " 
trailin~ edge, while in p o ~er-off glide the fl o w separat~d 
first at t h e wing root at" lifts above " c a = 0.7 (fi g . 17), 
consistent ith the incipient down ward curvature of the 
downwash c urv e. I n a peculiar - mann~r this breakdown of . 
flow is n ot reflected in the ,rel ationship of lift to an-
gle of attack (fig . 7). 
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The control-force moment applied at the eleva tor for 
determining the dynamic pressure ~as 0.282 mkg (~ = ~D = 
'l1R = 0). 

The values qH/ q K calculated from the measur ements 
for t wo operating conditions disclosed the relationship 
with the airp lan e angle of attack UF sho wn in fi g ure 18, 
The prediction of the mean dynamic pressur e ratio qH/q 
for full throttle (dashed curve in fig. 18) was based 
upon 'the mean value qH/q K = - 0.075 of the power-off 
measurement. The variation of the curv e indicates t hat 
the tail strays out of the stream with increas ing ang le 
of attack as reflected in t h e dynamic p r e ssur e d a t a which 
after an initia l rise drop again at great e r &ng les o f 
attack . Th e maximum valu~ o btai ne d was q H/q = 1.25. 
From t h e p lotting of effici e n cy factor qH/q a nd t ai l 
angle UH(~D = 0) as function of uF (fi g . 19) t h e 
the tail quality factor (r e ference 5) 

can t h en be determined; it amounts to 0.635 in full-throt­
tle fl ight. 

The exp erimental results can be r ~gar de d a s s a t i sf a c­
tory in ev e r y resp ec t . On t h is f a vorable result, t h e 
uncoupling of t he elevator from the control sha red ve ry 
considerablY, si n ce t he redu ced frict i on c a us ed only v e ry 
little sca tt e r o f the test p oints co mp a r e d to the a pp ro x­
imate size of the differen c e s in exp erim e nt a l elevator angle. 

The indep endence of quotient 

from the fli g ht attitude , wh ich for ms a n i mp ort a nt a ssump­
tion of the test method, prevails throughou t the entire 
experimental flight range for the weight- balanced elevator. 
The obt a ined numeric a l value of , 
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is in close agreement wit h model tests on tails with sim­
ilar eleva tor chord ratio s tr/ tH o I n t he measurements 
for p redicting the d y nami c pr es sure at the tail. no con-

st anc y of value ~~~ is to be expected. si nce the moment 
6, 'fiR 

a pp lied a bo ut the elevato r axis varies with the lo ngitudi­
nal inclination of the airp lane and with the tail angles. 
The discrepancies, however. a re not ver y g r eat. 

Translation by J. Vanier. 
Nati ona l Advisory Co mm ittee 
f or Aero nautics. 
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Figure 2.- View of tail alterations. 

Fi6~e 5.- Pitol tube at wing tip. 

Figure 1. - Experiments.l airplane Bf 108. 

Figure 3.- Push rod uncoupling mechanism for elevator. 

Figure 4.- Viewl of' test instruments in cockpit. 
(a) dual recorder, (b) banking recorder, (c) time making 

mechanism, (d) compressed air flask for elevator uncoupling, (e) 
operation of weight, (f) instrument switch. 
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Figure 12.- Elevator angle against lift coefficient at control t'orce 

moment Mat. 0.282 mkg for full throttle and power-off flight. 
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Figure 15.- Downward angle at tail as function of or for full throttle and 
power-off flight. 
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Fi gure 16.- Wool tuft record on inboard portion of wing at full throttle. 

(a) Ca :: 0.925 ~ = 8.4°. (b) 0a = 1.275 ~ :: l2:.3° . 
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(a) Cs. = 0 . 74 ctr :: 7 . 2°. (b) Ca : 0 . 925 ~ = 9 .7°. q: .aH 
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