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THE ELLIPTIC WING BASED ON THEZ POTENTIAL THEORY*

By Klaus Krienes
SUMMARY

The present report deals with the elliptical wing in
straight and angular flow on the basis of the potential
theory. Conformably to the theory of first approximation
upon which the calculation rests, the }nown reguirements
regarding the shape of the surface and its angle of attack
must be met. 4 further condition is that the slope of the
surface toward the streamlines must be a continuously dif-
ferentiable function of the points of the surface. If
this is not the case, in a given example (for instance,
by aileron deflection or wing dihedral - the latter being
of importance in sideslips), the discontinuities must be
replaced by suitable rounding off. In general, the cal-
culation of a given elliptic surface requires a series of
infinitely many potential functions, the coefficients of
which are afforded from linear infinite systems of equa-
tions. The expansion is stopped with a certain term, de-
pPending upon the degree of accuracy desired. Its effect
on the integral gquantities, lift and 1ift moment, is prac-
tically negligible. An inmediate prediction of the in-
duced drag is ruled out, since it would involve all the
coefficients of the infinite number of potential functions,
Otherwise, the lift distribution at the wing tips does not
approach zero or ths dowawash becomes infinite, which is
due to the fact that the load distribution of the lifting
line is developed here by spherical functions (equation
(80)) which do not approach zero at the wing tips as do
the trigonometric functions employed elsewhere. On the
wing in sideslip, which can be summarily replaced by a
lifting line, the so-called parasite drag (reference 2)

Wp = =~ J [(pu - pov) Faxay

*"Die elliptische Tragfliche auf potentialtheoretischer
Grundlage." Z.f.a.M.M., vol, 20, mo. 2, April 1940,
pp. 65-88.
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would have to be defined first and the .suction force on
the leading edge subtracted therefrom, where, however,
extrapolations are recommended because of the finite num-
ber of computed coefficients. Even the resulting pres-
sure distribution is only conditionally valid by few ex-
pansion terms, especially near the wing tips.

It may be mentioned that the computed potential and
downwash functions change on transition to K® —> 0
into Xinner's functions for the circular wing.

A large poriion of the computations were made on the
calculating machine, the accuracy of the slide rule being
insufficient in the calculation of the elliptic integral
for higher n.

INTRODUCTION

This article is intended as a contribution to the
theory of the 1lifting surface. The aerodynamics of the
elliptic wing in siraight and odlique Tflow are explored
on the basis of the potential theory. The foundation of
the calculation is the linearized theory of the acceler-
ation potential (references 1 and Z) in which all small
quantities of higher order are disregarded. This affords
the following simplifications:

1. The z coordinate of every wing point is neglected,
i.e., the variation of the potential function
corresponding to the pressure pump on the sur-
face is situated on the base ellipsoid (fig. 1).

2. The streamlines, along which the convective inte-
gration of the acceleration is effecited, are
straight lines parallel to the direction of the
stream. .

In -the case of the elliptic boundary, solutions of
Laplace's differential eguation 4 VY= 0, as products of
Lame's function, are:. known. -

"he acceleration potential and Leme's functions.-
Suppose that the elliptic wing is in a stationary parallel
flow with the velocity V. The fluid is homogeneous, in-
compressible, fricdtionless, and not subjected to gravity
and non-vortical outside the 1ifting surface and the shed-
ding vortex band. Then:
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The pressure p 1is expressed by the potential func-
tion V¥
P=D, = ~p V2V (2)

where P, is the static pressure at infinity. Function
Yy satisfies Laplace's differential equation

= 2! 24
+ &Y 2% | o (3)
2 2

(u<'<

ay = 25
dx

and may be visuaiized as being the result of a superpo-

sition of sources and sinks of intensity 0(xgp, 7y, ZF>

on every point of the surface.

-
[+ o ’1
\Ef(x,y,z) = [ J\xﬂay—uz ':'"'- aF (4)
. i 11

,
where n denotes the direcition of the normals of the sur-

face in .(xF,yF,zF) and

the distance of the starting point  (x,y,z) from (XF,
yF.zw). The integral can be exchanged for one taken over

the surface of the ground ellipse.

M p
ylx,y,2) = [/ olzg.yp)e <'71_{\)qu d ¥y (4a)
\.4';&4':

The mathematical treatment of the present case be-
comes poseidble by the iniroduction of ellipsoidal-hyper-~
boloidal coordinates {reference 3). The semi-axes of the
base ellipsoid being ¢ in direction ¥y and cvl - K®
in the direction of x (so that 2kc Dbecomes the distance
of the aerodynamic centers on axis ¥) the new system of
coordinates isg:

X g Z 2
+ =
2 _ 2 =t 3 -1 ¢
P K P e
2 2 2
X Z
it s = >pzlrp>k>v>-k (5)
o= K b 1 -w
2 -3 2
K =D v 1 -v

s, o
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The solution of the equations leads to:

2 z
2 KT= v v
X = ——::c':»\/,og - K.""'vé-g -2 ——, y = cpui
d& - g* K
c { (8)
2 = —mm———— Jp® - 1 41 - p® W1 - v i
/ a )
1 - K
The surfaces p, w, and v = const., respectively,
are confocal surfaces of the second degree; p = 1 yields
the elliptic base surface, w = 1 the plane 2z = 0 out-
side of the elliptic disk. The surface elesment of the
base e¢llipsoid is
2 _y°
dxdy= c® — E dpdv (7)
e —K%h2~1ﬂ
besiies which
c = = 2
xﬂ/l—;.L“A/l—U‘::/cg—yz—“i—a (8)
J1 - k® 1 ~-x
is valid for o = 1.
The introduction of new coordinates u, v, w
Y(w) = p? - 21+ k3, ¥(v) = w2 - 21+ k7)),
Y(w) = 0% - 2(1 +°) (9)

for p, w,b Dby means of iWelerstrass Y function (ref-

'
erence 4), appearing im ecunation (10)

dzafl = 2 J(Y(W) - ex)(Y(u) - ex)(Y(u) - e3) (10)

where the quantities

ey = %(2 -k9); es =~%(2K

- 1) ez=~ (1 + k®);
e; + e + e; =0 (11)

l.e.,
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/
Ve, - ez = W1 - k2; Ve =~ ez = K3 ey = 5 = 1

are posted, gives
v{w)
/

u = /' - d )¢ = / P '(3:2)
;& ng = e1Vb - ezwé - €3 : V$2 -1 p2 - K=2
o0

and Laplsce's equation reads

G4 3%y 3%y
[Y() “Y I+ [V = V(] [ V(W) ~.Y(V)J-BT§= 0 (13)
Posting the solution in the form
“L’(u’vsw) = E(u)E(V)E(W) (14:)

gives, for eazch of the three functions =, Laplace's differ-
ential equation

a3z {u)

— = [4 + B ¥{u)] E(w) (15)

R
4 u

with the separation constants A& and B. After posting

B=n{n+1) and v = - —3& __ 4

m
14+ K°

|

and again introduclng , vV, P by means of equation (9),

Lamé's di fferential equation (reference 3, vol. I, p. 359)
reads -

2o I
&

.2 oy
(13- ) (u2-1)280 () | (ou2 = w2 - 1)28n (p) l

2 |

ip AT
+ {1+ vy - n(n+2)u®12,(w) = 0 J  (15a)

For B = n(n + 1) tPgre are precisely two 2n + 1
values vp, for which E_ = (u) has the form {(reference 3, p.360)

2€ -~ 2€ € - - -
Enm(p)m/l—u Wil T T (a pBmC1fa=€a 4 g unmC1~Ca-tsay ),

b

= {0 (18)

€
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Onm(p) = aé@néelfea‘es + ... is an even polynomial in
of degree n - €; - €3 -€-. The values Vv are dissimi-

lar solutions of an alﬁebraic equation, resulting from.
the condition that Op"(p) 1is a polynomial. With a view
to calculations later on, Ep®(v) is defined as follows:

' r e =52 1€a [, € m
B, (v) = 4T - va€1 L_.K___.__l’_ ‘i 2o 0, ()
: K

-

Z K J
= L0 (=cos ©) 2 (sin 9) 0, (@) (16a)
by puttjng e ‘ P : C
E—=vsin,@; ‘1534%—21 = -cos ©®; A4&p = Jﬁ - k2 sinep (17)

The solution
W, (e vyp) 5 B ()E, (D) EL"(p) (18)

achieved with equation (13) can also be represented in
different form (reference 5)., For, on denoting the zero
places of the polynomial 0,%{n) with psz, it is readily

seen from equations (5) and (6) that

- m
ER (W) BB (e

r XXy 3 22 2 2
const {1y vz xyz( II< —— I 2 ,-ca>(l9)
c ~ gz ozx J Pg® Npg®- k2 ps® ps®-1

" One of the factbrs contained in the parentheses
is selected and the product plg is formed over all zero
_ . C PR ‘
places beonging to Onm(u). The zero places ps2 can
also be determined direct by applying Laplace's operator
ol 3= 0%
+ =
Ix= oy? M
making the result equal zero. The system of equations for
pg® 1s then as follows: '

to the right side of ecuation (19) and

€, 3€s ’ 2 €1 4 8=1,2,... %
i S 0 (20)
Ps ~- k2 Ps Ps -1 aFs Pg -pq m=ne- 61- €q= €4

3
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The potential functions in the respective form of
(18) and (19) are so-called "inner" solutions of the po-
tential eguation, not suitable for our purposes, since we
require potential functions which ordinarily dlsappear at
infinity. These are secured by taking the Lamé function
of the second type in the variadle p. This is the solu-
tion of Lamé's equation (15a), which, for p —> = as
E%%?%-f7%>0 It has the form
o o]

: do
an(P) = Enm(P) /\ ) ) . ‘ (21)
J o [E, (p)] o2 - 1 Wp2 ~ k2
P
The integral can always be reduced to elliptic in-
tegrals of .the first and second categories only. The
aspect of the outer solution of the potential eguation
is then as follows:

3, "o = B ()5, ()2, " (p)
= B (W) E,T (D)E," (p) A do (22

/ m, -2
Jo [E4 ()] Vo2 =1 Wp?- k2

and eguation (19) yields

,,m( const X xy ! + y2
X.Y,Z) = —a ;yyzxyz?-;a + 5
¢ L zzx Ps

4 ———— - ¢ — (23)
P > /° [E,%(p) 3% Jﬁ -1 Wp7-

From the representation of the potential function by
(4a2) as source-sink superposition on the elliptic disk, it
is apperent that the potential functions in the plane
z = 0 1in the outside zone of the disk must be Zero. Hence
ﬁhm containing factor 2z must be taken according to (23)

i.e., only such Lamé functions as are of the form \cf. (6)
and (16)):

E " (u) = A =70 M (W) (24)
Lamé's functions have orthogonality characteristics

similar to those of the snherlca1 functions (reference 3,
vol, I, pp. 369 and 379):
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+K o } .
‘ . 0, if m# t.
Y A t dw (25)
: B, B (v) E, (v) =1 . 25
iy~ Jl_vafz dp v if mo= %
l.. +K I " . 2” ' -
m m t o b L BT -0
[ B e 008, (W) () dpdv
/- j n ~n '/ %s s M&_pgvi;vavb;_szJKa_ua
W=K V==K ' :
(0, if n # s
- . or m # t (26)
I,/» if =n = s
and m =t

“Fe connection with eguation (4a) is established by
haviag recourse vo the followingz representation of

5 @ =hx - x5)2 + (v - 7202 + (z = 23)%) (reference 3, v. 11,
p. 172): |
foe) a4 ’
=L £ e M ) E (p) B, (kp) 31" () 3,7 (%) 0> 0y
‘ n=o0 =1
(27) )
wheace |
/L 1\
VR n o : \ My " (1)
= E_;_éu.nél ﬁ Enm(“)En (U)an(p)En (MF)Enm(UFl L = 3
oo V1-bp2/1-vg

leaving the summation over “ﬁm(@) in the form (24) to
be effected. Then by assuming that the source-sink distri-
bution on the elliptic disk approaches zero on_the edge with

the root from the ecge distance, i.e., with 1"“F .

d(xF,yF} can be developed conformably to products of Lamé's
function of the type (24):

co

olxgirg) = I %gﬁst'

R st,(uF)Est(vFE (28)

b

-t

after which the’ formulation of the integral (4a) gives, -
based on the orthogonality of Lamé's products (cf. (26)) .
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2 an" " (1) By (W) B (0)F," (p)  (29)

M g

J = -K2
VEQTIRTINGY SV 1=K T

Equation (29) proves the potential function (4a) to
be 2 certain linsar combination of the functions an.

analyzed next.
s m
U/ as a

which are
Representation of the potential function

If

definite integral.-

2 1 N TES I Tes sl ey N Ten
(30)

£ =
=1 (s o—ep) (eg-ey

(e, defined by eguation (11)) or if (6) and (9) are taken
into account

X = '\/'Y(t) - ez 3[__+ '\/Y(t) —-€3 X+ ’\’,‘Y(t) -€ 5 2 (31)
Jez-ei/ez-es Vez~eivez=ez © Wey-emner-es ©

shown that ‘
T2
X) Ep"(t) at (32)

SRR
=/Y(t)~e1 "_/:(_(_"_’_:e_?.> (
Neg-eq i

i:\/ eg-es

it can be

Wix,y,2) = —1—
¥a I 2mi

M

-~

. Jo
1 € =
x polynomial [Y(t)] ¢ 1 (23)

t plane cor-

loop about the points of the complex
X = £]1 1is taken as integration path from
satisfies Legendre's differential

Qy (X)

it o
responding to
Ty toward m,.

ecguation
%H(X)-2X d QE(X) + n(n+1) g (X) (34)
a

2
(1-x2) ¢
complies with Lamé's differential equation

ax®

and Enm(t)
(15)., Then
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3qn(X) _ 3%¢n(X) _
aua atz

.ﬁ(n + i)tY(u) - Y(%)] Qn(X) (35)

for any two variables each of t, u, v, w; 1i.e.,

P32 (X TN ,
2 "(t) IL_E_E:‘_II;_(é_) - {Am + n(n+ 1)Y() g Qn(x)]
L m (X)) . 428, () .
= 3, (t) '—"gg-z—_‘" - %n(X) —-*‘(-{;'-5—" (36)
and
3% .
32 \lﬁm(u,v,w)—[Am + n{n+ 1)Y{(u)] ‘Jahm(u,v,w)
ou
1 [pm S 4, (X) a 2,0(¢) 772
= E G S, X ———————
2mi g_n (e) 3t Q’n( ) at _;lﬂl (37)

The same holds true if u 1is replaced by v or w.
The integration path is next so chosen that

C 32 : p_M -
}_Enm(t) 33, (X) _ e (x) & En (t) -0
at dt —‘Tfl

i.e., ¥,® 1in every one of the three variables u, v, w,
satisfies Lamé's equation (15) and is accordingly a third
representation of the rotential function defined by (22).
The points X = £1 in plane t are givean by

t = v+ w+ou (X = =1); t = v+ we-u (X=4+1) (38)
On the elliptic diskx (p = 1), Y(u) = ey; i.e.,
1

/ = =W (39)
. ;
Jo e = 1 Wp? - k2

u = 1

The potential function Y,  4is cited as an example.
The sole Lamé function of the first type and first degree
equipped with the factor ,p® - 1 is:

21M(p) =p* -1
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According to (22) and (23), respectively, the poten-
tial function then reads, respectively:

r
‘\glll (p,p,v) ='\/p2—1'\/1'}$2"/1—172 2 ‘..-—_;,__.__ ;—-——"‘5
; (p* - 1) Jp - 1 W¥p® - K
. p .
and
f 1( ) 1 - K'z /9‘? d p
VT, Y,2) = o2 :
' ¢ Jy -1 ST -1 W - k2
Lift and 1ift moments.~- The 1lift is given by
=Jo L ey = pop)axay = pVP S/ Wop - Vu)dxdy (40)
whereby
- 7 m N m
n -3~ “n n i¥n = -
p=1 M P (1)y/1- k2
2 At (W) Mp™
RS PPl OL L )
c 1 -x2 MR (1) J

Based on the orthogonality .of Lamé's functions, only
V.1 contributes to the total 1ift

1
A = %-% 72 Fell (42)
Vo'  furnishes phgupitching moment about the y axis
. RN y2 LT (43)
Wg_% the rolling moment about the x a%is
L= _155 c %Va Fe11 (44)

(The negative index refers to the odd functions in y.)

The ellintic wing in straight flow.- Assume the el-
liptic wing in a stream in direction of the positive x
axis with velocity V. Now equation.(l) enables the cal-
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culation of the velocities induced by the pressure poten-
tial V 1in space and especially on the lifting surface.
The =z component of equation (1) reads in the stationary
case :

ow ow ow 1 0op 2 c\
v - -_— — = ==z V% == 5
(V+u) 5o+ v 55t Y5, > 3 = (45)

Small quantities of higher crder are disregarded,
i.e.,

CLRNEE -1 3 | (46)
dx oz

The =z component w of the velocity vector w is
hereafter called "downwash" for short. The downwash on
the elliptic surface is obtained by integration of equa-
tion of equation (46) for z = 0 and y < ¢ over x:

)

(47)

<|=
il

Qra

<l
[« 1
M

| \
8

The calculation of the integral is readily secured by hav-
ing recourse to the representation (32) of the potential

) a.;, m
function \Vnm. After formulating —%%— by differentia~

tion below the integral sign, equation (47) gives

x ,
wp™ R A A / Y(t) - ex

X
@1/ | T z
Trl;i ;/' ©z \«/ez - €, «/ea - €gq
=3
t had }‘-‘. \ - z
+ J ( )"/ €z Z + ’/, N t/ , €3 z Enm(t)dtdx
e. - e e. - e5 ©C e, - egNey -~ €3
- P ® ' 20 (48{}
Yow
34(X) a6 (X) X aQqnX) M) - ey 1
°* W B A T e e, - e
33 (X))  d4gu(X) 3X _ daQn(X) M) - es 1
°x ax ox dX ey - e, Vez - ez ©
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that is

tw® . 3w AW e (4

3z 3x /Y(t) - e

which, when inserted in equation (48) and fo‘lowed by in-

tegration over x, affords - since- lim anX) for
X —= =~ -
i—""‘""’—"—
Wyt 1 IS - & m
En (t)at (50)

= 55 ik o (X)

9 (X) is given by Eeﬁmann‘ﬁ representation
+1 ‘
. .z ,
\ 1 [ B (Y)
2/ ¥-%
- ,

-3y (51)

Similarly X{t) 1is expressed with

T(s) = N ¥(s) - ep 54‘J Y(s) - ey v, WY(s) - e, E

7 c ! ¢t
V%2—91V32*33 Ves—e1VE3-ez V%l-ezv 1€

(52)

whence (50) becones

W 1 ~ /o P (T(s)) a4y JY{(t)-e
By L S tn o LT Tl B(t)dsdt (53)
v o2mi / 2 / Z(t) - ¥(s) ds /Y(t)-ex
e ¢/
= s

The integrand has poles at t = s, because X(t) -
Y(s) = 0 and at t =w; + iws, where VY(t) - ep has a
simple zero place. The behavior of the denominator near
the zero place is defined by Taylor expansion. It affords

[t - (w;, +iwg)] /:l Jp(t)- ea/t Cns + ...\E

t) -
'\/P( ’ eg l+lUJa

i

- [t - {wy + iwsy)] Jegvel «/ga-es + ie. (34)

taking into account equation (1), as well as

-

X()-7(s) = (t-8)( &) .= (bms) Zal (55)
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according to eqﬁation (52). Then the integration of

S = v+ w+u as far as s = v + w:-u  corresponding to
Y=-1 to Y =+1 (equation (38).gives
1 - Pp(¥{s)) 4y
1 —_— = Qu(X(w, + 1 wa)) (56)
2”/ X(wy; + 1 wy) -Y¥Y(s) ds n : ®
By
LI sy - e
[ P (¥(e)) Srlel - e B,"(s) a s (57)
J VY¥{s) -ez

it is to be noted that the integrand for o =1, 1i.e.,
u = -w, has the veriod 2w,;, so that the integration

path can be shifted until s proceeds from 1 Wy - W,
to i wz + w; (fig. 2), which corresponds to € = = %
to + %, when #Y(s) - e; = -Kksin € , that 1is, ds =
%% (b6 = /1 -k ® gin® €), lMoreover, let
—Z===-t T=n o (s8)
cvl = g2

so that, because of
NYE P :
% =n (Y(uw,+ iws) =ez) (59)

X((‘,Ul + iUJg)':"' T 7
. /€ 3_8 l,v'es"EQ

end, according to (33):

Ep"(wy + 1) = 1 3,500, (60)

the downwash funciion on the elliptic disk becomes

I
2
wy®

—;—==Enm(n)qn(n)- % / Pn(gcose-fn;inc)mgg(s)A€ (61)

de
s€

-~

wid

The coefficients obtained in the polynomial of ¢
and n are complete elliptic intzzrals of the first and
second categories., The calculation of the dowawash function
in the case of n =1 1s expressed as:
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E,N(A) =41 = A%, M ¥(e)

15

3

3 X+ 1
PAY) =Y, (X =L ito-n
From {(61) follows
. +
2
. g Ac
W, (i.n) / Kz Q.(n) - — J/)(E cosc + 7 sin €) de
- j . cos €
i
2
that is,

ﬂﬁléﬂﬁ.=J1 - K2 QJH)-&E<%>; 3(%) =

Tre 1ifting surface.-

given by

zZ = z(I,Y)

The shape of the surface is

The slope of the surface in x direction must agree with
the direction of the flow at the same point,

from which follows, for =z

dz(x,y) _ wix,y)
dx v

z(x,y)
.

z(i.y) = % /7wkx,y)dx

the lower integration limit being arditrary;

to zero and
function in

add to the value of the integral
¥y X
2(x,5) = 2 [ wlxylax + ely)

© 0

The lifting line, the induced drag, and

that is,

(62)

(63)

we eguate it
an arbitrary

(63a)

the suction

force.- #e merely refer to the corresponding

chapters of
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Kinner's report (reference 2), where these problems are
treated in detail. The results are readily applicabdle

to the elliptic disk. The lifting line, by which the
lifting-surface is assumed repleced, is obtained by cor--
relating the 1ift elements through integration parallel
to the x axis:

+XR ) +XR
h }
ap®(n) = /ﬂ(pu-pob)d.x =2pV" | an‘p=1 dx
xR N

It affords, for instance,

a11(n) = 4w _g. V2 ¢ = wE P, (n) ; By (r) \.\
ag*(n) = 0 k‘
857(n) = 4w § V7 0 WA - kP Bt (2 - 07
as"(n) = 0 )

The poteantisl function of the second type.~ The fore-
going potential functions lend themselves in any way to
linear conbination and yield the corresponding linear com-
binations for 1ift, lift moments, and downwash w. The po-
tential functions dealt with so far afford the aerodynemic
quantities of a correspondingly curved wing by shock-free
entry of flow, that is, at a certain angle of attack where
no flow around the leading edge occurs. The arbitrary
anzle of sttack is obtained by superposing a flat elliptic
disk with its flow, where, as is kxnown, the leading edge
is suction edge, tkat is, the lift density approaches in-
finity. All the potential functions of the first type
approach zero, however, on the disk edge with the root
from the edge distances hence the task of finding poten-
tial functions that have these qualities. They are
achieved by applying on the potential furctions of the
first type a2t oconstant x, y, 2z, and. k2 the following
boundary transition (reference 2):

m . 1l 4 - n m . ' .
Qn a1 1o (™ Vv, (x,7,2,¢)] ( )
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These potential functions @nm possess the quality

of becoming infinite on the whole border of the disk.
Because of the condition of smooth efflux on the trailing
edge, it later is necessary to combine the functions
linearly.

The downwash function of the second type.- In con-
formity with equation (65), the downwash functions are
L 4 ng equation

c11-- 1 de
(61), while observing the interrelationship:

obtained by applying the operator

d Ppln) d Pn-(n)

'1 d n oo .
——— — {e™ P n P - —s 2= an
i1 o [ nln)j= aln) ='n e in
= L
nE
The same applies to P, (Y¥) and Q(n). Equation
(61) then gives +%
e}
anII R m(K)d Qn..l('r‘.) + l__ / d Pn—l a.) M m(E)Ae d ¢
T ———— — gt} - - ] n
v a d n 2 4Y cos €
I
2 (66)

In dealirng with the second fundamental problem, that
is, in the calculaifion of a prescribed wing, potential
functions are used, the downwash functions of which are
independent of x on the disk. Acco*dlng to (46), this

. ~ w .
implies, 'since %— = 0, that
X

(67)

Nf}

With coefficient bn still to be defined, we put

@n(x,y,z) = % bnm (I)nm(xvyyZ) ®_n(X)Y|Z) = an-mq}n—x_n(x:yvz)

(68)
Correspondingly it is:
W, = % 'bnm anII' W_p, ¥ __% ‘bn—mwn-mII (68a)

wn(x,y) 1is designated as downwash function of the poten-
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tial function of the secon&”typ&* @n. ‘“According to (68a)
and (66), it is: o LoTEE T Ty en .

Wn(x ,y) . - Z bnmE ‘m (K‘,) dQn_l('ﬂ)_ . *
v an

‘+1 o A

e fdfh-JY)z myoy . A€ b

- e € €

+ 5 Ty m ba Ma"( } A€ —— (69)
o :
2

The coefficients b,™ are now so defined that w,

is a function of n only. The first term in (69) already
depends on 1n only; heunce the second term itself, which
usually depends on t also, must be & function of n only.

(
a Pn—l\Yl is a polynomial in Y with terms of the form

a¥xy
Y2"2P - [ fcos ¢ +>n sin éjn-ZP
hence is a sum of terms of the form
'(cose)n-zp“a"(sinc)OL En'ép"a n% | (70)

For the following argurents it is assumed that Mp"(¢)
is even in €3 so that all terms with odd powers of sin ¢

disappear in the integration from '~% to +%. But if a«

is even, (sin e)a = 1 + sum of cos terms. TWhen this is
written in (70), Y272P consists of the following sum-
mands:

(cos ¢)R~2Q gn-2p-a ,a (70a)

and the condition that

n-2p-a<n=-2q<n-~2 p-' (715'
Putting
o= % and = B ; x, respectively (0 1is an
ti.4r .7 integer) . (72)
and stipulating that
i oa= (73)

cos €

+0 v
'/3 (cose)B~24 g'bannm(E) pe-d € _g
Jn
-2 1,2,..o(0"'1)
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causes all terms containing the powers of cos €, 1i.e.,
powvers of £, %o disappear. The sole nondisappearing sum-
mand of Y2™2P is obtained when n - 2 3 = 0, that is,

when first n 1is even and, according to (71) n - 2p - a = 03
this then reads, according to (70a), =a8~2P and depends

no longer on ¢, so that it can be put before the integral.
Combining the summands before the integrai, which now has

the same value for every p, there is obtained conformably

d Pp-, (Y
to ———3—li—l in (89) for the integral
avx
7
=3 = M € A€
d n P / %bn n (€) cos €

J_H
(The integral disappears for odd n.)

Mn—m(€) contains the factor sin ¢; hence it is odd
in ¢. Considerations corresponding to the foregoing then
give the condition

BT2A70 gin e 3 by " My ®(e) ae—%E- - 0,

' cos € T>

qQ = 142,00, (v - 1); T= and = 2—:_l’

2
respectively

{(cos ¢)

wis

The value of the integral in (69) is other than zero
only if =n is odd. Summed up, it affords, by attention

to E3.(k) = B3Z,,(x) = 0 (equation (16)):

1 d er(ﬂ) 1 . d Pzr—l(ﬂ)
—w = X — ) =W = i

7 ar+1(n) 2r+1 an ' ¥ zr(ﬂ) 2r 3

1 = 3 i P (ﬂ). 1 _ d Qar—l(n)
7 w_(gr+1)(ﬂ)-J2r+1 *—Egﬁ———. v W-zr(ﬂ)~ lar a

whereby
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\
Ckarpa o= - % bar+1 Bar+: (K)
) n
NI 2 m oy pe —d €
iazr = 3 ‘/ % b2r Maor (5) Pp—
.  (75)
2 75
LB
1 2 m m 4 ¢
3 = - i - M5 €)Ac¢
Jar+ay = 3 /q sine¢ 2; bar+1 Marsa(€) ooB €
’“/-..n-
)
lap = = = b3% B3R (k)

bnm and bn'm satisfy equations (73) and (74), re-
spectively. They are ¢ - 1 homogeneous eqguations for the
¢ unknown b,™, and T - 1 equations for the T wunknown
bn'm, respectively, which can be determined therefrom up
to a common constant factor. The latter is so chosen that

karsy = lar = - &1 - K25 iop = Japsr = 1 (75a)
whence
(5 & dr(n) + Poproy(n)
i a rei\n
.Lwar.'_l(n) T e "'K.a ———EE—J—.—; .;‘_wer(n) = 2 p
v dn v an
(76)
A & Sar- (n)
lw_(2r+1)(n)=izzxiﬂl; Liear(n)=-VA-ke e
v v a
S dn . n
Lift, 13ift moments, and the 1ifting lines of the po-
tential funetion of the second type.-~ These quantities are
obtained by the application of the operator 1 _4d .n
el~1 dc

to the corresponding quantities of the potential factor of
the first type (42, 43, 44, 64). It is pointed out that,
during the differentiation, the areal content of the
ellipse Fgy3 embodies the factor c¢2. Then, bear in

mind that (equations (68), (75), (75a))

d gives the lift 4 = 8 £ v2 7

5 (77)

ell
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$2 the pitching moment M- -g— € 1= K2 %Va Fo11 (78)

g .
®.z the rolling mqmgntw’L =3 % V2 Fao11 (79)

n

. PR e
‘Ka %) / A/l‘- k® sin®ec 4 ¢

and for the 1iftiné lines

ay(n) = 4.m % vZ ¢/1 - k2 P (q)
ag(n) =0 v ) _ -
ooz (80)
az(n) = 4 n'g V° ¢/l - k® Py{n)
a4(ﬂ) = O_ A

The second fundamental problem of airfoil theory.-
This involves the calculation of the aerodynamic quanti-
ties of any given elliptic wing by means of the foregoing
potéential functions of the first and second types. The
boundary conaitlon to be met is glven by ’ :

. z&},xl (_411 /q ‘V .: (62a)
o'x a

'?03

which, differentiated, leads to (46):

N ‘ .
VS e

oqm
Yl

' Poéting VY as a linear comblnation ofnﬁqtential
functions of the first and second types, leaves

Ve T S a "V, o+ ZCh®n+ %Dy o_ (81)
n=1nm

leaves on the disk (p = 1)

syl . p.2y.D I N
_— = Z Z ‘a __*_I_l__, si .:.._‘Q_ = -
dz p=1 7 n cz nee 5 p=1 dz p=1! 0 (sle)
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where then, however,

Nn®| W1 - k2 E m(u> En (v) [ d Fy (P) J (82)
oz "p=1. - c - pe »,/1 - V2 Ld( p p=1

fow, if g% is' developed according to the Lamé
products

«/1-»2«/1-1:2%;1=%121§g”‘ ") BN (0)s

n
CBp"(w) = 41-u? Mnm(u)

then, because of equations (46}, (81a), and (82), based
upon the orthogonality of Lamé's product,

m 2 d an(P) 1 m
g, = M- K l' | ap (83)
) Ld( "prz - 1)J nN=1

Tais defines the coeffici ents a ® of the potential func-

m
n . .

tion of the flrst type. En exgandlng z = z(¢mn) in. a

series of £ and =n, the ap are determined by a

comparison of coefficients in all terms affected with pow-
~ers of £ in the form of a s¢reen method {(reference 2).

From equation (46)

Swltn) - T ap® /2T gx= 1 w(n) (84)
\ n,n Sz v
— 00

is now only a function of n. This residuary condition
is complied with through a suitable linear combination of
the downward function of the second type, wvhich depends
solelyon n. -The condition reads

(2 Gy waln) + Dy wop(n) = w(n) (85)

This equation is 1n+egrated from n = 0 to =7, and
then - multiplied by Papy-,(n) and Pyy{n), respectively -
integrated again from 10 = -1 to +1, and so yields
through the intermediary of the inter-relations
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+2 | 5 5
, L . — = — if r=za
/} Pzr-l(ﬂ) Pza_l(n) dn = 2(2a~1)+1 4ag-~1 . .
J, A 0 . if r#a
’ +1 ’ -
ro l
Qar{n) Pzg-i(n)dn = —
: a(2a-1) - r(2r+ 1)

R |

two infinite systems of equations for the coefficients
Ch and Dy

-

A - 1= K2 1
% Caprs : + C = = /) : W(ﬂ')dﬂ' Pog-a2(n)dn
r=o ' 'l'g(2a-1)-r(2r+¢l) O 40‘1 v/, '
-1 6 a = 1,2,400
S T . (86)
D l + %D - vl - K7 L or w(n')an'Pay(n)dn
2 = 2
BYFL ¥4l r2 T Y(2ve1)-r(2r-1) V/ / Y
‘ —1 0 : Y =1,2,...

p

The outflow condition.~- Apart from the compliance of
the ecuation systems (86), the coefficients Cp and Dp
must also satisfy the outflow condition, that is, they
must.be so chosen that the lift density disappears on the
‘trailing edge. The potentigl function of the first type
satisfies this condition without that, since they disap-
prear on the whole edge. The behavior of ,@nm on the
boundary is known with the application of the dlfferentia-
tion process (65) to (41).

[2,"] 5 y= = L")+ ((J1-52))
2
M= J/cz -y - = 3 ‘
l1-g

(The term ((vi- pw®)) disappears with the root from the
edge distance.) We post, respectively,

Z b, M) = My(v)  and g b MR(P) = Mp(P)  (87)

~whence the potential function of the secogd'tyPe becomes

B T R By (@) + (WA-u?))  (88)
. p=l v/ca_,ya_ X2 o
o . Y 1o ke

B

"Fow the functions M, (w) have orthogonallty proper-
ties similar to the trigonometrlc functions, as may be
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proved by (73) and (74) if it is remembered that Mn(@)
can be written in the form L :

. o .
Mn(¢) = (sin @)63[ao(cos ©)2 3"t &+ az(cos @)n 37% 4 .
It 1is
_S_IT_
/“ Y(cp) i (@, bpdp =0, if n- Y = %2,%4,... (89)
J-—- ; . R Do

The outflow condition reads, according'te (88):

jew] .
:.=21 Cop Mar(p) # r_go Caor+1 Mar+1(®) =0 . 1;'_<_CP_<_ %ﬂ - (902)
e . | il 3T
z Dzr M-gr\QJ) + Z D2r+1 '__-(2r+ 1) (Q’J, = —S f_ —_— (90b)
r=1 | r=i 2 R

wnich, after multiplication by Mza-i(@)A‘$ and ﬂ—z?($)ﬁ¢

respectively, and integratiqn‘from ¢ = % to %?, give
Coa-1lza-1r20-1 + _Z, Cor Iarszq-1 = 0. a = 1,2,... (92a)
Dov I_2¥,.2v + zlnar+l In(2r+1) -2y =0 Y =1,2,... (922b)
wheredby -7 +%? N
Iy,5= /+r My (o) Mglo) spap ~  (93)

The .infinite equation systems (85) together with (92)
then enable the determination of the coefficients of the
potential functions C, and D, of the second type.

These coefficients in conjunction with the previously com-
- puted coefficients anm of the functions of the first
type make the prediction of the aerodynamic quantities of
the given wing poselble, as will be illustrated on a model
case. : . : C

Note.~ The calcuiation is made on the assumption that
the flow strikes the elliptic disk parallel to the minor
principasl axis. The length of the principal axis in ¥y
direction was o, -in- direction ¢y/1~-k2.  The calcula=-
tion is readily appllcable to.the case of elliptlc wing
in flow parallel to. the major principal axis when g2 s
assumed negative, that is, supposing tke aerodynamic cen-

--ter on thke -y axis. The conversion formulas for the el-

liptic integrals with negative k% are:.
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T T
o = ' N
- d ¢ . | [e €
r—= e
. J+(-@)sin2e  Ji- ¢ ) / ko2
o ~o ) "sin”€
1- ¥ N
> (94)
il . g
ne i
J1+ (-®)sin®e ac =A/1-K2/"/1-=-‘$3-; sin®ec de
1-K

The integrals are as far as the factor before the
integral, the same as for the reciprocal axes ratio.

The flat ellivtic disk in straight flow.- Let the
angle of attack be a,, that is, the elliptic area is
given by

z = ~x tan a, = =X Qg

Then we have, according to (62),

—-————-W(x'y) = e G’O; _dj-f- = 0
v dx -

on the disk. According to (83) therefore, the coefficients

a,® of the potential function of the first type are all

zero; those of the second type must be computed conform-
ably to (73, 74, 75a), as exemplified here for n = 2 and
n=-3o

For an axis ratio of

1 - k2 =-é— k® = 0.96, that is, A = = = 6.37

the complete elliptic integral is:

il
e o
F o=/ d ¢ = 3.01611;
J, W1 ~ 0.96 sin® € o
ne —
i = / Vﬁi - 0.96 sin®¢ de = 1,05050
: . Jo :

In the case of n =3 and ¢€; = 1; € ='€, = 0

Ess(v) = /1=1v% (V® - p®) s = 132

MSS(U) = V2 - ps2 MSS(E) = k? sin®e¢ - Psa
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and according to (20) it is: '
) L | e - o
- —+ ——+ = 2 = 0, taat is, p1® = 0.19792; p2°=0.97008
Pe®-k° Ps Pg=-1

Conditiom (73) and (75a) then read:
™ _

( )jf(o 96 s1n3€-o 19792)Lede
kL)

n
2) na N N :
n (0.96 sin® ¢ - 0.97008) A ¢de = O

[a)
I3

+ b,

-1 - B = -b (1) 1 - k2(0.96~ 0.19792) bé )~/1—K2(0.96

-0.97008)
whence L9 -
by, = 1.317, b3(°) = 0.3095
i. e., M, () = 1.627 k2 sin® ¢ - C.561
For n=3 ard ¢€; = € = €; =1, we find
v z VKB~ p2 y ; V2 - v" v
(vi =~¥1 = V& ——=— =, (v) -
X K K K
MS“l(E) = cos € sin ¢
Equation (75a) reads:
+1 m
= T
2 , B ¢ A
1 =~l- f sin € b4 1 cos € sin e.Ae..d =D 1 ; sin®€clAcdc
2 /T" cosS € J
J—-—é . o
that is, '
-1
b3 = 2.654
Hence .
__3(Q) -«2.654 -cos ® sin w, k% -« v® =-Kkcos® ()

The determination of the other necessary functions
proceeds in similar -manner. - The integrals (93) can be com-
puted bty means of the functions M, (p), being either ellip-
tic or reducible to elementary.. The coefficients. IY;G of
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(92) are herewith known. Calculation of the right side
of (86) yields : .
+1

+1 M : .
) , . [“ _2_% for a=1
~%o .an't Paa—ﬂﬂ)dﬂ=’*QO;/ n Pzaeﬂﬂ)dn=“{g for -1
Lidg . Yy e

For Y = 1,2,... the right side of {(86) is always
zero, whence no asymmetrical potential functions occur in
Y. In the effected calculation, the series (81) of the
potential function was stopped with n = 4; hence equa-
tions (92) .and (86) must be .taken for o = 1; 2. It gives

2.101 C1 + 1.5217 Cg + 0.527 Ca =0 (a=1)
' ‘ (92a)
- 0,2410 C; + 0.5132 C3 + 0.9248 C2 = 0 {a = 2)
-%-c1+§c,_+'fl5cs :-3’2—01.0 (a.=1)\,
1 , ) 5 | ! (86)

"0 01 " T5% t 7 Ce =0 (a = 2)
The direét'solution gives
Ci = 0.558 ag, Cz=-0.7785ap, Oz = -0.342 0y, OC4=-0.0135a,
and the 1ift, according to (77), at: .

. Py2 o - ’ 2

4 = 0.568 agx8xz TV Foyy=4.55 ag § V2 Foq,y
that is,
d ¢
[ .
T o = 4-55

The moment about the y axis is,according ta (78):

M = ~0.7785 ay,x0.9524x 8¢Vl - k2 R V3 7

: 3 2 ell
M = -1.98 ajc Wl - k2 % V2 Foia

the center of pressure is &t —X—— = -0.435 that is

at 28.3 percent of the maximum wing chord.

Incidental to the calculation of the induced drag, it
is emphasized that the 1lift distribution of the lifting



28 "WACA Technical Memorandnm No, 971

line does not disappear when sllowing only for an-infinite
nunber of series terms in (81) at the wing tips.(fig. 3),

and hence must be included as a substitute 1ift distribu-

tion. In. this case the elliptical is most suitable, giv-

ing for the induced drag the well-known formula

2 Fell

Cyus = £
n(2c)=?

wil - a

For the axes ratio

J1 -2 =2, «%=0.75, A= 2.55
the procedure is the same, the quantities ©b,” being as-

certained from (73, 74, 75a). This affords the functions
M, (¢) for the integrals Iy 5, wherewith the coefficients

of (92) are known. The solution gives

Ci= 0.3741 a,, Cz = -0.6347 a4, Oz = -0.2347 a,,

Cs = =0.0138 a

the 1lift being

A= 2.99 a5 £ V2 Fgy1 ond = 2.99

the pitching moment
M o= -1.397 ag e/ 1 ~ k¥ = V2 Fopy
&~

and the center of pressure at

X

— = -0.467 or 26.7 percent of maximum wing chord
/1 - ¥
Forr 1 -k2'=2 k2 =« 3 A= 0.637
it gives

Ci= 0.124 a,, Cp =-0.5245 ag, Cjz = -0.066 ag
‘ B ' "0, = =0.011 ag

that is,
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The ceniter of pressure is situated at

—E —— = -0.584 ~ = 20.8 percent of the chord
C'\A-K2~ . L . t. .

For comparison the values for the flat clrcular disk
are repeated (reference 2): :

J1 - k2 = 1, K2 = 0, © A = l.272,

d cg
d ag

= 1.82

center of pressure: % = -0,515, 1.e., at 24,3 percent of
‘chord.

The calculation method used here permiis even a bound-
ary transition to the llftlng line (w‘ = A - 2 = 0).
It affords, when two series terms.are taken into account,

o

e

& = 2m c.p. at 28.8 percent of chord.
a .

o

u

The latter result corresponds to an elliptic spanwise
load distribution with a center of pressure a} 1/4 chord
in each airfoil section (c.g. of a homogeneous semiellipse).
Developnent of all guantities appearing in the egquation
systems with respect to k' affords for small K!':

'.d Cg - e . 2 T .
d a ‘
o] 63 4 7 2
1+ — g ‘+<1n-—-—- '
S T B L N ey B S
When ~: °a’ s ¢calculated according to linear wing theory
where, as 1is known, : _
1 dcg  2mA
. = O, + C, = ' =
eff o) a = A, d ag A+ 2

there appears a marked discrepahcy at small A with re-
spect to the values computed in accord with the theory of
the 1lifting surface (fig. 4). '

On the other hand, the agreement with Weinig's re-
sults is good. (See reIerence 6.) :

Figure 5 shows the center of pressure position plot—
ted against aspect ratio.

The elliptic wing in yew.- This problem can be treated
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under the same assumptions as the wing in straight flow.
The so-called angle of yaw B 1is defined in figure 6.

Now the streamlines are straights in the plane
gz = 0, defined by

vy = -(x - xg)tan B + yg ,
(95)
= -x tan B + const
From equation (1)
) 3
(V cos B + u) LA (-V sin B + v) O 4w Qﬂ = -1 rg
9x 3y cz p Cc2Z
under simplifying assumptions, there is found
V cos 8 S¥ - ¥ sin p S¥av2 SY¥ (96)
X oy oF ;
But because of (95) it becomes
dv 9—“1'- - o tan B,  that is -di’-cos B=‘-al"--éos B-L¥sinp
dx OX oy dx - 3x oy
Hence ecuation (96) can be written in the form
- Ay
W oos B = ¥ X {y = - x tan B + const) (96a)
dx oz .

The downwash follows from integration along a stream-
line -again assumed as a straight line parallel to the di-
rection of flow

x _ o
w 1 /T ay
.V .cos B /[ 9oz - )
L'_m

‘ The potential function VY. 1is again assumed &s a
linear tombiration of the potential function _Wﬁm. Pps @
in the form (81), whence the same forumlas are obtained
for 1lift and moments.

-1

The downwash function is computed on the basis of an
obligue~angle system of ¢oordinates in the xy plane,
given by the ellipse diameter parallel to ‘the stream direc-
tion - ¢ axis -~ and the related conjugate diameter -~
Ng axis.” Posting
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/1 - k2 sin B

tan Qg = J1 =" k% tan B, that is, sin Pg =
o E ‘ ST A--B

_ cos B
cos ¥g = — 5 (98)

we have the quoted diameters given by

™

tan(@ + !

y:_m_-x and y._-._._ B —z-jx’
VM1 - K% ' IS RS

On the disk, i.e., p =1, it is according to equa-
tions (6) and (17):

respectively (99)

Y .
g:,-—__l{___.__—_....,‘é:"_.__—_@_.cos(p; n:Z:psin(p
el - K2 J1 - k2 ¢
Similarly, we post
w2 - g2 . : .
by = - ——=———=cos (¢ - 9g); ng=p sin (p - pg)
B ) g
1 -8
that is, ‘
cOos B A/l"‘KZSin B A/’l - K2 sin B [+ R o X-) B
= £ - . = LT g+—-—-——-—‘l|100
e ap Y Y 5§ N0

In this instance the potential function whm con~

formable to (32) is utilized. During the respective dif-
ferentiations and integrations along a streamline, the

fact that y = -~ x tan B + const should be borne im mind.
. m A R T I
Vo (x,y,2) = = / Q| =
= X uvbg'- e,ves - ez ©
MY(t) - e5 ¥ W) - e, zZ | m
R — = 12,™(¢) a ¢ | (32)
Jes - eies--es ey - ez o1 - e3

We find that

IQ/Y(t) - e,

d Qu(X) _ 49n(X)
’\/el - ez«/el - es

oz d X

Y
¢
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and ‘ .
4qa(X) _aQu(x) 17 _J/Y(t) =62 J¥(8) - e ... 5]
dx daX ¢ /e -~epez~ez e, -eves-ea
3Q, (x) . o (X) |
—L8——  thus can be expressed again by e postlng
dz 4 x '
the result in (97) and integrating over x gives
wa 1 1 Top Q'n(x) Y (e) - ey
VT  2ni cos B./ Jor - og/e, - o4
il
: 1
X . —g, " (t)dt(101)

NY(E) - ez ; JY{t) - egq
Vgé - elvgé -~ €3 JES - elvgs

tan 8

With equations (51) and (52) Qu,(X) is now replaced
again by

V4w

1
1 [ Tpp(¥(s)) ay
X)) == —_—teeer e —— A8
i (%) 2 / X - Y(s) as
VW=,

The integrand has poles at t = s, where X(t) - ¥(s)=
and at ¢t = ts, where

«/Y(tg) - ea ___ ¥lep) - ey
«/ea - elJeg - ex a/es - elJES - ep

‘tan B =

i.e.,

JWKtB).— ez = M e sin ms JY(t )— e;= -seg — e;c0S wa

‘The denomlnator at this point-is as'

= cos Op i sin @g
(t = t5) VY(tp) = e, | tan s]
ive, - ez e €3

The residuum at 't = ts is there;ore
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1

2miQ, (X(tg)) - By (tg)
i cos pg + i tan Pg sin @B .
cos B ' |
= 21 1 —Z—§~ E (- Kcos ¢B) Qn (na) (102)

with a view to the fact that, according to (100)

x
eVl -
and according to equation (33)

X(ts) = sin wB + cos @B~% = nB

A=- Kcos ©e

For the residuum at t = s, the same holds true as
in the case of straight flow. It affords:

+TT
3 _ ' ide€
27 i /‘ % Po{tcose +mn sin €) ——— iMnm(e)de
tj n cos € = A/1~K° tanB sin €

_ (103)
By replacing +~1 - K® tan 8 by tan @B and posting the
coordinates EB and mg . by means of equation (100), the

values (102) and (103) from (101) lead to

% wnm(ﬁs, “5) = f; Eﬁm(— Rcos‘PB)Qn(ns) -1

12 P [f (c4pg)+ (c +0g)] iy (€) Ac del(104)

- — 1§ i

562 | » (g cosle+pg/+ngsin @a cos(€+@s)
E ' .

For the terms of Pn'

denominator cos(€ + @B) in the integral disappears, af-

fording complete elliptic integrals of the first and sec~
ond types. To conpute the others, numerator and denomina-
tor are expanded with cos(¢ - wB)A B, which, with

containing powers of ‘25. the

cos(e +C{>5) cos(e¢ - CPB) A2 B = cos® B - A®B sin® ¢

gives
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1 m )
% wy" (gﬁ,nig = 25 En (-k cos pg) Anlng)
+"‘

A s(e-og) M2 ()
_%AB / Pn[gBCOS(€ws)+naSin(€+¢:‘)B)JCO of a \
Y.

cos®B-ARBsin® ¢

€ dg
(104a)

The gxistent integrals are reducible to complete ellip-
tic integrals of the first and second types and one integral
of form

sin® ¢ ae

———

cos® B - AR B sin®e Ac

C
(o]
\\\Dmm

which, as a complete elliptic integral of the third type,
is reducible to incomplete first and second types (refer-
ence 7.).

T .
(1-4x2)sinB AB e sin®¢ de
cos B ) cos®B-AR8 sin®c Ac
)
= E(B)F(%) - E(%} F(B) - AB tansF<%ﬂ> (105)

The calculation of the downwash function for the po-
tential function Wll is given as a model example.

- ONEERVIRIN My1(e) = 1

X+ 1
X -1

it

P, (Y) = Y’ Qq (X) -)-(é-ln

~

Ey (=K cos 9g) =1 - k% cos® g = Y1+ k2
f B

Then,according to (104a):
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1 1 - K

1.1 2y o Lk ML= K2
N (EB,nB) =28 Ql(na)

dc

& B
]
n -
1 /°® . - cos (e-pg)he
- zA B-/ '[EB cos(e+~@a)+-n5 s1n(§ +mB)JiCOSSB-AQBSina€
"o - .
N1 - K2 (1)
= ABS Q'l nﬁ
s i
n2 “ sin®q5 co + sine¢ cose.
- L2 [ seae -2ngae 2 7B o0 7B bede
2 Aﬁblﬂ < F S cos® B - A2 B sin®e¢

z( T
..-4\2

)
/ .

-

755 EE(&)F (3)-:=(%) 7 (8|

The downwash functions of the votential functions of
the second type.-~ According to (68)

m .

n
¢p = %-bn S0

whereby

. d m
o B 1 cB
n- on-1 —dc [ Vn (xay'zvc)]t

according to (65). The downwash function wn(EB,nB) is
computed from wnm(ie,ns), that is,

1 dQn.

2
s L1 L aPaa () Myle) scdae  (106)
2 AB ulﬂ ay cos{e + @B)

in the same manner.
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°%n =0, that is, on a
streamline (ng= const) the downwash function 1is constant;
hence W is a function of ng only, and we acco:dingly

On the disk we have._

n

"put 55 =0 in é% Pn*l(Y).' To find the summand

nsn-ap[sin (¢ + $B)]n—2p from Y"T°P ..

1

n

n
we put T = 3 and » Trespectively, whence

n

[sinfe + @s)]nngT[sin(e+1pe)]zT'2P

[sin’ (¢ + @B)]n"ap

sin(e + o Y12"2T(1 + sum of cos terms)
B8

Factor cos{e + Qﬁ) can be extracted from the sum,

thus becoming shorter with respect to the denominator. ' The
new sum, however, multiplied by [sin(e + @B)]n“zﬂ yields
only terms which either satisfy odd in € or else condi-
tions (73) arnd (74), respectively, and accordingly disappear.
A proportion other then zéro is afforded only by

[sin{e + @B)]n“ET X1, wnich is, however, no longer depend-

‘ent on exponent p. In consequence, all nen‘ap before
the integral can be combined conformably to :

d
— P,_.(¥Y) into d_ p {ng), since the integral for
ayY dna

every p 1is the same; i.e.,

wp(ng) 1 e d%.-1 (ng)
_.I_J'__é_. e — bnm Enm(_ KCoS C;s) -—-.:--]:.———?.-

v T 4B m ¢ ng
aP,_; (ng) . L . | -
+ 2op-127B7 1 4 g /3 [sine cos@g + cos € sin wB]n T
d Tls 2 1

cos € cos g + sin € sin o)

cos?® B - A® B sin® ¢

X Mo(e) b e ace (107)

Hence fhefdownwash functions for the Qing in yaw have
the following forn
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% wnlng) = kp (B) 932:.13&1 i (5) __nziiﬂﬁl (107a)
dne d'ﬂa

oo ) dP, . (ng)
--{1,- W_n(nB) = nxS; —%—::—-—*B—— + J (B ——g—;—ﬂﬁ— (107®)
B B

The second fundamental problem for the case of the
wing in sideslip.- The procedure is the same as in the
case of the wing in horizontal flow, by puttlng

V1o peyl- vBcos 8 3W(x.9) Y5 5 . mg @y g B (v)  (108)
cCnm n n n

dx
where
i w(x,y) = cos BAEELE#Xl (108a)
v ’ dx
and y. = -x tan B + const; V¥ to be given again by
- m 4, I
V=2 Zoap® by +§Cn@n+§;3n®-n (109)

Eguation (96a) then gives:

—— [ a4 F m(p)
= J1- 82 n __J m (110)
L a(v/p? - 1) *n

and with it the coefficients of the potential functions of
-the first type. For the determination of the coefficients
of the functions of the second type we take (97) in the
following form:

X ' X . .
. ~ . e . .
s C / aQn d x + T Dn a?.—n d x
n nJ dz cos B 1 oz «cos B

—0o Yoo
x .
1, - _m 7 oYy 4 x
= = wix,y) - T Z ap™ n = = w('n ) 1 (111)
v . nm nl/ + 3% cos B 8

The right-hand side is # function of  n only because of

the determination of the aﬁm_ from equation (96a). The

rest of the formula then reads:
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Z 6, k,(8) —5§=L£3§— % Cn in() Ezﬂiiilﬁl : .7»
ng g (

. Z D1, (8) d3n- 1(ﬂ§) “
a ﬂB

Dnin

(8) E;%élé’-=% w(ng)) (112)

This equation is integrated from ns = 0 +to ns and
then - multiplied by P, _, (n ) . and . Pey(ns) - again

from 'nb = =1 +to ‘+1. This affords on the basis of the
orthogonality characteristics of the spherlcal functions

K IR ‘
Z (c " 2y Y
r=°( 2r+1k2r+1(5)+D2r+11‘r+1(p)'a(3a~l)-r(2r+1) ]
o . 2 d
+ (Vaaiaa(e) .*,'VDao(,ng(E)) .
o 4a7q;__
+1 nb
-3/ /owlntglantgPagidngldngs @ = 1,2,... | (1132)
J ~:l" <
-1 O
S (Car kor (B) + Dop lar (8)) - |
ro, \Yar fer a2r lar T =D - e = D
A ._ = | g
+ (CET+1 i2§+; (5) + Dey+1 527+1(5)) Z;ji—z
Rl R T EE T
A SR T
=7 /,-‘ ;owilntg) antg Pe‘Y(,_ﬂB). dngi ¥ = 1,2,..4 (1130)
..1 IC

The outflow condition.- The formulation of the outflow
condition is prefaced by the following note. The downwash
functions (107) on the wing in 51desllp have the gquality of

becoming infinite by mng = =1  1ik -1 (n ) and
dQn_l(ng)
—_—, respectlvely. But_

p ng v - | “5 =1 .are marginal
points of the elllptlc disk in whlch parallels to the flow
direction touch the ellipse (fig, 6). 4ccordingly, it is
to be assumed that the sorcalled "vortex tails" in these
"points leave the disk parallel to the direction of the
stream. Hence it is postulated that no flow around the
trailing edge occurs between the points ng = *1, In
other words:
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i = e, << 30
Z Cplin(®) + Z Dp M_p(®) = 0 T+ PSP R+

This equation, multiplied by

Eza-1(¢) 4 ¢ and ﬂ-ay(@) AP, respectively

and integrated frqh % + @g to %? +1WB gives the fol-
lowing systems of equations:

, (8) (8)

caa—llza-l,2@-1+r;lczr12r,2@-1+r§lDarI-gr,ga-1=0:

~

aQ = 1,2,...

(p) (8) (8) f(114)

Dzyl_zy,_2y+r§lcar—112r-;,-aY*rngzr+1I_(2r+l),_QY = 0:

.Y= 1,2,.-.

whereby 3ﬁ
= TP .
) P
1{) - /’: My (9) Hg () do ap (114a)
These two equations ((113) and (114)) make it possible
to determine the coefficients C, and D,. Together with

the previously defined anm is the aerodynamic quantities

of an elliptic wing in yaw can be computed. As to the
equation systems themselves, they form a coupling of the
systems (82) and (92) for the case of straight flow, as is
readily apparent from the similarity of the corresponding
coefficients and which thus affords a first simple mathe-
matical check. ’

The flat elliptic wing in yaw.- The calculations are
carried out for the axes ratio :

1 -x2=23
5
and the angles of yaw
B = 15° ana B = 30°

Again only the potential functions of the second type
conformable to (108) and (110) are required. To simplify
the voluminous paperwork only the functions up to the de~-
gree n = 3 are taken, i.e.,
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By, Dny Bgy O_py O_i - (2., does not exist)

The five unknown coefficients of these potential func-
tions require five equations. Two are taken from the con-

dition L w(ng) = - cos B tan a, on the disk, equation
(113a) £or a = 1, and (113b) for ¥ = 1. For the other
three the outflow condition (equation (114)) with a = 1.2
and = 1) is used. The M,(%) are those previously de-
fined in the case of straight flow. The integrals

Is?g obtein now only the limits % + @g and %;_+ Pg
while IY v remain unchanged on account of the periodicity
of the integrand. The values of the incomplete elliptic
‘integrals of the first and second types necessary for the
determination of the coefficients k (g), & (5), etc.,

were taken from Legendre'!s tables (reference 8)

For B = 15° it affords

Ci= 0.5204 a
Cz = -0.7194 a, Dy = 0.0144 o,
C, = -0.3343 qa, D, = -0.0065 a,
‘i;e,,
:. ) ]
A= 4.16 a5 £V Fe11
- - ' - 2 2
M = -1.83 q, c V1 K .% V3 Fo11
L= 0,0384 a5 ¢ Z V2 F i1
For B = 30° it is:
C, = 0.407 ag
Cz = =0.562 a, ~ Dp = 0.0277 a
c‘3 = -0.265 a D, = -0,0124 a
i.e., :
A 2
A = 3.26 a, % 1) Fell
- - J @ B 2
M= ~-1.43 a, C 1 v Fell
L =

0.074 a, ¢ £ V2 7 9y
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The new additive moment - L 4is positive according to
the above calculations, which is synonymous with the fact
that the leading wing half receives greater 1ift. - The
coordinates of the centers of pressure are:

4

B = 15%: . ——% = -0.440; S =0.00925 (p = §%2")
e/l - 52
. X y . (¢}
B = 300 ———=—— = -0,439; < = 0.0227 (p = 139511)
c/l_Kz (] . :

For comparison we repeat the values obtained at B = 0°
when the expansion is stopped with n = 3. The bracketed
terms contain the change in percent with respect to the
quantities computed with the four expansion terms, and from
which inferences can be made regarding the convergence.

C, = 0.563 ag (~0.9 percent)

Czo = -0.776 a, (-0.,2 percent) Dy = O

Cz = -0.365 ap, (+7.0 percent) Dy = 0
i.e.,

= P v?
A 4.50 ag £ V¥ F .,
M = -1.98 ag ev/1 - k® £ V2 P .,
. 2

Center of pressure: ——r— = - 0.438 (+0.7 percent)

el ~ K2

The results are correlated in figures 7 and 8.

For great /) an approximate formula for the rolling
moment in relation to angle of yaw B and axes ratio

K' =41 - K2 is again expedient:

\
i B
4 3 ln tan<z+ 5)

In —- = .-
de 15 !
—L_ =Y 52 4! sin 2B k2 sin B N (115)
da, 128 243

—_ !

cos B 128

1 +

/

The formule indicates that the moment on transition
to the lifting line (k' = 0) disappears, But if the
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moment with the half wingi'chord:instead of half the span
is made nondimensional, thus voiding the factor «k' in
(115) the moment coefficient becomes logarithmically in-
finite on limiting transition. -In the extreme case the
lift decreases with <cos?® B, for the reason that the
flow velocilty in x direction is  V cos ‘B.-

Horner's results on wings of different plan forms in
sideslip are in very close agreement with the values given
here. The assumption that the rolling moment is, aside
from the angle of yaw, largely dependent upon the aspect
ratlio rather than the chord distribution appears therefore
justified. '

e
I
-

Sy

Translation by J. Vanier,
National Advisory Committee
for Aeronautics.
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Figs,1,2,3
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