&

*

TECHNICAL MEMORANDUMS

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

THE TORSION OF BOX BEAMS WITH ONE SIDE LACKING

By E. Camdbilargiu

st ra

ad Luftfahrtforschung
gl 26 No., 8 iAnmasat L PO 8

¢ i A 39
Verlag von R. Oldenbdbourg, Muinchen und Berlin

THIS DOCUMENT ON LOAN FROM THE FILES OF

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
LANGLEY AERONAUTICAL LABORATORY
LANGLEY FIELD, HAMPTON, VIRGINIA

RETURN TO THE ABOYE ADDRESS.

REQUENYS FOR PUBLICATIONS SHOULD BE ADDRESSED
55 PORMIWS;

e; NATIDMAL ADVISORY COMMITYEE FOR
' §784 & SYREET, NW., ;
’ WASHINGTON 25, D.C. Wasl'ungton
April 1940

AEPONATITINS



TECHNICAL MEMORANDUM NO. 939

THE TORSION OF BOX BEAMS WITH ONE SIDE LACKING?*

By E. Cambilaregiu

D

The torsion of box beams of rectangular section, the
edges of which are strengthened by flanges, and of which
one side is lacking, 1s analyzed by the energy method.

The torsional stresses are zZenerally taken up by the bend-
ing of the two parallel walls, the rizidity of which is
augmented by the third wall. The result was checked ex-
perimentally on duralumin and plywood boxes. The torsion
recorded was 10 to 30 percent less than that given Dby the
calculation, owing to self-~stiffening.

I, INTRODUCTION

Box beams (rectangular) lacking one side, with or
without bulkheads, find frequent use in airplane design
as, for instance, on the wing near fuel tanks, or bombd
racks, or the landing gear, or even in the fuselage in the
vicinity of a wide door, or of the load rcompartment for
droppable loads (bombs, provisions), or incidental to ar-
mement installation. Shell constructions of rectangular,
rounded-off section, as customary on wings and fuselages
near openings -extending to an inside.wall, or in any case
of considerable width, can also be approximately treated
a8 such.

Section II explains the unsuitadility of Bredt's meth-
od, The analysis is made according to Minelli's procedure.

Section III describes an experimental procedure for
the exact derivation of the values of shear modulus G,
The experimental solution of G and Young's modulus E
of the employed material is followed subsequently dby a
torsion test and a torsion analysis of thin-walled pris-
matic beams of rectangular section with one side lacking.
The materials are duralumin and plywood. The analytical
data are discussed and compared with the test data.

*IBerechnung der Verdrehung kastonfgrmi%er Trgger, denen
ging Wand fehlp." rlmuftfahrtforschine.: ®bl. 16 ;- 2o B,
Auzust 20, 1939, pp. 40%-411. ("Il calcolo torsionale
delle travi a cassone mancanti di una narete.!")
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I1I. THEORETICAL ANALYSIS OF TORSION

Bredt's theory of torsion of hollow cylinders and
thin-walled prisms states that the torsional stiffness of
a body of this type is zero when a part lying between two
generatrices is lacking or, more simply expressed, when
the body along a Seneratripe Is cut up. It is gufficient
to check Bredt's formula

IF s = 05 Tor Mo mather now smalll“the weediomt. then - B =2 0

Experience, on “the other hand, shows that it is possi-
ble bo maintaim a certain, not neglizible, torsional staff
ness for hollow, thin-walled prisms, which are partitioned
and open, (The partitioning corresponds to that consid-
ered in Bredt's theory,) It only stipulates the prisms to
be buils in at one end or. both - this case is teechnically
little probable .~ in such a way as to preclude axial warp-
ing of the end section. i

Torsional stiffness can bé markedly increased by
flanges running along the edges of the hollow, open prism. .
In consegquence, the torsional stress involved does not
correspond to the classical St. Venant-Bredt stress, bub
rather to one under which the particular hollow body,
which the external force tries to twist, and actually
twists, not merely reacts with shearing stresses dut als
with normal stresses. In other words, rather than a tr
hollow %body, it represents a system of hesms joined alon
the edzes, each of which is stressed separately in shear
and bending. :

=4
e
I~

thi'a type of fixity. peot prohibiting axial warplag
of the end section, the hollow body ecould nawve no torsioms
n from. gero. 1f the wpright waliis
werel jolned. st ‘the, poinb, 0, Tixitye with o eviindrical
hinge with vertical axis, and the horizontal wall with a
a

cylindrical hinge with vertical axis, thus permitting the E
built-in section to warp at will, the torsional stiffness
would be zero. Hence, it is assumed that the restraint is

- ®

S
actwally as previously indicated, so that The pro
comes that of torsion of an open, thin-+walled pri
£l an@es ands partitiionss, as’ ildustrated an Tigu

=
@
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The torque is transmitted by means of two vertical
forces P of equal magnitude and opposite direction and
applied at the vertical walls in the end section. What
are the elementary form changes of which the state of the
tiotial form change consdigtal

The two vertical walls are strained by antisymmetrical
bending moments of equal and opposite magnitude. Let ¥y

be the bending ordinate, and y, the shear ordinate of a
vertical wall.

The tendency of the left or vight wall to deflect up-
ward or downward is counteracted by the liaison of the
vertical walls with the horizontal wall along the edges.
Actually the horizontal wall prevents the lower edge of
the vertical left wall from becoming shorter and that of
the right-hand wall from becoming longer. The result is
a.countereffect on the upright wall facing .the horizontal

" wall along the edge, which produces an axial strain in

these walls. It is therefore necessary to take into ac-
count a total axial displacement ¢(x) .of the sections on
the vertical walls, naturally in the opposite direction;
that is, toward the negative x axis for the left wall, and
toward the positive x axis for the right wall,

The horizontal wall itself receives axial reactions
from the vertical walls, of equal magnitude and opposite
direction, against which it can react only with the bend-
ing T and, if necessary, with the shear y,. But it is

not strained as a whole; ise., its center line retains its
original length,.

The state of deformation is therefore reduced to the
five parameters y,;, ¥,, E Y3+ Y4+ Their positive direc-

tions are those shown in figure l.. As seen, the x axis

for each wall was gassumed with point of origin in the out-
side free end. The positive direction points from free

end toward the restraint. The strain condition is explored
by means of the energy method, which is based on the prin-
ciple of virtual energy (reference 1). (The notation used
in the present report is the same as Minelli's (refer-

ence 1).)

Let L denote the strain energy, and U the sum of
the scalar products of external forces and displacements
of their applied points, then form the difference L - U.

The principle states that between all strain conditions
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reconciled with the type of suvport, the state for which
L - U Dbecomes a minimum ig the true state. Hence, ex-
préssing L = U | inwwelation to the formichanges tand ‘de-
o +
S U

e

rege to |the gatisfaetiion of ‘the isupport condit iong

and the minimum |condition for = U egivegitie ftirue state
of strains For [theteasge in'peint, it ist

L(l 5 U]
o)
Now L 3ig to bel expressed.

Let '"Jy '@ ¥,, respectively, denote the moment of
inertia of one wviertical K or the horizontal walls: Q the
cross—~sectional area of a vertical wall, . s; the thick=
negis ol aiventil caditnal 18 lofe hisilety s & anid fs of" hnerhor=

izontal wall: of hiedicht &by

The flanges contained in ‘) are assumed equal, and

they are ‘aliso fclonmntied bmn:, &n T, dnstiesdtihclilower

S
flanges are ascribed to the horizontal wall, J, would
have to be ziven a value which would correspond to the
vertical wall without the lower flange, wheredby the neu-
tral axis of the wall would be displaced upward. The
stress T along the wall webd is assumed uniformly distrib-
uted, and hence I'T = - G Yo! 1in the wertical walls as

well ag in Whe hprizental wall.  Then

~ 1 i i
L - ,/ <f? _]; B J .V"Ca + :12 S TS o }_ b5 Q E’ 2 '
L/ I 12 Vil 5 2 3 = 2 i
0 > (0)
2 G’Sab = ‘
P SR R e e
= 4 > }
)
and "L - U may .Joe expressed with
l i
i @ EJ “ |
ok ne 209 e mOst 3 12 !
L U ~/ iE LR L EQE +. 68 by :
o
0 > (1)
G’qu e N ;
+ == w18 4 OP(y. 4y ! x|
o (Tgn 2Tar g @Fal
i
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The result is a functional, depending on five funections
which must make it a minimum, The equation of continunity
between two walls along the edge eliminates one. Owing
to the equality of strain along the edge, we have for the
two vertical¥walls: :

¢ +

ol

D
2
from whieh follows?

/2 h
) A - . w 1

The substitution of this expression for ¥z in equation
(1) reduces the new functional to the four rfunctions Vi

Pas ¥gv T, @lving

=™
n
Sr?

l
BJ, /> .1 B\ g
- = na . i (= 2 ¢% + EQ
A /ﬂ{Eval+2(bg+b_,l/ Q¢
i

2 Gsad 2 % 1
+ G h gt® ¢ —2—=i® 4 oP(y. ¢ + g ¥) p ax
sl Ho ) y4 (.Vl :‘12 /J

B A B -~ . (4 50
Iin the seareh pf the Tunetions ¥3. VYo Yis Ls Whieh
make this functional a minimum, the following limiting
conditions which reflect the zeometric constraint at the
point fixity, should be observed:

E(L) =0 (4)

158

yl(I) = P Bl = 5, (V) =05 7,188) 20

e

A variation €N is avnplied separately to each of the
four functions. Considering the corresponding functional
as function &(€), we can write:

# N
[eY}
-
|en
|n—

N #
1}

)
I

N must naturally comply with the established limiting
conditions which Ord Y, oW, 9OF themselves satisfy.
Equation (5) is the well-known equation of the calculus of
varigtiong. )




N.A.CJA. Technical Memorandum No. 939

O»

The variation is first applied to ¥,.

®(e) /ﬂ {E Ty yfg + ﬁéﬂ % £V % yl"> +EQE'®
“

(5a
\ 2 Gsp a %
% G Ee il BT A s (y4'+€7‘,4') + ZP(yl'+y2')} dx !
J
Applying equation (5) gives at once:
<a (e)) P’
o(e) ) /
ogle) R e g S5 e e 40 (5%)
o€ /€=o 3 2 4 'la
or 0
P».Zl'
L
0
Partial integratiion gives:
l l )
] i
J 4 na.! dx = i.V4'T‘l4iL— '&’4" T14 disies (0\7‘1(7);
0 i
© 'L i)( (‘)
a
- /n Yo' Dy dx = 0 E
UO !

Thisg equation ig complied with then and then only for any
florm of whe%funetion' "Ma "when :

y3% s 0pad e )2 O 44
Adding the known geometric condition yé(L) = O “Zgives ¥
for which
3a & = haem*0 (8
Returning to the funétional while posing y, = O
and applying the variation to Vs sives
i 2 ,
(5 h =)
S na ______< e (0 n\ o !
o) = | {mrwy Pt gm)ezat

+ G, Blg, 1 eT,! ) % BBy, 'y, T 60, ')? dx

o

A
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Equation (5) gives a relation which, divided by 2, has the

form
/}l
(6 sy by Dyt s B Wghl tssno (9)
“o
QI L
/ Nat (G s, b FJV% B & O (9a)
'.,-o
Equation (9a) is satisfied for any function T, if
G sy hpy,' + P =0 (10)
The integration of equation (10) with regard to
equation (4) for y,, that is, ya(l) = 0 + @ivens
¥y = =t (1 = x) (11)
G s h
1
Applying the variation to £ gives:
! . oo ]
@(6) = ﬁ {EJ Vllg_*_i.?:]-..g!_% (g +€'ﬂ')+—" ll! !
/ v E L% 71 J :
o r (1la)
! ® 2 {
+ BOQIE"+€Nt)  + Gs,hy’ + 28y, "y, ')} dx |
£ b
}
The application of equation (5) leaves:
f’ ;
o f2gh . n : 2zt N}
/ {LJO\\bE +%yl'r>%n1+c_bn§n'de=o (12)
o
which, multiplied by ba/E, and the common factor NH?
placed in brackets, affords :
ik
. 1
/n'{(aEJO+EQb°)§ +hEJO;fl"}dx=O (1%}
!O

This equation is satisfied for‘any function T

1
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g b - h E J, "
e 2t <3
2 BJI, # 20D
Then the variation is applied to y,

[
d(¢€) :{fﬁ {E 34 Gogh 4
(o]
+

+ & 5 By
The application of
b
/ Lo nm o onLw 2
J {2ET ¢, "N +3T, <T> 4

(0]

or, rearranged .

1 ‘
: n® 5 , oh 1 )
/{<2EJV+ St A EJ ¢ M M+2P7 llJ}dx:O
0 e

Partially integrat
tegral reads:

l

U/q ylnnlu dxm= !yln iy
o

1l

=7, " (0)M, 1 (0)~ |

= —:rl“(O)ﬂ;'(O) + ¥,

€ ‘nlll_! )D

=

n (y."+€N n)j s ?pé@
+ ':6 y'l 1 J e s

+ ?P(y1'+€n1‘+¥3‘)l dx

~

equation (5) gives:

!

(15a)

(15b)

ed, Tthe Tirst expression of ©he ia-

N nt 'n

B
3 11 + /:1 n, dx

o
¢

1
IV
1

nr(g)ﬂi(@) +b/ ¥ My -8x

o]

and the second expression:




1 :
f E‘nlndx=‘
0 .

N.A.Cals

~1

1 b
+/t“‘nldx=~_é,’<o>n1'<o)+&"(0)nl<o>+/ €' Ny dx
L.o -

while the third can,

Technical Memorandum HNo.

| l ) | {
g! nl'i O_J/ ﬁ"ﬂl'dx=—§'(0)n1'(o)" ignnli
' (0]

as we know,

939 9

o=t

()

—
=
~1
~N7

0

be written as =2P TM,(0),

so that in conjunction with eguations (16) and (17), equn~—

tion (15a)

. <2EJV + B uJO> y,"(0) N 1(0) + (2EJy

+ 27 B3, )3'(0) N (0) +

2h

=7 BJ, £'(0) N.1(0) +

: S

/ 2h 1
B 55 EJ, ¢'"" N, dx -
QO

The integrals are arranged
pressions with respect to
into two Zroups:

BJo, £ (0) + (

N

" ,
+ <2EJV + %E EJO> yin&o) -

/

2R

2

)

N

(2Edy +

P

| e |

")
i
I
|

ZJ

0 ©

A\
e

=
(00
~~

i
o £"(0) My (0) |
|
|
(0) =0

)

a ginele inteceal; the ex=
and TN'(0) ©veing divided

0

&
27, ) y,"(0)

o b
ool

(18a)
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Equation (18a) is satisfied only when the following con-

ditions are complied with:

o B! 2

$3 BI, £ + <?EJV + %E EJO> 3 's0 (19)
2h Al A 5" 1 ; - )
=2 B9, £ ()% <LEJV 2 EJO> g, "(0) = 2P = 0 (20)
2 1 n? . ! o, 204
E2ETGE" (0)] % <2EJV + 25 85,) 3" (0) =0 (202)

The result is a differential equation, namely (19), and
two limiting conditions (20) and (20a).

Integration of eguation (19), with due regard to equa-
tion (20), gives:

jae)

03]

2h n 1 h o Mit ol 5Bl (& S
=3 B, ¢+ (2E0y ¢ 3 HJO> g = 2B = 0 (21)

and of equation (21) with due regard to equation (20a):

%% EJ, E' + <27Jv + %; EJO> yl" - 2Px = 0O (212)

Agide from equation (2la), we again write equation
(14) obdtained from the minimum condition with respect to

£

f;l 5 < }rl" ' (14)

which, after elimination of §' from equations (2la) and
(14), and minor changes, leaves:

Ty F ) (22)
EJy + ——F——m——
1 e
Integration, with allowance for ¥y (equation (4)), T mes
a 3
Pk e B Pty 20 (23)
W W8T n° ol
i, W P
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Integration of equation (14) with due resard to equa-
tion (4) for ¢ and ¥y <gives:

g e g8 B Jo v ! (14‘3)

°BF, + BADS

which, since ¥y, 1s known from equation (2%), gives:

B 1 2 2 3
t = T LIV - P52 9) (24)
EEJV(EEJO £ P E@) EJ EQ
There remains then the solution of yg- Equations
(2) and (14a) afford a relation detween ¥.' and ¥,'
which, with allowance for yS(L) = yl(l) = 0 wultimately
gives: :
LR
y 2EJ, + bEQ !

The strain condition is therefore completely defined
throuzh y,(x) from equation (23), yo(x) from equation
(1), ys(x) fron equation (25), £(x) from equation (24 ),
gand becaunge Felx) =0

The construction of egquation (23) discloses that
v,(x), that is, the bending line of a vertical wall,
azrees with the bending line of a built-in cantilever beam
under load P at the free end, with the inertia moment:

2 { 2
A | R
R Ne——— T . (2%a)
//2 b« \ /2 N |
2 = + — \ QJV 1= B = )/
\,Q o \ \Q uo//

while the natural inertia moment of the wall section is
Jy only. Formula (23a) definitely expresses the effect
of the presence of the horizontal wall on the bending

stiffness of the vertical walls.

The shear strains on a vertical wall are equal to
those of a beam of the same size, built in, cantilevered,
and loaded in the same maaner.

The moments in the wvertical walls, positive in the
sense of the moment due to P, are in any section
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My = E J% e Px (2

h?

n
(&3]
~—

o
(_a

SFJ e
28J <Eﬁ EJO/

The moment is, as seen, given by the product of P X X
the moment existing in a vertical wall which is no longex
connected with the horizontal wall, and a correction fac-
tor < 1, rexpressing .the reduction in stress in a verti-
cal wall by virtue of the attachment with the horizontal
wall,

: 5 A . 1
Equation (24) gives the svecific strain £ :
- 2 B Jp h

i = 5 - Px (2%)
P2EJy (2EJ, + b EQ) + h EJ, EQ

The total normal stresses (positive, if tensile) in
upp

the er and lower edges of the left wertical wall is
given bJ the formula:
3
i WM e EJdy yl” h |
@ =-EE::-——--é——- g :l:——-——:]_— —————— ; | .
uvper Jy v }
lower (27a)
1 h |
=L k= g M :
GV iER
g 3 Lt 3 y §
¢ .follows asifunction wof syy" > from equabtion (14), hence
gives:
-:,.,/ ')":
g, == Q o e = £ 1\ gt (28)
upper 2 N2EJ 4 + EQD 4
lower
In the corresponding edges of the right all the sane
equal and opposite stresses as ‘in equatlon 8) are ob-—

tained,

III. EXPERIMENTS

The experiments were made on boxes of duralumin aznd
plywood in order to test the conclusions of the preceding
theory on epen boxes and tec evaluate the practical approx— ° »
imation.
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It is anticipated that, .because of the effect of self-
stiffening as a result of the great form changes, the ana-
lytical results will be too uafavoradble comvared with re-
ality; dut in practice the analyst and the designer pre-
Taz ~to.er? o1 the Wafe side.

The foregoing theory states that the open boxes have
& low over-all torsional stiffness as compared to a closed
box of the same dimensions. But it does not equal zero
as Bredt's theory stipulates in his particular case.

The foregoing theory further manifests that the tor-
sional stiffness of the open box originates in the flex~
urnl stiffness of the vertical walls, the deflections of
which the horizontal wall opposes. This wall undergoes no
shear, it merely bvends. The vertical walls are subjected
to very little shear, which probadly has little effect on
the deformations of the system. It may be said that the
system reacts predominantly with ncrmal stresses to the
applied torque, whence the term "twisting" is employed rc-
luctantly to the type of stress considered herec,

a) Experiments with Closed Duralumin Box for
the Experimental Determination of G

The twisting test of the box beam with one wall lack-
ing was preceded by the exverimental determination of G
for tac employed duralumin sheet. This value is to be
used in the calculations for the box with one wall removed.
The determination of G is effected by the twisting of a
thin-walled beam of square section (plots 1 and 2). Tae
reasons for the square section were the following

In a rectangular, hollow. closed-off prism sn support-
ed as to permit .ﬂrPIAg, the angles of warping or disloca-
tion of a vertieal wall and those of a horigzontal wall, are

. /" h B e ; ;
proportional | — = -— ).  Now, glunce h = b and @84 = 85
\Sl S o/
on: a square section of constant thickness; the angles of

varping are equal to zecro; i.e., thbrb is no warping. If

such a box is restraincd so as to prevent warping, it will

have no effect whatsoever, because no normal stresses due

to bending can nccur. ZEven possibly existing flanges have
on ve orinegatbtive ‘tepsion:’ "ALL this is

onstruction of a test box on which

88 are necessary.  Moreowver, it is

box and provide a robust flange that
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definitely prevents warping:. For this reason the shear
noduwlus -G, dlerivied firem the ‘twist of the discussed box

must be exactly correct.

1

For the box beam of square section of side length h,

and thickness g, it zives?

The angle. at the extreme end amounts to

'3(0) 8/ Mt-l/ . Mtz

B ¢ 8 d

For 1 = 149.5 em, h = 15 em, s = 0.06 cm, it is:

A
§(0) = My ———mtie
G 15 X0, 06

hence for G:

149.5 My L
x 0,06 §(0) 3 (0)

15°%

Measuring the vertical displacements y, and

Vo at

the ends of. o horizontal. bar ofy L«f m length, and.applyins
a torque with two equal and opposite loads P at 100 cm

distance, 2ives:

My = P x 100 kg/cm
(Tt oe
0" = ——~EE6J1— (in radéans)
Gt o oh, | Sk LOOLL (S o0 B0 g/ cns
'Vl ¥ I i 'VE

The recorded values are compiled in table I.

S
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TABLE I.
| v <
P Ty l T2 | Zl Soe P G ’
ks cm’ | cm | em iy kg/cr®
B + 2 ) = Ly
10 Q2 ! 0,2 | 0.4 ; 25 296,000
20 .45 | o5 | AL R0 Ne 263,000
30 §65 L 3BE | 2.3 A1 B3 272,000
4.0 21951 Seilo 1L 5 i 21 249,000
B0 <0 B85+ LB . BepB o200 237,000
L i l '
The last two wvalues for G correspond to a strain

condition by incipient buckling; they are therefore an-

parent ), snot actualy’ G walues.

The test average is G =

270,000 kg/em?2,

Figures 2 and-3 show the test rig, and figure 3 is the
set-up with Huggenberger strain zages, which were also used

in order

The
figure 4

The

means of

cm apart.

eaeh caose

to obtain G Dby a different method.
b) Load Tests

dimensions of the .open box are given in plot 3;
shows the test procedure.

torque is applied at the free end of the box bdy
a double lever where the applied forces are 100
The box being 20 cm wide, the force (P) 1is in

=== = B times greater than the load exerted at

the two ends of the lever during the test.

1

The

l.

n

y
e)

Tg and

measurements included:

The two vertical, oppositely directed displace-

ments y, and ygq at both ends of the hori-

zontal bar of 160 cm length, the test point ly-
ing on the median plane of the bar attachment.

The horizontal displacement y, of the lower
horizontal wall. The ordinates yg, ¥4, ard ¥yo
were measured at the free end of the box.

corresvonds to the wvalue y%(O) of the theory.

Y. reduced in ratio of the horizontal differ-

enees, correspond to the gquantity yl(O) + yg(O), 0xr, eXx=

actlys’
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o)}
31( ) 273( ) 160 Is A0 v d
A 20 Y& F g s -
For this reason the expression 180 § w18 used for

y, (0) + yg(0) in table II,

TABLE II
= 7 i Tig e : i s
P ygllaft) yg(right) Por | iyl O L O)
kg ! mm mm mn | mm
o : T ;
Biohden o 418 haas 0.5 1053
WO 4 iy ~u 4l 25 148 3,06
15" 36 36,5 P4 4.47
2 48.5 51 2,0 | 6422
25 | 59 62 Bl 7458
B0yl 71 73 3,0 9.00

There is a distinect proportionality between torque
and strain, according to table II. Thig brings us to the
formulas eof the precedine theory. Making =x =0 in the
expressions faor | y J,» and vy, gives:

Yo I
3
y, (0) = L M. (30)
1 i i 3 hd s
3BJ4 11 + 5 \\

\ 27 4 B2 Ly O O

\ \Q Jo/ /i
v pd s el (31)
& C’Slﬂ
B e y, (0) (32)
Ua 27, + D0

Next we computie | J, (; and Jgs» The eross section of a
flange section is 30 mm2 = 0,3 em2 (fig. 5). The inertia
moment of a vertical wall with two flange sections -~ the
centroids of the flange seetiogns Beinmg: 12 = (2x044) =
1l.2 em = spaced spart = 433

{ g [PRE) Jos I 17 o@
Lol it “'“Xi*" o BeBd + 18.80 = 27.44 lei®

The inertia moment of the horizontal wall is:
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JO = _Q_-QQ{%_E._Q': £ 40 .C.m‘q’

$he-section L1 of one nf the tTwo vertical walls, ineclu-
sive of both flange sections ig: ' '

2 '="0006" XL % 2N 5T Mee em?

/ 2 ‘
'EJV( 1+ = —\ =a E Jy {33)
- 2J <E + P:)) :
X AE 1) Jo/
whereby '
b= i 2 ‘ (34:)

2 -02
2] - + ==
v-<Q Jo>
En)

@ is a kind of enlargement factor of E Jy,
cludes the supplemental horizontal wall.

which in-

128

> 202\
o 3 om aa Ll el
e <1.32 30 )

@ B I, = 1.228 x 750,000 ‘x 27.44 = 26,3 x 10° kxe/ow®

The box length without the clamping flange is about 135 cm.

3 TN
S NI (& N 0 S o i
1 2 3o & Ty G & "8 !
135% 3k 5 &
=% (.1 =+ - s ) i (35)
\3x26,3%x10 270000%0,06x12/ |
= P (0,0312 + 0.0007) = 0.,0319 P j
Then v
¥, (0) = 0.0812 P
hence
: . : <
7,000 5 a-D B8 o (B -esSRXICUMEEL L B0 ]
B g £ 10 2x40 + 20 x1.32 '
P ded)
= 0:521 7, {0)=0,521%0.0802 P=050%626.P ' |
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Whibe - LB = 60

g, y,00) + y,(0) = 0.319 x 30 = 0.957 cm
against the 0,9 'em test walue.' TFor yz(0) = 0,01625 %X 30 =

0.48 cm =against the experimental 0.3 cm. The accord be-
tween theory and test is satisfaetory,

c) Tests on Closed Plywood Box -
Determination of G

The box was a thin-~walled beam of square section. The
dimensions were those of the duralumin specimen (plots 1 and

2). The walls were of 1.5 mm birch plywood. The walls and
the partitions were conneeted by 10 x 10 mm®strips. The
two partitions at the end were of 2 mm birch plywood. The

15 x 15 mm® flange gtrips wene @f spruce (figs. 6 and 7).

The distance of the couple and of the test scale was

d =112 0cns The test arrangement is shown in figure 8.
Teita Sl
B o= _48°% - AR % s (B%7)
J de h
 — <
Ml R N i g
'8(/)) = b = o = d -s (38)
B Gh®s d
yqa @and y, are the respective resdings from the right
and left test scale,

Aceording tio equation (38), the experimental value of
G Eisie

o w apiobe t sripemmer . 1 E e (29)
B slyg ¥ 7s) Yqa * Vg
TABLE III
T wHRE T
Load P ¥a Va By . ooy ! &

ke | mm mm | mm deYS_L k%/cmf“
5 e [sae | pagb | § o.BL 1| 18,800
10 20l eR ] 4o g0s. |15, 800
15 41 | B9} 8o 1.875 | 12,700
20 Be  L.oBE lyim R 77 12,000
25 78 76 1154 i 482 11,000
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Since critical phenomena appear at P = 15 kg, the
value G = 13,800 kg/cm® is maintained.
Plaititasmos s fme =3 T wonslld - gilves

E = 2(m + 1) G = 2nib7 X 1B 800 =sd6 8 kéz/cm2

d) Load Tests with Open Plywood Box

The dimensions are given in figure 9.. The side walls

and the partitions are of 1.5 mm birch plywood, the out-
side bulkhead walls of 2 mm birch »nlywood. The flange

strips are of 15 X 15 mm?® spruce. The test arrangement 1is

shown in figure 10.

As shown in section II dvt, At
k]

P LS \
BBJ, L % h ¥
e ('/2 + -br_.\
eig (£ + —--
v \Q Jo)
L with h = 15 em, b = 25 cm, and s (wall thickness) =
0.15 cm. Now the walls of the vox have a G = 13,800 kg/
¥ cm2 | Smd e nt N SHEE— S Sl 800 kz/cms, as .established by tests.
But for the spruce strips, it is around E = 100,000 kg/
em®, So in the calculation of ) (section of one wall
including strips) and  for Jv (their inertia moment ) as

is customary in reinforced concrete, the area. of the spruce,

i.e., that of the harder material, must be multiplied by

(5]

n = _Spruce _ 100000 i
Yo igwood 26000
Henee (fie. 11 ):

0 = D158 05 €% w2 ix b= 5, 15 0 (41)
Tt = Opll5 % AbL & 8w 1'52 13.5" - 656 cn* (472)

12 2

- 25” & 1e = 3,2 (43
. Jo o053 0, Ll e 2t
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R SR 2 Ny 4 94 719 2 g wdb 44
G0 Cl i Baa = ORI Ly geec (44)
2 e i - = 0.0515 (45)
" 2l o ue 2 x 656 x B3.32
ch 9 G Jv>
353
v, (0) = EE = 0,033p P (46)
B ENE SRS S0 O XG5 T GBS
, Y 1
y_(0) = E Lo = 0.00434 P (47)
2 13,800 x 0.15 x 15
vy, (0) + y (0) = (0.0336 + 0.004%4) P = 0.03794 P  (48)
3(0) = 28X 0.038 F _ o0,00%304 P (49)

Take, for example, the 10 kg load, bear in mind that
the distance between the couple is 120 cm, and that b =
25 cm, Then,

)

1=

2
2 = 5

o

10 = 48 kg

()]

3(0) = 0.,00%04 x 48 = 0,146

computed

instead of an observed test value of 7.8 cm, which corre-
sponds ‘tlo ’
20NN A5

ﬂ<o)recorded =L s 0.13

Here also the agreement between theory and test is satis-
faevorye

The loads, the proportional moments My, and the re-

corded strains along with the theoretical and experimental
values of 9(0), are compiled in table IV.
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TABLE IV
MtzPXIEO;yd(right);ys(left) B0 ) s oaviag | 7500 sppimeon
kg | kg/cm |, mm | mm in radians
B| 800 | B2 I e 0.053 | 0.073
g "o | @ .t 067 | .087
7| 840 | 50 bl 48 JOBE . | .102
8 980 By i 60 . 101 ! gli?
9| 1080 | 69 e C T 151
B0 zeoo - | 79 b v plan ] .1456
L i720 | os8 i 86 145 | .160
0 i 5 i 5 ;
. 1 ’

Translation by J. Vanier,
National Advisory Committee
for Aeronautics.

l, Minelli, C.: ©Nuova calcolo energetico-variagzionale
di "travi a cassone" sottoposte a torsione.
Ricerche di ingegneria, Nov.-Dec. 1937.
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Plot 1

Dursluminum.
Pieces:1.
Scale 1:12.5 .

g, Partition of 8/10 mm Duraluminum h, Angle section.
parts—-scale 1:3 . i, Rivets.

¢, Duraluminum. k, 6/10 mm Duraluminum
&, Attach flenge. 4, Duraluminum angles. covering.
b, Partition wall ¢ Dyuraluminum partition. 1, Angle section.
of Duraluminum. f Rivet pitch, 18 mm. m, Partition wall.
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Plot 2 Q
a, Partition well of b s

v
Duraluminum sheet. b, Dureluminum angle section.

2 pleces of 8/10 mm Duraluminum sheet. 3 pieces of 6/10 mm Dur&luminum sheet.
2 pieces of 6/10 mm " .o, c, Attachment flanges.
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Angle Section
15 x 15 x 6/10
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Plot 3

, Angle sections.

, Attach flange.

, Rivet pitch.

, Partition of duraluminum.
Scele 1:3.5.

a, Partitions.
b, Dureluminum.
! c, Partitions.

R e

h, Duraluminum,
2 pieces of 8/10 mm sheet.
3 pieces of 6/10 mm sheet.
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Figure 5.- Flange profile.

Figure 7.- Section
through box.

Figure 6.- Test rig with closed
plywood box tc define G.

75

Figure 11.- Wall section.

Figure 9.- Test rig with open
plywood box.
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Figure 2.- Load test with closed Figure 3.- Determination of G with
dureluminum box to Huggenberger tensiometers.
define G.

Figure 4.- Load test with open Figure 8.- Loed test with closed
dureluminum box. plywood box to define G.

Figure 10,- Load test with open

Plywood box.




