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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHENICAL MEMORANDUM NO. 897

AIRFOIL THEORY AT SUPERSONIC SPEED*

By H. Schlichting

A theory is developed for the airfoll of finite span
at supersonic speed analogous to the Prandtl airfoil .theory
of 1918-19 for incompressible flow. In addition to the
profile and induced drags, account must be taken at super-.
sonic flow of still another drag,; namely, the wave drag,
which is independent of the wing aspect ratio., Both wave
and induced drags are proportional to the square of the
1ift and depend on the Mach number, that is, the ratio of
the flight to sound speed. In general, in the case of
supersonic flow, the drag-lift ratio is consideradly less
favorable than is the case for incompressible flow, Among
others, the following examples are considered:

1, Lifting line with constant 1ift distridbution.
(horseshoe vortex).

- 2. Computation of wave and induced drag anlthe twist
. of a trapezoidal wing of constant 1ift density.

3« Computation of the 1ift distridbution and drag of
an untwisted rectangular wing, .
e L

‘ : N4
I. INTRODUCTION '

The basgic principles for the following computation of
airfoil flow at supersonic speed are presented in the paper
of Professor Prandtl (reference 1), and a detailed expla-
nation of the method may therefore be digspensed with here.’
a The potential @, of a 1lifting line at supersonic
speed may be derived in a simple maaner from the potential
®Q of a stationary source in the presence of a 'supersonic

flow,

*"Tragfiﬁgeltheorie bei Uberschallgeschwindigkeit." Jahr-
buch 1937 der deutschen Luftfahrtforschung, pp. I 181-97,
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If @Q denotes.the source potential of strength 4m,

the potential @T of the lifting line element - dy with

circulation I' about the.y axis is given . by

x'=x. .
_ r i
R : ' 32
A x'_: -

_The poﬁential'of a source at the”point' x = vy = 2 =0 in

the presence of a flow. with velocity wu, >c in the di-
rection of the positive x axis is

1 =

The potential (2) is real within the double cone with half
cone angle a, the axis of which cone is parallel to the
direction of flow (sin a = c/ug). Outside of this cone
the potential, according to the formula, is imaginary. ‘

9q = (@

-Actually, ¢Q 1§ there to be taken identically equal to

zero, The potential has physical reality only in the "af-
ter cone® of the point x =y = 2 = 0, In the "forward
cone" it is similarly to be taken identically equal to
Zero, .

The potential QQ is the starting point for con-

structing the airfoil potential., We shall first derive
from it the potential of a line source of finite length,

‘then with the aid of the operation indicated in equation

(1) we shall obtain the potential of a 1lifting line of

.finite length for various lift distributions, ‘From the .

lifting line, there is finally obtained by the familiar
method, the lifting surface., In this manner, a theory
of the airfoil of finite span for supersonic speed is ob-

_tained that forms the counterpart of the Prandtl airfoil

theory for the incompressible flow case (reference 2).
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II., CONSTAKNT LIFT DISTRIBUIION (LIFTING LINE) -

We shall now agssume a line source of length b
(later = gpan of wing) which lies in the direction of the
y axis and extends from y' = -b/2 to y! = +b/2 (fig., 1).
Let g(y') be the initially given local source intensity
(later = the 1ift -distribution)., TFurther, let x, y,
be the coordinates of a point in the flow and O, y', O,
the coordinates of a source point, Then from eqguation (2)
the potential of the line source is '

oo

y'=+

) : g(y') a ¢!
o = (3)
h T/ ug\2 [ 2 2 :
-k /x? - (—9-> —1]{(y-y')+z}
v'=-3 v/rﬁ L c
¥e introduce nondimensional coordinates by dividing all

lengths by the half-length b/2 ‘of the line source and’
accordingly set : ' ‘

!

r | ; y
e2x 2y __ 2z _ . 2@
b - g' b n; b !._ b =m

Further, we ihtrdduce the abbreviated notation

E%—8- 1 = k2 !
¢ .
or ' _ - 5 ) - (4a)
tan a = ! = i |
K

08 . | . | . | .
-0 - T 7 - - - = 7 ’—-—-‘ﬂ ‘;71‘ Tt T T T 'T -

where a denotes the Mach angle,

The potential of the line source then becomes

| ' =+ 'y - | .
2 (£, 1) =/ g(n') 4 m (5)
“n

t=_1 -./ga- k2[(m-m"2 + EBJV/‘. w Y 9
S A . B i '

'\;'St,mé;:ﬂ' 22 A

2=
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We shall now® carry out the integration in equation
(5) for the simplest case of the line source with constant
source density, that is,- g(n') = const. = 1, This gives

l= +
n'=s +1 2
:DQ =f _ - . . (8)
Jmre oy S E2 - k20N = m')? + £23]
friting N-m =0 M =-1; 8=298 =m+1
. nt = +l 4 = 1’a='r‘i‘...1
and ) (E/K)a - t? = a® ‘
equation (6) becomés
8=, ’ "
dn = _l . ® = ..-]-'- (arc siniz- - arc sini— (7)
Q K J;‘;"— N a
“8=9,

By the operation in equation (1) there is then obtained
the potential ®p of the kifting line with the constant

1ift distridution T, setting

R -t
[ ) a¢Q

EYa d ¢! (8)

O = o
T 2 m
E':-—m
The first step of the above operation, differentiation with
respect to {, may be carried out immediately dbut the inte-

gration requires a somewhat longer computation. There is
obtained :

3 % - {3, , Lo,

- = - — (@
3t a?J/a? - 9,° a2Ja? - 9,2 )

In integrating with respect to £, 9, and 9, are con-
stant, For the first term, there is obtained
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© Le,ag R - (10)
® 32 /;2 _ 682 2 t[ g; J£¢2+Kag‘(t2_6az)_K4§2622

where there has been set

g = £2 = (x {)°

- The evaluation of the integral gives

K - 2 k% 5,% t% + (¢2 - 9,%) ¢t

Zﬁﬁé A/gta + _Ka g*(ga ___ ,323) - K-4' & 13é2

2 w - Eg(ﬂ - 1)8

=% arc tan (11)
2 2t (n-1) tJVu -
where
w=t> -k [(n-1)2%4+ Q?Jn (12)

~ Since the integral (10) outside of the Mach cone;
at the end point m =1 of the lifting line with axis
parallel to the x axis,

6% - k7 [(n-1)%+ (3] =0

is imaginary, i.e., is to be taken egual to zero, the in-
tegration with respect to ¢' mneed not be extended from
' = - but only from the cone surface along lines paral-
lel to the x axis. For the lower limit of integration,

we have thus the constant arc tan <»$n/2. which we may
suppress. There is thus found from (8), (9), and (1)the
roquired potential of the lifting line with constant cir-
culation L
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o r - Lo, at' r. % w - 3 - 1)
I LY A VAN n 28 (n- 1LV
_ Eis . . )
Lo E(n - 1) A 4 ,
= - arc¢ tan + gimilar term for the cone at
2 v

n =1 -(13)

Thig potential is different from zero only within the two
dach cones ariging at the ends of the 1lifting line (w > 0)
while in the entire remaining space it is equal to O For
a complete circuit about each of the cone axes mn = %1,

= 0, the arc tan increases by 2 v, The enclosed vortex
filaaent therefore has the circulation I'o. The lifting
line assumed to extend from y = -b/2 to y = +b/2 with the

. constant circulation I'g along the span continues behind as

a free vortex.line in-the two axes of the Mach cones. Equa-
tion (13) thus gives: the potential of a "horseshoe vortex"
at supersgonic flow, As in the cagse of the incompressibdle
flow, this simple horseshoe vortex becomes the starting point
for more complicated 1lifting systems.

In order to obtain an idea as to the apﬁearanéé of the
supersonic flow in the neighborhood of a horseshos vortex,

-we differentiate the potential (13) to find the 1nduced ve-

¢

locities
c x » - P,
: dx S %y R

and obtain

ny (8 -x (3 Vo

Cy = - - : (14a,v,c)
Bt e a- S
roootln-1) (w- «®t?) |
o (Pe+ (n- DI Se

cx=n

cz =

l1See footnote on hext page.
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The field of these velocities exhibits a number of singu-
larities., On the cone surface all three velocity compo--
nents become infinite, On the cone axis cxy = O, but
cy  and c, become infinite as 1/r (where r is.the
distance from the axis). In the neighborhood of the cone
axis, Cy and ¢, thus behave exactly as in the neigh-
borhood of a vortex filament in the incompressidble flow,
The field of the induced velocities gives a motion which
encircles the vortex filament traveling downstream from-
the end of the lifting line T =1, ¢t =0 =0, as may
be seen immediately from (14). .

In the plane M - 1 = O through the ‘end of the 1ift-
ing line ¢z = 0 and : : . -

L > 0:cy <O
t < OM:‘cy >0
In the plane { = O, which contains the lifting line,
cy = 0 and

mM-1>0:¢, >0
NM-1<0:¢; <0

The flow picture in the cone, however, in its-detail is
essentially different from that in the neighbornood of a
vortex filament in the incompressible case. Figure 2 shows
the flow picture of the 'y and 2z +velocities in a plane
perpendicular to the cone axis downstream of the lifting
line, The figure was obtained by computing the isocline
field cz/cy = const. ~On the cone surface, as has been
said, ¢; and cy are infinite, although for the slope

of the streamlines  ¢,/cy there is here obtained the sim-
ple value . : :

1A check for the correctness of this solution is obtained
by substituting in the linearized continuity equation
~ 2 o Cx . d Cy N d C, -0
o x oy oz

which must be identically satisfied.

R e S
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The direction of the streamlines is therefore radial to

the center,.- The flow consists partly of the closed stream-
lines which circulate about the vortex filament and partly
of the streamlines-that enter on one side of the cone and
_leave it again on the other side.-.: ~

“In. addition to. the two Mach cones that- ariae fronm
each of itg ends, the lifting line generates two plane
waves, which enclose a '"wedge space" and which appear in.
the streamline picture as t he common. tangents of the two
cones, :

Fot'the.downwash distridbution in ‘the plane { =0
through the cone center, there is obtained from (l4c) the
simple formula

2ox 0 S1o e

ta.na.cz°:= 6

(15) °
° .
uhereA

nvjo

y-

(15a)
x.tan

This downwash distribution is shown in figure 3.

, "In order to study the processes on an airfoil of fi-

nite length at supersonic speed, particularly the induced
drag, the replacement of the wing by a lifting line with
congtant circulation as in the case of the incompressible
flow, appears inadmissible since on account of the infi-.
nite velocity at the end of the lifting line an infinite
induced drag would be obtained, This difficulty in the
cagse of the incompressidle flow ig avoided, as 1is known,
by allowing the circulation to drop to zero in a suitabdle
manner toward the wing tips, The induced drag is then
computed by the formula.

¥y = +b/n' |
Wy o= f L e (T (M) d gy . (18)

(where czo(y) is the tnduced downwash velocity at the
place of the lifting line, and P the density).
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In the case of the supersonic flow, the relations are
complicated by the fact that in spite of the assumption of
a 1ift distribution decreasing to zero toward the wing tips,
there are obtained singularities at.the lifting line posi-
tion of such a character as to make the computation of the
induced drag by formula (16), which maintains its validity
for supersonic flow, impossible. As closer investigation
ghows, this is due to the fact that the 1ifting line is the
geometric locus of the verticts of all the Mach cones that
pass down behind, This difficulty may be overcome by pass-
ing from the 1lifting line to the lifting surface,.

1II. WAVE RESISTANCE (DRAG)

Before proceeding to the corresponding computations,
we shall discuss briefly the supersonic flow about an in-
finitely long airfoil (two-dimensional problem), a problem
t?at had been congidered by J. Ackeret in 1925 (reference
3).

The simplest and at the same time the ideal gupersonic
profile is that of the infinitely thin flat plate of chord
t set to a small angle of attack B, (fig. 4). For such

a plate the lift per unit span is

A=2tana By t P uy - (17)

or

A

= cg = 4 tan a B, (18)
1% 2 ’ ' :
,5 u, ¢t

On account of A = P uoI‘o, the relation between the an-

gle of attack of the wing and the circulation is

- T - - - ,
B, B, tan a = 2 S (18a)
n .

LV

.~ From the incompressible flow, the supersonic flow
about the airfoil differs in that; for the latter case,
even if the fluid friction is neglected, -there is always
associated a drag that originates from the plane waves
which start out from the lifting surface and ‘are inclined
to the latter by the Mach angle and which.therefore may
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be- denoted as the wave drag. -For thevflat plate, the wave
drag per unit span: 19 ’ .

Wwave =- Bo A=-2tana so P uoa (19)
or |
Twave = oy =4 tan»a B, (19a)
= ¢y = 4. o ,

The resultant of the lift and the drag is here at right
angles to the plate. This comes from the fact that at su-
personic flows there is no suction force 'at the leading
edge of the plate, From equations (18 and (139a), therse is
obtained for the polar of the wave drag

cg®

Cw ) -
wave 4 tan a

whick is thus a parabola as in the cass of the incompres-
sible flow, . .

Plane waéea start out from the leading and trailing
edges of the inclined flat plate (fig. 4) and in the space
between -them the induced downwash'velocity isg

1 T, .
(o] = - ko % T e 20)
Zyave Fo Uo . 2 t tan a (

The wave drag, on ihe other hand, can algo be computed from
this downwash velocity induced by the plane waves, accord-
ing to the formula

W =p T

wave o czwave (21)

as may be seen by comparison with (19) and (20), In the
next section it will be shown that, for a lifting surface,

the velocity induced by the tip vortices lixke czwave is

proportional to Po/t tan a. It then follows from egua-

tions (21) and (16) that the wave drag behaves in sxactly
tae same way aa the induced drag from the tip vortices, .

For practicel applications it is therefore vf no inter-.
est to consider the induced drag alone, but it is the sum
of the induced and wave drags that must be consgidersd,

C
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For an airfoil of finite span and constant chord with
circulation that is constant along the chord and variabdble

along the span I'(y) = t ¥ (y) the total lift and wave
drag are given by

y=+b/a < N=+1
i L}
A=puo/ de=-§-puobt/ Y (M)amn (22)
:'y= -b/a N= -1 ‘
+b/z . : n=+
/n . 0 " _
Twave = P [ Capy Pay =8t / ez, ¥ @ M (23)
. y=~—'b/2 A N= =1
where
¢ = - L. (24)
Ow 2 tan a
is the induced wave velocity., Accordingly
n= +1
_ P bt
Vwave = = = d/j v dm (25)
4 tan a
BN :

By comparison of equations (22) and (25), there is found
the relation between drag and 1lift

b A 2
Teave = 2 z ( > ' (26)
: Pt tan a u, b” . '

In the above equation Z is a nondimensional coef-
ficiernt that depsends only on the 1lift distribution

n

= 41 N = +1 ' ‘
7 =% van/{ [ van) | (27)
=3 n/( n) -
..'n=—1 'n=-j-1 .

From equation (26), it follows that:
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2 g2 ~ (28)

e o=
- - ¥wave

tan-a
The numerical values of 2 are given in table I for sev-
eral simple 1ift distridbutions.

TABLE I - Values of the Coefficlent 2 for Various

Lift Distributions (Wing of Rectangular Plan Form)

Number | Lift distribution Z
1 rectangular 1/4 = 0,350,
2 | ellipse 8 | = .27
!
2+ 2
A b
3 trapezoidal —z
. . b v
1 ———
8 ( +3)
" pt = b/2 = ,370
. ] o
4 —— b—1 .
_ parabola ) | 300
' ’ ’ 2 - a
5 triangle 3 = ,667

IV. LIFTING SURFACE WITK CONSTANT LIFT DISTRIBUTION

For the successful computation of the induced drag
for supersonic flow, according to section II, the simil-
taneous assumptions must be made of a suitable drop in
1ift toward the edges and a surface distribution of the
bound vortices. This twofold extension means naturally
a considerable swelling of the computation of the field
of induced velocities as compared with the incompressibdle
flow where the computation involves mostly a 1lifting line.
In order to be able to recognize more clearly the effect
of each of these two extensions, we proceed in two steps,
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¥e first maintain the 1lift distribution constant along
the span and consider only the transition from lifting
line to lifting surface. The field of induced velocities
thus obtained for a wing with constant spanwise circula-
tion distribution and -constant chord, while 4t does not
enable as yet the computation of the induced drag neveor-
theless furnishes many useful results so that we proceed
first to compute this field,

We assume therefore the circulation I'o - constant
along the span b as uniformly distriduted over a rec-
tangular 1ifting surface of chord t and extending from
x=0 to x=1t (fig. 5). The circulation for a strip
of the lifting surface of unit width is therefore Y, =
Py/t. It would be most convenient to make the transition
from the 1lifting line to the lifting surface directly on
the potential (13). On account of the integration diffi-
culties that arise, however, the transition will be made
on the velocity components (equation (14)), first for the
z component since the latter is the most important for
the computation of the induced drag.

A strip of the lifting surface of width dx' at a
distance x' from the leading edge contributes to the
induced 2z component .c¢; at the point x, y, 2z, if the
point lies within the Mach cone arising from the end of
the strip the amount '

. v vy
4Ty = ——a x' £(t - t',n,0) = =24 ¢ £(t - £',m,0)
mb , e

where, according to equation (14)

y 2
f(E,'ﬂ.g) = g('n - 1)((1) - K ! ) (29) R

[P0+ (n- D22V w

If the point x, y, 2 lies outside the cone, the amount
contributed is zero. The contributions from the plane -~ — -
waves starting out from the lifting surface will be sepa-
rately considered., Integration over the wing chord there-
fore gives for the downwash velocity induced by the lifting

surface
§'=E1

2 m =w°/‘ £(¢ - €,m,0)a ¢

or written out in full



)

(b-£")2-k2[(n-1)2+2t2] Y a ¢

1—¢
.E -‘*1

Vo(ﬂ~1)\/P

-
NS

(30)

(e-6"){

(e-¢ )°-w"[(n-1)°+£72{ (¢

4

R
{f
Fav)

-

-2 (- D24 (-8 )Pk T 1)+ £7]

2Ticy

t'=0
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The upper integration limit ¢" =¢, is different
according to whether the point lies within the
Mach cone II arising from the end point of the
trailing edge (fig. 5) or between the latter and
cone I arising from the end point of the -leading’

edge. - The corresponding limits will be

£, 2t/b‘¥ 3 ‘(within cone II)

3

(31)

E - K-JQﬂ - l)2 + ga (between cones I/
: -~ and II)

asg may be easily seen after some cbnsideration.
Introducing the new variables of integration

(¢ - a - K C

and writing fqr'briefnessw

(n -=1)7 + 2

we have
T=Ta q‘
2w S _ _m-1 )/V' (r - %2 a,")d 1
Yoo a,? . g2 g
T=T1T~/‘T—K (n -1)
" . | L ,
/ ﬁ-ﬁa(n-l)a
‘1’=Ta
2 s a T
4 §;<(n - 1)
J o r/r= k2 (n -1
T=T
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The evaluation of the integral gives

A ' ’ gr-g
Tz m-1 "
zn;’:=-(n-1)+t[/E—E)-K{(nul)+i.}_]o

- K| arc tan
L K(m - 1)

r /z—t)-n{(n-1)+£}]
o IR g=o_.

Taking account of the different ﬁppor integration limits
according to whether the point considered is within cone II
or between cones I and II, equation (31), and setting for
briefness
N 2 o2 2 :

we = (g -¢ - k[(N-1)"+ ] - (32)
there is obtained as the final expression for 32:
For cone 1II

2 iﬁ = 0 {JP JF—>
'Yo: (n-1)2%4+ ga

. / ’ Joe -
-K {arc tan ¢ - arc tan - < } (33a)

K(n - 1) - KM - 1)

Between cones I and II

[ n-1 . ' : ‘

2n 2= aJtu- K arc tan Yo (33b)
°o (m-1)%+¢ K(n - 1)
wheée 7 . ) ) I B
kK(n - 1 o
- 1< (n ) <4+ 1: - %'<‘arc tan <~%

¢

From these formulas it follows that €, -on the gurface of
cone I is equal to zero and on account of W= 0 1is con-
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tinuous in passing through cone II, On the common axis of
cones I and II, there still occurs the same singularity as
in the case of the lifting line,A Cz, there becoming in-

finite as 1/r

In order to obtain the total downwash velocity, there
1s still to be added to equations (33a) and (33b) the por-
tion contributed by the plane wave. This contridbution is
different from zero only betwseen the plane waves starting
from the leading and trailing edges (fig., 4). According to
equation (20)

= K . L= =
.gzwave - 2 Yoi chave Cxwave - O (34)

The expressions for the two remaining components of

. the induced velocity _E} and cx are found by similar in-

tegrations. We shall only indicate the results:
Cone II: ' , .

c ) ~
a2 = - . ¢ (Vo - VFG:) o

Yo @ (n-1? a4tz

s | ‘ |
2m = arc tan (¢ - 9 - 1) - arc tén'g(n - 1)

Yo ' EVwe VA

Between cones I and II: ‘ ' ) (35)
ELE R S
_'Yo ('ﬂ—-l) +§'

2 . arc tan t(m - 1)

Yo = vam} |

' S

In the above equations, the arc tan is to be taken -m/2
and +m/2. As may bde seen from equations (33) and (35) by
comparison With equation (14) in passing from the lifting
line to the lifting -surface, the difficulty of the infi-
nite velocity at the cone_ surface has been set aside, The
singularity of E& and cz on the cone axis (infinite as

1/r) still remains, however, and prevents -the computatlou
of the induced drag for this lift distridution., :
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For the downwash distridbution in the plane 2z = O,
at 1) the location of the wing =x < t, .and at 2) behind
the wing x > ¢, taking account of the»plane wave, there
is obtained the following.

1) For x < t: L . . -

i 1 1 e? J1 - 88

- 1< d<.0; =-1+-—4{——-——-——arc tan }

T RY, n 9 "8

- . ' , (36a) .
2cz°4 1 A1l - 62 ) } 1 - ﬂz P

O< d< + 1 = —{ o - arc tan } ,
KY, m 9 9 .

where for the arc tan the same values are to be taken as
in (33) and 3 1is given by equation (15a),

. 2) For x> t: The plane waves do not contribute ,
anything but the formulas obtained differ according as the
region considered is within cone II or between comnes I and
II (fig. 5).

2¢
> t L)
(1—2_)<‘)<1-;; m— =
X KY
o
; N 2
—L<1_62-/(1_- - 8
7 d 4/ . X
: -t 2
1 1 - #° JO-t) e
- = (arc tan arc tan )
T N\ 6 6

|
= T

(36b)
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The downwash distribution.for x < ¢t- and for x =2 ¢t
computed by the above equations is shown in figure 6.

FTurther, we have 1n the same: manner~as for-the lift-
ing line determined for the lifting surface the stream-
line field of the y and 2z velocities in a plane at
right angles to the cone axis, At the location of the
wing (x < t, fig. 7) there is obtained outside of the
cones springing from the wing tips a constant downwash,
due to the plahe waves, along the span, The streamline
pictare within the iach cone in the outer half is similar
‘to that of the lifting line (fig. 2); the inner half how-
ever 1sg entirely changed by the additional downwash ve-
locity from the plane wave.

The streamline picture behind the wing (x = 2¢t, fig.
8) has, outside the Mach cones springing from the wing
‘tips, a constant downwash velocity due to the plane waves
in two strips symmetrical to theé plame -z = O, Thése two
strips are limited by the plane waves starting out from
the forward and the trailing edges of the lifting surface,
Within the Mach cone the streamline picture in the outer
"ring is the same as for x< t and is changed only in the
inner region. . :

We shall yet consider briefly the question, what the
form of the wing surface must be that corresponds to the
assumed 1ift distribution., The wing plan form we have as-
sumed ag rectangular,. Angle of attack and twist are ob-
tained from the consideration that at the wing, i.e., in
the plane 2z = 0O 1in each section parallel to the flow di-
rection, the direction of the streamlines must be parallel
to the wing tangent. Let 2z = z(x, y) be the equation of
the wing surface and z(0, y) =0, {.,e., S§traigzht leadiac
eize. Then we have : :

d 2 czy(x, ¥)

d x u,

Where 24 includes the induced velecit;es from both the

Plane waves and the edge cones., There is thus obtained
for the wing surface '
..X' = x

z(x, y) 1-;1— /. c'zo(x". ¥) ci"'_x' - (37)
o, .
‘ x' = 0




¥.A.C.A, Technical Memorandum No. 897 19

so that a further quadrature is required to compute the
form of surface wing.

For the case considered of comnstant lift distridbution
there is obtained for the region outside of the two Mach
cones at the wing tips, from equations (37) and (20):

Z(X, Y) .= -BO >4

that is, a flat surface with angle of attack Bo’ Within

the Mach cone the surface bends downward more and more .
strongly as the edge is approached. The edge itself (y =
+b) is bent infinitely downward, i.e., actually the rec-
tangular surface with constant spanwise and chordwise 1lift
distribution is not possible, 7For this reason we may dis-
pense with the further computation of the wing-surface
shape.

V, TRAPEZOIDAL WING WITE CONSTANT LIFT DISTRIBUTION

We consider now a trapezoidal wing with constant sur-
face density of the lift Y (fig. 9). If the wing is

cut away behind (taper angle =, fig. 9) in such a manner
that the Mach cone at the tip of the leading edge does not
overlap the wing (1 > a), the induced drag is obviously

equal to zero and only the wave drag exists (reference 4),.

'r>on:w1 =.0

The trapezoidal wing with constant surface density of the
1ift 7Y, 4is plane outside the Mach cone and has the angle

of attack B, Wwhere
Yo = 2 By 1, tan a

The trapezoidal flat surface with constant 1lift distribu-
tion whose cut-away angle 7T 1is greater than the Mach
" cone angle may be looked upon as the "ideal supersonic -
wing with finite span" since for it the ratio of drag to
1ift is no greater than for the wing of infinite span.’

The computation of the induced drag for T < a is
possible in a simple manner from the above results, By a
lifting element we shall mean a strip of the lifting sur-
face of chord 4 x and therefore with circulation Yod x,
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Such a- lifting .element. at  x = O. generates at a 1ifting
element of chord 4 x'* at x = x! .

_ L yEre(E)
AWy =P, d x! J/?d c{ox') a ' (38)
| y=y°(k5 .
(o ) |

z0
the lifting element x = O at the position ‘x = x', The
integration limits are the surface of the Mach cone aris-
ing from the tip of the wing leading edge and. the side
edge of the plate., For the downwash velocity
o (ox')
z20
(14c)

where d c denotes the downwash veloc1ty induced by

in the plane ¢ = O, we have according to equation

folox) L Yo ST _wa(n - )3
aq':::“”b : E(’ﬂ-l)

d x (39)

wlth the aid of. which equation (38) becomes

) ﬂ‘ﬂ Y
" S - a _ g2 2
4 W g = 2y, 4xax V/E 2(n - 12, n
em E(n - 1)
ﬂ?ﬂo :
.ﬂ o - )
or with 4§ =« " ,- according to equation (15a) and
tan
8 = L L (40)
' tan : ) :
as the reduced angle .of taper .
C =1 .
4% Wygxr = = L Y,2 d x ax [ 9_ ds
. o 2 1. - .
3=6
=-L_v?axax g (0) (41)
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The evaluation of the definite integral gives

g (6)'= - ./1 - €2 - logA_l"' ‘Vel =82 “ (42)

According to equation (41) the induced drag from the lift-
ing element x = 0 at the position x = x' 1is independ-
ent of the distance between the two elements, All ele-
ments lying between x =0 and x = x' accordingly pro-
duce the same drag, so that the total drag induced at x =
x! amounts to : :

4 Wyt = - é.f.'.'voa x' a4 x' g (6)
TT .

The drag for the entire wing is obtained from the above

by integrating over x' ©between the limits x' = O and
x! = t and multiplying by two (both ends)
x'=¢t
D 2 13
Wy = - — Y," g (8) x!' 4 x!
n . -
x'=0
p 2 2 _ b 2°
= eV, t g () == — T g (6) . (43)
2m 2T

The minus sign is explained by the fact that with our
choice of coordinate system the drag component of a force
is in the direction of the negative z axis, Formula (43)
for the induced drag of a trapezoidal wing with constant.
surface density of the 1lift is of the same structural form
that is found for the incompressible flow. For triangular
1ift distribution (lifting line) in the case of incompres-
_ s8ible flow, we have, for example,_ . _ )

log 2 2

Wy = - o) Fo

k1

where Fo is the circulation at the‘wing center, For
equal total circulation Po, #; according to eguation

.(43) is independent of 8, i.e., the ratio of the tangent
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of the angle- T to.the tangent of the Mach angle (equa-
tion (40)). 1In passing to the rectangular wing, 6 —> O,
the induced drag according to equations(42) and (43) be-
comes logarithmically infinite; in agreement with our re-
sults of the previous section. . o '

Actually, we are not interested so much in the value

.0of the induced drag alone as in the sum of the induced and

wave drags. For the wave drag, according to eguation (21):

we have’
: ™
Toave = P F Y5 Cipnce '
where F =D t (} - F tan T), tnhe area of the wing
. . : :
> (a0)
c =...].'. 'Yo‘
‘Zwave 2 tan a
- P v,2
fence Twave =~ 3 ¥ Gn o w,

For the lift we-have, on account of Yo = 2’60 u, tan a:

or. .
A

5 - = cg = 4 B, tan a (46)

For the:wavaf&rag:wé,obtéln.from,(44) IR

‘V_WWave =2PF uo® Bo° tam «
 Wyave _ S
= =4 3,2 tan a = c 47
P 2 ._c‘”wave ‘30 Bo a ( ) :
2

and for the induced drag from equation (43)
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p. 2 a 2 2
— t24 g% u?® tan®- aeg (6)

W
i 2 o

7y 14t B2 tan® ag (6)

R
E uoa F m B (1‘- t tan T)

b

2 : A o
Cuy = 4 B, tan a - e (O) (48)

mT1-6A

tan a ' ' ,
: is the "reduced aspect ratio" of the

where A =

wing. For the total drag there is thus obtained from (47)
and (48)

. S » g (8)
(cw) = 4 Bo2 tan a {1 + a8 2 }
wave + ind a1 -6
. c.2 - A g (8)
(cw)wave + ind = 2 l + - } (49)
4 tan a ml - 062X

‘Tt follows therefore from the above that for supersonic
speed the wave plus induced drag, like the induced drag
in the incompressible flow case is proportional to the
square of the 1ift., ZEquation (49) is analogous to the

‘ 2
well-known formula o, = 2 _ of the elliptic 1ift °

i m b

distribution for the incompressible flow. The essential
difference lies in the fact that for the supersonic flow
the drag parabola for small aspect ratios t/b is to a
_first approximation independent of the aspect ratio. The
manner in which the drag increases with 1ncreasing reduced '

aspect ratio A = t tan o and decreasing © is shown in
b
figure 10 where Cwy is plotted against A for
: 4 tan «

various values of 6. Our formulas are valid only for
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A< =, 1i.,e., for the case in which the Mach cones do not
overlap on the wing.

In order to be able to predict what the wing shape
must be s¢ that our assumed 1ift distribution may be pos-
sible, we must first compute the field of the induced
velocities, For this purpose eguation (39) is to be in-
tegrated over the trapezoidal area. The value

dcégg) according to (39) gives the downwash velocity in-

duced at the position ¢ by a lifting element 7, dx
starting at ¢ = C and ending at M = 1. A lifting ele-
ment which starts at ¢ = ¢' and ends at m =mn' thus
produces at the position ¢, m, £ = 0 the downwash veloc-
ity

a o(8'e) - _ 15_ d,ng'(E -¢')? - k2 (1 - mh)e
zo .

2 (6 - £1) (0 - m)

For the velocity induced by the entire surface there 1is
thus obtained o ~

t'=t

. ,'1 : 3 '
-c(zi) ST (b - £1)2 - k2 (n - m)2 1t (50)
| emJ (- ¢ - m) |
t'=o ~ '

- In order to e%aluate this integral we introduce the new
integration variables

) =K e = K t‘anm" - (51)

(BeeAfig. 9.) Since the end pointé of the 1ifting elements
lie on the wing contour there exists the relation
' |

1 -m'=¢" tan 7 (52)

The uppér integration limit 5'.:51, in equation (50) is
obtained from the condition. (See fig. 9.)
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tan ¢ = tan a: ¢! = £, 3' =1
The 1ifting elements whose ¢' 1is greater than the ¢,

thus determined give no contribution at the points ¢, m,
t = 0. For the lower integration limit

E' =0:m =13 9'=x- 22D oy

From equafions (51) and (52) there is obtained

a g a !

where © is the abbreviation introduced in equation (40).
There is then obtained from eguation (50)

8'=
Y /o 1 - §'2
cgo (8) = - =2« - 8 _ay'=-Jo x 5(s,8) (53)
2T 8'(s" - 6) 2n
3'= '

In evaluating the above integral the following three cases
are to be distinguished:

1, 0< b < 9; 2. O« 9 < B3 3. < 0«6

In case 1 the point P(s) 1liee within, in cases 2 and 3
without the trapezoidal wing., . In case 1 the integrand is
regular over the entire range of integration; in case 2
it possesses a singularity at o' = 6; and in case 3, two
singularities at ¢§' = 0 and @' = E. In cases 2 and 3
the principal valuea are to be taken, namely, '

O<13<3; 6—9—6

. ﬂ|=1 ’ . . ’
v 9 / Y .
T T T F(s,8) = lm {/ a‘(é" *dAa'*.‘./h.*i. - 4 ""} (58a)

€—o

9! -6 . 6i=9+£



26 ' N.A.C.A. Technical Memorandum No. 897"
and
s < 0< 6: - ' ' :
- ‘3 /1_ ‘&la.'
F({i’e) =1imi / . d ' +
€E—>0: L/ s'(g! = 6)
£'=9 - o
ﬁ!:ﬁ;e Co . 6,=I'“
A A T AP
j Tt = ) (54b)
§'=+¢ : : ﬁ{;e+€ |

The integral

v =1 P —
e 1 - s'e .
F(3,6) = —_—q ' 55
L/ ‘{‘j'('a' _ 6) ) ( )
8'=9 ~

may be obtained by elementary methods, Ve set

J1 - 8t =t a"gnl

where t 1is the new integration variable so that (55) be-

comes .
b=ty o
TS , (1 - t2)2 a¢.
F(s,6) =‘/ :
t(1 + t2) 12 t - 6(1 .+ t2) §
t =1 /
!where ¢ y
 —
1 + 1 - 32
3
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(1 - t3)2 2 1
t(1 + t2) {2 t - 6(1 + tBY} 1+t - et
6 tb-ty, ot -t

where

1 /1 - g2

1.2 e

Ferforming the intégration. there is obtained

F(56) = i - 2arc tan t - 228 % M1 - e

L 6 6

it
<

. , 1t
tlog (t =t ) - log (¢t - tl)}J
a » ” t

1
[

For 0 <« 6 < § there is therefore obtained directly

F(g,6) = 5 - 2 arc tan V - 13§JL

J1 - ez2 . 1 +/1-62ve-1 +./
LA P
& & 1 -v 6 +.1 - g2

+ (57)

while the formation of the pr1n01pal value accordlng to
equation (54a,b) gives
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0< 8 < 6:
F(s,6) = % - 2 arc tan V _Vlﬂ%_f , )

J1 - 62 A1 +,,/'1‘l--93 w‘e-1+./1- €2
c —

- —— log
6 vVo6-.1-4/1- 62
7
3 <0< 6; _ >(5)
log (-V¥)
F(9,6) = - 2 - 2 arc tan V -
J1 - 62 1 +41 -63 ¥ 6 -1 4+4/1 - 82
+ log
6 | 6 Ve -1-./1- 62/

where

wld

-%< arc tan V¥V <

There is thus found the downwash distribution in the entire
Mach cone springing from ¥y = b/2, x = 0. For F(8,6) we
have o A

li

9 = £1:F(*1; €6) F O

9 =6, 9 = 0:F(6,6) = F(0, @) =™ as log 9 at & =0  (58)

On the two rims of the cone (8 =-x1) the induced velocity
is ,thus zero and on tae edge of the trapezoidal wing

(8 =8) and on the cone axis (¢ = 0) it is infinite,

In figures 11 and 12 for the particular case 6 =

% (tan a =3, tan T = —l4> there is shown the induced
~ 3 .

downwash velocity in a section parallel and perpendicular,
respectively, to the principal stream direction.

To the above velocity field of the tip vortices there
is still to be added the velocity field due to the plane
wave. The latter in the plane 2z =0 within the wing area
is :




N.A.C.A. Technical Memorandum No. 897 29

1 Yo
Cz,. = - === f5 U,
wave 2 tan a ’
and outside the wing area
®zogave "

From the velocity field it is now possible to compute
the form of the trapezoidal wing surface that has constant
1ift distribution. Outside of the Mach cone we have, ac-
‘cording to equation (37)

x'=x
. ’ . ) N
z(x, y) = 1 / c (x!? ) d x' = - B, x
! u, h/ Z0wave » ¥ o
x'=0

that is, a flat surface with the angle of attack B, giv-

en by equation (18). The twist of this flat surface within.

the edge region of the trapezoidal area that is overlapped
by the Mach cone is given by

.x|-= x

1 .
z(x, y) = — . Cpoy @ X!
uo'. . -

x'=(b/2-y) /tan a

and according to equation (53).

x!'=x x'=x
’ Y e )
2(x,y) = ~om =2k F(8', 6) 4 x! =-E.-/ F(8', 6) d x
217 U, . m .
x'=(b/2-y) /tan a xt=(b/2-y) /tan «
"(E- y).
On account of § = 2 there is obtained
=9

2(x, ¥) = Bo (%_ ) ;F(zi'ge) & 8 .(59).
o'
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Since the function .F(§, 6) 1is known from equation (57),
it is possible from the equation above to compute for a
given © the profile sections of the surface at various
distances (b/2 - y) from the edge. The ordinate of the
obligquely cut-away edge of the trapezoidal “area for b/2’-
Yy <t tan'T1: ,

-
Bo ) F(a
z(xp, ! 0
z(xps ¥) = - A/ e ) (60)
| - 3’ =1 '_'. o
The intégrand becomes infinite for o' = © (equation (58)),

The integral exists, however, and may be evaluated by spe-
cial computation. There is obtained

8'=6

‘//_‘Eiﬁ%;_gl d 9 = 2“6 ~arc sin 6 -6!'-2-_4-t »,'l — (60a)
SN a'vg Lo & 1 +-.‘v‘l-. - 82 .

4 =1 : ‘ :

(The evaluation of the integral was performed by Dr. F.
Riegels.) » :

For 6 = 1/3, we thus have

3'=6 :
S e F 1 , e l )
6 = 1/3:J/ (8. 8) 4 51 = - 4,02
L a'e _
3'=1

The ordinate of the rear edge point =x = t, % -y = ¢t tanrT
for € = 1/3 is thus z = - 1,522 p, t. (Flat surface
z2 = =B, t, twist z = -0.522 B, -t.)

, For the special case € = 1/3 (tan a J?F tan T =
:%: ~ the profile sections have been computed and are
3 .

given in figure 13. If the trapezoidal wing were flat
there would be a drop of the lift toward the edge down to
zero. In order that full lift be maintained up to. the
edge, the wing must be bent downward. The twist of the

c
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wing directly at the édge is very strong as may be seen
from the "elevation contour lines" (fig. 14).

VI. COMPUTATION OF THE LIFT DISTRIBUTION

FOR THE UNTWISTED RECTANGULAR WING

The examples thus far considered are all in connec-
tion with the so-called first principal prodblemd of the
airfoil theory where the lift distribution is given and
it is required to find the drag and the wing shape, Of
greater practical importance 1s the second principal prod-
lem where the wing shape being given 1t is required to
find the 1ift distridbution and the drag. As in the case
of the incompressible flow, 80 also in the case of the '
compressible flow the first problem, which leads only to
quadratures, is considerably more simple than the second,
which requires the solution of an integral equation,

In wnat follows there will now be given an example
of the second principal problem, namely, the computation
of the 1ift distridbution for a plane rectangular wing
(span = b, chord = t), that is to say, the same problem
that was first considered by A. Betz (reference 5) for the
case of incompressible flow. In the treatment of this
problem we can utilize to & large extent the results we
had obtained in the previous section for the trapezoidal
wing with constant surface density of the 1ift. We con-
sider a rectangular flat plate which extends from x = O
to x =t and from y = -b/2 to .y = 4b/2 and is set at
the small angle of attack B, to the undisturbed veloc-
ity u, (fig. 5). Within the region bounded by the.plane
waves starting out from the leading and trailing edges and
the two Mach cones there is the constant downwash velocity
duve to the plane waves

N 1Y '
= "ﬁo_uo,‘: - _5' -_-L'A - (~61)-

Outside the region of the flat plate overlapped by the.
Mach cones at the tips there thus exists the constant 1lift
distribution Y,. At the tips y = xb/2 the 1lift must
vanish, that is, ¥ =0 at y = xb/2. There is required
the 1ift distridbution ¥ = ¥ (x;y) within the region

overlapped by the Mach cones, The problem is considerabdly
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simplified by the circumstance thet; as will immediately.
" become apparent, ¥ does not depend on.the t¥o independ-
ent variables x, y, but only on one of the variables

b
gz 27 (51)
x tan a-
(fig. 11). For the required 1ift distridution
o T(s) = ¥, £(8) . (62)

of the rectangular w1ng there then exist the boundary con-

ditions ) .
ok L :
o . (63)

8=1:f(s) =1

]

9= o: £(9)

4

In order: to be: able to-set up. the integral equation for
Y(s) we must first compute the field of the downwash ve-
locities w(4d) induced by a.rectangular wing with the cir-
culation distribution Y(4) in the plané 2z = 0. The in-
tegral equation for Y(9) 1is then obtained.in the known
manner from the consideration that for each position of
the wing the sum of the effective angle of attack

1 v(d) S ~
B(9) = = v . ' (64)
: 2 uo tan a
and the induced angle of attack - Z_iﬁl must -be equal

Yo
to the geometrical angle of attack B,

s) =M g (e

Yo

The velocity field w(d) 1induced dy the edge vortices is
obtained by considering the rectangular wing with the var-
iable lift distrioution Y(9) =Y,f (§) as duilt up by the
superposition of trapezoidal wings with various taper an-
~gles each of wnich wings possesses a constant 1lift d1stri-

tan 7T
bution. . Again let b = be the "reduced taper. angle"

tan o
(equation 40), then the 1ift distribution 7 = v, f (8)
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be obtained by the superbosition of trapezoids with angles
6 and 1ift densities <Y f'(€) 4 6. Each of these trape-
zoids produces, according to eguation (53) the velocity
field

' Yo. £' (6)

‘2 7 tan o

d w (3) = - F(ae)de

and integration over 6 from 6 =0 to 6 =1 then
gives the induced velocity field over the rectangular wing

6:1 . .
W o(3) = - — Yo / £1(6) F (8,8) a © (55)
2 m tan Q LG ’
=90

By substituting the above expression for w(d) in equation
(65), there is finally obtained, taking account of (61) and
(64) the required integral equation for f(9):-

e=1

JORE / £1(6) P (8.6) d 6 =1 (67)
- ‘6=O ‘

to which are added the boundary conditions (53). This
integral equation for the 1lift distribution has the same
structural formas that for the incompressible flow. It
differs from the latter, however, by the different .core
F(§,6), which is given by equation (57), and for the super-
sonic flow is of a much more complicated form that for the
incompressible flow. Equation (67) also exhibits the nota-
ble property that neither the aspect ratio of the wing nor
the Mach number appears explicitly, whereas in the incom-
pressible case the characteristic value of the integral
__equation depends on the aspect ratio. The dependence of
the 1ift distribution on the Mach number appears in the
introduction instead of the geometric angle ¢ (fig. 9)

tan

as the variadble. It is neces-

the reduced angle ¢ =
tac a

sary to solve the integral équation (67) only once to obdb-
tain the 1ift distridbution of the rectangular “wing for all
aspect ratios and all Mach numbers.

C
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The solution of the integral eguation (57) appears
at first signt -quite difficult, particularly on account
of the complicated structure of the core F(49,6). (See
equations 56 and 57.) By a simple transformation of
equation (867) it is possible, however, to simplify the
provlem considerably.* The equation is 'a nonhomogeneous
integrodifferential equation for f£(9). Instead of it
we shall consider the equivalent eguation for f'(3).
Taking account of the singularity of the core, equation
(67) may be written : :

6=6 6=1
: . 1 ) N l‘.l - 8 -
fw)+;{j ﬁMﬂFMA)dG+£/f'H)Fwﬁ)d9}-1
6=0 6:6

Differentiation with réépect to 49 gives

, 6=9 - A

£1(9) + -{ft(e) F(9,6) + / £ (05 Za 6

' ‘ “B=0 -

6=1
- £1(9) F(8,9) / (6 2= e e}— 0
o AR .

and bécause

R ar . J1< 98

o a9 oy - e)
éccording to equation (53): |
i | | 6=1 "
£1(e) - 1 Y A AL (DR (68)
: ™ K . 6,—_5 .

*For this suggestion I am indebted to Doctor Lotz and for
carrying out the numerical solution of the integral equa-
tion to Mr. Pretsch,.
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The above is the equivalent integral ‘equation for’ £1(9)
which, however, is now homogeneous,: .The solution of this
integral equation for f'(¢). is possible by dbuilding up
f'(4) in n steps and solving the corresponding system
of linear equations ST i ‘

£109,p,,)
1 “C2p+1 2 ' x d 8
- o B T () T —=%-°
m 2v+y  M=0 : 2v+1
- Gzaak

(v=10, 1, ...,.n = 1)
(69)

This is a system of n homogeneous equations for the n
unknowns f'($,p4,)(V=20,1, ..., n - 1), Since, as
closer investigation shows, f'(0) = o f'(al) is suit-
ably chosen- not constant dbut equal to ‘

f'(‘lsl)za—bﬂ

Therc is then obtained in place of equation (69) a
rnonhomogeneous system of equations of the nth order for

, b 1
the n unknowns -, —f'(éau+r) (v=1 ..., n - 1), The
a a

further unknown a 1is .obtained in the numerical integra-
tion for f(9) from tne condition -

f(1) = a nil £! (9av4,) A 3= (70)

v=0 a

In carrying out the numerical process there were first
taken five steps -(d,p+1 = 0.1; 0.3; 0.5; 0.7; 0.9), then
ten steps (d,p4, = 0.05; 0.15; ...; 0.95). It was found
that the ten-step approximation gives an improvement over
the five-step process only in the interval O < ¢ <0.2.
In the third approximation therefore only the interval

0 < §4<0.2 was again subdivided (9d5p4, = 0.025; 0.075;
0.125; 0.175). The values obtained in this manner for
f'(g) and £(8) are given in table IIand the function
f(9) plotted in figure 15. At & = O the function
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£(3) ' possesses a .singularity since - £'(9) there becomes
infinite.: The mathematical - nature of . this singularity
could not as yet be determined st

We shall now compute‘the lift, &ave drag,.and“induced
drag as well as-the moment about the transverse axis of
the rectangular flat surface. -

The 1ift 4A; of that portion of the surface -which
lies outside the two Mach cones is

S ‘%t tan q
AI=puo':‘fovbt<l- S >

while the 1ift of the two triangular portions overlapped
by the Mach cones is

_ . 6;;
Arp =Py t2 tama | V& e=op ug Yo t2 tan o K
'6=o
where
d=1
K = / £(s8) 4 ¢ = 0.884 ., (71)
'6=o-

The total 1ift of the rectangular plate is therefore

or, according to equation (20)

A=20pu, _ao F tan a {d - (¥'_'x)x} : (72)
For the 1ift coefficient foere is’thﬁs obtained
| ;a = 4 B, tan a {1‘ - Q- x)x} (73)

For .the .wave drag outside of the Mach cones there is.

obtained simply

t tan

wWave I = 8o 41 =

} (74)

{1'"_

Nlo

tan o
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The wave drag of the two triangular portions overlapped
by the Mach cones is

where

and

wwave I1
| Y Yo . ey
Czwave = = " f(é)

2 tan a

=20/ Y egaye @ f

2 tan

1

(V)

af==-1t%4a (tanop)

Table I1I

1ift Distribution of the Untwisted Rectangular Wing

£(9) and f'(8)

We then have

wwave II

Wwave Il

9 £1(9) ) £(4)
o ® 0 0
0.025 4.49 0.05 0.219
.075 1.86 .1 .312
.125 1.39 .15 .381
.175 1.24 .2 . 444
.25 1.10 .3 554
.35 .958 .4 .549
.45 . ..850 .5 .734
.55 - .753 .6 .810
.65 .555 .7 .875
.75 .546 .8 .930
.85 417 .9 .971

.95 .225 1.0 1

2 P
L Y2 4 (tan @) = L 277
2 tan a . 2

p .,‘.
- 'Yoa ta .K1

2
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"Wwhere . SNF BRSO S<1

K, = ;/; £2(8) 4 ¢
‘8:0

Similarly there is obtained for the induced drag in
the two triangular .regions overlapped by the Mach cones

¥y =20 Yezp dt

where from equations (62) and (65)

1
Co, = = (1 - £(9))
z1 2 tan q
We then-have :
' ‘p '5;;'
Wy = 5 t2 'Y°a~ /f(é)) {1 - f(a)] ds
’ g=0
Wi = ; t2 Yoa (K - Kl) | (7§)

For the total drag
¥ =Tvave I *+ Tyave 11 + M :

there is thus obtained from equations (74), (75), and (76)

. bt

. a =

==Y 1 - (1 - K)»
2 ° tan a{ - o }

or from equation (20)
W=20p u2 g2 F tan a {1 - (1 - E) A } (77)
and for the drag coefficient ,
= 4 B,® tan a {1 - - K)A.} (78)

From equations (72) and (77) there is obtained between the
1ift and the drag the simple relation

W= 3, A | (79)
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There is thus obtained for the plane surface of
finite span the same simple result as for the infinitely
long flat plate, namely, that the ratio of the total drag
for a frictionless flow to the 1lift is pBgo: 1. This may
also be explained by the fact that in contrast to the in-
compressible flow no suction force arises at the leading
edge in the supersonic case and the resultant air force
is therefore at right angles to the plate.

For the relation between the drag and 1ift coeffi-
cients, there is obtained finally from equations (73) and
é 1 2 1 *
c c ' .
Cy = = = 2 - (80)
4 tanal - (1 - KE)A 4 tana l - 0.318 A

The above formula has the same'etructural form as
formula (49) for the trapezoidal wing with constant 1ift

: cu2
distridbution, 1In figure 10 cw/L—EE——— has been plotted
’ 4 tan a
against the reduced aspect ratio A “(dotted curve). It
may be seen that the rectangular plane wing for the same
1ift has the same drag as the trapezoidal wing with con-
stant 1ift distribution with the reduced taper angle 6 =

::E ; = 0.27. . For the reduced aspect ratio A= 0,3 the

rectangular plane wing has, for the same 1lift, about 10

percent and for A = 0.5, 19 percent more drag than the

ideal trapezoidal wing whose taper angle is greater than
the Mach angle, -

With the above results the theoretical polar and
moment curves for the plane rectangular wing may be given
for various aspect ratios and Mach numdbers, For the mo-
ment Mg about the transverse axis in the wing leading

edge, there is obtained - - o

Mg = 2 Pup- Bo tamn a ® ta{:l _2a-pa }
. 2 3 B

* It is interesting to note that the constant 1 - K =1 -
{:f(é) d & 1is equal to l/m within the computational accu-

racy. That this is exactly so has as yet not been shown,
For this it would be necessary to know the exact solution
of the integral equation (67).
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and for the moment coefficient Cmg = 2 - :
' - % uo? b t2
- 1: 2 - . ~

- = 4 t . - = = (1 < K)})X-
C@H; . P°' é? a{.z 3 ‘_ _ ) }ﬁ

> (81)
- 0.211 A

[+] = C
a
Dy

L
2
1‘-,0.316 A : ' J

Through equations (73) - (80), and (81) the polar and mo-
ment curves not considering the frictional drag, are com-
pletely determined, In figure 16, the polars are given
for the aspéct ratios '% = 0, %, and % and for the Mach
numbers EQ =1,2, 1:5,'2.0, an
B : c ’ . " . .
between wings with various aspect ratios are considerabdly
smaller in the case of the. supersonic flow than for the
incompressible flow since in the first case the grecatest
part of the drag is contributed by the wave resistance,
which is independent of the aspect ratio.

The plane rectangular wing at sﬁpersonic'flow is one

-with constant center of pressure position, if the fric-

tional drag is disregarded. The position of the center
of pressure depends only to a slight extent on the re-

t tan Q

duced aspect ratio A = . For the infinitely long

. b . ,
wing, the center of pressure lies at the midchord position
and with decreasing asnect ratio 1t moves forward somewhat
(tadble III) _

Table III
ttana | ., 1/s | 172
b PO . - - oL . . e
Coy 1 : ‘
— - 0.489 "0.469
Ca 2 g

d 3.0. The drag differences
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Formula (80) for thé,rectangular'flat plate is the
analogy to the familiar . cg,.=.cy? F/m b2 of the incom-

préssible flow. Like the latter it enables the recompu-
tation of the drag from one reduced aspect ratio

t, tan a ‘ - tso tan az
N = ———-1 to another A, = ‘ . From equa-
b ba

1
tions (73) and (80) there is obtained for the new angle
of attack and the drag

N

. Ca 4 1 S 1
b - B2 - b
4 “tan a, (1-0.316),)  tan a, (1-0.316M,) | -
. ' ' - (8la)
CW2= cw1+_4- -

tan a, (1-0.316%,)  tan a, (1-0.316 2,
| 2 , )

VII. TRAPEZOIDAL LIFT DISTRIBUTION
a) Lifting Line
As a further example we now compute the induced drag
and the velocity field for trapezoidal 1ift distridbution.

for both the lifting line and the lifting surface (fig.
17). Let the 1ift distribution therefore be given by

rmmy 1-n7

T " for MmNl
O 1 - 'nl
» -lgMg-m, (82)
I'(n') =T, for -M,£M £+

where m, = b'/b, according to figure 17, The field of

-the -induced velocities and_inducedwdnagwfdr variable 1lift_

distribution may be obtained in the familiar manner from
the 1ift distribution by superposition. On account of
integration difficulties, however, this computation can
not directly be made on the potential but must dbe carried
out separately for the three velocity conmponents. From
equation (14c) we have for the induced downwash velocity
of a 1lifting line ending at M =m' with circulation T
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- p t(m iﬁ'){ta - ?ét(h - mrye ¥ 2'§a]}
cy (n* y-=e . (83)
UL (E&_Ka ;3)[&1“ ')a‘*ga]'v/Ea..Ka [('nl n)3+§a)

From the above there is obtained by superposition
the downwash velocity ¢, for variable circulation I'(n!'):

n =+1

1 ar
Cp = = = c, (M) ——a n? 84
TS / (M) — B

=1

-For the trapezoidal 1ift distridution according to
equation (82) we have therefore if, on account of symmetry,
we reéstrict ourselves to the. half-wing ¥ >0

n'=1

e, ='.~ - ;/'-“cz(n') an!
’ 1—1..\1:- s ) .

T om'tem,

or, according to equation (83)

LV el - a0 {Es RLen)® ¢ 2tP1fa

bc
M —— = ——
ry

1-m, .  (¢%ex §°)[(n --n)aﬂa]fé—K [n'-n)?+ 2]
n'=n,

or with
KB (M - M2 4l = 1

Ta

b e, 1/2 q/ ar V- ¢ »odT
m = ; )
Po 1-m, T @"'*’ 1. - n, £2 Kga- ~@2._ T

Performing the 1ntegrat1on there is obtained for
points ¢, ﬂ,'i within the Mach cone at the wing tip n =1

(85)

1 +J§-}

Tt - + = log
r 1 - nl{- t2 - Ka ;a 2 ¢ -VG;
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and a corresponding expression with reversed sign for the
Mach cone-at 'm = TM;: The valtte of w 1is here given by
equation (12). In the cone M =1, ¢; >0 so that there
is upwash velocity. In the cone’ n = T, there is a '
downwash velocity of the same absolute magnitude (c < 0)

and outside of the two cones Cg = 0, =a result which is
also to be expected from reasons of symmetry since, on ac-

arl

count of = const,, all separating vortices are of
d n!

the same strength, With

K(ng— ‘1)_ apd = n(n.ﬁ-. n,)

there 1s'obtained‘forAthe downwash distribution 1£ cone I
and III respectively in the plane 2z = 0.

‘b. ‘ 1.4 /1 - &2: -
™ sz“ { Jl - 6 + - log e } (86)
o 1 - n1 1 - &1 - 92

. " On the cone surface according ib‘equationa:{és) and
(86) c, = 0O and is therefore continuous. in passing

through the cone. On the cone axis ¢, now becomes log-

arithmically infinite,. whereas.with the rectangular 1ift:
distribution (horseshoe vortex) c, becomes. infinite on

the axis as r—), The logarithmic singularity of ¢, 1is

no longer a disturbing factor for the computation of thse
induced drag. :

. For the;sake of complatenéss there will also be given
the remaining two components of the induced velocity.
There is found for the cone at 7N = 1:

— | o b Cx _ 1 ‘ ;‘\/‘('”-* - - ', ‘, -
T 1om, % - x t? o _
f .. (87)
I brcz = . arec tan ﬁ&ﬁ;- | -
o  1-m, £ - 1) J



44 - N.A.C.A. Technical Memorandum, Xo. 897

and corresponding expressions with reversed signs for the
cone at M ="m 1° For the arc tan there is to be taken the
principal value O < arc tan < ., For the oputer cone

(n = 1) the arc tan is zero in, the upper half plane on.
the outer quadrants of the cone surface and equal to +m..
‘on the inner guadrants., In the wedge-shapesd space be-
tween the two cones ¢

y 1is constant, being equal to
§20:’-c_-—_£9.__. c'x a 0 . : ‘-(88)
AREYEY
In passing through the plane (=0,  therefore
there is a discontinuous increment in ¢y by

r
2 . .The region of the { plane limited by the cone
b - bt
. b
axes T =M, and T = 1 (distance ._-—-—> is thus a vor- .

tex surface with constant circulation density the total circula-
tion of which is equal to the circulation I'y of the
bound vortex in the region of the constant 1ift.

A streamline picture of the y and 2z velocity
components for a plane x = constant that intersects both
cones is drawn in figure 18, Like the streamline picture
for the constant lift distribution (fig. 2) it was ob-
tained by computing the field of isoclines. On the outer
halves of the cone surfaces ¢ and c, are equal to-

zero but the directions of the streamlines ‘cz/cy have a

value different from zero. In this case, too, mot all ‘
streamlines are closed, part of the streamlines entering:
from the undisturbed region into the one cone and coming
.out from the other again into the undisturbed region.

b) Lifting Surface

In order to compute the ‘induced drag for the trape-
zoid-shaped -1ift distridbution, we must, as in section IV,
make the transition from the 1ifting line to the lifting
surface. A rectangular lifting surface will therefore
now be assumed of span b and extending from x =0 to
x = t, The chordwise circuldtion distribution is assumed
to be constant of density P/t,.while along the span the
distribution is that given by equation (82). For the com-
putation we may here restrict ourselves to the region be-
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tween the cones springing from the leading and trailing
edges of the lifting surface, since only this region en-
ters into the question of the computation of the induced
drag. We likewise need carry out the computation only
for the cone at M = 1; <for the downwash in cone TN = n,
there is obtained the corresponding expression with re-
versed siguy.

For the induced z component ¢, of the 1lifting sur-
face, there is found, according to equation (85), with

Yo = To/t:
_ E'=t, —
ppfi o1 P Lo leg)?o el t2]
'Yo 1'“1{;/ (ﬁ - E.')a—"ga .
1/2 ' t -t + /e - e)2ok2 L., |
+ - log at
1-m, -/ E-tt -/ - ez [L,,.]
t'=0
where . . -
tE,' = ¢ - K/('n—~1)3'+ ¢2
according to equation (31)., With the new integration var-
igbles ¢ - t'= t*, the above equation becomes
- 1 | E'l* »* *'2 - K2 [('T']- 1)9§3]
P S A kL g
Yo 1 -m,, ' ‘E~a ~ k22
- ¥
_ 1/2 g*g o
- ———Z og (t* +/¢*2 - x2[....]) a ¢ -
1 "'nl‘ $=§
1 é" Y '
+_.../__/ 110g (tt _'/;*2 _ Ka[”_.]) d g*
1 —'fll" g*=g' ‘

where
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£, =k (- 1)2 4 L2
The three integrals are evaluated as follows:

Setting §*2 - k2 2 =1 we have for J,

1/2 f'r- Ka(’n- l!.)a
1-m, d/ T

1 J—
J, = ,»-1 . {VTF'- kK {(n - 1) arc tan 2

Colem) - | . k(M- 1),

With

]
o
(Y

(n-17% + t2

.E.' :‘_~/§*8_K2513

there is obtained for Jj

and -

1}
-

T )
1 - 2,8 | k2 g.2

1 T
Ja = - - : 1 log7d 7T
. 4 1 - nl T Te .

After-a briéf intermediate computation we have

1/2 '{KE(I - n)a + QB]"loé (C,/(l TE 1 QE)
1-m, - |

- ¢ log (¢ +p )+ JE}

and similarly

I, = 4 —— L2 {n[(l - M+ LF] log ( Joom® e )

. 1 - ﬂ
- tlog (¢ - Ju) + Jf;'}

}
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By adding we obtain

2 m EE = ——jL—- {.Q/w + k(M ~.1) arc tan v
Yo 1 -m. . :

k(n - 1)

A corresponding expression with opposite sign is obtained
for the cone M =m,. The arc tan in equation (89) 1lies

within the range -Ilg arc tan < + L as follows from the
2 : :
tfact that T, must be symmetrical in (m - 1) since the

same holds for ¢, according to equation (85).

The induced z component thus found for the rectangu-
lar lifting surface with trapezoidal 1ift distribution
has the same singularities as the corresponding formula
(85) for the lifting line. On the cone surface ¢, = 0

and on the cone axis logarithmically infinite. For the
downwash distribution at the location of the W1ng in the
plane {:= 0, there is obtained

c ' J1 - a2
21 -i& = % ¢ {-«/1 - ﬁa + .9 arc tan ! é +

v @ 1 -m, : 3
1 0 1 +/1 - 2 *t :
+ 3 log — } = - g (9) (90)
1-V1-92” M,
K(n - . . -
wher d = —lﬂ———ll for come I and ¢ = Eiﬂ———ﬂil for

¢t

cone III, the upper sign holding for cone I and the lower
for cone III, ‘Equations (89) and (90) include only the
downwash velocity induced by the edge vortices. In order
to obtain the field of the total downwash motion, there is
still to bc added yhe induced downwash velocity due to the
tldne wave. In the wedge-shaped space between the leading
and forward edges of the wing (flg. 4), this induced veloc-
ity component is
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K 1 - 1/2 o N
2 1l - n, 1l - n1 - ‘

e = -
Z0wave

ublz

L
t

For the total downwash velocity in the plane 2z = 0, there
is thus obtained from equations (90) and (91)

For coneli;.-; : ' '\
- 1< 43 <O: Eﬁi_:_ﬂil =t {a + & {3) }
.'Yo TT.-‘
0O<s < +1: - =gg(6) ,
: ™
'§ (92)

For cone III:

_ ‘ ‘,2(1 - 'rh)'ﬂ.a. - ’_ _ £ (’8)
%<af:m-—————c g{l - }
g{zs— g 6).}:

The downwash distribution thus computed is plotted in
figure 19,

N
o
[

0O<d4< +1:

_ We are now in a position to compute, for the wing
with trapeZoidal 1lift distribution, the induced drag, In
order to avoid special complications, we shall assume that
~the Mach cone springing from the leading. edge at 7 =m,
does not extend beyond the wing tip and does not overlap
the region of .dropping circulation of the other half-wing,
The first is identical with the condition that the cone
springing from T = 1 does not extend into the region of
the wing where the circulation is constant, This gives
for the Mach angle the two conditions '

P - b Lo !

tan a < and tan @ < =
’ 2t ‘ t

The induced drag of one half-wing % Wy 18 composed ad-.

ditively of the drag of half of cone I, wiI and the
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drags of the two half-cones of cone III, Wy 11 and
. 1
W‘ fi . 17 .
iIIIg ( g )
1y - * - |
3 M = Wpy o+ Wagpn t Vapp, (93)

Since ih cone I, in the plane = 0, there is upwash
velocity, WiI gives a forward thrust which in absolute
1

value, however, is smaller than the back thrust in cone
III, since the circulation is greater here. We have

x=t y:b/a . .
Lif =P A ax [ L c d'y < v, = 2 - x tan o )
i1, U/ d/ R Y2
x=0 y=y,
where C;, is known from equation (90). We thus have
2 E:Zt/b d=0 _ ) o
1 I U . .
Vi, = t2d ¢ r(s) g () ds (94)
1 1 -m,8mpPt3k , _
, E=o DESS |
In cone I for -l< § < O:
E 9
'= - Po - K1
Sl -m,
and therefore '
:_&;b_ =0
£=2 d
1 pr.2 » .2 ] ¥
T, = 2 ( t/ (3¢ s e(d) a9
. - Y (L-m)%_8q7 et J.. - o -
i:O d==1
For briefness we set
d/ g (3) 4 9 = U/'g (8) 4 & = K5 - (95a)
d=-1. d=0

‘.)
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;/’53 (4) 4 8 = / 8eg () =K, . .°  (95b)
1{:—1 ) {6:'0

Tﬁése integrals may be exaétiy compﬁted. There is obtained

3 7

g, =27 g - L. o (96)
a 3 2 _13 7
so that finally
2
_ K, e T, t \2

I, (-mp% 27 “kb

The portion wiIII is obtained from.équgtfon (94) hyt
1

substituting -g(d) for g(a) and taking ' = Po 80
that = : . .

o k, o2 ¢
1-m, m™ KD

Vir1r, =

1 (98)
3

is obtained by putting in equation (94)

r.r, (1 - ;nfli _6>
- 1

Finally, W I
o 2

and substituting -g(§) for g(d). By comparison with
equations (97) and (98) this gives

w =Wy + W ‘
irrr, i, 1111,

and therefore
' w

)

iI1 }

¥
111,

LaV)

3 Wy = 2 "¥1111‘+ 2 will = z_willll,{l +
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Substituting .the values from (97) and. (98) the induced
drag of the entire wing is found to be

3l1-m, w b S 1-m, 2K, b

o o
4 K pTe” 't tan a 1 3K t ta :
W 3 0 {1 _ - .ixe_ na }(99)

If, in place of T
of the entire wing

o there is now substituted the 1lift A

A:pbPO'uOLi_P.L

2
we have - _ :
5 16 K, 1 1(A>ttana
li:—
3n (1-m)@+m)%p by,
1 1 3Kattana}
2
W, o= - -2 1 A ) t tan a
2
(1-m)@+mp°° ® b
{1_ 14 t tan a}(lOO)
1—7}2911

Thus the formula has bgen found for the induced drag with
trapezoidal 1lift distribution., To this must be added the
wave drag. The latter according to equation (26) and

table I is

202 + M) b .
gave = ™ ( ) © (101)
3(1 + ﬂl)a t tan a P

If ¢y denotes the coefficient of the wave plus induced
drag then from equations (100) and (101)

ca? a(24m,) Saa® 1 14 :
WA -2 20 o
4 tan o 3(14m)) (1-'n.1)(1+'n1)2 1-m, 9 1
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The above formila differs from the corresponding formulas
for the rectangular flat plate (equation (80)) and the trape-
zoidal wing with constant 1ift distridbution (equation (49))
in that for small A the induced portion of the drag is
proportional to )\ 2 whereas for the other two cases it is
proportional to ). In figure 20 the coefficient

c.2
cﬁ/’ 2 is plotted against the reduced aspect ratio
4 tan o . - :
E—E%E—Q = A for various trapezoid shapes 1b'/b, It may

be seen that by far the greatest portion of the drag is

contributed by the wave resistance. The portion contribd-

uted by the induced drag, within the range of validity of .

. our formulas, amounts to a maximum of 11 percent of the
wave resistance for A = 0.5 ‘and b'/v = 1/2, It is

therefore smaller than for the rectangular flat plate where

fo§ the same aspect ratio it amounts to 19 percent (fig.

10

VIII. SUMMARY

Tith the aid of the expressions given by L. Prandtl
(reference 2) a theory is developed of the airfoil of fi-
nite span at supersonic speed. 4As in the case of the
Prandtl airfolil thoory for the incompressible flow, 1t is
a first order approximation theory. The airfoil is first
replaced by a "horseshos vortex" and the induced velocity
field of. the latter computed, Tais field is considerably
different from that of the incompressible flow, From the
horseshoe vortex there are obtained in the familiar manner
by superposition more complicated liftirng systems. The
computation of the induced drag, in contrast to the incom-
pressible case, is for the compressible flow possible only
if there is first assumed a surface vortex distribution
and secondly a suitable dropping off of the 1lift toward
the wing tips.

As an example of the "first principal problem" there
are computed the .induced drag and the wing surface shape
for a wing of trapezoidal plan form with constant surface
density of the 1ift, The induced drag, as in the case of
the incompressible flow, is found to be proportional to
.the square of the 1lift and depends on the Mach number as
"well as on the aspect ratio. In addition to the frictional
and induced drag there is present in the supersonic case
also the wave drag, produced by the sound waves, which
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varies as the induced drag. It is therefore only the sum
of the wave and induced drags that is of practical inter-
est.

. As an example of the "second principal problem" there
is . computed the 1ift distribution and induced drag for the
rectangular flat plate (untw1sted rectangular wing). Out-
side the two Mach cones springing from the leading edges
of the wing tips the 1ift density is constant; within
these cones the 1ift drops from the full value at the cone
rim to the value zero at the lateral wing edge. The inte-~

gral equation that arises .is independent of the aspect

ratio and of the Mach number and may be solved numerically

'by approximate methods. In general for airfoils of normal

aspect ratios at supersonic flows. the greatest portion of
the total drag is contributed by the wave resistance while
the induced drag contributes only a small proportional
part,. ,

Finally, there is considered the lifting line with
trapezoidal 1lift distribution and the lifting surface of
rectangular plan form whose 1ift is constant along the
chord and trapezoidal along the span. For these cases the
downwash distribution and induced drag are computed.

Translation by S. Reiss,
National Advisory Committee
for Aeronautics.
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L

Figure 7.~ Rectangular wing as
1lifting surface with
constant lift distribution.

Streamline picture of the y- and s~ .

velocities in a plane x<t at right

angles to the axis of the Kach cone.

Figure 9.- Trapezoidal wing with

~ constant 1lift
_ _distribution.
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Figs. 7,8,9,10

Figure 8.~ Rectangular wing as
lifting surface with

constant 1lift distribution.

‘Streamline picture of the y~ and z-

velocity components in the plane

x = 3t at right angles to the axis

of the Mach cone. - -
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Figure 10.~ Trapesoidal wing with constant 1ift distribution.
' Coefficients ofthauve _plus induced drag c'/?t%n??

as a function of the' 'reducoattpoct ratio® A = t tand/d for
various trapesoid:shapes 6 .8:tan7/tand.
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Figure 11.-~ Trapezoidal wing
with constant 1ift
distribution. Induced downwash
velocity in section AB (ia
direction of flow) (tanT= 1/1/53
tanaaV3).
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Figure 13.~ Trapezoidal wing
with constant 1lift

distridution. Profile sections.

(tan« =V3; tanT= 1/73).

Figs. 11,12,13,14

Figure 12.~ Trapezoidal wing
with constant 1ift

distribution. Induced downwash

velocity in section CD (at right

angles to flow direction)

(tant = 1/V3; tand=+3).
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Figure 14.- Trapegoidal wing

with constant 1lift
distribution. Elevation contour
lipes. (tana = V3; tanT = 1/Y3).
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Fxgure 15.~ Recta.ngular plane
’ wing. Lift at
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o ‘Pigure 16.~ Polars of plane
rectangular wing
Figure 17.- Rectangular surface
with trapesoidal for v§rioun aspect rgtios.

1ift distribution.
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Figure 18.~ Lifting line with trapezo:ldal 11ft diltribution.
Streamline picture of the y~ and s- velocities in
a plane at right angles to the axis of the Mach cone.
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Figure 19.- Rectangular wing as 1ifting surface with trape:oidal
1ift distributioa. Downwash distridution for x<t.
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Figure 20.- Lifting surface with trape:oidal 11t diotribgtion.
Coefficient of wave plus induced drag c'/i'ﬁg'— as &
function of the "reduced aspect ratio" A for various values of b,'/b-v
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