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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TEOHNICAL MEtORANDUM NO. 834 

THE STAEILITY OF ORTHOTROPIC ELLIPTIC CYLINDERS 

IN PURE BENDING* 

By O. S. Heck 

The theoretical criti cal bending stress of elliptic 
cylindrical shells is det e rmined on the assumption of in­
fin it e shell length and absence of local instability phe­
nomena . The results of tests on isotropic elliptic cylin­
drical shells st r essed in bending are compared with the 
theoretical re Gults . The practi~al applicability of the 
theory i s d iscussed . 

I. INTRO DUCTION 

The preliminary c a lculation of the load capacity of a 
thin- walled cylindrical shell under bending stress is of 
i mportance in airplane statics in the analysis of shell 
bodies . Hereby it does not merely pertain to isotropic 
circular cylindrical shells which, in the literature up to 
now, are almost exclusively used in bending tests , but also, 
above all , to the bending of orthotropic (orthogonally ani­
sotrop ic ** and st i ffened cylindrical shells. The study of 
shell s with other than circular sections (elliptic, for ex­
ample) is of parti cular practical importance. 

Gene r al app licat ion of Navier's simple bending theory 
to thin- walled beams is no longer permissible, according 
to ?randtl , be cause of the occasionally enormous strain of 
the section under load . On the strength of this, and 
prompted by experimen ts on elastic balance tubes, von 
Karmnn investigated the bend ing of curved thin-walled 
pipes (reference 1) . But his findings are inapplicable to 
straight ~ipes . Besides, von Karman failed to mention the 
i mp or tant fact that the bending moment has a maximum (crit-

-------------------------------------------------------
II II 

*IlUber d ie Stabilitat orthotroper elliptischer Zylinder-
schalen be i reiner Biegung.1l Luftfahrtforschung, vol. 
14, no . 3 , Marc h 20 , 1 937, pp. 137- 147. 

** The concept of orthogonally anisotropic plate was proba­
bly first g iven by M. T. Huber (cf . Bauing., vol. 4, 
1923, p . 354 . 
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ic a l ) valu e condi ti o~ ed by the flattening of the cross 
se c t i on . 

Th e f ir st study "on the pur e bending of infinitely 
long i sotrop ic ci r cular cylindrical shells, was made by 
Erazie r (reference 2) . He shows that the bending moment 
does not increase l i near l y with the curvature of the shell 
axis and that it assume s a m~ximum (cri t ical) value for a 
certain curva ture of the shel l axis; for g reater curvature 
the sys t em cease s to be stable . 

This typ e of i nstab ili t y ( similar instab ility pre­
vails under compression and bonding of a ba r ) i s essen­
t i a lly di ffe r ent from that en countered i n the usual sta­
b ili ty p rob lems , such as in the buckling of a strai gh t 
bar, fo r examp l e . 

Figure 1 shows the behavior of a st raight compres­
sion member . Th e load P runs li~~ar to the approach f 
of the bar ends as fa r as the branching-off po i nt (buck­
l i ng load) . From that po i nt on , there are two possible 
conditions of equilibrium: the bar may remain st r aight -
that i s, i n unstab l e equili br i um, or deflect sideways un­
de r stab l e equilibrium . I n both cases the load P in­
creases beyond the buck l i n g l oad. 

Erazier ' s di scussi on of bending of a cylindrical shell 
is illustrated in figu r e 2 . The curve ,h ich g iv es the 
ben~ng moment B relative to the curvature K o f the 
shell ax is , has no branching- off po int . The bending moment 
cannot be increa s ed beyond the c ritical value Ekr . After 
the cri t ic a l condition is exceeded the re remains only one 
p ossibl e equilibrium co nd i tion of the she ll, and that is: 
unstable . " 

Figure 3 final ly shows the behavior of a cylin dric a l 
she ll i n bend i ng when accompan i ed by local buckles which 
belong to the i nstab ility phenomena of the usual type . 
The maxi mum load suppo rt ed by the shell is more or less 
reduced by the buckles ; h en ce Brazier ' s value obtained by 
d isregarding a lo c a l buckling, constitutes a theoret ical 
upper limit of the maxi mum lo ad in an i nf i n i "te ly long 
s hell . 

I I . FORMU LATION OF PROELEMS AND ASS UMP TIONS 

In the present r eport the behavior of orthotrop ic 
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cylindrical shells of elliptic section in pure bending is 
theoretically investiga ted . Crit ical bending moment, 
critica l bending ~tress, and deformation of shell section 
are d e t erm in ed . The principal assumptions are as follows: 

1 . 

" ,-. 
3 . 

The cylindrical shell is of infinite length. 

There are no local instability phenomena (i.e., 
no wrinkl ing) . 

Th e st r es ses remain below the proportional limit 
of the ma t erial. 

The v a lue of our findings for practical a~plication, 
i f p r emis es 1 and 2 are not met, is discussed in the next 
sec-.tion . Tlhethe r assumption 3 is fulfilled can always be 
v e ri:i ed . 

The loc a l inGtability of long shells can be investi­
gated when allowa~ c o fo r tho strain condition - i.o., the 
change in curvature radius of the sholl section and of the 
dist~ncos from the zero lin e - is made in accordance with 
the cons i dernt ions of the preseilt report. An upproximaOte 
study of locnl instability h as been made by Brazier for 
tho cnse of isotrupic circul ar cylindricul shell. But the 
locnl inst nbil ity is so seriously affected by inevitable 
pre li minary wrinkl ing that theoretic~l studies which do 
not ~llow f or th ese preliminary wrinkles, nre of limited 
practica l imp ort ance only . 

III . RESULTS AND SCOPE OF VALIDITY 

The critica l ben d in g moment Bkr of an orthotropic 
cylindricnl shell of e lliptic section stressed in bonding 
i n the major or mino r ax is of the section is on the assump­
tion s cited in the p receding section: 

(1 ) 

with 
E (2 ) 

He reby 



l 

4 N.A.C.A. Technical Me mo randum No . 834 

E is the modulus of elasti~ity of the material 

v, Po iss on ' s ratio (about 0 . 3 for steel and duralumin) 

s, wal l th ickness of shell 

sm' - .mean wall th ickness , wh ich go v e~ns the st i ffness of 
the shell to ax i a l stresses (in .the ca se of the shell 
wi t h closely spaced stringers, wh ich approxim a tely 
re sembles an orthotropic shell, i t is: sm = s + 
F u' where F = to tal se c tion of st ringe r s, and u = 
circumference of se c tion of mean shell su r face )* 

a,b, major and minor half axis of the shell section 

r, r ad iu s of curvature of und efo rm ed s h ell se c t ion at 
the poin t of stress peak (pg = a 2 /b under bending 

on the major sectional axis Pk = b
2
/a by bending on 

the minor se cti onal axis ) 

W, se ction modulus o f un defo r med cro ss se c tion of the 
e ll~p t ic cylind e r 

(Wg = i b (b + 3a) sm 

re~erred to ma jor se c t ional ax is 

Wk = ~ a (a + 3b) sm 

ref orr ed to minor sectional axis) 

~kr' critical bending st r ess (~kr is simp ly a fictitious 
stress, because W r efers to the undeformed cro ss 
se cti on of the s h e ll) 

c , a nume rica l value which depends on axes ratio ~b 

of the shell section the value k
2 

= 
a 2 _ b 2 

~d o r ---a8 --

m~ be obtained from f igur e 4 . 

Th e subs cripts g and k indi cate , respectively, the 
b endin g about the major and minor cross- se c tio n al axes . 

*Un i fo r m st ringer d istribu t ion being assumed . 

I 

. 1 
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F o r a she ll havi ng u nl i ke modu l i of e l a sti city i n lon­
g i t u d i nal and circumfe r en ti a l di rec ti ons , the c r i ti cal 
bendi ng s tr ess i s : 

( 3 ) 

where El = modulus of ela s t i city i n circumf er ential , a nd 
E a i n long i t u d i n a l , d i re c t i on of the s h el l. 

Th e 11 re a 1 If C r i t ic al b end i n g s t r es s Ok r I ( i n c 0 n t r a -
cUst i n c t ion to t h e II f ic t itious ll cri ti cal stress CYk r ) must 

not - if t he find i ng s of th i s study a r e to re t ain their 
v al idi ty - exceed the p r op or tion al limit of th e material. 
To de ci de wheth e r th is con d i tion i s f ulf il l ed , compu te 
CYkr l acco r ding to ( 2 ) o r ( 3 ) where by cg 1 and ck ' ob-

tainab l e f r om fLeure 5, rep l ace c g a n d ck ' 

Th e extent of th e c r oss- se c ti on a l s t r a in may be seen 
f r om f i gure s 6 and 7 , where the relat iv e leng th change s 
i n the ax e s o f t h e shel l se c tion, on r e a ch i ng the c r iti c al 
cond i t i on , are p l otte d . * 

I n the calcul at i on of the quantit i es plo t ted in fig­
ures 4 t o 7 , the squares a n d p roduc ts of the displacement 
comp on ents of th e sh ell element in the ir c ~oss- sectional 
p l an e we re d i s r egarded r e l at i ve t o the first powers of 
t h e se v a lu e s, as in Br a zi e r ' s study . To gain an idea of 
th e ef f e ct of th i s om i ss ion , we made a more accurate cal­
c ulat i on : o r k a = 0 and k a = 0. 3, t h e r esults of wh i ch 
a r e aJ.so i n c luded in figur es 4 to 7. Bu t e v en these val­
u e s ~re no t abso l u t e ly corr e c t , sin ce th ere a r e still 
oth e r i n f lu ences wh ich a r e not c ons ide re d i n the calcula-.. 
tion . I n the c a l cul at i on of the curvatur e cha nge of the 
sh e l l se c t i on , fo r examp l e , the disp l a cement c omponents 
of t he sh e l l clem ents i n t h e cr o ss - secti onal plane are 
con s i d ered as smal l; i . e . , h i gher pow ers of these value s 
a r e n egle c ted re l at iv e to t he f i rst uow er s . Further, it 
was assumed that t he st rain i n th e s~el l section consists 
so l e ly i n a defl e c t ion , bu t not in a len gth c hange of the 
line elemen t s of the s he l l s e ct i on. Th e more exact cal cu ­
lation g i v e s great e r v C'. l u e s f o r CJkr ' s o that the appl i-

* w i s tho sh i fting of a .cross- sect i ona l poin t at r i ght 
~n g les t o the circumfe r en ce (p o sitiv e inwar d) . The exp l a ­
nation f o r Wo a n d wn/ 2 wi ll b e fo u n d in f i gures 12 
and 1 3 . 
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cation of the results of the simple calculation leaves 
ono on the safe sido . Experimental verification of the 
thoory seems , in the face of these f a cts, absolutely nec­
essary . 

In the f olloning, the extent of the practica l applica­
tion of equations (1) to (3) to cases where assumptions 
(1) and (2) are fulfilled, is discussed . 

a) I~QtrQ~ic_sh~ll~ .- In isotropic shells, even if 
of g reat length, the beginning of the instability through 
collapse of the she ll ' walls toward the neutral axis, is 
initiated by a local wrinkling on the compression half of 
the cylinder, as a result of which the failing load of the 
shell is reduced . Numerous experi ments on isotropic cir­
cular, cylindrical she lls (cf . figs . 17 to 19) have shown 
that th e av e rage maximum bending moment supported by the 
shells is not v ery muc h different from the theoretical 
value for the infinitely long shell without consideration 
to local instability phenomena . 

The average value o f c of 77 tests is Caverage = 
0 . 357 . But the scatter of the experimental values is in 
p art quite consid e rable. From the available test data 
there is no indication of any effect of shell length (fi~. 
19) • 

For the pur pose of checking the applicability of the 
theoret ical values a rrived at with the assumptions out ­
lined in section II, fo r elliptic cylindrical shells of 
f inite length, we made several exp e riments with isotropic 
elliptic cyli ndri cal shells of varying axes ratios. The 
tests dis clo se through the theor~tical values computed 
with the coefficients c g and ck a good agreement for 
bending about the majo r cr oss- sectional axis, but , markedly 
lower experimental values for bending about the minor 
c ross- sectional axis . (Of . section IV and fig . 4 .) 

In the latt e r case, it means that local wrinkling of 
the s h ell wall r esult s in a material reduction of failing 
load of the shell , contrary to the experiences with circu­
lar cylindrical and ellipt i c cylindrical , shells in bend.­
ing about the major cross- sectional axis. A certain ex­
p lanation for this fact may be found when assuming that 
the f ai l ure t h en occurs i n the ev ent i hat the axial stress 
a in the shell reach e s at some u oint of the cross sec~ion 
the critical value Okr of equation (2) . This most un-
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f~vo r ~b ly stressed po i nt follows from the condition that 
tho p roduct of curvature radius of shell section and the 
distan ce f rom the neutral zone must become a maximum. 
When di sregardin g the s train of the shell secti on thi s 
point is given by 

t = arc sin 
1 

2k 
(k a > 0.25) 

7 

Then the critical bending moment can be computed from the 
for::mlas (1), (2), a.nd (3), is at k 2 > 0.25 instead of 
ck the coefficient 

is substituted . At k 2 ~ 0 . 25 the extreme fiber on the 
compression half of the shell i s most adversely stressed. 
Figure 4 shows ck plotted against k 2

. The agreement 
with the experimental values is comparatively good. 

b) Q~1h01~QniQ_2h~11 s .- Whil e the local bulging of 
the walls of a shell with lengthwise closely spaced stiff­
eners, whieh approximately resembles an orthotropic shell, 
is de~ enden t on the bend i ng stiffness of these stiffeners, 
the f ailuru due to coll apse of the shell walls is depend­
ent on it s cross secti on . There is no local bulging of 
shell wal ls before failure in very long elliptic shells 
with closely spaced stringers for sufficiently high bend­
ing s tiffness and small cro ss section. In that case the 
results of the present report are exactly valid. 

A~ conc~rns the app licabili ty of the theoretical for~ 
mUla a~d tho effect 0: shell length in orthotropic ellip­
tic shells (plywood shells , fo r instance), no experiments 
ere availab le. For computing the failing moment of short 
st i ffened shells with strong fairly closely spaced frames, 
the results of th is study are i napplicable as the re­
strained flBttening of the shell section increases the 
failing load of su ch shells as a rule very considerably 
compar ed to the failing load of very long shells without 
frames .* If the st r a in of the section of such a shell is 

-------_._------_. __ .. _------------------------------
* The theoretical formu l a (2) i s also useful for calculat­
ing the closed part of a shell body with comparatively 
closely spflced interr.lOdiate bulkheads, since it indicates 
the crltic~ l bending stresses for the collapse of the shell 
walls in buckl i ng form ; that is, a lower limit in shells of 
(Continued at bottom of page 8 ) 

j 
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negl i g i bly small, the n th e study of the local stabi lity of 
the assume dly orthotrop ic she ll i s comparatively simp l e as 
against the general c ase , b e caus e the bending moment up to 
s t ab ili ty limit runs lin ear wi th th e curvature of the shell 
axis . As regards t h e bulging of th e wal l s of orthotropic 
shells , a better ag r eemen t b e tw een theory and test s ee ms 
indica t ed than with i sot ro p ic shells, since the inevitable 
prel i minary bulges are smaller in comparison with the me a n 
wall th icl::n es s. 

IV . EXPER I MEN TS WI TH I SOTROPIC ELLIPTIC CYLINDERS 

A ser i es of fa ili ng tests in pure bending about the 
major a n d minor cross- se c t iona l axes waS carri ed out on 
i s o trop ic el lip t ic cylindrical shel ls of dural um i n of two 
d i ff erent axes ' r at ios . The d i mensions of the test speci ­
me n s a r e g iv en i n t a b l e I. ( t i s the f r e e length of the 
cylindrica l shel l.) The modulu s o f elast ici ty of the ma­
terial wa s established at E = 7 . 5 X 10 5 kgem- 2

• The 
e valuat ion o f the tests was made with with V = 0 . 3 
Poisson f ~ ratio . The exp e rimental a rrang e ment it self is 
i llustr a ted i n f i gur e 8 . The wooden frames a t the ends of 
the tes t cylinder se rv e to p re ss the shee t against them 
through exactly fitting wooden ji gs . One en ~ frame is 
clamped to a s o lid f r ame wh il e c), pure bendin g moment is 
a p p li ed a t the other f r a me . The we ight of this frame is 
comp ensa ted . Two faili ng t e sts could be made on each 
spe ci me n . Aft e r th e first test th e cylinder was turn ed 
throug h 180 0 on its axis, wh ich le f t the st ill undamaged 
part of th e sg e ci men on t h o compression half of the cyl i n ­
d e r fo r t he second t e st . 

TABLE I. Dimensions of Te st Specimens 

----------·---t--~---t--b---~'---f"-F-;----Sn ecimon ---- - .--- ------ -----
~ em cm em em _ ________ _ 0_- _ _ _____ ____ __ _ _ ___ __ __~----

__ . __ ~~_._., _ ~ ___ ~ ___ .. _~_t~·~_. __ . __ ~. _ .. _ .J_J_~3 __ ._. ~~_gJ3 __ . __ 
*(Continued f r om f o otnote, p ag e 7 ) 
of fin i te length, wh i c h ar e bound e d by fixed ribs . Logic ­
al l y , the thickness of a smooth sh ee t must thereby be writ ­
t en fo r s i n ( 2 ) , ~hose b endin g stiffn e3 s equals the mean 
ben d ing stiffness of the st if f ened shell in cir cumferential 
di r e ction under consid e r ation of the frames . One obtains 
i n th is manne r a control po i nt f o r the rib dimensions . 
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The resu~ts of the fa iling tests are given in table 
II. For comp a ris6n with the theoretical values (admitted­
ly der iv e d for infinit e ly l ong cyli ndri c al shell and dis­
regard~d local instability phenomena), we have included 
th e experimental values of cg and ck in figure 4. A 
dis ussion of the te$t data is given in the preceding 
s ect ion . 

TABLE II . Test Data 
-----_. - - --- ---- --:------------------------------------------

Sp e c­
i Men 

1 

2 

Bending about major 
cross- sectional axis 

_~ __ t~ __ 'Bgkr 

_~! __ I~m~_ ~~~~_ 
33 . 75tI4S 05'119600 

21200 

-;;--r;;~i~lli~;;; 
I 10900 

-----:..------------

kgcm- 8 

405 
437 

----
275 

. . 2~8 
---

Bending about minor 
cross-sectional axis 

cm cm 3 cmkg kgcm- 2 

. 347 10 59.6 42500 713 

•
37St . 47300 794 

-----
~41 1 7.5 90.1 53700 595 

.:.~~:1_ 52200 1 5S0 
------ -----

V . THEORETICAL ANALYSIS 

1. li' ormulation of Problem as Vari:ation Problem 

.1Sl 

.202 

.111 
0108 
-----

To ana l yze the behavio~ of a circular or elliptic cyl­
indr ical shell in pure bending. we resort to the principle 
of m i n i ~um ~otential energy . The assumption of infinite 
shell lengt h neu trali zes eventual edge effects. Conforma­
bl e to an oth er assumpt ion. there is to be no local bulging 
o f shell walls . Then all sections of the shell are strain~d 
i n the s~me fashion for reasons of symmetry, so that the 
nn~ly s is can be r es tricted to a piece of shell of length 1. 

For a g iv en curvature K of the shell axis, the fo rm 
which th e shell section assumes must be so defined that by 
fixed K the energy of form change U becomes a minimum. 
So if t he strain of the shell section and consequently, 
the energy of form change U is known in relation to cur­
vature K,' the bending - mom en t B follows as derivative 
of U with respect to K . 
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The fo r m ch a nge en e r g y U comprises : 

1) The fo rm change energy U1 , corresponding to the 
strain of the shell section . 

2) The form change energy U2 , corresponding to the 
length changes of the shell fibers. 

The st rai n of the shell section is a ssumed to consist 
only i n a defle ction but not in a l ength change of t he lin­
ear e lements of the se cti on of the mi ddle of the shell . 
It i s assumed that both strains corresponding to the energy 
or fo r m changes U1 and Ua take place successively, for 
example - f irst the strain of the shell se ction and then 
the elongations or contractions in shel l-l ength direction . 
Th e additional s train of the shell se ction following the 
initiation of the ax i a l stresses as a result of transverse 
contraction, i s small enough to be negligible. 

It is then : 

U 1 
E ----~---- J 1 

( 4 ) = 2 12 (1 - v 2
) 

Ua = E 
13m Ka J a (5 ) 

with 
2 

J (6 
2 (6 ) J 1 = Ku) du 

Ja = J h
a 

du (7 ) 

whereby t he integrals extend ov e r th e whole circumference 
of t ~e she ll section . It is: 

K, curva·ture of the s h e ll a:ci s 

6 Ku' c h ange in curvature of the section of the median 
she ll area 

u, arc length of the s e ction of the median shell area 

h, distan c e of an e l ement of th e strained shell from 
the neutral ax i s 

Assume the strain of the she ll section to be d ef in e d 
by the natural coo r dinates v and w of the displacement 
of tho shell ole~ents in t he sectional ulane : v, to denote 
the componen t o f d isplacement in tangential direction (pos-
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itive in the sense of increasing u) and w, the component 
in normal dire ction (th e inside nor mal to be positive) of 
the undeformed se ction. The curvature change ~ Ku of 
the shell section, which may be any, so long as it has no 
corners, can be ex-p re ssed with F'r-enet's formulas through 
th e displacement c~mponents v, w, and their derivativas. 
We have : 

+ w" - V (8 ) 

Here p i s the radius of curvatur e of the shell section 
( pos i tive if the cent e r of curvature lies on the inside 
normal), p I the first derivative of p with respect to 
arc l engt h u, and w ll the second derivative of w with 
respe ct to u. If, as according to our premise, the length 
of the lin e ar elements of t he section is constant, then 
there exists between v and w , the relation: 

w = p v ' (9 ) 

With due regard to ( 9 ), equation (8) becomes: 

6 Ku = P v !1' + 2p ' V II + (p II + ~) v' - v ~; (10) 

It will be observed that in (8) to (10) the higher 
powe r s of v and wand t heir derivatives are disregard­
ed r e lativ e to the f ir st powers of these quantities, as a 
result of which the validity of these formulas is confined 
to relatively small v and w. 

The pr oblem now is to so define v and w that for 
g iv en curvature K of the shell axis the energy of form 
cha nge U a s sumes a minimum value; i.e., to solve the 
varia t ion problem : 

U = U1 + Ua = Min (11) 

2. The Orthotropic Circular Cylinder Under Pure Bending 

We fi rst analyze the pur e bending of the infinitely 
long orthotropic circular cylinder on the premises of 
s e ction II, and solve the p revio usly derived variation 
p robl em for t his par ticular case. The curvature change 
6Ku of the shell s e ction becomes: 

1\ r V'II + Y..!. 
L.l Ku = (12) 

r 



12 n . A. C.A . Technical Mem·o r a n dum· No . · 834 

according to equation (10), wi lli r equal to radius of 
median shel l area . The d istance h of one element of the 
strained she ll from the n eutral axis is: 

h = r cos t - v sin t - w cos t (13) 

whereby w is to be replaced according to (9); the sig­
nificance of t is ~een from figure 12 . The variation 
problem (11) , for whic h the solution could equally well be 
arriv e d by integration of the correlated Eulerian differ ­
ential e quation , is so lved directly by the formula (Ritz's 
method ); 

n 
v = r .~ Aj sin 2 j t 

J =1 
(14) 

No terms other t han those g iven can appear in the formula 
for v for reasons of symmetry. · With (14) and allowance 
for (1 2 ) , (13), and (9) , equations (6) and (7) give : 

4TI ~ ,2 · 2 2 2 
= r j~ l J (4 j - 1) Aj (15 ) 

(16) 

In the determination of ~ the squares and prod­
ucts of v and ware n eglected r e lative to the first 
powers of these values . The con d itions for minimum energy 
of form change U a re the n e quations: 

Q!L = 0 (j = 1, . . . , n) 
oA. 

J or 

~~L 12 N ~~?.- (17) = - -;;-4 oA j oAj 
with 

(18) 

With (15) equation (17) bec omes : 

Fro m · th e se equations, the quan t ities Aj Can b e computed: 

N A --
1 - 2 ' (j = 2 , ••• , n) 



------------~--------------_r 

N.A:C.A. Techni c al Memorandum No~ A34 13 

Hereby n m~y be of a rbitrary size; that is, 

v == ~ r sin 2t 

is the exaot so lut ion of thB vari ation problem (11). The 
ben d i ng moment B becomes : 

B = Sl,Q 
dK 

= E 

The bending moment reaches it s maximum value Bkr if 
eCluation 

is fu l filled . Equation ( 20) gives: 

By obs erving (18), we have: 

Putting 

whereby 

we f ind : 

= C ---~--- r 

J 1 - v 2 

2J2TT 
C = ------ = 0 . 987 

9 

W = TT r2 s m 

c = E.~E. = 0 . 314 
9 

E. 
lJ = 9' 

(19 ) 

(20 ) 

(21) 

(22) 

but CYkr is only a f ic t itious stress since W is the sec­

tion modulus of the unstrain c d circular section. 

All owing for the square s and products of v and w, 
disregarded in equation ( 16 ), we have: 
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r 3 (1 3A 1) + J (v 
' , 2 ' 

Ja = TT sin t + w cos t) ds 

= 11 r3 (1 - 3Al + 5 Al a + 5 Al 'Aa 
2 2 

+ 17 Aaa + 45 Aa A3 + 37 A3
a + .. . ) (23) 

2 2 2 

Then the equat ions (17) read, for n = 3, for example : 

3 Al + (~ Al + ~ Aa) N 3 N = 
4 2 

(24 ) 

(1~ Aa + 37 A3) N = 0 
\. 4 2 

from wh ich Al to A3 (up to An in general ) can be ob­
tained . The bending moment 

reaches a maximum v a lu e i f 

dB a B 
= -- + 

dK 0 K 
dN ~ oB dAj 

dK j =1 oAj dU 

(25 ) 

= 0 (26) 

Th i s equation g iv es N and, by obse rving (18), ( 23 ), 
and ( 25 ), the critica l bend i n g moment . It again yields 
the equations ( 21) and ( 22 ) for Bk r and rrkr but with 
di ffe r ent coefficients C and c. It is : 

C = 1 . 22 and c = 0 .388 

wh ich value s are, a s stated before, s t ill not completely 
correct . 

On reaching the critical condit ion ( fig . 12) the rel­
at ive shortening in d iam e t e r of the shell section pe r pen­
d icular to the neut ral axis is: 

~~ = N = .f 
r 9 

(27) 

if the squares a nd p rodu cts of v a nd ware neglected 



N. A. C. A. Techniccl Aemorandum No. 834 15 

in (7 ). The relative l ength ening of the diameter coinc i­
dent Nith the neutral a x is is of the same magnitude. If 
the squar e s and pro duc t s of v and w in Ja ar e con-

s i de r e d , then the r elativ e sho rt ening of the diameter per­
penaicular to the neutral axis amounts to 

Wo - = 2 r 

n 
. 2: j A

J
. 

J =1 
(28) 

and the r e l a tive l eng t h ening of the diameter coincident 
with the neutral axis 

_ ~TJ.L:?:. (29 ) 
r 

Hero the v a lues Aj should be determined from (17) and N 
fro~ ( 26 ) . The v aluo s wolr and ~TI/2/r together with 

tho correlatod values of shells with elliptic section arc 
shown in fi gures 6 nnd 7 . 

The actual critical bending stress CYkrf (in contrast 

to the fictitious b end ing stress CYkr) becomes: 

Thereby the c rit ic a l bending mo ment is, according to (19): 

and the se c tion modulus of the deformed shell section (re­
ferred to tho neutral axis): 

Obse rvanc o of (18) g i ve s : 

( 7 ) 
I f tho squ~r es ~nd products of v and 

nre neglected, it affords vith equation 

c' = (l- N ) jli 

w in 8quation 
(27): 

---- - ----------------------~---

I .. 
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Allo wance for the squares ~nd products of v and w. and 
observance of (28) g ives : 

n 

c ' = (1 - 2 j~l j Aj) jN 

Th e values computed for c t are plotted in figure 5 . 

3 . Pure Bending of the Orthotropic Elliptic Cylinder 

In the following we solve the variation problem (11) 
for a cylin drical shell of elliptic seQtion. The study is 
con f ined to the symmetrical cases of bending about the ma­
jor or minor axis of the shell section . A rectangular sys­
t em of coordinates in the p lan e of the shell section makes 
th e x- axis coincident with- the major , and the y- axis coin­
cident with the mino r, crOBs-sectional axis (fig. 13). 
Then the equation of the se cti on of the median shell area -
expressed in parameters- reads: 

x = a sin t 

y = b co s t 

nhere a is the major, and 
t he cross~ sectional ellipse . 

b the minor, half axis of 
Conforma ble to (6) and (10), 

TIe ha.ve : 

J 1 = § [p v"'+ 2p ! V" (pH + ~)v ! - v £?-I J2 
p2 du (30) 

whereby 

du (1 k 2 sin 2 t)1/2 dt, k a aa - b2 
= a = --a"2"--

p .§, (1 k 2 . 2 t) 3/a p ! ~ .§, k 2 sin 2t = - Sl.n a , = -b 2 b 

p" = - 3 a k
2 

c o S 2t (l - k 2 sin a t)-1/2 1. 
b a 

If hg is the distance of a shell element from the 

neutral axis in bending about the major cross-sectional 
axis , and h k • the corresp 6nding distance in bending about 
the minor axis , we h ave (cf . fig . 13): 

hg = b cos t - w cos cp - v sin cp (31 ) 

hk = a sin t - w sin cp + v co s cp (32) 
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Her e cp i s the an g ]. e 0 f the nor mal 'IV i t h the min 0 r ax i s 
of the e llipse. It is: 

. b t (1 k 2 • 2 t)- 1 /a sJ.n cp ::: - sin - ... sJ.n 
a 

cos cp ::: cos 

Acc ording to equation (7) the observance of {31) and 
. (32) i n bending about the major cr oGs-se c tional axis (de­

n ot eu here a ft e r by subscript g) gives: 

J =1 (b2 cosa t- 2 b w cos t cos cp - 2b v c os t sin cp)du 8 g 
(33 ) 

a nd by bending about the minor cross-sectional axis 
(subscript k ): 

t sincp+2a v sin t coscp)du 
(34 ) 

Th e squar es and p roducts of v and 
a gainst the f irst Dowers of these values; 
sub st itut ed for w~ according to (9). 

ware neglected 
pv' canbe 

The vari at ion pro blem (11) c an be solved by the Ritz 
metho d. The fun ction v can be approximated by 

n 
v = a L:: A· sin 2j t 

j= l J 
(35 ) 

For reasons of symmetry, no terms other than those 
g iven c an occur in the fo r mula for v. With formula (35), 
e quation (30) becomes, after sev eral intermediate compu­
tations : 

J
1 = 

with 

TT/ 2 
8 4 --------- ./ (j~l A· Kj) dt (36) 

a (l - k
2 

) 
J 

0 

-1 
+€sin 2 t sin 2j t(1_k8 sin8 t) 

[4j8 + ~ (1_1;:8 sin2 tf8 J} (1_k8 sin8 t)1/4 

where for abbreviation : 



I 
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1 - 3k2 = a. , 

The term for ~ given in (36) is valid in bending 
about the major , as about the minor, axis of the shell 
section . The evaluation of the integral in (36) by serie~ 
development being very tedious, the numerical integration 
is carrie d out by the Gauss-Lobatto method (ref eren ce 8). 
Th e i nteg r al is approximately replaced by a sum of n 
terms . The summands are the values multiplied by certain 
weights g of the to-be integrated function at the int er­
val st ops and at m - 2 prescribed po ints of the interval. 
The thus- obtained appr o x i mati0n is of ' the order of 2m - 1; 
i . e . , a parabo la of t he 2m - 1 degree is exactly inte­
grated by th i s method. Then equation (36) becomes : 

(37) 

The integrals J 2 and J 2 k' confor mable to equat ions 
g 

(33) and ( 34) can b e exact ly defined, i. e . : 

J a 2TT a 3 [ a 3 _ k a 
Al 

k 2 

Aa ] (38) = (l-k )R- " T-- - 2 g 

J ak = 2TT a 3 [s + L~2..sk~ Al + k~ Aa ] (39 ) 
2 

with n/ 2 
.s ! (l-k 2 

a l/a 
CO S2 1 _ 1 (l)a k 2 R = sin t) t dt = TT 2 4 2 

0 2 k4 
(l±QJ k 6 _ 1 

(1~~) 1 -- - . . . 
6 2·4 3 8 2 ' 4 ~6 5 

TT/2 

(i)2 s .s I (1_ k 2 
sin 

2 )1/2 • 2 t dt 1 3 k 8 = t S ln = - - -TT 2 4 

0 2 
K~ _ 8 k 6 _ 5 (1~~) 7 (l~~J - ... 

6 2 ·4 3 8 2 · 4 '6 5 

With ( 35) the energy of fo rm 
functi on of the n variables Aj 
so var i ation problem ( 11) reduces 

change 
(j = 1, 

U becomes a 
••• " n), and 

to a co mmo n lI ex tremum ll 

-- ~------
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pr oblem . The ac cur a cy of th e method c a n b e r a i sed at wi l l 
b y in c re a s i ng n . But, i n gene r al, it aff ord s no p o ss ibil­
i t y t o a ss ess the e rro r s . Th e v alues Aj , fo r whi c h U 
be c o me s a mi ni Qum by c onstant K , follo w f ro m the n l i n ­
e,';~r e quat i ons : 

£1L 
o Aj 

= 0 ( j = 1 , . . . . 
or 

OJ1 1 2 N oJ8 

-aIj = - 114- -aXj 
wi t h 

Fro m e qu a t i on ( 37) fol l ows : 

4TT n m 
= ---------- . ~ Ai ~ 

a (1 _ k 8 ) 1=1 p=l 

n) 

(40 ) 

(41) 

Th en t h e equ a tions ( 40 ) wi th o b se rvan c e of ( 38) and 
( 39 ) b e 90 me , i n b en d ing about t he major cross- sectional 
a xis : 

n m 
k 8) k 8) ~ A· ~ gp ( K1 Ki )p = 3 (1 - (3 - N 

i =l 1 "0 =1 

n m 
~ Ai ~ gp (K8 Ki) p = 3k8 ( 1 - k 8 

) N 
i= l ~) == 1 

(j = 3 , • • • ,n) 

an o. i n b end ing a bout th e mi nor cro ss- se c tional axi s : 

n m 
k 8 

) 2k 8 
) ~ Ai ~ gp ( K1 Ki)p = - 3 (1 - (3 - N 

i =l ~") = 1 

n m 
_ 3k 8 (1 k 8

) . ~ A · ~ gp (K8 Ki) p = - N 1 1 =1 "0 = 1 

n r.1 
.. • , n ) L: A· ~ gp ( Kj T{ ~ ) = o· { j = 3, 

i= l 1 • .1. P 
}) = 1 

(42 ) 

(43 ) 

Ha vi ng def in ed t h e v a l u e s Aj f r om (42 ) and (43), the ben d­
i ng mo me n t B fo ll ow s f r om 
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B = £Q = QQ = E s K J 2 dK oK m 
(44) 

wi th J 2 as e iven in ( 38) an d ( 39 ). The ben d ing moment 
B rea ch es it s highest (cri~1c &1) value Bkr' if 

( 45 ) 

F ro m these equations follow: 

n = g 
2 (1 - k 2) R 

----------------------

3 [(3 - k
2

) ~~ + k
2 ~~J 

- 28 

3 3 - 2k + k f( 2) Al 2 -NA_2 ] 

L N 

whereby i n the expr ess ion for Ng the values Al a nd A2 
are to b e taken from (42) and in the term for Nk f rom 
( 43 ) . 

wit h 

with 

By 0 b s e r vi n g ('- 8 ). ( 39 ), a.n d ( 4 1 ). e qua t i on ( 44 ) g i ve s : 

4 
C l~ = - 1T 8 

g 

-- C ---~--- a s .;ss;; 
J l - va 

r--------68 

Al Aa J (3 - 2k 2) - + k
2 -

N N 

( 4 6 ) 

Defi ning a fictitiou s c rit ic a l b ending stress ITkr 

whe reby 

Wg - ~ b ( b + 3a) s m' :!I a (a + 3b ) sm 
4 
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are the se c t ion moduli of the shell section wi th respect 
to the major an d . minor cross- se c t i onal axes, we find: 

with 

16 
9 

16 

9 

R 
----~---~ ! 6 (1 .. k 2 J R 

-------------------
2 Al 2 Aa 

(3 - k ) "N- + k "N-

I -68 ~-------------------
2) A 1 2 A2 (3 ~ 2k -- + k --

N N 

----------- --
1 -I- 3 J 1 _ k 2 

(47 ) 

Figures 1 4 t o 1 6 show the values Cg and Ck anu 

pl ott ed again s t k 2 and n . A proof of the converg-

ence of the met hod is withheld in the present report. 
Ev en so , the d i a grams man if est the good convergence for 
small k 2

, while fo r higher k 2
, it is less good. But 

even in this r a n ge t h o curv es toward wh i ch the values Cg 
1 and 

Ck 
str iv e , can be p lott ed with sufficient accura.cy. 

Figure 4 shows t h e values cg and ck . t k 2
• plotted agalns 

Obser vanc e of the squares of products of v and w, 
di s r egard ed i n ( 33) and ( 34), reveals the right-hand sides 
of e quations ( 38 ) and ( 39 ) augmented by the terms: 

2rr 

a ' JC n 
2 

J (w cos cp + v sin cp )2 du = ---"2 ,2: Aj Lj) dt (48 ) 
l-k J = 1 

and 0 /2n a 

!fi (w 
a 

a 3 • (.~ Mj) (49 ) s in cp - v c os cp) du = A · dt 
. J=l J 

Hereby 0 

(l_k a s in a 3 /4 
Lj = 2 j t) c o s t c o s 2j t 

(l-k 2 ) (l - k a . 2 -1/4 
2j t + Sln t) sin t sin 

.-



22 N. A. C.A. Techn ical Memorandum No . 834 

:3 :3 :3 / 4 
Mj = 2 j (l - k s in t) sin t co s 2j t 

(l_k a sina t)-1/ 4 cos t sin 2j t 

Evaluating the int egrals in (48) and (49). conforma­
bl e to Gauss- Lobatto , th e e quations (38) and (39) are re­
pl a ced by 

I a 
k-= J z ,.,. 211 3 

l(l- k
Z

) R .:2_~_L Al Aa = a - -
b 2 2 

1 
m n 

Ljp)ZJ + ___ 0_'2" L gp (j~l Aj 
1 - k p= l 

(50) 

Jz = 211 a 3 rs + 3 - 2kz 
Al + k~ Az -------

k L 2 2 

m n 
Mjp)2 ] + l: gp (j~l Aj 

p =l 
(51 ) 
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n m 
L: Ai L: gp (K 1 K' ) 

i=l p =l ~ P 

( a . n m 
+ 1 2 l - k ) N L: Ai L: gp (M 1Mi)p 

i=l p= l 

= - 3 (l_ka ) (3_2k a ) N 
n m 
L: Ai L: gp ( Ka Ki )p 

i =1 p = l 

(I _ le a) 
n m 

+ 1 2 N L: Ai L: gp (Ma Mi )p (53) 
i =l p= l 

= - 3k 2 (l_k a ) N 
n m 
L: Ai L: 

i=l 0=1 
gp (Kj Ki )p 

(1_ 1::8 
) 

n m 
+ 1 2 N L: Ai L: gp (MjMi)p = 0 

i=l p =l 

(j =3, ••• , n ) 

Th e bending moment B fo llo ws from equation (44), 
whereby ~ i s g iv en in ( 50) and (51). The value of K 
or rT , fo r wh ich B reach es the critical value Bkr, is 
computed from the equat ion: 

or 

2 

d.3 a B dN 
= -- + 

dK aK d K 

(l- k 8) 
8 

k
8 

R - C 3- k ) A1 -

- 2N [C 3- k
a

) 

8N n 
+ - ----.., L: 

1 ... k · ... i=l 

n aB dA j 
.L: --- = 
J=l aA' dN J 

m 
2 L: Aa + --:-2 

l-k p=l 

dA1 
dN + a dAaJ 

k dN 

for bending abou t tho ma jo r axis and 

0 

gp (j€l 

a 

A·L· ) J Jp 

(54 ) 
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n a ~ 2 m 
2S + ( 3- 2k~) A1 + k Aa + 2 l: g 

p=1 P ( l: A , M · ) 
j =1 J J p 

2N [(3_2k
2

) 
dA 1 

+ dN + k 2 ~~~ ] 
dN 

n n m dA· 
+ 8N .l: l: Aj l: ( MiMj)p 

~ ::: 0 
~:::1 j::: 1 p:::1 gp dN (55 ) 

for bend ing about the minor axis of the she ll sect ion. 

The r e sults for Bkr and crkr are again the equa­
tions (46) and (47) but wi t h di ffe r ent coe f ficients C 
a nd c . Th e thus- obtained values cg and ck are in-
clude d in figure 4 . 

Th e s train in th e originally elliptic section is ob­
tain ed f rom th e functions v and w known after the val­
u es Aj have be en d e termin e d . Assume that the relative 
l ength changes of the half e,xes of the shell section upon 
reachi ng th~. critical condit io ns are g iven ( f ig. 13) . In 
ben d ing about the major a x is of the section, the relative 
contrac t ion of the mi nor h alf a xis b becomes: 

~Q 2 n 
::: ----- l: j A, 

b 1 k a j =1 J -
(56) 

and the relative lengthening of the major axis a 

wTTL2 r:---a n '+1 
- -- - ::: 2 ..; 1 - k ,l: ( -1 ) J j AJ' a J =1 

(57) 

In bending about the minor axis of the section the 
relative shortening of the major half axis a becomes: 

~:!lL? ::: (58) 
a 

and the relative lengthening of the minor half axis b is: 

( 59 ) 
b 

----- - - - -- ---- --- -------~ 
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If the squares and p roducts of the displacement com­
p onen ts v and ware neglect e d against the first powers 
of these values , it is necessary to ~rite: 

N k 

i n the e qua t io n s ( 5 6) t 0 ( 5 9 ), 'IV h i lei f the s e s qua res an (1 
p roctucts of v and war e all ow ed for, Ng and Nk must 
be de t erm i ned from (54) a nd (55 ). The numerical values of 
wo/b, e tc . , are illustrated in figures 6 and 7 for vari-

a 
ous k . 

The 2,ctual cri t ical bending stress (Jkr r (in contrast 
t o the f ictiti ou s s tr ess (Jkr referred to the undeformed 

se ction), i s readily obt a inable . In bending about the ma­
jor axis of the scctio~, it is: 

w ' g 

Hereby the cri t ical mo ment i s , according to equation (44): 

wi th 

a n d the se ction modulus of the strained shell section (re­
fe rr ed t o the major axis) becomes : 

W r g 

Witn observance of equat ion (56), we find: 
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According l y, th e actual cri t i cal b en ding stre s s in b ending 
a bou t t h o mi n or cross-sec t i onal a x is i s established at : 

1 a 
K 

n 
.l: 
J = 1 

The valu e s of cg 1 and Ck l a r e shown plotted against k 
in f i gur e 5 . 

---- ---- ----------_. 
__ J 
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VI . APP ENDIX 

Results of P re vi ous Studies 

a) 1h~Qrelical .- Brazi e r (refer ence 2) treats the pure 
bending of a circular cylinder of infinite length , wherein 
he neg l e c ts the higher ~ow e rs of the displa~ement compo­
nents v and ' w r e lativ e to the f irst powers of these 
quant i t i es . 'He a rrive s at a d i fferential 'e quation which 
must be exactly solved . Chwalla(reference 4) does not 
mak e th i s om i ssi on in his analysis of the w~rk of form 
c h ange corresponding to the tension stress'es . His solu­
tio n is an ap~ro~i mat ion ~volved on the basis of an ellip­
tic f ormula for the shape of the strained se c t ion of the 
cir cular cylind e r . Nothing can be said about the magni­
tude of tho erro r s . Chwal la ob tains a so-m-ewhat different 
num erical ' fac tar in th~ formula for the critical bending 
moment f ro m that g i ven i n the present article - probably 
du e to the fa c t that he does not use as mathematical ex­
pression fo r the a~sumpti on of a constant ~rc l ength of 
the she ll section the differential equat ion (9), which is 
only valid fo r small v and u . He r ath~r defines corre­
lat ed pai r s of d i ameters of t~e elliptically deformed sec­
t ion, so that t he circumference of the cro ss section re­
mains co nstan t and equal to the circumference of the medi­
an surface of the undefo r med shell , rega rdl e ss of the mag­
nitude of the strai n . 

Th e p rincipal results of Br a zier and Chwalla have been 
tabulated in t a ble III . 

Braz i er li kewise app r oximated the critical bending 
mom en ts at uh ich local ins tability phenomena (bulging) are 
i mminent . Because he assumes the who l e shell to be as ad­
v e r se ly . stressed as the extreme fiber in the compression 
zone, h i s value s for the theo r e tical critica l moment are 
too low . For th is reason, and in consequence of the grea t 
influence of preliminary wrinkling through -which the mo ­
ment,at whi ch a perceptible wr i nkling actually starts is, 
und er c e rtain ci rcumstanc es, markedly reduced , the practi­
cal value of this analysis is le ss grea t . Bes ides, he 
uses a formul a f or the cri ti cal stress of an axially com-

pre ssed cylinde r containing the fact or k-=~l (Southwellts 
k + 1 

method), wh ich is now omitted after the works of H. Lorenz 
and K. v . Sanden (r efe r en c e 9). Without this factor, the 
v a l ue s f or the critical bon d ing moment become slight ly 
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greater . But th e not eworthy fn ct is, that this calculation 
of tho cri t ica l bending moment re sul ts in a formula of the 
s a me co nstru c t ion a s Braz i er f s other consideration. 

b) ~~~Q~i~g~ial_QQiQ . - The avnilable results of tests 
on circul~r cylinders in b e~ ding a r c plotted against rls 
and llr (1 c l ength of cylind e r) in figures 17 to 19 
(references 2 ,5,6, and 7). 

TA~LE III . Theoretical Results by Brazier 

-------------------------1----------~----------Acc ording to 
Brazier 

-------------------------- ---------------------
1. Critical bending moment l Bk r =0 . 987 -J-~--- r s2 

I_v 2 

2. P e r t inen t curva ture of 
sh e 11 2_A i s (v = O. 3 ) K=0.494 

3. Pertinent relat ive 
shortening of diam e­
ter pe r pendicular to 
the neutr al axis ~Q = 0 . 22 2 

r 

4. Pertinent re lative 
length ening of diam-

eter coinciding with _w_TIL_2 = 0 .222 
th e n eut ral axis -

5. Fictitious critical 
b endi ng st r es s 
(1)= 0 . 3) 

r 

0.329 E .,g 
r 

6. Real critical bending s 
stress (v= 0 .3 ) 100kr l = 0 . 385 E r 

-------------------------~----------------------

Tran slation by J. Vani e r, 
Nat ional Advi so ry Com mi ttee 
for Aeron2_utics . 

and Chwalla 

According to 
Chwalla 

K=0.806 

_w_o = 0.365 
r 

~Tlil. = 0.307 
r 

O"kr = 0.379 E B r 

s 
O"kr' = 0.523 E r 

l 

J 
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Figure 8.- Loading apparatus. 

Figure 9.- Cylinder 1 after failing 
in bending about tne major 

axis of the section. 

Figure 10.- Cy1i~der 2 after failing 
in bending about t he major 

axis of the section. 

Figure 11.- Cylinder 2 after failing 
in bendinG about the minor 

axis of the section. 

~ · :P · (") 

:P · 
r-'3 
CD 
(') 

5' .... 
(') 

~ 
I-' 

~ 
CD 

~ 
'i g 
~ 
z 
o · 
(Xl 
CN 
~ 

"!l .... 
III'l 
(Il 

(Xl 

Il) 

I-' 
o 
I-' 
I-' 



N •. 4-.C.A. Technica.l Memorandum No. 834 

-10 
I-
---- ---'- - k

2' 09 
-

---t~ 

~---~ 
- Cg 

5 
ct,---

~--- -----. -_k2,O,K 
3 --- -----c --4"'" ------ -- -J...~ ............ _ I 

2 

~--~---< 
~_k...:J!,5.-

112' 03 
- ---< 1-- - ' --< 

- I 
I-

1/. 0,3 >--. 1 

2 

1 

~ /{2,0, 5 

~ >-- k2
• 0, 65 ~ 

r-. il2, 0, 8 

=--

0, 5 

0,3 

11<'0,9 

0,2 
1 2 3 

c9 ----­
C~---­

Fi~~re 16.- Cg ,Ck versus n for 
different ~. 

-

-..;.;;::::::: 

n 5 

6 

0. 5 

0 

--- ~ 

6 0. 

C 

0,5 

11,3 

11,2 

0.1 

0 

0 

200 

0 

0 

0 

0 640 

Fig~. 15,17,18,19 

o Lundquist 

0 

0 
0 : 0 

100 JOOO {ZOO JUO L JIO 
s 

Figurr:: 18.- c vers'~s rls for 
1,/r= 1.0 accord ing 

t o t~sts with isotropic circular 
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Figu~e 17.- c versus rls .accord­
ing to tests with 
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