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THE STABILITY OF ORTHOTROPIC ELLIPTIC CYLINDERS
IN PURE BENDING*

By 0. S. Heck

The theoretical critical bending stress of elliptic
cylindrical shells is determined on the assumption of in-
finite shell length and absence of local instability phe-
nomena. The results of tests on isotropic elliptic eylin-
drical shells stressed in bending are compared with the
theoretical results. The practieal applicability of the
theory is discussed.

I, INTRODUCTION

The preliminary calculation of the load capacity of a
thin-walled cylindrical shell under bending stress is of
importance in airplane statics in the analysis of shell
bodies. Hereby it does not merely pertain to isotropic
circular cylindrical shells which, in the literature up to
now, are almost exclusively used in bending tests, but also,
above all, to the bending of orthotropic (orthogonally ani-
sotropic** and stiffened cylindrical shells., The study of
shells with other than circular sections (elliptic, for ex-
ample) is of particular practical importance.

General application of Navier'!s simple bending theory
to thin-walled beams is no longer permissible, according
to Prandtl, because of the occasionally cnormous strain of
the scetion under load. On the strength of this, and
prompted by experiments on elastic balancc tubes, von
Karmdn investigated the bending of curved thin-walled
pives (reference 1). But his findings are inapplicable to
straight pipes. Besides, von Xdrmédn failed to mention the
important fact that the bending moment has a maximum (crit-

"
*"Jber die Stabilitat orthotroper elliptischer Zylinder-
schalen bei reiner Biegung." Luftfahrtforschung, vol.
14, no. 3, March 20, 1937, pp., 137-147.
**The concept of orthogonally anisotropic plate was proba-
bly first given by M., T. Huber (ef. Bauing., vol. 4,
1923, pe 354,
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ical) value conditioned by the flattening of the cross
sectione.

The first study on the pure bending of infinitely
long isotropic circular cylindrical shells, was made by
Brazier (reference 2). He shows that the bending moment
does not increase linearly with the curvature of the shell
axls and that it assumes a maximum (critical) value for a
certain curvature of the shell axis; for greater curvature
the system ceanses to be stable.

This type of instability (similar instability pre-
valls under compression and bending of a bar) is essen-
tially different from that encountered in the usual sta-
bility problems, such as in the buckling of a straight
bar, for example.

Figure 1 shows the behavior of a straight compres-
sion member, The load P runs linear to the approach f
of the bar ends as far as the branching-off point (buck-
ling load). From that point on, there are two possible
conditions of equilibrium: the bar may remain straight -
that is, in unstable equilibrium, or deflect sideways un-
der stable egquilibrium, In both cases the load P ine-
creases beyond the dbuckling load,

Brazier's discussion of bending of a cylindrical shell
is illustrated in figure 2. The curve which gives the
bending moment B relative to the curvature K of the
shell axis, has no branching~off point. The bending moment
cannot be increased beyond the critical value Bxr. After
the critical condition is exceeded there remains only one
possible equilibrium condition of the shell, and that is:
unstable., :

Figure 3 finally shows the behavior of a cylindrical
shell in bending when accompanied by local buckles which-
belong to the instability phenomena of the usual type.

The maximum load supported by the shell is more or less
reduced by the buckles; hence Brazier's value obtained by
disregarding a local buckling, constitutes a theoretical
upper limit of the maximum load in an infinitely long
shell,

IT. FORMULATION OF PROBLEMS AND ASSUMPTIONS

In the present report the behavior of orthotropic
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cylindrical shells of elliptic section in pure bending is
theoretically investigated. Critical bending moment,

critical bending stress, and deformation of shell section
are determined. The principal assumptions are as follows:

le The cylindrical shell is of infinite length.

2. There are no local instability phenomena {260,
no wrinkling).

3. The stresses remain below the proportional 1limit
of the material.

The value of our findings for practical application,
if premises 1 and 2 are not met, is discussed in the next
section, Whether assumption 3 is fulfilled can always be
verified. '

The local instability of long shells can be investi-
gated when allowance for the strain condition - i.e., the
change in curvature radius of the shell section and of the
distances from the zero line - is made in accordance with
the considerations of the present report. An approximate
study of local instability has beéen made by Brazier for
the casc of igotropic circular eylindrical shell, But the
local instability is so seriously affccted by inevitable
preliminary wrinkling that theoretical studies which do
not allow for these preliminary wrinkles, are of limited
practical importance only.

III. RESULTS AND SCOPE OF VALIDITY

The critical bending moment By, of an orthotropic

cylindrical shell of elliptic section stressed in bending
in the major or minor axis of the section is on the assump~
tiong citcd in the preceding scction:

By = W Oky : (1)

e (2)
,\/l—v P Sm

with

1

Hereby
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E is the modulus of elasticity of the material

1 Poissont!s ratio (about 0.3 for steel and duralumin)
s, wall thickness of shell

Sp.. Mmean wall thickness, which governs the stiffness of

the shell to axial stresses (in the case of the shell
with closely spaced stringers, which approximately

resembles an orthotropic shell, it is: sp = s +
%, where F = total section of stringers, and u =

circumference of section of mean shell surface)*
a,b, major and minor half axis of the shell section

B radius of curvature of undeformed shell section at
the point of stress peak (pg = a®/b wunder bending

on the major sectional axis Py & ba/a by bending on
the minor sectional axis)

w, section modulus of undeformed cross section of the
elliptic cylinder

(We =7 b (b + 3a) sy
referred to major scctional axis

W = % a (a + 3b) s,
referred to minor sectional axis)

Okrs Critical bending stress (o, 1is simply a fictitious

stress, because W refers to the undeformed cross
section of the shell)

e, a numerical value which depends on axes ratio a/b
; 2 a2 - b2
of the shell section or the value k = = and

may be obtained from figure 4.

The subscripts g and k indicate, respectively, the
bending about the major and minor cross-sectional axes.

*¥*Uniform stringer distribution being assumed,
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For a shell having unlike moduli of elasticity in lon-
gitudinal and circumferential directions, the critical
bending stress is:

/ E1Ea2 s
kr 1 s

where E, = modulus of elasticity in circumferential, and
E, in longitudinal, direction of the shell.

The "real" critical bending stress orr' (in contra-
distinction to the "fictitious" critical stress oyp) must

not - if the findings of this study are to retain their
validity = exceed the proportional limit of the material.
To decide whether this condition is fulfilled, compute
oxr' according to (2) or (3) whereby cg' and cx' ob-

tainable from figure 5, replace Co and Cyp.

The extent of the cross—sectional strain may be seen
from figures 6 and 7, where the relative 1length changes
in the axes of the shell section, on reaching the critical
condition, are plotted.*

In the calculation of the quantities plotted in fig-
ures 4 to 7, the squares and products of the displacement
components of the shell element in their cross-=sectional
plane were disregarded relative to the first powers of
these values, as in Brazier'!s study. To gain an idea of
the effect of this omission, we made a more accurate cal=
culation for k2 = 0 and k2 = 0.3, the results of which
are also included in figures 4 to 7. But cven these val=-
ues are not absolutely correct, since there are still
other influences which are not considered in the calcula-
tione. 1In the calculation of the curvature change of the
shell scction, for example, the displacement components
of the shell elements in the cross—sectional plane are
considered as small; i.e., higher powers of these values
are neglected relative to the first powers. Further, it
was assumed that the strain in the shell section consists
solely in a deflection, but not in a length change of the
line elements of the shell section. The more exact calcu-
lation gives greater values for Oyp, S0 that the appli=~

*w is the shifting of a cross-sectional point at right
angles to the circumference (positive inward). The expla-
nation for w, and wr/2 will be found in figures 12

and 13,

(0]
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cation of the results of the simple calculatlon leaves
onc on the safe side. Experimental verification of the
thcory scems, in the face of these facts, absolutely nec-
essary.

In the following, the extent of the practical applica=
tion of equations (1) to (3) to cases where assumptions
(1) and (2) are fulfilled, is discussed.

a) Isotropic shells.- In isotropic shells, even if
of great length, the beginning of the instability through
collapse of the shell walls toward the neutral axis, is
initiated by a local wrinkling on the compression half of
the cylinder, as a result of which the failing load of the
shell is reduced. Numerous experiments on isotropic cire
cular, cylindrical shells (cf. figs. 17 to 19) have shown
that the average maximum bending moment supported by the
shells is not very much different from the theoretical
value for the infinitely long shell without consideration
to local instability phenomena.

The average value of ¢ of 77 tests is Caverage =

0.357. But the scatter of the experimental values is in
part quite considerable. From the available test data
there is no indication of any effect of shell length (fig.
19).

For the purpose of checking the applicability of the
theoretical values arrived at with the assumptions out-
lined in section II, for elliptic cylindrical shells of
finite length, we made several experiments with isotropic
elliptic cylindrical shells of varying axes ratios. The
tests disclose through the theoretical values computed
with the coefficients cg and cx a good agreement for

bending about the major cross-sectional axis, but markedly
lower experimental values for bending about the minor
cross—-sectional axis. (Of. section IV and fig. 4.)

In the latter case, it means that local wrinkling of
the shell wall results in a material reduction of failing
load of the shell, contrary to the experiences with circu~
lar cylindrical and elliptic cylindrical shells in bend-
ing about the major cross—sectional axis. A certain ex=~
planation for this fact may be found when assuming that
the failure then occurs in the event that the axial stress
o 1in the shell reaches at some point of the cross section
the critical value gy of equation (2). This most un-
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favorebly stressed point follows from the condition that
the product of curvature radius of shell section and the
distance from the neutral zone must become a maximum.
When disregarding the strain of the shell section this
point is given by

il 2
t = in — Q%25
arc sin s AL )

Then the critical bending moment can be computed from the
formulas (1), (2), and (3), is at k% > 0.25 instead of
i the coefficient :
' - B/
2, = -8 1 (1 =« EYTRNE
k
2 /3

et bstituted. At E° s 0.,25 the extreme fiber on the

compression half of the shell is most adversely stressed.
Figure 4 shows ¢, plotted against k~. The agreement

with t he experimental values is comparatively good.

b) Orthotropic shells.- While the local bulging of
the walls of a shell with lengthwise closely spaced stiff=-
eners, which approximately resembles an orthotropic shell,
is derendent on the bending stiffness of these stiffeners,
the failure due to collapse of the shell walls is depend-
ent on its cross section. There is no local bulging of
shell walls before failure in very long elliptic shells
with closely spaced stringers for sufficiently high bend-
ing stiffness and small cross section. In that case the
results of the present report are exactly valid.

As concerns the applicability of the theoretical for-
mula and the effect of shell length in orthotropic ellip-
tic shells (plywood shells, for instance), no experiments
are available. TFor computing the failing moment of short
stiffened shells with strong fairly closely spaced frames,
the results of this study are inapplicable as the re-
strained flattening of the shell section increases the
failing load of such shells as a rule very considerably
compared to the failing load of very long shells without
frames.* If the strain of the section of such a shell 1is

*The theoretical formula (2) is also useful for calculat-
ing thc closed part of a shell body with comparatively
closely svaced intermediate bulkheads, since it indicates
the eritical bending stresses for the collapse of the shell
walls in buckling form; that is, a lower limit in shells of
(Continued 2t bottom of page 8)
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negligibly small, then the study of the local stability of
the assumedly orthotropic shell is comparatively simple as
against the general case, because the bending moment up to
gtability limit runs lincar with the curvature of the shell
axise As regards the bulging of the walls of orthotropic
shells, a better agreement between theory and test seems
indicated than with isotropic shells, since the inevitable
preliminary bulges are smaller in comparison with the mean
wall thickness.

IV, EXPERIMENTS WITH ISOTROPIC ELLIPTIC CYLINDERS

A series of failing tests in pure bending about the
major and minor cross—sectional axes was carried out on
isotropic elliptic cylindrical shells of duralumin of two
different axes' ratios. The dimensions of the test speci=-
meng are gilven in table I. (1 1is the free length of the
cylindrical shell,) The modulus of elasticity of the ma-
terial was established at E = 7.5 x 10° kgem™2, The
evaluation of the tests was made with with v = 0.3
Poisson?!s ratio. The experimental arrangement itself is
illustrated in figure 8. The wooden frames at the ends of
the test cylinder serve to press the sheet against them
through exactly fitting wooden jigs. One enl frame is
clamped to a s0lid frame while & pure bending moment is
applied at the other frame. The weight of this frame is
compensated. Two failing tests could be made on each
specimen. After the firgt test the cylinder was turned
through 180° on its axis, which left the still undamaged
part of the specimen on the compression half of the cylin=-
der for the second test.

TABLE I. Dimensiong of Tecst Specimens

b a b 1 s
Specimen :
cm cnm cm cm
15 2265 15 78 0.050
ol e 30 15 188 4 w08 s csvy

*(Continued from footnote, vage 7)

of finite length, which are bounded by fixed ribs. Logic~
ally, the thickness of a smooth sheet must thereby be writ-
ten for s in (2), whose bending stiffness equals the mean
bending stiffness of the stiffened shell in circumferential
direction under consideration of the frames. One obtains
in this manner a control point for the rib dimensions.
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The results of the failing tests are given in table
I1, Tor comparison with the theoretical values (admitted=-
ly derived for infinitely long cylindrical shell and dis-
regardcd local instability phenomena), we have included
the experimental values of Ceo snd ©; In figure 4, &

discussion of the test data is given in the preceding
section.

TABLE II., Test Data

Bending about major Bending about minor
cross-sectionagl axis cross-sectional axis
Speec=| p L B o, e P, | W B o c
imen € = Ekr Skr g ik kkr T Epr e
cm cm® | cmkg |kgem—2| = cm|em3® |emkg |kgem~2| -
1 334751 48.,5!119600 405 | .347] 101596142500 | 718 ,181
' 21200 A 37 || 3O . 147300 794 202
2 60 163.1117350] 275 |.411|7.5|90.1|53700| 595 |.111
16800 268 | .401 52200£ 580 2108

V. THEORETICAL ANALYSIS

le Formulation of Problem as Variation Problem

To analyze the behavior of a circular or elliptic cyl-
indrical shell in pure bending. we resort to the principle
of mininmum potential energy. The assumption of infinite
shell longth neutralizes eventual edge effects. Conforma-
ble to another assumption, there is to be no local bulging
of shell walls. Then all sections of the shell are strained
in the same fashion for reasons of symmetry, so that the
anslysis can be restricted to a piece of shell of length 1.

For a given curvature Kk of the shell axis, the form
which the shell section assumes must be so defined that by
fixed k the energy of form change U becomes a minimum.
So if thc strain of the shell section and consequently,
the energy of form change U 1is known in relation to cur-
vature K, ~the bending moment B follows as derivative
il U with respecht to K
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The form change energy U comprises:

1) The form change energy U;, corresponding to the
strain of the shell section.

2) The form change energy U, , corresponding to the
length changes of the shell fibers.

The strain of the shell section is assumed to consist
only in a deflection bdbut not in a length change of the line-
ear elements of the section of the middle of the shell.

It is assumed that both strains corresponding to the energy
of form changes U; and Uy take place successively, for
example =~ first the strain of the shell section and then
the elongations or contractions in shell-length direction.
The additional strain of the shell section following the
initiation of the axial stresses as a result of transverse
contraction, is small enough to be negligible.

860 s then':

B g
U = = o 4
T Gl (s P (4)
g = % g B® J (5)
with
J,o= ¢ (8 ky)? du (6)
J, = § b° du (7)

whereby the integrals extend over the whole circumference
of" ‘the’ shell 'section,. "1t el

kK, curvature of the shell axis

- AKy,» change in curvature of the section of the median

shell ares
u, arc length of the section of the median shell area

h, distance of an element of the strained shell from
the ncutral axils

Assume the strain of the shell section to be defined
by the natural coordinates v and w of the displacement
of the shell elements in the scctional plane: v, to denote
the component of displacement in tangential direction (pos=
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itive in the sense of increasing u) and w, the component
in normal direction (the inside normal to be positive) of
the undeformed section. The curvature change A K, of

the shell section, which may be any, so long as it has no
corners, can be expressed with Frenet's formulas through
the displacement components v, w, and their derivatives.
We have:
w 1
A Ky = -3 + w'" - v g‘é‘ (8)
P P

Here p is the radius of curvature of the shell section
(positive if the center of curvature lies on the inside
normal), p! the first derivative of p with respect to
arc length wu, and w" the second derivative of w with
respect to u. If, as according to our premise, the length
of the linear elements of the section is constant, then
there exists between v and w, the relation:

w=gp vt (9)
With due regard to (9), equation (8) becomes:
i

!
& g = p v o+ 29' v" o+ <p" ot E) w1 = % gE (10)

It will be observed that in (8) to (10) the higher
powers of v and w and their derivatives are disregard-
ed relative to the first powers of these quantities, as a
result of which the validity of these formulas is confined ‘
to relatively small v and w.

The problem now is to so define v and w that for
given curvature Kk of the shell axis the energy of form
change U assumes a minimum value; i.e., to solve the
varigtion problem:

U= U, + Ug = ¥i8 {i1)
2e The Orthotropic Circular Cylinder Under Pure Bending

We first analyze the pure bending of the infinitely
long orthotropic circular cylinder on the premises of
section II, and sclve the previously derived variation
problem for this particular case. The curvature change
AKky of the shell section becomes:

Aky =1 v+ XD (12)
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according to equation (10), with r equal to radius of
median shell area. The distance h of one element of the
strained shell from the neutral axis is:

h=rcoste=-vaeint-wecost (13)

whereby w 1is to be replaced according to (9); the sig-
nificance of t 1is seen from figure 12. The variation
problem (11), for which the solution could equally well be
arrived by integration of the correlated Eulerian differ-
ential equation, is solved directly by the formula (Ritz's
method)s

V.= 2

oI B

j Aj sin 2 j ¢ (14)
Jj=1

No terms other than those given can appear in the formules
for v for reasons of symmetry. With (14) and allowance

for (12), (13), and (9), equations (6) and (7) give:

n

4 .2 .2 3 2
B =% 5 PVRE - 1) & (15)
Jo =7 r3 (1 = 3 Ay) (16)

In the determination of J, the squares and prod-
uets of v and w are neglected relative to the first
powers of these values. The conditions for minimum energy
of form change U are the n equations:

oU
—_——— = 0 = l, s e, n
T §d )
J
or
2, | 12N2%, (i
aAj T aAj
with :
2 .4 2
8. K° r* (1 - v®)
N = -1 (18)
R
With (15) equation (17) becomes:
8T .p Ao 2 B 12 N 3Jy
S5 (AgRieed )i wlly == A ?;Aj
From these equations, the quantities Aj can be computed:

b =%, d3=0 (J=2, cae, n)
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Hereby n may be of arbitrary size; that is,

v = g r ¢in. a2t

is the exact solution of the variation problem (31} The
bending moment B Dbecomes:

el 29U w = 3 < 3 >
o= e = ] = = N 19
B & Sy K JB ™ E s m K i) ( )

The bending moment reaches its maximum value By, if
equation

4B _ 9B , 9B 4N _ 20
3K oN dk v {842
is fulfilled. ©Equation (20) gives: N = %.
By observing (18), we have:

By = 0 —emin r 848 &, (21)

¢ = X2 T - oyo8%
Putting Bry = W Oy
whereby ¥V = naT® S

Weasfinds?

¢ = -2---*9’—2 = DySieé

but 0p,. is only a fictitious stress since W 1s the sec—

tion modulus of the ungtrained circular section.

Allowing for the squares and products of v and W,
disregarded in equation (16), we have:
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J, =mr3 (1 - 84,)+ ¢ (v eint+ wecos t)° ds
=T rs (1 o BAI + % Ala + % 'A‘l b.A.a
+ 1? Agg + 45 Ao _A_3 ek -‘Z)Z Asa # uoo> (23)
2 2 2
Then the equations (17) read, for n = 3, for example:
8 5 3 )
S 2 2 = =
fiy, <2 a5 Aa> N 2 ¥
300 As + (2 4y + 17 45 + £ A3> N=0 ¢ (24)
4 2 4
/
3675 Ag + k%? de + %; A3> N=0 |

from which A1 to Az (up to 4, in general) can be ob-
tainede The bending moment

=430 - 98U -5 5 &k g, (25)

dk oK

reaches 2 maximum value if
dB 3B an B 3B d4j
P PO N s (26)
aK oK dr" j=a aAJ- i)

This equation gives N and, by observing (18), (23),
and (25), the critical bending moment. It again yields
the equations (21) and (22) for By, and Oy, bdut with

different coefficients €6 and e. A LT

which values are, as stated before, still not completely
correct.

On reaching the eritical condition (fig. 12) the rel-

ative shortening in diameter of the shell section perpen=
dicular to the neutral axis is:

o5 aplmte (27)
B 9

if the squares and products of v and w are neglected
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in (7?)s The relative lengthening of the diameter coinci~
dent with the neutral axis is of the same magnitude. If
the squares and products of v and w 1in J3 are con=-

sidered, then the relative shortening of the diameter per-
pendicular to the neutral axis amounts to

w n
=== 2 sl Il (28)

and the relative lengthening of the diameter coincident
with the neutral axis

W a i
L T T (29)

14 J=1
Here the values Aj should be detecrmined from (17) and X
from (26). The values wo/r and - .ﬂ/e/r together with

the correlated valucs of shells with elliptic section arc
shown in figurecs 6 annd 7.

The actual critical beonding stress Ukr' (in contrast
to the fictitious bonding stress Gkr) becomes:

By

Gkr' = ﬁ-g
Thereby the critical bending moment is, according to (19):
Bkr = B 8 K J,

and the scection modulus of the deformed shell section (re-
ferred to tho neutral axis):

Ja Snq
W' = ——nl
r = w,
Observancc of (18) gives:
. ’ E S S
Ogr = ¢ /——= 3 [ s.
] = " B ik

f the squares and products of v and w in equation
(7) arc neglected, it affords with equation (27):

e! = (1 = NI
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Allowance for the squares and products of v and w, and
observance of (28) gives:

n
et = (1 =2, 5 4j) /N

The values computed for ¢! are plotted in figure 5.

3« Pure Bending of the Orthotropic Elliptic Cylinder

In the following we solve the variation problem (11)
for a cylindrical shell of elliptic section. The study is
confined to the symmetrical cases of bending about the ma-
jor or minor axis of the shell section. A rectangular sys~
tem of coordinates in the plane of the shell section makes
the x=axis coincident with the major, and the y-axis coin-
cident with the minor, cross-sectional axis (fig. 13).

Then the equation of the section of the median shell area =
expressed in parameters~ reads:

i}

X a sin ¢

b cos ¢

1l

Jy

where a 1is the major, and b the minor, half axis of
the cross—sectional ellipse. Conformable to (6) and (10),
we have:

2
1 1
I, K SRR
whereby
2 _ w2
fw =8 (L = & pla il G ile, 8 = ey Lk
p =3 (1 kT gin b)) a, p! = 5 3 k® sin 2t
0o~ a 2 b ol e “l/8 3
p! = 3 & k7 cos 2% (L & &* sin® t) £

Tif hg is the distance of a shell element from the

neutral axis in bending about the major cross—sectional
axis, and hy, the corresponding distance in bending about

the minor axis, we have (cf. fig. 13):

hg = b cos t = wcos @ = ¥ sin o (31)

a sin t - w sin @ + v cos Q@ (32)

o3
N
It
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Here ¢ is the angle of the normal with the minor axis
of the ellipse. It is: '

sin @ = 2 gin t (1 = k% gin® t)“l/a
cos ® = cos t (1 - k% sin® t) e

According to equation (7) the observance of {(31) and
- (32) in bending about the major cross-sectional axis (de=
noted hereafter by subscript g) gives:

Ja =4 (b® cos® t=2b w cos t cos ® =2b v cos t sin @)du
. (83)

and by bending about the minor cross~sectional axis
(subscript k):

Jo =¢ (a® sin® t-2a w sin t sin@+22 v sin t cos @)du
¢ (34)

The squares and products of v and w are neglected
against the first powers of these values; p v' can be
substituted for w according to (9).

The variation problem (11) can be solved by the Ritz
method. The function v can be approximated by

n
v=a.Z Aj sin 2j ¢t (35)
J=1

For reasons of symmetry, no terms other than those
given can occur in the formula for v. With formula (35),
equation (30) becomes, after several intermediate compu~-
tations:

4 3 n
7 Y Gagaints (2, 4 kj) at (36)
8 (l s I ) . J=1
o
with
Ky = {25 cos 25 t [=25%+(o+B sin® t+Y sin? t)

]
2 t)

(1=k? s1n® £) °] + ¢ sin 2% sin 2§ t(1~k" sin
[452 + b (1-k® gin® t)_a]} (1-k® sin? %)*/*

where for abbreviation:
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1= 868 = a, 4K =B, =2k* =¥

The term for Jy given in (36) is valid in bending
about the major, as about the minor, axis of the shell
section, The evaluation of the integral in (36) by series
development being very tedious, the numerical integration
is carried out by the Gauss-Lobatto method (reference 8)e
The integral is approximately replaced by a sum of =n
terms. The summands are the values multiplied by certain
weights g of the to-be integrated function at the inter-
val stops and at m - 2 prescribed points of the interval.
The thus~obtained approximatisn is of the order of 2m - 13
iscey a parabola of the 2m - 1 degree is exactly inte~-
grated by this method. Then equation (36) becomes:

m n 2 )
P—. T S VN 57
1 T e (1 - k) ph B \ym 9 Tp :

The integrals Jag and Jak’ conformable to equations

(33) and (34) can be exactly defined, isee:

I P k2
Jag = 2n a° [(l-k R SR Ay - Ty Ag] (38)
2 2
Ja, = 2m &3 [s + L2 EE 4, 4 = Ag] (39)
with W/E
. & a , 8 \/8 a2 & ;;)2 2
R = //\ (1-k° sin® t) gopg® t 4t = 52\ k
<
° ....1.@;.&“"15_-; 1.3.5% k8 . .
6 \aves 3 8 \2+4:6/ 5
ﬂ/B 3
-2 f B ad® 5 el 1.5 (1) ¢
S = p J/ (1=k" sin” t) gin® t 4t = Rl i k
2
: | _§<;;§ kY w ;;&éfgf_,,,
& Xav4as B 8 \2+4-6/ 5

With (35) the energy of form change U ©becomes a
function of the =n variables Aj (d = 1, oome, n), and

so variation problem (11) reduces to a common "extremunm"
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problem, The accuracy of the method can be raised at will
by increasing n. But, in general, it affords no possibil-
ity to assess the crrors. The values Aj, for which U
becomes a minimum by constant &k, follow from the =n 1lin-
ear equations:

oU 3
. == O = 1, eiarere
o4 j; (3 )
or
o 12 N 3d2
e = e S (40)
aAJ' as aAj
with
& i 2
S KaEE 1w =)
N = _m ( (41)
3
s
From equation (37) follows:
o4g; 4 - ;i
= .Z As Z K: K
Biks « 8 (L e ®) 2= 15 & (5 l)p

Then thec equations (40) with observance of (38) and
(39) become, in bending about the major cross—-sectional
gl 8

n m i ¥
iél = DEI &p (X, Ki)p =3 (L=-k) (3=-k7)N

n n . i :
i§1 = pél €p (Ka Ki)p = Bk* (1 = k°) N r (42)
n m

iél At nél gp (K3 Ki)p = 0 (j = 3, ...,n)J

and in bending about the minor cross—sectional axis:

B g 1« B ) (582 ) B 3
% Aj K, Ki = =3 (l=k -
e, 2 o €p (K, 1)p (
B sdin . B % " 2 - k2 4 43
Z, A p§1 gy (Ko Ky)p = =8k° (L= k ) N (43)
n m
- ) < i = s = ¥ \
A 2 ep (K5 Ki)p = © {J ; o))

1 D=1

Having defined the values Aj; from (42) and (43), the bend-~
ing moment B follows from
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B:gLI:aH:EsmKJa (4:4:)

with J; as given in (38) and (39). The bending moment
B reaches its highest (erivical) value By,, if

B ad
4b _ SR U .ri A = 2) = (45)
dK oK dK \oA, 4X 0Ap dN
From these equations follow:
" g (1 &%) 3
11 IR
g r A A
2 1 2 A
3(3-k)ﬁ +kN]
N ol
xkz =
A Ag
3| (3 - 2k®) =% + x® Az ]
L N ¥ J
whereby in the expression for Ng the values A; and A4p

are to be taken from (42) and in the term for Ny from
(43).

By observing (38), (39), and (41), equation (44) gives:

Bpw = € :7:7——~— a 8 s 8p (46)

with
2
4 6 (1L -k )R
G, = ~m (1 -k%) R ( o ) =
i & 2 1 2 &2
(5~k)—ﬁ-+kN
4 // ~ 6S
C;,*—*—-ws/ A
' g 2 1 2
3 - 2 + PkE ==
v ol &) n N
Defining a fictitious critical bending stress Oy,
with
By = W Opy
wvheredby

We =3 b (b+ 3a) sy, W=y a(at 3d) sy

g 9

|
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are the section moduli of the shell section with respect
to the major and minor crogs-=sectional axes, we find:

E s s

Oky = € —m—t———— = [ (47)
kr B S
with

16 R 6 (3 #uk”}.B
"o ) e T A
50 gl - (3 = &2 %; e %;

2

16 (1L -k ) S : - 65
Cle = o =

91—!-3~/1-—k2 (3_21{2).'%_1..{.1{2%\_]_%

Figures 14 to 16 show the values Cp, and Oy and

éL plotted against k2 and ne. & proof of the converg-—
k

ence of the method is withheld in the present report.
Even so, the diagrams manifest the good convergence for
small ka, while for higher ka, it is less good. But

even in this range the curves toward which the values Cg

and g; strive, can be plotted with sufficient accuracy.
k

2
Figure 4 shows the values and ¢ plotted against k .

S

Observance of the gsquares of products of v and w,
disregarded in (33) and (34), reveals the right-hand sides
of equations (38) and (39) augmented by the terms:

2T
3
$ (w cos ©® + v sin m)a du = Iéigtj/} §1 Aj LJ> at (48)
and
5 Y
= n
g (w sin ® -~ v cos ®) du = a3 < T A M-> at (49)
" e
Eereby

a
Ly = 2J (l=k2 gin® t)s/ cos t cos 2j t

~1/4 el dup
+ (1=k®) (1-k® sin® 83 sin t sin 25 t
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3/4
My = 25 (1~k° sin® t) sin t cos 23

=1 /4
- (1-k® sin? %) cos t sin 2j t

Evaluating the integrals in (48) and (49), conforma-
ble to Gauss-Lobatto, the equations (38) and (39) are re-
placed by

r & T ® 2
Jg, = 2m a® L(1~ka) R - ﬁ_E_E_ Ay -~ %; As
1 2
PR T AL > 50
l-kgplgp< J jp J (50)
a7 = 2 3 (s 3 2228 a3 KD
By = RS 2 ¥
m
ok
+ p§1 &p ( 2 As M > ] (51)

In bending about the major cross—sectional axis, the
equations defining Aj are:

m

n

3(1=k®) (3-k®) N

It}

m
N 3
+ 12 XN 2 Ay :21 & (LlLl)p

l—l

n m
12, 44 p§1 gy (K2 Xi)y 4
i N ) : > (BB
+ 12 X iél As pgl &p (LaLi)p =3k" (l=k") N
n m
10, M g8, B (8 Mg
n m
+ 12 N iél A5 Pél &p (LjLi)p = 0 (j:S,...,n)J

and for bending about the minor cross—sectional axis:
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n m ~
e A Y - K s
1 i $EL &p (\1 Kl)p
12 [(leik® % 3
+ —X ; :
2 (1-k") W .2 Ay 2 gp (May)y
= = 3 (1-k®) (3=-2k®) ¥
n m
£ 31 = Kl %y
i i el 8p ( 2 1>p
2 n m
+ 12 (1-k®) N T A1 T gp (MaMi)yp (63)
i=1 p=1 = '
= = SRT (1euf) U
14 m
2 Ay I gp (Ej Ki)
1i=1 = D=1 Sp J ’p
iy (™) S 4y T (MsM1) 0
1 2 11" N i MMy =
) e 5 o 1 €p Jj*/p
(j=5, o--,n)
-/

The bending moment B follows from equation (44),
whereby J; is given in (50) and (51). The value of K
or N, for which B reaches the critical value Brpr, is
computed from the equation:

0B w4008 « 4188 ; o G4

bl P R -t
dk ~ 3%k dK J=1 3Aj aN
or
. y & 5 m n -
2 (l-k R - (3= - - Y AT >
(1=k7) R-(3-k") &y - k= A3 + = p§1 &p <j=1 Jip
dA, o dAz
- 2N -~ 2 et - =5
2x {(3 k) == + BN
8N n n m d"A'i
e . 3 giv e = ) 54)
i 121 jEl 4 p=1 G (L1 J)p aN (

for bending about the major axis and
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m n 3
o8 £ [Sepr® ¥ 1% Ba + B ( A T )
( ) Al A“ p§1 gp j=1 J JP
dA dA
2 ) a o8
+ 2N [(S-Ek ) IR + k an }
n n m dAi -

+ 8N LT j§1 Aj pgl gp (MiMj)p . (565)

for bending about the minor axis of the shell section.

The results for Bxy and oOky are again the equa=
tions (46) and (47) but with different coefficients ¢
and c¢ce¢ The thus-obtained values Cg and ¢, are in-

cluded in figure 4.

The strain in the originally elliptic section is ob=
tained from the functions v and w known after the val-
ues Aj have been determined. Assume that the relative
length changes of the half axes of the shell section upon
reaching the critical conditions are given (fig. 13 B8
bending about the major axis of the section, the relative
contraction of the minor half axis b becomes:

SR S S

had (56)
b 1 = k* Jj=1 J

and the relative lengtheuing of the major axis a
w % i+ 1
- _gég = 24 1 = §° j§1 (=1)* J Aj (57)

In bending about the minor axis of the section the
relative shortening of the major half axis a Dbecomes:

n .
Hgéé w2/l - K I (-1)3* 5 4y (58)

and the relative lengthening of the minor half axis Db is:

n
Vo -2 :
el W ! (59)
b 1 = kE J=1 J
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If the squares and products of the displacement com=
ponents v and w are neglected against the first powers
of these values, it is necessary to write:

2 {1 = &)

Ng = A 2 A
3[(5-15’") 5+ ok -ﬁ-z-:‘
w o
N, =
k A
3[(3 w on %1- + E" —N-a-]

in the equations (56) to (59), while if these squares and
products of v and w are allowed for, Ng and Nr must

be determined from (54) and (55). The numerical values of
wo/b, etce, are illustrated in figures 6 and 7 for vari-

2
eus k .

The actual critical bending stress orp! (in contrast
to the fictitiousg stress Oxyr Treferred to the undeformed

section), is readily obtainable. In bending about the ma-
dJor axls of the section, it iss

. ng£

O.gkl‘ - W{; 1

Hereby the critical moment is, according to equation (44):

with

and the scetion modulus of the strained shell section (re=
ferred to the major axis) becomes:

g+ Jeg ®m
g b - wg

With obscrvance of equation (56), we find:
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Accordingly, the actual critical bending stress in bending
about thec minor cross—~sectional axis is established at:

Oyt = Cp? —mme—me —
ey /l - Ug pk Sm

2 n
(1-k2) [1 % Bofdosin it ey

The values of cg! and cp! are
TR oune gbe

?

I

Cle

(-19* 5 ag | /A

shown plotted against k
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Vi, APPENDIX

Regults of Previous Studies

a) Theoretical.- Brazier (reference 2) treats the pure
bending of a eircular cylinder of infinite length, wherein
he neglects the higher powers of the displacement compo-
nents v and w relative to the first powers of these
quantities. ‘He arrives at a differential equation which
must be exactly solved. Chwalla(reference 4) does not
make this omission in his analysis of the work of form
change corresponding to the tension stresses. His solu=-
tion is an approximation evolved on the basis of an ellip-
tic formula for the shape of the strained section of the
circular cylinder. Nothing can be said about the magni-
tudc of the errors. OChwalla obtains a somewhat different
numerical factor in the formula for the critical bending
moment from that given in the prescnt article - probably
due to the fact that he does not use as maﬁhematical exX-
pression for the assumption of a constant arc length of
the shell section the differential equation (9), which is
only valid for small v and w. He rather defines corre=
lated pairs of diameters of the elliptically deformed sec-
tion, so that the circumference of the cross section re-
mains constant and equal to the circumference of the medi-
an surface of the undeformed shell, regardlcss of the mag-
nitude of the strain.

The principal results of Brazier and Chwalla have been
tabulated in table III,

Brazier likewise approximated the critical bending
moments at which local instability phenomena (bulging) are
imminent. Because he assumes the whole shell to be as ad-
versely stressed as the extreme fiber in the compression
zone, hig values for the theoretical critical moment are
too lows For this reason, and in consequence of the great
influence of preliminary wrinkling through-which the mo-
ment, at which a perceptible wrinkling actually starts is,
under certain circumstances, markedly reduced, the practi-
cal value of this analysis is less great. Besides, he
uses a formuls for the critical stress of an axially com=-
pressed cylinder containing the factor E—i—% (Southwellts
method), which is now omitted after the works of H. Lorenz
and K. ve Sanden (rcference 9). Without this factor, the
valves for the critical bending moment become slightly
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greater, But the noteworthy fact is, that this calculation
of the critical bending moment results in a formula of the
same construction as Brazier!s other consideration,

b) Experimental data.~ The available results of tests
on circular cylinders in bending are plotted against 1r/s
and l/r (1 = length of cylinder) in figures 17 to 19
(references 2, 5, 6, and 7).

TARLE III. Theoretical Results by Brazier and Chwalla

According to According to
Bragzier Chwalla
: 2
l. Critical bending moment| B, ,.=0,987 ———= r s
T J 1wg®
(vith v=0.3)|B,,.=1,035 E r g2 Bpp=led9 B r &°
2e Pertinent curvature of : g
shell axis (V=0,3) K=0.494 f% K:O.806';§
3. Pertinent relative
shortening of diame-
ter perpendicular to % -
the neutral axis 79 = (el 2ee 1? = Owdbo
4, Pertinent relative
lengthening of diam-
eter coinciding with | w
the necutral axis —%{2 = Qudlg —%ég = 04307
o Hictitious critical
bending stress " g
{0p=0,3) Okr = 0.329 E 2 Oy = 04379 B
6e Real critical bending s s
stress (v=0,3) Opy' = 0.385 E ¢ Oy' = 0.523 E %

Translation by J. Vanier,
National Advisory Committee
for Aeronautics,
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Figure 9.- Cylinder 1 after failing
in bending about the major
axis of the section.

Figure 10.- Cylinder 2 after failing
in bending about the major
axis of the section.

Figure 1l.- Cylinder 2 after failing
in bending about the minor
axis of the section.
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