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PREFACE

The idea of the desirability of testing curved models

for studying the ‘aerodynamics of airplanes in curvilinear

flight (for example, in a loop), I have expressed in my
lectures on the dynamics of flight a very long time ago,

as early as 1918, or even earlier, but I did not intend

to publish it,.* " And this idea d4id not materialize until
Comrade Gourjienko devoted about a year to the treatment of
this question.

The possibility of substituting for one phenomenon -
the flight of a straight model along a circular path -
another phenomenon, the flight of a curved model along a
rectilinear path, is based on the following proposition:

If two flows under the influence of bodies immersed
in them experience the same geometrical distortion of the
lines of flow, the forces acting on the bodies may he re-
garded as approximately equal.

In simple cases, the correctness of this assumption
is fully apparent. TFor example, the rectilinear motion
of a flat plate and the circular motion of a plate bent
along the circumferential arc, a2long which the motion oc-
curs (figs. 1 and 2),

The analogy holds true if in place of a thin plate,
we use a symmetrical streamlined form (the so-called
"rudder form"), as is shown in figures 3 and 4.

Passing to theoretical forms of wings, consisting of
a basic arc, bent along a circumferential arc, and enclosed
by & streamlined form, for example, the inversion of a
parabola or an ellipse, we see that the theoretical lifting
force of such wings in plane-parallel flow is algebraically
composed of two components: the first depending on the an-
gle of attack, and the second depending on the concavity
of the basic arc and proportional to it.

For the small arcs of one span, which differ according
to their concavity, the second component of the lifting
force is proportional to the curvature of the basic arc,

*Since I occupied myself with amerodynamic questions only

- in conjunction with other questions (reliability of design

[designed stability t], dynamics), and the ideas that oc-
curred to me I expressed in lectures or dlscussions, in
order that persons, working in thls particular field,
might wmake use of them.
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Causing the curved theoretical wing to move under a
zero angle of attack in three ways: (1) rectilinearly,
(2) along the circumferential arc, coinciding with the
basic arc, and (3) along the circumferential arc of the
somewhat larger radius, we find in the first case (fig.
5) a 1ifting force proportional to the curvature of the
basic arc; in the second case (fig. 4), we find a 1lifting
force egqual to zero, and in the third case, the intermedi=
ate case (fig. 6), we can expect no other lifting force :
than the one which is proportional to the difference be-
tween the curved basic arc and the circumferential arc
along which the wing moves.

On figure 6, 0 1is the center of curvature of the
basic arc; O, 1is the center around which the wing moves.

The continuous arc AB 1is a basic arc, with its cen-
ter at O

The dotted arc AB 1is the path of the points A and
B when they travel around the center 0; the straight
line (dotted line) is the path of the same points when
they travel along the straight line.

Finally, if the wing moves under an angle of attack,
we may here too extend the theorem concerning the lifting
force to the case of motion along the circumferential arc,
the angle of attack denoting the angle of turn of the wing
with respect to its position AB (figse. 5 and 6).

With the considerations cited, the basic assumption
for the method of curved models can be regarded, if not
as demonstrated, then as entirely supported by evidence,
at any rate for the cases when the radius of curvature of
the wing trajectory is comparatively large with reference
to the length of the chord of the wing.

Of course, the curvature of the path involves correc-
tions which must be regarded more appreciable when the
lifting force of the wing is directed away from the center
of rotation, and less perceptible when the lift force is
directed toward the center of the trajectory curvature.

In aviation and in aerostatics, exactly the latter case is
involved, which is more favorable for the application of
the elementary theory.

It seems to me that for plane-parallel flow we can
also give an exact hydrodynamic theory for the wing in
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circular motion, using as a basis the writings of P. A,

- Walter, on the theory of rotating turbine blades in a

converging flow.

As regards the motion of threendimensiohal bodies,
analyzed by the author (dirigibles, airplane fuselages,

‘air bombs), we must not expect here to obtain a hydrody-

namic streamline theory, since such a theory is absent
even in the simplest cases of rectilinear motion of a
stralght dirigible under an angle of attack. Our analogy
s fully applicable also to this case of motion.

And, we may expect that the experiments and rechecks,
according to the method of curved models, will outdistance
the theory.

It should be noted here that the principle of the ap-
parent curvature of the wing was applied by Glauert when
he calculated the effect of the rotation of the wing on
its 1ift. Having much less theoretical evidence, he never-
theless arrives at results that are in good agreement with
experimental results.

In substance, the Glauert method is as follows: If a
flat plate (basic arc of a symmetrical wing) moves for-
ward and rotates upon going into a dive, the geometrical
angles of attack (with relation to the flow unaltered by
the wing) will be different for the different elements of
the basie arc (fig. 7).

In order to produce such geometrical angles of attack
for the wing in translatory motion, we must bend its basile
arc as shown in figure 8.

On figure 7 the arrows ATA, D', clc, eee., kik,
B!'B show the direction of the lines of the unaltered flow
with reference to the various elements of the plate which
is moving to the left and is rotating.

Figure 8 ghows a curved arc, which the lines of the
unaltered flow approach at the same angles as in figure 7,

This same analogy cnn be established in another way,
Let the plate, which is curved along the arc of the circle,
move in still air along its direction, as in figure 2, at
a linear velocity v and at an angular velocity:

W =

Hilc
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The angle of attack of each element will be equal to
ZEro.

Now let us stop the rotation of the plate and let us
cause it to move along the tangent to the circumference.
The plate will then assume the position shown in figure 8.
But this will last one moment, and while it moves along
the circumference, when the rotation of the plate ceases:
this is analogous to the application to it of the angular
velocity w 1in, the reverse direction. But, while main-
taining the movement of the center of gravity, we cannot
obtain the conditions of figure 8 for any length of time.

However, the application of the theory of the "dynam-
ic camber" to the oscillating wing gives very good results,
as is found by tests on vibrations of wings in an air flow,
by calculation of the damping effect of the wings and by
determination of the rotary derivatives by means of the os-
cillation method,

We should expect the method of curved models to be
much more exact, from the theoretical point of view, not
to mention the simplicity of testing a fixed model in the
tunnel.

And we should be grateful to Comrade Gourjienko for

his initiative and labor in working out this method and
making it practicable,

Profegssor Ve P. Vetchinkin,
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METHOD OF CURVED MODELS AND ITS APPLICATION TO
THE STUDY OF CURVILINEAR FLIGHT OF AIRSHIPS*

By G. A. Gourjienko
INTRODUCTION

Up to the present time, the experimental study of the
aerodynamics of curvilinear flight and of the very closely
related question concerning the dynamic stability of air-
ships as well as other aircraft has been in the emdbryonic
states. The reason therefor lies in the fact that in solv-
ing each of the questions mentioned, in addition to the
usually given data on aerodynamic resistances (forces and
moments) in rectilinear flight, that can be sufficiently
determined by the generally recognized method of testing
in wind tunnels, it is also necessary to include the forces
and moments due to the presence of angular velocity. s

In order to determine these forces and moments, usu-
ally expressed by the so~called resistance rotary derlva—
tives, svecial equipment was hitherto required.

One of the most accurate (in the kinematic and dynam-
ic senge) methods was the use of whirling arms, where there
was reproduced to some extent the phenomenon of circular
flight., However, in practice this method is not very sult-
able for wide application, on account of the following
reasons: (a) the extreme difficulty in obtaining exact
measurement of the aerodynamical forces and moments acting
on the model, taking into account the inevitable influence
of the centrifugal loads; (b) the complicated alr strcam
that is crcated during the motion; (c) the rather compli-
cated and oxpensive equipment. :

Another generally recognigzed method is the small os-
cillation method. This method does not require any large
special installation, and allows experiments to be carried
on in ordinary wind tunnels - although a special, occa-
slonally rather complicated apparatus, is used.

*Report No. 182, of the Central Adero-Hydrodynamical In-
stitute, Moscow, 1934,
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We shall not dwell upon the well-known principle un-
derlying this method, but will merely point out that by
megns of extremely laborious experiments and working up
of data, 1t enables us to determine qply the rotary deriv-
atives of the moment. Besides, the accuracy of the deter-
mination of this derivative is very low, since in addition
to the large number of different - only approximately cor-—
rect - propositions, lying at the very basis of the theory
of the method, this derivative, in practice, has to be ob-
tained by measuring an extremely large number of quanti-
ties, the majority of which has no connection with aerody-
namics, ag, for example, the moment of inertia, friction
in the apparatus, rigidity of the springs in the equip-
ment, etc.

The inevitable errors in the measurement of all these
"pallast" gquantities, as well as the damping effect itself,
produce very large errors in the final result.

As we have already indicated, we can obtain with this
method only the rotary derivative of the moment. The ro-
tary derivative of the lateral (or lifting) force can be
determined from the derivative of the moment only by means
of various approximate repeated calculations (English
method).

But the rotary derivative of the drag, which is ex-
tremely important, for instance, for investigating the de=
celeration while turning, cannot be determined at all by
the ald of the method of small oscillations.

Moreover, neither of the existing methods in any way
answers the very important question concerning the distri-
bution of aerodynamical loads on the various parts of air-
craft (hull and tail surfaces of a dirigible, wings of an
airplane) while turning and during curvilinear flight.,

The practical impossibility of experimenting on the
distribution of pressure on whirling arms is due to the very
complicated arrangement of the pressure tubing on the bat-
tery gage with the revolving model, and i1s due to the com=
plicated calculation of the centrifugal forces, acting on
the columns of air in the tubdbing.

In view of the above, it was decided in the aeronauti-
cal section of the Experimental Aerodynamical Department of
the Central Aero-Hydrodynamical Institute, upon the initia-
tive of Professor X. K. Fediaevsky, to work out as complete-
ly as possible both theoretically and experimentally an en-
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&g-8i-bl-o~boththeoreti-ocally—and~exoerinental-Tye=gn
entirely new aerodynamic principle of testing curved mod-

-elg. - Several allusions to the possibility of applying

this principle were made in foreign literature dealing
wlith dirigible aerodynamics. . As far as we know, Professor
V. Pu Vetchinkin (see Preface) was the first to speak of
the possibility of applying this method. But, unfortu-
nately, up to the present, no one (either abroad or here)
has deve;oped this method. Therefore, we had to work out
this method entirely independently. The work was done in
1973-34, and was financed by NIO of the dirigibdle factory

(Scientlfic Research Division of the dirigible factory).

The basic premise of the method is as follows: In
the ordinary wind tunnel with rectilinear flow it is nec-
essary, for the model installed in it, to create a kine-
natically similar pattern of flight along a circular tra-

H 7.
jectory., This can be obtained, in the first place, by 3;¢ﬂ"5

bending the model in a special way and, secondly, by cre-
ating across the tunnel a constant velocity gradient
(since, during flight along a circle the velocity of mo-
tion of each point of the dirigible is a linear function
of the radius of its trajecctory). Thus, by testing the
curved model on the conventional aecrodynamic balance, we
obtain the forces and moments acting on the model in the
bProposed motion along a circle, This will enable us to
obtain the rotary derivatives of the moment, of the lat-
eral force and of the drag completely 1ndepondent1y, with Q

accuracy and simplicity, by means of typical, simple ex- &0

periments in the tunnel. Moreover, the simple arrangement
of the pressure tubes of the curved model will enabdble us
to study the distridbution of pressure in curvilinear
flight, :

In the first part of this paper we shall present the
theoretical side of the problem of constructlng curved mod-
el forms and the method of testing the model. In the sec-
ond »art we shall present a detailed account of the first
experiments according to the given method, carried out with
a curved model of the nonrigid airship V-2, and a compari-
son of the experimental results with some data of full-
scale flight tests made with this airship in 1933,

" The "author expresses his sincere appreciation to Pro-
fessor Ke Ko Fediaevsky for his valuable and highly compe—
tent. advicc and a351stance in the solution of various PTOb=
lems.
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PART I

1. POSSIBILITIES OF ROTATING CIRCULAR MOTION

Before we come to the theory of constructing curved
model forms, ieses., to the solution, as we shall ses, of a
purely geometrical problem, 1t is necessary to discuss the
possibility of rotating circular motion, in a manner simi-
lar to that applied in rotating rectilinear motion in ex-
perimental aerodynamics.

We must admit that from the point of view of theoret=-
ical hydrodynamics such a rotation of motion is inadmissi-
ble. While in moving along a circle the dirigible encoun-

ters a mass of absolutely calm air, when the motion rotates
(if we make the air rotate like 5 solid body )* the flow bew

comes vortical at every point in space, the intensity of
the vortex being A = 2wy, where wy is the angular ve-

locity of rotation. This can be easily verified by tak-
ing the value of the velocity circulation along any closed
contour within the indicated hypothetical flow. If we
were to consider the given assumption as an obstacle when
passing from circular flight to a stationary model in cir-
cular flow and thence also to the curved model, it would
be necessary to question also the validity of the use of
the wind tunnel altogether - in which, as 1s well known,
the flow is vortical, nonpotential, and nonrectilinear.

We may assume that the errors, due to the fact that
rotation of circular motion does not sufficiently comply
with natural law, are not larger than those which are ob-
tained by means of the usual experiments in the tunnels.

Consequently, the method of curved models, although

it is not absolutely exact is nevertheless a close approx-

imation to reality.

2, CONSTRUCTION OF THE CURVED MODEL PROFILE

As an initial principle for the construction of the
curved model profile, let us make the following indisw

*Incidentally, it should be mentioned that such motion of
a fluid is physically impossible; that is to say, such a
flow can exist for only an infinitesimal given space of
time.

1l
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putable assumption: If every. small section of the sur- 0.
face of the.curved model forms - with the direction of aP
the reetllinegr "flow in tie wind tunnel the same inter- 55 *ﬂ’
secting angle as will be formed by a corresponding sec- Oﬂ
tion of a straight mcdel with the direction of 1its linear

speed while turning along a circle, the kinematic, and

consequently, the dynamic similarity will be observed.
. ' 5‘@-
The similarity in the sense of ‘the magnitude of. ve- &Wé Wﬂ
locity of motion of the sections considered is maintained V :Jﬁ

by creating in the tunnel the constant velocity gradient G(

"referred to above. However, it does not seem possible to

solve the problem in such complete form. It is not diffie
cult to observe that by curving the model, the length of
the arec of the meridional contour inevitably becomes some-
what shorter on the windward side and somcwhat longer on
the lee side. To introduce this degree of contraction and
elongation into the solution of the problem is impossible,
because, in order to determine this degrece, it 1s necessary
to have the problem already solved.

However, the problem can be solved with a very great
degree of approximation if, instead of the surface, we ex-
amine the kinematic similarity of the motion of the axis
of the model and of an infinitely large number of cross
sections. After making all the calculations concerning
the axis and the cross sections, we shall try to find the
numerical value of that error, which results from substi-
tuting for a complete solution an approximate solution,
and which, as we shall see, also is due to the indicated
contraction and elongation of the arc of the meridional
contour,

And so, we 'shall proceed to derive the equatioans of
the curved axis and the curved cross sectionse.

Let us assume a dirigible turning along a circle with
radius R, (fig. 9). Considering that its center of vol-
ume GC moves along the circular trajectory A ~ A with 2o
velocity v,, the theory and the exporiment show that the
axis of the airship will form an angle of attack B, with
the direction of wvelocity Voo

Begides, the rudder is deviated, a&s shown on the din-
gram, at an angle &8, In addition to the baslec trajectory
A - A, the diagram also shows a series of other trajec-—
tories along which the points of the airship axis move.
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From the center of rotation O let us drop on the
axis of the model the perpendicular O0B. Then the angle
COB = B,, as an angle with the sides perpendicular to

vo,C and BC. From the triangle BOC, we obtain:

0B = Ry, cos By and BC = Elo

= R, sin B,

Now let us take on the airship axis the arbdbitrary
point D, which moves during rotation along the trajec—
tory m -~ m; that is, concentric with relation to A - A,
Let us connect point D with O and drav at D the tan-
gent to m - m. Thig tangent gives the direction of veloc-
ity v of point Ds The angle vDB will be the local
angle of attack f of the infinitely small segment of the
airship axis at point D.

From the diagram we see that B > Bg.

If aleong the axis we take point D closer to point
B than is shown on the diagram, angle B ©begins to get
smaller and becomes O at point 3B,

Degignating the variable distance BD by X,, We

find B = f(%;). From the triangle BDO, where angle
BOD = B, we obtain:

X, = Ry cos By tan B
whence x
tan B = —m————
Ry cos Bg
X1
and B = arec tan ———-— o (1)

it is clear that when =x = x, , B = B,

Now, for the circular motion; let us substitute recti-
linear motion, shown in figure 10,

Starting from the basic principle, it is necessary to
bend the axis of the model in the direction indicated on
the diagram, in such a way that the angle of attack along
the axis of the model changes according to the same law
(1) 2s in the case of curvilinear flow.
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Naturally, when the axis and the cross sections are
curved, it is necessary to preserve their lengths. This
seems.all.the more-necessary since, by preserving these
lengths, we maintain the distribution and magnitude of the.
velocity circulation along the axis and along each of the
cross sections, which is very essential for the similaritye.

Thus, %, will denote the length of the arc of the
curved gxis from 3B to D.

Now, taking on figure 10 point B as the origin of the
coordinates =x, z!,* the direction of which is indicated,
we obtain the equation of the curved axis.

The angle of inclination of the tangent to the curve
sought at point D must be equal to B, whence

tan B = %il (2)

On the other hand, it has already been shown that

X
tan B = —r

where x3 is the length of the arc, and is equal to

/‘.x 2-
dz!
= 1 + (== d 2a
x = [1+ (428} ax (2a)
A

Then the expression (2) is transformed as follows:

X
dz! - 1 ’/1 + éz.l)a dx (3)
ax Ro cos Bg | dx
Jo

The equation obtained is 2lso the equation of the
curved axis of the model, Let us solve it. For this pur-

pose. let us differcaitiatc both sides and, for the sake of

brevity, let us take i = n:

2 Y AN
. H
;i_22.1=n/1+ _@g_>
£ dx ax
*The direction 2! coincides with the direction gz, taken
as a reference. Thus, the origin of the coordinates is at

a distance of =2z'y, from the axis of the tunnel, that is
to say, 2z = z' - z'4.
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t
let us substitute the new variadle u = %ﬁ—. Then

41 - 5 A+ u?

dx

Dividing the variables, we obtain:

du

dx = ———mmee

n,/1 + u®

Let us integrate:

The integral obtalined is the "long logarithm" and is

expressed:
x = % in (u + /1 + u®) + ¢ (4)

The constant € we determine from the initial condi-
tions. When x; = O,
x =0 and tan g = 22! - uw =0
- ax

Substituting, we find that € = O.

Let us solve the equation obtained with reference to

u, for which purpose we find from (4)
a +,./1 + w8 = ¥
and
nx
»\/14‘112:8 - u

Squaring both sides, we get:

1+ u? = e¥™% L oue™® + u?
We reduce by u® and find u = f(x):
u o= 828X - 1 (5)
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Substituting u = %ﬁl, we get:

az! _ 38X _ 1

dx aenx

dividing the variables and integrating, we find:

b4 .

: ) anx .

z! = // £ Eeni_; dx (6)
o

| Performing division under the integral and dividing
the right side into two integrals, we get:

1
w x x
‘? 2! = % /[ e"* ax - % // e ¥ 4x
d S (o) - o)
Performing integration and substituting, we get:
¥ 1 nx -nx 1] ™% 4+ ¢™BX
| ? = o - + - = o ool YUY
- zZ 5z [e 1 e 1] = [ 5 1
ﬁ oRX 4 e—-nX
In analysis, the expression ———g———— y 1s called a

hyperbolical cosine and is denoted by ch nx, Thus

1
[ Taking n = —————, we find that
; Ry cos By
| x
' z! = Ry cos (ch ————— - 1) {7)
ﬁ ° Bo Re cO0s Bo

i This is also the equation of the curved model axis. Open-—
ing up the .parenthesis, we obtain:

be . - o .
z! = R, cos ch (———~————~> - R, cos
0 BO Ro cos Bo o Bo

This is no other than g "“catenary!" with the parameter
R, cos By = 0B (fig. 9) with the origin of the coordi-

” la’tm,@/e QeGSR e e

Ng" S o e Rry rpAhes 7HGrn AMyW‘

OSE S Caver S oS 6‘»,&' raWors s 4‘1/?)1 pnd ArasIAP
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nates transferred to the point of the minimum z'i Such a
form is assumed by a perfectly flexible thread, suspended
at two pointe and subjected to its own weight, which is
proportional to the length of the thread. The formula ob-
tained is very convenient for constructing the curve, since
for uyperbollcal functions there are available detailed ta-
bles, (See Hutte, vol., I; or Keiichi Hayashi, "Sieben- und
mehrstellige Tafeln der Kreig- und Hyperbelfunktionen,”
[Tables of seven or more places of circle functions and hy-
perbolical functions], Berlin, 1926.)

Generally, the ordinates of the meridional contour of
the dirigible and other data on the hull are given as func-
tions of the distance along the axis of the dirigible from
its noses Therefore, it is useful to have the expression
which enables us to find the quantity x for the construc-
tion of the curve according to formula (7), given the quan-
tity =xi1, that can be measured off along the arc of the cat-
enary from the origin B of the coordinatesg.

The relation x = f(x;) is readily obtained by inte-
grating in the expression (2a):

//1+ -@E— dx

Above there was substituted %fl = u, which, accord-

ing to formula (5), was equal to:

This expression is no other than the hyperbolical
sine of the argument nx; +that is, to say,

u = sh nx

Substituting in formula (2a), we get:

3 X
={// v/l + sh® nx dx
0

According to the basic relation between the hyperbol-
ical functions of one argument:

2 2
ch™ nx - sh nx =1
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we find that /1 + sh® nx - sh nx

i
]

Wherefore ; e e e e e B

X x

3
Xy = j/ ch nx dx = o {sh nx] = 1 sh nx
€, o . . 0

(vhem x = 0 gh nx = 0).

Solving the expression obtained with reference to =x,,
we have the relation sought: :

x = E Ar sh nx, - (8)

(The symbol Ar denotes the inverse hyperbolical function
and comes from the word "Area.")

Now let us proceed to the study of the curvature of
the cross sections. The method of investigation is the
same: We shall examine the variation of the angle of in-
tersection along the horizontal diameter of each cross sec-
tion.

The direction of one of these diameters, passing
through the arbitrary point D on the axis, is represented
on figure 9 by the sgtraight line a - a.

Let us derive the equation of the curve a - a (fig.
10), which changes from the straight line a - a in pass-
ing from curvilinear flow to rectilinear flow.

It is obvious that the curve sought will also be a
catenary, normal at point D to the curved axis, since the
variation of the angles of attack along a = a on figure
9 does not differ theoretically in any way from the case
examined in connection with the axis of the model. Let us
prove it

Taking on the straight line a - a any arbitrary
point Dy, let us construct for it the local angle of at-
tack designated by 9. Let us connect point D, with O

and drop from O the perpendicular’ 0B, on the direction

a-—~ a8« Then the angle D, 0B,, which 'ls equal-td”'ﬂ;_ is
expressed as follows: '




le N.A.C.A. Technical Memorandum No. 829

. DB D,B
tan 9 1P N5

OB]_ X1
DB
whence 3 = arc tan —%;l ‘ (9)

The expression obtained is completely analogous to
the formula (1) derived for the axis of the model. The
distance D;By coordinates the distance of point D

from 3By, similarly to the manner in which in formula (1)
the distance x3; <coordinated point D with reference to
B. The quantity =x,; (formula (9)) for the entire straight
line a - a plays the same role as the guantity Ry cos By
in formula (1).

It is obvious that, for the curve sought, point 3,
will perform functions analogous to the functions per-
formed by point B for the curved axis. At By the an-
gle 9§ will be equal to zero; that is to say, By will
be the origin of the coordinates of the catenary sought.

In order to derive the equation for the curve sought,
let us turn to figure 11, It shows the curved axis BD
in terms of the coordinates x, z!, and the curve a = a
sought. From what we have said in making an analogy with
the above, it follows that, for the curve sought, we should
‘take B; as the origin of the coordinates, and draw the
axes of the coordinates parallel to the axes x, z'!. De-
noting these axes by r and %, let us write, analogously
to formula (7), the equation for the catenary a - a in
terms of the coordinates r, t:

t = x4 <ch I - 1) (10)
X3
It is obviousg thet for the line a - a, x3-= constant.

When passing from one cross section to another, that is to
say, when varying x;, we naturally change the position
of the origin B; of the coordinates. As x; decreases,
point B; will travel along the curve B;B;", shown on
figure 11 as a dotted line. Moreover, the catenary will
"contract," assuming for a certain point B,! the shape
a' - a!, indicated on the diagram. Thig is due to the

fact that the arc of the catenary (10) ﬁ?ﬁ, which is
egqual 1In length to the distance

N’

B;D = Rg cos Bo =

Bl
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(fig. 9), does not change when =x, changes; that is to
say., ... e

= constant (11)

= 1]

When x; = 0, the catenary will contract into a
straight line, disposed along the axis z'. On crossing
the axis z!, the catenary will "open up" again.

Naturally, all the chords of the cross sections, par-
allel to the horizontal diameter, will deflect along the
segments of the same catenaries as the horizontal diame-
ters, and 211 the vertical chords and diameters will re-
main straight. This is due to the fact that the motions
examined are plane-parallel. Thus, the cross sectlons will
curve along the c¢cylindrical surfaces.

Now, let us express the whole family of catenaries in
terms of the coordinates x, z!; this is very convenient
in constructing the profile of the meridional contour of
the curved model.

Let us denote the coordinates of point D by xp
‘ and z'p, and the coordinates of point B; by x5, 2Zo!.
ﬁ Then the formulas for the change of coordinates will be
written in the following form:

T = X - Xn,
° (12)
t = Zl had Zo 1

( Let us find the values xo -and 2z5'. Let us desig-
‘ nate the length of the arc B;D by r1D. According to

condition (11), we find that

I‘]_D =

Bl

On the other hand, the.projection of the are B;D on

the axis r, -equal to rp, analogously to equation (3)
» for the catenary a - a, 1is written:
. Ty
Tp = x; Ar sh —E% = x, Ar sb.ﬁ%:

We may disregard the symbols rp and 1, since we

D’
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are here interested only in the absolute values of the
segments and arcs.

From figure 11, we see that

xo = XD + I‘D
whence Xo = Xp + x, Ar sh nx, (13)
In order to obtain z5', let us find the ordinate

ty of point D. Considering that

- 1
rpy = X, Ar sh nx,

according to formula (10), we find:

r
tp = x (Ch =D . l> = X ch <Ar sh —l—> - 1 1
D ' 1 g [ nX, J

According to the basic formula for hyperbolic func-—
tions

ch® P - sh® o =1

the preceding expression may be written as followss

or

But, starting from the equation of the curved axis

z'ly = % [ch nxp = 1]
in which, according to expressioh (8), we may substitute
nxp = Ar sh nx,

we find that

1 l l 2 i l
zlpy = 5 ch (Ar sh nx,) =~ n = n v/(nxl) ,+_1 ~n
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2
Thus, tp = % v/(nxl) + 1 = x; = z'p +.% - X3
.7ffdmtf1éﬁfé il, we see that zo' = z'D Z tD'. Conse~
quently,
Zo z'y | z'p = X, X4 n B ¢ )

Now, knowing xo and 2! as functions of the guan-
tlties x3 and xp, that is to say, of the quantities
coordlnatlng point D in the =x, z' system, let us repre-
sent the formula for the change of the coordinates (12) -as .
follows:

r = X - Xy - X Ar sb~5%: )
(15
n

Then the catenary a - a (formula (10)) in terms of
the coordinates x,2z' 1s expressed in the form:

1
X - X7 - X, Ar sh —s—
Z! = xq, + & = x, [ch ( D 1 nxi ] 1]

n X1
Finding from here z! = f(x) and taking x; out of the
parenthesis, we obtain:
X - X ' .
z! = %, |ch {2222 L Ay gh ——]1—> -z (16)
. Xl nxi, n

This is the ecuation of the family of catenaries
sougiat.

It was shown above that each catenary of the family
(16) must intersect the line of the curved axis at right
angles. Let us verify this circumstance.

From analytical geometry we know that for mutual or-
thogonallty of two curves, . it is necessary and sufficient
for the values of the derivatives of thege curves at the-
intersecting point to be inverse in magnitude and "sign.’
Let us find the derivative with respect to x from formula
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(16)'*
X=X X=X
oz! =.x; sh (———Q_- Ar gh —li> = = sh (—=2 < Ar sh —1;>
ox X, S nx,/ X, X, - nx1(17)

The value of the derivative at point D is obtained
by substituting =x = xp; we have:

!
g}—zc—) = gsh (- Ar sh E}%—) - - 1 (18)
(X=X)D :

According to the preceding, the value of the deriva-
tive from the equation of the curved axis will be:

=2~ = u = sh n
ox *

substituting for =x its value, expressed as x; accord-
ing to formula (8), we find that

A comparison of the results (18) and (19) shows that
the catenaries (7) and (16) are orthogonal to each other
at point D.

Now, it remains for us to find, analogously to the
above, the expression which will enable us to lay off on
the curves a - a from point D the magnitude of the lo-
cal radius of the cross section of the model, Denoting
this local radius by y,, let us assume (fig. 11) that it

is plotted along the curve a - a from point D above
and below; that is to say,
’ — S

DA = DB = 3,

Thus, points A and B ©Dbelong to the meridional con-
tour of the model. Since it is difficult to plot along
the arc, let us try to find the abscissas of the points
A and B in terms of the coordinates x, z! for a given
v . Designating these abscissas by a and b, we find

the length of the are AB of the curve a - a:

*From the theory of hyperbolic functions we know that

4 ch ¢ = sh @ and sh (—w) = —«sho

AV
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e ° 3z 1\
AB = 2y, = / 1+ (-'é;—) dx
e e f o W NTR L

Introducing the value of the derivative %ﬁl accord-

ing to formuls (17) and substituting according to formula
. | - |
J 1+ sh @ =ch @

we obtain:

~— ‘b X = XD
AB = 2y, =/ ch ——J—{';—'- -~ Ar sh """‘"‘) dx
a
Integrating and considering that for the given curve
a - a, xp = constant and x; = constant, we get:

ey b - xp ' 1 >
e e [ s (572 - ar eh ) -

- 1
- gh <ﬂ————— - Ar sh T ] (20)
Now let b = xp, that is to say, let us assume that

there was integrated not the segment of the arcs AB,
bput AD = ¥,+ Then, substituting b = xjp in the preced-

ing equation, we find:

—_ ) - 1 1
AD =y = - x fSh (E———ED - Ar gh —— ) + ——
L X1 nx, nx,

From the equation obtalned, we determine the absclssa a
sought ¢
1

' 1 Vi
a = xp *+ xll:Ar sh i Ar sp <§I + nx, J (21)

Letting, in equation (20), a = xp, that is to say,
assuming that arc DB = A was integrated:

u

e b - xp 1 1
DB Fi = X sh .(’“—J—C';'—" - Ar sh EE—;) + 5;5_1-}'
whence

b

| 1 T 1
xp + x; [Ar sh % + Ar sh X, T~ iz, ] (22)
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In all the expressions deduced

Now we proceed to derive the magnitude of the error
arising from the fact that our solution igs somewhat approx-—
imate as compared to the solution of the complete problem
concerning the motion of the surface.

Let us turn to figure 12, which represents a diagram
of the nose of the dirigible straight model, the contour of
which is given by the equation y, = f(x,).

Let us take on the contour any point A, the trajec—
tory of which during the circular motion of the dirigible
coincides at a giver moment with the direction of its
speced Ve The angle between the direction of speed and the
tangent to the contour we designate by Be. The angle be-
tween the tangent and the cross section AD we designate
by e Then, according to formula (9) and figure 9, we
find that

B+“:=T|""73 (25)

Now, in accordance with the solution given above, let
us curve our model and designate the angle formed by the
tangent to its contour, plotted through point A, and the
direction of velocity in the tunnel by B, .

Analogously to figure 12, let us designate the angle,
formed by the tangent to the contour and the tangent to

the curved cross section AD, by My, shown in figure
13, which represents a part of the contour of the curved
model y = f(x), the curved axis =z'p = fy (x) and the

section AD. Then, in accordance with the principle for
constructing cross sections, we get:

By + py =T~ & (24)
comparing formulas (23) and (24), we get
B+ wuw =258 +p,
Let us find the value of np; and compare it with u.

With these values we shall be able to estimate the differ-
ence between By and PRB. From figure 12, we see that
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™ dy
ko= 5 - are tan E;% _ ' (25)

" 0on figure 13 let us plot the following: Through point
A let us draw the tangent MA to the cross section AD.
Let us draw AN perpendicular to AM. Let us now give
the argument =x; the small increment Ax; = DD'. Then
section DA will assume the position D'A', From point
A' let us drop the perpendicular A'F on the prolonga-
tion of the direction of velocity v and the perpendicu-
lar A'E on the straight line AN. Let us designate by
G the point of intersection of A'F and AN. Let us
8esignate the angle between the prolongation of the chord
A'M and the direction of velocity by Bi1!, and the an-

gle between the same prolongation and the tangent MA by
y!'s TWe readily see that

!
pit =m =~ § = B! = arc tan %i— - B,
But
B! = /_ A'AFT = arc tan %%E

Noting that AF is an increment of x, and A'F 1is an
increment of y for the curve of the curved contour y =
f(x), we may write the preceding equation as follows:

B,! = arc tan %%
Then
wi! = arc tan %;l - arc tan %% (26).
but [ AWFT = [/ A'AR + /_ GAF
Hence arc tan %% = arc tan %%E + /  GAF

but since

/_ GAF = 7 - & = arc tan %ﬁl - %

then the preceding equati on may be rewritten as follows:

Ay _ A'E dz' _m
arcbanAx,_ arc tan 5 + arc tan i 5
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Substituting the obtained value arc tan %% in ex-
pression (26), we find: '

1
- arc tan fﬁﬂ

n|3

Byt =

It will be readily seen that, when Ax; infinitely tends
toward gzero,

= lim - 11 T b __E>
Ba = pe 230 o P! 7 a2 (2 arc tan

Let us designate AE = Ax;! and rewrite the last egua-
tion as follows:

Ay, A'E Ax, )]

]
= lim —_ -
Wy [2 arc tan Az, By, Bxq!

AXI—-’ 0

where Ayl is the increment of the arc Kﬁ; that is, to
say ,

N N
Ay, = A'D - AD

It is readily observed that when Ax, — 0, the ratio

A'E . Ax1
Byy tends toward unity, the expression %, tends to-
dx
ward the value of the derivative EE—%; in this way,
1
dy dx
i 1
= = - — ——— 27
(T 5 arc tan ix, iz, (27)

By the aid of the obtained expression (27) and the value
p from formula (25), we find that the relation of the
tangents p; and @ will be:

[ore vn (82 220
i co arc tan { —= —— !
bah wy _ °O% | dxy dxy 7)) . % (28)
tan © dy, dx,
cot | arc tan E—J_C—
1
. dx1' .
The derivative Fy— obtained characterizes that de-—
1

gree of contraction or elongation which is experienced by
the lee side and the windward side of the model during the
process of curving
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We can prove that the curved axis of the model ap-
proximates the arc of the circle with the radius p =
Ry cos By, and the cross sections are almost plane. Mak-

ing use of these circumstances for ascertaining the order
of the numerical value of the ratio p,/u, we find that

for any point on the axis

dx, !
d.xl - - Ro coSs Bo

where y, is the local radius of the cross section.

It will be readily seen that for the stern point and

the nose point, where , =0, we will have w = @; angd,
dxq !
consequently, B = B,. agi— ig farthest from unity in the
1

vicinity of amidships. Let us find this value, assuming

that Ry cos By ® 245 L and ¥y, = I (which corresponds
dx, !

to the mean given data for the model); we obtain EEi—
1

Ol

. 0.963 that is to say, the difference between tan p and

tan p, amounts to ~ 4 percent., But, since in the vi-
cinity of amidships both @ and My approximate %, the

4 percent difference in the tangents creates a difference
in the angles amounting to a few tenths of one percent.
In the parts of the zones located between the nose and-
amidships and between amidships and the stern, the differ-
ence between B and B, is greater (due to the fact that

in these zones the angles and W, differ from ﬁ/E

more than in the case of amidships). However, according
to our calculations, the difference between B and B,

nowhére exceeds from 2 to 2.5 percent, In this way, the
insignificance of the error resulting from the abovemen-
tioned alteration in the lengths of the arcs of the merid-
lonal contour has been demonstrated.

3. METHODS OF DIRECT DESIGNING OF CURVED MODEL FORMS

There are two possible methods: (1) A very exact
method, which takes into account the curvature of the
cross sections, and (2) a simplified method, in which
the cross sections of the model are assumed to be plane
and normal to the catenary of the axis.
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The axis of the curved model is constructed in the
same way in each method.

(1) Exact Method

a) Construction of the curved axise~ To begin with,
it is necessary to find the radius of turn with which it
is desired to carry out the test. In addition, we must
know the angle of attack B, formed during the rotation
with the given radius.

Knowing R,, B, may be obtained either according to

the previously constructed nomogram of the straight line
*»
ﬁL = f(BO,S) for the given dirigible, or from free-
)
flight tests, or by the aid of the statistical method.
The last method is the simplest, because for the straight
R
line é% = f(B,), 1t gives the angle coefficient _QXEQ =
o
kX, where A is the arm of the tail surface center of
pressure. According to a whole series of foreign inves—
tigations, this coefficient preserves sufficiently well
its magnitude in the case of quite a large number of alr-—
ships. With k given, the angle of turn is calculated
according to the formula

Bo =k§(-)- (29)

Here B, 1is obtained in radians.**

Knowing Rg and By, 1t is necessary to find the

distance from the nose of the model to point B, which is
taken as the origin of the coordinates of the catenary.

Degignating by il the distance from the nose of the

model to the center of wvolumetric displacement, we find,
according to figure 9, that the distanco sought is:

*See our paper "Determination of Radii and Angles of Turn
of the Airship at Various Rudder Angles of Devia-
tion, "

**In the experimental part of this paper we shall see that

R, and Bo can be assumed entirely arbitrarily.
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If we obtain xlB in the negative, it means that in figure

10 the nose point will lie to the right of the origin of
the coordinates.

For constructing the catenary of the axis =z' = f(x),
it is necessary, for calculating z! according to formu-
la (7), to find the magnitudes x. The simplest way to
find the magnitudes x, 1is to determine them according
to formula (8), where x, 1is the distance along the arc
of the catenary from point 3.

In this manner we can obtain on the curved axis of
the model a series of points, the distance of which from
point B and, consequently from the nose of the model
along the arc ig known. This is very convenient, since,
in the profile of the noncurved model , the ordinates ¥,
of the contour of the meridional section, as well as the
position of the power cars, the tail surfaces, and other
detalls are determined by the distance from the nose.

b) Now we have to proceed to the construction of the
lines of the cross scctions., These lines are construct-
cd for cach desired scection =zccording to formula (18),
where the magnitudes xp and x, for each point of the

curved axis are known from the previous construction. The
moving coordinate x we may choose according to our own
judgment. Then we have to find on the constructed curves
points A and B (fig. 11), belonging to the curve of the
meridional contour; for these points the ordinates ¥y,

are known from the straight model. These constructions
zre made according to the formulas (21) and (22), which
give the abscissas of the points A and B from the orlgin
of the coordinates. Figure 14, showing this construction,
gives an idea of how the net of the catenaries of the axis
and of the cross sections looks.

(2) Simplified Method

The simplification concerns only the construction of
the cross sections, which are assumed to be plane and nor-
mal to the curved axis. That such an assumption can be
made, lsee, to substitute for segments of the catenaries
AB o straight line, is shown by the following consider-
ation. .

Let us find the radii of curvature of the catenaries
of the cross sections at their intersection points with the
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axis (that is, to say, whem x = xp). The radius of curva-
ture for the flat-topped curve is expressed:

g 372
ol
4+ [Za_

a2z

dx?2

Taking the expression dz'/dx according to formula
(18) when x = xp, we find:

dzt _ _ _1

dx nx,

Differentiating formula (17), we have!

a%z? 1 n <
—— = e——
dx?@ X1

X = X 1
—3—3 ~ Ar sh —
nx,

which, when =x = Zp» gives:

d zt 1 ' 1)
dx® X1 X,

substituting the expressions obtained in the formula for
p, we find that:

= 1'1 + <.n___> T,/a L1

= x
P J/ 1 -
1+ ——->
nx,
. . 1
Substituting n = ———=———, we have:

Let us show that in all the cases the value of p 1is
very large. From the last expression, we can obtain:

o [ ()(;—l/chosaBJ

where L 1s the length of the model,




N+sA+sC.A, Technical Memorandum No. 829 25

When x, =0 p = o; that is to say, the cross sece
tion is a plane.v When x; increases, the magnitude p

"decreases.  p will have the smallest value with the maxi-

mum possible x, = L. . On page 21 of this report it was
shown that the minimum radius is equal to from 2 to 3 L =~
on the average, 2.5 L, The angle of attack, corresponding
to the given R,, 1s usually about 7 to 9°, and conse-
guently, on the average, cos By = cos 8% = 0,99 and

cos® B, = 0,978, :

Substituting the values indicated in the expression
found, we get the smallest possible radius of curvature of
the cross—section diameter:

Pmin ~ 7L

Such a radius is obtained at the tail of the model,
where the diameter of the cross section is very small, for

which reason it is entirely possible to regard the cross
section as a plane.

In the midship section, that is to say, when y; = max
and x, = %. ve get:
=21 L
pmean

This shows us that it is entirely possible to make
the cross sections plane, Besides, they preserve thelr
circular form, which is a great convenience in preparing
the model,

Now let us proceed to the method of constructing the
plane sections. It was shown above that these sections
must be normal to the curved axis. Let us find the equa=-
tion of the normal at any point on the curved axis. The
equation of the normal is generally written as follows:

. BF
SET (¢ = xp) = == (0 - Z'D)
‘Here F 1s a function in an implieéit form, ¢ and
N are the moving coordinates of +the normal line sought,
and zxp  and z'p are the coordinates of the point on the
curve, through which the normal passes.
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According to equation (7) also F = z'p - %.ch nxp +

5 [

= 0, whence

B..E__: 1 and oF = = sgh nxXy
dz!? ox

Substituting in the equation of the normal the values of the
derivatives and taking, according to formula (8), sh nxp =
nxlD, we shall have:

§—XD+nx1D (ﬂ"'Z'D)=O

hence any abscissa of the normal will be equal to:

XlD (ﬂ - ZD)

Ro cos By

£ = Xp = nxlD n - Z'D) = Xpy = (31)

It is most convenient to construct as follows (fig.
15): In the diagram there is plotted on the curved axis
point D with the coordinates =xp, z'p, through which

point it is necessary to draw the normal. If we take for
the second voint on the normal its intersection with the
axis x (that is to say, if we assume in formula (31),

M = 0), this method is not very precise when the normals
are constructed near the nose of the model, where the line
of the axlis almost coincides with the axis x. Therefore,
it is more advantageous to find the intersection of the
normal with some straight line parallel to the axis x
and located at a sufficiently large arbitrary distance

BM = Z from it. Then, when TN = Z, equation (31) gives
the distance ¢z, from the axis z!'!, of the points X

31
Ry cos Bg (512)

£z = xp -

In order to find the points A and B, ©belonging to
the contour, we simply have to lay off on the lines of the
normals from the points D the magnitudes ¥, .

It is self-evident that also the tail surfaces of the
airship must be somewhat deformed. Both vertical stabil-
izers must be bent along the segment of the catenary of
the axis at the place where they are installed. But the
horizontal stabilizers are constructed in the coordinate
net formed (in the simplified case) by means of catenaries;
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equldistant from the line-of %he aiis, and by meansg of the

.normals to the catenaries. In this way, the right stabil-

izer comes out shorter than the normal, and the left sta—
bilizer is longer than the normsl. But the dimcnsions
laid off on the normals remain unchanged.

The model is installed in the tunnel in such a way
that the center of volume of the model lies on the axis of
the tunnel, and the axis x (fig. 10) is placed parallel
to the axis of the tunnel at a distance z'., which 1s

easily determined according to formulas (7) and (8),
we know the position of the center of volume on the axis
of the model,

4. THE VELOCITY GRADIENT ACROSS THE TUNNEL

It was shown above that, in order to maintain the
similarity of circular flight, it is necessary to create
in the turnel, when testing the curved model, a velocity
varyling, across the tunnel, according to a linear law.
That this law is linear is evident from figure 9. At the

moment represented on the diagram, the alrship turns at a
constant angle of speed wye Then the linear speed of its

center of volume (point C) will be:

UO = (.Ug Ro

and the linear speed of any point on the axis, for exam- '
ple, point D, will be:

=(.UyR
Subtracting one equation from the other, we get:

hence - Vo= vy + wy (R~ Ro)

When passing from curvilinear flow to rectllinear flow,
it 1s ev1dent from figure lO that for point D

- = t . ! =
R R, z z'a z

where z denotes the variadle ordinate, read off from the
axis of the tunnel crosswise to the right and to the left.
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In this manner
V= Vo twy z (32)

The expression obtained, gives the distribution of
velocity along the section of the tunnel. As is evident,
this law is linear., Substituting for Wy its expression
in terms of the radius of rotation and the circumferen-
tial velocity, in the given case, the velocity of the cir-

1Y
cular flight of the airship; that is to say, wy = EQ' we
o]

shall have:?

) .
vV = v t iﬁ Z = Vg (1 + ﬁ%) (33)

Hence, the constant velocity gradient along the section of
the tuanel

Sv _ Yo _
3z = R, ¥

that is to say, numerically it is equal to the angular ve-
locity.

The distribution of velocity obtained has a flow which
ig vortical at every point. It is interesting to note
that the velocity circulation along any closed contour in

such a flow is equal to T = S' w,, where S!' is the area
confined by the contour. In this manner, the intensity of
the vortices of such a flow is obtained as A = Wy that

is, half as large as in the case of circular flow. Conse=
quently, (see p. 4), in testing the curved model, we are,

in form, evenrn closer to full~scale tests than in the case

of testing in circular flow.

The law, expressed by equation (33), is diagrammatice-
ally represented in figure 10. In order to have an idea
of the magnitude of the velocity gradient in that portion
of the cross section of the tunnel where the curved model
is installed for testing, we shall calculate the relation
of the veloeity at the boundary of this portion to the ve-
locity along the axis of the tunnel. From equation (33),
we gets
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Analogously to the preceding, let us assume:

R, ® 2,5 L

0

and the entire width of the zone, in which it is required
to create the gradient,

2z 0,5 L

whence z

0.25 L

Such 2 width of the zone is entirely sufficient in or-
der to provide ample room far any curved model. EHence,

i.es, the difference between the velocity at the boundary
of the portion and the velocity along the axis of the tun—
nel amounts to about 10 percent. The methods of creating
the velocity gradient and the method accepted by us will
be discussed in the experimental part of this paper.

5. METHOD OF DETERMINING ROTARY DERIVATIVES FROM

WIND-TUNNEL TESTS OF THE CURVED MODEL

We have already mentioned (p. 3) that, in directing
the air flow against the curved model in the tunnel, we
should obtain the forces and moments acting on the model
during circular motion. Let us denote the force of the
drag during circular flight by X, the lateral aerody-
namic force during circular flight by £Z2,, and the mo-

ment of yawing (around the axis y) during circular fligh
by ZIM. .

Then in the very general case, any of these quanti-
ties for any one airship will be a function of the angu-
lar velocity, of the linear velocity, of the angle of at-
tack B, and of the angle of rudder deviation; i.e.,, for
example, the force

ZZl = f(“-’yv vO, BO’ 6)

Assuming that the motion is effected with v, = const.,
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and &

Bo

we may write:

conste,

$Z, =

Regsolving the funection

const.,
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but with variable wy,*

CP(wy)'

obtained according to the

Mac Laurin system which, as is well known, is as follows:
223 = 0(0) + 2 0'(0) + L gn(0) + L o1 (0) + ...
17 2y @ zy @ "
we fingd s
22, = (2£3,) + T | ] + [ ] + e
=0 1 L dw 21 2
Yy L Y dwy=0 o wy wy=0
But when @y = O the force XZ, 1is transformed into the
force Z,, acting on the model in rectilinear motion.
Thus,
. 9z, wy® 9%Z,
B2y = 2, + wy 3wy * T SwE T o T Bt By (34)

where by le we designated the sum_of all the terms of the

series, containing Wy

As will De seen,
flight,
and rotary displacements.

the full force,
is the algebraic sum of the effects of the linear

acting in circular

Analogously, resolving in the series £X and IZM,
we finally find: '
BZy = 2y + Iy (35)
ZM = My + My
Hence we can obtain the terms X,, Z, , and M, :
w 1y w
Xy =2X =-X
le = Zzl - le (36)
My, = ZM -~ My

¥Na turally, such a motion

appears forced (i.e., the forces

and moments acting on the

airship are not in equilibrium)

motions occurring at different
or to the motion

and corresponds either to
times along circles of different radii,
along the noncircular trajectory.
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which, as will be seen, are defined as the difference bew
tween the results of tests with the curved model and the
straight model. Naturally, in addition to this, both for
the curved and the straight models, we must have Bo =
const., ©vg = const,, and .8 = const., which was the ini-
tial assumption in deriving the expressions (35) and (36).
The forces and the moment Xy, 23y and My, similarly to

the usual aerodynamic factors, can be put in the form of
nondimensional coefficients,

Thus, as will be seen (considering the indicated non-
dimensional coefficients as functions of the angular ve-
locity), the method of curved models permits us, for the
solution of many dynamie problems, to dispense with the
measurement of the rotary derivative. .

: But, paying tribute to the generally accepted method
of studying curvilinear flight by the aid of rotary deriva-
tives, we shall find the latter.

As 1s well known, by rotary derivatives we understand
the increment of the rotary moment or force per unit of
angular velocity, that is to say,

90X Xy 0%, Ziy BM M,

= "3 = H = o
3wy Wy awy Wy Bwy Wy,

(37)

O0f course, it would have been more exact to write in
the left members of the equations, not 0OX, 032 and 3dMy,

but SIX, 0XZ;, OIM. But the designations for the derive

atives here given are simpler and have already been used
by us in our earlier work, :

The rotary derivatives are generally referred to the
unit of speed of flight. Writing in place of X, le, and

My, their values from (%6), we divide the right and left
members of the preceding equations by vy

[_1_ ag_] _ X _ _X
Uo -a‘-u}, .wyUoi ) u.)yvo
%, _ I,
w

yYo  YyPo

a”‘z]= oM My
wyvo Wov

e N e
<

o |

ot

i

g =

s

i
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. P, Yo

Substituting in the right members Wy = i;’ we get:

1 3x (ZX X

----- - n (s - )

r:& aEi— = R EE& _\_Eé>

L Yo Ewyj O NP2 v,

p_].._.. E&q = R E}{__ - _..lfz

LVo Swy | © \vyt Vo?

In the parentheses of the right members were obbained
the relations of the aerodynamic factors to the squares of
the velocities, which it is customary to designate by the

symbol R with the subscripts x, z,, and Dy e Introduc-
ing the designations
£X £2, - R M R
BEE X! ;;5 T trz, ;ZE T OUEIN
we finally get:
1 3X h
553 % - w0
1 32,
- 2| = - R > 38
["o Sy | = Po (mzy 7 Rz (28)
1 aMy'
— ==% | = Ry (Ryy = Bp.)
[Uo awy (o) > M my 3

The expressions obtained enable us to find the rotary
derivatives from wind-tunnel tests of curved models by
measuring on the balance and on the moment apparatus the
aerodynamdlc force and moment when the model is installed
as shown above. The factors Ry, Rz;* and Rmy, in the-

case of the angle Bo, are known from the normal tests.

It is clear that, strietly speaking, there is no
sense whatever in measuring the forces and moments for the
curved model at its various angles of attack with respect
to the flow (as is done with straight models), since for
each angle By there is a corresponding degree of curva-
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\
b
|
i ture of the model;* this may be seen, for example, from
s formula (7).
'i
)
f

However, we must remember that the value we obtain .#g
for the rotary derivative of the drag is a true value f15
only for the model, since, being determined by the coef- p ﬁb
ficlents of drag, the value will depend to a large ex-— 5Jp
tent on the Reynolds Number; this cannot be saild of the

rotary derivatives of the lateral force and moment.

In this manner, the method of curved models gilves us
(as will be seen from the expression (37)) the values of
the rotary derivatives -~ in the first place, independently
one from the other and, in the second place, taking into
account all the tcrms of the series (34); that is to say,
the generally accented assumption that the rotary deriva-
tives are indcpendent of the angular velocity not only was
nowhere assumed, but may be verified experimentally,

Thls constitutce the colossal advantage of the method
analyzeds S

6. VARIANTS OF THE APPLICATION OF THE METHOD
OF CURVED MODELS
Now, let us scc in what variants can the method of
curved models be applicd in the acrodynamical investiga-

tions of an airship.

We have already shown above that the values Rg and

Bo,' which are necessary for constructing the curved model
profile, can be taken from the nomogram of the straight
line:

L= r '

constructed according to the method set down in our work
on radii of turn. In such a case the testing of the curved
model will be an excellent verification for the values of

v the rotary derivatives, determined by the method of small
oscillations. ' ' c

*In the experimental part of this paper it will be shown
that this striect condition need not be adhered to, at the
expense of a rather small error, thus extending the limits
of application of the method of curved models.
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Thus, the first variant in the application of the
curved model is the verification of the values which we
have for the rotary derivatives. ILet us examine this va-
riant in detail,

The initial data (R, and B,) for the construction

of the curved model profile are taken from graph ﬁL =
i 0

f (By:8)e This graph, constructed on the basis of the ex~
periments with the model of the V-2 airship, is repre-
sented in figure 16, It shows the intersection of two
Tamilies of curves, one of which gives the value of 1/R,
in the presence of the condition of equilibrium of the
forces only, acting on the airship during rotation.* The
other family gives the values of 1/Ry, in the presence

of the condition of equilibrium of the moments only.

Naturally, the line (straight line), joining the
points of intersection of the corresponding curves of the
first and second familieg, gives the values of ==

o

f (BO,G) when there ig equilibrium both of the forces
and of the moments; i.e., it gives the values of Ry, Bo,

and 6§, corresponding to the flight along circlegs which
is established.

Now, let us assume that we are preparing six curved
models, each of vwhich will be constructed by the aid of
R, and B, obtained from the points of intersection

of the correspoanding curves of the first and second fami-
liesse During the tests in the tunnel, the rudder of each
of these models should be deviated at that angle 6, to
which, according to figure 16, correspond the points of
intergsection of the curves of both families.

In the result of wind-tunnel tests we obtain the
force YXZ, = Z; + Z1y,, which will be equal numecrically

to the centrifugal force (from the condition of equilib-
rium). According to the force XZ,, we find the rotary
derivative (formula (37)).

Thus, the aerodynamic moment of each of the curved
models, when the models are properly installed in the ftun-
nel, will be equal to zero since, under the conditiom of
equilibrium of momentsg, the aerodynamic moment is extin-

*The cenﬁrifugal force also participates in the equilib-
riume
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gulshed by the rotary effect, and according to the third
formula of the system (38) the rotary derivative of the

"moment, when taking Ryyf =70, will Dbe equal to

In this manner, the very result  Ryy = 0 shows the
accuracy of the rotary derivative of the moment, deter-
mined by thc method of damped oscillationss. In order to’
obtain thoerefrom the generally accepted relations of the
rotary derivatives to the anglc of attack, it is neccessory
to construct the rotary derivatives, obtained from the
wind-tunnel tests of the entire series of curved models,
as a function of the angle Bo (which, for each model,

. was a basic factor in the construction of its profile).

If we extrapolate the obtained graphs of the rotary
derivatives up to B, = 0, we obtain the values of the
rotary derivatives which are necessary for calculating the
criteria of dynamic stability.

Now let us see how the method of curved models can be
epplied as an independent method.

Let us assume that for & given whole series of values
of R, and By, we construct as many models as the com-

binations that can be made from Ry and Boe. Naturally,

each of the models will have its own degrce of chVature.
Each model must be tested on EM and £Z, for different

values of the rudder angle of deviatlion 8. After.this:
grouping the obtained values IM and X2, _for the vari-

ous & =and plotting them as a function of Re for each

angle B,, 1t is necceossary, by means of graphical interpo-
lation, to select on the curves £Z, = f (Ro,8) those val-
ucs of R, and B, for which, from the condition of cqui-
librium of forces, 5%, is equal to the centrifugal force
a . .
Zo” oo Bo (by intersecting the net of curves XZ; =
Ro my 2

f (Ry.8p) with the net of hyperbolas fﬁ%— cos Bo = ®(Ro))e
Thus, having those values of Ry, and B, with which,
when & 1is given, equilibrium of the forces is obtained,
we obtain that family of curves which in figure 16 charac~
terizes this equilidbrium.
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From the curves IM (Ry,8) we sélect those values of
Ry and By for which, according to the condition of equi-
librium of moments, IM = O. '

In this manner we obtain the second family of curves

(fig. 16), as a result of the intersection of which with

the first family we obtain the sought nomogram ﬁL =
o

f(Bys8), which is determined with incomparably greater
accuracy (that is to say, taking into account the influ-
ence of all the variables), than with the method set forth
in our work on radii of turn. '

It is obvious that we can also obtain the graphs of
the change of the rotary effects of the moment, of the
lateral force and of the drag as a function of the angle
of attack, of the rudder angle of deviation and of the anw-
gular velocity.

Besides, by testing only curved hulls of airships
(without tail surfaces) and working up the data by the
aid of methods analogous to the onec described, we can o0be
tain, simultaneously with the very intercecsting relation,

< |
ot
o O
€l =
AN A
1
[
I—J
U

(which it is extremcly difficult to obtain in the tunnel
with the mothod of small oscillations) as well as the val-

ues e
[_1_ _Z_E_l] = £(8,)
Yo Wy ld s

which, as far as we know, have not been determined any-
where experimentally with sufficient accuracy.*

*The Englich, in their work, caleculate for all airship
hulls in general,

where m is the mass of the airship; this requires exper-
mental proof.
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It is self-evident that such a complete investlgation
of curved models of airships is profitable only if we have
one model which can be curved to the desired profile. The
question of the possibility of producing such models (elas-
tic) will be taken up next year by the Air Section of the
Experimental Aerodynamic Department of the Central Aero=
hydrodynamic Institute.

By arranging the pressure tubes of the curved medels,
we can find the distribution of pressure in flight along
circles.

By the way, it is interesting to note that, by the
ald of curved model tests on the distribution of pressure,
we ¢an find experimentally the influence on the final re-
sult of that altered length of the arc of the meridiocnal
contour which is obtained when the curvature is effected,
According to our opinion, it is necessary for this purpose
to integrate the distribution of nressure along the sur-
face of the curved model and compare the obtained result
with the integral of the same distribution of pressure,
but with the corresponding points located along the sur-
face of the straight model.

Thus, we think that the method of curved models here-
in expounded, when used on the very widest scale, can and
must become the most exhaustive method of studying the dy-
nagmics of curvilinear flight and the dynamic stability of
airships.

Translation by Translation Section,
O0ffice of Naval Intelligence,

Navy Department,

Bluma Karp.
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Figs. 9,10
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