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NATIONAL ADVI SORY CO . .fMITTEE FOR AERl~NAeTICS 

TECHNICAL MEMORANDUM NO. 818 

VALVE-SPRING SURGE* 

Ny Willy Marti 

(n account of the high- speed motion of an injection 
valve there are set up os cillati ons in the valve spring 
and. the s e imp art a g rea t e r s t res s tot h e s p r i n g s than w 0 u 1 d 
be the c ase if their inertia we r e neglected. 

Since, f o r reasons of space and weight-saving, valve 
springs are mQre highly 10aded than the other machine ele­
ments, it is essential to know the actual maximum stress 
of the spring . This knowled g e is ohtained either by de- . 
termining the vibration stren~th of the springs after man­
ufacture or by measur in g the actual spring stress as a 
function of the s~eeds under which it is operated. 

A knowledge 0f spring oscillation is also useful for 
the following reason . As the valve is opened the moving 
mass is accelerated by the pressure of the cam and again 
decelerated by the spring, the deceleration ~eing assisted 
by the friction of the gu ide . When the valve closes the 
mass is first accelerated by the spring and then deceler­
ated by the cam, and in this case the friction diminishes 
the accelerating action of the spring force. As a result 
of the spring oscillations the force of the spring is de­
cr ea sed for brief intervals so that there is set up a 
knocking at the hearing roll e r at lower speeds than would 
be the case if th e re were no such oscillati~ns. 

Under the c ond iti0n of resonance the nscillating 
spring contribut es to the general noise, since the natural 
frequencies of the springs commonl y employed correspond to 
the ran ge of audible tones . When the distance between the 
coils is small and the amplitude of the oscillati ons large 
the windings may come in contact with each other and dam­
age the surface, for example, of polished springs, result­
in g in a low e r ed vibration strength of the spring if it is 
made of alloyed st ee l . 

*"V en tilfed erschwingungen . " Thesis su~mitted in partial 
fulfillment of the require~ents for the degree of 
Engin ee r in Mechanical Engineering AeronRutics, Federal 
Polyt echn ic Institute of Zurich, 1935, pp. 1-20 • 
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A knowledge of the mechan i sm of sp ri ng oscillation is 
appl icable t o a ther e l ast ic vibrating co lumns . In the 
fuel lin e o f a Di esel i njec t ion system th e re occur, afte r 
inject i on , p r essur e f luctuations s i milar to those in the 
sp ring after the val v e li f t . The propagation of an elec­
t ric a l im p uls e in a cable havin g capacity end self induc ­
t i on follows, as we know , the same laws and corresponds to 
the same different i al equation as the longitudinal waves 
of Rn elast ic c olumn . 

TEST S ON SPR I NG SURGE THAT HAVE ALREADY BEEN PUFL IS HETI 

Probably the s imples t and clearest method of render ­
ing the motion of the sp ri ng coils visible is that g iv en 
~y W. We i bul l ( r efe rence 1 ) . He fas tened a small rod run ­
ning rad i a l to the spr i ng axis t o each tu r n e nd p rojected 
the shadows o n a sl i t p erpendicul a r to the rods . The 
li g ht rays t hus cut out descr i bed on a rotating photo ­
g r aph ic f il m the m t i o n of each turn as a functi o n of the 
t i me . 

F i ~ure 1 sho ws what happen s when a we i ght strikes 
upon the spr i ng which is in a v e r tical pos ition . The i m­
pulse is p r opagated fr o m c o il to coi l ~ ith a constant 
velocity and r efl e cted a t he e nd s of the springs . After 
the pressur e wav e has tra v eled sev e ral t i mes up and down 
the we i g ht is a g ain thrown up by the spri ng unde r tens i on 
and the sp r ing then c ont inu es to oscillate with its natural 
f requency . Stroboscopic methods we re e mp l oyed by Swan , 
Savage ( r eference 2 ) , and von Leh r (refe r ence 3) . ne a r-
b i tra r y c o i l , usually the center one, is ma r ked and ob­
se rv ed st r oboscop ical ly . The motion o f the coil is con ­
t roll ed by the c am and the co i l is illuminated fo r an ex ­
t r eme ly sho r t i nte rval i n the sa _e angular position . The 
l i ft o f the co il, which appears a t rest , may i n this way 
be read as a function of the angle and of the time . The 
time - d istanc e cur ve thus ob t a in ed is the resultant of 
several r otations and may easily contR i n e r rors - for ex ­
RLp le , i f the pos iti on of r esonance is not mainta i ned 
~ccur r.tely as a result of small fluctuations in the spee d 
during the test . 

Lehr descr i bes a me th od whereby the c en t e r sp ri ng 
coil havin g a small strip attach ed t o i t covers and un ­
cove r s a sl i t par alle l to the s p rin g axis Rnd is photo ­
g r aphed on a r ot~ting fi l m. Th e t i me - d ist ance cu r ve of 

• 
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th e turn t hen appe~r s a s a line separating bright and 
d~rk ar ea s . 

AUT HOR ' S TE STS 

3 

Ti me - d ist a nc e curv e s of mov i ng machine parts may be 
obta in ed b y the we ll - known met h od of us i ng a bridge and 
osc ill og r aph . .A pre li min a ry tes t employing this method 
was made on a va lv e sp ri ng of a Diesel engine on a test 
st~nd . To the c ente r c o il was soldered a spring steel 
tongu e wh ich s l i d al o ng a nicke l- chromium wire (fig. 2) . 
The b ri dge c ur r ent is p r opo r t i on al to the distance moved 
by t h e c oil, p r o vi ded the v a ri at i on in the resistance is 
smal l c ompa r ed to the re si s t an c e R. As may be seen by 
c omparing an o scill og r am (f i g . 3) with those obtained lat­
e r, the s p ri ng sur ge d i es down very rapidly. This is due 
to the damp i ng a c t i on of the st r ong pressure between the 
b ri dge wir e and the sl i d i ng contact. A decrease in this 
pressu r e p r odu c es an unsteady fluctuation of the contact 
r es ist an ce and r esult s in a defo r mation of the curves sO 
t ha t t he y a r e h a r d l y r e c ogn iz ab l e. For this reason reso­
n an c e phenomena c oul d not be recorded although these ap­
pear ed whe n the r e wa s no c ontac t friction. There were 
ne v e rt heles s r eveal ed spee d r anges with i n which the ampli­
tudes we r e l a r ge and othe r s ~ it h smalle r amplitudes. 

I n Qr de r to b e able to cont i nue the tests in the lab­
o r ato r y a n a pp a r atus was c on st r ucted of the :orm shown in 
f i g ur e 4 , cons i st i ng of s h a ft , cam, roller, and spring. 
T 0 heav y pulleys at ea c h end of the shaft acted as fly­
whee l s to r ende r the sneed unifo r m. 

The t ens i on p r oduce d by t h e vibrat i on is largest at 
the sp ring ends . Expe ri enc e has shown that spring fail­
u r es occu r mos tl y i n the out e r most coil unless there is 
some f law i n t h e ma t e ri a l a t some other point. Consider ­
ations of st r e n g th and a cc e l e r ation forces make it advisa­
ble t o i nve s t i g a te the st r es s a t a spring end and not just 
any a r b itr a r y defo r mat i on or velocity. 

Measurement of the s p ri n g p r essure with carbon plate 
i nd i cato rs fai l ed on accoun t of the hysteresis e~fect. 
(The c a li b r ation curv e fo r r ising pressure does not agree 
wit h tha t fo r fa lli ng pressure . ) 

Th e comp r ess i on 0: the last turn is a measure of the 
stres s at the sp ri ng end but it anpeared too difficult to 
conve r t th i s comp r es si on i nto a mirror rotation or elec­
tr ic c u r rent . 
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The most promising method aupeared to be that of re­
cording the chan ge in inclination of the wire axis . To 
t~e outside tu r n as soldered a small knob and on it was 
f i xed the small oscillograph mirror . The test ~pparatus 
with the spring in ho rizontal position was then set up 
nea r the oscillograph in such a manne r that the small mir ­
ror l ay in the position of the measuring loop . The r e ­
flected l i ght ray ~es cr i bed on the film drum the tension 
of the s p rin g end as a function of the time . 

Figure 5 shows oscillo b rams ohtained by'this method . 
Resonance is set up , as we know, when the natural fre ­
quency (or an inte g r al multiple thereof) coincid e s with 
an integ ral multiple of the cam speed . For any interme ­
diate speed the amplitude remains small . The critical 
speeds l i e so near each other, h owever, that it seems 
practic~l ly hopeless to det e rmin e the resonance speeds in 
advance to a 'sufficient degree of accuracy so as not to 
have the speed of the machine coincide ith any critical 
s peed . 

It may nevertheless be seen from the ~scillo g rams ' 

(fig . 5) that the increese in the dynamic tepsion is not 
equa lly lar ge for each resonance condition and this justi­
fies the hope that it may be possible to avoid excessively 
large dynamic stres ses wi thin c e rt ain speed ran ges . 

The test method just describ ed likewise had to be 
g iv e n up as not b e in g sufficiently accurate . The testing 
of the sp ring on a spring scale s h owed that the relation 
b'e twe e n th e st re ss and the light b epm di s p lacem ent was not 
linear , sinc e the l as t turn lifts less and less as it is 
compr e ssed . Th e re ar i se , moreov 8r , other disturbing ef ­
fects due to th e osc illation of the sp rin g at ri ght an ­
g les to the sp ring axis , and the resulting deformations 
a r e likewise rec o r ded on the film end falsify tho record 
(f i g . 5 , 1 8 to 20 oscillations per rotation) . 

The author h~d , moanwhile, for the purp se of gener ­
a l investi gat ions on the Diesel eng in e s, c onst ructed a sys ­
tem of thr ee qun.rtl3 indicators w' ereby thr ee different 
p r essures could be synchronized ~nd s iMult aneousl y record­
ed on a single oscillo g r am . 

The fi rst preliminary tests with this apparatus of 
Kluge and Linckh (referenc e 4,) s howed. the prom ising possi ­
bilities of application of radio ampl ifiers to the field 
of p r es sur e and fo rc e r eco r ding . 

• 
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When pressure is applied to a crystal cut in a spe ­
cial way , there a ri se on ea c h sur face under pressure 
electr i c a l charges wh ich charge a rotating condenser K 
( f ig . 6) to a voltage \ hich is proportional to the pres­
sure . An electrostat ically operating amplifier must now 
convert this volt aee into a proportional current without 
thereby drawin g char g e from the c ondenser. The first tube 
of the ampli f i e r t he re fo r e c onsists of an electrometer 
vith amber i nsulated leads t o the grid . (The rotating 
condense r of 1 , 000 centimeters capacity was likewise insu­
lated aga inst the g r ound by means of amber . ) The tube op­
er a tes with an ano d e v o ltage o f only six volts as this 
v o ltage lie s below the i on iza t ion voltage of the residual 
gas in the tube so that no g rid currents are set up as a 
r esult of ionization c u rr ents. A separately heated output 
tube is ele ctrostatically c oupled to the electrometer tube 
(fig . 6) . 

In o rd e r th a t the lead from the quartz to the grid 
may not act a s an an te nna and assume too large and uncon­
trollable a capacity with r espe ct to earth and thus re­
sult in hi g h insulati on los ses , it must'be kept very short, 
i . e ., the ampl i fier must be se t up near the crys~al. A 
b~re c oppe r wire about 0 . 5 mete r connects the center elec­
trod e wit h the amplifipr . I t appeared that a static 
shielding screen was ur.ne c essary and ~ight even prove harm­
ful since , ~s a result of ~ny fluctuations of the conduc­
t o r with r espe c t to the scr een , cppacity and voltage fluc­
tuat i ons mny be set up ~nd these may f8lsify the pressure 
osci ll~ t i ons nn the osc ill ogram . 

The s e c ond ~mp li f ier tube i s somewhat sensitive to 
vibrati ons , espe ci all y if ~ tube is chosen that can give a 
linee.r cha rp,cteristic wit h a ±5 rnA current . The metal 
housing of the ampl i f i er was therefore suuported on weak 
springs a nd in this w~y the vibrations could be entirely 
k ept down . 

In pr~ct ic ~l operntion l arger distances between am­
p lifi e r and o scillo ~raph are unav oid~ble. In order to be 
able to use the amp lifi e r si mult aneously for observation 
on a g r ou~d- glass plate , a central switch desk was lowered 
on the osc il log r aph t ab le and Was connected with plug 
sockets and a 9 - ~ ir e cable to the three amnlifiers. In 
th e d i ag r ams (fig . 6) n r e shown the three ;mplifiers above 
,.nd the switch desk bel ow . The verticf),l lines to the 
ri gh t r epresent the 9 - ~ ire co n n e c ting cable to which one 
to th r ee nmp lifi e r s c ~n be connected. 
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Before any measurements are made the amp li f i e r is ad­
justed so as to g iv e l i near readings . From the switch desk 
a r e drawn together all the relays R which connect all the 
gr ids with the p t ent iom ete r Pl ' With the potent i omete r 
equ a l v oltage int e rv a ls can be measu r ed and thus in a few 
seconds the v It age sensitivity and linearity may be 
checked . If ne cessary, the closed circuit current compen ­
sator G may t e so adjusted that the linear portion of 
the amp li f i e r charact e ristic includ es the ent ir e scillo ­
gr a m widt h of 120 millimeters . 

If the r elays ~re Again d i sconn e cted the light beam 
in d ic ato r r ema ins for some time in the same position ; i . e . , 
the condenser remains char e d for some time with the po ­
tentia l 'it finally r ece iv ed . Due to poo r insulation, it 
discha r ges within a few minutes . P e riodic pressure curves 
are theref o r e shifted in the d ir ecti cn of the oscillogram 
width until the mean p r essure with respect to time coin ­
cides with the zero point of the condenser . The zere 
point of tbe osc illo gram must be adjusted according to the 
form of the curve . For this purpose the potential of all 
the cath~des may b e varied ~y means of the potentiomete r 
Pa wh ich, however , shifts the zero points of all three 
c u rv e s s i multaneously . To adjust the zero point of anyone 
curve it is necessary to c onnect an adjustable voltage 
ahead of the grid bet~ e en c o nden~ e r and g r ound . 

Befo r e the os cillo " ram loop is connected in , the p ro ­
tective resi stances S are disconnocted in steps so that 
the measuring c oil of the osci ll og ram may not be overl oad­
ed by an inaccurately compensate d compensat ing current . 

The source of current fo r the anode was a batte ry of 
storage cells supplying 1 50 volts . It is also poss ibl e to 
use a network connection pr o v i ded the current is suffi ­
ciently well smoothed out by filters . If more current is 
suddenly d r awn from the netwo r k the current cannet i mmedi ­
ately adjust itself to a steady condition due to the chok­
ing action of the f i lter . The current must therefore be 
stabilized by means of a sufficiently large cond ense r . 

--------

• 
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THEORY OF WAVES IN VAlVE S.?RINC-S 

In the derivat i ons given below, the following nota­
tion~w i ll be us ed : 

d is the mean diameter of turn 

J, P lar moment o f inertia 

F , cro ss- secti onal area o f spring wire 

0 , diameter of round sprin g wire 

p , number of activ e spr i ng turns 

t , length of spring uncoiled 

~ , reduc ed mass of spring per centimeter wire 
l engt h = 

( F + 4 ~-) ~ ~ F ~ 
d2 / fJ, g 

k, damp ing cons tant pe r cen timeter of wire length 

t , time vari able 

y, lift of a spring c o il at distance x 

x , distanc e f r om the f i xed end of the spring 

Y, specific we i gh t of sprin g 

g , a cc e l e r a tion of gravity 

G, torsi on a l modulus of s p ri ng steel 

v , v e locity of s p r ing c o il 

TO tension of spring 

TO' sp r ing t:en sia n at lift ho 

M, torsional m0ment c o r responding to r 

h, valve lift as f uncti on of cam angle 

ho ' maximum valv e lift 

7 

- - - - ------------------- J 
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To' t im e interval for a d isturDance to run up and 
do wn the sp ri ng 

ws ' speed of prop a gation of an elast ic disturbance 
along the wi re axis 

W , angular veloc i ty f C8,m 

cP , an g u I a r set tin g 0 f cam 

Wo ' natural angula r veloc i ty of spr i ng 

Th e wel l - known d i ffe rential equation for the elastic dis ­
turran ce of a spi ral sp ri ng reads (reference 5) : 

c = 

The vele i ty wi th wh i ch an e lastic distu rbance without 
damp ing is propagated along the spring wir e is : 

~ 2) J ~g 
Fd2 'Y 

( 1 ) 

( 2 ) 

;C;;;-_G'Y!3. It may be not e d t at he value of j v~ is identical 

wi th the velocity of pr o pagation of tors i onal disturbances 
in smooth rods . 

Let a spring that extends to infinity in one d i rec­
tion have the oth e r end moved according to a definite law 
or v eloc ity. Velo ity waves wil l be propagated along the 
spring axis with the d isturban ce velocity . Together with 
the velocity wave a n d unseparably connected wi th it, there 
is propagated a cor r es~onding stress distribution (tor ­
si.)nal st r ess) . 

The f0 11 0w i ng appl ica tion of the pr inciple of conser­
vat ion of momentum shows how the velocity md st r ess de­
pend on ea ch othe r : In the very short i nterva l dt , the 
v e10c ity at the sta r t i ng end of the spring is ch anged by 
amount 6 v, for which a change in fo rce 6P i s requ ir ed . 
This change i n v elocity has mo v ed forward in the time dt 
t he d i stance Ws dt . By the p ri ncip le of conse r vat i on of 
momentum, 

• 

• 
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6P dt = ~ Ws dt 6 v 

6P 6 v 

Subst i tut i ng the va l ues fo r ~ and Ws there is obtained 
an exp r es s ion for the dynamical torsional moment 

( 3 ) 

The dynamical st r ess b ecomes for all cross sections 

wbere the nondim en sional num e rical c oefficient 
only on the fo rm 01 the cross-sectional area . 

F o r steel spri ng s with r ound wire section 

6 T = 360 Av a p p r ox i mately (kg/cm 2
; m/s) 

(3a) 

~ depends 

In a g un sp rin g , for example, the initial stress de­
pend s not on the sp rin g dimensi ons but on the initial ve­
locity at one en d of the reb oundi ng gun barrel, on the 
form of cross-sectional area of the wire, and on the mate ­
ri a l . 

RE F LEC TI ON F THE WAVES AT ENDS OF VALVE SPRING 

For a sp ring of f init e l ength , proportionality like­
wise ob tains be tw een the d i sturbing velocity change and 
the st r e ss wave . The total str ess at any point of the 
spring consists, however , of the superposition of all the 
str es s wav es t raveling up and back. 

The re f l e cti on of a disturbance, consisting of the 
vel o city a nd stress waves, at a f i xed wa ll occurs in the 
foll owing manner ( fig . 7 ) : 

The c onditi on of a fix ed wal l requires that the veloc ­
i t y o f the sp rin g e l ements adjacent to the wall should be 
z e ro at e very instant . This condition may be satisfied by 
supe r posing a mo vin g symmetrical disturbance, as would be 
obt aine d b y mirr~r reflection, on the o ri ginal disturbance • 
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(In f i g . 7 the v e l o cit y wave s a r e drawn symmetr ica l abo u t a 
poin t ( centra l symme tr y ) , sin c e the v elo ci t i e s whe n c ons i d ­
ered a s s c alar s h a v e re v e r sed s i gns . The ve l o ci ty vecto r s 
are naturally also symmet r i c a l about a l ine . ) 

On ac count of the c en t r a l symmetry the v e l o cit y v a n ­
ishes at the wal l at ea ch ins t ant . The wave on the l ef t 
travels to t he ri gh t ~n d i s no t cons i de r ed fo r any fu r the r 
i nvest i gat i on . The wave on the r i g ht t r ave l s towa r d the 
l eft , i s s i mil a rly r efle c ted at the d i s tur b ing end of th e 
sp ri ng , and so tr a v e l s u p and down seve r al ti mes . 

The same p h enomenon wi ll occu r whe n the othe r end of ' 
the sp ri ng is si mu l taneously distu r bed . Both distu r banc es 
wo u ld g iv e rise to symmetrical waves of st r ess wh i ch wou l d 
be douo l ed at the wal l d . 

F i gu r e 7 shows the wave d r awn sho rt e r than the l engt h 
of the sp r ing . On l y two waves a r e the r efo r e supe r posed . 
Actual ly the d i stu r bance p r oduc i ng tho waves i s ve r y slow 
compar ed to the v e l o ci ty of p r opagat i on of the d i stu r ban c e . 
The valv e open in g ti me is ve r y la r ge compared wi th the pe­
ri od To t hat it takes a rav e to r un up and down the 
sp r ing . Th i s fa ct does not i n any \lay affect the, p r oces s 
of r ef l e c t i on but makes the supe r pos i t i o n somewha t mo r e 
c o mpl i cated . 

The wa v e r ef l e ct ed at the f i xed ~all wil l now aga i n 
be ref l ected at the d i sturbed spr i ng end and af t e r an i n ­
te r val ega i n ar ri ve at t h e f i xed uall . At the wall the 
doubled st r ess wn v o s ~dd up afte r tho i nte r val To , the 
wave tw ic e r e flect e d af t e r a n i nterval 2T o ' the wave 
th r ee t i me s reflecte Rf t e r a n i n t e r va l 3To , etc . 

TH E DYNA~I CAL STR ESS OF THE VALVE SPR I NG FOR 

A SI NGLE LIF T OF THE VALVE 

F r om the d i s c ussio n g i ven above, the dynam i c st r ess 
at t he f i xed end of the sp ri ng' i s the r esultant of the 
s t ress waves r each i ng t h Rt en d af t er equal i n t e r va l s ( af t e r 
each p e ri od To ) , t h e str e s doucling at ea c h r ef l e c t i on . 
If we denote the d i stu r b i ng velocity fun c t i on by Vt , then 
the total to r s i on al moment at the fixed wall fo r a s i ng l e 
va l ve li f t and fo r sp ri ngs of any cross se cti on i s a cc o r d ­
i ng to e qua ti on ( 3) : 

to 

• 
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In order to obtain the simplest 
this equation will be converted into 
Since the cam angle cp equals wt, 
may be written vith indices cp, cp-

cp - &0 To, cp - 4w To, etc . 

possible relations, 
nondimensional form. 
the foregoing equation 

tJ,ITo, cp - 2U1TO' 

Let the movable end of the spring move wit h lift h, 
7hich is a function of cp o The velocity is then 

= w .9:Q 
dcp 

and the above equation is transform e d into 

jJF G'Y 
r 

(~!:) + (dh) + Mdyn = -- w 
l2 

2 
g dcp cp dcp Q-w To 

+ 2 (0:l! \ ...... 1 
, dCP )~-2UJ To J 

(4 ) 

For a slow compr es sion of the spring the torsional 
moment of the ~r i ng ac c o rding to the theory of strength 
of mater i als is 

2JG M = --- ho 
~d 

(5 ) 

The d ifferenc e in to r sional stress between lower and upper 
cam pos iti o ns i s therefore : 

(6 ) 

The period of a vibration, which is also the time required 
f o r a wave to run along the spring up and back, is 

To = ;; = ~ ) Xfj: ;~ 

and the angular frequency of the fundamental vibration is 

(7 ) 

By c Qmbining equations (6) and (7) 
I 

J 
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(8 ) 

Divi d i ng equati on (4) by equat i on ( 8 ) 

Th e ratio 
tions p e r 
th e tim e . 

1 w [2 (~~)rn + lio wa U 't" 't" 

+ 2 (dh) + 2 
\clCP r.p- w To 

Wo /w = z, wh ich is th e numb e r of natural vibra­
cam revolution, wi ll b e tak en as a measure of 

We fu rt h e r mo r e set 

2TT W To = z 

so that we obta i n : 

The str e ss t the movi ng end of t he spring will then be 

Tdyn = 1T 

-T~- hoz 
dh) 
dcp cp_ i<~ 

+ .. • • J (10) 

The f ir st wave do e s not enter doubl e d i nto equati on (10 ) 
s ince i t has a ri s e n f r om a v e loc i ty d i stu r bance and not 
by r- ef l e ction . 

Eoth curves r epr e senting e quat i ons (9) and (10) d if­
f e r f r om equat i on (5) on ly by t he supe r pos iti on of the 
a dd itiona l dy n a mic stress . Afte r a time equa l to the i n ­
t e rval o f lift, fun c t i o ns 9 and 10 become periodic . 

F ro m the relations der i v e d above the r esult follows 
that t he magn i tude of natu r al o scillation fo r a s ingle 
lift of the valv e dep ends onl y on th e c am c ontou r and the 
n a tural f r equency of the sp rin g . Th e s p rin g mat e rial and 
dim e ns i ons af fe ct only the natu r a l sp rin g f r e qu ency . The 
computation o f th e dyn a mical str e s s is r educ e d t o the addi ­
t ion o f dh/dcp curv es s hifted fr o m each other by an equal 
a mo unt 2TT/Z . Magg i n 1 9 1 2 der iv e d a sim il a r though ,not 
nondim ensi onal f o r mula . 

• 
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MEASUREMENT OF THE dh/d~ CUR VE OF THE CAM TESTED 

It is not advisable to obtai n the dh/d~ curve by 
graphical differentiation of a measured lift curve since, 
as we know , the method of graphicRl differentiation is very 
i nac curate. The velocity curve, it is true, is generally 
known from the cam computati ons fro m which the workshop 
drawing has be e n made, but due to faults in workmanship 
t he re are erro rs in using the cam pattern that may not be 
neglected . It was therefore attempted to carry outi the 
different i ation experi me ntall y on the test machine and the 
a t tempt p r o v ed successful . 

To one of the flywheels (fig. 4) of 370 millimeters 
diameter, a strip of paper di vide d into millimeter divi­
sions was glued on in the direction of the perimeter, and 
a pe rman ent ho rsesho e magnet was mounted on it. A preci­
sion d i al gage was fixed on the s t and so that on turning 
the flywheel Iff e elerH of the dial gage was moved by the mag­
net . The center of the IIfe ele r' was at a distance of 220 
mil lim ete r s from the ax is of rotati on . The flywheel was 
now turned several times accurate ly ±2.50 mm = to.65° 
(5 d ial gage revolutions) . With a second instrument the 
change in lift 6h which varie d between 0 and 0.80 milli­
meter wa s d ete rmin ed . The measuri ng was repe~ted after 
the magnet was s h ifte d ea ch time 5 mm = 1.55 along the 
mill i mete r pape r. The quot i ents 6h/6w could be repre­
sented without any scattering by a smooth curve as a func­
tion o f ~ (fig . 8) . The accuracy is equal to that of the 
measurement of the change in lift since the change in the 
angle of ± 0 . 65° c o rresp onded to ± 250 graduation marks, so 
that the err o r fo r 6~ c ould be neglected in comparison 
with the errors fo r 6 h . 

The positive an d negat iv e ar eas of the dh/d~ curve 
deviat ed by only about 2 percent and gave the value of the 
maximum li f t t ak ing th e scal e of the figure into account. 
An attempt was next made to appro x i mate the velocity curve 
(shown dotted in f i g . 9 ) by a tri ~ n gular -shaped curve 
(fig . 9) . The superpos ition of the triangles in accord­
ance wi th equa ti on (9) yield ed a curve with sharp angles 
differ ent from th e corresponding oscillograms to be dis­
cussed later . I f , ho~eve r, the c ccurate curve is used, 
there i s obt c in ed the do tte d str ess curve (c in fig . 9) 
which is appreci~bly diffe r ent . 
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SIMULTANEO US REG RDING OF THE STRESS AT 

BOTH E DS OF THE SPRING 

A pa ir of qu a rt z c r ystals was connected at each end of 
the sp rin g . ( I n p i e zo - e l ectr i c measurements two - q u art z 
crystals are used, i n gene r pl , so as to make the in sula­
tion of on ly one e lectrode necessary (fig . 1 0 ) . none 
side of the spr i ng the fo rc e was t r ansm i tted to the crysta l 
th rough a gu i ded c oupling , since ra ther long sp rin gs would 
othe rwise eas ily buckle . A simi l ar gu i de was also pro vided 
at the mov i ng end . The we i ght of the l atter guide , how­
ev e r, necess i tated it s accelerati n so that the acce l e rat ~ 

ing fo r ce was supe r posed on the sp ring force and fo r th i s 
rea son the gu i de 1 as (1 i s pen sed wi t h • 

I n orde r to test the Magg theory fo r the osc ill at i ons 
of a sp ri ng du rin g a sin g le l i f t of the valve , the st r ess ­
es at both end s of the sp ri ng were computed acco r d i ng to 
equat i ons (9) and (10 ) fo r z = 20 oscillat i ons pe r r ota­
tion , and the same cu rv es were c btained wi th the osc ill o ­
g r ap h U i g s • 11 an d 1 2) . 

The oscil l ogram was obtained for a s i ng l e lift by 
damp i ng the r esonan c e vibration of the sp rin g th r ough hand 
con t act . The f ir st 1 i f t aft e r the s p r i n g i s r e 1 e a sed b e ­
hav es , as is ev i dent f r m f i gur e 1 2, as a s i ngle lift . 

Th e wav e char aote r of the e sc illat i ons i s clearly 
brought out by the computed curves toget h e r with the c o r ­
r espond i ng sc ill o~rams . Th e i n iti a l r ise in p r essure i s 
lin ea r l i ke the vel oc ity d i ag r am and not pa r abo lic like 
the lift . The p r essur e ri s e at the stat ionary end occurs 
afte r a de l ay of half a v i oration per i od ; 1. e ., afte r the 
d isturbance has travel ed f r om t h e mov i ng to the fixed end . 
Figur e 13 shows th e stress at e ach end of t he sp ri ng fo r 
the cond i tion of r esonan ce . It may be seen that i t is 
chiefly the f ir st ha r mon ic that is excited . The harmon ­
ics at the ends a r e sh i fted in pnase by 180 0 • The natur ­
a l v i b r ations of odd o r de r 1, 3,5, et c . , p r oduce p r essu res 
at both end s of the sp ring hav i ng a phase shift of 1 80 0 , 

whe r eas those of even o rd e r are i n phase . The p r oof for 
this is found in the follo~ i ng test: 

Inste a d of l ead i ng the stat ic e l e ctrical charges of 
each pa ir of qua r tz c r ysta ls to each amp l i f i er , the charge s 
were supe r posed and condu cted to on l y one ampl i f i e r. The 

, 

-.. 
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oscillogram thus obtained then represents the instantane­
ous sum or ar ithm etical mean of the forces at the spring 
en~s and the eve n orde r s therefore disappear from the os­
cillo g r am . F i gure 14 shows, for example, such a record 
for z = 19. Ac tually, the 38 vi brations per rota~ion re­
corde~ were of the second order. ImmediBtely thereafter, 
the pressure curv e at the stationary end of the spring was 
taken fo r comparison on the same figure . 

If the po les of one of the crystal pairs are inter­
chAnged and the charges at both ends of the springs added, 
the oscillogram will show the difference in spring forces. 
The difference includes, however, only the odd orders. 
The st r ess during the lift i s no longer shown on the os­
cillogram (fig . 15) . Gnly the decreasing vibration of the 
first order is seen and this is built up again during the 
lift interval . 

SPRING OSCILLAT ION DURING A SINGLE LIFT 

AS A FUNCTION OF THE SPEED 

In order to test t he above theory of waves propagated 
in springs, the dynamical stress of the spring was comput­
ed for z = 12 to 2~ osc illations per rotation. Since 
one oscillati on with in this range lasts from 15

0 
to 30°, 

the velocity curves must be added 2 0 apart in order to at­
tain sufficient accuracy . The shifts (360 o/z), that is, 
the amounts by which the velocity curves are shifted from 
each other and must be added are given in the following 
table : 

rh----·-l-l--t--·-----.-'----r------r-----.----r----.,-----r-~-----.---r-----r-----r--~ 

~~--~-~QQB, z=12 13 14 15 16 17 18 19 20 21 22 23 
; rotation 
I -------------~----~----~----~--+_----+_----+_--~----~_4----_4----_4----_4 

Degree 
shift, 
exact 

Degree 
shift, 
apu ro x ­
imate 

30 27 . 7 25 .7 24 22 . 5 21 . 2 20 18.9 18 17.2 16.4 15.7 

30 27 . 5 25 . 5 24 22 . 5 21 . 0 20 19 18 17.0 16.5 15.~ 
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In o rder to simplify the computation, the accurate 
v a lu es o f the shilt~ were r oun ded off to integ ral o r half­
int eg ral v alues . The o rdin a t es of the v eloc ity cu rv e wh i ch 
was d r aw n to lar ge scale were then tabula ted for each half 
deg r ee . Tabl e I, page 17, s ho ws , fo r examp l e, the c ompu­
tat i on nrocedure f o r z = 20 osc illations ne r r o tation . 
The c o l~mn h eade d (dh/d~)~ repeats i tseli

6

in the r ema in-

ing columns eac h time wi th a shift of 1 8 0 • In t h e column 
headed ~ dh/d~ the p r e vi ou s c o l umns were add ed , taking 
int o account the correct s i g n and final ly, in t h e l ast 
column , they we r e multi plied by 1 80 o/h o z X 2 by wh ich 
the v a lues a ppea r ed in nondimensiGn a l fo rm ~d1n/To . 

It may be seen f r om th e table that after the f ir st 
lift a n osc illat i on between Tdyn /To = 0 . 1 39 and - 0 . 116 
re ma in s beh in d . Ac tually th i s amounts to ± 0 .1 25 . The de ­
v i at i on was c a us ed by th e inequality i n the v e locity areas 
mentioned above . In the d i ag r am s l ater g iv en, the e rror 
was c orrect ed ea ch ti me . 

F o r p r act ic a l pu r po ses the forego i ng computati o n n eed 
on ly partly be carri ed throug h . To compute the sp ri ng os­
c il lat i ons , a knowledge o f a c omp l ete oscil l at i on pe ri od 
at th e lower pos ition is r equir ed . 

Th e c ompu ted cu rv es fo r z = 1 2 to 23 are sh own in 
f i gu r e 17 . Fo r g r ea t e r clearness the scales we r e om itted 
s inc e the d ist a nc e between the center lin e of th e t op and 
bo ttom stops a lw a ys corr e s ponds to T dyn/To = 1 . 

Th e same d i ag r am s we r e obta i ned wi th the o scillograph 
and a r e shown to gethe r i n f i gu r e 1 6 . In o r de r tha t the 
o scill og rams may c o r respo nd to a single lift res onance was 
aga in set up as describ ed above ; the oscillation was damped 
and the swinging r e cord ed . The f irs t li ft aft e r th e damp ­
ing is remov ed corresponds to a single lift . Compu tations 
a nd tests we re carri ed out f or the stationary end of the 
sp ri ng, and they a g r ee to a suff ici e nt degree of accur a cy.* 
The o scillograms confirm th e me thod o f Magg . 

*Since the damp i ng could not be r emoved sudd enly and often 
not a ccur ate ly e n ough between tw o lifts , the jags on th e 
os cillogram s a r e somewhat smaller . 

-~) 
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rABL"E I 

I L: 1800 
x L:~ = 

(~h ) (:) hoz -- dCP 

i QCP m 
, 

I cP 18 
~ , 

= 
m = cP cP 36 cP 54 cP 72 cP 90 cP 108 cP 126 T 

I 0 

deg . . % em per deg . 

, i , 
0 0 , 

0 0 I 
r, . 46 ; .46 .046 c:. 
4 

I .92 i .92 .092 -
~ 

; 1. 38
1 

1.38 .133 
8 1. 85 1. 85 . 185 

10 . 2. 31 I 
1 

2. 31 .231 
12 2. 85 ~ . 85 . 235 
14 : 3.38 ) .38 ·338 
16 3. 85 3·35 .385 
18 4.31 0 4.31 .431 
20 4. 92 . 46 5·38 .538 
22 5·38 · 92 6.30 . 630 
24 5· 92 1. 38 7.30 ·730 
26 '6 . 00 1. 85 7·85 .785 
28 5.85 2· 31 8.16 .81E. 
30 5. 70 2.85 8·55 .855 
32 5.33 3.38 8. 76 .876 
34 5.00 3.85 

0. 46 1 

8. 85 .885 
36 4. 61 4.31 f> .92 . 392 
38 4.23 4. 92 9.61 .961 
40 3· 77 5· 38 .92 1 10 .07 1. 007 
42 3. 23 5·92 1.331 10;53 1. 053 
44 2. 77 6.00 1. 85

1 
10.62 1.062 

46 2· 31 5·85 2.31 10 .47 1.047 
43 1.77 5.70 2.85 10.32 1.032 
50 1.31 5·38 3·38 10.07 1.007 
52 . 85 5·00 3.85 9.70 ·970 
54 . 38 4. 61 4.31 0 9.30 .930 
56 0 4.23 4.92 .46 9. r

l .961 
58 O. 3.77 5·38 .92 10 .07 1.007 
60 0 3·23 5· 92 1.38 10·53 1.053 
c2 0 2· 77 6.00 1. 85 10.62 1.062 
64 0 2.31 5.85 2.31\ 10.47 1.047 
66 0 1. 77 5· 70 2 . 85 10.)2 1.032 
68 0 1. 31 5·38 3.38 10.07 1.007 
70 0 . 85 5.00 3.85 9. 70 .970 

I 
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TABLE I ( Contld.) 

(
dh \ 
~1C:P ) 

III 

---+----~---~----T----~~---~--~'---

_m_=-+-_Q) 1", IB I '" 36 '" 54 '" 72 '" 90 '" 108 '" 126 

deg . % em per de.g . 

a --~O . 3g 14. 61 4. 31
1
0 

o I 0 I 4. 23 4.92 .46 
o 0 1 3. 77 5.35 .92 
o 0 3. 23 5.92i1 .38 
o 0 I 2. 77 6.001 1. 85 

32 - . O~ 0 1 2.31 5. ;:;5 2·31 
84 - . 62 0 1. 77 5. 70 2. 05 
86 -1 . 1~ 0 1.31 5.38 3.38 
S8 - 1.69 0 .G5 5 . 00 3.85 
90 - 2. 23 0 .30 4.61 4.31 0 
92 - 2. 69 0 0 4.23 4.92 .46 
94 -3. 23 0 0 3. 77 5.38 ·92 
96 -3. 09 0 0 3 . 231·~ . 9 2 1 . 3G 
98 - 4.07 0 0 2. 77 c . OO 1.85 

100 - 4. 54 - . 0[5 0 I 2.3115 .85 2.31 
102 - 4.92 - . 62 0 11. 7715 .70 2.85 
104 -5 .23 - 1.15 0 1.31 5·38 3·38 
106 - 5.54 -1. 69 0 .85!5 .00 3. 85 
10.S 
no 
112 
n4 
116 
118 
1?0 
122 
124 
126 
128 
130 
132 
1~4 

136 
133 
140 

-5. 85 -2.23 0 I • )CI4.El 4.31 0 ~ 
-6.00 - 2. 6g 1 0 0 14. 23 4. 92 .4c 
- 5. 69 -3.2) 0 0 i3 . 775 .38 .92 
-5 .38 - 3. 69 0 0 13 .23 5·92 1.38 
- h. 92 -4 .07 0 0 2.77 6. 00 1.35 
- 4.38 - 4.54 - .08 0 2.31 5. 85 2.31 
-3.35 - 4.92 - .62 0 1. 77 5· 70 2.85 
-3.33 -~ . 23 -1.15 0 1.31 5·38 3·38 
- 2.92 - 5.54 -1.69 0 .85 5.00 3. 85 
~2 . 38 ' -5 . g5 - 2.23 0 .38 4. b1 4.31 
-1.92 -6.00 -2. 69 0 0 4. 23 4.92 
-1.46 -5.69 - 3. 23 0 0 3. 77 5·38 
-1 .00 - 5.38 -3. 69 0 ,0 3· 23 5.92 
- . 53 - 4.92 -4.07 0 0 2. 77 6.00 
- .08 - 4.38 - 4. 54 - .08 0 2·31 5.85 
o -3.85 - 4.92 - .c2 0 1. 77 5.70 
o -3.38 -5 . 23 -1.15 0 1. 31 5·38 

o 
.46 
·92 

1.33 
1.85 
2.31 
2.85 
3.38 

9·30 
9. t 1 

10.07 
10·53 
10 . 62 
10 .39 
9. 70 
8.92 
8 . 01 
7.07 
6.92 
6.84 
6.84 
6.55 
5.[,5 
4.78 
) .E9 
2.47 
1.22 

.92 
1.16 
1.46 
1.63 
1.47 

.93 
·31 

- . 45 
-1.16 
-1. 00 
- .31 

.45 
1.10 
1.39 

·93 
.31 

T = dyn 
T o 

0.930 
.901 

1.007 
1.053 
1.062 
1.039 

.970 

.892 

.801 

.707 

.692 

.684 

.684 

.655 

.585 

.478 

.31;9 

. 24'7 

.122 

.092 

.n6 

. 146 

.163 

.147 

.093 

.031 
- . 045 
- .n6 
- .100 
- .031 

.045 

.110 

.139 

.093 

.031 
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CO MPUTATION OF AMPLITUDE OF OSCILLATICN FOR 

A SINGLE LIFT BY HAR MONIC ANALYSIS 

Th e v e locity ma y be r ep resent ed by the following 
Fouri e r s e ri es : 

sin ~ + a a sin s i n 3cp 

c o s cp + b a cos co s 3 cp 

1 9 

The meth o d of c omputation in dica t ed by equations (9) 
a n d (1 0 ) may be a p plied to e a ch ha rmon ic separ ately since 
th e p a rtial r e sults may be s u pe r posed for each harmonic . 

The suue ru os ition of the f ir st sine term according to 
equation (9 ) , ;amely: 

a.1 sin cp + a1 sin ( cp - 2;) + a1 sin (cp - 2 ?:f·) + 

+ •... .• a 1 sin (cp - [z - IJ 2;) 

b ecomes z e r o as one may easily co nv i nce oneself by drawing 
a star- 'sha ped ve c to r clia,gram. Th e z vectors form an g les 
of 2n/z wi th each othe r and balance out. The same holds 
f o r the f ir s t cosin e te rm . 

The vect o rs aa and Oa f . 1 f 2 X En d o r m ang es 0 z an 

the ir vector sum li kew ise vani s h es. 

It will be foun d , f inally, t hat the superposition of 
t h e h a r mo nics 1 to z - 1; z + 1 to 2z - 1; 2z + 1 to 
3 z - 1, etc . , cancel out an d on ly the ha r monics z, 2z, 3z, 
4 z, et c . , add up t o g ive t : e superposition sum, namely: 

za z sin 2~ + zaaz sin 2zcp + z a 3 Z sin ~zCP + + 

+ zb z cos 2Q + zb az cos 2 z~ + z b 3 z cos 3z~ + 

Sub s tituting the a b ove in equat i on (9), we obtain the rela­
t ion: 

Tdyn { az 
sin z~ + a2Z si n 2 zc~ + a 3 z sin 3~~ . . . 

= 2n - '0'- h-; +bz co s z c;:J + b a2 co s 2zc,o + b 3Z co s 3 zcp 

(11 ) 
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E~ua tion (11) exn resses the condition that the natural os­
cillations o f the sp ri ng are in r eso nance with the harm on ­
i cs of the d isturbi~g v e l ocit ies and the c oeff ici ent of 
th e indic es denot e s the numbe r of os cil1ation "' lo op s . The 
am n litude o f the fo rc ed osci ll at i on is n r ono rt ional to the 
ex~ iting harmonic of the dh/dcp curve . - -

In o rd e r to c ompare e~uat i on (11) with the previ ous 
r esults , the vel o city curv e of the t es t cam was developed 
in to a Fouri e r seri e s accord i ng t o the ~e th o d of Runge and 
wit h the aid o f 72 ordinat es . From th e r esults of the ex­
am p l e (fig . 9) , i t follows that a smal l e r numb e r o f o r d i ­
n a t e s would not be advisab l e . In th e analys i s, how e v e r, 
the h i g he r o r d inat es may be neglected and th e fo rc ed os ­
c illat i on afte r a single li f t assumed to be a sine wave 
to e' f ir st app r ox imati o n . 

The agreement "betw een the " oscillat i on spect rum" ob ­
tain e d by each me thod is satis f actory (f i g . 1 8 ) . Th e ad­
d i tion of z curv~ shifted with r espe ct t o ea ch other by 
360 0 / z l eads to ~u ic ke r re sults, howeve r, than the har­
m 0 n i c an a 1 y sis . 

EFFECT OF CAM PR OFI LE 

F r om e~uat i on (9) , it fo lIo. s tha t the contour of the 
cam determ in es th e magn itud e of the osc ill a tion ampli ­
tudes . An examp l e of a simpl i f i ed velo city curv e sh ow s 
wha t po i nts must be c ons id ered i n order t o r educe t o possi ­
b iliti es of sp ri ng sur e i ng . I nte r est ing i nformat i on i s ob ­
tain ed ~hen t h e r e i s fi r st inv est i gated th e r esul~s o f a 
s in g l e lift b y t he c a m, (dynam ic c omp ression of an elast ic 
co l umn) . For this i nvest i ga ti o n tw o velocity curves will 
be emplo y ed - n e con s isti ng of a n isosceles tr i angle , and 
one of a h a lf - s i ne wave . Inst ead of z oscillations pe r 
r o t at i on, t ~e r e lation € = TI/To wil l be i nt r oduced , 
wh e re To deno tes the natural pe ri od of the osc ill at i on 
of th e f ir st o rd e r, an d T I the int e rval of lift e~ual 

to the base of the tri a n g l e or of the s in e half-wave . At 
the upper stop the sp rin g r ema ins i n an osc ill at i ng con ­
d i t i on . Th e max i mum ampl i tudes 6Tmax ar e expr e ssed a s 

a fra~t ion of To wh ich is th e stress c o rr espond ing t o 
t he max imum li f t . 

For th e t ri angulR r vel o city curv e the peaks of the 
s tr e s se s are 

. I 
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(12 ) 

whe r e fo r ( = 0 to 2, 2t04,4to6, 6 to 8, etc. 

m = o 1 2 3 

For the s i ne hnlf - wav e within short ranges, the following 
fo rmul as hold : 

for (= 0 to 1 . 5 

1 . 5 to 2 . 5 

2 . 5 to ~ . 5 

3 . 5 to 4 . 5 

4 . 5 to 5 . 5 

a = 1 

" a = 2 

aiT 
- 1 2( 

s in TT 

a = 1 + 2 sin iT (-2 
2 ( 

a -_ 2 0 (-1 + 2 lOn iT (-3 s 1 n iT 2 ( s "2-(" 

a ~ 1 + 2 sin iT ~=~ + 2 sin ~=1 
2 ( 2 € 

(13 ) 

Both fo r mulas a r e g r aph i cally g iven in figure 19 and ~ere 
obtain ed i n the following way : The curves were graphic­
al ly supe r posed i n acc o r dan c e wi th equation (9). This 
representation ser v ed on ly as an approximate indication 
and for g r eate r accur acy the addition was ~erformed analyt­
i cal ly . A spec i al formu la Was thus found for each region 
b etween the t a n gent d i scont i nu iti es in figure 19. The for­
mulas fe r all the su bdivisions arranged in series showed a 
ce rt ain re gularity and from these, formulas (13) and (14) 
we re der iv ed . 

There a re, ac cordingly, certain ratios for TI/T o 
fo r wh ich no - or onl y slight - oscillations are brought 
abo ut by the compressi on (z e r o point of the first kind) . 
If th e upper po rti on of the time-v elocity curve of the 
sp rin g en d as it mo v es up, is symmetric£l with respect to 
the c ente r of the l i ft , and if the up and down motions are 
symmetr ic a l, then the fo llowing characteristics appear: 
The fo r m and ampl i tude of the oscill ation are congruent 
fo r the up and down trave l and differ by a phase shift 
wh ich depends on the ti me int e rval 1° between up and 
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down travel . The osc i llati ons of the two halves of th e 
cu rve e ith e r a dd u p o r canc e l each othe r ac co r d in g t o the 
phase sh i f t (zero po int of the second k in d) . In o rd e r to 
illus t r ate this behav i o r, a few oscillat i on d i ag r am s are 
sho~n on f igur e 20 fo r the tr i angular veloc ity curves with 
T II = 1 . 5 T r • Fo r z = 26 . 2 an d. 13 . lo r T r / T 0 = 4 an d 2 , 
no o scillations a r e se t u p at the u ppe r travel and there~ 
fore a l so n on e at the l ower . F or z = 2 1 . 8 and z = 1 7 . 5 
the r e a r e some o scill a tion s af t e r the up travel but these 
d i sappear during t he dow n travel . This c ase always occurs 
wh e n T il is an int e r a l mult i ple of the natur a l vibration 
pe riod To . 

The greates t amplitud e wit h i n the range invest igated 
occurs at z = 1 9 . 6 whe r e the phase d i ffe r en c e i s such 
that the ampl i t ude is doubl ed . Th e tr i a ngular v elo city 
curve inv est i eated c o inci des approximate l y with th e cu rv e 
of f i gu r e 8 . Sinc e the l atte r i s not ac curate ly triangu­
l ~r , a co n d iti on of complet e absence of osc ill at i on c ould 
not be attained a t z = l ~ ~l, 1 7 . 5 , and 2 1 . 8 . 

It wou l d s eem natu r a l to de s i gn a c am p r odu cing no os­
c i ll ations by combining , by h a rm on i c analys is, the f irst 
12 ha r mon ics . This c am would p r oduce ab solutely no vibra­
t i on s fo r z > 1 2 • The s t r a i g h t 1 i n e s 0 f the up pe r an d 
lower part of the cam "ould, how eve r, acco r d i ng to t h is 
synthesis hav e t o be rep lac ed by ~ wave fo r m of contour . 
A more p rom i s in g me th od would be to use a r ange of z g iv­
ing few oscillatj.ons ; fo r examp l e , z = 21. 8 to 28 . 4 (c om­
b i nation of a z ero noint of the f irst k ind with two z e ro 
po i nts of th e secon~ k ind) . I t should be noted also that 
the oscil l ation ampl i tudes fo r a s ine half- wave a r e small ­
e r th an thos o fo r a tri a ngular wave . 

The same z e r o points as in figure 1 9 appea r when a 
sp ri ng with out mas s t o wh ich a po int mass is attached at 
t_e cente r i s caused to vi br ate . e are the r efo r e justi -
f i ed in the assumpt i on t ha t a lo ng spring with a guiding 
p i ston in the cente r would show the same zero p o ints as a 
sp ri ng u it hout a c oncent r ated mass if the natural fre ­
quen cy f is co mput ed according to the Dunke rl ey fo r mula : 

I 
f2 == 1 + 1 fa f-f2 m 

( 1 4 ) 

fm is the natur a l fr equency of the c on c ent rat e d mass 
attach ed to . a spring assumed without mass . 

ff is the natu r a l fr equency of sp ring with ou t the 
concent r ated mass . 
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THE SETTING UP OF RESONANCE 

If a mass that is elastically supported is suddenly 
acted on by a sine varying force having the same natural 
frequency as the mass , the latter will be set vibrating in 
resonance and the amplitude will continually increase un­
t il af t er a certain time a steady state is reached. A 
spring behaves in the same way . When the shaft speed is a 
multiple of the natu ral oscillation period there would be, 

'if there were no damping , an equal increment in the oscil­
lat ion amplitude for each li ft . Due to internal friction 
in the material and air fr ic tion the amplitude between the 
li fts decreases . A steady state is reached when the loss 
pe r rotati on due to damping is equal to the amplitude for 
a single lift . 

The setting up of the resonance vibrations may De 
mathematically considered in the following waY: 

The amplitude of the oscillation, as will later be 
shown experimentally , dec reas es according to an exponen­
tia l law, the ratio of two successive amplitudes being 
constan t 

Afte r one cam revol"J.tion, i.e., after 
tions the amplitude ratio becomes 

Z oscilla-

The damped harmonic oscil lati on may be represented by 
a vector whose end describes a logarithmic spiral. In the 
case of resonance the vector, during one revolution of the 
cam, rotates exact ly z times for every ~600. If the os­
cillation amplitude for a single lift is A (measured in 
nondimensional units Tayn/To ) this is superposed on the 

reduced ampl itude of the p rev ious lift A a~. The previ­

ous l i fts contribute the amounts A a8~ , A a 3Z , A a 4Z , etc . , 
and the ir sum amounts to 

A (1 + •••• ) = 
A -----z-

1 - a 
= AR (15 ) 

To obtain the amplitude of the final resonance vibra-
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t i on the ampl itu de fo r a single stroke A must be mult i­
p li ed by the r esonan c e factor R ~ l/l-a z . 

Figure 2 1 shows the r esonance fac tor plotted fo r 
z ~ 5 to 50 and An/An +l = 1 . 005 to 1 . 10 . The chart is 
suff icient for all prac tic a l pu r poses . 

Be t "tV e e n t wo r es 0 n an c e nos i t ion s - i . e . , for z = 
a + 0 . 5 (a is an intege r )-the phase d i fference of two 
superposed vecto r s is no t ~60d as above but (a + 0 . 5) 360 0 • 

Each vecto r the r efore acts in opposition to the p revious 
one and the " interme d ie. t e resonanc e fa ctorll becomes : 

In figure 22 the sp ri ng v i bration was computed fo r 
~ = 19 . The spaces i n between stand for th e lift which 
fo r simp lici ty was not i nd icated . Af ter ea ch stroke the 
oscillat i on receives the constant increment A until the 
loss by damp in g becomes equal to A and the steady state 
is reached . 

For z = a + 0 . 5, if the r e were no damping, the suc ­
c ess iv e rotations would alternately g iv e a mp litud e s of 2A 
and ze ro . On account of the damping, this does not occur 
but instead the condition shown on figure 22 for z = 1 8 . 5 . 
According t o the amount of the damping, a value between A 
and A/ 2 i s reached in th e steady state . The same app li es 
to the bu il ding up of the osc il lations fo r z = a + 2/ 3 ; 
fo r examp l e , z = 1 8 - 2 /3 . Figure 22 should be compared 
with the corresponding os cill og r ams, f i gu r e 23 . Figure 24 
shows the osc illo g rams fo r the reson ance positions fo r 
z = 12 t o 2~ and w ~ s obt ai ned in the same manner as f i g ­
u r es 1 6 an d 1 7 • 

If the th eo retically computed amplitudes for a sin­
gle lif t (fig . 1 8 ) a r e mu l t i plied by the reso nan ce fa c to r 
ob tained f r om figu r e 2 1, there are ~ btained the theoret ­
ical resonance amplitudes of figure 25 , wh i ch are in sat ­
isfactory ag r eemen t with the _osci11ographed amp litudes of 
f igure 24 . Th e damping r equired to c ompute the resonance 
fa c to r was dete r mi ned by the exneriment s to be described 
later . 

---"- - --'- ------------------
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FORCED SPrtING 0SCILLATI N WlrH DAMFING 

The gene ral solution of the differential equation of 
damped spr i ng osci ll at i on i s , according to Hart (reference 6) : 

ax) + ° 2 cos (w t ax)] + 

+ e+ b x [0 3 s i n (w t + ax) + 0 4 cos (wt + ax)] 

At the f i xed end of the sp ring, let x = 0 and y = 0, 
whence we obta in : 

C1 = - C3 C2 = -°4 
Let the end of the sp r i ng x = 1 be moved by an excentric 
i n acco rdance wit h the law 

(Y)x =1 = r s in wt 

Th i s end condit i on g ives two more equations for determin­
ing the c nstants . Car r y i ng out the computation, we ob­
tain for the damped and fo rc ed spring oscillaticn, the" 
following equation : 

y _ e - bxI[e- bt _ eb1] cos at sin (w t _ax)+[e - b1,+e b "L] sin at cos(wt-ax) ~ 
- - -----t-----------------------------------------------------7 -
r e - 2b1 _ 2 cos 2 a"L + e 2b "L 

~~:{I~=~~=~~~lQQ~_~l_~lQi~l~~!l~l~=~~~~~j_~~~_~l_QQ~i~l~~!l} 
e - 2b 1, _ 2 cos 2 a"L + ~2b"L 

From th i s equation , by neglecting the damping coef­
f ici ent b , the re is obtained the simple relation which 
was f ir s t g iv en by Frgh l ich : 

y = r ~lQ_~l_~l!L8,~ 
sin a"L 

(16 ) 

(17) 

The constants a and b may be determined by substi­
tut i ng a pa rt integral into the partial differential equa­
t i on : 

(18 ) 
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The change s i n the sp rin g force at t he fixed end of the 
spring a r e ob t a i ned by the partial differentiat i on of 
equation (1 6) : 

Since we a r e inte r ested only in the amplitude fo r the 
case of resonance we set i n equation (16), a s the c o ndi ­
tion fo r resollanc e , the app ro x imatio n 

~ = fT 

The re sult of both ope r a ti ons gives: 

The fo r ce for ve r y slow motion i s equal to 

P r . t o = - C sln W 
1, 

an d th e r atio of amp litudes is 

(19 ) 

F rom equation (9) we obtain for a single sine motion of 
the spr i ng en d (z = 1 , h = r) 

= 2fT 

The l'e sonanc e factor (fo r z = 1) 

1 

is tr a nsfo r med by the means o f the relation : 

2b ~ 2 k 1, k 
To ~n 

An = = = 
2 ~ Ws 2 ~ An +1 

into 
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The approximate equation then reads: 

(20 ) 

a nd differs f r o m equati~n (19) only by the factor e b1 

which , for springs that are damped by the air resistance, 
may be set equal to 1 to withi n a few pe r cent . The dif­
fe r en ce c onsists in th e neglecting of the damping during 
t h e lift in the case of the appro~imate solution. 

FREE VI BRATION IF THE SPRING 

The fundamental f re quency for round steel springs is 
c mputed by the fo r mula 

where 

/) 
f = 358 ,0 00 --z pd_ 

i the diameter of wi r e in millimeters 

d, mean Ci amete r of c oil i n oillimeters 

p , number of coils 

To test the accura cy of the calculation, the natural 
f r equen ci es of 10 spr ings of various dimensions were meas­
ured . The sp ri ngs were set vibrating at their natural 
f r equenc ie s and an osci ll og r am obtained for the steadily 
d i min i sh ing vi b raticn s . By comparing with the accurately 
calibrated sine line o f the time- ree rding instrument, the 
fo ll ow i ng natural frequencies we r e established : 

0 = 3 4 4 . 5 5 . 5 6 mm 

d = 36 3 8 38 4C' ~C' mm 

p = 9 1 2 . 5 9 . 5 9 4 turns 

f measured = 104 85 114 141 31.r8/sec. 

f cf)mput ed = 92 79 117 137 '335/sec. 
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I) = 6 6 6 . 5 7 8 mm 

d = ~8 42 44 43 40 mm 

p = 11 1 4 9 7 15 turns 

f measured = 135 87 152 198 119/sec . 

f cJ mputed = 1 :)5 87 133 194 119 . 5/sec . 

The deviations Br e such that any attempt to avoid 
resonance by computation beforehand is unsuccessful. The 
resonance speeds at a n~tur al frequency of 6,OOO/minute , 
for example , a r e : 

300 , 3 1 6, 033 , 353, 375 /minute 

The critical speeds lie so near each othe r that resonance 
is set up in ~he sp ri ng almost at any eng in e s~eed since 
the f r ee oscillations of identical springs deviate slight ­
ly du e to faults in manufacture . To avoid spring surges 
it is t h erefore necessary to compute on ly the ran ges wit h ­
i n which there occurs littl e vibration if there is no pos ­
sib ili ty of obta inin g sufficient damping . 

TH E DAMP I NG OF SPRING OSCILLATI ONS 

The gene ral differential equation for damped s p ring 
vib r ati o n acco r d i n g to equation (1) includes the follow i ng 
so luti on for the f r ee o scillation : 

- -~ t :f7 {[ Av cos wvtJ 121! y = e 2 ~ s i n wvt + Bv s i n x + e 

+ [ Cv s i n wv t + Dv wv t l VTI 
x} cos co f) -,-

:-
.-J 

whe re Wv = Iva w0
2 

a 

(~~) Wo = ~1! TI 
1 

Ac co r ding t o the mode e f excitation, the dying-down 
vibrat i on may be c ons i dere d as ma d e up of standing waves 
of various o rders . The pe ri o d cha~ges ve r y little with 
the o rd e r . Exam p le : 
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Examp l e : Wo = 1200 ; k/21J. _ 5 

W 1 = 0 . 9992 w,,; Wee = 1 . 000 wn 

. A fte r a c omp let ed f ~ndamental vibrati~n, ther~ is set 
up betw een the fundamental and a higher harmonic a phase 
shift of at most 0 . 3° . The form of the curve ther~fore 
ch~nges little during the dy ing do\n of the oscillaticn as 
5rohlich bas shown in a simple experiment. 

The form of the solution likewise shows, however, that 
the amplitudes, and therefore als ~ the stresses at the 
s~ring end , dec r ea s e at the same rate in the same time in ­
t~rval fo r all o r de rs according to the amount contributed 
ty the quotient k/21J. . The reduced ~ass per centimeter of 
w~re IJ. depends on ly 0n the \ ire diameter and nn the spe­
cific weight, and k is a function only of the wire diama­
~er . It is therefore t~ ~e expected that k/21J. is like­
wise dependent crnly on the ire diameter. In order to test 
this assumption, the d2mp ing or the osc i llograms which were 
~s ed to determine the frequency was evaluated . In ~otain­
:ng the damped curves the sensitivity of the indicator was 
so adjusted that the vitrations died down in the same man ­
ner as those or surin vibrations. The oscill~gram of such 
a vibrati n (fig . -26) reveals vibration phenomena 0f a type 
that could not t e entirely explained. It was at first 
th0ught that they wer~ v i b r aticns transverse to the spring 
axis . Similar phen ~ena ere revealed to a slighter extent 
in the Case of the othe r springs . 

Figure 27 shews tte logarithms of the amplitudes plot­
ted against the oscil l ation number for several springs . A 
straight line was d r awn through the scattered points. (The 
series of points fe r ming a ~ave oelongs to the oscillcgram 
(fig . 26) . ) The inclina t i on of the straight lines deter­
mines the value of the damping . The magnitude 

= f "L n 
An 

An+l 

plotted aga inst the wir e diameter (fig . 28) shews that the 
former is affected hy stil l another factnr . It was par­
ticularly ooserved that in the ca~e of f . ur springs having 
equal wir e diameter and approximately equal diameter of 
c oils , the damping was smaller the longer the spring. The 
values fc~ the damping ~ere: 

I. 

Ne . of turns p = 4 11 14 

k/21J. = 7 . 2 3 . ~ 1.45 
17 } 0 = 6 ; 
0 . 58 

d - 40 mm 
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This effect can on ly be explained a s due to the addi ­
tional damping a t the end of the spring , which we may de­
no te as the loss due to r eflect i on, a nd which is composed 
o f t he following components : 

1 . ' Friction of the sp rin g wire at the spring end . 

2 . Friction between the spr in g coils during the 
un winding of the l a st coil . 

3 . DiRsipation of so und ene r g y f ro m the spring 
e nd to the eng in e mass . 

That r efle c tion l osses wh ic h cann ot be taken into a c­
count by computation occur, could be ,conf irmed by the fol ­
l owing test : 

The same sp ring (6 = 6 ; d = 40; p = 17) und e r 
identical c onditions was su c cessiv e ly suppo rt ed on l eather, 
rubber, an d Ilpolype rite,1l an d investi ga ted fo r damping . 
The supports ~onsisted of r ings of 5 millime t e rs thickness 
a nd of th e snne i ns i de ~nd outs i de d i am et e r as the spring . 
Th e rings we r e i nse rt e d at e ach end between the spring a nd 
the s p rin g was h e r . Fi gure 29 sh ows the oscillograms ob ­
ta i ned, the i nitial amu litud e bei ng the same in ea ch case . 
(Th e softe r th e suppori , th e g r eater the l~ss by r e flec­
t ion . ) Considerab l e d <. mping may be atta in ed by pressing 
s h eet - me tal tongu e s agains t the spr ing, and the dampi~g 
could be adjusted by t he ~mount of p ressure app li ed . In 
f i gure 30a , fo r example , th e vibrat i on dies down compl e te ­
l y du rin g on e r otation ; 30b was obtained with the s p ring 
in l ubri ca ting o il . With cylind e r oil no os cillations 
could b e obs e rv ed bet wee n z = 1 2 and 24 . In o rd e r to ren­
de r the magnitude of the d amp ing visible , the spring was 
slackened to s uch ~n extent that it began t o knock against 
the followe r and started a v i bration (f ig . 30 c). 

EFFECT OF I NITIAL SPRI NG TENSION 

I n accordance with th e theo r y deve l oped, the ampli­
tudes of the resonanc e vibr a tio ns should be independent of 
the i nit i al sp rin g tension . Swan and Sa vag e found , however, 
a n increase in th e amplitu de wit h i n crea sing initial t e n ­
s i on . The a uthor has, t herefo r e , fo r z = 20 , varied the 
in itial tensi on f r om th e kno c k i ng spring c ond ition until 
the condition whe r e the coils almost t ouched (fig . 31). · 
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The average p l ay betwe e n th e turns at the upper cam posi­
tion was chos e n as parameter ( f i g. ~lc). The natural vi­
orations incr ea se somewhat with i n creasing initial tension 
i n ag r ee ment with the re~ults of Swan and Savage, since 
the spring b e comes somewhat shorter by the compression of 
the s~ring end (fig . 3lb) . 

At a p l ay o f 3 mill i meters the roller begins to knock 
~nQ for th i s reason the spring is damped some~hat. As the 
play becomes smaller the amplitud e dim inishes almost ipap­
~re ci ab l y whil e there i s ~ strong decrease between 1 and 
0 . ~3 milli mete r . The damp ing h e r e increases because the 
spring coils a t the upper cam position touch each other . 
A shr ill sound is em itt ed wher ea s for a.smaller initial 
tension a d eepe r hum co rr esponding to the natural frequen­
cy is heard . 

EFFECT OF PLAY BETWEEN CAM AND FOLLOWER 

Swan and Savage found a strong variation of the vi ­
bration frequencies with the amount of follower play. 
This i s to be expected s inc e the velocity of the spring 
end v a ri es with the a mount of play of the roller. Swan 
and Savage incr eased the amount of the play up to 1.5 mil ­
limeters fo r a lift of ab out 9 mi llimeters . In the pres­
ent s e t - up the li ft was 1 8 mill i meters, and for a play of 
the r ol l e r of 0 . 8 mil limeter , the knock i ng was so strong 
that no incr ease in the p lay w~s possib l e . Within this 
limiting v alue diag r ams we r e obtain ed for four different 
plays fo r a single lift and comu ared with the theoretical 
one (z = 20) . The comp arison ~hows that the amplitude 
for a ·p l ay of C to 0 . 8 millimeter between cam and follower 
docs not appre ciab ly v a ry (fi g . 32). 

When the vibrations are few , for example, z = 17, 
the conditi ons are d i fferent . In this case a certain ve ­
locity is sudden ly set up at the beginning and end of the 
vel o city curve . here a s mal l triangle is cut off. With 
these triangl e s supe r posed acc o rdi ng to equation (9), 
th e re is obtained an os cill ation diagram showing a large 
numbe r of shar p po in ts (fig . ~3) . There was no 8~reement, 
howeve r, with th e os cill og r am since the shocks due to the 
str kes were transm it t~d to th e quartz crystal and cov­
e r e d up the details on the oscillogram. 
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Assuming the camshaft to De ac c e l e r a t ed to a con­
s tant rotational vel oc tty befo r e the f irst lift s troke 
beg ins, t h en at the start of the f ir st stroke the tension 
increases lin early with t he velocity of the sp ring end u p 
to the r eturn of the disturbance which is r ef lect ed at 
the fixed end of the sp ri ng . The succeeding st r esses a re 
the r esult or the superposition of al l the d isturbance 
wav es that run up and back and o scill ate about a mean lin e 
that increas e s line p- rly with t he lift . 

Af t er the f i r st lift there r emains behind an osci ll a ­
t i on wh ich, fo r examp le, fo r 1 0 natural vibrations pe r r o­
tation, contains the l Oth, 20th , :<'Oth, e tc. harmonics of 
the vel o city curve . The ampl i t u de of the vibration i s 
mo r e e a s il y computed with th e aid of supe r pos i t i on than by 
ID e pns of harmonic analysis. Th e m~gnitude of the vibra­
tion excited after the first li ft as a func t i on of the 
numb e r of v i b r ation s per tu rn in dic a tes to the designer in 
what Tan g e of e n g ine s p eeds part icul a rly l a r g e r esonance 
f r e quenc i es a r e s et up . I t i s shown by means of an exam ­
ple ho~ a suf f ici ent l y large r ange of rotAtional sp e eds 
may be obt a in ed within which li ttl e v i b r at ion occurs . 

I f th e natu r a l f r e quency i s n n exact multip l e of the 
cam s pee d the vibration amp li t ud e mill incr ease by the 
same 0.mount e.f .t e r ea ch st r oke . As a result of the damping, 
howev e r , a steady stat e will be re a ched as soon as the in­
crease pe r rot at i on has become equal to t~e loss by damp ­
ing . In a set of curv es a resonance fa c to r is g iv en by 
wh ich the comput e d ampl it ude of the first li ft mus t be 
multipl i ed i n o r de r to obtain the f i nnl steady amplitwde . 
Th i s r esonance facto r cha n ges wit h the amount of the damp ­
ing and with th e n u mb e r of osc illati e n s pe r r ota ti on . 

The damping depends not only on the air resistance 
a nd on the int e r nal fricti on of the mater i a l but a ls o on 
the mann e r in which the sp rin g ·i s supp o rt ed (loss by r e ­
f l e c t i on) . I n lubricating oil t h e damping is so large 
that the vibrations d i e down before the next lift stroke. 

The phenomena d es crib ed were confirmed by numerous 
tests IT ith c ams and sp rings . 0scillograph measurements of 
the fo rc es at th e sp ring ends show satisfactory agreemen t 
wi th the curves c omputed befo r eh a nd . 

The p r esent ~ o r k was carr i ed out at spare int e rv a l s 
a t the p hysics lab o r ato r y of the fi r m of Sulzer Brothers, 
Wi nte r thu r . The f ir m k indly p l ac e d at my d isposal the 
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s p ring test a ppara t us , t he S i emens Universal o scil l o­
gr ap hs, a n d the qu a r t z in d icato r s , fo r Nh ic h I he r e take 
th e opp or t uni t y t o exp r ess my s i nc e r e th a n k s. 

I wi sh to tha nk P ro f e s so r Ei chelberg, who submit te d 
my r ep ort , fo r the k in d int e r es t h e has s ho wn t hrough ou t 
my inv es ti gati ons . 

Tr ans la t i on b y S . Re i ss , 
Nat i onal Adv i s ory Committ ee 
f or Ae r on au t ics . 
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Figure 1.- Multiple 
reflection 

of a dilturbance at 
a spring. 

"\ r= "\ (;;5 \ r;: l (;;4\ r= l r: l r= l r;: 
V 29 V 28.5 V 28 V 27.5 V 27 V 26.5 V 26 V 25.5 

V:v: If: if::: V".... v= ~ ..... v: 302 308 314 321 328 335 343 352 

25 24.5 24 23.5 23 22.5 22 21.5 

\ r:o '\ r,68 i f:. '1 r:8. 'V"!. ~8 i ~9 U-:o 
~ 21 V 2~~.5 f -~o V ~:.5 1 19 18.5 f18 , 17.5 

7igure 5.- Re80nance frequenciel of Ipring with 
natural frequency of 7540/mln. 

BOl. 260 to 4JO indicated rotations per minute. 
Bos. 29 to 17.5 indicate number of free 
olcillations per rotation. 

ligure 2.- Sketch 
showing 

recorcline of 
Tibration b.1 means 
ot a bridee. 

~------~------------- .--

Jigure 3.- Motion 
of the 

cent.er Ipring 
coil obtained with 
the apparatUi of 
fig.2 . 

Figure 4.- Section 
through 

the telt apparatuI, 
• = te.t .-pring. 

a 
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cm/deg. 

0.07 
0,06 
0,05 
0,04 

I ~f~~~~~~~~~ijijDlU 0,03 = 0,02 
0,01 

40· 

1icure 8.­
V810c1\¥ curv •• 

Jlgure 11.- Compu\ed 

100· 120. 140' 

- 2 ~---------+-+4 

. tre •• curve. 
a, at t be atation­
ar,y end of tbe .pring. 
b, at the moving end 
of the . pring. 

o 

:rl-t----r----,----, 
I 
I 
I 
I 
I 
I 

+ 154 -!... 

~PI 

+ 164 L~---L--___L __ _.J 

Jicure 6.- Scheme of connection. 
of amplifier. 

1igure 12.­
OacUlographa 
ot .tr •• ae. 
ot ftc.ll. 

cm/deg. 

0,06 
0.05 
0 04 
0,03 
0,02 
0,01 

tIt. 
1,0 ---- - --.. 
0.9 
0.3 
0.7 
0,6 
0,5 
(},4 
0,3 
0,2 
0,1 

~. W •• l~1.1Wl~ 

<p -

11g.9 

a 

a, at .tatlon­
&.r¥ end of 
'pring. 
b, at mo.,l:ng 
end ot .prlDc. 

l1gure 9.- Stre •• variation for a 
~~::f£d .lugle lift for a = 16.4. 

a, Curv. to replace the exact 
dh/ d q> curve. 

b, Strel' computed from cur.,e a. 
c, Strels computed from exact curve. 

l1gure 10.- Section through spring 
~~~c with quart. indicator. 

a, rigid ,upport. 
d b, quartz c17'W. 

c, electrode to amplifier. 
l1c.10 d, moveable guide. 
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c 

d 

Figur e 7 ._ Refl ecti Jn of disturbance at a fixed wall . 
a = stre ss . c = m,ving eni )f spring. 

1 = r3f1 ecting wall . b = vel ocity . 

z = 
22 

/::''fmax 

500 ! r 
300 t r [ I 
100 ! It . l ' I I t I 
z = 12 I 16 I 20 I 

14 18 22 

lli/ d cp 

= 

.10 

. 06 /::'1'max 

.02 'f .) 

1'dyn - 1'0 

r . 06 

. 02 

/::''fmax 

ligure 18 .- Amplitude of harmonics computed fr Jm the 
Have theo ry and c omparei with the r esul ts 
uf harm~nic analysis. 

.15 

/::''f 
~.10 
1'0 

. 05 

, :\' I • , I, , 
I I , 
, I \ 
, I ;, 

" I 

1 2 3 4 5 6 
TlTo 

Figur e 1 9.- Oscill a ti ', ns after spring is compressed, then 
r -.: l eas t) d. . a = with triangular f )rm ) f velocity 

curve . b = vlith v ~ l Jcity curve in f orm ') f half sine Vlave. 
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Fi gure 14.- a, J»roof of the exidaJlce of the second (more accurate17 
even) harmonica by adding electrlcal17 the forcel at the 
.pring end8. 

b, comparison with the forces at the Itatlonar.r end (. = 19). 
Both curves were obtained one directly at'er thl other. 

rlgure 13.- Spring Itre •• el at 
both end. of ·the 

.pring synchronoully recorded 
(I = 20). 
a, Itationar,y end. 
b, moving Ind. 

t--a I 

rieure 15.- Ditterence of end 
pre.lure. 

a , buildIng up a&&ln of 
damped olcillations duriDC 
the lift Itroke. 

b, d¥ing down durlnc don 
motion of the cam~ 

11prl 16.­
Osci11ocraml 
tor lincle 
11ft. 

z= 
23 

21 

20 

19 

18 

17 

15 

15 

14 

12 

ligure 17.­
Same 
curves 
computed. 
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Figure 20.- Computed ItrelS 
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ricure 21.- Re80nance factor for 
different numbers of 

o8cillation8 per rotation. 

J'1.cure 22.- :Building up aprin& 
vibration8 after 

the flrat 11ft (computed). 

curv.. for a 
velocity curve. 

1. 

2. 

3. 

4. 

Figure 23.- :Buildillg up ~rin& 
vibrationa, 

obtained with o8cillograph. 
No •• 1 and 2: & = 19 

3: I = 18 2/3 
4: & = 18 1/2 

EERE trE?f?E b L 
t L ~ ~ ~ l l L ~ 

r-__ r- -- r---, :' ...... r-.. -.., r--'" r- .... 1 r ........ , r"---, I ': 1 I I: I I I: : I I I : r---- .. : I: : I I' I I ! I I I I : :: : 

: :! ! 1 :! :: :: :: i: i: Ii f 
l ____ J L __ -J I J: :: !: ! i :! I : :! i 

Z - 19 ..... -- L ........ ~ 'L .... ): .J: .J: ..,J: .J I J 
.. - 1. ... - L, ...... - t,......... t........... L.,. ........ 

[_-_~~ ~~J [~:3 ~~~~] [~J [~:~ [] [.-J [~~ ~~~3 
z _ 18'/, 

;--~J [:::3 ~~~~~= [=~~~ [~~J C::J [:~~J [=:~:: E~~~~ ~=~-) 
-.--Z - 18'/, 
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23 

22 

21 

20 

4'( .... 
0.3 To 
0.2 

.1'( .... 
0.3 ---r;-
0,2 

0,1 

lic •. 24,85,26,3'7,28 ,30 

Compufed 

19 
I1cur' 25. - Be.ounce ampl1 tud •• &a coapu'" 

and &a obtained with 0.cil1ocra~ 

18 

17 

16 
'1cure 26 ~ - D,rlnc 40wu ot .priDe vibration. 

15 

Q 
21' 

14 

'igure 24.- 5 

13 Oscil1ocrama 
4 for 

12 resonance 3 
+ 

conditions. + 
+ 

2 + 
+ 

+ 

o 1 2 3 4 5 6 7 8 9 mm 

ligure 28.- DamplQc of te.,.d .pring. a. function' of wire di~'er. 

" d p 
7 43 7 

4 .5 38 9.5 

6.5449 

3 36 9 
6 38 11 
6 40 4 
5.540 9 

20 40 60 80 100 

l 1cw'e 21.- Graphical Mbrml-
. _tioa ot dampiD&. 

ft&ue 30. - &;PriDe .1braticm 
Wi'h .tl'ODC 
4ul.P1D&. 
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a 
Figure 31.-
Effect b 

of i nitial 
tenBion : 89.5 0.50 
a, compar-
ison 

b frequenc,f: 
5OO/ lec. 
b, natural 
' pri1l8 
frequenc,f 

c per . ec. 
c, play 
between 
coU a 
in mm. 

d 

Figure 29.- Effect of yielding supporte 
on damping. 

a , without any lupport . c, l eat her ring. 
b , polyper ite ring . d , rubber ring. 

Jlgure 32. - Comparison of computed . prine 
force. with o.cillo~ram. with 

pl., of roller var,ylnc between 0 and 
0. 8 DIm. (. = 20). 

89.0 1.0 

J l gure 33.- Increase of 
olcillation 

amplitude due to pIal 
of roller; 
a , wi thout pl~. 
b , with 0.8 DIm. play 

(It = 17). 


