


VALVE-SPRING SURGE*

By Willy Marti

fn account of the high-speed motion of an injection
Valve there are set up oscillations in the valve spring
and these impart & greater stress to the springs than would
be the case if their inertia were neglected.

Since, for reasons of space and weight-saving, valve
springs are more highly loaded than the other machine ele-
ments, 1t is essential to know the actual maximum stress
of the spring. This knowledge is obtained either by de- .
termining the vibration strength of the springs after man-
ufacture or by measuring the actual spring stress as a
function c¢f the speeds under which it is operated.

A knowledge of spring oscillation is also useful for
the following reason. As the valve is opened the moving
mass 1s accelerated by the pressure of the cam and again
decelerated by the spring, the deceleration being assisted
by the friction of the guide. When the valve closes the
mass is first accelerated by the spring and then deceler-
ated by the cam, and in this case the friction diminlishes
the accelerating action of the spring force. As a result
of the spring oscillations the force of the spring is de-
creased for brief intervals so that there is set up a
knocking at the bearing roller at lower speeds than would
be the case if there were no such oscillatiens.

Under the conditinn of resonance the oscillating
spring contributes to the general neise, since the natural
frequencies of the springs commonly employed correspond to
the range of audible tones. When the distance between the
coils is small and the amplitude of the oscillations large
the windings may come in contact with each other and dam-
age the surface, for example, of volished springs, result-
ing in a lowered vibration strength of the spring if it is
made of alloyed steel,
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A knowledge of the mechanism of spring oscillation is
applicable to ether elastic vibrating columns. In the
fuel line of a Diesel injection system there occur, after
injection, pressure fluctuations similar to those in the
spring after the valve lift. The propagation of an elec-
trical impulse in a cable having capacity and self induc-—
tion follows, as we know, the same laws and corresponds to
the same differential equation as the longitudinal waves
of an elastic column.

TESTS ON SPRING SURGE THAT HAVE ALREADY BEEN PURLISHED

Probably the simplest and clearest method of render-—
ing the motion: of the spring coils visgible is that given
®»y W. Weibull (reference 1). He fastened a small rod run-
ning radial to the spring axis to each turn a2nd projected
the shadows on a slit perpendicular to the rods. The
light rays thus cut out described on a rotating phcto-
graphic film the motion of each turn as a function of the
time.,

Fisure 1 gshows what happens when a weight strikes
upon.the spring'whichd isi in a vertical position. ~Thetin=
pulse is propagated from coil to coil with a constant
velocity and reflected at the ends of the springs. After
the pressure wave has traveled several times up and down
the weight is again thrown up by the spring under tension
and the spring then continues to oscillate with its natural
frequency. Strobosconic methods were employed by Swan,
Savage (reference 2), and von Lehr (reference 3). One ar-
bitrary coil, usually the center one, is marked and ob-
served stroboscopically. The motion of the coil is con-
trolled by the cam and the coil ig illuminated for an ex-
tremely short interval in the same angular position. The
1ift of the coil, which appears at rest, may in this way
be read as a function of the angle and of the time. The
time-distance curve thus obtained is the resultant of
several rotations and may easily contain errors - for ex-
ample, if the position of resonance is not maintained
accurately as a result of small fluctuations in the speed
during the test.

Lehr descrites a method wherety the center spring
coil having a small strip attached to it covers and un-
covers a slit parallel to the spring axis and is photo-
graphed on a rotating film. The time-distance curve of
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the turn then appears as a line separating bright and
dark arease.

AUTHOR'S TESTS

Time-distance curves of moving machine parts may be
obtained by the well-known method of using a bridge and
oscillographe. A preliminary test employing this method
was made on a valve spring of a Diesel engine on a test
stand. To the center coil was soldered a spring steel
tongue which slid along a nickel-chromium wire (fig. 2).
The bridge current is proportional to the distance moved
by the coil, provided the variation in the resistance is
small compared to the resistance R. As may be seen by
comparing an oscillogram (fig. &) with those obtained lat-
er, the spring surge dies down very rapidly. This 1s due
to the damping action of the strong pressure between the
bridge wire and the sliding contact, A decrease in this
pressure produces an unsteady fluctuation of the contact
resistance and results in a deformation of the curves so
that they are hardly recognizable, For this reason reso-
nance phenomena could not be recorded although these ap-
peared when there was no contact friection., There were
nevertheless revealed speed ranges within which the ampli-
tudes were large and others with smaller amplitudes,

In order to be able to continue the tests in the lab-
oratory an avparatus was constructed of the form shown in
fgure 4, congisting of shaftl, cam, ‘rollexr); endVsprin:c,
Two heavy pulleys at each end of the shaft acted as fly-
wheels to render the spmeed uniform.

The tension produced by the vibration is largest at
the spring ends. Experience has shown that spring fail-
ures occur mostly in the outermost coil unless there is
some flaw in the material at some other point. Consider-
ations of strength and acceleration forces make it advisa-
ble to investigate the stress at a spring end and not just
any arbitrary deformation or velocity.

Measurement of the spring pressure with carbon plate
indicators failed on account of the hysteresis effect.
(The calibration curve for rising pressure does not agree
with that for falling pressure.)

The compression of the last turn is a measure of the
stress at the spring end but it appeared too difficult to
convert this compression into a mirror rotation or elec-
Biie- current,
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The most promising method aopeared to be that of re-
cording the change in ineclination of the wire axis. To
the outside turn was soldered a small knob and on it was
fixed the small oscillograph mirror. The test ‘avpparatus
with the spring in horizontal position was then set up
near the oscillograph in such a manner that the small mir-
ror lay in the position of the measuring loop. The re-~
flected 1light ray described on the film drum the tension
of the spring end as a function of the time.

Figure 5 shows oscillograms obtained by this method.
Resonance is set up, as we know, when the natural fre-
quency (or an integral multiple thereof) coincides with
an integral multiple of the cam speed. For any interme-
diate speed the amplitude remains small. The critical
speeds lie so near each other, however, that it seems
practicelly hopeless to determine the resonance speeds in
advance to a 'sufficient degree of accuracy so as not to
have the speed of the machine coincide with any critical
speed.

It may nevertheless be seen from the escillograms
(fig. 5) that the increase in the dynamic tension is not
equally large for each resonance condition and this justi-
fies the hope that it may be possible to avoid excessively
large dynamic stresses within certain speed ranges.

The test method just described likewise had to be
given up as not being sufficiently accurate. The testing
of the spring on a spring scale showed that the relation
Dbetween the stress and the light beam displacement was not
linear, since the last turn 1lifts less and less as it is
compressed., There arise, moreover, other disturbing ef-
fects due to the oscillation of the spring at right an-
gles to the spring axis, and the resulting deformations
are likewise recorded on the film and falsify the record

(fige 5, 18 to 20 oscillations per rotation).

The author had, meanwhile, for the purpose of gener-
al investigations on the Dlesel engines, constructed a sys-
tem of three quarte indicators whereby three different
pressures could be synchronized and simultaneously record-
ed on a single oscillogram.

The first preliminary tests with this apparatus of
Kluge and Linckh (reference 4.) showed the promising possi-
bilities of apvolication of radio amplifiers to the field
of -pressure and force recording.,
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When pressure is applied to a crystal cut in a spe-
cial way, there arise on each surface under pressure
electrical charges which charge a rotating condenser K
(fige 6) to a voltage which is proportional to the pres-
sure. An electrostatically operating amplifier must now
convert this voltage into a proportional current without
thereby drawing charge from the condenser. The first tube
of the amplifier therefore consists of an electrometer
with amber insulated leads to the grid. (The rotating
condenser of 1,000 centimeters capacity was likewise insu-
lated against the ground by means of amber.) The tube op-
erates with an anode voltage of only six volts as this
voltage lies below the ionization voltage of the residual
gas in the tube so that no grid currents are set up as a
result of ionization currents. A separately heated output
tube is)electrostatically coupled to the electrometer tube
tes 6),

In order that the lead from the quartz to the grid
may not act as an antenna and assume too large and uncon-
trollable a capacity with respect to earth and thus re-
sult in high insulation losses, it must be kept very short,
i.ee, the amplifier must be set up near the crystal. A
bare copper wire about 0.5 meter connects the center elec~
trode with the amplifier, It appeared that a static
shielding screen was unnecessary and might even prove harm-
ful since, as a2 result of any fluctuations of the conduc-
tor with respect to the screen, cepacity and voltage fluc-
tuations may be set up and these may falsify the pressure
oscillations nn the oscillogram.

The second amplifier tube is somewhat sensitive to
vibrations, especially if a tube is chosen that can give a
linear characteristic with a *5 mA current., The metal
housing of the amplifier was therefore sunvorted on weak
springs and in this way the vibrations could be entirely
kept down,

In practical operation larger distances between am-
plifier and oscillograph are unavoidable. In order to be
able to use the amplifier simultaneously for observation
on a ground-glass plate, a central switch desk was lowered
on the oscillograph table and was connected with plug
sockets and a 9-wire cable to the three amplifiers., In

. the diagrams (fig. 6) are shown the three amplifiers above
and the gswitch desk below, The vertical lines to the
right represent the 9-wire connecting cable to which one

o to three amplifiers can be connected,
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Before any measurements are made the amplifier is ad-
justed so as to give linear readings. From the switch desk
are drawn together all the relays R which connect all the
grids with the potentiometer P, . With the potentiometer

equal voltage intervals can be measured and thus in a few
seconds the voltage sensitivity and linearity may be
checked. If necessary, the closed circuit current compen-
sator G may te so adjusted that the linear portion of
the amplifier characteristic includes the entire oscillo-
gram width of 120 millimeters.

If the relays are again disconnected the light beam
indicator remains for some time in the same position; i.e.,
the cendenser remains charged for some time with the po-
tential it finally received. Due to poor insulation, 1t
discharges within a few minutes. Periodic pressure curves
are therefore shifted in the directicn of the oscillogram
width until the mean pressure with respect to time coin-
cideg with the zero point of the condenser. The zerc
voint of the oscillogram must be adjusted according to the
form of the curve. For this purpose the potential of all
the cathedes may be varied by means of the potentiometer
P, which, however, shifts the zero points of all three
curves simultaneously. To adjust the zero point of any one
curve it is necessary to connect an adjustable voltage
ahead of the grid between condenser and ground.

Before the oscillogram loop is connected in, the pro-
tective resistances S are disconnected in steps so that
the measuring coil of the oscillogram may not be overload-
ed by an inaccurately compensated compensating current.

The source of current for the anode was a battery of
storage cellg supplying 150 volts. It is also possible to
use a network connection provided the current is suffi-
ciently well smoothed out by filters. If more current is
suddenly drawn from the network the current cannot immedi-
ately adjust itself to a steady condition due to the chok-
ing sction of the filters The current must therefore be
stabilized by means of a sufficiently large ccndenser.
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THEQRY OF WAVES IN VAIVE SPRINGS

In the derivations given below, the following nota-
tionr-will be used:

d

Be s

ig the mean diameter of turn

polar moment of inertia
crogss—-sectional area of spring wire
diameter of round spring wire
number of active spring turns
length of spring uncoiled

reduced mass of spring per centimeter wire
length =
Y

I 1R
+ =) = = s
(F 4d2)g yis

t

damping constant per centimeter of wire length
time variable

1lift of a spring coil at distance x
distance from the fixed end of the spring
specific weight of spring

acceleration of gravity

torsional modulus of spring steel
velocity of spring coil

tension of spring

soring tension at 1ift hj

torsional moment corresponding to T
valve 1ift as function of cam angle

maximum valve 1lift
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time interval for a disturbance to run up and
down the spring

wg, speed of propagation of an elastic disturbance
along the wire axis

w, angular velocity of cam
@, angular setting of cam
We, natural angular velocity of spring

The well-known differential equation for the elastic dis-—
turtance of a spiral spring reads (reference 5):

2 2 A
%Y . L 8Y . . 08°F, 4 J (1)

—% == e c

dt2 17 Bl

The velccity with which an elastic disturbance without
damping is propagated along the spring wire is:

2
c /[ J/4 G, -~ J G
WS = > == 2 ——-L—-—— ——g = 2 __é- "'g (?)
b F+ 2L v Fa® v

E'Z

/G
It may be noted that the value of 7% is identical

with the velocity of propagation of torsicnal disturbances
in smooth rods.

Let a spring that extends to infinity in one direc-
tion have the other end moved according to a definite law
of velocity. Velocity waves will be propagated along the
spring axis with the disturbance velocity. Together with
the velocity wave a&nd unseparably connected with it, there
is propagated a corresvonding stress distribution (tor-
sisnal stress). i

The following application of the principle of conser-
vation of momentum shows how the velocity and stress de-

pend on each other: In the very short interval dt, the
velocity at the starting end of the spring is changed by
amount Av, for which a change in force AP 1is required.

This change in velocity has moved forward in the time 4t
the distance wg dt. By the principle of conservation of
momentum,
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AR dt =" wardb Aw

AM
A=E7'§=uWSAV

Substituting the values for u and wy there is obtained
an expressiocn for the dynamical torsional moment

AMgyn = /JF % Av (3)

The dynamical stress becomes for all cross sections

Tagn = 8 /& v (3a)

where the nondimensional numerical coefficient B depends
only on the form of the cross—sectional area.

For steel springs with round wire section
At = 360 Av approximately (kg/cm®; m/s)

In a gun spring, for example, the initial stress de-
pends not on the spring dimensions but on the initial ve-
locity at one end of the rebounding gun barrel, on the
o of cross—~sectional area of the wire, and on the mate-
a7

REFLECTION OF THE WAVES AT ENDS OF VALVE SPRING

For a spring of finite length, proportionality like-
wise obtains between the disturbing velocity change and
the stress wave. The total stress at any point of the
spring consists, however, of the superposition of all the
stress waves traveling up and back.

The reflection of a disturbance, consisting of the
velecity and stress waves, at a fixed wall occurs in the
following manner (fig. 7):

The condition of a fixed wall requires that the veloc-
ity of the spring elements adjacent to the wall should be
zero at every instant. This condition may be satisfied by
superposing a moving symmetrical disturbance, as would be
obtained by mirrar reflection, on the original disturbance.
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(In fig. 7 the velocity waves are drawn symmetrical about a
voint (central symmetry), since the velocities when consid-
ered as scalars have reversed signs. The velocity vectors
are naturally also symmetrical about a line.)

On account of the central symmetry the velocity van-
ishes at the wall at each instant. The wave on the left
travels to the right and is not considered for any further
investigation, The wave on the right travels toward the
left, is similarly reflected at the disturdbing end of the
spring, and so travels up and down several times.

The same phencmenon will occur when the other end of
the spring is simultaneously disturbed. Both disturbances
would give rise to symmetrical waves of stress which would
be doubled at the wall d.

Figure 7 shows the wave drawn shorter than the length
of the spring. Only two waves are therefore superposed.
Actually the disturbance producing the waves is very slow
compared to the velocity of propagation of the disturbance.
The valve opening time is very large compared with the pe-
riod T, that it takes a wave to run up and down the
spring. This fact does not in any way affect the process
of reflection but makes the superposition somewhat more
complicated.,

The wave reflected at the fixed wall will now again
be reflected at the disturbed spring end and after an in-
terval again arrive at the fixed wall. At the wall the
doubled stress waves =dd up after the interval T,, the
wave twice reflected after an interval 27T,, the wave
three times reflected after an interval 3To, etc.

THE DYNAMICAL STRESS OF THE VALVE SPRING FOR

A SINGLE LIFT OF TEE VALVE

From the discussion given above, the dynamic stress
at the fixed end of the spring is the resultant of the
stress waves reaching that end after equal intervals (after
each period T,), the stress doutling at each reflection.
If we denote the disturbing velocity function dy vy, then
the total torsional moment at the fixed wall for a single
valve 1ift and for springs of any cross section is accord-
ing to equation (3):
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/ _GY
Mayn = ./ IF 5 (2vy + 2vg_q, + @¥gepp, + 280, seees)

In order to obtain the simplest possible relations,
this equation will be converted into nondimensional form.
Since the cam angle ® equals wt, the foregoing equation
may be written with indices P, @ =lq, Pt~ awl,,

® - 3wT,, © - 4wT,, etc.

Let the movable end of the spring move with 1lift h,
which is a function of o. The velocity is then

dh

Vv = Ww

and the above equation is transformed into

GY r dh dh
= St == —_— +
Mayn IF 5 u)Le ), * 2 (5 bk i
+ 2 (Q%\ ......] (4)
\dw/w—awTo J

For a slow compression of the spring the torsional
moment of the spring according to the theory of strength
of materialsg is

M = 284G pg (5)

The difference in torsional stress between lower and upper
cam positionsg is therefore:

The period of a vibration, which is also the time required
for a wave to run along the spring up and back, is

-2l - i il A
Tt 5 T Ll

and the angular frequency of the fundamental vibration is

W, « 8 .20 /_J G S 2 7
8 7 Wb b1 i siintie R 1a ./ TreY )

By cembining equations (6) and (7)
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‘Dividing equation (4) by equation (8)

Md n - Tdyn _ <
s -alas ol Ho s

+2<§9> +2<¥'“—l +J
d® p-w To deo p—aw To

The ratio wo/w = 2z, which is the number of natural vibra-

tions per cam revolution, will be taken as a measure of
the time. We furthermore set

so that we obtain:

Tdyn _ dh dh> <dh
_._?_C.)_ = _h-.(;E { <de + 2 —ac—p ¢_§;l P a‘rp (;O_2§ZT_T PSS G (9)

The stress at the moving end of the spring will then be

Tayn _ T f (EE drp) o . ] (10)

TO ho 2z ?;T \d.CD - 2) ._.1._-[

The first wave does not enter doubled into equation (10)
since it has arisen from a velocity disturbance and not
by reflection.

Both curves representing equations (9) and (10) dif-
fer from equation (5) only by the superposition of the
additional dynamic stress. After a time equal to the in-
terval of 1ift, functions 9 and 10 become periodic.

From the relations derived above the result follows
that the magnitude of natural oscillation for a single
1ift of the valve depends only on the cam contour and the
natural frequency of the spring. The spring material and
dimensions affect only the natural spring frequency. The
computation of the dynamical stress is reduced to the addi-
tion of dh/&w curves shifted from each other by an equal
amount 2m/z. Magg in 1912 derived a similar though not
nondimensional formula,
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MEASUREMENT OF THE dh/de CURVE OF THE CAM TESTED

It is not advisable to obtain the dh/d® curve by
graphical differentiation of a measured 1lift curve since,
as we know, the method of graphical differentiation is very
inaccurate., The velocity curve, it is true, is generally
known from the cam computations from which the workshop
drawing has been made, but due to faults in workmanship
there are errors in using the cam pattern that may not be
neglected. It was therefore attempted to carry out the
differentiation experimentally on the test machine and the
attempt proved successful. :

To one of the flywheels (fig. 4) of 370 millimeters
diameter, a strip of paper divided into millimeter divi-
sions was glued on in the direction of the perimeter, and
a permanent horseshoe magnet was mounted on it. A preci-
sion dial gage was fixed on the stand so that on turning
the flywheel "feeler" of the dial gage was moved by the mag-
net. The center of the"feeler' was at a distance of 220
millimeters from the axis of rotation. The flywheel was
now turned several times accurately 2,50 mm = £0,65°
(5 dial gage revolutions). With 2 second instrument the
change in 1ift Ah which varied between O and 0.80 milli-
meter was determined. The measuring was repeated after
the magnet was shifted each time 5 mm = 1,55 along the
millimeter paper., The quotients Ah/Ap could be repre-
sented without any scattering by a smooth curve as a func-
tion of ¢ (fig. 8). The accuracy is equal to that of the
measurement of the change in 1ift since the change in the
angle of *0,65° corresponded to *250 graduation marks, so
that the error for Ap could be neglected in comparison
with the errors for Ah,

The positive and negative areas of the ah/dy curve
deviated by only about 2 percent and gave the value of the
maximum 1lift taking the scale of the figure into account.
An attempt was next made to approximate the velocity curve
(shown dotted in fig. 9) by a triangular-shaped curve
(fige 9)s The superposition of the triangles in accord-
ance with equation (9) yielded a curve with sharp angles
different from the corresvonding oscillograms to be dige-
cussed later. If, however, the accurate curve is used,
there is obtained the dotted stress curve (¢ in fig. 9)
which is appreciably different.,
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" SIMULTANECUS RECORDING OF THE STRESS AT

BGTH ENDS CF THE SPRING

A pair of quartz crystals was connected at each end of
the gpring. (In piezo-electric measurements two-quartz
crystals are used, in general, so as to make the insula«s
tion of only one electrode necessary (fig. 10)). On one
side of the spring the force was transmitted to the crystal
through a guided coupling, since rather long springs would
ctherwise easily buckle. A similar guide was also provided
at the moving end. The weight of the latter guide, how-
ever, necessitated its acceleration so that the accelerat«
ing force was superposed on the spring force and for this
reason the guide was dispensed with.,

In order to test the Magg theory for the oscillations
of .a:spring during & single lift.of the valve, the.gtregss
es at both ends of the spring were computed according to
equations (9) and (10) for 2z = 20 oscillations per rota-
tion, and the same curves were cbtained with the oscillo-
graph Eiese HB Bd LR )4

The oscillogram was obtained for a single 1ift by
damping the resonance vibration of the spring through hand
contaecte The first 1ift afbter the spring is releasged be=
haves, as is evident from figure 12, as a single lift,

The wave character of the escillations 1s clearly
brought out by the computed curves together with the cor-
responding oscillograms. The initial rise in pressure is
linear like the velocity diagram and not parabolic like
the 1lift. The pressure rise at the stationary end occurs
after a delay of half a vibration period; i.e., after the
disturbance has traveled from the moving to the fixed end.
Figure 13 shows the stress at each end of the spring for
the condition of resonance. It may be seen that it is
chiefly the first harmonic that is excited. The harmon-
ics at the ends are shifted in phase by 180°. The natur-
al wibrations ofi odderden lv. &85 saabevproduce spHessiine s
at both ends of the spring having a phase shift of 180°,
whereas those of even order are in phase. The proof for
thigiii s found iin  the follewimne et

Instead of leading the static electrical charges of
each pair of quartz crystals to each amplifier, the charges
were superposed and conducted to only one amplifier., The
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oscillogram thus obtained then represents the instantane-
ous sum or arithmetical mean of the forces at the spring
ends and the even orders therefore disappear frem the os-
cillogram. Figure 14 shows, for example, such a record
for =z = 19. Actually, the 38 vibrations per rotation re-
corded were of the second order. Immediately thereafter,
the pressure curve at the stationary end of the spring was
taken for comparison on the same figure.

If the poles of one of the crystal pairs are inter-
changed and the charges at both ends of the springs added,
the oscillogram will show the difference in spring forces.
The difference includes, however, only the odd orders.

The stress during the 1ift is no longer shown on the os-
cillogram (fig. 15). Only the decreasing vibration of the
first order is seen and this is built up again during the
ISt dnterval .

SPRING OSCILLATION DURING A SINGLE LIFT

AS A FUNCTION OF THE SPEED

In order to test the above theory of waves propagated
in springs, the dynamical stress of the spring was comput-
ed for =z = 12 to 22 oscillations per rotation., Since
one oscillation within this range lasts from 15  to 30°,
the velocity curves must be addea 2° apart in order to at-
tain sufficient accuracy. The shifts (360°/z), that is,
the amounts by which the velocity curves are shifted from
each other and must be added are given in the following
table:

Oscillations ' . _--
Boz=12113 |14 {15156 [1%° (a8Nlo PaElEE RN 05

i Toitat on
!

Degree
shifh,
exact

30

B S

267

24

22.5

2lee

20

1849

18

1 g

16.4

Degree
shift,
apurox-—
imate

30

27 .5

29+

24

22.9

210

20

19

18

17.0

16.5

15 .4
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In order to simplify the computation, the accurate
values of the shirts were rounded off to integral or half-
integral values. The ordinates of the velocity curve which
was drawn to large scale were then tabulated for each half
degree., Table I, page 17, shows, for example, the compu-
tation procedure for 2z = 20 oscillations per rotation.
The column headed (dh/dcp)Cp repeats itself in the remain-

ing columns each time with a shift of 18°. In the column
headed 2% dh/d@ the previous columns were added, taking
into account the correct sign and finally, in the last
column, they were multiplied by 180° hyz X 2 by which

the values appeared in nondimensisenal form Tdyn/To-

It may be seen from the table that after the first
1ift an oscillation between Tayn/To = 0.139 and -0.116
remains behind. Actually this amounts to *0.125. The de-
viation was caused by the inequality in the velocity areas
mentioned above. In the diagrams later given, the error
was corrected each time.

For practical purvoses the foregoing computation need
only partly be carried through. To compute the spring os-—
cillations, a knowledge of a complete oscillation period
at the lower position is required.

The computed curves for 2z = 12 to 23 are shown in
figure 17. For greater clearness the scales were omitted
since the distance between the center line of the top and
bottom stops always corresponds to Tdyn/To = 1.

The same diagrams were obtained with the oscillograph
and are shown together in figure 16. In order that the
oscillograms may correspond to a single 1lift resonance was
again set up as described above; the oscillation was damped
and the swinging recorded. The first 1lift after the damp-
ing is removed corresponds to a single lift. Computations
and tests were carried out for the stationary end of the
spring, and they agree to a sufficient degree of accuracy.*
The oscillograms confirm the method of Magg.

*Since the damping could not be removed suddenly and often
not accurately enough between two 1ifts, the jags on the
oscillograms are somewhat smaller.
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TABLE I
i 2 l@gngi—h:
! <dh> @\ hyz dep
{ \CLCP dep s
i H Taym
= | o 18|p 36 icp 54l 72je 90| 108|p 126 !
deg.; % cm per deg.
0 0 0 0
2 uat RITS .0us
& 592 | .92 .092
0| 1.38 | 1.38 .138
B | 1.85| 1.85 .185
10 | 2,31 2.31 .231
12 | 2,85 | 2.85 .285
14 | 3,38 3.38 .338
lo | 3.85 3.85 .385
18 | 43110 4,31 31
20| Hogo | U6 5.38 .538
22 | 5.38| .92 6.30 .630
gl 5,92 | 1.38 T+30 .730
26 |6.00]|1.85 7.85 . 785
28] 5,85 | 2.31 8.16 .816
80N 5.70 | 2.85 8.55 -855
% 5.38 | 3.38 8.76 .876
34 | 5.00 | 3.85 8.85 . 885
36 | 4,61 | L4.31 0 8.92 .892
38 | 4.23 | 4.92| L6 9.61 .961
Y | 3.771]5.38] .92 10,07 1.007
bo | 3.23|5.92] 1.38 10.53 1.053
et 2,77 | 6.00| 1.85 10.62 1.062
U5 | 2.31|5.85| 2.31 10.47 1,047
g 1 1.77 | 5.70| 2.85 10,32 1.032
50 | 1.31 | 5.38] 3.38 L0 0¥ 1.007
52 .85 | 5.00| 3.85 9.70 .970
5U4 .38 | 4.61| 4.31| 0 9.30 .930
5 | 0 4.23| 4.92| .46 9.61 .961
58 | 0. 3.77] 5.38] .92 10.07 1.007
60 | O 728y '5,02) 1,38 10.53 1.05%
6210 2.77| 6.00f 1,85 10,62 14062
6 0 2.31| 5.85| 2.31 10,47 1.047
66 |0 17T B0 2.85 LOu%R 1.032
£8 | O I:3L] 5.581 5.38 10407 1.007
70 {0 .85 5.00| 3.85 9.70 970
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TABLE I (Cont¥d.)

T st dh
(gg\ <g§> hz > dv
=) ®
no= © | ® 18] » 36| v 54 @ 72[ ® 90{p 108/ 126 =Tdyn
TO
el % cm per des.
72 | 0 0.38| 4.61| 4.31/0 9.30 0.930
o0 0 4,23 | 4.92| .46 9.61 .G61
6|0 0 3.77 | 538 .92 10,07 1007
8]0 0 3.23 | 5.92|1.38 10.53 1,053
80 | 0 0 277 | 6.0011.85 10.62 1.062
82 |- ,08| O 2.31| 5,85{2.31 10.329 1.039
84 |- .62| 0 1.77| 5.70|{2.85 9.70 .970
€6 [-1.15| © 1.31| 5.35{3.38 8.92 .892
86 [-1.69( O .65 5.00(3.85 8.01 .801
90 {-2.23| © 35| 4.61|k.31]0 787 .707
92 |-2.69| 0 0 4.2314.,92; 46 6.92 .692
9% (-3.23| 0 0 3.7715.38] .92 6.84 .684
96 |-3.59| © 0 3.23{R.92|1.38 6.84 684
96 [-4,07| © 0 2.77|c.00!1.85 6.55 .655
100 |-4.54)- .08{ O 2.3115.85|2.31 5.85 .585
102 |-4.92|- .62| O 1.7715.70}2.85 h,78 478
104 |-5.23/-1.15| © 1.3115.38(3.38 3,69 .369
106 {-5.54|-1.69] O .85!5.00]3%.85 2,47 .2u7
108 §=5.851-2.231 0 324,611 4.31|0 Lo Jdo2
110 |=6.00|-2.59{ 0 O (h.23|4.92] .u6 .92 .092
B 2 =D.09|-3.231 O 0 13.77|5.38] .92 1.16 .116
B =5 38| -3.09| O 0 3.2315.92[1.38 1.46 .146
116 |-k.92|-4.07| O 0 2.7716.00| 1.85 1.63 163
118 |-U4.38|-4.54|- 08| O 2.31{5.85| 2.21 1:47 Ak
120 [-3.85(-4.92|- .62} 0 [1.77]|%.70|2.85 .93 .093
122 | -3.38|-5.23%{-1.15| O 1.31]15.38 548 31 .031
124 |-2.92|-5.54)-1.69} O .85/5.00| 3.85 - .45 - o5
126 | =2.38{~5.85{=2.23| 0 38|k.61 4,31} 0 -1.36 - 6
128 |~-1.92]-6.00|-2.69| O 0 4.23 4,92 .46 |-1.00 - .100
130 |-1.45|-5.69|-3.23] O 0 3.775.38 | w82 =L - JO31
132 |-1.00|-5.38(-3.69| 0 0 3.23] 5.92 | 1.38 I .0l5
134 | - .53|-4.92|-k.07| O 0 2.771 6,00 | 1.85 | 1,18 310
135 |- .08{-Y4,38)-U,5u - ,08]0 2,31 5,851 281 1 R .139
133 | O -3.85|-4.92|- .%2]0 1.77] 570§ 285 .93 .093
o 1 0 -3.38|-5.23|-1.15|0 1,31 5. 580 308 ) .031
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COMPUTATION OF AMPLITUDE OF OSCILLATICN FOR

A SINGLE LIFT BY HARMONIC ANALYSIS

The velocity may be represented by the following
Fourier series:

a1 8in @ + a; sin 2opeERREESln IS S 0l
dh

de { + b, ‘cos @ + by cos 2gHiEENEcs 0 SRR

The method of computation indicated by equations (9)
and (10) may be applied to each harmonic separately since
the partial results may be superposed for each harmonic,

The superposition of the first sine term according to
equation (9), namely:

a; sin ® + aj; sin (@ - %?) + a; sin <@ -2 %g) +

+ ¢ce..0ay sin (@ - fs = &4 %;)

becomes zero as one may easily convince oneself by drawing
a star-shaped vector disgram. The 3z vectors form angles
of 2n/z with each other and balance out. The same holds
for the first cosine term.

21

The vectors a; and bas form angles of 2 x z  and

their vector sum likewise vanishes.

It will be found, finally, that the superposition of
the harmonics 1 to z2 - 1; z + 1 to 2z -~ 1: 22 + 1 %o
3z - 1, etc., cancel out and only the harmonies 1z, 2z, 3z,
4z, etcs., add up to give the superposition sum, namely:

zay sin 29 + za,, sin 2z + za,, sin %z + ... +

+ 2zb, cos 20 + zb,, cos 2z + zb,, cos 3zP + ...

Substituting the above in equation (9), we obtain the rela-
tron s

5 ag sin zp + agy, sin 220 + a,s sin 389 ...
Tagn o pn
) h
o +bz cos zp + by, cos 229 + b,, cos 3zP ...

(11)
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Equation (1l1) expresses the condition that the natural os-
cillations of the spring are in resonance with the harmon-
ics of the disturbing velocities and the coefficient of
the indices denotes the number of oscillation=:lcops. The
amplitude of the forced oscillation is proportional to the
exciting harmonic of the dh/dyw curve.

In order to compare equation (11) with the previous
results, the velocity curve of the test cam was developed
into a Fourier series according to the method of Runge and
with the aid of 72 ordinates. From the results of the ex-
ample (fig. 9), it follows that a smaller number of ordi-
nates would not be advisable. In the analysis, however,
the higher ordinates may be neglected and the forced os—
cillation after a single 1lift assumed to be a sine wave
to a2 first approximagtion.

The agreement between the "oscillation spectrum" ob-
tained by each method is satisfactory (fig. 18). The ad-
dition of 2z curves shifted with respect to each other by
3600/2 leads to quicker results, however, than the har-
monic analysisgs.

EFFECT OF CAM PROFILE

From equation (9), it follows that the contour of the
cam determines the magnitude of the oscillation ampli-
tudes. An example of a simplified velocity curve shows
what points must be considered in order to reduce to possi=
bilities of spring surging. Interesting information is ob-
tained when there is first investigated the results of a
single 1ift by the cam, (dynamic compression of an elastic
column). For this investigation two velocity curves will
be employed - one consisting of an isosceles triangle, and
one of a half-sine wave. Instead of 3z oscillations per
rotation, the relgtion € = T7!'/T, will be introduced,
where T, denotes the natural period of the oscillation
of the first order, and T' the interval of 1lift equal
to the base of the triangle or of the sine half-wave. At
the upper stop the spring remainsg in an oscillating con-
ditione The maximum amplitudes ATp,x are expressed as

a fraction of T, which is the stress corresponding to
the maximum 1ift.

For the triangular velocity curve the peaks of the
stresses are
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AT
—pax _ 4 (0.5 +m- 2l r 2 3-'-m) - (12)

fftnere for € = 0 to 2, 2 te 4, 4 o6, 6 to 8, etce.
me= 0 i 2 3

For the sine half-wave within short ranges, the following
Sormlas hold:

OTpax _ 2T

T 5 (13)

Il
|
l
=

o = O to 1.5 o= ]

1e5 to 2.5 -a = 2 sin m %2%
2ab to BB a =1+ 2 gin w e
2 €
e 2 ai €~1 i e
Yoo to 4.5 a = 2 sin m 5 + 2 gin m e
P €-2 € -4
. . == . — s PP 3
A tio 8. h a 1l + 2 gin 7 5 e 2 g8in W

Both formulas are graphically given in figure 19 and were
obtained in the following way: The curves were graphic-
ally superposed in accordance with equation (9). This
representation served only as an approximate indication

and for greater accuracy the addition was performed analyt-
ically. A special formula was thus found for each region
between the tangent discontinuities in figure 19. The for-
mulas for all the subdivisions arranged in series showed a
certain regularity and from these, formulas (13) and (14)
were derived.

There are, accordingly, certain ratios for T'/To
for which no - or only slight - oscillations are brought
about by the compression (zero point of the first kind).
If the upper portion of the time-velocity curve of the
spring end as it moves up, is symmetricesl with respect to
the center of the 1lift, and if the up and down motions are
symmetrical, then the following characteristics appear:
The form and amplitude of the oscillation are congruent
for the up and down travel and differ by a phase shift
which depends on the time interval ®" ©between up and
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down travel. The oscillations of the two halves of the
curve either add up or cancel each other according to the
phase shift (zero ooint of the second kind). In order to
illustrate this behavior, a few oscillation diagrams are
shown on figure 20 for the triangular velocity curves with

T = 1,5 T!., For gz = 26.2 and 13.1 or T!/T; = 4 and 2,
no oscillations are set up at the upper travel and there-
fore also none at the lowers For z = 21.8 and z = 17.5

there are some oscillations after the up travel dbut these
disappear during the down travel. This case always occurs
when T" is an integral multiple of the natural vibration
period To.

The greatest amplitude within the range investigated
occurs at z = 19.6 where the phase difference is such
that the amplitude is doubled. The triangular velocity
curve investigated coincides approximately with the curve
of figure 8. Since the latter is not accurately triangu-
lar, a condition of complete absence of oscillation could
not be attained at & = 13,1, 17:5, end 21l.8.

It would seem natural to design a cam producing no os-—
cillations by combining, by harmonic analysis, the first
12 harmonics, This cam would produce absolutely no vibra—
tions for 3z > 12, The straight lines of the upper and
lower part of the cam would, however, according to this
synthesis have to be revlaced by a wave form of contour,
A more promising method would be to use a range of z giv-
ing few oscillations; for example, z = 21.8 to 28.4 (com-
bination of a zero point of the first kind with two zero
points of the second kind). It should be noted also that
the oscillation amplitudes for a sine half-wave are small-
er than those for a triangular wave.

The same zero points as in figure 19 appear when a
spring without mass to which a point mass is attached at
the center is caused to vibrate. We are therefore justi-
fied in the assumption that a long spring with a guiding
piston in the center would show the same zero points as a
spring without a concentrated mass if the natural fre-
quency f is computed according to the Dunkerley formula:

._1.... = _—]:—- + —-—]-:-— ( 14 )
£ 2 e
fn 1is the natural freguency of the concentrated mass

attached to a spring assumed without mass.

ff 1is the natural frequency of spring without the
concentrated masse.
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THE SETTING UP OF RESONANCE

If a mass that is elastically supported is suddenly
acted on by a sine varying force having the same natural
frequency as the mass, the latter will be set vibrating in
resonance and the amplitude will continually increase un-
t1l after a certain time a steady state is reacheds. A
spring behaves in the same way. When the shaft speed is a
multiple of the natural oscillation period there would be,
"if there were no damping, an equal increment in the oscil-
lgtion amplitude for each lift,. Dueito intemaal friation
in the material and air friction the amplitude between the
lifts decreases. A steady state is reached when the loss
per rotation due to damping is equal to the amplitude for
giesnole lift,

The setting up of the resonance vibrations may ve
mathematically considered in the following way:

The amplitude of the oscillation, as will later be
shown experimentally, decreases according to an exponen-
tial law, the ratio of two successive amplitudes being
constant

After one cam revolution, i.€e, @after 2 oscilis-
tions the amplitude ratio becomes ;

A

Q.‘*.‘.Z = aZ
An

The damped harmcnic oscillation may be represented by
a vector whose end describes a logarithmic spiral. 1In the
case of regonance the vector, during one revolution of the
cam, rotates exactly =z times for every 260°, If the ogs-—
cillation amplitude for a single 1lift is A (measured in
nondimensionagl units Tdyn/To) this is superposed on the

reduced amplitude of the previous 1lift A a®. The previ-

oue 1ifts contribute the amountsg’ A '@ *, "H'a ™= "8 &% cic, ,

and their gsum amounts to

A (1 + o + 2% + 3% ,..4) S =—=Sg iR (15)
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tion the amplitude for a single stroke A must be multi-
plied by the resonance factor R = 1/1-a?Z.

Figure 21 shows the resonance factor plotted for
z = 5 to 50 and An/hye, = 0006 to 1,10, The chart™iig

sufficient for all praecticgl purposes.

Between two resonance positions - i.e., for =z =
a + 0.5 (a 1is an integer) the phase difference of two
superpocsed vectors is not %60° as above but (a + 0.5) 360°.
Each vector therefore acts in opposition to the previous
one and the "intermediate resonance factor" becomes:

A (1 - a%+ a®% - a®% + a%? L...) = o2 4

In figure 22 the spring vibration was computed for
z = 19, The spaces in between stand for the 1ift which
for simplicity was not indicated. After each stroke the
oscillation receives the constant increment A until the
loss by damping becomes equal to A and the steady state
ig reached.

For =z = a + 0.5, if there were no damping, the suc-
‘cessive rotations would alternately give amplitudes of 24
and zero. On account of the damping, this does not occur
but instead the condition shown on figure 22 for =z = 18.5.
According to the amount of the damping, a value between A
and A/2 ig reached in the steady state. The same applies
to the building up of the oscillations for =z = a + 2/3;
for example, 2z = 18-2/3, Figure 22 should be compared
with the corresvonding oscillograms, figure 23, TFigure 24
shows the oscillograms for the resonance positions for
z = 12 to 23 and was obtained in the same manner as fig-
ures 16 and 17,

If the theoretically computed amplitudes for a sin-
gle 1ift (fig. 18) are multiplied by the rescnance factor
obtained from figure 21, there are sbtained the theoret-
ical resonance amplitudes of figure 25, which are in sat-
isfactory agreement with the oscillographed amplitudes of
figure 24. The damping required to compute the resonance
factor was determined by the exveriments to be described
later,
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FORCED SPRING OSCILLATION WITH DAMFING
The general solution of the differential equation of
damped spring oscillation ig, according to Hort (reference 6):
= o~ DX [C1 sin (wt - ax) + Cz cos (wt - ax)] +
+ e"PT [0 sin (Wt + ax) + Og cos (wh + ax)]

&% the fixed end of the spring, let % =0 gnd y = 0,
whence we obtain:

Let the end of tne spring x =1 be moved by an excentric
in accordance with the law

(y)x=L = r sin Wk

This end condition gives two more equations for determin-
ing the constants. Carrying out the computation, we ob—
tain for the damped and forced spring oscillation, the
following equation:

e—bx{[e‘bl~ebljcos al sin(wt—ax)+[e"b°+ebLJSin al cos(wt~ax)\¥_
< 1 4

e~2bl: = 2 cog 2 all + oEbl

L ebX{[e‘bl~ebL]cos al sin(wt+ax)+[e~bl+ebu sin al cos(wt+ax)}

a®2bl o o cos 2 al + e2bl

(16)
From this equation, by neglecting the damping coef-
ficient b, there is“obtained the simple relation which
was first given by Frohlich:
y = r 8in wt sin ax (17)

The constants a and b may be determined by substi-
tuting a part integral into the partial differential equa-
B Len

a =

A (&

- b =v/<%{ v/(%é (02 w2 + k2) - % wa}

ol
=
1€ |
M
by
[Y)
e
[
+
-
%)
+
()1 1 =
=
(i
S
1
9=
n |©

(18)

2 wg

n
a8
—
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The changes in the spring force at the fixed end.of the
spring are obtained by the partial differentiagtion of
equation (16):

Since we are interested only in the amplitude for the
case of regsonance we set in equation (16), as the condi-
tion for resonance, the approximation

A g
w

al

s
The result of both operations gives:

Twe v
= = - +
(P)xzo den Wy o0& = g=bl sin (wt )

The force for very slow motion is equal to

Py = ¢ sin ‘wt

Sl L

and the ratio of amplitudesis

P Tearee]
- 0 G e R S L (19)
Po l fo) l WS ebl-e"bl ebL_e“bL
From equation-(9) we obtain for & single sine motion of
the spring end (z =1, h = r7)
¥
dyn
—-——Z—- = 20T
0
The resonance factor (for z = 1)
B ak & il
1 éEiL) 1 - Anta

Bty & B R By M B Ba R

2p wg 2l An+a

into
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1 ebl

I3 = -

The approximate equation then reads:

= 2 —s5—————7 ’ (20)

and differs from equatiecn (19) only by the factor e Pl
which, feor springs that are damped by the air resistance,
may be set equal to 1 to within a few percent. The dif-
ference consists in the neglecting of the damping during
the 1lift in the case of the approximate solution.

FREE VIBRATION OF THE SPRING

The fundamental frequency for round steel springs is
computed by the formulsa

8

f = 85850000 =

pd
where 8 igs the diameter of wire in millimeters
a, mean ciameter of coil in millimeters

P, number of coils

To test the accuracy of the calculation, the naturzal
frequencies of 10 springs of various dimensions were meas-
ured. The springs were set vibrating at their natural
frequencies and an oscillogram obtained for the steadily
diminishing vibraticns. By comparing with the accurately
calibrated sine line of the time-recording instrument, the
following natural frequencies were establisghed:

6 = 3 4 4,5 5eb 6 mm

d = 36 38 38 40 40 mm

P = IR 205 . 945 9 4 turns
f measured = 104 85 114 141  348/sec.
f computed = 92 79 117 137 335/sec.
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8 = 6 6 6D e 8 mm

d = &8 42 44 43 40 mm

p = 11 14 9 7 15 turns
f measured = 1356 87 152 198 119/sec.
f computed = 135 87 125 194 119.5/sec.

The deviations are such that any attempt to avoid
resonance by computation beforehand is unsuccessful. The
resonance speeds at a natural frequency of 6,000/minute,
for example, are:

300, 316, 333 353, 275/minute

The critical speeds lie so near each other that resonance
is set up in the spring almost at any engine speed since
the free oscillations of identical springs deviate slight-~
ly due to faults in manufacture. To avoid spring surges
it is therefore necessary to compute only the ranges with-
in which there occurs little vibration if there is no pos-
sibility of obtaining sufficient damping.

THE DAMPING OF SPRING OSCILLATIONS

The general differential equation for damped spring
vibration according to equation (1) includes the following
solution for the free oscillation:

k =
s Y= !‘
y = e W Uél {LAU sin wpt + By cos wvt} sin %? - R

. )T
+ [Cv sin wpt + Dy cos wut] cos kf x:}

4 w
2
where Wy = v" g & gﬁ) - we = ﬁg =

According to the mode ef excitation, the dying-down
vibration may be considered as made up of standing waves
of various orders. The period changes very little with
the order. Example:
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Example: Wy = 1200 kiBm = 6
wy, = ORI2992 Saae Wes =) MSRCO ORI

~ After a completed fundamental wvibratien, there is set
up between the fundamental and a higher harmonic a phase
shift orf at most 0.3°. The form of the curve therefore
chgnges little during the dying down of the oscillaticn as
Frohlich has shown in a simple experiment.

The form of the solution likewise shows, however, that
the amplitudes, and therefore alsn the stresses at the
sering end, decrease at the same rate in the same time in-
terval for all orders according to the amount contritruted
by the quotient k/Zu. The reduced mass per centimeter of
wire | depends only on the wire diameter and on the spe-
cific weight, and k is a function only of the wire diama-~
ters It is therefore t» be expected that k/2u 1is like-
wise dependent only on the wire diameter. In order to test
this assumption, the damping of the oscillograms which were
used to determine the frequency was evaluated. In obtain-
ing the damped curves the sensitivity of the indicator was
so adjusted that the vitrations died down in the same man-
nervas those of spring vibrations. ' The egeillcgram® of such
a vibration (fig. 26) reveals vibration phenomena of a type
that could not %e entirely explained. It was at first
thought that they were vibraticns transverse to the spring
axise Similar phendmena were revealed to a slighter extent
in the case of the other springs.

Figure 27 shcws the logarithms of the amplitudes plot-
ted against the oscillation number for several springs. A
straight line was drawn through the scattered points. (The
series of points fcrming a wave belongs to the oscillcocgram
(2% 26).) The inclination of thel straight lines deter—
mines the value of the damping. The magnitude
k An

= = £ In Sl
2 An+a

rlotted ‘against the wire diameter (fig. 28) shows that the
former is affected by still another factor. It was par-
ticulgrly observed that in the case of feur springs having
equal wire diameter and approximately equal diameter of
coils, the damping was smaller the longer the spring. The
values fer the damping were:

d = 40 mm

|
(o2}

Ne. of turas p = 4 Gy £ 17 }5
kfew = 7.2 3,3 1,45 0N
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This effect can only be explained as due to the addi-
tional damping at the end of the spring, which we may de-
note as the loss due to reflection, and which is composed
of the following components:

l. ‘Friction of the spring wire at the spring end.

2e Friction between the spring coils during the
unwinding of the last coil.

N

. Dissipation of sound energy from the spring
end to the engine mass.

That reflection losses which cannot be taken into ac-
count by computation occur, could be confirmed Dby the fol=-
lowing test:

The same spring. (6 = 6;-.4. = 40; p = 7). undery
identical conditions was successively supported on leather,
rubber, and "polyperite," and investigated for damping.

The supports consisted of rings of 5 millimeters thickness
and of the same inside and outside diameter as the spring.
The rings were inserted at each end between the spring and
the soring washer. Figure 29 shows the oscillograms ob-
tained, the initial amplitude being the same in each cases
(The softer the support, the greater the loss by reflec-
tion.) Considerable damping may be attained by pressing
sheet-metal tongues against the spring, and the damping
could be adjusted by the amount of pressure applied. In
figure 30a, for example, the vibration dies down conmplete-
1y during one rotation; 30b was obtained with the spring
in lubricating oil. With cylinder oil no oscillations
could be observed between z = 12 and 24. In order to ren-
der the magnitude of the damping visible, the spring was
slackened to such an extent that it began to knock against
the follower and started a vibration (fig. 30c).

EFFECT OF INITIAL SPRING TENSION

In accordance with the theory developed, the ampli-
tudes of the resonance vibrations should be independent of
the initial spring tension. Swan and Savage found, however,
an increase in the amplitude with increasing initial ten-
sion. The author has, therefore, for 1z = 20, varied the
initial tension from the knocking spring condition until
the condition where the coils almost touched (fig. 31).:
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The average play between the turns at the upper cam vosi-
tion was chosen as parameter (fig. 3lc). The natural vi-
brations increase somewhat with increasing initial tension
in agreement with the results of Swan and Savage, since
the spring becomes somewhat shorter by the compression of
the spring end (fig. 31b).

At a play of 3 millimeters the roller begins to knock
and for this reason the spring is damped somewhat. As the
vlay becomes smaller the amplitude diminishes almost inep-
preciably while there is a strong decrease between 1 and
0e?3 millimeter. The damping here increases because the
spring coils at the upper cam position touch each other.

A shrill sound is emitted whereas for a.smaller initial
tension a deeper hum corresponding to the ndtural frequen-
ey s heard.

EFFECT OF PLAY BETWEEN CAM AND FOLLOWER

Swan and Savage found a strong variation of the vi-
bration frequencies with the amount of follower play.
This is to te expected since the velocity of the spring
end varies with the amount of play of the roller. Swan
and Savage increased the amount of the play up to 1.5 mil-
-limeters for a 1lift of about 9 millimeters. 1In the pres-
ent set~up the 1lift was 18 millimeters, and for a play of
the roller of 0.8 millimeter, the knocking was so strong
that no increase in the play was pvossible. Within this
limiting value diagrams were obtained for four different
plays for a single 1ift and compared with the theoretical
one (z = 20)., 'The comparison shows that the amplitude
for a -play of C to 0.8 millimeter between cam and follower
does not appreciably vary (fig. 32).

When the vibrations are few, for example, Ptie HE
the conditions are different. In this case a certain ve--
locity is suddenly set up at the beginning and epd of the
velocity curve where a small triangle is cut off. With
these triangles superposed according to equation (9),
there is obtained an oscillation diagram showing a large
number of sharp points (fig. 33). There was no agreement,
however, with the oscillogram since the shocks due to the
strokes were transmitted to the quartz crystal and cov-
ered up the details on the oscillogram.
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Assuming the camshaft to be accelerated to a con-
stant rotational velocity before the first 1lift stroke
beginsg, then at the start of the first stroke the tensidn
increases linearly with the velocity of the spring end up
to the return of the disturbance which is reflected at
the fixed end of the spring. The succeeding stresses are
the result of the superposition of all the disturbance
waves that run up and back and oscillate about a mean line
that increases linearly with the 1ift.

After the first 1ift there remains behind an oscilla~-
tion which, for example, for 10 natural vibrations per ro-
tation, contains the 10th, 20th, *0th, etc. harmonics of
the velocity curve. The amplitude of the vibration is
more easily computed with the aid of superposition than by
mesns of harmonic analysis. The megnitude of the vibra-
tion excited after the first lift as a function of the
number of vibrations per turn indicates to the designer in
what range of engine speeds particularly large resonance
freguencies are set up. It is shown by means of an exam-
ple how a sufficiently large range of rotational speeds
may be obtained within which little vibration occurs.

If the natural freguency is an exact multiple of the
cam speed the vibration amplitude will increase by the
same amount sfter each stroke. As a result of the damping,
however, a steady state will be reached as soon as the in-
crease per rotation has become equal to the loss by damp-
ing. In a set of curves a resonance factor is given by
which the computed amplitude of the first 1ift must be
multiplied in order to obtain the final steady amplitwde,
This resonance factor changes with the amount of the damp-
ing and with the number of oscillatiens per rotation.

The damping depends not only on the air resistance
and on the internsl friction of the material but also on
the manner in which the spring is supported (loss by re-
flection). In lubricating oil the damping is so large
that the vibrations die down before the next 1ift stroke.

The phenomena described were confirmed by numerous
tests with cams and springs. Oscillograph measurements of
the forces at the spring ends show satisfactory agreement
with the curves computed beforehand.

The present work was carried out at spare intervals
a2t the physics laboratory of the firm of Sulzer Brothers,
Winterthur. The firm kindly placed at my disposal the
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spring test apparatus, the Siemens Universal oscillo-
graphs, and the guartz indicators, for which I here take
the opportunity to express my sincere thanks.

I wish to thank Professor Eichelberg, who submitted
my report, for the kind interest he has shown throughout
my investigations.

Tranglation by S. Reiss,
National Advisory Committee
for Aeronagutics.
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Figure 1.~ Multiple
reflection
of a disturbance at

a spring.

AR
EV=EEEEERE
R

Figure 5.- Resonance frequencies of spring with
natural frequency of 7540/min,

Nos. 260 to 430 indicated rotations per minute,

Nos. 29 to 17.5 indicate number of free

oscillations per rotation.

A\

Figure 2.- Sketch PFigure 3.- Motion
showing of the

recording of center spring

vibration by means coil obtained with

of a bridge. the apparatus of

fig.2.

Fige.1,2,3,4,5

Figure 4.- Section

through
the test apparatus,
a = test spring.
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Figs. 6,8,9,10,11,12

e e o i e o e e e e e e s s s e g

-2
=
O T
e
+10 ;—-/

+154

L a—
o

(5),,'1000Q o o
200

2
—

Figure 6.~ Scheme of connections
of amplifier,
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Figure 8.-
Velocity curve.

Figure 1l.- Computed
stress curve,
a, at the station-
ary end of the spring.
b, at the moving end
of the spring.

" Figure 12.-
Oscillographs
of stresses
of fig.1l.

a, at station-
ary end of
b spring.
b, at moving
- end of spring.

Figure 9.~ Stress variation for a

single 1ift for £ =16.4.
a, Curve to replace the exact
dh/d e curve.
b, ©BStress computed from curve a.
¢, Stress computed from exact curve,

Figure 10.- Section through spring
with quarts indicator.

a, rigid support.

b, quarts crystal.

¢, electrode to amplifier,

d, moveable guids.
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Figure 7.- Reflection of disturbance at a fixed wall.

a = stress. ¢ = moving end >f spring.
b = velocity. d = reflecting wall.
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figure 18.- Amplitude of harmonics computed from the
wave theory and compared with the results
of harmonic analysis.
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. Figure 19.- Oscillations after spring is compressed, then

rcleased., a = with triangular form of velocity
curve, b = with velscity curve in form »f half sine wave.
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|
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Figure 14.- a, proof of the existence of the second (more accurately
even) harmonics by adding electrically the forces at the
spring ends. '

b, comparison with the forces at the stationary end (s = 19).

Both curves were obtained one directly after the other. '

Figure 13.- Spring stresses at
both ends of the

spring synchronously recorded

(' = 20)0

a, stationary end.

b, moving end.
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Figure 15.- Difference of end "
pressures
8, bullding up again of 2
damped oscillations during Figure 16.- Figure 17.-
i the 1ift stroke. Oscillograms Sang:r
b, dying down during down for single curves

motion of the cam. 11f¢. computed.
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Figure 20.- Computed stress
curves for a
T/r, T'/7, triengular velocity curve.
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Figure 21.- Resonance factor for W
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Figure 22.- Building up spring “~7_ .
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the first 1ift (computed), e
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13 Oscillograms
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1o Tesonance
conditions,
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Figure 27.- Graphical determi-
' nation of damping.
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Pigure 25.- Resonance amplitudes as computed
and as obtained with oscillograph.
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Figure 26.- Dying down of spring vibration.
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Figure 28.~- Damping of tested springs
as functions of wire diameter,
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Figure 30.- Spring vibratien

with strong
damping.
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Pigure 31.-
Effect b
of initial 837 033/~ ™
tension: 89.5 0.
“’l u &, compar-
l ’ "ll ison 89.5 0,
m ' ) ‘ ” b frequency=
il ’ 500/ sec. 89,3 0,
b, natural
spring 89.0 1,
! frequency
S
i" ¢, play
between 290
coils '
‘ in pm,
| 88,6
il %
« y:][ | 884

Figure 29.- Effect of yielding supports

[ on damping. P
# &, without any support. c, leather ring. i
b, polyperite ring. d, rubber riag.
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Figure 33.- Increase of
‘ 3 oL oscillation
| amplitude due to play

o Figure 32.- Comparison of computed spring of roller;
" forces with oscillograms with a, without play.
play of roller varying between O and b, with 0.8 mm. play

0.8 mm. (2 = 20), (2= 17,




