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TEC~N ICAL M~MO~A~DUM NO. 808 

HIGH-SP~ED ~ I ND TUNNELS* 

By J. Ac ke ret 

A. ?URPO SE A~D GE NERAL PROPERT IE S OF 

H IGH-SP~ED WIND TU~NELS 

High- spe ed wind tU~1n els are of practical as well as 
the oretica l va lue ~or t he solution of certain aerodynamic 
p roblems . Th ere exist t oday many applications of high ve
locit i e s whose fun da mental nature we understand but lit
tle. Ou r lack of knowl edg e h as increased as higher and 
h i ghe r velociti es a r e be ing us e d i n various engineering 
pro b; em s as we ll a s aeronautics and info r nation on these 
high velocity applica t ions i s u r Gently needed. 

It was in co nne ction wit h the science of ballistics 
t~at the a ir resist an ce at hig h ve l ocities was first in
v e stigated . To classify a ve l ocit y c as high or low, it 
was compared t o t he sound velocity a. which was thus 
use~ as a measure of the rel ative magnitude of a velocity. 

The co mpre ssibilit y facto~ M = ~. also known as the 
a 

Mach numbe r . serves as a crit e rion for the classification 
of '."lind tunnels int o II subsonic ll and II supersonic ll tunnels. 
respe ctively. For the investi gati on of projectiles. only 
su ch tunnels a s g ive supe r sonic ve l ocities need be consid
ered ; investigations with s ma ll values of M being rela
tive l y unimportant. It will be an i mpor t ant event in the 
histo r y of bal lis t ics wh en it is possible to compute the 
path of a projectile from data obt ained i n the high-speed 
wind tun ne l. It ~ ill the n also be possible to investigate 
h ow the a i r resist a nce could be furt her reduced, the ef
fect on the st ability, e tc. Ce r tainly, very much could be 
learned f ro m tests o n p roj e ctil es a l though, as in the case 
of a i r p l an e test s, it is n o t :p o s s i bl e to va ry all the im
por tant vari a bles independently and over a sufficient 

II \I 
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range. Recently we have a cquir ed much new inf ormat ion on 
stcQm turbines. In this connection, too, the problem of 
sup e r s onic velocities ente rs, although this high-speed 
range is ge n e r a ll y av~oided - higher eff iciencie s being ob
tained a t velocities well below that of sound . Aviation 
engin e ering should keep in close touch with developments 
in steam turbines since the exhaust turbine will acquire 
grea ter i mp or tance in the near future and it is not impos
sible that the gas turbine may be applied for airplane 
dri ve at high altitudes . Much useful information on flow 
at high velocities is also a vailabl e in connection with 
blower construction . High-speed investigations, on the 
ot h er hand , will serve as a stimulus for fu rther develop
men t in these fields of eng i n e e ri ng . 

Up to a short time ago only propelle rs were consid
e red for which M was at most equal to 1. In sp ite of 
ma ny . very imp ortant individua l resu lts obtained, many prob
lems are still unsolved and. moreov er. there exists no 
me thod of computation which satisfactori ly takes into ac-
CO u n t the air ' co mp res sib i 1 it y • I n r e c en t tim e s a i rp 1 a n e s 
themse lves have b e en flown at v ery high speeds giving con
s iderable Ma ch number values . This is true n ot only for 
racing airplanes. espe ciall y desi g ned for high speed, but 
als o for military airplanes which may acquire unusually 
h i gh velocities in d iv es . At these velocities the lift 
coefficients a re quite small so that only the lower p or
t ion of the p olars need be co nsidered . Locally, however, 
very h i gh v e lociti e s a re set up, a nd these must be consid
e r ed in strength c o mputations . This probl em is in some 
respe cts connected wi t h the probl em of cavitation. where 
the local velociti e s a re similarly of great imp ortance. 

Since high velocities a re mostly sought at high alti
tudes, the lowered temperature be c o me s a factor of impor
tance. This l ower ed temperature reduces the sound vel o city 
and t hus increases the Mach number. 

An accurate description of tho steady flow will b e 
characterized as a function of: 

1) The Mach number 

M = ~ a 

2) The Reynol d s Numb e r 

c L P 
Re = ------

f.L 

, 
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3) Th e numb e r of atoms of the gas characterized by 
t he valu e of 

If, f or example, the values of M, Re, k for two geomet
rically similar bo dies are equal, there is similarity of 
flow; tha t is, the fl o w line s a r e likewise geometrically 
simi lar . Ther e arc equal ratios b etween the densities, 
pressures, velo c iti e s, and temp e ra tures, so that illcasure
men t s on the wo d el u rc sufficient t o determine the actual 
f ull- sc a le magnitudes . Th e viscosity and heat-conduction 
c 0 e f fie i en t s mu 8 t be ass urn e d a s C O 11 S t 8. n t wit hi nth e fie 1 d 
of flow. P ractically, condition 3) denot es that the air
plane - mo d el t es t should als o be conducted with air. In 
the .case of stea m turbines, o n the ot he r hand, it would be 
nece s sary to employ a triat omi c gas for the model tests. 
Exper ience has shown, howe v er, t hat for Mach numbers below 
1, tests conducted with air are still useful and apparent
ly the results may be c a rri ed ov er to the full-scale tur
bine . 

We shall soon see , h o wever, t hat it is very difficult 
to satisfy simultane0 1ls1y conditions 1) and 2): Mmod = 

Hfull scale' Remod = Re full scale' In the supersonic range 

M ~ ill first o f all be ch osen equal but to attain the 
same Reyn o lds Number is very di fficrrlt even in the subson
ic range . It has become custo mary, however, to use a 
s mal l e r Reynolds Jumber for the mo del than that for tho 
fu l l-scal e size . It is a f or tunate circumstance that the 
di f ferences in the da ta t hus obt ained arc never very large 
and that the y may to so me extent be estimated as long as 
the valu e s of the Reynolds Number are not less than cer
ta in mimimum va lues . 

The p ower reqUired for tile tests may be computed as 
follows : We define 

kinetic energy p o ssessed by air 
~ = - - -------- ._------_._----- - -- -------

output at blo wer shaft 

L et the t e st se ction a rea b e F, 
p is a function of t h e ' .1 a ch an(l 

the reference length J F; 
Reynolds Numbers for the 

tunne l 
E = ~; 

a 
Re == ~ .~L!L 

IJ. 
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The powe r i s: 

L = I e. c 3 F 
~ 2 

I I 
2 

I t!:~~~~! Re 
2 

Iv! t!:~~ Re 
2 

M = - - = --
~ 2 P 2~ P 

where all the valu0s refer to the test section . 

Fo r ~ we o b tain approxima tely from the kinetic gas 
t heo ry 

Furthermor e, 

where ' 

I 
p 3 P 

p nm 

-2 
C 

I 

L i s the free p ath o f the molecules 

c, the mean mol ecular velocity 

n, numb e r of mol e cules per unit volume 

m, mass of a mo l ecule 

~ , d i ame t er of the molocule 

Usine the Avogadr o law, 

m g .R = C 

Where C i s a co nsta n t (of mol ecular dimensi ons) for all 
gases , we obt a i n fina lly: 

T~e first parenthesis is a cons tant, the second depends on 
the prope r t i es of t~_ e tunnel d_es:i.red , the third on the 

, 

., 
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n a t u re of the gas, t he fourth on th~ c onditi o n of the g as 
at th e t e st section, chosen at wi l l . I f we assume ~ as 
con s tant for definite values of Re a n d M. then it fol 
low s that the tunnel doimensions, pres sur es, etc., must be 
so c ~osen that T is as low as p o ss i b le wh ile p is as 
l a r g e as po s sible. This Reans, howeve r , that we should 
u s e cool air, wit h cool ing before expans ion at the throat, 
a n d small d imensions for the t un ne l so as to work with cor
r esp ondi ng ly g reater densitie s . 

Therefore, a s l o ng as a hi g h Reynol ds Nu mber is an im
p or tan t f a ctor of consideration, the t u nnel should not be 
bu ilt too large . Th i s is naturall y f a vo rabl e from a n eco
no mic p oint o f view, but too s mal l a t u nnel is not very 
p ra c t ical . It should be remember ed, f o r example, that the 
mo u n t ing of the mod e l a t hig h dynami c pressur es become s 
di ff i cult when tho dOimension s a r e smal l . sinco the support 
i ng par ts beco me relatively l arger . Still more imp ortant, 
h owever, is th e po s sibilit y o f employ ing sufficiently 
l a r be mo de ls in larg er t u nnels. espec i ally when pre s sure
d ist ribut ion measu r eme nts a r e to be taken. A solution 
which will satisfy all condi t ions i s , naturally. not pos-
s i bl e . 

Th e theory of co mp re s sibl e fl o ws is at the present 
t ime in a very favorab l e state o f deve l opment, although it 
i s t rue viscosity an d h e a t condu c tion are g enerally left 
o ut o f a c count . It must still be left to experiment to 
f i ll the existing gaps in our i nf o r mat io n. 

B . WI ND TU~NELS FOR SUBSO NI C VELOCIT I ES 

For t h e pu r p o s es o f fli ght- engineering problems, it i s 
hardl y ne cessa ry a t t he p res e n t t ime t o go beyond values of 
M = 1 . Such values wou ld also re quire unusually high po~er 
expend iture if th e mo de l siz e a nd the Reyno l ds Numb e r are 
at the s a me t i me t o b e sufficient ly la r ge. Figure 1 shows 
a small tunnel that was built i n Dr esd e n according to the 
p l an s of Busemann. A centri f u gal blower of about 300 
hor s epowe r p rovid e s a close d circu l at io n of the air and 
produces a free 1 70 mm j o t having a ve lo city approaching 
t ha t of sound . A h oneyco mb, wh i ch is at the same time a 
c o ol e r. removes t he h e a t de ve lo ped by the constant energy 
expenditure. ° Es s ent i a l l y t he sanEl set - up [Just be used for 
t h e large r co ns truc tions . On a cc ount of the strong vibra
t i ons , a fully clo sed c ons t r u ctio n is prefe r able for the 



6 N.A.C.A. Technical Memorandum Ho. -808 

large r sizes and , furthermore, the ene rgy expenditure and 
therefore a lso the heat that must be c onducted away, are 
co n s iderabl~ smaller for this type of c onstruction. Th e 
compressibility of the a ir creates new probl em s in design . 
The velocity along mo st o f the stream pat h is st ill v ery 
smal l and t he l o sses a t the bends, for e~ample , are l~n own 

f ro m p revious experien c e . The p ito t-tu b c pressure , how
eve r, is no longe r g iv en accurately by P c 2 but is larger , 

2 
according to the fo r mul a: 

"J) - ~ C 2 { l + 41.. \ ,1! 2 + ~_:: .. ~ \1
4 + I U "p i tot - 2 - l' 24 111 "' j 

The tempe r ature T along the test p ortion (Which the 
oretically should b e measu r e d with a the rmome t e r that is 
mov ed along ) is lo we r than t hat behind the chamber To 
an e is g iv en by the f ormula: 

Ac
2 

= C ( T - T) = c 6T 2g pop 

Figure 2 se rv e s as an example . Let the a ir at a temp e ra
tur o 300 0 C. i ssue f ro m a v e ry l arge space into a space 
having a pressur e of 10,000 kg/m 2 • Using the values k = 
1 . 4 , c p = 0 . 24 , R = 29 . 2 8, A = 4~7 ' the curv e s of fig-

ure 2 a r e obt a ined showing the ratio 
-.P_ , ___ ~2 _ __ _ 

2 L'lPp i tot 
p lott ed 

against the vel oc ity c . To de t ermine the v e loci ty , it is 
necessa r;y to k n o w the preBsure and tempe rature at the cham
b e r and the ou tside p re s sur e . 

For the abso l ute pres sures and densities , we have the 
well- known adiabatic rel at ions: 

k 1 
k-l k -l 

l?_ = ( 3- ') .1'- = (~-- ) 
P o To / P o ~o 

T~e clos ed t es t p o rt io n of the tunne l mus t b e care
fully ad justed, especial l y on account of the increasing 
bo undary l ayer at the h i ghe r veloci t i es through t~e nar
rOTIed s e ction . I f TI e denot e any cross section area by f 
th o n f r o m the 0 qua t i on 0 f con t i nu i t Y : 

" 
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i.v e 0 bta:in 

f_Q. cotist a n t 
v 

d f + <le. _ d v 
f c v 

o 

For the velo c ity, we hav e: 

or 

cdc 
g 

dc 
c 

-- - v dp 

The f lo w is v e r y nea rl y ad i abati c , so that 

or 

a:ao_ t he re f or e , 
df 
f 

Using t ~le 

obta in: 

df 

f 

r e l at io n s 

k P v co ns t ant 

dp d v 
+ k 

p v 

g p v dp 
= --tr--

C P 

<'. 
8 g k P 

~:e. k 
.. ~ 2 
:l 

- - ---a-
p 1 - l\"; 

o 

1 dp 

k P 

V and 

d f 

f 

It 

7 

we fL1ally 

I n. t h e ne i G~bo rho od o f the velocity of sound, there
for e , t l1. e s 1 i g b t est c ha n b e in c r ass sec t ion i sac c 0 mp a.1 i e d 
by a v ery l arg e change i 1 pressure, making measurenents 
wi th a cl os eQ tunne l very difficult if the walls of tho 
for Be r a r e no t adjl st a ble. ~u t C7en fo r the open jet, 
d i f ficulti e s n r e en coun t e red ~~en ~ = 1 . 

Fi3ur e 3 sho ws a tes t arrangecent for the study of 
tho pre s s u r es a n d ef fici onci es i n a hi'"';L veloe-ity tbSt 
cham b e r wit h c o nnec t ed diffu~er o? exit cono. Figure 4 is 
a pho t og r a ·ph of tho e. tire Llstallatio:l . T:18 air \las de
liv e r e d by- an ax i !-ll ty~o c O: lpress o r (na--r.ir:mm O'..1.tP'lt 500 
h 0 r s e:? 0 '! e r ) :7 ass t r a i b 11 te n e d b;y a ~:.. 0 n 0 yeo ill ban d flo \7 e d 
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th roug h t~o c yl indric a l t e s t p ort i o n (200 mm ) and the ad
joining sh eet-me t a l cono out i nt o tho a tmosph e re. Th e 
pre u su r es we re measu r ed a t the p o int s not ed on the f i gure , 
an d thermocouples wo r e u sed t o measure th e inlet tempera
tUre . The obstacle s h own at the side of the figure could 
be tntroduced into the test section. The tests were main
l y intended to g ive informati o n on the restored pressure 
e fficiency of the cone at the h i g her Mach numbers . Figure 
5 sho~s the measu r ed pressute distribution wit h the ob sta
c l e removed . While t h e r e is no app r e ciable pressure drop 
a long t ~0 test porti o n a t lo w v e locities , t he pressure 
d ro p increas es v e ry much i n the neichborhood of the so und 
velocity in ag r eemon t \'l ith the oxplanation g iven above. 
The ef fect of the exit cono or diffuser wa y b o cha r a ct er
iz ed by an exit cone eff ici ency ~d' I n the c a s e of in-

co m~ re ss ibl e flow ~d is g iven by the pr o s sure rise that 
is ~ ro duced . Wit h co mpre ss ibl e flo ws seve r a l def i n itions 
are p o ssi ble. If wo c o nsider the ent ropy d i agram ( fig . 6) , 
we ha ve an expansion from tho p re ssu re Po to Pl at the 

tes t sect ion, wi th incroase in v el o city . Th e diffuser re
cove rs tho p res sure p,,' The efficiency on the basis of 

" 
press u r e is 

PC) - Pl 
~ =----- --

pr es p _ p 
. 0 1 

The e ne r g y expend i ture required fo r p roducing the n ir 
flo~ . or, mor e p rop er l y , for covering the l o sses is n ot, 
h o wever, determin ed by the above formula, s i nce 1 - ~pres 

does not ac curatel y repr esent the ene r g y loss . L. Crocco, 
i n ~l is v e r y i mp ort ant st u dy on hi gh- speed wind tunnels, 
def i nes the exit-CO Yl e eff i ciency in such a way that for an 
in f i n it es imal incre a se i n pressure, a s for t he ca se whe re 
c o I:1p res s ib iIi t Y i s not co n sid ere d, hew r i t e s : 

c de = - v dp 
g 

For the time being ~d may be as s umed constant throughout 
the co mp ression and the st ate of th e ga s r epresent ed o n 
the entr opy diagram . 

Ac c~rding to the ene r gy th oot em, 

c2 
i + A ')'- = c o n s tan t ",g 

(the excha n ge o f h oat u i th the surro undings being nes-

- -- -- --' 

" 
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lec t ed ) T) d di = A v dp . The entropy equation 

c1) dT A- P dv 
dS = + ---- --

T T 

and the gas equ a t i o n the n eas il y lead. to the conclusion 

t h!.1 t t 11 eel 0 IT< 0 n t of ene r gy lo ss (1 - T) d ) A ~-i~ in heat 

units is ~iven by the c ro s s- hatched element of nr~a T dS . 
I t foll o ws , furt he r more, that wi th constnnt T)d the curve 

boc oDes ev e n s t eepe r, sinc e fo r equal increases in temper
a tu r .e 't he a r on r op r e s e n t i n g ti.l e ene rgy 1 0 s s must inc rca s e 
correspondi ng l y , a n d at a highe r temverature dS is small
e r . Th e e ner g y lo s s a rea (fi g . 6 II ) is not, however, 
equa l to tl e wo r k tha t mu st be expended by a blower of the 
usual c o nst ruc t ion . Th i s ~ o ul d r equire a very definite 
expan sion proc ess a n d spe cial cooling. Practically what 
hap pe n s is that tle a ir i s t ak e n up by the blower after it 
goes through t he d i ffu s e r and in the ideal case is ad.ia
bat ica lly co mp r essod (f i g . 6 II I) . After compression tae 
temperature Tl i s rea ched and the amount of hoat cp 
(T ' - To ) pe r k ilo g r am ; that i s , the cro s s-hatched a rea 

must b e ren ov e d . Th i s l oss is naturally g reater than that 
show n i n f i g u re 6 II . I t may b e asked wha t is the best 
conditi o n that cou l d be attained froD the thermodynamical 
viewp oint . 1 i gure 6 IV shows another ~rocess which is, 
horye v e r , o n l y of t~eoret i ca l i~terest. Let the lowest 
cool i ng wate r temperat u re available be Tu' The air be
hind the ex it c on e is as sumed to flow first through a tur
b ine wh i ch do e s an amoun t of wo r k cp (To - Tw) per kilo-

g r am, then f o llo ws an i s o therma l compression with cooled 
blo~e r and f ina ll y an ad i abat ic c o~pression to Po which 
again raise s the work of the turbine. The amount of work 
expended is equa l to the cross- hatched area, which is so me
what l ess than the previou s one . Only t~o case corre
spond, ing to tJle th ir d d i ag r am must be considered in prac
tice . Tho difference between the efficiency on the basis 
of pressure and that o n the basis of ener~y loss from fig
ure 6 II I is sh own in f i gure 7 for a ~aca number of 0.6 
corresp o ndi n g to a vel o c i ty of ",bout 200 m c~e Ts per second. 
We lief in e 

T)pros 

p - P 
_~ ____ L 

P - P o 1 
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SO tha t i s so mewhat larger than 'T')pr e s . 

The pressure d i st ribu ti on ( fie. 5 ) shows the rise in 
pressure expected when the sound velocity at t~e ex i t - cone 
entrance is exceeded and when tl e pressure is part l y pro
duced by a compressio n i mpulse . 

The cor r esp onding ene r gy efficiency is c o mputed accord
ing to f i g u r e 6 III, c ompensating for the kinet i c energy of 
the mean vel o city at the end of the exit cone . Figure 8 
shows a constant va l ue o f 0.85 ior the efficiency up to 
the ne i g h bo r ho o d o f the s ound v~locity . Fo r M = 0 . 94 
theie is a dec r ease, wh ich mean s pract i cal l y that it is 
not possi b le to raise the v elo ci ty at the measuri n g sec
tion _ by a furthe r de cr eaae in the pressure at the end of 
the exit cone , and f ro m th i s we learn that the cross sec
tions at supers oni c ve lo citie s must be essentially of dif
fer ent fo r m. F ro m- the curv e we may o btain the important 
result that a r est or ing of pressure up to M = 1 is poss i
blewith no r ma l exit c o ne s . F ig~re 9 sho ws the entropy 
d i agram f or two p oints c o r r esp o nding to M = 0 . 584 aRd 
M = 0 . 77 . 

For small v a l ues o f M the obstacle intr o duced does 
not change the n o r mal pressure distribution ( fig . 10 ). 
There i s, however, an inc~eased sensitivity in the pres 
sur~ changes with cross- se c t i on changes, especial l y in the 
neighborho o d of the so~nd vel o city, since the cross sec
tion at the nar io w~s t port i on c hanges when the test body 
is int ro du ced . It is p o ss i ble that a free jet in the 
nei g hbo r h o od o f M = 1 would offer some advantages as far 
as ease of measur emen t is c o nce r ned, but we have made no 
tests on thi s pO int . An interest i ng pheno menon was the 
strong, shrill noise that was noted as the v e l ocity of 
sound was appr o a c hed . 

When t~e amount of the pr e ssure restored by the exit 
cone is kn o wn , the tu~nel propeller can be designed . 
Pressure Qi fferences of fr om 500 to 1 , 000 kg/rna may be ob
tained with a good ar r angement, so that s i n g le- stage blow
ers may be used up to tunne l v eloci t ies of 200 mOters per 
secdnd (450 mi l es per h o u r ) . The periphe r al velocity of 
the propel l er is limi ted by c o n s iderations of strength 
and the veloc i ty of sound . A further limit to the pres
sure difference pro duced, is the se p aration of the flow 
at the inne r mos t parts of t~e blades . This necess i tates 
tl1.icker hubs wh i c!'1 docrease tJl0 p ro p eller cro ss sect ion 
and rai s e the velocity of the air passing through the pro-

" 
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pelle r by su ch a la r ge amo unt that additional losses are 
produ c ed . 

We define the following nondimensio n al magnitudes : 

6p 
q:> = 

P 1-12 
2 

hub d i ameter v --.---.- - ---------
outs i de diameter 

and fUrther , 

which factor is a g ood index for t he type of blower used. 

If we des ire full output a t t~e hub, it is necessary 
for the blade width and the per ipheral v eloci ty to be suffi
ci en tly large . Figure 1 1 shous the hub to propeller diam
eter r at io as a funct ion of ~ for differe~t values of 
the p roduc t c a b l ade width p er blade separation. 

At smaller pressure s - that is, at .high velocities, 
it is p ossible to work TI ith a smaller output, since in 
t hat cas e the ri s e of pr essure through the propeller oc
curs at the expense o f the J::: inetic enerGY. At h igher 
pressures (sma ller cr) th is 15 no longe r possible since the 
ki net ic en ergy is sma ll e r co mpa red to t~e pressure rise 
produced at the w~ee l . Th e d ecrease d en ergy at the hub in 
t 11. e fir s t cas e rou s t na t 11 raIl y b e :na (1 e up 1 ate r, e i t 11 e r by 
tu rbulenc e in th e e xit cone or by thro ttling at the faster 
mov ing pa rts . 

Appa rent ly, the refore, a b i gge r hub is of advantage. 
E xp er ~Dents have sho wn tha t also !or a scalIer hub con
struction. a rather b i g h ole is torn in the energy curve 
and this is ma inly on a c count of t he insufficient turbu
l en ce when t he walls a re f ixed . D 0 Tomasi set up a dif 
fuser arrangement TI ith a t h ro tt ling insert that perDits 
th e air pas sing through i t t o be throttl ed d o wn to zero. 
strange to say, full closure Giv es a better pr e s sure re
cov e r y than a small out f l o w. a nd t~is is ~ robably due to 
the fact that the mixing ten de nc y i s greater in the first 
case (fig . 12) . The u:::'Jpc r li ,:lit f or thc periphe r al veloc
ity , n o t considerin ~ t~o strol g th rCaU irCDcnt s, is limited 
by the circumstance that as tnc v cl o~ity of sound ~s ap
proach e d, the p rofi l e drag increasos at the higher lifts 
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and sepa ration sets in even at the small lifts . I t is 
therefor e necessary first, to keep the relative velocity 
be l ow a c e rt ain l i mit; and sec ond , to work with a low val
ue of c - that is, use large blade widths . Assuming that 
the h i ghest local velocity is to be 0 . 9 t i mes the vel o city 
of sound , figure 13 is obtained for the limits of the per
iphe r a l velo cit y . These values still remain to be test ed 
experimentally , although they are probably too high r athe r 
than too low . Fo r examp l e, with W = 0 . 4 and the large 
ov erlap rati o of 0 . 75, a peripheral velocity of 260 meters 
per seco n d is st ill pe r mi ssible and the corresponding 
pressure difference p roduc ed is 1, 69 0 kg/rna . Such value s 
have a l ready b ee n obtained in practice . It is import a nt to 
remember that the pressu r e restored by the exit cone varies 
wit~ the object of the test that is being conducted, and a 
reserve is necessary . With sin51e- stage wheels the pres
sure can hardl y exceed 1 , 000 mm W,S . (1/10 atmosphere). 

Up to a short time ag o , it was not p o ssible to obtain 
the high effici e ncies that we r e theoretically expected at 
high pres sur es . Whereas the wheel (fig . 14) still gives 
good eff i ciencies, name ly, ~ = 0. B4 at W = 0.2 (includ
ing the 1 0 s se s in the exi t cone behind the wheel); the 
h i gh- pressure wheel ( f i g . 1 5 ) gives a considerably lower 
effic i e ncy, ~ = 0 . 77 at ~ = 0 . 5 . In these tests the 
lo s s at the hub is el iminat ed by p lacing a cylindrical tube 
beh ind the hub . Otherwi se . the differe nce would be still 
gr eate r . 

Separation at the blades occurred not so much between 
the blades a s at the edges between the blades and the wall 
(fig . 16) . The design of the blade ends as shown in fig
ure 17 improved the pe rforman ce somewhat , although the p o
lars for the set of blades still showed large losses com
pared to that of the s ing le blade (fig . 18 ). The maximum 
lift is he re de termi ned by the separation at the rim . 

I n our tests wi t h the tunnel propellers, it was p ossi
ble to g ive the ai r an adjustable spi ral moveme nt before 
reaching the p ro peller. At higher values of ~ a system 
of guide vanes is in d ispensa bl e since the spiral motion is 
considerable a nd would b e a g reat source o f disturbance . 
Gu i des p laced in front of the wheel have the advantage 
tha t the a ir is strongly acce l erated and ente r s the wheel 
very. smo o th l y . Th is improv e s the eff iciency and reduces 
the no i se . With the guide behind the wh e el there is the 
advantage that the air leaves the blowe r without spiral 
mot ion , but under certain conditions there are considera
ble losses at the guide van e s . 
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In recent times the propeller blades have been de
si gned so that their setting is adjustable, thus making it 
possible to controi the velocity to a large extent. The 
driving motor do e s not then re quir e a very large velocity 
range but onl y cert a in discrete velocities. Figure 19 
shows the blower character i stics using variable blade set
ting s. With fixed blade the spiral motion of the air can 
less easily be regulated (fig. 20). When the resistances 
var y a g reat deaL as, for exa mp le, when using nozzles of 
different d iamet e rs, it is absolutely necessary for the 
blades to be adjustable . Fi gure 21 shows how it is possi
ble to han~le masses of air of quite different volumes 
with g ood efficiency . Adjust a bl e blades are also impor
tant for variable density tun ne ls because they make possi
ble full output within a large r ange. 

I n closed high- speed tunnels, it is necessary to re
mo ve the heat into which th e p ro peller output is converted. 
It is wel l know n that in order to obtain a good relation 
bet~ e en the heat conducted away and the loss in pressure, 
it is necessary that the co ol e r be placed at a section 
where the velocity is s mall, since the heat conduction in
crease s with the v el ocity to a p o wer that is less than 1. 
l .t is, obviou sly , advantage ous to const r uct the honeycomb 
so that it acts as a cooler at the same time, whereby the 
advantage of a v e r y good smoothing out of the velocities 
greatly outw e i g hs the somewhat increas~d pressure loss. 
Such coolers are als o v ery useful for tunnels where tests 
on air- cooled engines are to be conducted. 

Th e blow e r dr ive may be designed as is customary at 
the pr esent time, and I shall not enter into this question 
except to p oint out a met hod that will probably be applied 
in the future and which will g ive very high performance, 
namely, steam drive using Velox boilers. Full output of 
the p ro pe ller is rarely used , relatively speaking, and 
th e refore the fact that the tu rbin e efficiency is somewhat 
smaller at full load than at small loads, is not of great 
i mp ortance . The usual p o we r turbi nes are not to be taken 
as examples. There are su rprising possibilities of im
proved performance wi th in a small range . An example will 
make th i s clearer . A closed iron tunne l is designed for a 
maximum velocity of 700 km/h (435 miles per hour) and 
having a diameter of 4 . 5 me t er s at the test section. The 
tunne l is also to be op e rated at a vacuum and with pres
sures above atmospheric - in the latter case at reduced 
velocity . Th e tunnel is to operate with the best effi
ciency possible on acc ount of th e small power output and 
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a mount of cooling, and t~erefore sma ll- a n g le cones and 
l a r g e cross sections for the cool e r must be used. Figure 
22 shows a section through the tunnel . The propeller has 
a djustable blad.es, a d iameter of 7. 5 meters, and a maximum 
speed. of 600 r . p . m. 

The tunnel may be operated at a vacuum or at pressures 
up to 10 atmosphere s . By adjustin g the blades it is possi
ble at this latter pressu re to operate at a velocity of 300 
km/h ( about 1 90 mi l e s per hour ) . 

A wing of 3- meter span and 50 c entimeters mean chord 
could be inv est i gated in the f irs t case at a Reynolds Num
ber of 6 . 8 X 106 and a Mach number of 0.57. In the second 
case M = 0 . 245 and Re i ncreases to 29 X 10 6

• Byevac
uating the tunnel M could be raised somewhat. In such 
tun nels considerable difficulty is met with in sup porting 
the models and obtaining the corresp onding forces for the 
f ull- scale wing or airp lane. 

The turbines (two housings ) (fig. 23) worJ.;: at a s p eed 
of 4 , 800 r.p . m. and are adjusted t o the speed of the pro
pelle r . It is possible to obtain a maximum output of 
25 , 0 0 0 horsepower with g ood eff i ciency . The flo w of the 
stea m takes p lace a t an unusually hi gh velocity but it is 
p ossible by means of the diffuser to recover a consider
a ble porti on of t h e pressure and to work with a vacuum in 
the condenser of 0 . 08 at mosphere. 

The chief ob stacle to the a p plication of steam was, 
until now, the inconvenience in pl a cin g the boiler and es 
p ecially , the long time required to start up the turbine 
a ~ ~ the poor regulation p o ssib le , d u e to the large quanti
t i e s of heat stor ed up i n t h e brickwork, etc . This h a s 
a ll b e en changed now at one stro k e. Th e B . B. C Velox boil
e r whose d evel opm e nt is founded l a r g ely on th e recent 
p rogre s s made in aerody nam i cs does all , so to speak, tha t 
is reasonabl y required of a wind-tunnel drive. The boil e r 
t a~es up ver y li t tle space and re qu ires no sp ecial atten
t ion. Even very p owerful units may, within 10 minut e s, be 
broug ht up from the cold condition to full pressure . The 
e f f ici e ncy is unusu ally high, 93 percent being repeate dly 
obtained in t e sts with only a sligh t decrease at part load. 
Th o boiler adjusts itself to load cha n g e s al most instantly. 
Since it could be operated with f ue l o il, the fuel cost per 
h orsep o wer- h our is n ot l ar g er t han for the Diesel eng i n e. 
Th e chief new feature of the Velox s te a m generator is t h e 
p o s sibility of combustion under h i gher p ressure and the 



N . A. C . A. T e ch nica l Me~o randum No. 808 15 

bu rned ga s e s t he r e fore p o s se ss co nsiderable velocity. 
Thi s Hake s p o s sible v e r y g ood h eat cond.uction, which fact 
l ea d s t o s ma ll di mensions and s ma l l amount of water neces
s a ry . The co mpre s sio n of the co mbustion gases consumes 
o n l y a sma ll a moun t of t h e p owe r which is now supplied by 
the ga s t urbine o pe r a ting on t~e ex~aust gases of the 
boil e r . Wit h i n c r e a si ng e f fi c i ency of the compressor and 
t urbi ne , t he re i s p o ss ibl e a lso an increase in the furnace 
pressure wh ich, in the p resen t c onstructions, amounts to 
abou t 2 to 3 a tmospheres . 

Fi g ur e 2 4 sho ws a c ross s e c tion through the boiler, 
fi g ur e 25 , a view o f the whol e arrangement, and figure 26, 
t he r esults on t es ts showin g tile unusually high efficien
c i e s at p 1;1. r t lo a d. . :ii' i g u r e 2 7 . fi n a 11 y. i sad i a bra m 0 f a 
s t a r t i ng- up t es t s how in g t h e mi nimum time required for 
hea ti ng up the boil e r. 

C. SUPERSO NI C TUFNELS 

If it i s des i red to attain velocities approaching 
those met u i th in bal listics, the problem of energy becomes 
of eve n g r eate r impo r tance . F or the solution of the prob
l em , the foll o wing methods are available: 

a ) Us i ng the ene r gy f r om an air reservoir for short 
t i me inte r va ls duri ng the test and storing up the air du r
ing the r e ma i nde r o f the t i ue. 

b) Ope r a ting the tunne l co ntinuously with a vacuum, 
i n wh ich c a s e the Reynol ds Numbe r will be less in propor
t io n t o the pr es s tire . 

Eoth o f the s e metho d s h ave their advantages and disad
va .:tages . By metho d a) , it is d i fficult to carry out tests 
i nvo l v i ng hea t c ondu c ti on bu t h i gh Reynolds 'umbers are 
relat i ve l y easy to obtain . By wethod b) the reverse is 
t rue . F i gu r es 28 and 2 9 sho w schematically the arrange
ment for the st or ed- up meth o d of o~ eration with direct 

.t' II 

d ri ve . The h i gh- speed wind tunnel at Gottingen. for ex-
ample , c onsists of tw o v a cu u m t nks into whi ch the air 
f r om the outs i d e e nt er s af t e r passinG through the experi
men t a l cha mb e r. A q'l ic lc- cl o s i n g coc~ cuts o ~f the air 
f r om the t ank. The a i r may be tat:en from the atmosphere -
with the dis adv antage, h07eve r , that there is a possibil
i ty o f i ce for mat ion on the mode l s. The installation at 

,/~ 
i 



16 N. A . C . A . Technical Memorandum No . 808 

" Gottingen, therefore, uses dried air from an air tank 
(fig . 28, bottom) . Figure 29 shows another arrangement 
with the above method of operation, at only subsonic . ve
locities, however, and is the one used at the N. A.C.A . 
and N. P . L . The high-pressure air is taken from large 
tanks that surround the high-pressure tunnel. From the 
p oint of view of economy, direct op e ration with high
pressure air would be more advant a geous. but it has the 
disadvant ag e, however, that the p ressure and temperature 
ch a n g e during t~e test . A pre s sure regulator would re
move t h e first disadvant a ge, but the tempe rature would 
still fall since any throttling proc es s would h n ve no ef
f e ct on it . In this case , too , specia l means must be 
provided a c ainst the tendency to ward ice formation . The 
time intervals required for the t ests with the a rrange
ment of figure 28 ma y easily be co mput e d from n knowl e d g e 
of t 'l e fact t~1at a c onstant wei g ht must flow throug h the 
miniJilUm cro s s section d.uring th e t e st interva l, negl e ct
ing the exchange of heat with the wa lls~ 

L e t the volume of the a ir cont a iner be V m3
, the 

specific weight of the container 'Yi; i = cp Ti equa ls 

the heat content per kilogram . If t he a mount of air flow
ing through the throat per second is m, then 

V d'Y i = m d t 

The change in the en e r g y content is 

where the index a refers to the condition of the air en
tering the container ( at pr a ctically zero velocity). 

Now 

which , according to the energy theorem, is e qual to the 
heat content of the outside a ir : 

We thus obtain : 
dry- = l!! dt 

1 V 

'Y - = 'Y- + ~ t 
1 11 V 
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Furth e rmore, 

Sin ce 

i t fol lo w s tho. t 

and p . = p . 
1 11 

cp m To 
d(~i T·) = ------- dt 

~ C v V 

p . IT) 

= =-~ + -=- l~ 
R V 

+ ; k RTo t; 
ill k RTo 

17 

Th e ti me int e rv a l for the t est is thus directly pro
portional to the voluce of the con tainer and to the pres
sure differenro that must arise in the container or tan~ 
in order that there be no disturbance in the nir condition 
at the t e st scction. This back pressure depends on the 
e ffec tiv e ness o f the exit cone behind the test section in 
restoring the pressure . Buse mann states that for M = 1.47 
th e pr essure in the tank should rise from 0.5 to 0.7 atmos
phere . Th e air expands from 1 atmosphere to 0.2B4 atmos
phere , and from t he re it r is es to a maximum of 0.7 atmos
phere . Th e se figures are in go od agreement with the re
sults obtained in our tests . Figure 31 shows the pressure 
a long the tunne l for d i ffe r e nt throats and at different 
Mach nu mbe rs. Th e d i ffuse r, as we know, must first narrow 
do wn and then diverge . The l o wer diagram gives us the re
quired p ressure ra t ios in vh i ch other resistances at the 
honeycombs, b e nds, Gt c . , f:lUst be included. Since tho test 
intervals are mea sured in seconds even when large reser
voirs are used, it is necessary to havellthe air cut-off 
o ccur as qu ick ly a s p ossible. At the Gottingen tunnel a 
turncock is used (fig . 32), which is started with high
pressure air and i s turned in fractions of a second by 
means of a servo mo t or us ing oil damping . In the open set
ting the resist a nce that it offers to the flow is almost 
ne g li g ible. 

With the continu ous op e r at ion netho d (fig. 30), the 
co mp re s sor performa nce ~ l s o depends on the restored pres
sure in the exit cone . The ou t put and t~e Reynolds Yumber 
are p ro p ortiona l to the ab soluto pressure, which may easi
ly be varied by moans of a vaCUU;il pump. The cooler is a 
n ew f ea ture. Th e skotch on fif,ure 30 shows how the high-



18 N. A. C. A . Technical MemorandumHri . 808 

e st veloc iti es a re obtain e d at the Zurich tunnel. One 
part of the compressor air is branched off afte r cooling 
and emp loyed to dr iv e an ejector . With the remainder of 
the ai r it is possible to attain higher velocities, since 
a higher pressure r ange is poss ible. The ejector serves 
also as an auxiliary outlet when small air masses a re used 
as , for example , in tests on p i pes . The closed ar range 
ment has the advantage that wi thin certain limits the 
Reynolds Number may be changed independently of the Mach 
numb e r . This is especially important at the small 
Reynolds Numbers since, for t hese , the profi le drag de
pen d 's t 0 a rat her 1 a r gee xt en ton the R e y n old s N um b e r , 
and ye st ill know hard l y anyth i ng . about the effect of 
compressi bili ty on sepa r ation a nd turbulence . Further
more, it is then entire ly possible to work with o the r 
gases, fo r examp l e, CO a (triato mic ) or argo n ( monatomic ) 

A p ossible d i sadvantage that may be offered by the 
employ of such expensive gases as argon, is the lack of 
airt i ghtness of the. entire a ir passage and bl o wer . In ac
tual operation it was noted, however, that the leakage 
was qu ite small even with the usual nethnd emp loy ed to 
gain ti g htness, and by using special methods such as sol
dering over indiv i dual . flanges with thin sheet me t a l, etc ., 
the ai rtightness could be even further improve d . 

I t is a characterist ic feature of supersonic wind 
tun nels that the . throat , test 6hamber , and ex i t cone must 
be of an adjustable cro s s section if it is desired to have 
a continuous variat ion of the velocity. This is a matter 
6f considerable diff i culty and .makes it necessary to em
p loy. r ec tangul ar forms for the tunne 1, such t ha t two op:oo
site walls are fixed while the ot her two are capable of 
being moved . Dr . Gasperi proposed three p l ane walls with 
one adjusta bl e wall, this symmetrical construction then 
correspond i ng to the three azial reference planes . This 
would have the advantage of cheaper construction and con
venience in observation at the third side (fig . 33) . 

Th e test section itself must be made variable, a l
though it should be noted that for a su f ficiently steep 
pressu re-volume characte ri stic the variation is small. 
The nar row est cro ss section beco me s smaller at the hi gher 
Mach numbers, but the rat io: 

test section area 
--------:----------- ----- -...----
minimum throat sect ion area 

F 

F* .. I 
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become s g r eater, so that ther e is almost compensation. 
With the closed tunnel ar ran ge ment , the heat exchange with 
th e surroundi ng s may , to a first a ppro x imation, be neg
l ecte d. Then (fi g . 3 4) To = T1 • S i nce Vo = RTo/Po' 
the we i ght of a ir pe r second t a ken u p by the compressor, 
i s 

Vo Po 
G = -----

wher e Va is the volume 
cubic me t e rs pe r sec ond. 
t ha t for La v a l no zz l es 
pera tures , and densiti e s 
minimum sect ion ( den ot ed 

are constant . G 

v* RT* 
p* 

s o t ha t 

T* - -
Tl 

is also 

R To 

d r aw n in by the compressor in 
It is kno wn, on the other hand, 

the ratios of the pressures, teB
in fr ont of the nozzle and at the 
by * ) a re constant; that is, 

~~. v* , 
P l V 

equal to E.~_~~ 
v* 

und moreover, 

F* a* p* = -------- and 
Va Po T* --------

R T* :-'.* p* To 
= 

Po 
canst . Vo 

Pl 
Usin g the p re ssu r e ratio We 

Vo 
th e refo r e obt a in F* = canst . -;§.-

As may have bee n exp ected, F* is B~aller the larger the 
v a lu e o f ~ ; tha t is , tl e l arge r the Mach nunbar. 

The r ati o F/F* is g iven by the theory of the Laval 
n o z zle, and figure 35 show s the relation for air. If t~is 
curve i s co mbined wit h t hat of fi gure 31 (bottom) which 
g iv es u s the pressure r a tio ~, i t is then p ossible to 
c 0 I!1p ute the are a oft he t est se c t ion F frO;:11 the ~ - V 0 

re l at ion . We obt ai n the result that the curve ~ - Vo 
must b e ra ther st eep, so that the p ropeller should show 
very li tt le va ri at io n in th e volu me of a ir drawn in . This 
cond ition wh ich oth e r wi se is of n o advantage, is very well 
fu lfill e d by the new mult i stage axial compressors. Figure 
36 g i~es a compar i son of t~e characteristics of the radial 
and axia l c ompress ors. 

Th e throat s h ould oe 
para llel flow at constant 

of su ch 
sp e ad . 

R form that it pe rmits a 
Fortunately the charac-
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terist i c s pro v i de us wi t h a good graphical method for ob
tain i ng the form of the test section for different v a lues 
of M ({i g . 37 ). Figure 38 shows different forms . The 
walls must theref o re be designed so a s to be flexible . 
Broad steel bands are put around the test por tion, and by 
means of scr ews and links the test port ion may 'oe varied in 
a regular man ner . Airtightness is secu r e d by having rub
ber p resse d a Gainst the sides . Behind the oand there is 
the vacuum and therefore the force is not particularly 
stro n~ . The band th i ckness is not constant bu t g reater at 
the fasten i ng points. so as not to obtain any p ositions 
on the contour having too l a r g e a curvature. The g reat ~st 

variation is a t the narrowest cross section. The test 
cro s s section may be left con stant . Th e exit cone is to 
be constructed in the same manne r as the throat . Tests 
show. however, that the mi ni mum section of the CO~'le must 
be larger . This is to be ascribed mostly to the boundary 
laye r formed at the wal ls . Th e flow is naturally very 
co mp licated when the waves starting out from the body un
dor inv es tiga tion create new d i sturbanc es in the exit 
cone . Th e exit cono, too , mus t be capable of a djustment . 

A spe cia l problem a r is es when the velocity to bo 
measured is only a little aoove the velocity of sound . 
The wa ves strike the walls or the free jets and are fe 
flected i n the s ame or opposite phase . I f M----71 the 
reflected wa v e s strike the te st body and falsify tho re
sults - under some conditions, b y a considerable amount . 
In two dimensional p roolems t~ere is a way out by using a 
sorlewhat tedious step- bjT- step approximation method for 
curving the walls (fig . 39). I t is then a lso possible 
to inv est i gate ver y large bodies . 

An import a nt el e mont is the cooler . Where is it most 
advantag eous to place it? In front of or behind the test 
chamber ' I f it is p l aced in front, it receiVes the hot 
ai r from the bl o wer and cools it to about roo m tempera
ture . Durin g the expansion , very low temperatures are 
reached; on the walls , however, on accotint of the fric
tion, the temperature is al~ost the , same as the initial 
terilperature . The compensation is not conp l ete. observa
tions show ing a decrease in the wall temperature. If the 
cooler is placed be h i nd the test chamber , the walls are 
hot . It is then to be noted that the coo ler in this case 
must have considerabl y larg e r 
pe rature is u n change d but t ~8 

it cone b eing able to restore 
t ~ e ·or i ginal pressure . It is 

diillensions . The fall in tem-
air den sity is less, the ex
only a fractional part of 
easy to see that the heat 
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co nductivity for equal flow veloci ty is smaller. The heat 

d ' ( ) 0 , 6 ( f ' 40 h ' t t exclla ng e J.ncreases 8. S pc see J.g. , S oWJ.ng es 
r esults on cooling p l a tes) ~h il e the pressure decreases to 
a ~ i gh e r p o wer than 1 wit h the v e lo city , so that 

If ~e assume , for example , the density behind the test 
cham b er as 1/3, then for equal cooling surface c must 
b ec ome three times a s g reat in ord er to remove the same 
amoun t of h ea t . This r equ ir es, ho wever, that 6p become 

( 1.\ 0 • 6 X (3) 1 • 6 " t ha t J.' s, tllr e e grea t er in the r a tio ) 
3 / 

times a s great . It will therefore be necessary to have 
the cool e r larger . Ano t hor import ant question is the si
multaneous applicatio n as a honeycomb and velocity equal
iz e r . Th e velocity distribution at the outlet of the 
bl owe r is, gene rall y speak ing , not sufficiently uniform. 
I f a b o dy, permitting the a ir to flow through it, is placed 
in the way of the f low like our cooler, then there results 
a very uniform d is t ribu t ion of the velocities. For these 
rea sons we have decided to set up the cooler at t~e Zurich 
tunnel in fron t of the throat. 

Axial c o mp re ss ors a re at present being greatly devel 
oped . F i g ure 4 1 s h o ws the characteristics of the com
pressor used at Zur ich tunnel for di~ferent rotational 
speeds u i t h the maximum number of stages. It was possible 
to ra ise the adiabatic eff i ciency to above 80 percent. 
F i gure 42 shows a se ction through the supersonic wind tun
nel at Zurich . Th e tunnel is s o designed that the test 
scctio n is app roxi wa tely a s quare 40 by 40 centimeters, 
a~d a v e locit y twi c e t~at o f sound can be attained. The 
l 3- stage B . B .C. axial co np r ess or draws in the air, for ex
al:1p l e , at 0 . 125 atDosphe re and compresses it to 0.275 at
,ospho re. The rot atio nal speed required for this is 3,500 
r . p . m., and the volume d r aw n in about 45 cubic reeters per 
s eco nd . For this an output of 700 ~ilowatts is required 
of the d .-c. Do t or. The temperature of the air brought in 
may rise to 45 0 C. , the final compression te!:lperature to 
1 65 0

• F i g ur e 43 shows the blower, v!hic~l has a drum J otor. 
The g uide-vane ri ms may ea s i l y be removed so that it is 
p o ss i ble to operate TI it h a reduced rressure ratio at a 
so mewha t lowered ef fici ency . Special measures must be 
taken against the infiltra tion o f outside air and to see 
tha t n o oil v aror get s into t2e circulation. Figure 44 
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shows the oil circulation. Th e a ir pr e ssu re at the places 
requir ing tightness is so maintained that the sealing oil 
and oil v apo r are p ressed toward the ,outside . Oil and air 
a rc then separa t ed t h rough fi lt er and overfl o w and thon re
turn , so that neither oil nor air i s lost . The saving of 
t:10 ga sis nat urally 0 f part icul a r i mpo rtanc e in op ora t ion 
",v itl1 expen s iv e ga sB s . Aft er g oi ng throue;h the blower, tho 
a ir en t e rs t ho cool e r (fig . 45 ) . It cons is ts of three 
rectangula r clements connecte~ o no behind the other, with 
v e rtic a l pipes through which the wate r flows, a nd soldered 
on h orizontally a re thin copp e r p l a tes, each element being 
capable of being separately disconnected . The cooling ribs 
of the f irst two cooling elements are s p irally woun d and 
the last has accu r ate ly h or izontal plates to direct the 
flow . It would b e of some ad v a ntag e to s treamline the 
cool i ng t ub e s ( f i g . 46 ), a 1 tho ug h the ~1 i g h cool i ng wa t e r 
pre s sure and the expense involv e d in the construction kept 
us from d oing t his. The re s istanc e is not p a rticularly 
large - at ful l v eloci ty being 90 mm W.S. '(0. 0 090 a tmos 
phe re) . The p rinciple of opposed water fl o w is used an~ 
the wate r i nle t and outlet p ipes a r c so ,' arranoed that all 
par ts of the a ir flo~ing through ~ro ~oo l ed a s uniformly 
as p ossible i n ord o r to a void the formati on of Ilschlieren . 1I 

Th e p ipe lin e is solde r ed out of sheet metal 5 mm thick 
~ ith reinforcement aga i nst bu c k l ing. An extension is now 
being made so t hat air turb ine tests could be made (fi g . 
4 7) . A pa rt of the air d elivered is l ed through the tur
bine while th e remaindar g o e s through a bypass, and by 
the e j e ctor effec t he lps to increase the prossure ratio. 
Fi ~ure 48 shows the rotor of the co mp ressor ; f i gure 49, a 
cooler c l ement wi th fl at p l at es; f i g ure 50 shows one ~ ith 
s p iral ly wound ribs . 

Tra nslation by S . Re i ss , 
Nat io nal Advisory Co mm i ttee 
for Ae ronautics . 
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19h-presBUre whe 
wi th 20 blades 1) = 0.70. 

Figs. 4.14,15,17 

Figure 14.- ~edium-pressure 
with 10 blades V = 0.47. 

Figure 17.- Blade wi th end ---4- --'> 
streamlining to lUll'," I, .,.' . 

prevent wall separation. 
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diagrarr s . Vari ou s definitions of 
exit c one effic ienc i es . 
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o = Wi thout throttling i nsert . 
1 = Compl e t el y throt tl ed . 
2 = Partly tnrottlei . 
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4400 

p = .36 dim. 
f = 450°C 

I'K=. 0,08 atm. 
n = 1800/600 r.p.m. 

N - 25000 ps. 

11glll"e 23.- Steam turbine of 25,000 
horsepower tor t.nnel 

. shown on figure 22. Bigh-epe.a 
turbine with pu drlYe an4 Velo~ boiler. 

s ection A-8 

:Below are ahown pre.sure and taperature 

7igure 24.- Section 
throuch 

Velo~ stem 
«enerator. 2 steam 

tUbel. 5 auper
heater, 6 gas 'urbine, 
? preheater, 8 axial 
compressor. 
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Figur e 38 .- Nozzl e walls for different Mach numbers. 
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Figure 39.- Shaping the tunnel walls to 
conform to the flow. 
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Figure 41.- Char acteristics of the axial 

compressor at the Zurich t~~nel. 
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figure 42.- Seotion through th8 wperaonic w1n4 tulanel at ZUrich. 
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Jicure 44.- 011 circulation and 011 aeallng. 
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Figure 47.- Inatallatlon of the air turbine at the auper8onio 
wind tunnel at Ziirlch. 
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Jigure 45.- Cooler haT1ng 'bree elements. 
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Fi~~r e 46 .- ReJuc i ng the r esistance of the cooler by stream
lini n~ the cooler pi pes. 


