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NATIONAL ADVISORY COl.1MITTEE FOR AERO NAUT I CS 

TECHNICAL MEliORANDUM NO. 805 

GE i ERAL CONSIDERATIONS ON THE FLOW OF COMPRESS I BLE FLUIDS* 

By L . Pra ndtl 

Prelimin a r y Remark 

The Royal Academy of Italy ha s co n ferred upon me the 
honor of opening the theoretic a l d i v i s i on of this year ' s 
Volta Cong ress by a lectu r e which shal l serve as an intro
duction to the subject of the flo w o f c ompress i ble media. 
In view of the limited t ime a va il abl e, I shall entirely 
om i t any description of the histor i cal development of this 
bra nch of the science and shall al s o pa s s over the very 
familiar phenomena of hydraulics t hat r e ceive the usual 
on e-dimensional treatment as, for examp l e, the discharge 
from orifices. the Laval nozzle, etc. I shall confine my
se l f, rather, to a consideration o f the most important 
properties of these flows, from a moder n point of view. 
st a rting from the differenti a l e quations of compressible 
flow. 

I. n TRODUCTORY COFSI DERAT I OHS 

The p roblem of the motion of fluid s which is already 
suf ficiently involved even when co n s ide r ed as incompressi
ble, becom e s still furth e r complica t ed and mo re difficult 
when the p roperty of compressibil ity is taken into account. 
In the majority of cases, t h ere f o re. whe n the compressi
bility is to be a l lowed for, we are fo rc ed to make simpli
fying assumptions in so me oth e r directi o n. Thus in our 
discussion we shall have to neglec t viscosity and so as 
sume our fluid to be frictionless and c ompressible. We 
sha ll further assume that the d e n sity of the compressible 
fluid depends on the pressure onl y and s uch inhomogenei 
ties as, for example, the heat conduc t ed to the fluid fr om 
the outside or arising from i nner combu s tion, are excluded 

- -------------------- -------il- -----------il------------ - ------
*"Allgemeine Ueberle gung en uber die Stromung zusammen

dr~ckbarer Fl~ssigk eiten.1I (Paper o n High Speed in 
Aviation, read at the 5t h Vol ta Congress, at Rome, 
September 30 to October 6 . 1 935.) Reale Accademia 
d'Italia, Classe delle Scienze Fisi che. Matematiche 
e Naturali. 
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from our discussion. We assume that the relation between 
the pressure p and the density p is uniquely deter
mined. 

For this frictionless, homogeneous. compressible flu
id, just as for the frictionless. homogeneous, incompres
sible fluid, the law of Lagrange appl i es, namely , that a 
fluid without initial circulation continues to move with
out circulation. It may be observ ed that this law holds 
true for steady motion only. Where the velocities are 
higher than that of sound. the motion begins to be un
steady with the occurrence of irreversible compressions, 
leading to an increase in entropy. In this way homogenei
ty is in gene ral destroyed and the Lagrangian law is no 
longer app licable. 

Since the state of rest is a special case of irrota
tional motion, any compressible fluid flow starting from 
rest. whether steady or unsteady, is an irrotational flow. 
and as s uch may therefore be repre sented by a velocity po
tent ial who se gradient is the velocity. 

v = grad ¢ ( 1 ) 

the components being 

u = o¢ v = o¢ w o¢ --, 
Ox oy oz 

( la) 

For such potential flows of homogeneo~s ' frictionless 
fluids the Bernoulli equation may be applied: 

9.2 + V2 

+ P u f(q (2) - = 
at 2 

In this equation P = J 
dp 

denotes p the pressure fune-

ti on and U the force func ti on; in the case where gravity 
i s the fo r c e con sid ere d U == - g z; f ( t ) i ,s a n arb i t r a r y 
functi on of time. Another equation to be considered is 
the equat ion of continuity which is an expression of the 
constancy of the mass . We may express it either by saying 
that a defini te e lement of vo lume of the same particle of 
fluid continues to maintain a constant mass or that the 
mass of an element of fixed volume changes with time so 
that more flows in than flows out. From either point of 
view we ar rive at the equat ion 

~-t + d i v (p V ) = 0 (3 ) 

• 
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where it is possible to put div ( pV) = P div V + V • 
grad p (where the dot denotes the scalar product). Equa
tions (2) and ( 3 ), together with ( 1), define our problem. 
Except where meteorological applications are considered, 
gravity generally plays a subordinate part in problems 
connected with compressible flow, sO that it is always 
possible to neglect the term containing U. In such cases 
as are considered in acoustics where the velocities are 
small and rapidly changing, the quadratic terms (V 2 /2 in 
equation ( 2 ) and V • grad p in equation (3)) may be neg
lected. By equation (1) and the relation div grad ~ = 6~ 
equation ( 3) may then be written 

ap or + p6<P = 0 

We now differentiate equation (2) with respect to time 
and write 

ap 1 dp 
= 

ap 
== at p d p at 

( 3a) 

( 2a) 

The dimensions of dp/dp are those of a velocity 
squared and it may therefore be set equal to c 2 , where 
the velocity c is still a function of p; when the ve
locity is zero at infinity, f(t) may be set equal to a 
constant . The differentiated equation (2) thus becomes 

~~ == 0 at ( 4) 

From the relations (3a) and ( 4 ) the equation is further 
reduced to 

( 5) 

which is the familiar differential equation of sound. A 
wel l-known solution of this differential equation is the 
plane sound wave, corresponding to the equation 

<P = F (x - ct) ( 6) 

and which travels with velocity c, the form of the wave 
being g iven by the quite arbitrary function F. Another 
solution is t he spherical wave whose equation is 
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<P = ' 1. f (r - c t ) 
r 

denotes the distance from a center. 
the cylindrical '.'lave is less simple . 

The pot en
It may be 

(8) 

In all these examples c clearly signifies tho veloc
ity with which the waVes travel outward . It is customary 
to call this velocity, which we have assumed above as a 
function of the density, the velocity of sound. The fact 
that in the above equation s we have treated it as a con
stant clearly shows that the solutions are only approxi
mations for very small sound amplitudes where the density 
nowhere differs much from the initi a l density Po: For 

finite amplitudes it is necessary to go back to the exact 
equations (2) and ( 3 ) and we thus arrive at the result 
first obtained by Riemann; that the regions of condensa
tion move forward at a greater velocity than the regions 
of rarefaction and therefore the wa ve front become s steep
er and steeper until an unstable wave is formed which , is 
known as a II shock wave . II Since in the condensed region 
the gas moves forward, and moves backward in the rarefied 
region, while the impact wave moves with velocities that 
do not differ much from the sound velocity, we have the 
result that the relative velocity between the shock wave 
and the condensed region is smaller, and that between the 
impact wave a nd the rarefied region larger, than the sound 
velocity . 

II . STEADY POTENTIAL FLOW 

The above qualitat.ive discussion will be sufficient 
for the case of the unsteady sound motions with small flow 
paths . I shall now turn to the main subject of my lectUre. 
namely. steady potential flow . If we again neglect grav
ity equations (2) and ( 3 ) assume the form 

V2 

P ( p ) const (2 b) -- + = 2 
and 

div V + 1.. V . g rad p ;::: 0 ( 3b) 
P 

*See reference 1 . 

v 
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We may now set 

1 P g rad p 
1 dp = - - grad p = P dp 

1 cZ g r ad P 

a n d find g rad P from (2b). We thus o b tain 

div V - 1 
;-2 V • 

va 
g rad -- = 0 

2 ( 9) 

Exp ressed in rectangu l ar c o mp onent s u, v, w, we may write 
V • g r a d V

a
j2 as foll o ws: 

V g r a d 
Va 

V I:. V V u 2 au va QY + w 2 Ow . = , . = --- + 
a~ 2 dX dy 

+ uv (~~ + 
dy 

dV
) a~ + V- Il 

(Q~ 
d Z + dW) ay + wu (Q~ + 

dX 
Q~) 
dZ 

E qua tion (9) e xpre s sed in c a r te sian coordinates t h us as
sume s th e fo r m 

(I n this e quation u s e was mad e of the relation 

( 9a) 

dU av ay -- ax 
de r ived f rom the condit ion of irro tational motion, and the 
co r resp o nding rel at ions fo r t he ot~er components.) 

Fro m the form of e quati on ( 9 ) or (9a) it is immedi
a t e ly evident tha t i n all c ase s where the velocity compo
n ent s ar e a ll s mall in co mp ari so n '7ith the sound velocity, 
t he rel at ion r e duc e s to 

div V = 0 
or 

Q~ + iiy. + iiI!. = 0 
d X dy d Z 

Wh en t he resu lting velo c ity is n ot v a ni s hingly small com
p are d to t h e veloc i t y o f s o ~nd, but still is smaller than 
t he latter, then t he qua ntit a tive relations are chang e d 
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although the character of the motion still remains entire 
ly similar to t hat of incompressible fluids. To see what 
equat ion (9) tolls us when the flow velocities are of the 
ordor of magnit ude of the sound velocity, we may so ar
range the system of coordinates that the X axis coincides 
with the directio n o f flow. Th~n only the velocity compo
nent u, in the ne i ghbo rho od of t~e origin, will be of 
the order of magnitud~ of c, while the velocity compo 
nent s v and w · wil l be smal l 'compared to c. Equation 
(9a) then reduces to 

a u 
ax 

+ av + Q.!!. = 0 
ay az 

(10) 

If we now assume tha t u increases in the direction 
of the flow correspondinG to a fall in pressure in that 
directio n, the n au/ax is p ositiv e . From equation (10), 

l. ~~ + ~~ u 2 < c 2 tuerefore, is negative whe n and posi-ay a z 
~ive when u 2 > . c2 and bec omes zerO for u 2 = c 2

• Ex
presse d in wo rd s, this means that the flow converges with 
increasing ve lo city wh en the velocity is less than that 
of sound but d iv e r ges when the velocity is g rea te r than 
that of sound , and moreo v er, that TIhen the velocity pass
es through the sound velocity the streamlines are paral 
lel. Th i s conclusion fully agrees with what is found for 
the flow through a Lava l nozzle f r om elementary considera
tion s. I n that case, too, it is found that ryhen the pres
sure falls th r oughout the length of the nozzle the veloc
ity in the converging pa rt of the nozzle is smaller than 
the sound velocity and . in the diverging part is greater . 
The sound velocity is exc eeded just where the cross sec
tion of the nozzle is a minimum . 

Equation (1 0 ) , ho"ev er, tells us more . If we intro
duce tho relation g iven by equation (1), we obtain 

2 u2 a2~ aB~ 
~~~ (1 - ;-2) + a;z + a-;z = 0 ( lOa) 

I f we consider the i mmed i ate neighbo rhood of some def 
inite po in t , it is sufficient to set u equa l to its mean 
value in tho region unde r consideration. Using this sim
p lification, there is obtained a very well- known partial 
differential equation . Th i s is of the elliptic type for 
the c ase wher~ the exp r ess i on 1 - u 2 /C 2 is positive ; 

• 
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that is, it is entirely related to the differential equal 
for incompressible flow. iVh-en I - u 8 /c 8 is negative, 
however, which is true when the ve locity u is greater 
than the sound velocity, then the elliptic type goes over 
in to the hyperbolic type . It is known, however, that the 
solutions of the ell iptic type are regular within the re
gion , whereas thos e of the hyperbo lic type also admit of 
discontinuous solutions within th e region, running through 
the range of the so -called charact eristics of the differ
ential equation . What is typical of both cases may be 
se e n from the foll owing considerat ion, which starts out 
from the well - known sin gularity in a flow source of an in
co mpre ssible fluid 

Let us inquire what is the form of the potential of 
such a source when the fl ow from the source has a constant 
velooity of the ord e r of magnitude of the velocity of sound 
superimposed upon it . The problem may be simplified by 
assum ing that the velocities from the source are small, 
thus mak in g equation (10) or (lOa) applicable. To find 
the singularity for this case we may apply a relative sys
tem in which the undisturbed medium is at rest and the 
source moves with the constant vel ocity -uo ' We may first 
assume an II exp losion wave ll (knall i.velle) of spherical shape 
expand ing in all directions , the potential of which is ob
tain ed by assuming in equation (7) a function f, which 
is different from zero only within a very short int~rval 

and vanishes outside this int erval . This is the case when 
a small volume sud denly begins to increase and then main
tains its new magnitude. It may then be assumed that a 
continuous series of such short expansions proceeds in 
such a manner that the center of the expansion travels 
forward with the velocity -Uo. Since we are here consid
ering sound wave expansion s obeying the differential equa
tion (5), the potential fo r the whole process may, on ac
count of the linearity of t~e differential equation, be 
buil~ up by the superposition of the potentials of the in
d i vidual waves . When the expa nsio n has continued long 
enough and the center of the expansion is momentarily at 
the orig in of coordinates, the computation leads to the 
following formula : 

A 
( 11) <P = 

J 
-------------;---------------

8 ( Uo ) (8 8) X + I - ~2- Y + z 
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Wh e n Uo is smaller than the sound velo c ity c, then 
the surfaces of constant p o t~ n tia l instead of b e ing spher
ical as is the case :for incompressi ble fluids, are flat
te~e d ell ipsoids of revolution . The more closely the ve
locity u o ' appr o ach e s the vel ocity o f sound the more 
strong~y f lattened the e l lips o~ds ' become. Wh e n Uo ex
ceeds t h e vel o c i ty of sound ,howev er, then the s olution 
is d.i£ferent frofu zero onl y with1n a cone ~ angle a, 
wh ic h is .de termined by . 

1 
tan a = ± ----------1-------u 2 

0 
-2- - 1 
c 

or sin a ± c (1 2 ) Uo 

The same result is a lso obt ained when the momentary 
p osi t ion of the individual waves is inv es tiga t ed (fig . ' 1 ) . 
The a n g le ' a is known as the }~ach angle . (It may here be 
remarked · that whe n Uo < c ' the wav e s fill space in ' all 

directio n s , whe reas for the c a s e Uo >?, they fill . o nly 
th e cone of f i g . 1.) ' For Uo > c, the cons tant potential 
surf a c e s a re lypB r boloi d s o f two sheets having the g iv~n 

cone a s asympt o tic .surface. Onl y one of these .sheets has 
phy sica l real ity, a s is easily s e en from our desc r i ption 
of ~he f orma t ion of the source pot ~ntial f ro m the exp lo
sio n waves . Whe re still ano·ther p o tential is to be built 
up by the superposition o f su c 4 sources' , it is to be ob
se r ved that everywhere outs ide the g iven cone, the p ot en
t i a l of the individual sourc es is to be set equal to zero 
a nd take s on the value s of fo r mula ' (11) only within the 
COlle . 

III. FLOWS iHTH II SUBSON IC II VELOCI T IES' - LINEAR THE ORY 

F~rmula (11 ) enables us t o obtai n a gene r a l relation 
f o r the solution of the differential equati on (lOa ) and 
th is we shall discuss fu r ther on. Por lI 'sub'sonic ll vel oci
ties it is p o ss ible to r~lato e v ery solution of this dif
fe r ent i a l equation t o a ~oluti on of the diffe rentia~ equa
tion for constant volume p o tent i a l fl ow 

02 <D 02<D 02<D 
a12 + a~2 + aia ·- 0 

J 
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if we write ;:---
u 2 

y 1 - f-; t = ;-:--
u 2 

Z 1 - f-~ = x; T) = 

a nd assign the same p otentials to the cor responding poin t s 
o f each space (reference 2) . The a ssump t ion mu st naturally 
b e made, a s for differential e qua ti~n (lO a), that the ve 
l ociti e s deriv e d fro m the pot e n t i a l are small compared 
with the basic velocity u o ' Th e appl ica tion cannot there
f ore b e Dade .to flows in which a st agn a t i on p o int occurs, 
s ince in t his case the deviation fr om U o is j ust as 
larg e as U o itself . It is permissi b l e , h owe v er, to ap-
p ly the .equation to flow about very na rro w shapes having a 
s harp entrance edge. Given the pot ent i a l fl o w ~o for an 

incompressible fluid, the question next a rises as to what 
is the form of the contour that cor resp on ds by the above 
r ul e s to the p otential of the compr ess ibl e fluid. The 

dy v 
s lop e = ma y, to a sufficien t app r ox i mation, be put 

dx u 
equal to 

v 1 a ~ - 3y u U o 

Corresp ondingly, ; -----dT) 1 a cp 
with 

a cp acp u 0
2 

d[ ; = 1 - ---
U o aT) a y aT) c 2 

have 
dy dT) 

/1 
uo 2 

we = dr - - 13--
dx c 

We then obtain th e result that the entire co~tour must be 
mad e thinner tha n t h a t correspondin g to the incompressi
b le f luid with~al potential values approx i mately in the 

ratio* ~- ~~2 and similarly t h e ang l e of attack must 

*It ma y be pointed out that the po i nts on the contour do 
not correspond to the above t r ans f o rmat io n equations for 
t he p otential, which require a n inc rease in the y ordi
na t e s for points of e qual p otenti a l. The above conclu
s ions are nevertheless applic a ble since the difference in 
t he flow direc t ion f o r p oints lyi ng near each other differ 
onl y by a second de g r e e order from the result given above 
o n ac count of the slenderness of t h e co nt our under consid
e ra t ion . 

j 
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be ma de s ma ll e r in the same ratio.* 

We must still conside r the pressure distribution on 
the surface . This is determined accord ing to the Ber-

noulli equation by 
2 

the term 

a ~ 
p u o a~2 ' Sin c ewe ha d set 

au 
pu OX for which we may put 

~ = x and ~ was to have 

the same v a lue a t correspond ing poin ts, this magnitude re
ma i ns constant in the transformation , and the same holds 
true for the pressures theDse lv cs . The tendency toward 
flow separation ma~ there fore als o be expected to be the 
same for both c ases . Th e c onclusion fo llo ws that in or
der to a void separation o f flow it is necessa ry to make 
the p ro f ile s of the a irfoils, otc ., flatter and the angles 
of at ta ck must be mad e correspondingly smaller, as the ve
loci t y U o app roaches th e velocity of sound. Th e maxi -

mum lifts at tainable accor ding to this approximate the o ry 
will b e th e s ame as those t hat may be expected for the in
compr essible flow . Actually, i t is found t hat on approach
ing the velocity of sound, the relations are co n siderably 
le ss favorable than indicat ed by this approximate theory . 
The ch i ef reason for this i s the fact that the superim
p os ed velocities are no t actually small compared to the 
basic velocity Uo a nd consequ e ntly it is possible for 
point s on the suction side to exist a t which t he velocity 
o f sound is either reached or exc eeded , so that considera 
b 1 e de v i a t ion s fro m 0 u rca mp 11 tat ion s are t 0 bee xp e c ted . 

I t may still be asked how the fac t is to be explained 
that a s the velocity of sound is a ppro a c hed, the same lift 
is obtained with a less camber ed prof il e and at a smaller 
angle of attac k . Th e explana t i on lies in the fa ct that 

* It is a lso possible to coordinate the p oints in such a 
manner that the p otentia ls ~ in the xyz space will be a 
mu l t i p l e of the potentials at the corresp onding poiE~~~f 

the bl~ space . If t he multiple chosen is 1/ F - ;~-
then that is , the p rofil es and angle s of attack 

will n ow agre e . The differences 

will now be raised in the ratio 

in p r essu re (see 
r-u·~ 

1/ / 1 - _ Q.- and 
'II c 2 

below) 

the 

tendency to separation will therefore be increased. 
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accor ding to the transformation given abov e, the potential 
field and therefore also the velocity field in the direc
tion at ri gh t angles to the basic velocity extends further 

in the ratio 1/ F~~~· and so the vertical velocities, r-u:-a 
w hi ch a r e sma 11 e r in the rat i 0 j 1 - #- pro due e in t his 

e xtended region a total impulse of the same magnitude as 
would be the case for incompr es sible flow. 

For basic velocities a bove that of so und this analogy 
cannot naturally be applied, since the transformation for
mula (13) would in this case g ive an imaginary result. 
Here other methods must b e used . (S ee sections 5 and 6. ) 

IV . FLOWS WITH SUBSONIC VELOCITI ES - HIGHER APPROXIMATIONS 

If it is desired to obtain a better agreement with 
fact than is afforded by the linear theory, it is possible, 
s t ar ting eithe r from the theor y o f potential flow for in
compressi bl e fluids or from the solution s of the differen
t i a l equat io n (lOa), by a step -by-step process to obtain 
cl oser app roximat ions resulting fro m the application of 
the exa ct equation (9 a) . Co mputations of the first kind 
we re carr ied out by many inv est i gators (references 3 and 4) 
but, to the best of my k no wl edge , no computations of the 
se co nd k ind.* I n practice these computations are rather 
labor ious and do not a g r ee very well with each other. It 
is ther e f ore a noteworthy fact that it is also possible to 
f ind g ood a pp roximations on the basis of electrical anal 
ogy, whe reby a g ood app roximate solution may be obtained -
only for the case, howeve r, where the velocity of sound is 
n ot attained a t any p oint of the region considered. Since 
this met hod has been worked out by Professor G. I. Taylor 
( r efe rence 7), who wi ll g ive a more detailed report on it 
at th is ses sion, I shall not touch on th i s subject any 
f ur t her. 

Through three short notes by Riabouchinsky (reference 
8 ) and Demtchenko (reference s 9 and 10 ), in the Comptes 

*G. Braun (r e ference 6 ) ha s o btained solutions in the 
neighbo rhood of t he sound v elocity by applying a variation 
p rinci p le of Bateman (r efe rence 5). 
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Rendus of the P a ri s Academy , 1932, and old work by 
Tchaplyg in (reference 11) written in the Russian l a nguage 
in 1 904 be c ame kn o wn, where i n it was shown that for the 
case of two-dimensi onal flo w, the problem may, by trans
fo r mat ion to new coordinate s (r ectangular or polar), be 
present ed in such a form that a potentia l flow between two 
pla t es at a predete r min ed v a riabl e distan~e apa r t, may be 
re p resented by a n e l ectric f low in an e lectrol yte of vari
a ble dept h; On e coordina te X will b e a function of the 
ratio of the loc a l velocity to the maximum (which may n at 
u r ally a lso be written as a function of the ratio of t he 
d en s ity to the maximu.m density) ; th e other coordina te P 
is the direct ion ang l e of the v elocity of the flow, the 
v a riab l e dist a nce between th e two plates being a fu.nction 
of the first c o ordinate onl y . Since it is p ossibl e to 
c ompute mathematically the so luti ons f o r such regions 
whose boundari e s a r e det e r mined by t he l in e s X = constant 
and 8 = c onsta.nt , it become s poss ibl e to solve those 
p roblems of t he He l mho ltz - Ki rchhoff type where f l at wall; 
(dir e ction e = c o nstant ) and fr ee boundari es (const ant 
voloc it y , therefore X = co nstant) are conside r e d for the 
case where c ompress ibility is taken into account. For one 
particula r condition wh ich, though not o c cu r rin g in na
ture, may be appl i ed approximately when the difference in 
density is mod.erate , the p roblem r.lay even be formulated 
a s a usual type of p o tential flo w in the coordinates X 
a nd 8 . Demt~henko ( r ef e r ence 1 0) showed amon g other 
thin g s t hat for t he Kirchho ff fl ow aga inst a flat plate, 
whe n the velocity of the flo w is half t h at of sound, the 
resistance is abou t 7 perc ent hi gher than the Ki rchhoff 
r e sistance . 

V. FLOW WI TH SUPERSONIC VELOCITY - LINEAR THEORY - FLOW 

AROUND A CORi.~ER 

I shall now c onsi der t he flo ws for wh i ch the velocity 
is g r eate r than the velocity of so u nd (t he so -called IISU_ 

personic velocityl' ). We may he r e aga in start out from 
fo r mula (10) or (lOa) . If a two - dimensional flow is con
sidered, then equat ion (lO a ) now reads as follo ws : 

222 

~-~ ~~- - 1\) - £_~ = 0 
~ 2 2 · 2 ux C / el y 

(1 0 b) 

Th e gen er a l so lution 'of thi s linear differential 

~----------~--~----~--~-------------------------------------~------~-----~----.----~ 



N.A . C.A . Techn i cal Memorandum No. 805 13 

e quat i on may immedi a te l y be set down. I t is 

<J) == Fl (y - x tan a) + Fa (y + x tan a) ( 14) 

wher e aga in 

j u o 8 

tan a == 1/ c~ - 1 ( 15) 

so tha t sin a 

According to the reas oning that led from equation (9a) 
t o equation (10), equation (1 4 ) is the solution for the 
neighborhood of a point, when t he X axis is chosen to lie 
in the directi o n of the flow . Th e functions ~ and Fa 

a r e subject to the limitation only that th e magnitudes ap
pear ing in the different i al equation (lOb) exist; otherwise 
they may be taken qu it e arb i trarily. When the functions 
Fl a nd Fa are taken to represen t a \lave form, then equa-

tion ( 14 ) represents the ·superposi tion of two wave trains, 
crossing each oth e r a t t h e an g le ±a with respect to the 
mean direction of flow . For a more gene r al solution, the 
wave trains a r e such tha t for each posit ion represented. by 
equat ion (1 5 ), U o corresp on d s to tho local mean veloc-

ity at that p o i nt . Since such waves may be photographed 
(s ee fig . 2), it is p os s ible by measuring the angle 2a 
between the two crossing wave trains to obtain the ratio 
c/uo • (It should be noted that c is not the constant 
sound velocity of the ga s at rest but the variable sound 
velocity of the adiaba tically cooled gas .) The direction 
of the flow bisects the angle . 

Let u s now consider the following special case of 
f lo w • I n e qua t ion (1 4 ) 1 e t Fa == 0, F 1 = 0 for po sit i v e 
va lu e s of the a rgument y - x tan a; for negative values 
le t Fl = """ (y - x tan a) . I n the neighborhood of zero 
it is p o ss ible to pas s to the l i mi t zero by means of a 
tran sition arc, or the radius of curvature of the transi
tion arc may be used . The above formula corresponds to 
the limiting value . To obtain the total potential, the 
p otential of the straight streamlines U o • x must be 
add e d • In the reg ion x > y cot a the co mp 0 n en t s 0 f the 
vel ocity then become 

J 
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c)<1> 
u = ax = Uo - A tan a 

v 

In our example , therefore, 
front of the boundary line y = 
t ion 0 f the X axi s . Behind the 
rectilinear but makes an angle 
( s e e fig s . 3 and 4 ) 

v 

( 16) 

the flow is parallel in 
tan a and is in the direc
boundary line it is also 
~ to the X axis given by 

~ = u (17) tan 
Uo - A tan a Uo 

If the density and pressure upstream from the boundary 
y = x tan a are denoted by Po and P o' rospect iv ely , 

and the pressure below the boundary by p , then approxi
matel y 

p - Po = - Po u • o 
(18) 

Along the boun da ry y = :z: tan a, therefore , there is a 
pressure ju~p (which may be converted int~ a steady pres
sur e rise by introducing the transition curves ment'ioned 
above in the function F1 ). The fluid parti cles are accel
erated in the direction of the pressure rise, that is, nor
ma l to the boundary line y = y tan a . This result may 
a 1 sob e 0 b t a in e d d ire c t 1 Y fro m e qua t ion (l 6 ) , fro m w hi c h 
the d irection of the vel o ci ty vector is obtain ed, as fol
lows: 

tan a ' = v 1 
------ = 
u - U o tan a 

P ositive values of A and ~ correspond to a conden
sation ; negative values to a rar efactio n . It should be 
stressed , however , tha t th e above computation is derived 
f rom the approximated linea r differentia l equation (lOa) 
and is therefore valid for sma ll pressure differences and 
smnll a ngles of deviation only . 

What may be expected for larger deviations may clearly 
be seen if we take two pressure jumps of the same sign at a 

,,-------
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shott distance from each oth e r and see what we get from 
equations (1 6 ) to (18 ). Th e re sul t is obtained that for 
th e case o f a pressure rise the two pressure jumps con
v erge ; for a p re s sure drop they diverge. Not only is the 
direction of flow in the second field rotated by the an
g l e ~ with respect to the f irst, but the velocity behind 
the first pressure wave is small er and therefore the Mach 
angle aa i s lar ge r than al' For a rarefaction wave, on 
th e contrary, the velocity behind the first wave is larger 
and therefore the Lach an g le smaller. The two wave fronts 
co n v e rge or diverge accordingly by the amount ~ + aa - al. 

Th e transition from the type of fl o TI just considered 
to that o f a c ontinuously curv ed flow may now easily be 
effected by replacing the fi rst streamline (given wall 
al~ng which the flow takes place) by a polygon of very many 
sid e s . Fro mea c h e d g e 0 f the pol y go n, Ii' a v e sst art 0 ute x
pandin g a nd diverging in case of a convex wall and con
tra c ting a nd conv e rging i n case of a concave wall. In 
this latter c a se it is a lso possible that the waves meet 
each o the r completely . Th e compression may then assume an 
unsteady finite v a lue (the so - called "compression shock"). 
This ' behavior of compression and condensation waves start
ing· out from a curved wall is entirely analogous to the re
sult a lr eady ment ion ed obtained by Riemann for plane waves 
of finite amplitude . 

We see , mor e ov e r , f ro m the result of a transition to 
a bbundary of r ad ius of curvat ure zero, that for a wall 
which f or ms a convex si d e inc l ined at an angle -~ (see 
fig . 6 ), the flow remains unchanged up to a surface form
i n g an an g le a l wit h the d irec t i on of flow, then expands 
within a n ang le - ~ + al - a a maintaining the pressure 

and ve l ocity c onstant al ong each r ay; then in the direc
ti on - ~ again pas s e s over into parallel flow with con
stant velocity . Th e quant itat ive relations for a flow of 

th is type for a ga s that obeys the law P = Po • (p/po)k 
II 

were g iven i n the Go tt ingen disse r tation of Th. Heyer in 
I 90 8 . * I n c a s e 0 f a c o n c a vee d get her e 'i sac 0 mp res s ion 
shock which lies between t~le ang l es al and ~ + aa. In 

f ront of and behind the conden sation shock the flou shows 
constant velocity a nd constant pressure. 

*See reference 12 . 
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VI . APPROX I MATE METHOD FOR GENERAL TWO-DB1ENSIONAL 

- SUPERSONIC FLOW 

I shall now turn to the cas e where the flow is af
fe cted not only by a single ~all but a l s o by an oppositely 
lying wall . I n this c a se the waves pass t hrough each oth
er from opposite sides and als o dev ia te from their origi
nal direction . Th e relations a r e most clearly brought out 
by the following p rocedure . 

I n the s a me manner as, for the p urp ose - of c er tain 
app roximate c a lculat ions , a curve is replaced by a series 
of s trai ght - line steps or a polyg on, it is possible to re
p lac e the continuou s deviation o f the velocity direction 
in a s upersonic flow by a serie s of sudden deviations of 
t h e k ind shown in figures 3 a nd 4. If the a n g le ~ of 
these devi a tions is chosen to be of the same s ize in all 
cases, for example 2°, then only such directions occur 
wh ich differ by an integral multiple of ~; tha t is, in 
our e xample, of 2 0

• If we star t fr o m a definite sup e r
sonic velocity , t hen on the basis of the Meye r formula, 
only certain discrete va lues of the velocity may occur . 
In order to obt ai n a be t ter idea of these velocities and 
directions, the method sugge sts itself of drawing all the 
p ossible velocity vectors o f the sy st em at each po int . If 
in this figure we t race tha~e co ndit ions corr espo nding to 
t h e c a se we have just considered, namely~ where waves are 
assumed to start out f r om on e wall, the n all the points 
in the velocity p icture co rres p onding to that state lie on 
a single curve (the t h ick c u rve of f i g . 7). Th e entire 
system of velocity vectors o r th e case where waves travel 
into the re g ion under consideration f rom both sides is 
t hen evidently obtain ed by drawing curves of the same sort 
t Lrough all points lying 4 0 ap art on a c ircle w = constant 

(w = Jua-+ va) . All the in te rsec tion points so obtain e d 
then represent the end p oin t s of the velocity vectors possi 
b le in this system . 

According to a relation s ho wn in a pr e vious section, 
th e direction of the vector diff e rence of the velocity, in 
f ront of and behind a wave, i s perpendicular to the wave 
front . This relation enables us to c o nst ruct g raphically 
the en tire flow p icture for any flow uhen the magnitude 
and direction of the veloci ty at t~e ent rance section, and 
eithe r the pressure or direction of flow at the s id e edges , 
are g iv e n beforeha nd . For the permanent gases the curves 

• I 
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of f igure 7 are epicycloid s and it is possible to construct 
the curves eas ily on th e d rafting board by using a rotata
ble e llip s e to draw the directi ons norma l to the curve tan
gents, as Busemann ha~ shown . 

In order to ma intain cons tant the flow direction along 
the wall , for the case o f a straight wall, or maintain the 
velocity constant in the case wher e a constant pressure is 
g iven, in accordance with Bernoulli's law, it is necessary 
to reflect the e xp a nsion a nd compression \'laves that reach 
the boundary . As may eas ily be seen from figure 7, at a 
stra i gh t wall condensations are re flected as condensations 
and rarefactions as rarefa ctions; ~t a fr e e jet boundary , 
h o we v e r, condensations a r e reflected as rarefactions and 
rarefactions as condensations. Fo r curved walls, the 
wa lls a re replaced by a po l ygon of angle ~ and waves 
s t a rt out fro n eac h corner . 

I n order to obt a in a c lear con struction it is advisa
ble to numb er each epicycloid, one set with numbers increas
ing in clockw ise order, the other set decreasing in clock
wi se order . I t may then ea sil y b e s e en that the difference 
of thes e sets of numbers is a measure of the angle of the 
f lo w direction, wh ile the SUf.1 is constant on a radius; in 
othe r words a function of the velocity. It may also be re
marked in this connection that, as in the treatment of the 
subsonic velocity b y Tschap~igin, the angle of the flow di
rection and a function of the velocity again appear as d e
cid ing factors . 

I t is possible by a cont ac t transformation to trans
fo r m equation (ga) so tha t u, v, and w become the inde
pendent v a ri ab l e s; and in the case of two-dimensional flow 
in the pl ane of u and v, it is possible to pass over to 
pola r coordinates and sO intro duce the radius and the an
g le as new indepe n dent variables . As the f orm of e quation 
(ga) a lready shows, the cont a ct transformation offers the 
advan t ag e thRt the differential equation becomes linea r in 
the depende n t variables, since the expressions I - U 8 /C 8 , 

e tc., a r e noV! functions of the coor dinates. By a suitable 
st r e tching of the r ad ii - thnt is, by introducing a func
t ion of the r ad ius instead of the radius - it is possible 
t 0 simp I if Y s till fur the r the d iff ere n t i ale qua t ion as was 
d o ne by Tschap lig i n . When the relations between the waves 
in the field of flow and the corresponding velocity field 
are somewhat mor e closely analy ze d, it is found that to 
ea ch field of flow limited by two waves in the one system 
and. two VI a v e s 0 f the 0 t 11 e r s y 's tern the r e cor res p 0 n d sap 0 in t 
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in the velocity field ( s in ce according to the assumption 
made the velocit y is to be constant in each such field) . 
Conversely, to a point of intersection of two waves in the 
field of flow there corresponds a quadrilatera l in the ve
locity f i eld, since at the po int of intersection four 
fields of different velocities meet . Both of these fig
ures are therefore the reciprocals of each other, just 
like a truss diagram and its reciprocal force diagram . 
The similarity goes eve n fu. rthe r. Just as a truss toget h-er 
with its force plane may be represented by the Airy stress 
surface, so in this case the re exists a corresponding 
funct ion, namely, the function ux + vy - ~ obtained from 
t h e p otential ~ by the contact transformation . 

v 

The graph i c method here described, to which there nat
urally corresponds an analytical method derived on the same 
basis, offers a very conveni ent means of discussing all two
dimensional superson i c flows . Applications of this method 
have been made to the discharge from nozzles, the flow 
about streamlined bodies , airfoils , etc . See A . Busemann 

"(reference 13) or the examples given in his article in the 
Handbuch der Experimentalphys i k (reference 14) . For rota
tional symmetr i c fl o ws there are no such simple methods . 
The analog ou s cas e s to the flow around a corn er, the flow 
at the tip of a cone of finite angle, have been solved • 
g raphically by Busemann (ref3rence 15) and analytically by 
G. 1. Taylor and J , W. l!iaccoll (r eference 16) . Solutions 
for the general case of supersonic flow about a body of 
rotation have been g iven at least by approximate linear-
ized methods by Th . v . K~rm~n and N . B . Moore (r eference 
17) , which meth ods are ch i ef l y ap p licable to very slender 
bodies . 

VIr. PASSAGE THROUGH THE VE LOCITY OF SOUND 

The methods descr ib ed in sec tions 3 and 4 for the 
flow wit h subsonic velocity approach one another only 
pro vided the vel o city of sound is n o whe re reached . The 
methods discusse d in sections 5 and 6 for supersonic ve
locities a r e similarly applicable only when the velocity 
is everywhere g reater tha n the sound velocity . Neither 
of these t wo methods the r efore provides a n y information 
a bout the manner in wh ich passage through the velocity of 
sound takes :p l a ce . There are, however, solutions for 
such cases that have been obtained some time ago . The 
first one, given by T . Heye r ( reference 12) , was obtained 
by a p o wer se r ies development in the coordinates x and y 



I . . 

N.A.C.A. Technica l Memor andum No. 805 19 

of a point lying on the curve u ~ c. It turned out that 
t he flow p oten t ial could be develope d at such a point and 
tests showed go od ag r eement with the computations. An
other example was g iven by G. 1. Tay lor (r eference 18). 
Th i s is the curved line flow in a usual potential vortex , 
where the velocities are exactly as large as the velocities 
in t he pote n t i al vortex of a n incompr ess ib le fluid. Eoth 
of these examples, the one wit h a straight mean streamline 
a n d an increasing velo c ity in th e direction of flow, the 
other with curved streamlines and a constant velocity along 
ea ch streamline, allow us to conclud e that in going from 
subso nic t o sup ers onic velocities a continuous passage 
through the sound velocity may be expected. It is to be 
n ot ed , howev e r, that in the supersonic velocity region it 
is very easy for conditions to b e set up such that a se
r ies of infinit es ima l conden sat ion waves combine to form a 
c on de nsation s hock of fin it e magnit ude . In the passage 
from l a r ge veloci t i es to smaller such condensation shocks 
occur a l most regularly . In this connection it should also 
be mentioned that, in contrad is tinction to potential flows 
wit h subs onic velocities, wh ich are symmetrical forward and 
a ft a bout bodi e s that a re themselv es symmetrical at both 
e nds, a p ot ential flow with sup e rso nic velocities is proba
b l y n eve r sy~me tric a l b e cause the condensation and rarefac
t i on wa ves star ting out fro m t he walls of the body always 
trave l Obli que lY towar d t h e rear a n d never forward. Per
ha.ps it is still p o ss ible by taking this lack of symmetry 
into account, to solve analytica lly more of those cases of 
f l ow where passage from subsonic t o supersonic velocities 
occur, especially when the superson ic region is limited in 
extent , as may be expect e d, for example, in the flow about 
cylinde rs, et c. 

From the ana l ytica l st a nd po int , for steady friction
l ess flow, it is p ossible by rev e rs ing the velocities of 
on e so l ut ion to obtain another solution. In applying this 
method t o a symme trica l body or channel with nonsymmetrical 
flow forward and aft, we thus obt a i n by reflection a sec
ond solution different from the first and with the same 
flo w d irection. The passage from the single valued sym
metrica l solution for the subsonic velocities to the two
valued solution indicates the existence of a special kind 
of br a nching pos i tion . This may pe~haps be the reason for 
the fact that th e ana l yti c a l methods that have b 0en used up 
to the p resent h a v e c ea sed to converge. Ey the application 
of the direct met hods of the calculus of variations, G. 
Braun (r eference 6 ) was a bl e to obtain solutions for the 
br an ching positions, whicl'l so lu ti on s, however, should be 
app licable to infinitely smal l deviations only. 
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here I should liEe to say a li t tle more about the com
pression shocks . The points in front of and behind the 
s hock do not l i e on an ad i abatic, but rather there is an 
inc r ease "in entropy due to the irreversible process . The 
mag nitude that remains cons~ant throug hout the condensa
tion shock is the total energy = kin etic energy + heat 
cont ont; per unit mass = w2 /2 + I (the heat content I = 
U + p V is also called the enthalpy) . In t he g e neral case 
the direction of flow form s an ang le with the normal to 
the impact surface . These relations assume their simplest 
form for the two - dimensional comp r e ssion shock. If the 
nor rna Ito the imp act p I an e i s t a ken a s the X a xis and the 
direction of flow is in the XY plane, the following equa
tions result : 

Pa u a . .. . . . . 

a = Pa + P a u a .. 

(continuity) 

(impulse in 
direction) 

(impul s e in 
direction) 

~ (Ua2+V22) + 12 .. (energ y) 

th e X 

the Y 

(T he in d ex 1 for the condition b efor e t .e impact, ind e x 2 
f o r t he con d it ion aft 0 r t h. e imp a ct. ) 

Th e co mp u t a t ions for t h is p rob l em , u sing th e e qua
tions of s t te for ideal ga s e s a s a ba sis, were c a rri e d out 
b y Th . Mejer (reference 12) a f t e r Sugoni6t (reference 19), 
an d independently Stodola (ref e re n c e 20) had previously 
e xp lained the behavio r of the normal comp ression shock . 
Th e relations are clearly broug ht out in a diagram g iven 
b y Busemann (reference 21 ). I n the velocity-f i eld picture 
h e draws for each given initial velocity, the II impact p o
l a r,1I na mely, the geomet rical locus of all the velocity 
v e ctors for th e s t ate after the imp act an d thus obtains 
curv e s like t h ose of fi g ure 8, whe re ~ d e notes a s b efore 
th e d eviation an g lo of the flow, y the an g lo b e tw e en the 
i mp a ct p lane and the direction of f low. Tho smallest val 
ue of y is obtained for shocks with small velocity differ
ence and naturally agr e es wi t h the Mach an g le a . Th e 
largest difference in ve l ocity is obtain e d in normal im
pact. The velocity behind t he n or ma l imp act is a lways 
s mal ler than t hat of sound . Th e inc r ea se in e ntropy pr a c
tica ll;,>, d enot e s a 10'iJeri ng i n the p ro s sure co mp a red to 
tha t which wou ld f o llow f ro m t h o Be r noulli e quation . This 

• 
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d ifference in p ressure is onl y insi gnif icant, however, when 
the d ifference in ·veloc_ity in front of and beh ind the shock 
is not too great . The p rocess in any case involves a loss 
i n e nergy . 

VIII . APPLICAT I ON TO AI RFO ILS 

Before concludin g we shall mak e a few observations on 
t he application of the forego i ng discussion to airfoils. 
As fa r as subsonic velocities a re concerned , it may be 
p ointed out tha t in the nei gh borhoo d of the wi n g tip consid
e r able supe rsonic velocities are set up which for high 
l i ft coefficients atta in double the values of the flight 
veloc ity . I t may therefore b e expected that at speeds of 
170 m/s ( 380 miles/hr . ) the velocit y of sound may already 
be at tained loc a lly. This ma y explain the fact that in 
the region of 200 m/s ( 450 miles/hr.) there is already a 
n o tab le decrease in the lift coeffi cient . 

As reg a rds the induced velocity, it should be pointed 
out t h a t it is poss ible to obtain the ~ ing lift as well as 
the induced dra g from t he trailing vortices behind the 
wi ng . Th e velociti e s in these vortices are, however, in 
each case small compared to the velocity of sound, so that 
t h e usual l aws for incompr e ssible flow may be applied with
ou t objection for the computation of the lift and induced 
d r ag . I n comput ing the l i ft distribution of a wing of 
g iven f orm , howeve r, it is ne c essary to take into account 
the fact that due to t he co mpressibility, the value of 

dCa is incr eased in the ' r at io 1: ~~~~ (as far as da j ~ c 2 

t h e app roxima t e formula rema ins applicab l e) . 

For the p ro f ile c h o.racteristic s at supersonic veloci
t ies, an approximate formul a may be derived from the appli
cation of t he considerat ions of se c tion 5. If we consider 
a flat p l ate that is i n clined by the angle ~ to the di
rection of flow (fi g . 9 ) (Ackeret reference 22), then on 
t he pressure side the r e lations of figure 3 hold and there 
re sults therefore a p ressure rise of a~ amount t~nt is 
easily co mpu t e d f rom fo r mul a s (17) an~ (18). On the suc
t io n s i de there is a co rre s p o nding lower i ng in pressure 
as requ ire d by the a bove- ment io nod formulas for a negative 
a ngle . We t hus obtain the lift coefficient 

I ~2-

c a = 4 ~ / J ~2 - 1 ( 19) 
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"It is a noteworthy fact that the suction force, which 
e xists in the case of subson ic velocities at the forwar d 
edge, is entirely n i s si ng in a fl6w of th is ·typ e and there
fore the resulting force is here not perpendicu l ar to the 
direction of flow, . but normal to the surface, so that even 
for a fr ic ti onl ess fluid the lift-drag ratio becomes 

(20) 

It may be s een that for a given value of c a this ratio 

is favorable just above the veloc i ty of sound, but with in
creasing ve loci ty , becomes considerably less favorable . (At 
very large sp e eds t he lift coefficients will likewise b e 
very small . ) These increased d r ags above the velocity of 
sound bear a connection with the waves that travel outward 
from the moving object . Eusomann (refe re nce 23) was able 
to show that this wave ene r gy was converted into hoat part 
ly near the ving and par tl y at a g r ea t distance away . 

As far a s the induced d r a.g is concerned , it follows 
different l aws at speeds above t he velocity of · sound from 
those be lo w the v e locity of sound . For an unwarped rec 
tangula r a ir fo il t h e induce d drag is all included in the 
triangular r egions at each end that are limit ed by the 
Mach angle (cross- hatch e d areas in fig . 10) . It is, mor e
over, not cl early sepa r able f ro m the vave resistance which 
according to the ~ bove is also p ro port i ona l ~ o c~ and 

the refore does not have the same independent significance 
as the case of subsonic vel ocit i es . According to a remark 
of Eusomann, the i nduced drag disappea rs entirely when the 
two triangula r pa rts lying in the region of disturbance 
are removed . 

Translation by S . Re i s s, 
Nat iona l Advisory Co mm i ttee 
for Ae ronauti cs. 
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