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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL MEMORANDUM NO. 801 

CORRECTION OP DOWNWASH IN WIND TUNNELS 

OF CIRCULAR AND ELLIPTIC SECTIONS* 

By Irmgard Lotz 

SUMMARY 

In this paper the downwash velocity distribution be-
hind. the wing was determined for the free jet and. for the 
closed tunnel of both circular and elliptic cross sections. 
The wing was placed at the center of the tunnel. The theo-
ry makes it possible to determine the downwash at any point 
in the jet. The computations were performed for points in 
the plane determined by the jot axis and. the center-of-
pressure line of the wing. The elliptic tunnel section 
chosen had an axis ratio equal to JT The downwash 
proved to be proportional to the wing lift and inversely 
proportional to the cross-sectional area of the tunnel. 
Moreover, for the circular jet the downwash depends only 
on the distance from the wing (see formula (29) , figs. B 
and 9) and for the elliptical jet it may be approximately 
represented by the product of a function depending only on 
the ratio wing span/jet width (fig. 25 for the free jot 
and fig. 35 for the closed tunnel), by a function depend-
ing only on the distance from the wing (fig. 24 for the 
free jet and fig. 34 for the closed tunnel). 

The downwash velocities induced at the wing and due 
to the boundary effect of the jet have been computed for 
jets of different cross sections. The downwash velocities 
in the region b.ohind the wing have, on the contrary, re-
ceived very little attention. A knowledge of these veloc-
ities in the neighborhood of the wing, especially at the 
position of the tail surfaces is necessary, however1 for 
the computation of the corrected pitching moments. At the 
same time it may be determined whether the curvature of 
the flow lines is sufficiently large to explain the exper-
imental fact that the correction factor for the angle of 
attack is larger than that for the drag. 

II 

Abwindes in Windkanalen mit kreisrunden 
oder elliptischen Querschnitten. I ' LuftfahrtforsChung, 
vol. 12, no. 8, December 25, 1935, pp. 250-264.
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A. INTRODUCTION 

Up to the present the tunnel interference effect has 
been determined only at the wing - more exactly, at the 
center of pressure of the middle wing sectioxI. The down-
wash velocity at this point could be simply determined 
since it is exactly half of the velocity with infinite 
flow, and the latter may be presented as a two-dimensional 
potential flow problem: a system of images of the trailing 
vortices being set up at the boundary (references 1 to 4). 
Figures 1 and 2 show these vortex images for open and 
closed circular jets. In the open tunnel the vortex images 
have the same sign as the original vortex; in the closed 
tunnel they have the opposite sign. 

The values of the dowuwash velocities from the wing 
outward to infinitywre not known. For a rectangular tun-
nel Glauert, who was interested in deriving a correction 
factor for the horizontal tail surface of an airplane, ob-
tained a first approximation. For tunnels of other cross 
sections there was no comprehensive treatment.1) Seiferth 
has indeed tried to obtain better results for the circular 
free jet, but failed to obtain the proper correction fac-
tors even at small distances from the wing. In the pres-
ent paper, in part B, will be given the exact computation 
of the induced velocities for circular jets, and in part C 
for jets of elliptical cross section. 

B. JETS OF CIRCULAR CROSS SECTION


I. Statement of the Problem and Notation 

To a first approximation an airfoil may be replaced 
by a Hhorseshoe vortex, which corresponds to a uniform 
lift distribution (fig. 3) ;. Wings wi.th nonuniform distri-
bution may be replaced by several horseshoe vortices of 

1)Shortly after part B of our paper was completed, there 
appeared the Aerodynamic Theory of W. F. Durand, vol. II, 
in which Burgers considers the same problem but for a cir-
cular jet only. The methods are entirely different. In 
th case of the free jet there is excellent agreement in 
the results. For the closedtunnel, however, ther are 
certain deviations which will later be considered.
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different widths 2b (fig. 4). We shall therefore first 
carry out the computations for a horseshoe vortex. We 
shall use the following notation: The x axis coincides 
with the axis of the jet, the yaxis lies along the span, 
and the z axis is perpendicular to bath and directed down-
ward. Figure 5 shows the coordinate system used. Tho 
transverse part of the horseshoe extends from y	 - b to 
y = + b , the trailing vortices run parallel to the x 
axis from x = 0 to x = - . The circulation of the 
vortex will be denoted by r. The radius of the tunnel is 
r 0 . We set:

y? + z 2 = r 2 = r0 2 P2 

L = p sin cp;---	 p cos cp	 (i)

r0

=	 and	 K 
r0 

For infinitely extended flow the horseshoe vortex induces 
at the convex surface of the cylinder the tangential y e-
locities u	 in the direction of the x axis and vt 0	 0 
perpendicular to u0 , and the normal velocity v0. 

In the case of the free jet the pressure must be con-
stant at the jet boundaries; that is, the velocities u0 

and.	 t0 must vanish. We must therefore superimpose a 

velocity field which is regular within the cylinder and on 
the cylinder surface has the values -u 0 and -v0. 

In the case of the closed tunnel the normal velocity 
must vanish. The superimposed field must therefore 

have the velocity -V 0 at the boundary. 

II. Determination of the Downwash for the Free Jet 

We shall first consider the free jet. The boundary 
conditions for infinitely large -x may be satisfied by 
introducing the images of the horseshoe vortices outside 
the jet s shown in figure 6. Thi methd is known from 
previous investigations (prandtl, Tragflugeltheorie II, p. 
54).	 e denote the potential of the horseshoe vortex by 

that of the image vortices by	 . The potential 

+ c) will then satisfy the boundary conditions for
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very large negative values of	 x/r0. For finite val-

ues of	 there still remain tangential velocities at the 
cylinder surface. Figure 7 shows the velocities u0 + u1 

and v 0	 +	 v. plotted against cp. The function u 0 + 

	

is even in cp and.	 ; the function Vt + Vt	 S 

uneven in cp and	 . Both decrease rapidly with increas-

ing	 . To compensate these velocities, we introduce 

a potential	 2 whose derivatives a 2 /x and acI'2/rcp


vanish at infinity and on the convex cylinder surface; 
thatis, for r = r 0 and p	 1, assumes the values: 

- -	 +	 - iQ_±_L?..	 (	 (2) 
r	 rcp 

	

2 must satisfy the potential equation 	 = 0 which, 

in cylindrical coordinates, reads: 

-	 -\ 2	 - 2	 -.2 , 

.1 -- + E_!-a + J	 +	 = 0	 (3) 
r	 ar2	 r a2 

We shall first assume the function	 2' instead of van-

ishing as	 =	 to be periodic in ,. We shall 

then in our computations allow the period 21 	 2* r0 to


increase indefinitely. The assumed series for 

=	 COS m CP	 Dmk	 n	 )3m (i krrp)	 (4) 

where Dmk are as yet undetermined coefficients and. m 
are Bessel functions of the first kind, satisfies the dif-

ferential equation, since each term of the sum satisfies 
it.

In order that	 2 may fulfill the boundary condition, 


it is necessary that

(. ku\ 
= --p--	

krr 
E cos m	 E Dmk :-,i c°s (	

) 3m 
4n r0 rn	 k 

= -	 (5) 
ax	 )r0
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+ If we now develop (___2_____) 	 (see fig. 7) into a 

Po.urier series in cp 

+	 r	 Ifl=co 
+ (_Q__L	 E m () cos in 

Jr0	 4rr r0 

the boundary condition will read: 

E cos in	 D	 cos(	
) 

Jm (i	
) 4ir r0

=	 --	 l () cos m cp	 (5a)

4ir r 0 in 

and by comparing coefficients, we obtain: 

E Dmk	 cos (
	

3m (i	 )	
- 'in ()	 (6a) 

If we further expand the function l () into a cosine 

+	 ) 
series in	 , ---------is an even function in 	

), we 
again obtain by comparison the values of the unknown coef 
ficients 

Dmk	 -	 lm (a) cos	 a) da	 (7) 

In this way we finally obtain, by substituting (7) in (4) 
the expression for 2 

,	 i'ikrr umjr p)sin( )
* 

+1 
-	 cos mcp f Lm(a)cos(	 a)dct E 

------------y- k
1*

,

(8) 

If we now allow the period	 to increase so that	 in 

the limit ku = dq,	 then the expression for the po-

tential	 becomes: 

-	 E
sin q	 3(iqp) 

cos mcp J dq

+0 
1.

I	 (a)cos	 qctda	 •() 
in 0 -



6	 LA.C.A. Technical Memo raridui No. 80]. 

In the plane of the wing (that is, to a great. approxima-
tion, in the xy plane for which cp	 900 or 2700) 
there is obtained for the downwash velocity due to 

= r	 sin qJ(iqp) 
racp 	 4ur m	 q	

dq	 Jim(a)cos qada. 
0

(10) 

and. in the symmetry line of the wing, that is, for r	 0 

	

sin q	 dq . + 

r acp -	 y	 J l ] ( ct) cos q a. dct	 (ii) 

which is a relatively simple expression. 

The potential	 2 was so determined that the condi-




tion: 

(!\	 = -
ax

	

coscp	 r 
= - --- ______i_ I - sin 4rrr 0	 +cos	 L	 +1+K-2t sing 

1 

/ 2 +l+ 2 +2K sinCe 

+ K .t-- +
 2 +1+ K2 -2 K s inC 

-	 1-

sinP 

-2--sincp ______________ - 

} 

± {7j:-- +

(12)



N.AIC.A. Technical Memorandum No. 801	 7 

was satisfied.. We must still show that the condition 

= - ('o_._!!?	
0	

('3) 

aCp'r 0 	 ¼	 rcp	 'r0 

is sirnultaneously satisfied. 

On the surface of the cylinder the tangential veloc-
ity is

Sfl q	
J	 (a) cos q a dct 

( a 2	 -	 E m sin m J - 4rrr 0 m	
----- dq	

m

(14) 
This expression then must be set equal to the negative 

+	
\ . For the derivative, of the derivative ('-------

\	 rcp 4 
(Q__!	 , we assumed the expansion 

ax

lm(,1) cbs m	 (see equation (s)) 
1r 0 	 4'rrr0

(1 4a) 
for simplicity

was written 1m 

Prom this it follows that the potential (, +	 ) must 
have the form

o +	
=	 E 'm(,p) cos mcp	 (15)


4TIm 

wer e

	

(	 \ - aTm(,p) -

,a(	 + 
For the tangential velocity ( ---------' we then obtain


	

ra	 'r 
by differentiation of(l5) the equation 

	

= - --!--	 m	 sin in cp	 (17) 
'	 rcp	 r0	 4irr0
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Now condition (13) requires that the derivatives (14) and. 
(17) be equal and opposite. Since both are sine series 
in cp, the coefficients of each harmonic must be equal to 
each other except for sign; that is, it is necessary that 

J	 -----. dq	 J l'm(ct,l) cos q a da	 + 1mUg1)	 (18) q 

If we integrate the left side partially with respect to a, 
we obtain, using (16) the equation 

	

+0! 
sin q	 dq .! T 1 (a,1) sin q a d.a = 1'm(,l)	 (ig) 

and. it is immediately seen that the left side is the Four-
ier representation of the function Tm(,l)	 the poten-
tial	 2 therefore satisfies all conditions.2) 

We shall briefly summarize what we have done so far: 
An airfoil in a free jet is compared with an airfoil in. an 
infinite flow, the potential of whose disturbing field. is 

+ I 2 Due to the jet boundaries the additional down-

+ 'I ) ward velocities wk	 are induced. For the 
az 

plane of the wing (that is, to a close approximation, in 
the xy plane): 

a(	 +	 )	 + 
---.--------= + ________ (cp= 90° to 270 ) 	 (19a) 

The derivative	 is given by equation (io) and.
r 

by 

2)
It may be shown that the problem of determining a poten-

tial having predetermined values for the tangential den y
-atives at the boundary reduces to the problem of determin-

ing a potential whose values are given at the boundary sur-
face; that is, to a boundary problem of the first kind. 
For this reason, both conditions (12) and (13) are equiva-
lent to a single condition,.
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1 ______	
- 

- ( 90°	 =o= k{ E y;-
- ----- (1-	 ^ ---- (1 .- _______ 

J 2+( p 1)2)	 J2+(1)2)

(20)
 Along the tunnel axis we finally obtain (see equation 

(11)):

Wk = --I_ f 2 [----1+ 

	

• 4irr	 L	 + 1] 

	

2K [1- __J_.__J} - J__ J 	 ?-_ !L j i 3 (a)cos qada 
/ 2K2+]	 4Trr0 o	 3 (iq) IT

-

(21)
 For small values of	 the first term simplifies to 

= _F__ (2K - K2 )
	 (21a) 

	

t\az )z=
	 4rrr0 

y= 0 

The downward induced, velocities along the axis for 
different ratios of wing span tc jet diameter are deter-
mined from equation (21). (See section Iv.) 

III. Determination of the Induced Downward Velocities 


for the Closec Tunnel 

A similar procedure is applied to closed tunnels. Im-
ages of the horseshoe vortices are first i.troduced with 
the sign of the circulation changed. (Fig. 2 shows a sec-
tion through the tunnel at a grat distance frOm the wing.) 
Then the superimposed potential	 2* is determined in a 
similar way as was dane for the open channel. We thus ob-
tam
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E cos m CP I 
xli	 iq J'(iq)	 •_f g(a,i)sin qac3a

(22) 
in which	 m1 is the derivative of the Bessel function 
of the first kind and rnth order. 

The functions	 are so determined that 

("s -	 ( a( 0 + 
ar r	 ar	 )r0 

= - 1K COST [------------(---
L1+K 2_2K . sintp\f 2 K 2+1+K 2_2K sincp 

--




I +l+K2 _2K jfl(p/ 

1	 ( __________________ 
+ 1+K ?+2K sin J2K2+l+K2+2K sin 

----
J 2 +1+K2 +2K si1 

	

coscp r	 /'	 K - ---------2 + sin - 

	

2 +cos2 L	 I 2 K2 +1+K2 2K iiip 

K 
/22	 2	 -. 

A/ . K +l+K +2K sincp 

- ----1-+ ----
\/j2K22	 sin	 AJF122	 22 5jflC' 

+ sin cp (------_
l 

A! 2+l+K2+2 sinP /ii+K2_2K sinP / 

/	 1	 1 
+ K --+ --

A! 2+1+K+2K sin(p J2+1+K22K sin(p 

= -	 - Eg(,1) cos mcp	 (23)
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The induced velocity, arising from the tunnel boundary 
effect, in the plane z = 0, is 

	

Wk* =:	
[ - --- -: ^ ________ 

J r^ç 
+	 I	 - ) 

;	 (i y-) 

+	

(

+ 

	

r	 J(iqp)sin q.	 q 1 
- ---- m sin m cpf -------------- - .' g (ct,l)sin qctd.a 

4rrr in	 ' q J'(iq)	 Tr,,	 in

(24) 
and for the line of symmetry y = 0: 

Wk* 
= - -;;{• 

[1 - 
_____ 

+	 [i -	 Eii 1} 

- --f	 fg (a,l)sin q a da	 (25) 
4ur0 	 J'(iq)	 rr -cxi 

From equation (25) are computed the induced velocities for 
various ratios of wing span to tunnel diaraeter. (See sec-
tion Iv.)

IV. Numerical Results 

Sections II and III supply the theoretical basis for 
the computation of the induced velocities due to boundary 
effect. These velocities wk and wk* are computed from 
equations (21) and (25) for any point on the axis of the 
wind tunnel. 

Then the blower velocity is V the change in the flow 
direction at each point is wk/V. The induced velocity at 
the wing will be denoted by w. The correction for the 

angle of attack of the wing itself is then. 

Wk0	 P.

ak = ---= ---2K
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(r = circulation, i	 = ___!E___ 
2r 0	 tunnel diameter 

or, substituting the lift coefficient Ca 

Wk	 1 
ak =	 =	 Ca	 (26) 

(P = area of wing, P0	 cross-sectional area of jet), 

At. a distance L from the wing the effect of the 
tunnel boundary on the downwash is larger than at the wing 
itself. The tail surfaces in that position would there-. 
fore have a different effect on the pitching moment than 
would be the case in free flight. In the free jet the ef-
fective angle of attack is reduced by the amount 

=	 _fQ	 (2?) 

in the closed tunnel it Is increased by the amount 

W*_W * 

= ___v.	 (28) 

The upwash at the wing in the closed tunnel is numerically 
equal to the downwash of the same wing in the free jet, 

* =	 W].
0 

Figure 8 shows the ratio ' 	 Pk/aic plotted against 
l/2r0 for the free jot.	 'igure 9 shows the similar rela-
tions for the closed jet. 3 The computations showed that 
the quotients T and T* are practically independent of 
the ratio span/tunnel diameter. Since any distribution 
whatever could be built up by superposition of uniform 

Contrary to what was found by Burgers (reference 5) *Ir 
the closed tunnel approaches the asymptote 	 mabove. 
W. L. Cowley and G. A. McMillan (reference 5) have recent-
ly improved, the G'lauert computation for the rectangular 
tunnel and have also shown that ¶* approaches the asymp-
tote from above (for ratios of span to tunnel diameter less 
than 0.55). The x 4 curve thern given would be similar for 
the case of a square tunnel but have its maximum at x/b = 
1 (b = width of tunnel).
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distributions along spans of different lengths, the re-
sults are also independent of the lift distribution. For 
the free jet, higher values are obtained than those ob-
tained. by the Seiferth approximation. 

The induced velocity itself instead of the change in 
angle of attack, may easily be determined from the curves 
(figs..8 and .9): 

Wk = . It;- Ca (1 +r) V

(29) 

w1 I = -	
;- 

Ca (1 + T*) V 

It should be noted that by the above theory it is 
possible to compute the downwash at every point In the 
wind. tunnel. Thus, for example, for a ratio of wing span! 
free-jet diameter =0.45, the downwash was computed all 
along a parallel to the tunnel axis in the xy plane (fig. 
5) passing through the wing tip. The values differ by an 
insignificant amount from those along the tunnel axis. 

The downwash resulting from the jet boundary produces 
a curvature of the flow. We shall now investigate whether 
this curvature is sufficient to explain the experimental 
fact that the correction factor for the angle of attack is 
larger than the drag correction factor. 

Since, along the wing chord, the curves T and 
(see equation (29) and figs. 8 and 9) may be replaced by 
their tangents f'(Q) and f*I(0) throui the origin, 
the downwa gh may be given by the expression 

wk	 Wk	 + f'(0)
	

(3o) 

The curvature of the streamlines at the wing is therefore


1	 f'(0) Wk 

------
	 ( 31) 

R	 2r0	 V 

where f'(0) = 1.58 for the free jet and f*t(0)	 2.1 
for the closed, tunnel. 

It is customary to write the correction for the angle 
of attack due to the boundary effect in the form 

6F 
ctk =	 Ca
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For circular tunnels	 = ± 1. This factor is computed on 

the assumption that the wing is replaced by a lift line. 
Since the wing, however, has finite chord, the jet curva-
ture does affect its. camber characteristics. In a free 
jet the camber is decreased- that is, the effective angle 
of attack is decreased; in a closed tunnel it is increased, 
and. therefore the effective angle of attack is increased. 
Seiferth (reference 1) investigated the effect of jet cur-
vature on a profile having the form of an arc of a circle. 
If t denotes the profile chord, then the change in the 
angle of attack of a wing section due to the streamline 
curvature is of the amount

(32) 

If we substitute the value for H given by equation (31) 
we obtain for the angle of attack the correction 

t f'(0) Wk - t f'(0) 
La -----------	 ( 33) 

The total correction for the angle of attack for a free 
jet is then 

ak + a ak [1 + () r 0 j 4 j 
1 F	 r	 /t '\ (2b'\ '(°)1 =	 Ca 

L' + \2b)	 ___]	
(34) 

that is, the factor 	 Iôi	 increases by 

100
 ()

(2b'\ 
percent	 (35)


If we compare this result with those of Knight and 
Harris (reference 7), there is found to be satisfactory 
agreement for the ratios wing span/tunnel diameter	 0.45 
and 0.6; for larger ratios of K	 2b/2r0, the values ob-
tamed, are too small.	 V'e must consider, however, that our 

computation was made only for the tunnel axis, so that no 
account was taken of the variation along the span. For 
large spans, for example, K = 2b/2r 0	 0.8, this varia-
tion along the span would increase the factor 8 by 9 
percent even if no account were taken of the curvature of 
the jet. 1:oreover, the test results were obtained by cx-
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trapolation to infinitely large ratio of jet area to wing 
area and are therefore not very accurate. 

C. JETS OF ELLIPTIC CROSS SECTION 


I. Statement of the Problem and. Notation 

Due to the fact that they make the testing of large 
models more convenient, free jets of elliptic cross sec-
tion are now preferred to circular jets. For uniform lift 
distribution, the induced velocities at the wing arising 
from the boundary effect were computed by Sanuki and Tani; 
Rosenhead made the computation for elliptical lift distri-
bution (references 3 and 4). We shall determine the in-
duced velocities behind the wing in the same way as was 
done for the circular jet. 

We again first replace the airfoil by a horseshoe vor-
tex, since nonuniform lift distributions may be built up 
by a combination of horseshoe vortices. 

The direction of the coordinate axes and the notation 
for the various magnitudes of the horseshoe vortex are the 
same as in section B. The elliptic jet has its large a'is 
equal to 2a and its small axis to 2b 1 . ( g ee fig. 10.,) 
The eccentricity is denoted by c (c	 - b 12). With 

infinite flow there are induced at the convex surface of 
the elliptical cylinder the tangential velocities u 0 in 

the direction of the x axis and vt0 perpendicular to u0•, 

and the normal velocity V0. 

In the case 
stant at the jet 

v t	 must be mad 
0, 

a velocity field 
inder and on the

of the free jet the pressure must be con-
boundary; that is, the velocities u 0 and 

o to vanish. We must therefore superimpose 

that is regular within the elliptic cyl-
boundary has the, values -u 0 and -vt0. 

For the closed tunnel it is necessary that the normal 
velocity V 0 vanish. The superimposed velocity field 

must therefore have the value	 on the surface of the 

elliptic cylinder.
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II. Downwash in the Free Jet 

• 1. considerations.- We shall proceed in a 
similar manner as for the circular free jet. In that case 
we first set up the images of the horseshoe vortex at the 
cylindrical boundary and were thus enabled to satisfy the 
boundary condition for infinitely large negative values 
of x. In the case of the elliptical jet, we must similar-
ly arrange a éystem of vortex filaments so that the bound-
ary condition at infinity may be satisfied. Since the ve-
locity u0 approaches zero at infinity whereas the other 
component of the tangential velocity vj 0 remains finite, 

it is necessary to determine the vortex filaments outside 
the cylinder in such a manner that they make Vt0 vanish 

at infinity.' 

If we consider a section of the jet at an infinite 
distance behind the wing (fig. ii) , we have an ellipse 
with two single vortices. We must now set up a system of 
vortices in the space outside the ellipse in such a manner 
that the velocity induced by these vortices and by the vor-
tex pair within the ellipse is a1ways normal to the bound-
ary. To determine the position of these vortices we trans-
form the ellipse into a rectangle. In. figure 12 B and B' 
denote the foci of the ellipse. Let there be a vortex at 
P1 . By means of the function 

y + iz = c cosh (..+ i)
	

(36) 

rectangle (hatched. area 
goes over into segment 

upper half of the ellipse 
B*C*C I *B I * lying above 
the rectangle B*C*CI*Bt* 
of the rectangle 

o the boundary of the ellipse. In 
velocities arise at the boundary 

the flow in the yz 

disturbance, it 
in figure 13	 Let 
p* be L1. The 

the ellipse is transformed into a 
in fig. 13). The segment BC 
B*C*	 • on the	 axis. The 
is transformed into the rectangle 
the	 axis; the lower half into 
lying below the	 axis. The side 

C*Dt*Ci* corresponds t 
order that only normal 

C!*D*C*Dl*C* and that 

through C'B'AB without 
form images as indicated 
coordinate of the point 
then lie at

plane pass 

necessary to 
the complex 
image vortices
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2) (2	 - :r1) + 

3)

4) (2q +	 ) +

i2nrr + 4flT0 

i2nrr + 

i2n'rr + 4mr10 

i2nrr + 4mnoJ

(37) 

where p • denotes the conjugate of	 . Assuming that 
= Li denotes the position of one trailing part of the 

horseshoe vortex, the other vortex will lie at point P2* 
whose coordinate is P.2 = in + t 1 . The position of the 
corresponding image vortex may be found with the aid of 
equations (37) by substituting in +	 for	 and 
-in +, p. ]	 for 

In what follows we shall consider only the case where 
the airfoil lies in the xy plane; then the z coordinate of 
the trailing vortex is zero. If the span 2b is now great-
er or equal to the distance between the foci, then in the 

plane all vortices will lie on the straight lines 
nn; if the span 2b is smaller than the distance between 
foci, the vortices will lie on the straight lines rl	 2m 

where m and n run through the whole range of in-
tegers from -	 to +. We must still determine the po-
sit ion of these vortices in the yz plane. Since y 	 c 
cosh r cos	 and. z	 c sinh ri sin	 (see equation (36)), 
all vortices will lie on the y axis for the range 2b 

2c, as	 = flu; and for 2b < 2c, all vortices will 
lie on lines fo,r which	 = constant	 flu; that is, on 
confocal hyperbolas. As 2b approaches zero, all vortices 
lie on the z axis. Thus we have determined the positions 
the vortex filaments outside the boundary must have in or-
der to satisfy the boundary condition for x--->- . 

Now let	 be the potential of the horseshoe vortex, 
the potential of the vortex filaments in the outer 

space. Figure 14 shows the vortex images for the case 
where the span is equal to or greater than the distance be-
tween foci. The figures indicated. in the diagram arc to 
be used later for working out an example. In the zy plane 
it is necessary to prolong the vortex filaments in some 
ma-ner since a vortex filament must have no free ends and 
since, moreover, they cannot be prolonged parallel to the 
x axis because in that case the boundary condition for 
x	 +	 would. be impossible of fulfillment. For the case
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whore the span is smaller than the distance between foci1 
the position of the vortex filaments will be as shown in 
figure 15. In thii case. it is simpler to unite the fila-
ments rather than prolong them. Thi combining of the 
filaments would have, been impossible in the first case 
since thO transverse part would have cut the ellipse and. 
so would not have lain in the outside region. In the case 
of infthitely small spans vortex pairs are obtained in 
the space outside the elliptic jet (fig. 16). 

The potential	 ) satisfies the boundary con-

dition at infinity. In order to reduce to zero the ve-
locities still remaining (u0 + u 1) and (vt0 + vt) , it 

is necessary to superimpose a potential 	 Since 

must satisfy the above conditions on the surface of the 
elliptic cylinder, we introduce elliptical coordinates 
for greater convenience in treating the problem: 

yccosh'rcos	 (38)


z = c sinh ri sin 

In any plane x	 constant the curves	 constant rep-
resent confocal ellipses and. the curves	 constant,

confocal hyperbolas. On th cylinder surface r = con-
stant	 . The potential equation which	 must satis-

fy then reads, in elliptical coordinates: 
2 ---------------------	

,+	 = 0	 (39) 
a 2	 c2(cosh2 'fl-cos 2	 ) 

In addition, the boundary conditions require that 

and
+ 

-) = - ----	 ( 41) 

Instead. of allowing 	 to vanish	 , we 
shall first set up	 2 as a periodic function in 	 and.


then in our computation allow the period. 21 = 21* a to
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grow indefinitely. To solve the differential equation 
(39) , we assume the product: 

= -	 Cp,	 sin (
	

)M,k () M 1, , j ()	 (42). 

The function M depends only on	 , the function M on-
ly on fl. Substituting one member of the above equation 
in differential. equation (39) 

-	 sin (
	 )	

sin (t[ ) 

M,k (i) 
+	 M1,,k (i))	 0 (42a) 

it is seen which equation the functions M arid. M must 
satisfy:

	

(ri) +	 u,k () 

2 2 
= __U_ c 2 (cosh2 '-cos2	 )	 () M 1,,k (Ti) 

12 

=	 -- (cosh 2-cos 2) M 1,k ()	 ()	 (42b) 2 

Changing the order of the terms and. dividing through by 
M M, we obtain: 

d2 M k	 1	 IF C ---------+ ----- -- co s 2 
d 2	

Mv,k ()	 12 

a.2 i	 ('n)	 1	 k2 2 c2 
= - -----'------ -'------ + -------cosh 2'q 	 (42c) 

	

p ,k ()	 12	 2 

Since one side depends only on the variable 	 and the 
other side only on ffl, the equality of the two sides means 
that they are constant • We denote the constant by -, 
and thus obtain the equations:
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+	
cos	 +	 M1,k () = 0	 (43) 

	

D1 -
	

cosh 2 
^	

(	 0	 (44) 

If	 = iT is substituted in the second equation, it as-




imes the same form as the first. The solutions of the 
first equation for real values of	 . are therefore, 'bn 
substitution of a pure imaginary variable, solutions of 
the second. These differential equations were first in-
vestigated by Mathieu, and their solutions are known as 
Mathieu functions (references 8 and 9). For our problem 
we need consider only such Mathieu functions as are period 
in . Periodic solutions, however, occur only when there cx-
istdefinite relationships between the parameter 	 and 

i2 2 2	 12 2 2 
__U_ - , so that L is determined when t—.JL_ .- is 
1 2	 2	 2


given. 

In addition to satisfying the differential equation, 
the potential 'I	 must also satisfy the boundary condi-

tions (40) and (41). Now the problem of determining a po-
tential that should have, given tangential derivatives at 
the boundary, is equivalent to the problem of determining 
a potential having pre-assigned values on the boundary; 
that is, to a boundary problem of the first kind. There-
fore, both conditions (40) and (41) are equivalent to one 
single condition and it is therefore sufficient that the 
condition:

	

= -	 = -	 P(0,)	 (45) 

is satisfied, and therefore also 

I'

	

(	 ) 
-	 E Z C k 

	

- --	 ( )	 (46) 
4rra 

The constants Cv,k must be so determined that the bound-
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ary condition (46) is satisfied. Since the Mathieu func-
tions M,k (C) form an orthogonal system, similar to the 

harmonic functions, to which they reduce when the eccen-
tricity of the ellipse approaches zero, the following re-
lations hold true: 

o1
(C) MVm ,k (C)	 d.0 = 0	 for	 n 4 m 

211 

'
(C) d.0 ii•	 for	 n > 0 (47) 

211 
and.	 f M2vk (C) d.0 = 2u 

We shall therefore multiply equation (46) 	 by a Mathieu 
function Mvk (C) and integrate over the region	 0 

C	 2it

-	 E C,,,k	
1k ii	 - 

a	 a M
1, ,1 () 

211 
= - IL. 1 j' ' U'n 0 C) Mi, , k (C) d.0	 (47a) 4Tra it

0 

whi± , divided by	 gives: 

Z C i,,k	 COS	
)	

() 

- 1 j p (0C) Mv,k (C) dC	 (47'o) 

We shall now make use of the orthogonal properties of the 
trigonometric functions by multiplying the equation by 

cos (
	

1) and, integrating over the region - 	 .	
+ 

1 . We thus obtain: 

kir

	

	 - 
1)k 10 - 

1+1*	
kn	 i11 [cos	 )iT I	 ',,k(C) d C] d	 (47c) 

0 
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or,

1	 -1 

w ML,,1(r)	 1	 0

(48) 

Substituting these coefficients into equation (42) and. 

setting	 = a and	 under the integral signs to 

avoid, confusion, there results for the potential 	 2 the 
e xp r e s s io n: 

= -	 L	 E 
4TFp	 kM 

*	 () l),k 
* 

+1 

f	 [cos
2u 

(	
a)da	 I	 F(a, 0 , *)Mvk(*)d*] 

_l* 0 

M p,k	 ()	 () (49) 

now allow the
* 

period.	 7,	 to	 increase so that in the 

limit = q, = dq,	 nd thus obtain for the poten-

tial the final expression: 

- 4Tr 

cx sin(q — ) 1	 a,' 
- I -

+	 2ir 

J	 cos qada	 I	 p(a,o,*)Mu(*)d
* 

----qM 1, ,q (r 0 ) -
0

?
d.q (50) 

The iathieu functions • (see	 (43)	 and. (44))	 will then satis-
fy the differential	 equations: 

d2Muq() /	 C2 
(q2__. +	 COS 2	 + 
\	 2a

) !& , q()	 = 0 (si)

and
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d2	
c2 

- (q 2	 cosh 2 + v) M ,q () = 0	 (52) 

The downwash velocity required is now given by 

+	 =	 ^ 
az	 c(cosh rI-cos	 )	 'r 

2	 2 

	

c(cosh r-cos	 ) 

For points in the xy plane where the y coordinate is small-
er than the distance from the foci to the origin, that is, 

- c	 y < + c so that	 0, 

=	 + -------

and for points whose y coordinate is groaterthan this dis-
tance, that is, -c	 y	 .+ c so that	 = 0 

a	 o 1	 1 - = --- +	 (55) 
az	 c sinh 

Nurnerica1exa1e.- An elliptical jet section was 
chosen with axis ratio' 	 a/b1 = f2. On the jet boundary 
the elliptic co:o rd.inate 'r has the value 'r 	 given by 
the relation:

= coth	 =
	

(55a) 

The computations were carried out for the two following 
cases:

1) Wing span equal to the distance between foci. 

2) Very small wing spans.

+ We first require the tangential velocity 

For the first case the vortex filaments outside the jet 

The notation b	 was used for the minor axis of the el-




lipse to avoid confusion with the wing span.
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all lie in the xy plane. The velocity at the jet bound-
ary (	 'r) is therefore, 

1'	
sin 

- 4'rra ( i)2 + (b)2 

co. s	 + 

,/7+ (?1)2 
sin2 + (c o s + 

b cos - - 
a 

sin2 4(cos	
- 

Ec°	 cos	 + 
+2 E -2 +	 --------------- ----------------

n=1 [

	

)2 (b1) ( +d)2 

cost -d	
-Ti --	 ---(5 o) 

where

cosh 2n 'r10 
= ----f----- ; n	 1, 2, 3 ...	 (55a) 

For the second case we have pairs of vortices in the x 
p1aae (see fig. 16); the velocity at the jet boundary is 
given by

-I 

=	 (57) 

	

AJ ()	
sin	 fn)
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where	 , 

=

	

	
;	 ii = 0, 1, 2, 3 ....	 (57a) 

cosh'r10 

The effect of the vortex 
jet decreazes with increasing 
is sufficient for practical p-
the infinite number of vortex 
jet,' only the first three.

filaments lying outside the 
4.L_.	 ..A.	 L 

'I. .	 '	 L J. U J.0	 t	 e t .	 .1. 

irposes to consider, out of 
filaments lying outside the 

The velocity on the 	 direction is an uneven func-
tion of	 . We must choose the corresponding Mathieu 
functions M ,,q() to satisfy the differential equation 

(51). S. Goldstein (9) has computed several Mathieu func-
tions using a notation for the constants different from 
ours. To avoid confusion, we shall employ the index G 
11th the Goldstein parameter: 

q2 	 = - 16	 1) = 4aG
	

(58) 

The uneven periodic Mathicu functions Goldstein denotes by 
s e 2 fl+l () since they reduce to the harmonic functions 
sin (2n + 1)	 when the eccentricity of the ellipse ap-
proaches zero. 

The Mathieu functions may be developed into Fourier 
series:

- 
5 e 1 . 1 () = E B2n+12m+l ( ---) sin (2m + 1)	 (59) 

The function s e 1 may be taken from the tables coriputed 
by Goldstein, noting that	 is negative for real values 


of q (reference 9, p. 304). The functions s e 3 , s 

etc. , as far as we know, have not yet been computed. Using 
Goldstein's method, we first computed.the values.of U 

and then the coefficients of th Fourier series to obtain 
the functions s e 3 and s	 Figures 17, 18, and 19 

show the variation of the Fourier coefficients of s e1 
s e3 , and s e5 with 

Ve require, in addition, the corresponding Mathieu 
functions with imaginary arguments. These will be denoted 

1The computations were carried out by 'F. Riegels. In com-
puting the values of v the work of E. L. Incb (reference 
10) was used.
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by the aetters	 -2n+l ('n)• B. Sieger (reference 1].) has 

shown that between the corresponding fuñctioiis there ex-
ist relations such that 

211 
- 1 j i... 

n+l,q () - yr	
8a '2n+l ( r) sin (2n + i)a 

0

s e	 qc () d	 (60) 
2n+1, 

where 

r cos & c cosh 'r	 cos
(61) 

and	 r sin & = c sinh r	 sin

With the aid of an addition théorem for Bessel functions 
(reference 12), the integration of (60) may be performed. 
The theorem is: 

= 2"F m ,+m)	 ____)_ ____) 
m=o.	 (-i's" (7's\2l) 

,2} 

r'1)	 (_ cos 2)	 (62) Urn 

where	 denotes the gamma function and C1'm(p.) the.


coefficients of am in the development of (1 - 2cc p + a 

according to increasing powers of a. Prom equa-
tion (60) there results: 

2n+1,q() = sinh	 b2n+,(q) Im(	 e)Im(	 e) 

(63) 
with 

b2 fl+1 , m = m L2n+l,l 32n+l 3• 
•(_1)m+l 

2n+l,2m-1	 (64). 

For the function s, the series is convergent. For higher 
orders it is often necessary, forvalues of 'r that are 
not too small, to obtain the function directly by integra-
tion of (60), since the accurate computation of the higher 

order Bessel functions 'm	
eefl	 would take too much 

\a2	 ,' 
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time. We shall limit ourselves in our computations, to 
the determination of the downwash velocity behind the 
wing. For this we have the value (see equation 54)): 

=	 •+ __2:___	 (65) 
)Z	 az	 c sin 

Prom equation (so) , substituting 

and
	 M 1),q () = s e2n+1,q ()	

(66) 

M1,,q ( en)	 -2n+l,q pr)) 

there results: 

r	 1	
[sin (q	 )2n+l,q(0) 

az	 11•	 T1 o L	 q a2n+l,q
.f{ cos q.adcL 

f F(a, 0 1r) s e2n+l , q( )d se2n^1.q(	 dq	 (67) 

We therefore require to determine only the quotients: 

m2n+l,q	
2n+I,q (0)
	

(68) 

This quotient is plotted, in figures 20 and. 2]. for n 	 0 
and nl. 

In the computation it turned out that the first term 
of the series in n contributed the esse ntial part. 
This is due to the fact that for small values of q only 
the first and third terms are significant in the Mathieu 
function expansion. s e2 fl+l,q (). 

3.Resu1ts- With a free 'elliptical jet with 4J2 ax-
is ratio, the downwash velocity due to the jet boundary 
was determined along tile jet axis for the case of a wing 
of very short span and. one whose span as equal to the 
distance between the foci. It was assumed. that the wine 
had uniform lift distribution, For. the finite wing there 
was, in addition, determined the mean value of the veloc-
ity behind the wing:
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+c a(cI +	 ) 
- I ____!_ d. y 

Wk =	 (69) 
2c 

as a function of the distance l/2a from the center of 
pressure line of the wing (fig. 22). 

It is usual to represent the mean d.ownwashvelocity 
in the form:

w	 C F 
-- —-8 
V	 8 F0
	 (70) 

where ca is the lift coefficient of the wing, P 0 the 

cross-sectional area of the tunnel, V the blower veloc-
ity, 8 . a nondimensional coefficient which is a function 
of the distance 1 from the center of pressure line of 
the wing and of the ratio wing span/jet width. Figure 
23 shows 8 as a function of the ratio wing span/jet 
width. For comparison,, the corresponding values for a 
circular jet are also indicated. If the coefficient 6 
in equation (70) is split up by using 8	 to denote the

value, of 8 at the wing:

- 
6	 (1 + 1)
	

(71) 

it turns out that the curves T (l/2a) practically coin-
cide for b = 0 and b = c, so that it may be assumed 
that T is nearly independent of the span for one and the 
same jet section. It is therefore possible to determine 
the downwash velocities forall spans between 0 and 2c° 
from the foregoing computations, provided . 6 	 is, known. 

Figure 24 shows T • For comparison the corresponding val-
ues for the circular jet of. equal width (2a 	 2r0) are 

also indicated on the figure; in that case, 8	 1. The 

value o± 6	 for the elliptical jet is known.from the 
computations od Sanuki and Tani (fig. 25). 

In order to distinguish the effect of the elliptical 
cross section on the downwash behind the wing we shall 
compare with a circular jet of equal cross-sectional area. 
For a wing of very small span we may obtain the value 8 
of the elliptical jet approximately by taking the valu'e 
for a circular jet of equal area and considering that 8(0)
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is not equal to 1 but is 8. Figure 26 gives the result 
and shows that the approximation is good., which result 
may be expected. when the eccentricity of the ellipse is 
not too large. 

- ...	 - - . L	
t' - - ' "

	 ' "	 .I Iii IULAJ.J.LL6	 -'	 ' 
est to know the distribution of the downwash along the 
span.. Pigure 27 shows the variation of the d.ownwash along 
the wing span having uniform lift distribution. 

III. Induced Velocity in Closed. Tunnel 

1. Theoretical consid.erat.ions.- In an infinite flow 
the airfoil would induce at the surface of the elliptic 
cylinder, which corresponds to the tunnel boundary, the 
normal velocity V 0 . Since the normal velocities at the 

cylinder surface must vanish at the boundary, as the air 
can flow only along the wall, we must superimpose a veloc-
ity field which has a normal velocity component	 Vn0 at 

the surface. We proceed in the same way as was done for 
the elliptical free jet. We first superimpose on the po-
tential field. of the wing	 a field.	 which is pro-

duced by the so-called 'vortex images and which assures 
that the boundary conditions are satisfied at infinity, 
The position of these vortex images is the same as for the 
free jet but the sense of rotation is partly different. 
To determine the latter we consider a section through the 
tunnelat an infinite distance behind. the wing (fig. 28). 
The vortices outside the ellipse must, together wil ,h t1e 
vortex pair within the ellipse, induce on the eiiipya 
velocity which is always in the direction of the tangent 
to the ellipse; that is, which has no component normal to 
the boundary. We may see these relations clearer if we 
transform the ellipse into a rectangle (fig. 29) . The 
curved boundary of the ellipse then goes over into the 

straight line	 The flow must now take place along

this straight wall. 1t may be seen that, contrary to v7)3at 
was the case for the free jet, the sense of rotation must 
change along the horizontal, lines but remains the same 
along the vertical lines. 'Figure 30 shows the position of 
the vortex, images in the xyz system of coordinates for 
the case where the span is equal to the distance between 
the foci 2c.)	 The sense of rotation is indicated. Tor 

in this case the point P1 * in figure 29 moves to t1ae 
origin.
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spans 2b < 2c and 2b = 0, the corresponding figures 
may easily be obtained by comparing with figures 15 and 16. 

The potential ( cIo + j satisfies the boundary con-
dition at infinity. To reduce the remaining velocities 
(v 0 + vn 1 ) to zero it is still necessary to superimpose 

another potential 	 , which is determined by the condi-
tion that the equation 

-	 +	 II -	 ( v	 + v an	 \.an	 an)	 no	 Iii 

holds true at the cylinder surface.. For the potential 

we obtain in a similar way as for the free jet: 

E sin (tj _" +0, 

v TT0 j1 a Mp ,q(Tl)	 - 

I 

2ir 
f F* (ct,0, *) M,q (*) d.* 

M.p,q () M 'q ('n) dq	 (73) 

where	 , ',	 denote elliptic coordinates. On the cyl-
inder surface	 = constant = 'flo• The coordinates 	 and 

appear in the inner integrals as variables of integra-
tion. To avoid confusion the integration variable is re-
placed by	 and Ua by a. M ,q () and. 

denote the Mathieu functions with real and variable argu-
ments which satisfy the differential equations (51) and. 
(52). The function F* 	 *) is connectedwith (v0 
+ V) by the relation: 

p* (a*)

	

	 /cosh.	 0 -cos2	 (74)


4ua 

If the components Vy and v	 of the sum are introduced. 

in place of the sum, there results:

(72)
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p*(a, 0 , *)=_	 2{v sinh	 cos *+ v cosh	 sin 

4rra	 (75) 

The induced velocity we are seeking is, in general, 
given by equation (53), for points in the xy plane by equa-
tions (54) axid. (55). We shall limit ourselves to the case 
where the span of the wing does not exceed the distance 

between the foci. We then require ----a-	 For this purpose 

the value of ---a- for r = 0 shall be specified and out 
a,,, 

of the solutions of the Mathieu differential equation, those 
suited to this problem chosen and substituted: 

(0) --fl-	 .	 21 - - ---
sin (q	 ,,/	 q	 dct 

\qJ	 4ii n110	 a2n+1q(,)	 aj-

2T1 

- f p*(,0,*) S 
02n+1	

*\ '	 I 
0

S	 ()}dq	 (76) 

The quotient

(a) a 2n+l 
rn2n+l,q	

'2n+l,q () 

for n = 0 is shown on figure 31 plotted for the case 
where the axis ratio is 

2. Results6).-. A jet section was chosen whose axis ra-
tio was a/b 1 f The induced velocity along the tunnel 
axis was determined, for two cases, namely: 

1) Wing span equal to distance between foci. 

2) Very small wing spans. 

The lift distribution was uniform. For the wing of finite 
span, there was, in addition, determined the mean velocity 
behind the wing as a function of the distance l/2a from 
the center of pressure line of the wing (fig. 32). The 
downwash velocity for the closed tunnel is negative, that 

6)The computations were actually carried out by P. Riegels, 
for whose assistance I take this oporbunityto express my 
thanks,
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is, it is really an upwash velocity, which leads to an in-
crease in the angle of attack of the wing. For a given 
lift in a closed wind, tunnel the angle of attack measured 
is therefore too small. 

The mean downwash velocity in a closed tunnel may 
again be given in the form: 

Wk*	 Ca F 
V -	 8 F0 

Figure 33 shows 6 as a function of the ratio wing span! 
jet width. For comparison the value of 6 for a circular 
jet of equal width is also indicated. 

If in equation (78) the coefficient 5 is split up, 
denoting its value at the wing by 5, 

= -	 So (1 +
	 (79) 

the resu't is, as in the case of the free jet, that the 
curves T (l/2a) for b = 0 and b = 2c run 	 close 
to each other that for all practical purposes T	 may be

assumed ind.eendent of the span for one and. the same cross 
section. This means that in this case too it is possible 
to obtain the downwash velocity for all spans between 0 
and. 2c provided only 5 is known. Figure 34 shows ¶*; 
for comparison, the corresponding value for a circular sec-
tion of equal width is also shown. The correction factor 

for uniform lift distribution was computed by Sanuki 

and Tani (reference 3); it is shown in figure 35 as a 
function of the ratio wing span/tunnel width. 

At the distance 1 behind the wing the induced. veloc-
ity produced by the tunnel boundary is greater than at the 
wing itself • A horizontal tail surface at that position 
therefore has a different effect on the pitching moment, 
at a given angle of attack, than it would. have in free 
flight. In the closed tunnel the effective angle of attack 
is increased in the ratio

j	 o T *	 ( 80) 

Translation by S. Reiss,. 
National Advisory Committee 
for Aeronautics.

(78)
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Figure 10.- Coordinate system. 
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Figs. 8,9,10,11,12,13 
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Figure 8.- Value of T along 
the free jet axis.

Figure 9.- Value 0± r* along jet 
axis in closed tunnel, 

0 
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r 

Figure 11.- Sectioii through 
tunnel infinitely 

distant behind. th wing. Trail-
ing vortices are indicated.. 

Figure 12,	 Figure 13. 

Figures 12 and 13.- Transformation of ellipse into rectangle.
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the elliptical jet bound-
Figure 14.- Images of horseshoe vortex at>< 

ary. Span greater than or equal 	 v 

to the distance between foci.

K 

Figure 15.- Images of horse-
shoe vortex at the 

elliptical jet boundary. Span 
smaller than distance between 
4•	 4 j.00.. figure 16.- Images of horse-, 

shoe vortex at	 / 
the elliptical jet boundary_/ 
for infinitely small span 
of wing. 

Figures.l7,18 ,19.-Coefficients 
of the period-

ic Mathieu. functions se1,se3,se5 
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Figure 18.
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Figures 20,21.- 46 
Quotients of 
the Mathieu 
function.	 0,2 
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Figure 22.- Downwash behind aifoi1 in 

elliptic free jet.
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Figure 23.-Variation of tho factor 6 
with ratio wins span/jet 

width and. with shaDe f cross section. 
2,0 1 	 I	 I	 I	 I	 I	 1 

k1	 JO	 I 

-	 In 
—	 /	 5 b Spènnweifa 0 

of the mean value of	 Jet	 0 St rahibreite 

the downwash wyjV behind an air- Figure 25.- Correction factor 6 for 
foil, in an elliptic jet(l/2a	 the computation of thedown-
distance from pressure line wing) wash at the wing in 111tic free jet. 
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Figure 26.- ]ffect of shape of jet.
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Figure 27.- Distribution of down- Figure 32.-"Downwash' 1 behind airfoil ii 

closed elliptical tunnel. wash along wing span.
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Figure 31.- otient of the Mathieu 
function 1p1otted. against q. 
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Figs. 23,29,30,33,34,35 
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Figure 30.- Images of horseshoe vor-
tex at theboundry of the 

closed timnel of elliptic cross sac-
tion.Span equal to distance between 
foci.
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-	 closed tunnel.	 ,-' Figure 28 
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Figure 29

Figures 29,29.-

-	 Transfor-
-	 mation of 

ellipse into 
rectangle. 

7	 Images for-
--;;	 mation in 
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Figure o.- Correction factor 
for computation 

of "downwash" at the wing in 
closed elliptic tunnel. 
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Figure 34.- For computing the mean 
value of the "downwash" 	 Figure 33.- Variation of factor 

V behind an airfoil in closed.	 6 with. ratio wing 
tunnel of elliptic cross section(l/2a span/width of jet and with shape 
distance from pressm'e line of wing). of jet section. 
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