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By Irmgard Lotz
SUMMARY

In this paper the downwash velocity distribution be-
hind the wing was determined for the free Jjet and for the
closed tunnel of both circular and elliptic cross sections.
The wing was placed at the center of the tunnel., The theo-
ry makes it possible to determine the downwash at any point
in the jet. The computations were performed for points in
the plane determined by the jet axis and the center-of-
pressure line of the wing. The elliptic tunnel section
chosen had an axis ratio equal to /2, The downwash
proved to be proportional to the wing 1lift and inversely
proportional to the cross-~sectional area of the tunnel..
Moreover, for the circular jet the downwash depends only
on the distance from the wing (see formula (29), figs., 8
and 9) and for the elliptical jet it may be approximately
represented by the product of a function depending only on
the ratio wing span/aet width (fig. 25 for the free jet
and fig. 35 for the closed tunnel), by a function depend-
jng only on the distance from the wing (fig. 24 for the
freec jet and fig. 34 for the closed tunnel).

The downwash velocities induced at the wing and due
to the boundary effect of the jet have been computed for
jets of different cross sections. The downwash velocities
in the region behind the wing have, on the contrary, re-
ceived very little attention. A knowledge of these veloc—
ities in the neighborhood of the wing, espccially at the
position of the tail surfaces is necessary, however, for
the computation of the corrected pitching moments. At the
same time it may be determined whether the curvature of
the flow lines is sufficiently large to explain the exper-
imental fact that the correction factor for the angle of
attack is larger than that for the drags

. i
*"¥orrektur des Abwindes in Windkanalen mit kreisrunden
oder elliptischen Querschnitten." Luftfahrtforschung,
vol. 12, no. 8, December 25, 1935, pp. 250-264.
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A, INTRODUCTION

Up to the present the tunnel interference effect has
been determined only at the wing - more exactly, at the
center of pressure of the middle wing section. The down-
wash velocity at this point could be simply determined
since it is exactly half of the velocity with infinite
flow, and the latter may be presented as a two~dimensional
potential flow problem: a system of images of the trailing
vortices being set up at the boundary (references 1 to 4).
Figures 1 and 2 show these vortex images for open and
closed circular jets. In the open tunnel the vortex images
have the same sign as the original vortex; in the closed
tunnel they have the opposite sign.

The values of the downwash velocities from the wing
outward to infinity wore not known. For a rectangular tun~
nel Glauvert, who was interested in deriving a correction
factor for the horizontal tail surface of an airplane, ob-
tained a first approximation., ©For tunnels of other cross
sections there was no comprehensive treatment." Seiferth
has indeed tried to obtain better results for the circular
free jet, but failed to obtain the proper correction fac-
tors even at small distances from the wing, In the pres-
ent paper, in part B, will be given the exact computation
of the induced velocities for circular jets, and in part C
for jets of elliptical cross section,

B. JETS OF CIRCULAR CROSS SECTION
I. Statement of the Problem and Notation
To a first approximation an airfoil may be replaced
by a "horseshoe vortex," which corresponds to a uniform

1ift distribution (fig. 3). Wings with nonuniform distri-
bution may be replaced by several horseshoe vortices of

l)Shortly after part B of our paper was completed, there
appeared the Aerodynamic Theory of W. F. Durand, vol. II,
in which Burgers considers the same problem dbut for a cir-
cular jet only. The methods are entirely different. 1In
the case of the free jet there is excellent agreement in
the results. For the closed tunnel, however, there are
certain deviations which will later be considered.,
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different widths 2b (fig. 4). We shall therefore first
carry out the computations for a horseshoe vortex. We
shall use the following notation: The X axis coincides
with the axis of the jet, the y axis lies along the span,
and the z axis is perpendicular to both and directed down-

ward., Figure 5 shows the coordinate gystem used, The
transverse part of the horseshoe extends from y=- Db to
y = + b° the trailing vortices run parallel to the x

axis from x=0 to x =~ ®w, The circulation of the
vortex will be denoted by I'. fThe radius of the tunnel is
To. We set:

I =5 sin ;% = p cos ¢ (1)
T, Ty )

X = f and 2 =K
To - Yo

/

For infinitely extended flow the horseshoe vortex induces
at the convex surface of the c¢ylinder the tangential ve-

locities U, in the direction of the x axis and vto

perpendicular to wu,, and the normal velocity vnof
In the case of the free jet the pressure must be con-

stant at the jet boundaries; that is, the velocities wu,

and v, must vanish. We must therefore superimpose a-

velocity field which is regular within the cylinder and on
the cylinder surface has the values -u, and “Vige

In the case of the closed'tunnel the normal velocity
¥, must vanish., The superimposed field must therefore

have the velocity -Vn, at the boundary.

II. Determination of the Downwash for the Free Jet

We shall first consider the free jet. The boundary
conditions for infinitely large -x may be satisfied by
introducing the images of the horseshoe vortices outside
the jet as shown in figure 6. This metnod is known from
previous investigations (Prandtl, Tragflugeltheor1e I1, p.
54)., We denote the potential of the horseshoe vortex by
®,, that of the image vortices by &,. The potential

(9, + ®,) will then satisfy the boundary conditions for
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very large negative values of § = x/ro. For finite val-

ves of ¢ there still remain tangential velocities at the
cylinder surface. Figure 7 shows the velocities wug + u;

and Vg, +-. Ve plotted against ¢@. The function wuy +
v, is even in @ and § the function vy + vy o is
uneven in ¢ and f, Both decrease rapidly with increas-

ing &'. To - compensate these velocities, we introduce
a potential @, 'whose derivatives o¢_./dx and 39, /rd o
vanish at infinity and on the convex cylinder surface,

that is, for = = Tg and p = 1, assumes the values:
00, _ _ (%o +2;) 3% _ 3@ + %) ¢ (2)
0x ox " rogp r 09

®, rmust satisfy the potential equation A®p = 0 which,
"in cylindrical coordinates, reads:

2 2
199, 3°0, 1 0°9, L 0°9Q,

2 -3 - ——--+ = =0 ’ 3
T 3¢ T 8t $F B3¢ Bx° (3)

We shall first assume the function ¢,, instead of van-

f%->c», to be periodic in §. We shall

then in our computations‘éllow the period 21 = 21% ro to
increase indefinitely. The assumed series for

®2=£-T—§cosmcp§9mksin<‘—‘{—;ﬁ>.rm (1%9) (4)

where Dpix are as yet undetermined coefficients and Jp
are Bessel functions of the first kind, satisfies the dif-
ferential equation, since each term of the sum satisfies
it.

ishing as ¢ =

In order that @; may fulfill the boundary condition,
it ig necessary that

E@} _ . km ke ko
dx T o4m r, %cos o @ %Dmk ¥ cos 1*‘ E) In <1 1*->

(o, +.0.) » | .
- @Eg_"_—l—)ro, (5)
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If we now develop ( ————————— ) (see fig. 7) into a
To

Fourier series in @

+,a(<1> t03) T Py cosm @
———— T = e—— ] c =
\ ox /ro 4 ro m=y m (&) s (8)
the boundary condition will read:
T ket kT kT
————— Y cosm @ Z D = cos (Tx AW (i < )
ity mk % ¥ o)t U ¥
= . L s 5
s Il (8) cosmg (5a)
and by comparing coefficients, we obtain:
Z Duk ’:‘igr cos (1511; g) Iy (1 %g,) = - 1, (&) (6a)
If we further expand the function 1, (§) into a cosine
- ' oo, + @
series in ¢, —S—Qgi_—il is an even function in E), we

again obtain by comparison the values of the unknown coef-
ficients

3
+1
1 1
D . = - 1 Q =z 0 ) do 7
i ?E%Jm‘k”fm()cos@> (7
A

7, "'1

In this way we finally obtain, by substituting (7) inm (4)
the expression for @2

I

¢ = - e zcos mQ 2

J plsin(T§ g\
m(i*_ / (1 -1 f lm(a)cos<1; d\da

e ()t (8)

¥

If we now allow the period 1 to increase so that in

the limit %g = q; %;= dq, then the expression for the po-

tential becomes
o= - r 5 eo “sin af um(lqp) a 1 ;mt (@) ado. (9)
= - i z cos mQ f 3 T2 (1g) a 7 tm cos g .
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In the plane of the wing (that is, to a great. approxima-
tion, in the =xy plane for which @ = 90° or 270°),
there is obtalned for the downwash velocity due to ®2~

__a.~ b m
ToQ e g m sin m¢.f q Jg (1q) ;i lm(a)cos gada

(10)

and in the symmetry line of the wing, that is, for r =0

ia

206, ., p , sinal 3dag +e ‘
roQ Zﬁ;;'g I G T i 1,(a) cos q o da (11)

which is a relatively simple expression.

The potential @, was so determined that the condi- .
tion: : . .

——— .__.._.—_——<~ o

ax /
/rq ro

_ T cosQ [ Siﬂ@{ _______ 1 ' »
4riry £°+cos®Q N BB +1+K2-2R sin®

1. . }
N E+1+K% 42K sing

+K { ol +
v BH1+K2 2K sin®

T }
N EE+1+KE 42K gin®
K
-2~sin {
‘ v |/ EPKE+1+K2-2K sin@

: }
J ERPE1462%42K sing-

1

+ +
{'/£2K2+1+K2-2K sing

l .
12
J B KEH1+K2 42K sing }] (12)
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was satisfied. We must still show that the condition

—————— ) | (13)

—-—) Ao * 23)
To rog /14

is simultaneously satisfied.

On the surface of the cylinder the tangentlal veloc-
ity is .

oo
sin q¢f 1
= —=— m n —=——== dq a) cos a da
(ra(p) mgg ol mcpf T e n o ge) cos g
(14)
This expression then must be set equal to the negative
8(@ + @,
of the derivative (-——;é ————— . For the derivative,
(S, + @) ML
( ~~~~~~~~~~ ) » We assumed the expansion
0 x e
o
(——~7§§———~ ro-— EEE; glngﬁ,l).cos m @ (see equation (6))
(14a)
for simplicity
1m(§,1) was written -1 ()
From this it follows that the potential (&, + ®;) must
have the form
i
= = . |
¢ + O, z i 'm(§{,p) cos m@ (15)
wWhere .
3 T(€.p) '
1n(Ep) = ———%E—f—— (16)
a(@o + @1) . .
For the tangential velocity ———;Era——%> we then obtain
. .

by differentiation of (15) the equation

3o, + 8N T o
(“‘ra‘"ca““>ro =, 5o mlbl)etane )
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Now condition (13) requires that the derivatives (14) and
(17) be equal and opposite. Since both are sine series

in @, the coefficients of each harmonic must be equal to
each other except for sign; that is, it is necessary that

@ « . i 1 +m
J SR 4% 4, =/ ln(a,1) cos g a da = + T,(£,1)  (18)
-

If we integrate the left side partially with respect to a.
we obtain, using (16) the equation

[02]

. . 4o ' ‘
+ [ sin q £ dq }T- J Tmla,1) sin q a da = Tp(E,1)  (19)
(0] ~0o .

and it is immediately seen that the left side is the Four-
ier representation of the function Tp(€,1); the poten-
tial &, therefore satisfies all conditions.?

We shall briefly summarize what we have done so far:
An airfoil in a free jet is compared with an airfoil in an
infinite flow, the potential of whose disturbing field is
®; + &, Due to the jet boundaries the additional down-

: + o
ward velocities wy = é£915~—gal are induced. For the

z _ :

plane of the wing (that is, to a close approximation, in
the xy plane): :

3(0, +0) _ 3(e, +0,)
——x 27 R T - o 0
°F + r 3G (@ = 90° to 27Q ) (19a)
. . a@a . - . ° aQ
The derivative ;55 is given by equation (19) and ;§$_

by

It may be shown that the problem of determining a poten-
tial having predetermined values for the tangential deriv-
atives at the boundary reduces to the problem of determin-
ing a potential whose values are given at the boundary sur-
face; that is, to a boundary prodlem of the first kind.

For this reason, both conditions (12) and (13) are equiva-
lent to a single condition,.
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.
- o 4l 1
<aq>l‘\ . ..G% R PF ok L Pk
F00/g=g00 \O% Jgmo  Fmrg |E 0T T ) 5
. 1 1
VGO
- Lx 1= __._____.________ + __3'_ 1= = 4

e U ey

(20)
Along the tunnel axis we finally obtain (see equation

(11)):

9(8, +9,) T (2[ o
—————————— i et I I N . S—
.az Cdmrgy L€ J Er2 T lj

: ' ( © sin(qé) 1dq 1 +oo
2k ﬁ- bk -1 J 1,(a)cos qada
/ £3K3+1J}

41TTg 0 J, (ig) o
: . . (21)
For small values of £ the first term simplifies to
39 |
___1> = I ek - oy (21a)
9z /y=¢ 4mr,
y=o
The downward indvuced velocities along the axis for -
different ratios of wing span tc jet diameter are deter-
mined from equation (21). (See section IV.)
ITII. Determination of the Induced Downward Velocities
for the Closed Tunnel
A similar procedure is appiied to closed tunnels, Im-
ages of

the horseshoe vortices are first introduced with

the sign of the circulation changed. (Fig. 2 shows a sec-
tion through the tunnel at a zgrzaat dlstance from the wing,)
Then the superimposed potential &,* is determined in a

similar way as was done for the open channel. We thus ob-
tain



10 N.A.C.A. Technical Memorandum No.: 801

Feo

i sin d 1

®, =...F.. Z cos mCPf

iq Jp'(ig)
(22)

in which Ju' 1is the derivative of the Bessel function

of the first kind and mth order.

The functions g are so determined that
-a<1>2"‘~>. /3@y + ®y)
ar ( or To
1 K
- - fecose ] (opmpctte -
dnrg | 1+K°-2K sin@\,/ £ k% +1+K%-2K sing

: v

v/E3+1+K242K sing”/

Ex

1 e a—— e —

+ . (
1+K24+2K 5ing rv/g2K2+1+K3+2K sin@

¢ )
J P +14K2 12K sin¢/]

. K-
———————— 2 + sinCP< ‘ -
£2+cos2w [ V/EEK2+1+K2-2K‘sin@

- -)
V/gex +1+K2+2K sing

1 \

( — +
V/EQK 41+K -2K sin® & LK +1+K 42K sin@”

‘% sihq>< L - - )
J 14k 42K 5in0 o/ E1145°-2% gin0 7/

1 1
+ K : + )
<v/€2+1+K3+2K sin® ~/52+1+n2-2n sing@ ]}‘

T
= - Goro L en(.1) cos mo (22)
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The induced velocity, arising from the tunnel boundary
effect, -in the plane =z = 0, is

I S P S PR S
"""( /E'*(p-l)) "*1 Jer(ot)

T (igp)sin q £ aq 1 oo
-""—“'Z m ___f A
e m sin mCPf 1 g Tot(iq) T gm(a,l)s1n gada
(24)
and for the line of symmetry y = O: ’
1 . , €k
wk* { [ —————— + 2K |1 - —r=s——— }}
4ﬂro ¢ /52K3+1J £2 k241
O)l . ~+-oo :
5 sin dg 1
R J & ' ? ¢ dq - J g (a,1)sin g a da (25)
4ﬂroo Ji'(iq) Moy B
From equation (25) are computed the induced velocities for
various ratios of wing span to tunnel diameter. (See sec—
tion IV.)

IV, Numerical Results

Sections II and III supply the theoretical basis for
the computation of the induced velocities due to boundary
effect. These velocities wy and wyp* are computed from

equations (21) and (25) for any point on the axis of the
wind tunnel., .

When the blower velocity is V thée change in the flow
direction at each point is Wk/V. The induced velocity at

the wing will be denoted by Wi, . The correction for the
angle of attack of the wing itself is then
ko T.

= = K
e = T Ir,v °
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(P = circulation, K = '2b _ wing span >
2ro tunnel diameter
or, substituting the 1ift coefficient o,
Wk 1 F
0

O = =2 = = — ¢ 26

k™ 7y 8 F, @ . (28)
(P = area of wing, F, = cross-sectional area of jet).

At 2 distance 1 from the wing the effect of the
tunnel boundary on the downwash is larger than at the wing
itself. The tail surfaces in that position would there-
fore have a different effect on the pitching moment than
would be the case in free flight. 1In the free jet the ef-
fective angle of attack is reduced by the amount

b=~ @)

in the closed tunnel it is increased by the amount

*® %
Wk Wko

By = —————2- (28)

- The upvwash at the wing in the closed tunnel isg numerically
equal to the downwash of the same wing in the free jet,
et T T Vi,
- o o .

. Figure 8 shows the ratio T = Bk/ak plotted against
l/2ro for the free jet. {igure 9 shows the similar rela~
‘tions for the closed jet. he computations showed that
the quotients T and T* are practically independent of

the ratio span/tunnel diameter. Since any distribution
whatever could be built up by superposition of uvniform

Contrary to what was found by Burgers (reference 5) T* for
the closed tunnel approaches the asymptote from above.
We L. Cowley and G. A, McMillan (reference 6) have recent-
1y improved the Glauert computation for the rectangular
tunnel and have also shown that T* approaches the asymp-
tote from above (for ratios of span to tunnel diameter less
than 0.55), The =X, curve theme given would be similar for
the case of a square tunnel but have its maximum at x/b =
1 (b = width of tunnel),
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distributions along spans of different lengths, the re-
sultss are also independent of the 1ift distridbution. For
the free jet, higher values are obtained than those ob-
tained by the Seiferth approximation.

The induced velocity itself instead of the change i
angle of attack, may easily be determined from the curves
(figs..8 and 9):

n

wk:%j?"ca (1 +7) v
° - (29)
we = - 1x ca (L + 1% v

) Fo

It should be noted that by the above theory it is
possible to compute the downwash at every point in the
wind tunnel, Thus,'for example, for a ratio of wing span/
free-jet diameter = 0.45, the downwash was computed all
along a parallel to the tunnel axis in the xy plane (fig.
5) passing through the wing tip. The values differ by an
insignificant amount from those along the tunnel axis.

The downwash resulting from the jet boundary produces
a curvature of the flow. We shall now investigate whether
this curvature is sufficient to explain the experimental
fact that the correction factor for the angle of attack is
larger than the drag correction factor,

Since, along the wing chord, the curves T and T*
(see equation (29) and figs. 8 and 9) may be replaced by
their tangents f'(0) and f£*'(0) through the origin,
the downwash may be given by the expression

1 ]
= 4 ! ———— 80 :
W wko.[} £1(0) 51y (30)
The curvature of the streamlines at the wing 'is therefore

R- Er, W . (1)

where f'(0) = 1.58 for the frece jet and f£*'(0) = 2.1
for the closed tunnel. . ,

It is customary to write the correction for the angle
of attack due to the boundary effect in the form
§ F

ak=§f;'°a
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For circular tunnels § =% 1. This factor is computed on
the assumption that the wing is replaced by a 1ift line.
Since the wing, however, has finite chord, the jet curva-
ture does affect its camber characteristics. In a free
jet the camber is decreased - that is, the effective angle
of attack is decreased; in a closed tunnel it is increased,
and therefore the effective angle of attack is increased.
Seiferth (reference 1) investigated the effect of jet cur-
vature on a profile having the form of an arc of a circle.
If t denotes the profile chord, then the change in the
angle of attack of a wing section due to the streamline
curvature is of the amount

t

A a = iz (22)

If we substitute the value for R given by'equation (31)
we obtain for the angle of attack the correction
t £1(0) "k, _ t £1(0)

3ty & T 2Zr, & % (23)

Aa =

The total correction for the angle of attack for a free
jet 1s then

_ £\ (2D i;'_(o_L]'
ak+/.\a—ak[l+<2> I‘o> 2
_1F £\ (2D £1(0)
-8 7, °a {} * (2b> (Zro 4 } (34)
that is, the factor 'ﬂ increases by
£ (2b) £:(0) -
100 <2b) <2ro> s+ percent (35)

If we compare this result with those of Knight and
Harris (reference 7), there is found to be satisfactory
agreement for the ratios wing sPan/tunnel diameter = 0,45
and 0.6; for larger ratios of K = 2b/2r_ , the values ob-

tained are too small., We must consider, however, that our
computation was made only for the tunnel axis, so that no
account was taken of the variation along the span. For
large spans, for example, K = 2b/2ro = 0.8, thisg varia-
tion along the span would increase the factor § by 9
percent even if no account were taken of the curvature of
the jet. Morecover, the test results were odbtained by cx~
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trapolation to infinitely large ratio of jet area to wing
area and are therefore not very accurate.

~C. JBTS OF ELLIPTIC CROSS SECTION

I. Statement of the Prodblem and Notation

Due to the fact that they make the testing of large
models more convenient, free jets of elliptic cross sec-
tion are now preferred to circular jets. For uniform 1ift
distribution, the induced velocities at the wing arising
from the boundary effect were computed by Sanuki and Tani;
Rosenhead made the computation for elliptical 1ift distri-
bution (references 3 and 4). We shall determine the in-
duced velocities behind the wing in the same way as was
done for the circular jet.

We again first replace the airfoil by a horseshoe vor-
tex, since nonuniform 1ift distributions may be built wup
by a combination of horseshoe vortices.

The direcction of the coordinate axes and the notation
for the various magnitudes of the horseshoe vortex are the
same as in section B. The elliptic jet has its large axis
equal to 2a and its small axis to 2b,. (See fig. 10.)

The eccentricity is denoted by c¢ (c =,/a% - D,2). With

infinite flow there are induced at the convex surface of
the elliptical cylinder the tangential veloccities uo in
the direction of the x axis and vt, perpendicular to g,

and the normal velocity vp,.

In the case of the free jet the pressure.must be con-
stant at the jet boundary; that is, the velocities wu, and

vto must be made to vanish. We must therefore superimpose
a vélocity field that is regular within the elliptic ecyl-
inder and on the boundary has the values =~uy and Vg
For the closed tunnel it is necessary that the normal
velocity vp, vanish, "The superimposed velocity field

must therefore have the value =Vp, on the surface of the
elliptic cylinder,
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II. Downwash in the Free Jet

l.~-Theoretical considerations.~ We shall proceed in a
similar manner as for the circular free jet. 1In that case
we first set up the images of the horseshoe vortex at the
cylindrical boundary and were thus enabled to satisfy the
boundary condition for infinitely large negative values
of X, In the case of the elliptical jet, we must similar-—
ly arrange a system of vortex filaments so that the bound-
ary condition at infinity may bec satisfied, Since the ve-
locity o approaches zero at infinity whereas the other
component of the tangential velocity Vo remaing finite,

it is necessary to determine the vortex f11aments outside
the cylinder in such a manner that they make Vi, vanish

at infinity.-

If we consider a section of the jet at an infinite

distance behind the wing (fig. 11), we have an ellipse
with two single vortices. We must now set up a system of
vortices in the space outside the ellipse in such a manner
that the velocity induced by these vortices and by the vor-
tex pair within the ellipse is always normal to the bound-
ary. To determine the position of these vortices we trans-
form the ellipse into a rectangle.. In figure 12 B and B',
denote the foci of the ellipse. Let there be a vortex at
P, By means of the function :

'y + iz = ¢ cosh (n -+ if) (38)

the ellipse is transformed into a rectangle (hatched area
in fig. 13). The segment BC = &a. goes over into segment
B*C* = 1, .on the m axis. The upper half of the ellipse
is transformed into the rectangle B¥C*C'*B'* 1lying above
the m axis; the lower half into the rectangle B*C*C'*B'*
lying below the m axis. The side of the rectangle ' C!'*D¥
C*D!'*C'* corresponds to the boundary of the ellipse. In
order that only normal velocities arise at the ‘boundary
CY*D*C*D!'*(C'* and that the flow in the yz plane pass
through C!'B'AB without disturbance, it is necessary to
form images as indicated in figure 13, Let the complex
coordinate of the point P * be p,. The image vortices

then lie at
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1) Wy + i2nm + 4mn&
2) (2ny - Wy + i2nm + 4mn,|

o ’ 3 . (37)
3) - Wi + i2nm + 4mn,

4) (2mo + py) + i2nm + 4mn,

where L, denotes the conjugate of Ky Assuming that
P1* = u; denotes the position of one trailing part of the

horseshoe vortex, the other vortex will lie at point Po¥*
whose coordinate is Wy = im + ;. The position of the

corresponding image vortex may be found with the aid of
equations (37) by substltutlng im + @, for W, and
-im + @y  for .

In what follows we shall consider only the case where
the airfoil lies in the xy plane; then the z coordinate of
the trailing vortex is zero. If the span 2b 1is now great-
er or equal to the distance between the foci, then in the
ﬂﬁ plane all vortices will lie on the straight lines ¢{ =
nm; if the span 2b 1is smaller than the distance between
foci, the vortices will 1lie on the straight lines n = 2m
Mo: Wwhere m and n run through the whole range of in- -
tegers from =-o to +o, We must still determine the po-
sition of these vortices in the yz plane. Since y =
coshm cos{ and 'z = ¢ sinh m sin ¢ (see equation (30)),
all vortices will lie on the y axis for the range 2b
2 2¢, as { = nw; and for 2b < 2¢, all vortices will

lie on lines for which ¢ = constant # nm; that is, on
confocal hyperbolas. As 2b approaches zero, all vortices
lie on the z axis. Thus we have determined the positions
the vortex filaments outside the boundary must have in or-
der to satisfy the boundary condition for =x—> - o,

Now let @y, be the potential of the horseshoe vortex,
®, the potential of the vortex filaments in the outer
space, TFigure 14 shows the vortex images for the case
where the span is equal to or greater than the distance be-
tween foci. The figures indicated in the diagram arc to
be used later for working out an example. In the zy plane
it is necessary to prolong the vortex filaments in some
maianer since a vortex filament must have no free ends and
since, moreover, they cannot be prolonged parallel to the
X axis becausc in that case the boundary condition for
X + o would be impossible of fulfillment. For the casec
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where the span is smaller than the distance between foci,
the position of the vortex filaments will be as shown in
figure 15. 1In this case.it is simpler to unite the fila-

‘ments rather than prolong them. This combining of the

filaments would have been impossible in the first case
since the transverse part would have cut the ellipse and
so would not have lain in the outside region. In the case

of infinitely small spans vortex pairs are obtained in

the space outside the elliptic jet (fig. 16).

- The potential (%o .+ ®,) satisfies the boundary con-
dition at infinity. 1In order to reduce to zero the ve-~
locities still remaining (wo + u,) and (Vi +-vtl), it
is necessary to superimpose a potential &, . . Since &,
must satisfy the above conditions on the surface of the

elliptic cylinder, we introduce elliptical coordinates
for greater convenience in treating the problem:

x =

y = ¢ coshm cos § (38)

z = ¢ sinh m sin ¢
In any plane . X = constant the curves m = constant rep-
resent confocal ellipses and the curves { = constant,
confocal hyperbolas. On the cylinder surface mn = con-

stant = mg. The potential equation which @z must satis-
fy then reads, in elliptical coordinates:

2 2 . 2
o9, . 1 :
R S L .
ot c®(cosh® m-cos® () on at*/ .
In addition,.the boundafy conditions require that
30 30, + @,) | |
——2 - - (Z2Z0 T3 (
5°) ) 40
: - 0 Mo
- and .
o0 A, + By)s -
5t), =~ e ) (43)
Mo Mo
Instead of ailowing &, to vanish f—>* &, we

shall first set up @2 as a periodic function in ¢ and
then in our computation allow the period 21 = 21* a to
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grow indefinitely. To solve the differential equation
(39), we assume the product:

0, = - o Z 3 Cp,x sin (li‘—{i E) My, (8) My () (42).

The function M depends only on ¢, the function M on-

ly on m. Substituting one member of the above equation
in differential equation (39),

. ¥p® 1 o (T £
sin < §> ¥, x Mv x+ - z(cosh o057 L) sin (1 E/

a% iy (¢) a® ¥, . (M)
( d;k; My, (n) + :T']};_ My, k (C)) 0 (42a)

it is seen which equation thé functions M and M must
satisfy:

a2 M (¢) - & M (n)
“——Ep‘é—]é“g“ v,k (n) + z'r;]a{ 4 My, (¢)
S c® (cosh® m-cos® ) M (¢) ¥ (n)
'LB n _ Lk C vy k
= k§§~_ =— (cosh 2n-cos 2¢) Mok (¢) ﬁu,k (n) (421)

Changing the order of the terms and dividing through by -
M M, we obtain: . :

a® M 4 (¢) 1 k? m° ¢?
~ 2 + - —— c0s 2
a2 My, (¢) 22 :
= - U&ka n = + ——5—— —— cosh 2n (42c)

Since one side depends only on the variable { and the
other side only on m, the equality of the two sides means
that they are constant. We denote the constant by -v,
and thus obtain the equations:
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dz, k* 2 2 .o :
d ;,]g (é) ( 12 52_ cos 2¢ + v) Mp,e (&) =0 (43)

2 — : -
a M, (n) k2 2 ¢2 .
v,k \N
2 - - cosh 2n + ; =
- ﬁng ( i cosh 2n v) My, x (=0 (44)

If m = 1iT 4is substituted in the second equation, it as-
sames thie same form as the first. The solutions of the

- first equation for real values of ¢ - are therefore, %n
substitution of a pure imaginary variable, solutions of
the second. These differential equations were first in-
vestigated by Mathieu, and their solutions are known as
Mathieu functions (refereances 8 and 9)., For our prodblem
we need consider only such Mathieu functions as are periodic¢
in { Periodic solutions, however, occur only when there ex-
ist definite relationships between the parameter ©» and

2 2 2 2 .2 .
Eﬁﬁg_ %; » 80 that v is dgte;mined when gié:— %r is
given,

In addition to satisfying the differential equation,
the potential @2 - must also satisfy. the boundary condi-
tions (40) and (41). Now the problem of determining a po-
tential that should have given tangential derivatives at
the boundary, is equivalent to the problem of determining
"a potential having pre-assigned values on the boundary;
that is, to a boundary problem of the first kind. There-
fore, both conditions (40) and (41) are equivalent to one
single condition and it is therefore sufficient that the
condition: ~

30 e, *+ 9) A
Y ) T (“‘%E‘”A“)n = - g0z U Mo+ ) (45)
[o}

is satisfied, and therefore also

Gy S cos (F 2) #,400) 2,5 ()

——— -

5@2\ ~ T
T, T

- ) X
vV k

= - ‘IT?&TF (gp'ﬂoaC) (46)

The constants Cv,k must be so determined that the bound-
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ary condition (46) is satisfied. Since the Mathieu func-
tions ¥, i (¢) form an orthogonal system, similar to the

harmonic functions, to which they reduce when the eccen-
tricity of the ellipse approaches zero, the following re-
lations hold true'

2T \
of. U,k (¢) Mp,,x (§) 4 =0 for n4m
2m : o
S Mavn,k (¢) at =n for n >0 (47)
0
am
and S Mavo,k (C) at =
o

We shall therefore multiply egquation (46) by a Mathieu
function My jx (¢) and integrate over the region 0O S

¢S 2m,

. I k &
4m i “v.x ra °°° T a> Mv,k (o)
T 1 2T
= e 2 . , 47
4ma n’({ T (g, 0) My, (£) &t (47a)
" 1ﬁ i ° 1 3 .-_I._‘._ .
wihich, divided by ina’ gives:

kn kr £\ i
2 Coc 3 con (F 3) Foxe (o)

2T
=27 P (Emg. ) My, p (O at (477)
o]
We shall now make use of the orthogonal properties of the
trigonometric functions dy multiplying the equation by
cos <%§ f) and, integrating over the region -~ 1* < g-i
: a
1* . We thus obtain:
e = o
Cv,x f*'Mp,k (no) =
. *

+1 om g
i'lsg'—{* [cos (%E{; é)%of F(Emo, ) My, 1 (¢) atl a (3} (47¢)
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or, cv,k =
* _ Z
. 1 1
ET—T-—;——""(—"—')" ii { [COS %‘ 3_”_ f F(E 'Mo E)MUQ}‘( g)dc:l d( >
l* v,k\No

' (48)
Substituting these coefficients into equation (42) and

*
setting g = o and { = ¢ under the integral signs to

avoid confusion, there results for the potential &, the
expression:

T sin(%% f\
4

= PN
-V ok Mv,k(“o)‘

O, = -

_eug

o
+1 ‘ w  Rm
7 S Toe (F aa g S @men Oyl

My (O My (n) ' (49)

- *
We now allow the period ] to increasec so that in the

1= . .

limit 7@-= a, f% = dq, and thus obtain for the poten~-
tial the final expression:

I A
2 = 4T p
1 o gin q = + oo 1 /?TT -
) w3 [ ocos quaa S Flamg, £y, (e ¢
TTO qlv’q(no) —~oo ) 'e

My,q (8 U, 4 (n) dq - (50)

The Mathieu functions (see (43) and (44)) will then satis- .
fy the differential equations:

dz : i 2
___.1.\{2.__g_(.c_)_ + <q22—2-5 C'OS zg + U) Mv’q(é) = 0 (51)

and
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a® u_  (n)
'v’q n ‘ce . - .
' "“"‘ET‘]“Q‘——— - (q® '2-;—5 cosh 2n + V) Mv,q(n) =0 (52)

The downwash velocity required is now given by

0% - 9@, , 9% _9%; | __coshn sin { 92
Bz Oz oz oz c(cosh” 'q-cos2 ¢) Om

sinh m cos ¢ 0% (53)

+
c(cosh n—c032 ¢y oF

For points in the xy plane where the y coordinate is smalle-
er than the distance from the foci to the origin, that is,

~-c¢cSyS+c¢ so that m =0,
o® 99, 1 %2

3z Jz +_c sin { 3m (54)

and for points whose y coordinate is greater than this dis-

tance, that is, -¢ z ¥y Z<+.c so that ¢ = 0

& 30 20 |
9@ %%, 1 3 (55)
oz oz ¢ sinh m BC/

2. Numerical example.- An elliptical jet section was
chosen with axis ratio?) a/b1 = /2. On the jet boundary

the elliptic c.00 rdinate n has the value Mo given by
the relation:

2. = cothmy = /2 ' (55a)
bl

The computations were carried out for the two following
cases:

1) Wing span equal to the distance between foci.

2) Very small wing spans.

. s Qs . a(‘Do + ®1)
We first require the tangential velocity ————SE———— .
For the first case the vortex filaments outside the jet

4)

The notation b, was used for the minor axis of the el=-
lipse to avoid coniusion with the wing span.,
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all lie in the xy plane. The velocity at the jet bound-
ary (n = no) is therefore,

b
3(d,+9,) T 5 sin¢
ot T 4ama B2 b,V . .
(o) + (B) s1=

b
co + =
. s C a

/(§2+ <%1—>2sin2§+<cos ¢ + 2)2

cos { - 2

o
+2 Z

5 [-2 4 —— : —
n=1 2 2
/<§> + ‘::‘1‘> sin®¢ (cos ¢ +dn)2

cos ¢ + dy

cos { - dy ] (55)
— - p—
b z_i
/(§> + (—}-> sin® {+(cos { ~dp) J
a a
where
cosh 2n mq
= e =1, 2, .o 5
dy coshmg ¢ ® 1 3 (55a)

For the second case we have pairs of vortices in the xz

plane (sce fig. 16); the velocity at the jet houndary is
given by ' '

‘ b
9( ®O+®_]_-_)_ =sz n;oo [—a%— sin g —fn] COSh. 2n ,no
0 g 41Ta2 n= -

= (57)

MORTEIC RS
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where - - , )
" sinh 2n '
£,o= 2222220 520,01, 2, 3 .... (57a)
. cosh ng o
The effect of the vortex filaments lying outslde the
ﬁof chvvaaaan wAdh dmAavman ad AL ko oL e T ra
JVVY wTowaw W ok Via *&LUJ» UG!-DJ-LL& u;buau\,c J.J.Ulu U-N-U JEU. 4 v

is sufficient for practical purposes to consider, out of
the infinite number of vortex filaments lying outside the
jet, only the first three.

The velocity on the ¢ direction is an uneven func-
tion of C. We must choose the corresponding Mathieu
functions M, q(C) to satisfy the differential equation

(51)s S. Goldstein (9) has computed several Mathieu func-
tions using a notation for the constants different from
ours. To avoid confusion, we shall employ the index &
with the Goldstein parameter

c .
q® il 16 gqg; Vv = 4ag (58)

The uneven periodic Mathieu functions Goldstein denotes by
S enpny1 (g) since they reduce to the harmonic functions

sin (2n + 1) ¢ when the eccentricity of the ellipse ap-
proaches zero.

The Mathieu functions may be developed into Fourier
series:

s e2n+1 (0 = I Bapyy 2ni (%;) sin (2m'+ 1) ¢ (59)

The function s e, may be taken from the tables computed
by Goldstein, noting that e is negative for real values
of gq (reference 9, p. 304). The functions s €3, S €g,

etc., as far as we know, have not yet been computed. TUsing
Goldstein's method, we first computed .the values.of v

and then the coefficients of the Fourier series to obtain
the functions s e, and 3'35'5)- Figures 17, 18, and 19

show the variation of the Fourier coefficients of s e,
s eg, and s eg Wwith qg. :

We require, in addition, the corresponding Mathieu
functions with imaginary arguments. These will be denoted

5 _ : N ) )

)The computations were carried out by F. Riegels. In com-
puting the values of VvV the work of E. L. Incb (reference
10) was used. '
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by the letters §2n+1,(ﬂ). B. Sieger (reference 11) has
shown that between the corresponding functioms there ex-~
ist relations such that

21
= r\ sin (2n + 1)¢

' 1
S2n+1,q (M) :Tl'»of 8a ’2n+1 (
so e ) et (c0)
n+1,Er

where

r cos & = c cosh n.cos ¢

(61)

and r sin 4 = ¢ sinh n sin ¢

With the aid of an addition théorem for Bessel functions
(reference 12), .the integration of (60) may be performed.
- The theorem is: ' '

D05 op % e 272 CF “) fvtn (&)
: m=0. (-1) (KQ)

Vp (- cos 2¢) (62)

where P(U) denotes the gamma function and (Y, (p) the
coefficients of a™ in the development of (1 = 2a p +

dz)” according to increasing powers of a. From equa-
tion (60) there resulgs: '

S2n+1,q(n) = sinh m Z b2n+1,m(a) In <* 3 ¢ ﬂ>1m<%~§ e n)

(63)

with

o _ . , m+1 : .
Pontl,m = B [Bani1,1- Bans1,z---(-1) Bont+1,2m-1d  (84).
For the function §,, the series is convergent. For nigher
orders it is often necessary, for values of m that are
not too small, to obtain the function directly by integra-
tion of (60), since the accurate computation of the higher

order Bessel functions I (% 5 en> would take too much
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time. We shall limit ourselves in our computations, to
the determination of the downwash velocity behind the
wing. For this we have the value (see equation 54)):

: 1
?—qi = ?q)l + ——— ?@2 (65)
o0z o} c sin ( On

From eguation (50), substituting

Mg (0) = s eppey,q (O

and (66)
My,q (M) = Sant1,q ‘gr))

there results: - )

30 I «1 Fin (q 5‘} S'2n+1,q(0) o o

C%2 _ _ = 5 = S {ncos gada

az T n L o) L q §2n+1,q (no) i .

. em o o '
. . * . -
L7 R(amg ) s eanar, o8 )ac‘}seznﬂ,q(c)] aq  (67)
0" , .
We therefore require to determine only the quotients:

S$'ant1 (0)

: = 2 9

m =
2ntl,q §2n+1,q (M)

(68)

This quotient is plotted in figurés 20 and 21 for n =20
and n = 1.

In the computation it turned out that the first term
of the series in n contributed the esse ntial part.
Phis is due to the fact that for small values of g only
the first and third terms are significant in the HMathieu
function expansion s epnt1,q (6.

3. Results.~ With a free glliptical jet with /2 ax-
ig ratio, the downwash velocity due to the jet boundary
was determined along the jet axis for the case of a wing
.0of very short span and one whose span was equal to the
distance between the foci. It was assumed that the wing
had uniform 1ift distribution, For the finite wing there
was, in addition, determined the mean value of the veloc-
ity behind the wing:




~
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+C a(Cbl + 9,)

-c .
e = T — (69)

as a function of the distance I/Za from the center of
pressure line of the wing (fig. 22).

It is usual to represent the mean downwash velocity
in the form:

w c, F '
ko2 g . : (70)
v 8 Fo

where ¢, 1is the 1ift coefficient of the wing, F, the

cross-sectional area of the tunnel, V the blower veloc-
ity, &8 .a nondimensional coefficient which is a function
of the distance 1 from the center of pressure line of
the wing and of the ratio wing span/jet width. Figure
23 shows § as a function of the ratio wing span/jet
width. For comparison, the corresponding values for a
circular jet are also indicated. If the coefficient §
in equation (70) is split up by using §, to denote the

.value of § at the wing:

7 ~8},050 (r + 1) (71)

it turns out that the curves 7T (1/2a) practically coin-
cide for b =0 and b= ¢, so that it may be assumed
that T 1is nearly independent of the span for one and the
same jet section. It is therefore possible to determine
the downwash velocities for 'all spans between O and 2c
from the foregoing computations, provided .§, is known,
Figure 24 shows T, For comparison the corresponding val-
ues for the circular jet of equal width (2a = 2r ) are

also indicated on the figure; in that case, &, = 1. The

value of § for the elliptical jet is known from the
computations od Sanuki and Tani (fig. 25).

In order to distinguish the effect of the elliptical
cross section on the downwash behind the wing we shall
compare with a circular jet of equal cross-sectional area.
For a wing of very small span we may obtain the value §
of the elliptical jet approximately by taking the valwe
for a circular jet of equal area and considering that §(0)
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is not equal to 1 but is &,. Figure 26 gives the result
and shows that the approximation is good, which result
may be expected when the eccentricity of the ellipse is
not too large.

h

In measuring the moments of
est to know the distribution of the downwash along the
span, -‘Figure 27 shows the variation of the downwash along

the wing span having uniform 1ift distribution.

. . . . .
the wing it is of inter-

III. Induced Velocity in Closed Tunnel

1. Theoretical consgiderations.- In an infinite flow
the airfoil would induce at the surface of the elliptic
cylinder, which corresponds to the tunnel boundary, the
normal velocity vn . Since the normal velocities at the

cylinder surface must vanish at the boundary, as the air
can flow only along the wall, we must superimpose a veloc~-
ity field which has a normal velocity component =-v,  at

the surface., We proceed in the same way as was done for
the elliptical free jet. We first superimpose on the po-
tential field of the wing ®o a field &, which is pro-
duced by the so-called "vortex images" and which assures
that the boundary conditions are satisfied at infinitye.
The position of these vortex images is the same as for the
free jet but the sense of rotation 'is partly different.

To determine the latter we consider a section through the
tunnel at an infinite distance behind the wing (fig. 28).
The vortices outside the ellipse must, together Wiip the
vortex pair within the ellipse, induce on the'ellipggfgary
velocity which is always in the direction of the tangent
to the ellipse; that is, which has no component normal to
the boundary. We may see these relations clearer if we
transform the ellipse into a rectangle (fig. 29). The
curved boundary of the ellipse then goes over into the

straight line (C'*C'*. The flow must now take place along
this straight wall. It may be seen that, contrary to what
was the case for the free jet, the sense of rotation must’
change along the horizontal lines but remains the same
along the vertical lines. ‘Figure 30 shows the position of
the vortex images in the =xyz system of coordinates for
the case where the span is equal to the distance between
the foci 2c¢.? The senge of rotation is indicated. PFor

5)

In this case the point P,* in figure 29 moves to the
origine
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spans 2b < 2c¢ and 2b = 0, +the corresponding figures
may easily be obtained by comparing with figures 15 and 16.

The potential (9?4 + ®;) satisfies the boundary con-
dition at infinity. To reduce the remaining velocities
(vnd + an) to zero it is still necessary to superimpose

another potential &@,, which is determined by the condi-
tion that the equation

00y _ o9 a@ _

holds true at the cylinder surface. For the potential
we obtain in a similar way as for the free jet:

o sin (q E)

(£.m.0) =£;§%f ot B j {stn q @ 40

2
L7 e (@.mo, &%) M, 4 (£9) dﬁ*H
o]
q (8) ¥,,4 () dg (73)

where £, m, { denote elliptic coordinates. On the cyl~
inder surface m = constant = m,. The coordinates ¢ and

¢ appéar in the inner integrals as variables of integra-
tion. To avoid confusion the integration variabdble "igs re-~

placed by ¢* and t/a by a. Mv,q(é) and Mu,q(ﬂ)

denote the Mathieu functions with real and variable argu-
ments which satisfy the dlfferentlal equations (51) and
(52). The function F* (a, Mo » ¢*)  is connected with (vno

+ vnl) by the relation:

' -(v + vn.)
™ (a,me,L¥) = éof 2t 2 N/Eosh ne-cos® ¢F (74)

4118,

If the components vy and v, of the sum are introduced
in place of the sum, there results:
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F*(a,no,g )=- :ﬁ_ < vy 'sinh m, cos {*+ v, cosh n, sin {*
4mra ' L (75)

The induced velocity we are seeking is, in general,
glven by equation (53) for points 'in the xy plane by equa-
tions (54) and (55). We shall limit ourselves to the case
where the span of the wing does not exceed the distance

o] .
between the foci. We then reqguire gzs‘ For this purpose

o
the value of 5;% for m = 0 shall be specified and out

of the solutions of the Mathieu differential equatlon, those
su1tcd to this problem chosen and substituted:

@_412_ I g1~ om0
4 2T, §'Zn+l,q(no

sin (q E) J [sin q a da

AL

af Fame ) s eppyy g (LF) ag*]
o} - .

S €2n+1,q (§)} dq | (76)

The quotient

man+1,
ntlaq = S'zn+1 q (ng)

for n =0 1is shown on figure 31 plotted for the case
where the axis ratio is ,/2.

2. Resultss).— A jet section was chosen whose axis ra-
tio was a/bl = o/ 2. The induced velocity along the tunnel
axis was determined for two cases, namely:

1) Wing span equal to distance between foci.

2) Very small wing spans.

The 1ift distribution was uniform. For the wing of finite
span, there was, in addition, determined the mean velocity
behind the wing as a function of the distance l/za from
the center of pressure line of the wing (fig. 32). The
downwash velocity for the closed tunnel is negative, that

6)"’he conmputations were actually carrled out by F. Rlegels,

for vhose assistance I take this opportunlty to exPress my
thanks,
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is, it is really an upwash velocity, which leads to an in-
crease in the angle of attack of the wing. For a given
1ift in a closed wind tunnel the angle of attack measured
ig therefore too small,

The mean downwash velocity in a closed tunnel may
again be given in the form:

- - R (78)

Figure 33 shows & as a function of the ratio wing span/
jet width. For comparison the value of § for a circular
jet of equal width is also indicated.

If in equation (78) the coefficient § 1is split up,
denoting its value at the wing by 50,

* )
Y%_ = - %& 8o (1 + T (79)

the result is, as in the casec of the free jet, that the
curves T (1/2a) for b =0 and b= 2c run sg close

to each other that for all practical purposes T may be
assumed independent of the span for one and the same cross
section., This means that in this case too it is possible
to obtain the downwash velocity for all spans between O
and 2c¢ provided only &, 1is known. Figure 34 shows T*;
for comparison, the corresponding value for a circular sec-
tion of equal width is also shown. The correction factor
80 for uniform 1lift distribution was computed by Sanuki

and Tani (reference 3); it is shown in figure 35 as a
function of the ratio wing span/tunnel width,

At the distance 1 Dbehind the wing the induced veloc~
ity produced by the tunnel boundary is greater than at the
wing itself . A horizontal tail surface at that position
therefore has a different effect on the pitching moment,
at a given angle of attack, than it would have in free
flight. In the closed tunnel the effectlve angle of attack
is increased in the ratio

----- T A (80)

Translation by S. Reiss,.
National Advisory Committee
for Aeronautics.
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