TECHNICAL MEMORANDUMS

NWATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RECENT

Zeitschrift des Vereines
14T B

No. 5, Rebruary "4

Washington
Aungusgt 1933

(WR}

deutscher

Ingenieures
1953



e e e e

' TECHNICAL MEMORANDUN NO. 720

RECENT RESULTS OF TURBULENCE RESEARCH®

By L. Prandtl

INTRODUCTION

The irregular motions, called turbulence, play a
prominent part’ in all ‘technically important flow phenom-

; ena. Turbulence, on the one hand, is the causge of unde-
sirable flow resistance, while, on the other hand, it has’
the very useful’ characteristic of increasing the pressure
in the currents. The control of these phenomena is very

' important for the flow specialist. Numerous researches

have therefore been recently undertaken for the purpose

of discovering the laws of turbulent flow. In the present

article an attempt is made to review the most important re-

sults of these researches. Relations of immediate practi-
cal interest are discussed. i 4 '

L} The first two sections treat of two prominent gues-
tions, namely the origin of turbulence and the character-
istics of turbulent currents. In the third section con-
clusions are drawn for the flow along a rough wall, where-
by an important relation for the velocity distribution is
revealed. The principles are also applied to straight
rough and smooth tubes. Here it was possible to develop
formulas for flow velocity and resistance, which show ex-
cellent agreement with the expsriments, and which also in
contrast with previous purely empirical formulas, hold

good for very large Reynolds Numbers for which no experi-
mental data are available. The peculiarities in tubes

with fine-grained roughness at moderate Reynoldsg Numbers
are represented by a single curve. Test results with arti-
ficially roughened tubes are given and confirm the relation-
ship mentioned. .

> l1'"Veuere Ergebnisse der Turbulenzforschung." Zeitsehr it
des Vereines deutscher Ingenieure, vol. 7, no. 5, February
4 19383, pp. 105-~114,
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The results obtained with tubes are applied to the
resistance of plates to a longitudinal flow. Moreover,
the characteristics of the flow in wide and narrow and
curved channels, as likewise the mixture phenomena of
fluid currents with surrounding fluids and alse the phe-
nomena behind moving bodies are considered. Lastly, newly
discovered relations between the turbulent exchange of ve-
locity and heat are considered, and new conclusions are
drawn regarding the finer details of turdulent flow.

During the last decade the investigation of the ir- .
regular mixing motions, which are called turbulence and
which affect all technically important flows, have peen
especially thorough and fruitful, These mixing motions
.produce effects, as if the viscosity of the fluid were in-
creased a hundred or ten thousand fold or even more. This
circumstance causes the great resistance of fluids in
pipes, the frictional resistance of ships and airships and
other undesirable resistances, but also the possibiiity of
increased pressure in diffusers or along airplane wings
and blower vanes. Without turbulence, separation would oc-
cur in these cases, so that there would be only a small re-
covery of energy in the diffuser and impaired efficiency
of wings or vanes.

The investigation consisted of a determination of the
numerical data and their systematic arrangement. General-
ly the investigation was not carried to an actual theory
(which is very difficult), but the results help to support
theoretical conclusions. Often dimensionsal considerations
together with intuitive insight lead to important conclu-
sions.  If, e.g. density (i.e. inertia) and viscosity are
the only determinative properties of the fluid for the phe-

nomenon, one is led to a Reynods Number = density/viscosity
X velocity X length (Re = vl/v, in which = v is the "lkine-
matie viscogity", 1.e. viscosity/density). If Reynolds

Number has the same numerical value in two cases, we may
expect exactly the same course in both cases, only with a
different length and time scale according to circumstances.
In individual cases the application of this rule may, how-
ever, require consideration as to ‘which velocity and
which length is actually determinative for the process.

There are t70 main guestions which were investigated
theoretically and experimentally:

1. How and under what immediate conditions does tur-
bulence originate?
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2. What can be said regarding turbulent motion, par-
ticularly regarding the mean values of the velocities and
forces?

The second questlon is, obvio 1sly the_mqre impertant
one from the techn;ca1‘v1eWpoint ; ,

ORIGIN OF TURBULENCE

Regarding the first question I can be guite"brief,;
both because I have recently expressed myself on this sub-
Ject (reference 5) and because there is here much that is
still in doubt. The most important fact is that turbulence
always occurs when the velocity profile shows a turning
point (fig. 1) and when the viscosity effects are not too
great. Any flow with such a velocity profile is unstable
in the absence of flnid friction, i. €. small deviations
in magn1tude and iLrect1on increase of themselves and cause
a complete reversal of the flow. An originally slight wave
in the streamlines leads. gradually to the production of.
turbulence through the tOlelng over of. the. waves. These
phenomena can be delayed by strong. vnscos1ty effects.

This indicates that the tendency to become tubulent
depends on the magnitude of. the Reynolds. Number. Velocity
'proflles with turning p01nt occur, e.g, in the boundary
layers produced by viscosity effects, when the . pressure in-
creases in. the direction of flow or, in other words, . when
the flow is retarded. Such points in the fluld therefore
have. a strong tendency to become turbulent, but even the

unaccelerated rectilinear flow along a wall tends to become
" turbulent- at a sufflciently large Reynolds Number. This
can be explained by the fact that the inflow is never abso-
1utely undisturbed and that there are always, some irregu-
larities in the’ VOlOClty dlstr1but10n. Unstable VClOClty
digtribution is largelv due to only slightly damped turn-
ing motions with axes parallel to the direction of flow,
Such' turning motions direct someepartlons of the fluid a-
ga:nst the wall and other portions away from it, so that,
even at low velocity, with the lapse of time, port1ons hav-
ing a lower velocity become 1ntersrersed with portions hav-
ing a higher velocity, thus qecessarwly produc1ng 1nstab11—
ity. I

.There is still another cause of turbulence, which was

e £ 2
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discovered in a thedretical manner (references 2, 3, and
4) and which call for special consideration when there

are none of the above-mentioned disturbarces. In the flow
along a wall, there occur certain slow distrubances which
above a certain critical Reynolds Number, increase in
strength and thus produce in their retarded zones, after
their amplitudes have become great enough, the preliminary
condition for turbulence. It is worthy of note that the
critical Reynolds Numbers for two different cases, as de-
termined theoretically by Tollmien (reference 4) and
Schlichting (reference 6), are in good agreement with the
experimental values. i

Experiments on the Production of Turbulence

In order to obtain more light on this question, we
investigated the production of turbulence by experiments:
in channels 20 c¢m (7.87 in.) wide and 6 m (19.68 ft.) long.
Though we proceeded with great c¢are, we found it impossible
to eliminate all the disturbances; so that here and there
nuclei of turbulent motion developed in irregular succes-
sion and spread quite rapidly.

Clearer pictures were obtained by purposely initiating
a distuvrbance in the flow, as, e.g. by adding or removing
a little water through a small piece of screening inserted
in the wall. In the first case, when a small amount of
water, not yet participating in the flow, is thrust between
the wall and the moving mass, instability is immediately
produced and turbulence develops at the point of entrance.
The amount of water introduced may be very small. In the
second case the greatest disturbance occurred in the por-
tion of the flowing water opposite the screen at the be-
ginning of the removal by suction, Behind this point the
thickness of the boundary layer was reduced by the suction,
and the inner portion of the water flowing past the bound-
ary layer had therefore to flow over a sort of step from
the thinner boundary layer to the thicker layer on the
downstream side of the screen. This created enough of a
disturbance to cause the disintegration of the boundary
layer in a sheort time. TFigure 2 shows this effect and the
further development of the turbulent region.

The flow was rendered visible by scattering aluminum
dust on the surface of the water. A slowly operating mo-
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tion-picture camera was monnted on-a car which kept pace
with the flow so that the same.group of vortices remained
in the field of the camera. In the top picture the ob-
lique streamlinesat the left show .the location of the suc-
‘tion point, while the formation of the first vortex in the
middle indicates the location of the "step." Other vorti-
ces developed on the upstream side. In the last picture
the .original vortex is shown at the extreme right. . It is
evident that . it .carried water from the toundary layer
(which was purposely strewn more thickly with aluminum
dust) .far .into the interior of the flow.

CHARACTERISTICS OF TURBULENT CURRENTS

We will now consider the lgws of fully developed tuf-
bulence. The method of presentation which I shall employ,
does not follow the historical development, but is intend-
ed to show the present status all the more palinly. I
shall begin with a statement, regarding the behavior of an
ideal fluid without viscosity. 'In reality there is no
such fluid, but it is of advantage for many considerations
to know what would occur in such an ideal fluid, because
the laws of the ideal fluid (due to .the absence of viscos-
ity) are simpler than those of an actual fluid.

According to our previous statements the tendeﬁcy to
creases or, in other words, as the viscosity decreases
(under otherwise like conditions). At the zero limit of
viscosity -the Reynolds Number obviously becomes infinite,
necessitating the conclusion that the flow of an ideal .
fluid would generally be turbulent. If it is also assumed
that the bodies or walls, past which the fluid flows, are
mathematically smooth, the surface friction would‘also_be
zero and we would thus obtain the theoretical behavior of
the .ideal fluid, as gtated in old textbooks on hydrodynem- -
ies. If however, the surfaces are.rough, it may be assumed
that an area of separation develops at each individual
point of roughness, however slight.? ‘The flow thus acquires

2In slightly viscous fluids, a regular separation of the
flow occurs .on projecting parts.of the wall. -In the limit-
ing transition to vanishing viscosity, Helmholtz separation
surfaces are developed -with finito velocity jumps.
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a turbulent character .from the mutual effect of the various
small areas of separation which are unstable in themselves
and have a disturbing effect on one another. At.each rough
spot a pressure difference develops between .its upstream
and downstream sides, thus producing a resistance which is
proportional to the square of the velocity.

From this consideration it may be assumed that it is
permissible to make theoretical assumptions regarding the
laws of turbulence, in which the viscosity of the fluid is
put at zero. The following considerations clearly show
that we are thus on the right track and that, as a matter
of fact, the turbulent resistance in the interior of the
flow is practically independent of the viscosity. In a
thin layer near the wall, however, the effect of the vis-
"cosity persists, provided it-is not concealed by the ef-
fect of great roughness.

We will briefly explain a conception which has been
found useful for the more accurate investigation of the
turbulent mixing processes. This is the so-called "mix-
ing path," which plays a sinilar role in turbulent mixing
processes to that played by the mean free path in the mo-
lecular diffusion of gases. In both these precesses shear-
ing stresses (or apparent shearing stresses) are developed
by the continuous interchange of energy between fluid lay-
ers flowing parallel to one another at different velocities.
The following simplified representation can be made of
these really guite complex processes.

It is assumed that any particle, which, by collision
with neighboring particles, acquires a motion crosswise to
the flow, has, in the direction of flow, the mean momentum
of the layer from which it came, and that it now traverses
a distance | crosswise to the flow, before it collides
with other particles or mingles with them. Such exchanges
occur in both directions, and thus the faster layer re-
ceives particles from the slower layer, which naturally re-
tard the former, and, conversely, the slower layer receives
particles from the faster layer with an accelerating effect
on the former.

The effect of the two fluid layers on. each other. is
therefore the same as if there were friction between them.
The difference between the molecular processes and the
turbulent processes ig due only to the fact that, in one
cagse, the individual molecnles, and, in the other case,
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whole groups of molecules participate in the exchange. If

u is the velocity of the flow and y the coordinate in

the diréction &t right angles to the flow in which the
change ‘in velocity occurs, the difference between the veloc-
ities 'of ‘the-two layers, separated by the distance .1, is

I (du/dy). This, according to what precedes, is also the
velocity difference of a particle which, coming from the
other layer, mingles anew with its present environment.

- In order to determine the magnitude of the frictional
force or, more accurately stated, the shearing stress be-
tween the two layers, we must know the magnitude of the
mass exchanged per second. This, as referred to the unit
area, can be expressed by the product of the density
p(=v/g) and an exchange velocity v'. In the case of the
molecular motion, this velocity is proportional to the ve-
locity of heat transfer., Since the latter. is one third
each’ along ‘the =x, y and z ‘axes and since, in our eéXample,
ve can put, in first approximation, v' = ¢/3, where ¢
is the mean velocity of the heat transfer. Hence the shear
ing stress3 ’ ‘

o 5 OF ol hs "5
TEG P e & = ﬁdy 4 ()

In the case of the turbulent exchange of masses, the
velocity v' should naturally be taken of the same order
of magnitude as the difference in the velocities of the
two layers at the distance ! from each other, since the
fluid masses collide at velocities of this order of mag-
nitude (references 8, 9, and 10). On eliminating the un-
known numerical factor v', we thus obtain the shearing

stress
- TN e :
Lol < dy / (2)

The elimination of the numerical factor only denotes a
somewhat different definition of 1 . In this way we ob-
tain, for the simple viscosity effect, shearing stresses
proportional to du/dy- and, for the turbulent exchange
(whereby the effect of viscosity is disregarded), shearing
stresses proportional to (du/dy)?, which is in good a-
greement with the hydraulic resistances proportional to the

aBy a more accurate calculation, Boltzmann found, for the®
viscogity mn, the value m = 0.3503. p ¢ 1, which differs
but little from that inemuation 1.




8 N.A.C.A., Technical Mehofandﬁm<No. 720

square of the velodity}'

With formula 2 the problem of the hydraulic flow re-
sistances is brought bac!: to the other problem of the dis-
tribution of the mixing path 1 1in the flow. So long as
we have no rational theory of turbulent flow which deduces
the laws of turbulent phenomena from hydrodynamic differ-
ential equations, we have to obtain the data regarding the
distribution of the mixing path by experimentation, so that
only one unknown quantity is thus replaced by another, Nev-
ertheless, considerable progress has. been made, since it
has been found, at least for the larger Reynolds Numbers
(from about 10%° up) that the mixing path is practically
independent of the magnitude of the velocity and is, more-
over, subject to quite simple rules for its distribution
in space.

Dimensional considerations often furnish useful in-
dications. For example, in considering the flow near a
moréyless smooth flat wall, on the assumption that neither
the viscosity nor the roughnes@bf the wall has any appre-
ciable effect at the point under consideraticn in the in-
terior of the fluid, we are in a position to make a state-
ment regarding the distribution along the mixing path. For
a point at the distance y from the wall there is no other
characteristic length than this distance y. The mixing
path 1 is also a length, so that there is no other pos-
sibility than to put the mixing path proportional to the
distance from the wall:

1 = Ky,

Here K is a universal numerical coefficient, which can
be determined experimentally. If we assume a state of
flow in which the shearing stress T 1is constant, we ob-
tain

e &

dy ~ Ky Vo

according to equation 2, and therefore

T

u = 5

)|

[}

3.
K. o/

Such a velocity curve, depeudent on the distance from the
wall, is quite like the one actually observed (fig. 3).

(ln v .+ const.) o (3)

C

.
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Comparison with the experimental results yields the number
0.4 as the approximate value of K.

Karman's Theory

Von Karman (reference 12) assumed that the turbulent
mixing processes are the same in all cases, so that only
varistions in the length and tims sczles occur from case
to case and from place to place in the flow. Under these
circumstiances the effects of viscosity are regarded as neg-
ligible in comparison with the effects of turbulence. Con-
clusions are now drawn from Bulerfs equations regarding
these two scales, the first of which obviously agrees in’
principle with our mixing path 1. The velocity u of the
basic flow, which is assumed to be a function of y alone,
is determined from a Taylor series interrupted after the
quadratic term. The mean forward velocity of the particle
under consideration has no immediate effect on its inner
motion. Of the given quantities therefore, only du/dy and
dBu/dye need to be considered here. We first have a time

dy

as the time criterion for thc period of the mixing process.
For dimensional reasons, the interference velocities u!
in the X direction and v!', in the Y direction are therefore

-

prioportional to Au/T, i.e.

e

11' ~ YJ' ~ 1

O, | o

which agrees with the previous formulsas. For the'ldngitu—
dinal scale of the mixing process, Von Karman finds the re-
lation

V= ot G142

dy’ dy=?

in which k' _is a constant determined experimentally.
This expression of Karman's theory goss beyond previous
expressions, because it furnisheés a2 method for calcunlating
the magnitude of the mixing ypath independently of the dis-
tance from a wall. If this expression is infroduced into
equation 2 arnd integrated onm the assumption of a constant
shearing stress in the region under consideration, we ob-
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tain

1 R
u=3% o lnly+0) +cC.] (4)

i.e. practically equation 3 again. The required agreement
with the experimental results obviously leads to putting
k' = K. Hence both formulas yield the same velocity dis-

tribution in case of constant shearing stress.

There is no longer any agreement regarding the shear- .
ing stress in the other assumptions. Moreover, the formu-
la 1 = Ky - is without any valid basie, since, due to the

variability of the shearing stress, a still further length

T/%% is available; but even Karman's formula

L = & %E/QEEG

y d y*
here means only another estimated approximation, since it
was obtained by disregarding the sffect of d3u/dy® and
higher terms in the series develcpment for wu. 1In the
case T = coastant, tlhe twe solutions coincide, because
the velocity distributiun, according to equation 3, is trans-
ferred by changing ths integration constant, in case the
shearing strsss 1 remains unaltered, so that there is
here also a pronounced similarity with the basic flow.

From equation 3 it is easily seen that the quantity

J?75 is a velocity. This velocity is very valuable for
various similarity considerations in what follows. We will
therefore designate it by v, and call it Yghearing-stress
velocity." The formula T = Qvx< is of similar form to

that for the dynamic pressure

Py =% p w3,

which is comprehensible for dimensional reasons, since the
shearing stress is also a force per unit area. The appar-
ent shearing stress T of the turbulence is generally very
small as compared with the dynamic pressure. Hence in v,
we are also dealing with a velocity which is relatively
small as compared with the flow velocity wu. Comparison
with equation 2 shows, moreover, that

V% 4

o
[} l,{:"
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Hence vy is of the order of magnitude of the mixing ve-
ogitles. cral - BRA - v :

FLOW ALONG A ROUGH WALL

From our standpoint the flow along a rough wall is
simpler :than along a smooth wall, because the viscosity
plays a .preponderant role in the latter case, but not in’
Blie Wormer.. It .18 thereforewbetter to consider the flow
calong a rough wall first. If. k is a length indicating
the roughness of .the wall, it .follows, from a simple sim-
ilarity consideration on the basis of the ideal filunid, .
that the velocity distributions near the wall, with geo=
metrically similar roughnesses, are also geometrically sim-
ilar,:so that the size of the grain .k furnishes the cri-
berion for 1t. The formulated expression of this relation-
ship is that the velocity at the distance y ig'a function
of the ratio y/k. If this velocity distribution is based
on equation 3, which, according to what has preceded, is at
least advisable for the regions farther in the interior of
the fluid, it is found that the integration constant of e-
quation 3 = constant - 1n k.

A hitherto unpublished series of experiments by Niku-
radse with tubes of various diameters, which were given
different degrees of roughness by gluing to them sifted
sand with a suitable varnish, showed that the new constant
= 3.4 = 1ln 30, k being the mean diameter of the grains
of sand used to produce .the roughness. With 1/K = 2.5,
we obtain the formula

720, ne
% =i2.8 v*ln’ig—'i- )

\k‘/

. By a shifting of the coordinates by the amount of k/30,
it is also poesible to obtain 1u =0 for ¥y = 0.% Hemnce,

3 o / B0 m 8 .
y u = 8-‘01 "\’*111 \l w wgw‘) (b)

*It is still an open, though not. very important question as
to the exact location of the axis of the coordinates between
the protuberances of the roughness.
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or, if the natural logarithm is replaced by a common log-
arithm,

20
4 = 8:%6 % doé (L # 7E“X) (5a)

Equations 5 and 5a therefore show a fixed relation between
the velocity distribution, shearing-stress velocity, dis-
tance from the wall and the degree of roughness k. This
first holds good for the kinds of roughness used in the
experiments. For other forms of surface roughness, more-
over, there is probably another number instead of 30, also
dependent on the manner of defining the roughness gcale.
Preparations for tests in this connection are being made
in Gbttingen.

Equation 5 immediately affords us the opportunity to
check the above statement regarding the behavior of the
jdeal fluid. Represent the velocity at the distance y = h
by u =wu,. With this assumption v, can be eliminated
from equation ba.

u

vV, = 1

p ¥
5.75 log (1 + 30 =)
\ k,
and consequently

1og<l + 30 %\
u = e ‘ e 2 6
L Ty gt ¢, A
L & /
The corresponding shearing stress is
2 P 1112
TR =S &

- bt
33[ log (1 + 30 E,}

from which it follows that the shearing stress is propor-
tional to the square of the flow velocity u,. The effect
of the roughness of the wall is likewise shown by eguation
id

If we pass to the mathematically smooth wall, i.e.,
t0o k = o, then, according to eguation 6, u = u; &and
T= 0 for all values of y constant, as stated in the
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classical hydrodynamice on.the ideal fluid. JItulswalso
obvious that even a submicroscopic roughness with a k

of the order of magnitude of the diameter of an atom would
still show considerable deviations from the ideal behavior.
Our formulas can no longer be used for such cases. The
relations are here considerably altered by the viscosity,
as will be shown in what follows.

THE FLOW IN TUBES

It 1s an important discovery that, in a straight tube,
the relative motion of the fluid particles at moderately
large Reynolds Numbers depends on the fall in pressure and
not at all on the character of the wall, so that therefore,
with constant fall in pressure, the velocity-distribution
curves in tubes of greater and less wall roughness can be
brought into conformity by shifting along the velocity ax-
is (of course aside from a layer in immediate contact with
the wall, where the velocity increase is naturally greater
on a smoother surface than on a rougher one). This rela-
tion was discovered by Darcy (reference 14) 75 years ago
in his researches on resistance in pipes and was then em-
phasized, but was subsequently forgotten. Fritsch dis-
covered it anew by direct observation in his experiments
with rough channels at Aachen (reference 17). From our
standpoint this discovery is identical with the fact that
the distribution of the mixing path along the inside of the
tube is practically independent of the nature of the wall.
In connection with our earlier discoveries it is natural to
surmise -that the formula

can be written for the mixing path, where y is the dis-
tance from the wall and r the radius of the tube. Since
the distribution of the shearing stress aloang the tube is
known when the pressure fall is given, the distribution of
I can be verified by measuring the velcocity distribution
with the aid of equation 2. It is found that the above
statement is confirmed, at least for the higher Reynolds
Numbers. Figure 4 gives the result in nondimensional form
and conseguently shows the course of the function f.+ In
the function fl(y/r), 1 is the mixing .path; 2, padius
of tube; y distance from wall; and k, mearn longitudinal
dimension of ftoughness. '
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Conversely, on the basis of this function and with
the aid of equation 2, we can calculate du/dy. from
which, by an integration, an expression for the velocity
itself can be obtained. On the introduction of the shear-
ing stress velocity vi this expression takes the form

AW TN
Upax <~ B < V*fak;/ (

(@]
p—

This equation, which was first developed by Von Karman
(reference 12), has also been experimentally confirmed,

88 shown by figure 5, in which the test points are given
for smooth tubes and for various rough tuhbes. 'In function
fe(y/r). U,y 18 the maximum flow velocity; m, flow ve-
locity at the point y; vx, shearing-stress distribution =

J70; T,shearing stress; p,. density.

We can now pass from the velocity u at any distance
y from the wall to the mean velocity W. We thus obtain
from egquation 8 an expression of the form

Uoaxg = & = V4 X coefficient {9)
Nikuradse's GOttingen experiments yielded 4.07 as the val-
ue of this coefficient. It was a pie¢e of good lugk that

our equation 3 or the special form for a rough wall (equa-
tion 5) yieldeds, up to the middle of the tube, a useful"

approximation for the function f.(y/r), namelys

sFor more accurate calculations, a small supplementary term
would have to be added, which will be included later, at
least in the final result.

SDarcy (reference 14) deduces from his experiments

o /2
e .]__. & \3 <
e Rl L €

(4 is the gradient and therefore = the meter is

g0 dx’
the unit of length)e This equation can be put in the form
of equation 8 and thus becomes

0. T
L = 508 (0 ®. % )37
2y X v

which, with the ezception of the wall vicinity where Darcy
made no measuvements, agress .very -well with modern results
kcdgs B)e
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D L T usis r (10)

We ﬁoW.have’all that is needed to calculate the resistance
of a rough tube for a given quantity. We will first write
the customary expression for the drag coefficient A:

<

dp

lp . ) X
iz~ q 2 (11)
i From the equilibrium of a ‘water cylinder of radius r:= d/2,

we obtaln, for the shgarlng stress T of' the wall, the

"eXpression B 1 : th

and accordingly

d4 . <
L L (12)
dx r 5o
" The comnarlson of equations 11 and 12 ‘yields, with the
tubc dlameter d = 2y ) ;
viP= g w2 ¥}

;By the use of equation 5a at the middle of the tube (y = r)
_'we obtain, .when, under the logarithm, we disregard 1 in

comparison with the very great value 30 r/k and put log
30 = 1,477,

u =-v,(5.75 log

. +8.5) (1)

L
it
On the other hand, according to equation 9

4,07 v, = v,(5.75 log — + 4.,43)

Wlw;

W = WUnoe ©
3

Taking equation 13 into consideration, we now have

8 w,° ; 8 it

B SR Sl o e Tl aE R . sz {5 )

e (5.76 10g L'+ 4.48Y " (Bi0 1 'T% BN
“ ' b . » k .

X

This is very well confirmed by expériment, with only the

,slﬁght difference ﬁhat_1,74 is betﬁer than' 1.57:'in the de-
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nominator. This difference is connected with the sup-
pressed auvxiliary term in equation 10. The experimental
confirmation of the formula is best accomplished by plot-
,ting;l/«/k against log r/k. According to the foregoing

A7/ R="2.0 1log 13r + 1.74 (16)

“The plotting must therefore yield a straight line. Figure
6 shows this line for six rough tubes according to measure-
" ments by Nikuradse.- (See also figure 9.) The general form
of equation 14, as likewise an equation analogous to equa-
tion 16 for a coefficient of resistance based on Upax: Was
first developed by Von Karman. He also made the rectilin-
ear graph.

Effect of Viscosity (smooth tube)

It has already been mentioned that the effect of vis-
cogity is greater when the roughness is less, but of course
only 0a the boundary-layer phemnomena. The rough places are
here more or less covered by a slower-moving layer of fluid
and are thus rendered ineffective as regards resistance.
Progress can also be made here with a dimensional consider-
ation. The shearing stress is responsible for what takes
place on the wall and consequently the velocity vx "based
on this shearing stress, and also the criterion of rough-
pmees ks A wall characteristic V*k/p can be developed
from these two with the kinematic viscosity by analogy with
the Reynolds Number. Since, with fixed v,, the state of
flow in the interior remains unaltered, the only remaining
problem is to adapt the integration constant of equation 3
to the new relations. This is accomplished by introducing
a modified roughness criterion,

instead of X, 1into equations 5 to 7 and 14 to 16. Regard-
ing the course of the function fg, it follows from the
foregoing that it must be equal to 1 for large values of
the wall characteristic, in order to restore the previous
relations. 4An immediate conclusion can, however, be drawn
as to what form the function £, must assume for small
.values of -v*_k/v. .The observations show that, for slight
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but still appreciable roughness, the rough tube does not
differ practically from a perfectly smooth tube, prov1ded
the' ?evnolds Number Yig niod unusually hlgn,. Such a condl-
tion 1s obtaxnea wnen

) o ey ) B " R e O et e,y

g2 iy it 2 aal : 1
Tof =2 ==") = coefficient , BEL
e N R, : 1 Vi

since k 1is thus removed from the foregding formulasg and
%
is rapWaced by coefficient X ;«, Tho experiments confirm

this reSﬁlt and show, with- respect to the coefficient
which leaves the dimensional con31derat10n still open,
that our previous value of k/zO must be replaced by

v/9 | (N Instead of equation 5a, we now obtain the formula
for the velocity distribution in theé tube

u = v, (5.75 log == +.5.5) (17)

*

On plotting u/v against log v yﬁv, we obtain a straight
line which must contain all the ponnts near the wall for
the velocity profiles of all smooth pipes. An exception is
formed only by the values at very small nondimensional dis-
tances from the wall v*y/p, at which the turbulence is
still affected by the viscosity. Up to the previously
mentioned supplementary function, equation 17 is also valid
to the middle of the tube., The experimental points in flg—
ure 7 actually contain not only the parts pear the wall,

but extend almost to the middle of the tube. One can tnere~
fore note small systematic deviations from the stralght '
line, which of course have to be con81dered in a more ac-
curate theory (reference 18),

For comparison figure 7 also shows, by a dash line,
the velocity-distribution law

——— S 8',7!/..— —‘— | (18)

as determined on the basis of the Blasius formula for the
friction of the tube, It is found that, in a central re-
gion for which alone data were formerly availabie, 1t prac-
tically coincides with the straight line of equation Y.

but deviates conszdprablv above and below this region. In
fact it was long since discovered that, at higher Reynolds

¥ .
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Numbers, the seventh root iIs replaced by the eighth and
ninth roots, etc.  The reason''for this behavior is 'mani-
fest,-since the law of the seventh root now appears to be
only an approximation. formula for the real law, which is
represented by equation 17, whereby the particular numeri-
cal values of the approximation formula naturally still
depend on the region in which they should agree with the
accurate formula?. i

For the coefficient of resistance,. we obtain from

‘equation 16 by the same modification

3, V. 4T '
—— = 2.0 log -%¥— + 0.5

N o

Taking equation 13 into consideration, we can put

P —

v vV u v 2.8
With W d/v = Re, we obtain
1AMR 21840 dog (ReyW ) ~ 1.0 (19)

This formula was verified experimentally be Nikuradse
(reference 20) up to the Reynolds Number 3.4 X 106. It
must be changed only by the consideration of the previously
mentioned supplementary function of the numerical value
from - 1.0 to -~ 0.8. The final formula for the resistance
coefficient is then ‘

il

1//N = 2.0 log (Re/A) - 0.8 (20)

The calculation of the resistance coefficient corresponding

to any given value of Reynolds Number encounters no partic-
ular difficulties, although .,/A occurs once more on the

right side. _One can, for example, assume provisiomnally any -

value for o/ A on the right side and calculate 1 /A and
then repeat the process, if the discrepancy is too great.
In figure 8 the course of A 1is plotted with respect to Re

according to equation 20 together with the experimental val-

chlOﬁVlog v*y/15= 2, the .straight line-of'équation 17
shows appreciable deviations from the test points. This 1s
due to the influence of the viscosity. If the smallest su-

percritical Reynolds Numbers are disregarded, this deviation

occursg only in a very thin layer near the wall of the .tube.
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ues. By especially good luwck this formula agrees with the
exporiments down to the smallest supcreritical Reynolds
Numbers. '

We now turn once more to the general problem of the
rough tube. On the basis of measurements by Nikuradse
(now being prepared for publication) the course of the re-
sigstance coefficient is plotted in figure 9 against the
Reynolds Number for tubes of different relative roughness
k/r. The curves in figure 9 are based on experiments with
tubes of well-defined roughness produced by gluing grains
of sand of definite and different sizes (k) to the inside
of tubes., The conditions to the left of the critical Rey-
nolds Number represent the laminar condition of smooth
flow. It is evident that there is here very little differ-
ence between the smooth and rough tubes. The curves di-
verge greatly, however, as soon as the turbulence begins,
i.e. above Re,.j ;”' The curves for the lesser roughness
first follow the curve for the smooth tube and then sepa-
rate from the latter in order.

The foregoing considerations indicate a way to find
a law for the turbulent portion., We will take the wall
characteristic v*k/u or ‘its logarithm as the; 2vscissa and
a quantity which is constant according to the laws of the
fully developed roughness flow as the ordinate. For exam-
ple; we can take the quantity

e 3 T
1/ A - 2.0 log =

or, if we want the corresponding law for the velocity dis-
tribution, the quantity

e B ATE R %.

*

The plotting of these two quantities on the basis of tlie
experimental results brings in fact the test .points meas-
ured with very different roughnesses approximately on a
single curve. The -two curves agree with each other . up: to
the scale corresponding to the relations here reprensented.
The whole problem thus finds a very comprehénsive solution
on the basis of combining a few experimental values with
theoretical conclusions. What remains to be done is to
find the curves for other forms of roughness in addition to
the curve of figure 10, which we have thus far determined
only fior the special sandpaper form of roughness. 'Prepara-
tions are now being made for such experiments.
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APPLICATION TO OTHER CASES

Plate Resistance - Accelerated and Retarded Flows

From the behavior of the flow in tubes, Wwhen the

~ Plasius law of resistance

-1/4

‘dominated the field, conclusions had already been drawn

regarding the frictional resistance of plates subjected
to:flow along their surface (references 15 and 16). Ac-
tcording to the momentum theory, the decrease in the mo-
mentum of the flow due to the friction was represented

by a formula in terms of the exposed length of the plate
in accord with-the laws for the velocity distribution.
This decrease in momentum per unit length along. the plate
was expressed as equal to the frictional force per unit:
length. The resulting formula for the coefficient of
frictional resistance c, (resistance divided by the sur-
face area and dynamic pressure); N

=d:/'S:

e Dube  (Taaes 9 » iEa)
7 N D

(1= length of plate, v = velocity of plate), showed simi-
lar discrepancies, in comparison with the experimental re-
sults, to those shown in the resistance of tubes. The ob-
vious thing to do now was to apply the improvedlaw of tubu-
lar flow also to plates. The calculations are here rather
troublesome. They were first made by Von Karman (references
13 and 21). A new calculation in a somewhat different way
ras made by the writer (reference.l1l8), who compiled a nu-
merical table the values of which agree very satisfactorily
with Kempf's measurements. The values in the table were
obtained by the following approximation formula of H.
Schlichting, which though it is only an interpolation for-
mvla, cenr be used throughout the whole practical region of
turbulent flow, :

L B0 5 5
s ) - (22)
f /1 4 '\.715'\,:-:'-58
flog =7~
\\_ : e /

For the rough plate, a‘cbrresponding calculation was made
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on thre ' bYasis of the law of roughness represented in figure
10 (reference 19). :

The behavior of the turbulent friction layer in an ac-
celerated or retarded flow is of greater importance. An
important special case, the flow in a widened or nar“ored
channel with flat side walls, was investigated by Ddnch for
air (reference 22) and by Nikuradse for water'(refe;ence
2@) & Buri's work at Zurich sho1ld be metioned here, as al-
so Cuno's experlments on an airplans wing at Hannover (ref-

erence 27).

Buri and Gruschwitz have now made, in somewhat differ-
ent manner, the very important attempt to develop purely
mathematical methods for czlculating the course of the phe-
nomena in the fr*btional layer. "Buri's method is simpler,
while that of Gruschwitz is more complete. ILack of space

for'bids "further con51dernt10n here. of these rather compli-
‘cated calculations. With these methods it is possible to
predict the course of the frictional layer for any given
pressure distribution and, under some circumstances, even
to make the important determination as to whether this flow
will adhere to the wall, as assumed, or will separate at
some point., A ‘ﬂrtngr autenpt is now being made to predict
in this way *ha ‘dctual characteristics of an airplane wing
including the" DTO ile drag and maximum lift. Should the
results show a satisfactory agreement with 'expcrimental re-
sults, this method would constitute a very considerable ad-
vance.

FURTHER PROBLENS

The investigation of currents in strongly curved
channels (references 30 and 21) shows that, aside from the
"secondary currents" on the side walls as already described
by eariier writers , even the real nature of the turbulence
is here ‘substantially altered., The two kinds of phenomena
are related in that the faster portions. of tkhe fluid along
the curved wall develop stronger centrifugal forces than
the slower portions. The faster portions therefore tend to
displace the slower portions on the outer :wall. However,
since the portions in immediate contact with ‘the wall are
continually retarded by friction, a materially accelerated
exchange is produced on the outer.side of the channel by~
the displacement of these retarded:portions. On the con-
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trary .the slowser: portions tend toward the inner side and
the exchange is considerably retarded.
The. .phenomena are very similar to those in- the flow
of a fluid over a heated or .cooled bottom surface. In y

the former case the heated and simultaneously retarded
"portions: tend to mise from the bottom, while in the latter
case the'cooled portions, because of their greater density,
tend to’ remain mear the bottom (references 1l 2and 32), so
-that the' turbulent friction is increased in the former
case and decreased in the latter case. Since both groups
of phenomena have been or are bveing investigated in Gét- <
~ tingen), numerical expres51ons for ‘these influences may be
expected.

Another important kind of phenomena is involved in
the turbulent spreading: of fluid jets and the wakes of mov-
ing bodies'. " The outer .portions of .a jet emerging, e.g. o
from a larger orifice (nozzle, etc.) are.very unstable and
develop into a more or less irregular vortex system.  Even
for this kind of phenomena the conception of the mixing
path held good, and it was possible, with the aid of the
simple assumption that the mixing path in a cross section
is constant and proportional to the width of the mixing -
zone at that point, to predict the form of the mixing zone

1
and the velocity distribution in it in a wvery satisfactory
manner, whereby only the ratio of 'the mixing path to the
~mixing zone had to be taken from the experiments (refer-
ences 9, 10, 28, 29, 36).
The heat exchange is quite closely related to the -

turbulent velocity exchange. Insofar as it concerns the

flow along a wall, as shown by the experiments of Elias

(reference 33), the exchange factor has exactly the same

value, so that the: curve of the temperature distribution

agrees with the velocity distribution. ' For the phenomena

in the wake of moving bodies, Taylor (reference 34) has .° :
recently shown that here the heat sxchange is twice as . L 4
great as the velocity exchange, so that the temperature .

and velocity curves differ appreciably® ' Taylor could also

. 8Taylor demonstrates that in this case the rotational force

of the main motion is exchanged in the same manner as the

heat. The exchange factor is pl® (du/dy); . the rotational e
force in parallel motion, however, is du/dy; and the fall

of the rotational strength in the directlon y  is there-

fore d2u/dy?. Taylor shows that then . o ‘

(Concluded at bottom of page 23) '
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show that theoretically the former condition (like form of
these curves) is to be expected when the vortex axes of
the interference motion are parallel to the streamlines of
the main motion, dbut the latter (unlike) when they are per-
pendicular to them. The unpublished Gottingen experiments
of P. Ruden show that the Taylor law of exchange is also
valid for the spreading of jets.

It follows therefore that, on closer inspection, there

. are two kinds of turbulence to be distinguished, which dif-
fer in their nature. We may call one "wall turbulence" and
the other "jet turbulence." In the former (according to

Elias) the vortices parallel to the streamlines obviously
predominate. This rather important discovery will perhaps
once more indicate the way to a real theory of the phenomena.
So long as this is not discovered, we must be staisfied with
half-empirical considerations of the kind here described.

Translation by Dwight M. Miner,

National Advisory Committee

for Aeronzutics.

2.7 = ¢ 174w 478 yghich can be integrated to

o ‘ v dv =
3y y dy

=)
|-
O
=
t

( (A2 \'for | constant in a cross section. The
2 \dy /
factor in tihis formula differentiates it from our equa-

tieon 24
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