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DETERMINATION OF STRESSES AND DEFORMATIONS
OF AIRCRAFT PROPELLERS*

By Friedrich Seewald

The propeller is probably one of the most highly
stressed parts of an aircraft. It is therefore surpris-
ing that the strength of aircraft propellers has hitherto
received so little attention, While our knowledge of the
strength of airplane wings has been considerably increased
in recent years, relatively little is yet known regard-
ing the stresses undergone by aircraft propellers., It ap-
pears important therefore to give this subject some atten-
tion. The incentive to the following investigation was
furnished by a series of accidents caused by nropeller
failures in flight, A large proportion of these failures
occurred with a type of propeller which had a peculiar
curving shape. This propeller could not be made to fail
on the test stand, even with considerable overloading,
although a blade root of one of the propellers used was
already damaged,

At first thought this fact appears rather remarka-
ble, since the forces generated in stand tests at in-
creased revolution speeds are much greater than in flight,.
In particular, the thrust forces on the stand are a mul-
tiple of those in the air, If, however, the action of the
forces on a propeller blade is more closely coasidered, it
is immediately recognized that the shape of the blade has
a preponderant effect on the bending moments. The cen-
trifugal force acts lengthwise of the blade, while the
aerodynamic force acts perpendicularly to it. Under pres-
ent conditions of propeller operation, the centrifugal
force is one hundred or more times as great as the aero~
dynamic force. If the blade is not quite straight, the
points of application of the centrifugal forces to the in-

*"Beltrag zur Ermittlung der Beanspruchungen und der For-
manderungen von Luftschrauben," Berichteg und Abhandlung-
en der Wissenschaftlichen Gesellschaft fur Luftfa@rt No,
14, December, 1926, (Supplement to Zeitschrift fur Flug-

technik und iiotorluftschiffahrt.)
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dividual bdlade elements do not lie in a straight line and
consequently generate bending moments which tend to

stretch the blade., Since the centrifugal force is prepon-
derently great in comparison with the other forces, even

slight deviations from the straight line are important.

Of course it does not matter whether the deflections were
originally present or were produced elastically by the

loading, This is a well~known fact, and patents have al-

ready been sranted for a propeller with blades intended

to be so shaped that the centrifugal and aerodynamic mo-

ments will just offset one another. The blade axis could

then be regarded as a flexible line on which all the

forees act instead of on a solid body. Great caution

nust be exercised, however, with such propellers, as il-
lustrated by the above-mentioned accidents, . It is not

sufficient for one to have only a qualitative knowledge

. of the effect of the forces, but he must also be able to
.calculate the magnitude of the bending moments with con-
sideration of the shape. and elastic properties, The on-

ly -scientific publication known to me on the strength in-
vestigation of aircraft propellers is the work by Reiss-

ner, "Ueber die Biegungsbeanspruchung von Luftschrauben

und die entlastende Wirkung der Zentrifugalkraft," Tech-

nische Berichte, Vol. II, Wo. 2, 1917, page 315, In this

work the elastic deflections and the centrifugal moments !
due to these deflections arc determined for a propeller i
which is conceived from the first as a straight untwisted
bar, for which a definite digtribution of the cross sec~
tions and inertia moments, is assumed, Proceeding from

. similar assumptions, Wilhelm Hoff developed a graphic
method for determining the strength of propellers which
he explained in his lectures at the Berlin Polytechnie
Institute, This work has not yet been published (1927).
Based on these works, C., Jansen undertook an investigation
on how the strength calculation of a propeller is affect-
ed by twisting the blade sections (D.V.L. Report No. 50,
Zeitschrift fur Flugtechnik uad Motorluftschiffahrt, 1925,
page 87), The assumptions concerning the shapo of the
blade axis.and the distridution of the inertia forces
along tho blade aro ossentially the samoc as in Reissnor'ts
work, Since, however, for the above-montioncd reasoas,
oven slight deviations from tho proliminary assumptions
ontail considerablec changes in the bending momeonts, it

is obviously important, in propeller investigations, to
introduco the true form into theo calculation, especially
bocause, in most propecllers and for constructional roa-
sons, the original blado axis deviates more from a straight
line than is ascribable :to the elastic ‘deflection,
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In what follows, we must therefore regard the air-
craft-propeller blade as an originally bent and twisted
bar, which is still further elastically deformed under an
added load, The accurate solution of this problem en-
counters difficulties out of all proportion to the attain-
able results, The whole problem, however, can be greatly
simplified.by remembering that only the excessive magni-
tude of the centrifugal force, which acts approximately
parallel to the longitudinal axis of the blade, makes it
at all necessary to consider the very slight original cur-
vature. EHence, in determining the conditions of equilib-
rium, we will consider the total curvature (embracing that
elastically produced and that originally present) only in
so far as it involves the resolution of the static forces,
which are so large in comparison with the others that even
a relatively small component has some effect, If the cen-
trifugal force, which is approximately parallel to the
axis of the blade, is resolved into a force lengthwise of
the blade and another force perpendicular to the blade,
the latter component is only a .small fraction of the cen-
trifugal force., Since, however, the other forces acting
in this direction are very small in comparison with the
centrifugal force, even this small comvonent plays a part,
Conversely, it would be useless to consider any small
component of the already small .aerodynamic force, if it
should fall in the direction of the centrifugal force.
Moreover, since the deviations of the Dlade axis from a
straight line are very small (in extreme cases not over
1/30 of the blade length), the blade may be treated, with
respect to the forces perpendicular or nearly perpen-
dicular to the blade axis, as if the blade axis were
straight,

Even in calculating the internal stresses, the cur-
vature may be disregarded, and the formulas of elementary
mechanics (for exanmple, 0 = My /J) may be considered val-
2d, The resulting error is ne%ligible since the radii of
curvature are multiples of the cross—sectional dimensioas.
Note that we are here dealing with cross sections whicha
are asymmetric with respect to the axis passing through
the center of gravity and that, even in this point, the
assumptions of elementary mechanics are tnerefore not
strictly fulfilled, However, since the deviations from
symmetry are not excessive, we may expect to obtain suf-
ficiently accurate results,
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CONDITIONS OF EQUILIBRIUM

The blade axis is the line passing through the cen-
ters of gravity of the individual sections. It may be
any curve in space, but deviates only a little from a
-straight line, We shall establish this curve by the fol-
lowing system of coordinates, The x axis is placed in
the radial direction so as to conform as closely as possi-
ble to the blade axis, the y axis in the direction of
flight and the 2z axis perpendicular to both, Tae pos-
‘itive directions are so chosen as to form a right-hand
system, The centrifugal force then acts very closely in
the direction of the =x axis, Thoe contrifugal force de-
veloped by a blade eolement of length As is designated
by AC. The aerodynemic force is assumod to act in tho
¥z plane and is resolved into the components Py vond . Py
We then havo:

R R M

L %
d/ py_dx = and d[ Pz iz x = =

in which S denotes the thrust, M the torque of the en-
gine and a the number of blades,

Two projections of the blade axis are shown in Fig-
ures 1 and 2, The manner of resolution then follows di-
rectly from the above statements, especially the justifi-
cation for designating the forces in the directions y and
Z - as transverse forces., The componeant in the direction
of the blade axis is designated by AN and the components
in the directions of the y and z axes by AQy and AQ,,
respectively. The magnitudes of these forces are:

AC

AR T TR T

AQy = Py Ax - AC cos (sy)

Py Ax - AC cos(sz).

The cross section of the blade at the point x = x; is
acted on by the normal force

¥ = "AC (1)

LRl

and by the transverse forces:
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R R
e TR M A TRSAD cos(sy) (2)
g ¥-~ X1 4 ; &. ;
A R » ' ST
E2 . 0qu o= i PR Z AC cos(SZ) f (3)
A RS € R .

The‘compohents of the bending moment are denoted by MJ
and Mz. ~The bendlng moment ;My tends to produce rota
tionaboult bthe ¥y  axias It ds p031t1ve when the result-
ing curvature of the blade axis is concave in the positive
Zz direction. Corresponding statements. apply to. Mz. The
components of the bendlng moment are: i

R . R 2C' |

Uy = [ pyx-x) ax -~ ; 28 (y - y,) ax (4)
X1 LT N Xy s
R R

My = [ Pplx = ;) dx - /. &% .(z - z,) ax (5)
X X1

The torsional moment is due partly to the fact that the
aerodynamic forcé . acting on a blade element does not pass
through the center of gravity, Shifting the aerodynamic
force toward the center of gravity would require a corre-
sponding moment,.which may be designated by Myg. The
torsional moment is also due in ‘part to the curvature of
the blade axis., Hence,

al ; R
Mg= f *f—[cos(sx) cos(slx)] dY~COS(Slx) S p (=24 adx +
X1 5 X J
R
+cos(51X)f/ pg(y~y1)dX+cos(sly).f [py (x-x1 )~ **(y~y ylax -
5 R
~cos (s, z) f [Py (x-x,)- :q (2-2.)7] dx (6)

X3

The last two expressions represent the components of the
bending moments My and Mz, in the direction of the blade
axis, Since the torque is small in comparison with the
bending moment, these components must be taken into con-
gsideration, while the torque components in the direction
of the bending moment may be disregarded,

The bending moments are the most important in the
strength investigation and must be resolved in the direc-
tion of the principal cross-sectional axes. The determi-
nation of the principal axes is quite troublesome. TFor
practical purposes it suffices to take one direction par-—
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allel to the blade chord and the other perpendicular to it,
The comparison of the computed principal directions for
several blade sections with the assumed ones yielded a dif-
ference of only about two degrees, which is of no practi-
cal importance., There is naturally no objection to using
the actual principal axes in the further consideration of
the subject. They will be designated by I and II, as in
Figure 3, The angle formed by the projection of axis I
with the 'z axis will be designated by, t.  Thisg aneile

is called the pitch angle and is defined by the expression
tan a = H/Zﬂr, where H is the pitch of the propeller.,
On resolving M, and M, in the direction of the prineci-
pal axes I aad %I, we obtain:

Mt

=

My cos a + liz sin «
Urr = - My sin a + Mz cos a.

The elastic curvatures thus produced are designated by
k1 and kyy corresponding to the inertia moments Jg
and Jp7, and we then have:

M 1 '
M 1t u 8 a + Mz si v
I. E Jg E Jg ( e ki »;
M- ¥
ki1 = Tolh A (- My sin a + Mz cos a) (8)

By | @ dug

If § denotes the angle of elastic distortion of the blade
and J3 the torsional strength, the torque will be given
by the expression

dx ¢ Ja

The curvatures k and the torque § here represeant sim-
ple elastic deformations, which must be expressed by the
coordinates of the blade. Hence tiae coordinates must be
divided, on the one hand, into those representing the o-
riginal shape and, on the other hand, into those repre-
senting the elastic deformations., The shape of the un-~
stressed blade axis is denoted by the coordinates

Xos Yor %o and ag

and the corresponding elastic deformations 5 U AL 5T
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¢ and 9. The variation in the length of the blade is es-
sentially represented by ¢ and is so small that it may
be disregarded. ' HEEET

The final coordinates of a point on the Dlade axis in
the stressed condition are therefore

X = Xas ¥ = Vo b My 8 =8, ¢ [ and g = Gy +

The elastic curvatures ky and kry, expressed by these
coordinates, are:

kp = E;g cosla, + 9) F E;% sin(ag + 9) = E—§;

g R s Pl R M
Kpps = sl + §) + - os(0g + = kbl .
p1= i giealeE 5 SRR E e, i 711

In equations (7) and (8), the quantities My and Myp are
expressed by My and Mz. By introducing these values,
we obtain

A 2 :
k1 = &0 cos(ag + §) + =g sin(og + 9) =
dx= axe
M, cos(ag + M, sin(ag + )
== J ( o 8) + = e O el 8 (1 O)
E 77 T J1
2 2
k= = 1 gin S + g £ cos (g, + = e
11 oo (o o+ B el (g + 9)
My sin(ae + 8) M, cos(atg + )
- L= Pt (11)
& V1Y 11
To these we must also add the equation:
as Mg
—— = ——cn 2
dx G da e

For convenience the value of = Mg is not written out in
equation ()., The moments Myv and M, are expressed in
equations (4) and (5) by the coordinates of the blade axis
and by the forces acting on the blade. If, on the one
hand, the coordinates y and z  in the equations are di-
vided, as mentioned above, into the components y, and z,
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which determine the original form and, on the other hand,
into the components M and ¢ which denote the elastic
deformations, equations (4) and (5) then Dbecome

My = / py(x—'xl)dx-f'ﬁg(yo-ym)dx—
X, X1
. ¢
- AC e %
Xfl o (n - m,) dx (13)
R R
My = [.pelx - %) Bz w. f AC (29 - Zg1) dx -
X1 X1 Ax
; AC
~x,{ e (& =illiils (14)

These values must be introduced into equations (10) to
(12), in order to obtain the conditional equations for the
elastic deformations in terms of the blade form and of the
acting forces. In equations (13) and (14) the first two
integrals represent the moments which would be produced by
the forces acting on the unbent blade. These can be cal-
culated directly. The last integrals in the equations for
iy and 1z contain the change in the moments due to the
change in the shape of the whole blade under stress and
the consequent variation in the points of application of
the forces. The nature and magnitude of these deforma-
tions can be represented by exponential series and write
the expressions:

M= 6g + 8% hBx® &+ S8a3® & ik,
C: bo = blx e b2X2 + baxa + L )
§ = 8 ¥ oaxi b Bpa® kBT LS

We calculate with these expressions as if they were known
quantities, leaving the constants a, b, and ¢ to be sub-
sequently determined 'so that the actual deformations will
be represented as accurately as possible by these series.
If we introduce these series into squations (10) to (14),
we can calculate all unknown quantities as functions of a,
b, and c. If we compute numerically the quantities in
these equations for any values of x, we obtain, for each
value of x, three equations in which only the quantities
a, b, and ¢ occur as unknowns, If, for example, We wish




NeA+sC.A, Technical Memorandum-Ng,e: 870 9

to consider the first three terms of each series, we must
compute equations (10) to (14) for three values of x and
thus obtain nine -equations for the nine unknowns. In this
general form the solution would still be very troublesome,
because all the unknawans occur .in every ‘equation. This
difficulty is remedied as follows, We first assume that

4 = 0, 1leaving only 0o, 1in the angular functions, i.e,,
the original twist, Furthermore, we put kir = 0, This is
justified by the fact that, in propeller sections, the in-
ertia moment J77 is always much larger than J7. It
will appear later that both § and ky; are actually so
small that they can be put equal to zero in the first ap-
proximation, ZEquation (11) then becomes :

=2 2
% a
ki = = %;? gin ag + P cos Gy = 0 -~ (15)

On multiplying this equation by sin oo and subtracting

it from equatlon (10) maltlnlled by COE FClo in which
likewise § = 0O, we odtain.
9“4 (My cos® @o + Mz sin a.cos-0p) " . (16)

The only other quantity now appearing on the left side is
the second differential coefficient of Te: The - night side,
however, contains, in addition to m, as follows from
equation (5), also ¢ in- Mz. By assuming kjy; = 0, we
can also express ( as a function of m and. therefore by
. -Equation (15) then yields ‘

..‘_g_"‘__.ﬂtana

d.x° dx”

As. already explained, o 1is the pitch angle and conse-
quently,

H—
R

tan o =

For most propellers the piteh H 1is approximately constant
over the whole blade. Where considerable deviations occur,
tan ¢ should be expressed approximately by a correspond-
ing function of "X and the procedure should then be exact-
ly as follows:

il s 4 (17)
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For m we developed the expression
= By kBT 8% b BaET L F s gesin

We can i@mediateiy put a9 = a; = 0, Dbecause the blade
may be regarded as fixed at the hub, so that m  and dn/
‘dx - must -vanish for x = O, Hence,

%;g 22 a; +6 ax + 12 Bi xR 20 A x® e

By introducing this value into equation (17), we obtain

2 : : i
i_é = (2 a5 + 6 azx’+ 18 a8,x% + 20 asZ? + <is) - .
a:x 2 M X

g' can now be computed by integration.

af _ (2 a2 1n x + 6 a3x + 6 8a5® +

dx
20 3 -
Faapal & PRARARES, e 8y
dg/dx must equal zero for x = 0, which is pessible only
when ay, = C, = O. 3By another integration, we obtain
o 2 E g . 4 : ' e
C v (3 asx + 2'8.41( +'3— asx + uun.:o) é‘% (173«)

Now all the quantities in equation (16) can be expressed by
M. From this equation we then calculate an approximate
value for m and simultaneously also for (. We can then
compute all the bending moments. At first these values

are only approximate, Ipn the nunericel example, however,
it will be found that the assumptions kyy = 0O and 4§ = O
are so accurately fulfilled, that the values calculated on
the basis of this assumption may be regarded as final,
Should this be otherwise in particular instances, the val-
ues may be corrected by introducing the calculated approx-—
imate values ¢ and kyy and making the calculation again.

Hence the problem is to determine the constants a
of the series ; ;

M= 8gx® + 8% + 85X ¥ oo

in such a way that equation (16) is satisfied for as many
values of x as there are terms in the series for M.
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We break off the series for m with.the third term and
find, as the first condition, that all moments become zero
at the blade tip, including also the curvature d2n/dx®,
The other two conditions are determined as follows. If

an assumed function is correct, and the bending moments on
the right side of equation (16) are calculated, these bend-
ing moments necessitate certain definite deflections, - If
these are calculated, they must equal the assumed values
of m -at every point, This condition cannot be realized
at all points, but at as many points as there are terwms

in the series, Since we have not yet had over two con-
stants, we can satisfy this condition for only two points.
We arbitrarily stipulate that the deflection at the blade
tip and for x = 0,6 R '~ shall be the correct one. We have
then represented the deflection by an approximate function
which agrees with the actual bending line under the follow-
ing conditions, At the hub it is fixed, while it has the
correct deflection for x = 0.6, At the blade tip it has
the correct deflection and the correct curvature. It may
be assumed that such a function, which satisfies five
boundary conditions, will not deviate greatly from the cor-
rect curve, As conditions for the last two constants, it
was stipulated that the deflections and not the curvature
should agree at two points, If the curvature had been
chosen, then two conditions for the constants would have
been obtained, The result would still have been very in-
accurate, principally due to the fact that, on the right
side, only the inertia moments were introduced at the two
placess As a result of the double integration of M/EJ,
however, the magnitudes of the inertia moments and cross
sections were indirectly taken into consideration at all
points by means of the deflections.

NUMERICAL EXAMPLE

The process of calculation will be illustrated by an
example, taking the propeller described in the introduc-
tione It will be found that the stresses in flight, espe-
cially at high speeds and therefore at low thrust, are
considerably greater than at the same revolution speed on
the stand, The propeller used in the tests was of this
type with a diameter D = 2,45 m (8,04 ft,)- and a pitch
H=1,156n (3,77 £t4)e It was tested on the stand-at 1450
TeDels and yielded a thrust of 325 kg (71645 1b,) with an
engine torque of 47 m-kg (340 1lb.-ft,).. The stresses were
determined under these conditions. The propeller was run
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at a speed of 1700 r.pe.ms on the stand without injury.

The propeller-blade sections were 1O cm (3,94 in,)
apart. In Figure 4 the cross-sectional area is plotted
against the radius. The c.g. 0f each measured section was
found and the coordinates Yy, and z, of the blade axis
were determined, The blade-~axis curves are shown in Fig-
ure 5, PFigures 6a and 6 show, respectively, the sine and
cosine of the angle made by the blade-section chord with
the plane of the propeller, Figures 7 and 8 show, re-
spectively, the inertia moments Jp and Jy7; at each point
of the blade (Jyy on ten times the scale of - Jr). All
these quantities are plotted against the nondimensional
abscissa ¢ = x/R, where 'x represents the distance of
a cross section from the center of the hub,

Equation (16), when the above~given series and the
substitution £ = x/R . are introduced for M and ¢ with
consideration of equatlons (13) ‘and (14), takes the form

: ' PR 3 cos2q | B '
6 agt+l2 a, R2£2+20 agR%¢3= ﬁﬂtf E:‘Cglpy(g_gll)di.‘

¢=1 %
AG (- - cos?q AC r g3 o
Eiilzf (7% y01)di}' T -£££1A£ LAty il
FR%a, (E4 -t *)4R5a_ (E5-£.5) ] at
E:i g'—‘l 1
3 ( 2 L5 i [ C s
i 31n%;§§sg_13 giglpz(g £,)dé Eii;%z (zo 201)d£j
§=1 F
sin 0s c =
sing_cosa 31 aifil &8 1 [0.55 B mallon k. )+

0,366 Roa, (£°-£,%)40.305 B as (£ -£,%) Jat’ (18) .

~
PRE e
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In order to determine the deflection itself, it is neces-
sary to integrate twice, whereby it must be remembered
that oo and J are functions of £, All the terms on
the right side can now be computed., However, the integra-
tions cannot ail be computed since «, J and the centrif-
ugal force at each point are not all given in terms of e
but take a course which can be determined only by measure-
ments, All these sxpressions are therefore obtained by
summation. he distribution of the aerodynamic forces is
approximately known, For the strength caltulation, 1t
suffices to approximate them by a simple function. For
example, the component forces which produce the thrust,
may be assumed to have a distribution which i1s approxi-
mately represented dy the function

p, =k £2,/T - €

The constant Xk  must be so determined thaﬁ the sum over
all the blades will give their total thrust. It must

therefore be
1

J k2 1~ RrRat
0 N

whereo a is the fluid coefficient, whence

£

6
ul

k =

|

S_
R

Q

The bending moment due to the thrust is therefore ocasily
calculated. At the point ¢ = 51 ‘4t 1w

1

[, 2y (6 £1>d£ =8 Sy / 1-£° (t-t,)at

Aftor integrating and again replacing £, by €, we ob-

- 2 :
» ;ﬁ,ﬁma\[!_; I b PR S B Ty

™

¢

=
n
o
=

ukﬁl

E,

N A "
" 8€ K 2 arc sint ]

Hence the ‘moment exefted by the thrust is

i Ug = 'LE vaf(g)
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in which the bracketed portiéh of thé'prece&ing formula is
replaced by f£(f). :This function has the values:
SO TS S P P SR W AR
£(£)=0,133 0.114 0.094 0,075 0,057 0,040 0.0255 0.0139
‘ E = 0.8 218 CRORE '
£(t) = 0,0066 O,008L O

The aerodynamic component acting in the plane of the pro-
peller disk is represented accurately enough by the func-

tion —
PZ:kle/1“€

We again determine kj, so that the'total mounent exerted
by p; 1is equal to the measured or calculated engine

torque.
W F g o i AR sl T
2= [ pz BPE ¢ = k; R® [ ¢ - b 8= ngg
a 0 o ]
Hence .
Mm 16
kl % B" m a
Mp 16 T
i il | e

Then the bendlng moment due to this aerodynamic component
at any point ¢, is

g=1 i M
g{ Pz (t-¢)d €= fja 221 &40 -t )at

Mm 16 {2 R
ﬁ a [E 8

- % arc sin ¢ +

A Y )

m &

For abbreviation the bracketed portion is replaced by
p(¢). It has the following values:
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g = 0 0.1 0.2 0.3 O d sH80L661 1 YOLR
PhEY=0,3962 0,165 0,1312 ‘Os¥06 0,073 ;0,0608 0,081

=000 0.8 Gie o e

ll

@ (£). =50,01671 00,0044 00084 ‘D

With these the bending moments due to the aerodynamic
forces are determined, Their curves are plotted in Fig-
ures 9 and 10, We now have to determine the moments due
to the centrifugal force and first those due to the orig-
inal. curvature. These bendlnﬁ moments are represented

by the expressions:

PZO m‘ (yo = yOl)AQ and Z A‘E (Zo - Zol_)Ag
5=y £=¢,
The quantities yo -y, and zZo - z; can be read from

Figure B f6r any value of £.

. If we imagine the blade divided perpendicularly to the

. £ axls into disks of the thickmess 1 ém = AE, . then the
centrifugal force per unit length is AC/RA¢E.
He sl aw )
SO Sy B e
N Ml

The, specific gravity of the wood is assuned to be 0,8 or
800 kg/m® (28 or 28250 cu.ft.). At 1450 r.p.m. o2 =
23000, In .order to obtain Ac/Ab, we must therefore mul—
tiply the curve, which inhdicates the cross—sectional area,
by the factor

Y 2 g § = 8OO X 23000 X 1,925 ¢ = pag'¢
9.81 X 100

This centrifugal force per unit length of the blade is plot-
ted in Figure 11, For the caleulation, the blade is di-
vided into .sections by ten planes perpendicular to the ¢
axis at infervsls of At = .0.1..  In order to determlne the
centrifugal force of every such. portion, we must determine
the surface area of. the. curve . AC/RAY  in Figure 1l between
the limits ¢ and. { + Af. We may .conceive of such a por-
tion with suffici'ent accuracy eas a .trapezoid, as shown in
Figure 11. The DOlht of eo)llc \tion of whis ‘centrifugal
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force to the blade then lies at the. value-of ¢ wnlch cor-
responds to the ce.g. of this surface strip. In what fol-
lows, however, it . is more couvenient to resolve this force
in'such a way ‘that all the components are applied at

£ = 0.1, 0.2, etcs This resolution can.be made by apply-
ing nalf of the area of the hatched rectangle in Figure

11 to each of the .two poiants ¢ and ¢ +w £, and 2/3 of
the area of the triangle to one point and the remaining
1/3 to the other point. The centrifugal forces for all
the blade elements were ‘thus determined,

E =0 041 08078 0,4 0,60 046 0,7 Q,8049 .14
56 358 769 1081 1207 1225 1216 1140 949 602 110

For determining, at the point ¢, the bending moment due
to these forces, we have the expression:

g=1 ¢=1
AC 3 " AC b :
izgn—z ¥y ~ 754 ¥ A 'ox 655 A (2o = 2zg1) Af

The simplest way to solve such an expression 28 by using
the formula,
n=1
AC
My = Mdy ¥ TN ;
n n-1 A Yon - N4
Ayon and Azgon are to be taken directly from Figure 5,

where the original blade form is plotted. The moments
MCyo and Mczo thus obtained are plotted in Figures 12

and 13, We are now in position to solve a portion of the
right side of equation (18), namely, the expression:

SO82Q [R2 [ py(f - ) 4t - f%% (o - yo1) 4£1 +

Hag.gean 125 0 1. LilRe -/ &% (20 - zo1) af]

The bracketed expressions have already been solved and
represent the bending moments.-due to the action of the-
aerodynanic and centrifugal forcés on the unbent blade,.
The angle .a and the inertia moment 'J are measured at
each point, E = 100000 kg/cma (1420000 1b./sq.in,) was
adopted as the elasticity modulus of wood. This whole ex-
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pression has to be integrated twice, in order to obtain

the deflection, which would be produced by the bracketed
moments. A double integration is equivalent, however, to
the production of a moment according to Mohr's theorem,

The gquantity represented by the above expression may there-
fore be taken as the load applied to a blade, frowm which
the bending moment can be calculated. The evaluation can
be made exactly as in the above determination of the bend-
ing moments. The result is plotted in Figure 14, The
gquantity, calculated as a bending moment, is designated

by M, and represents the deflection produced by the
above~calculated moments, when the moments remain constant
during the deformation. .fhe two still-unsolved expressions
in equation (18) '

SRS IR ag (8%~ E)) + E oay (£~ 59 +B° ag(fF- £D] at

: :
and / ﬁ% [0.55°B% &y (£ = £7) +0,866 8% agll’~ &%+

+03305 ¥ ec(lVs £ Ta 1,

represent only the moments which are first produced by the
elastic deformation and which overlap the above-~calculated
monents,

We will now continue with the terms containing the
constant az. On extracting these terms we obtain the two
expressions:

AT

848 B8 1P T ) 40

AN S
0.55 a, R® %% A B TN

Only known quantities stand under the integration sign.
These can therefors be calculated by summation for any de-
sired value of Eh, the calculation being made the saune
as for the previous guantities, as

%% (vo — ¥01) d ¢

Both integrals represent functions of gl, which can bhe
directly computed and which we will represent by @ (§)

and VY(€)s a, ®(f) and 0.55 ag y(¢{) then represent the
bending moments produced when the blade is bent into the
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form .M. = aj 23 By introducing these quantlties into
equation (18), we obtaln

COSCC + O 55 81nC(. COS_g,_
as E JI @(E) E Jy V(E)

as the component of the bend produced by these moments,
Again considering the bracketed expressi on as the load and
having determined the bending moment, the latter is equiv-
alent in magnitude to the deflection produced by the mo-
mentes. @(f) amd 0,55 Y(f) 4in the y direction, This
deflection is designated by ™Mz. The procedure is the
same with the terms .a, and ag, and the correspondlng
deflections are represented by mMs and mMs.

All these deflections are plotted in Figure 15 on- a
magnified scale of 1000:1., The total deflection is then
equal to the sum of all the individual deflections, so
that the equation must be satisfied for every point §£,.

0= a'3 R3 gls + 8y R4 El4 5 ag Rs 215 5
ML G e S 7 P el S e
As zlready explained, we put ¢, on the left side, once
£, = 0.6 and once .£; =1, while we introduce the calcu-
lated deflections . Ngs Mz, Ma and Mg on the right side,
Thus we obtain two equations for the constant’ a. For
the third equation, as already mentioned, we choose the
condition that, at the blade tip (tnat UN, oy T = L
all moments equal zero, so that a°n/df{® nust vanish.
Thus we obtain the three equations:
14225%1 + 12 ag 1.23868 + 20 ag 14826% = O
1000(az 14225°%X0,63%+a, 1.225%X0,6*+ag 1.,225°X0,6%) =
=1 ,473-8; 250.16-8¢ 254.7-85 247.6
1000.(8s Le22624a, 1,055 04, 1.20080 = 10 135
~a3 854,9~as 924-as 1062.6.

These ‘equations yield, for the a constants the values
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az = -0.017555
a, = +0.036033
ag = -0.01414

Hence the total deflection is

m o= agRo L + a8 E? 4 es2%2%= <0.01785% 24228°% £ &

+ 0,08608 X 1.,285" £* - 0.01414 X 1.285° £°

According to equation (17a)

o
P

L (3 o, R 4 2

4
+2a, t°8%+ 2agt% 2% =

g
The quantities n and { are plotted in figures 16 and 17,
from which it is obvious that the calculated deflection {
is very small as compared with the deflection in the ¥
direction. The shape of the propeller, after its defor-
mation, is now known (fig. 18), and all moments can De
calculated by equations (4), (5), and (6). The bending
moments for az =1, a4 =1, and as = 1 have already
been calculated, so that we only need to multiply them by
the computed values of a. The moments M; and Myy can

then be readily calculated from the individual expres-
sions., Likewise the stresses can be directly calculated.
The results are plotted in figures 19 to 22. The bending
stresses due to M; were also calculated, though they
are so small, due to the magnitude of J,, that they

play no part, all the more since the maximum stresses due
to Mjpp occur in the fibers where the stresses due to

M1 are almost zero. Since all the quantities are now

known, the calculation of the shearing stresses can like-
wise be madec as for ordinary beams. These stresses also
are not very important. The torsional moment can be read-
ily calculated from equation (6). It is so small, however,
that it is of hardly any importance. It is plotted in
figure 23. All these quantities are now calculated on the
assumption that the curvature in the direction of the
greater inertia moment and the elastic distortion of the
blade are both negligibly small., In order to determine
how far these conditions are satisfied, we will now cal-
culate them. Since the magnitude of a distortion for any
given cross section is wvery difficult to calculate, every
cross section is replaced by an inscribed rectangle. The
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tecrsional rigidity of such a blade can then be determined
according to St. Venant and is surely less than that of
the actual blade. Likewise the modulus of shear G 1is
assumed very low, G = 8000 kg/cm® (113800 1b./sq.in.).
Under these assumptions, we have, at the propeller tip, a
twist of 9 = 0.00661 or about 0.3°. This angle, howev-
er, is within the degrce of experimental accuracy. The
torsional angle might be somewhat greater for other blade
forms. Nevertheless, it would hardly reach values which
would affect the strength relations. :

In order to test the other assumption ki1 = O, we
will conpute kj; and compare it with kj. These quan-

tities are calculated for a few values of ¢ by forming
the expressions My/EJ; and M1;/EJdg1. :

4 5 Eps
= 0.2 -1667.0 =~ +29.2
= 0.4 +2620 -17.4
= 0.6 +5140 . =36.8
= 0.8 +4430 -20.0

It is obvious that ky; is much smaller than ky. At the
most unfavorable point (€ = 0.4), k;; = 0.0175 kj. It

seens perfectly permissible, however, to disregard such

a snall quantity. This proves that the assumptions k3 =
O and 39 =0 do not greatly impair the value of the fi-
nal result, so that we may regard thes calculated static
data as correct. :

It is obvious from the course of the bending monments
and stresses that the moments due to the centrifugal
forces preponderate, even at the great thrust on the stand.
The blade is bent backward at the root even at great
thrust. It is therefore of interest to know the bending
nonents when the thrust is small., It is therefore assumed
that the propeller runs at the same speed as above (U =
1450 r.p.n.) when it exerts no thrust at all. This is
a condition which can easily occur in flying at a low an-
gle of attack 'and with the engine throttled. If all the
aerodynamic forces are put equal to zero, the calculation
is greatly simplified, since all the data required to
"solve the equations have been previously determined. It
is only necessary to put all expressions involving aero-
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dynanic forces equal to. zero. The caleulation . is then
made exactly as before. Since it affords nothing new of
interest, only the results will be given. The stresses
are plotted in Figures 24 and 25 and show that, near the
blade root, they are consideradbly greater than in the pre-
vious condition, where the aerodynamic forces-act., This
is also quite natural, for even in the previous loading:
casey; where the aerodynamic forces tended.to bend the
propeller forward, the opposed "relieving" moments, which
are produced by the centrifugal force due to the curved
shape of the blades, so far exceed the aerodynamic moment,
that the resulting moment is even greater than the moment
which the aerodynamic force alone would exert on a
straight blade, In normal flight, however, the aerody-
namnic forces are considerably smaller and they may almost
vanish when the airplane ‘is in a glide. The aerodynamic
force then produces a backward-bending moment, which is
much greater than the aerodynamic forces could produce,
even in the most unfavorable case. The blade tends of
itself to assume such a position that the effect is min-
imized, The blade can undergo important deformation,
however, only in its outer part, where the cross sections
are smalle Near the hub no considerable deformation can
occur, unless the stresses are very high.. The calculated
stresses never suffice, however, to cause certain fail-
ure, even when they are dangerously high, It must be re-
membered, however, that the conditions may become cons1d—
erably more unfavorable through some small material.de-—
fect; such .as may be produced by the weathering of a glued
jqint.. Further considerable stresses may be produced

by even small vibrations. The previously mentioned fail-
ures occurred mostly in large propellers, which were sim-
llar in shape, however, to those investigated here, In

so far as known, all the failures occurred in flight, 1568,
at low thrust, as might be concluded from the present in-
vestigation, The cause of the failures, therefore, was
probaolj excessive curvature of the blades.

Hence great caution must be exercised in trying to
give a propeller such a shape that the aerodynamic forces
will be counterbalanced by the centrifugal forces, It
seems particularly hazardous to let the blade axis near
the hub project too far from the glane of the propeller
disk, The effect of a faulty shape is not so detrimental
in the outer portion of the blade, due to its flexibili-
ty, which partially remedies the defect. Near the hub,
however, due to the great rigidity, .no considerable-auto-
matic adjustment is UOSSlble, and the moments are greut~
ly affected by the original design, It is impossible to
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establish any general rule for.the design, It may, how-
ever, be said.that, in the case of a blade having a
straight axis, the elastic deformation is always such

that the load is_actually reduced by the centrifugal force,
“regardless of all other forces acting on the p“opeller.
This fact was also demonstrated by Reissner. For a curved
blade this is not the case, In any. event it should be de-
termined whether the load reduction under. one.operating
condition does not involve a load.increase under.another
operating condifion. ‘ I8

The propeller blade has thus far been considered as.
a thia plate.t & Thiigk was accurate enough- for the quantltles
hitherto calculated. This assumption causes the complete
disappearance of one factor, which should be considered
in many cases, Thls is the torsional moment exerted on
the twisted blade.by.the.longitudinal force. If, for ex-
ample, we imagine a metal strip twisted about 1ts longitu~
dinal axis so as to form a helical . surface. and, 1t this
strip is then subjected to longltudinal tension, it will
tend to return to its original flat shape, In order to
determine these moments approximately, each fiber may be
considered as a twisted blade,.. When this is pulled, it
will -tend to untwist. The. 1ong1tud1nal stress in each fi-
ber is known accurately enougn from the previous calcula~
tion; .Due to the twiat, .the 1ong1tud1na1 direction.con-
tinually varies along the fiber., There must therefore be
everywhere a component perpendicular to the fiber, and
this produces a backward turning moment, In thick propel—
lers, such as those of wood, tnls moment is unimportant,
but in very thin blades it may. assume great importance
and cause .considerable distortion. .For the approximate
calculation of thig.torsional moment in a thin propeller
"'blade, it is sufficient to take account of the centrifu-
gal force alone (assumed to be uniform throughout the
cross scctlon), since, due to its slight ri@idlty, the
blade automatically takes such an attitude that the bend-
ing stresses are small., If the angle through which a sec-
tion is twisted w1th respect to the preceding section is
measured. at definite intervals of 10 cm (3.94 in,), for
example, this angle is then a criterion for the bending
of .the individual fibers. The components of the internal
forces, producing the torsional moment, can then be read-
ily determined from the change in the dlrectlon of the
fibers.

: Various tests were made in order to determine the
deformation of the propellers experimentally. Though all
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these tests were of a rather primitive nature, it was
still possible to verify the calculation with one:of the
arrangements tested. (Pigs. 26 and 27,) The whole con-~
tour of a blade of the above mathematically investigated
propelier was lined with spark gaps by attaching strips
of tin foil 2,5 cm (about an inch) long. One end of this
conductor was coannected with a condenser by means of a
slip ring with brushes, while the other end consisted of
a voint which passed a stationary point once during every
revolution at a distance of about 2 mm (0,08 in.), the
latter point being connected with the opposite pole of
the condenser. The energy was so adjusted that a spark
could pass only when the revolving point was exactly oppo-
site the stationary point. The condenser was charged by
an induction coil operated by an alternating current,

-First, in order to determine the shape of the propel-
ler in the unstressed condition, the blade was turned to
the position, where the spark could pass, A photographic
camera was then mounted in the plane of the propeller
disk in such a way that the axis of the lens was approxi-
mately perpendicular to the axisg of the propeller blade,
and a spark was discharged through the spark gaps and
was photographed, The camera was then left in the same
position, while the propeller was made to revolve. At
1450 r.pe.ms another spark was photographed on the same
plate., In order to make sure the camera had not moved,
sperk gaps were also arranged at two stationary points,

In this way Figure 28 was obtained, The deflection can
thus be determined with great accuracy. 4 twisting of

the blade, which would be indicated by changes in the dis-
tances between the sparks on the leading edge and those

on the trailing edge while the propeller is revolving, as
compared with the distances betwecen the same sparks when
the propeller is at rest, can indeed be detected, but it
is so small that it cannot be accurately measured, A
twist of one degree would cause a relative displacement

of the points of 1.5 to 2,56 mm (0,06 %o 0.1 1a.) accord-
ing to the width of the blade at the point investigated,
The deflection is readily recognized, however, and agrees
well with the above calculation., At the blade tip the
measured deflection is 10,6 mm (0442 in.,), and the calcu-
lated deflection is 9,7 mm (0,38 in.)s The goneral char-
acter of the measured deflection agrees well with the cal-
culated deflection. Even the negative deflection near

the hub is recognizable. In order to test the accuracy

of this method of measuring, the sparks were photographed
with the propeller at rest, The blade was then distorted,
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and the deflection was ‘accurately measured.at several
points., Then another photograph was taken and evaluated,
It was thus found that deformations of 0¢5 mm (0,02 in,)
could be determined, ¥ : : '

SUMMARY ~

“A method is described for testing the strength of
propellers of any shape., It is shown that the shape of
the propeller greatly affects the stresses, and that great
caution must be exercised if the relieving effect of the
centrifugal force, which exists in every propeller with
a straight blade axis, is to be .increased by curving the
blade axis,

In a numerical example, the calculation is made for
a certain revolution speed at which the actual distortion
ig then measured, The results of the calculation agree
satisfactorily with the experimental results.-

Translation by Dwight M. lkinsr,
National Advisory Committee
for Aeronautics.
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