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GOLDSTWIN'S SOLUTIOﬂ OF THE PROBLEN OF THEE
AIRGRAﬂT PROPELLER WImH A FIhITE NUUBER oF BLADES*

By H. B. Helmbol&

The basis of the modern propeller tpeory was a trea-
tise by MAi Betz in 1919 on "Screw Propellers with linimum
Losg of  Energy" with an addendum by L. Prandtl, which con-
taified, for the first time, an approximatbe solution of the
"problem of the screw propeller with a finite number of
blades. (Reference 1.) The Betz theory was limited to
frictionless, lightly loaded propellers, Prandtl's adden-
dum showed how the results can be extended to moderately
loaded propellers. .. The.-essential points of the Betz theory
are.;

I. "The flow behind & Propeller with minimum los
of energy is as if the path traversed by each propeller
blade (h&lical surface) were congewled and arlven astern
with a definite velocity."

" II. " "For symme trical propellers the. interference
velocmty at the blade is nalf as great as that at the cor-
responding point of the ﬂe11091 sarface far behind tae
propeller # _ S

If the number-.of blades is infinite, the helical sur-
faces stand so close together that, within the slipstream
at a finite distance from the margin of “the helical sur-
faces, "tJere is no radial velocity, and the interference
flows are everjwhere perpendicular to the ne?1cal surfaces.
The flow is therefore perfect within the sl pstream. If
w denotes tho ba&kward velocity of the helical surfaces
and B their pitch angle at a distance. r <from the axis,
then the interference volocity wy = w cos B,  its axlal
component W, = W cos? B and its tangential component
Wi = W cos B 31n B (The relation between the flight speed

v, the. angular veloc1ty oF _the radlus T ana t e pitenh

*"Ueber dle Goldstelnsche LOSQHé des Problems der Luft~
schreibe mit endlicher Flugelzahl, Zeltscar1+t for Flug-
technik und Motorluftschlffahrt July 28, 1931, pp. 429-
432,
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angle B 1is represented by "tah B = v/®r.) ~ The circula-
tion is represented by the path integral ¢ ds. The
total circulation-about.all the 2z Dlade. sec%lons on the
circumference 2 m r is accordingly zl'= 2 7 r Wi,
since.-the tangential -velocity benind the propeller is uni-~
formly equal to wy along the whole circumference, and
the flow in front of the propeller .can yet have no helix
angle., According to the theorem of Futta and Joukowsky
(The result can also be obtained by the use of momentum
and energy. laws ), the proportion of the thrust falling

on the annulus of the propeller-disk area betweem r and
r t drv~1s dS = Pw r z[' dr  and the corresponding share
of the moment is dM = r P v =z[' dr. Hitherto a low flow
velocity as compared with the absolute velocity of the
propeller blades or, in other words, a low degree of load-
ing was tacitly assumed., When this asazmptlon no. 1onper
applies, the derlved formulas are valld ’

v + -2 v F o

tan @ = 2 = 2

L. - Wt . 4(":?, Ir .
mr~ _é_,. PP A o

= W cos @; Wg = W cos2 Q; , W = W cos @ -sin '@

)
=]
!

a8 = p ( r‘— t\ 20 dr; A = P (v %?X‘zﬂ‘,dn,A:,w
’ o ( g T e

What is changed in the transition to a finite numbér
.0of bdlades, if the quantities v, w and W remain unchanged?
Even tihen the interference flows are perpendicular to the
helical surfaces, if the newly developed radial velocities
are at first disregarded so that the last formulas are
not changed, Due to the finite distance between the heli-~
cal surfaces, a circulation about their edges occurs, aad
radial velocitles are developed in the slipstream., The
flow is then no longer perfect, and the fluid avoids the
helical surfaces, If the course of the tangential veloc-
ities is now followed on a circumfereance =2 7 r behind
the propeller, it is found that, on the helical surfaces
themselves, the same values of Wy exist as for an infi-
nite number of blades, but that changés have taken place-
between them, so that the tangential _velogcities are smaller
near the circumference and greater near the.eenter. If.
~'the whole circulation is then considered as a path. 1nto—
gral of the velocity at the circumference . 2177, we nave
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2l = 2o oWy =3 Pk Wy,
where Wi = K Wt is the: mean value of the tangential wve-
locity on the circumference add K is the corresponding. ..
mean-value factor with respect: to the value w¢ on the:
helical surfaces. According to the above, this is small-
er than unity near the blade tipgrand greater than unity
near the axis of rotation,- This Behavior of the mean-
value factor or of the tangentlal velocity can be ex
plained as follows., With .an infinite number of blades
"the circulation increases toward the tips and then falls
abruptly to zero at the tips. This is not rossible with
a finite number of blades, because the pressure differ-
ence between the pressure and suction side can then be
eliminated around the b;ade‘t;ps, ‘with a more gradual fall
of the circulation to zero at the tips. With an infinite
number of blades, the fluid behaves, near the axls, like

a rotating solid body, due to the perfect flow but, with

a finite number of blades, it has more freedom of motion
between the helical surfaces and leads somewhat in the an-
gle between two successive helical surfaces. This is due
to the fact that, in this angle, the suction side:of the .
leading propeller blade is followed by the pressure side
of the next blade, and the pressure drop between the suc-
cessive propeller blades forces the fluid agaln in the
direction of rotation.*

The expressions for thrust and torgue can now be
written: ' ‘ '

. w
dS:P(wr—-“ZP"\'\,Kwt 2 1m r dr
RN R

dM = r P ( 533 Kk Wy 217 r dr,

*Another consideration yields a somewhat stronger argu-
ment. Thb flow between the helical surfaces must be free.
from rotation, so that, for an observer carried along with
the helical surfaces, any fluid particle in the angle bo-
tween two successive helical surfaces nmust have an o0pDo-
site. rotation., From this there follows, for the vicinity
of the axis, the streamline Torm sgoﬂa in Figure 1, which
represents, in the direction of the circumference, an ad—
vance of the fluid with respoct to the helical surfaccs



4 N.A.C.A, Technical Memorandum No, 652

The task is now.to determine the mean-value factor k.
The Prandtl considerations are limited to the study of the
K near the blade tips. The approximate solution is all
the better, the closer the helical surfaces succeed one
another, i.e., the smaller the ratio of. their perpendicu-
lar. dlstance on the margin to tne c1rcamference

‘va:COS BR.; ?. A
TEnE G5

where K = tan By = "EE the pitch éngle of the propeller.

For a more. peav11y loaded propeller we write

H.cos $r . ..h
2 2mTR: /1 4+ W
Jlth the pltch angle
o v+‘g—.'.
h = tan R e
%] " R A

Prandtl‘éjformula now reads:

_x<1~-11\ "
o . A SR
K = 2 arc cos e R) with. X = % MCiﬁigﬁm
e v

In Figure 2, K is plotted against X (1 - %\.

Ta. Troller found that this formula genera*ly yielded =
close approximation, even in cases where the conditions of
theorem I were no longer fulfilled, i.e., wnere the veloc-
ity w is no longer independent of the radius r (refer-
ence 3), thus denonstratlng the f9331b111ty of the formulsa
%"t:KWt.

At the suggestion of Professor Betz, the problem was
recently attacked by the Englishman, S. Goldstein and
solved in exact form for the important case of a frietion-
less lightly loaded propeller with minimum loss of energy.
(Reference 4.) Tae result is liTewise plotted 1n Figure 2.

Instead of Prandtl's ‘K curve, there is a set of curves
with h and Z° as* parameters. Hovever,'as shown' by tne
comparison of- the curves for Hh = 0,1, z =2, -and h- =

0.2, 2= 4, the conrsa of %- probably depends chlefly on
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B

a parameter h/z or 1/X. The Prandtl solution, as was
to be foreseen, represents theé limiting value of the Gold-
stein solution for h—>0 or z— »,

Aside from the mean-value factor K, the ratio of
the thrusts with an infinite and with a finite number of
blades { = Sm/Sz is important for practical application.
In comparing the thrusts, the quantitied v, -w, w, and R
are to be regarded as given. Theorem III then applies:

"A screw propeller with a finite number of dlades 2z and
with the thrust S, is, for a pitéh:angle A, approxi-
mately equivalent (with respect to tle propeller slip
d=vw/vr) to a propeller with an infinite number of
blades, but somewhat greater thrust S8, = ¢ Sz." Accord-
ing to the above consideratidns, the ratio of the thrusts
is calculated simply from

The conditions of theorem I yield the function ¢ of 1/X

represented in Figure 3. This graph was chosen, in order

to bring the results for 2z =2 and =z =4 ianto conform-
ity as nearly as possible, TFor small values of 1/%, the
function can be.approximately represented by

= +2~21 + 1-}-,
E=17x 1..,,.,4%

Knowledge of the propeller slip B :-E is necessary for

calculating the propeller shapes For moderaﬂely loaded
propellers of the Betz type (reference 2), we have

e (mrr /s )

and approximately

: + @ e ~
6=6—~_§-$(—1+/1+(p 2@, C}? )
A S
.

Given are the pitch angle A, the loading cg = ————m

g v® o B®
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or, instead of this, tle performance rating ci1.= 5 LA

s ' ' : T Ve R®
and the fineness ratio €. The guantities & and @' are
functions of the pitch angle h.

oave

-1
2 ’

o @s= 1 - h® 1ln (1 ->; '= 29 -
_._¢_,.  “ ( . n® @~;‘ 1 +nh

repreSEnted-in'Figurelé. Since the pitch angle is nobt
nownat first, for the:.calculation of @, ¢! and (, h
is first replaced by Ay the pitch angle -

- mn=A(1+E)

¢+ 3)
is calculated with the found &, and with thid an im-
proved value of & is found., The method converges guite

rapidly. The blade chord is found from

ta 4 1T r K Wt cos @
Wi
B . Z (w r - wl\
: . e/

k 2

r
2 / =1
{1+>~h(13~\-;] /1""(113-—\;
I/ T/

where t, = ¢y t, the "1ift chord," i,e., the Dblade chord
for the 1ift coefficient ¢, = 1, Figure 5 shows several
exanples of distribution of the blade chord along the radi-
us for the case of a lightly loaded propeller (a~—>N),

For better comparison, ¢, = 1 was put for two-blade pro-
pellers, c5 = 0,5 for four-blade propellers and § =1
throughont, For the sake of completeness we will also in-
clude the approximation formula for the propeller efficlien~
c¥e (Reference 2,)

34 Ah
z

'ﬂ"u‘ 1 1_‘2511
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Fig.4 Auxiliary diagram for computing the propeller
slip.

Fig.5 Examples of blade-chord distribution along
radius for various blade chords and pitch angles.,



