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KECHANICAL SIMILITUDE AYD TURBULENCE*

3y Th. v. Rarman

The development of hydrodynamics within the last decade

. has shown that skillful application of the equations from the
dynamics of ideal fluids quite often brings clarity into such
phenomena which in themselves are not independent of the vis-
cosity. The vortex equations, in particular, proved themselves
very useful. - I may be allowéd to mention the fheory of the
vortex street by which we are able to reproduce the mechanism
of . the form resistance with suitable approximation undér’stated
conditions, although sich 'a resistance is'preoluded in a fluid
.fwhich is perfectly inviscid. Disregarding for the presént the
origination of the vortex, the stream attitude in the wake of
the body may be described approximately correct by the repre;
sentation of individual vortices, without itransgressing the law
governing the motion of such vortices in an ideal fluid. An-
other striking example is %the theory of the induced drag of
wings, which likewise shows the exteant of applying the'vorfex
equatiors without overstepping tiie bounds of the dynanics of
ideal fluids. |

But the prospects are ostensibly less promising for turbu~
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*Mlilechanische Aanlicakeit und Turbulenz." ZReprint fypom Nach-
richten von der Gesellschaft der Wissenschaften zu Jottingen,
1830 - Fachgruppe I (llathedatik) Fo. 5, pp. 58-76.
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lent fluid motion. It naturally is clear from the beginning
that the balanceAbetveen-frietional and inertia forces prepon-
deiates in the problem of nascent turbﬁlenoe; so that the cited
me thod does not enter into consideration at all in this case.
But there remains the topic of the "fully developed turbulence, "
the problem according to the theory of "hydraulic stream atti-
tude," which is perhaps of still greater 1moortance for the
practice. Still there are some indications which hold at least
some promise of success in an attack on the problem,when disre-
garding the frictional forces, or better expressed, with the
frictional forces confined tole definite zone, for”instance,
directiv adjacent to the walit Some time ago W. Fritsch* meas-
ured iﬁ the Aeoheh Aerodvhamie Ihetitute the velocity distribu—
tion in grooves between two parallel walls by constant wall dis-
tance and for varying devrees of Wall rouvhness The results
showed that the distribution curves - apait from the immediate
neighborhood of theiwall - are almost exactly superimposed as
soon as the shearing stress at.the wall assumes the same value,
regardiess of whether the fluid passes by a polished, smooth
wall or, with correspondingly lower velocity, past a rough wall,
or even a wall being saw—like in profile. The flow resistance
in these grooves with very rough walls follows the so—-called
"square" law, i.e., it is proportional to the fluid density and
to the square of the velocity,_bot uneffeeted'by_the degree of

fluid viscosity. Is it not_feaeible thereffom to surmise that

*W. Fritsch, Zeitsch. f. angew. Math. u. Mech., 1928, p. 315.
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the visc§sity is without predominating effect on the development
of the velocity distribution? The present paper represents a
method of attack in this sense, and endeavors an attempt to make
the laws of turbulent flow in grooves amenable for calculation
with a minimum of arbitrary assumptions.

We are indebted to O. Reynolds* for his explanation of the
existence of turbulence anqsciilatqry motion, Which - in con~
trast to molecular unres%;Aresﬁbnsible for the laminary fric-
tion phenomens - he designated as molal fluctuating motion.
Segregating the velocity componeénts dependent on the time (We
call them fliuctuating, 6r oscillatory components) further the
pressure variations from the mean values which correspond to
the basic flow, the general hydrodynamic equations reveal the
momentum components transmitted by the oscillatory motion as
supplementary'stresSes from the.standpoint of the basic motion,
which are defined by meén values of products from the oscilla-
tory velocities.

I confine myself to the case of two-dimensional flow and
express the mean of velocity' x in the wmean flow direction by
U, that of wvelocity y by V, and the oscillatory components

by u and v. Then the supplementary stress components read as

—

GX = —-. p u2

— o2

..Oy = "“p'V
T = - phﬁ-"\;

*0. Reyanolds, Phil. Trans. A, Vol. 186; 1894, p. 1233.
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These components are conformal_to,the:soscalled_1aminar
stres compopents originating. 1n an unsteady, visoous fluid due

to tne molecular motion as glven by

-

a

Ox =23 ¥

e ?4’5’

Oy = 3 U (2)

T 5 M (

‘The analogy becomes particularly_apparent when we include

Q|
L‘ <

the derlvauion of the coef 1cient of viscosity W, which is. =
deflned up to a numerlcal fmctor, the product u £ A c,
where f = density, A = mean path length anﬁ ¢ = molecular
VelOCluY. | ‘:' :

: Take, for 1nstance, the case of parallel flow in direction
X, “that is, U= U(y), ‘V\y) = O, and consider the derivation
of fhe shear stress - flrst, conformsi to

| | 47 = = O.u v

and then, according to

_ U U |
T _;y dy =P \ < dy

As oscillatory components in the molecular wotion, we have

w=z%c+1 3 v =%c, and to the extent that

o

dy

au . . d
u=%c¢c -1 T’ is coupled with v = ¢, .and u=%c + 1 Eg
with v = - c. Obviously, W= -0l %, which proves the

analogy between the two expless1ons.
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The next step to render the turbulent shear stress calcu-
lable is to formally introduce a "turbulent friction coefficient,"
as proposed by Boussinesqg* and notably, by Stanton.** The lat-
ter, appreciating the velocity distribution developed from the

center in a smooth pipe, disclosed the relation

-
e Q
Upax - U =2,/ 2 £ (1) (3)

where T, % shearing stress transmitted to the wall, =T = pipe
diameter, and v = distance from middle of the pipe. This law

of similitude is summarily adhered to by the introdﬁotion of an
average tﬁrbuient friction coefficient W4, which is proportion-—
al to the quantity Up,, T.*** | |

T = const. Umax r au .

dy
M. F. Treer**** recently attempted to fit'Stantdn'sktheorem

to the nore up-to-date testﬁmaterial oy having resort to addi-
tional empirical assumptions. it is, howéver,‘evident that the
equation is carried too far in forming the mean value and:is,

on the face of it, inappropriate for:interprefing'actual veloc~-
ity distribution. Stanton's application may be adjudged as a
summary averaging examination of similitude; to conceive the

mechanism of turbulent flow attitude, the study of similitude
*J. V. Boussinesq, lem. pres. par div. 'sav., Paris 33, 1877;

24, 1877.
**T. E. Stanton, Proc. Roy. Soc., Vol. 85, 1811, p. 366.
o’ ke T
To be more exact upg¢ = const. « 19 r; since, however, - at
least, for large index figures - %Q is practically propartional

to Upmgx®, the above is likewise approximately correct.
***xM. F. Treer, Phys. Zeitschr., 1939, Vol. 30, p. 543.
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(op)

must, to my way of thinking, be worded slightly different.
Similitude of Oscillatory Motion .

Let us check the following as;umption with: the mean flow
to be a parallel flow in direction x; ‘the oscillatory flow %o
consist in disturbanoesiof relatively limited extent in direc-
tion y and - at 1eééf: w1th1n a certain tlme 1nterval to be
carried along'by tne nain f]ow aop oxlmntelv as steady flow con-
figurations.' Our proovlen” snall be to Llnd upder wnat condl—
tions these flows can beCOJe gltllar among each other, so tnat
‘the flow attitudes nei&hbdgi g two OOlJtS, WﬂlCh conforn to
diffexr ent ¥y values, vary only oy a mthlollcaulve factor of
the oscillatory Velocity and in the length neasure of the field

of flow. In other words, we assuue similitude of the oscilla-

tory attitude, irrespective of the location,of the point in

whose vicinity the osoillation is examined

We so ol ace tne coordlnates th at thls pe tinept pOiPt;f‘WlS
on axis y = O, d devclops the nean VGlOOltV aooordlng to y:
U = U‘,Oy.” + _Uf",O __yg.z_;,-*-. sen.
Then we write the stream fuiction adjacent to the point
¥ (x,y) = Utg %? + Ul %;‘+'-;~ + ¥ (x,5), - (5)
where V (x,y) becomes the stream function of the oscillatory
motion.

Now it is desired that only 1 andz A ve affected by the
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by Uy, U"S, etc., but that function f(&{,m)

be unaffected when

x = 1 ¢
yo= im (6)
vV = A f (E,n)

The hydrodynamic equations for plane éteady flow may be

combined in the so—called vortex transfer equation

¥ b _ al a_i =v AAVY (7)
dy 0°OX pd

where

B_if___if.
ax® - 3ay®

is the vortex intensity, and v the kinematic viscosity. Dis-
reégarding the friction terms and limiting ourselves, in accord
with the assumed definition of the field of oscillation in the
vicinity of axis y = 0. to the first digits -in the terms in-

duced by the principal motion, we obfain

' + QYN RAV _ DV e _ AY RAV _
(U oV * aV> ax ax Vo BGEE 0 (8)

Introducing (6), we have '~

U A apf A af 2 raf paf _ AE f\
X - Pt sl $ 011 = = - oo 9
Clo M3 57 ~7 58 Yo TF (an 3¢ T3 I (9)

where symbol A now pertainS'td the variables ¢ and m. This
equation is resolvable independently of A, 1 and Uly, Ulo,

providihg
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Uty 1 '__:'_% :
(10)
~ A
U'o ~ ,1,3_
or
: l - Uy
U"Q
and _
~ U e |
80 U, (11)
_ o A

To denote the significance of these relations, we now com-

pute the shearing stress T:

— Ay _ o 8 af AT
T=—=Puv=p X =0p = 13
A xdy ¥ 3t am (12) -
or S P S ' .
TE P 1% U | (13) - .

The conditions of similitude may -then be combined as follows:
a) The field of oscillation Tretains a length indicative

of the length measure of the disturbences, defined by

BRI e 1
7, ZE'U"O,-'=" dy -
=T, £~H
dy2

b) The shearing'fbjcexis ﬁioporfional to the density, to
the square of the characte;isticdlengﬁh I and to the square of
the velocity gradient %¥.>’”

Having defined length 1 to only one factor, we write

-

2 x
T=p 17 (gg) (14)



and o 1= I | (15)

where k 1s a nondimensional constant, dependent only upon the
nature of the fluctuating mechanism, and upon the solution of
the equation for f(&,n). It is the sole constant entering the

here develdpcd theory of turbulence.
. Prandtl's Theory of "Mixing Length"

OQur date may for the present serve as corroboration of the
suggestive equation put forth by Professor L. Prandtl* to demon-
strate the laws of turbulent flow. He proceeded with the for-

mula for the shearing stress

and evaluated u =1 %g analogous of the equéfions of the molec-
ular theory, by introd;cing the length 1 as the nixing length
or digtance (analogous to the idea of the mean free path in the
kinetic theory). On the premises that a particle in the oscil-
latory motion travels the distance 1 perpendicular to the basic
flow without momentum interchange p 1 %g becomes, in fact, the
momentum which the particle transfers to the layer into which it
was displaced by the mixing motion. Préhdtl then assumed the
fluctuating component v proportional to the mixing length 1
of the velocity gradient, so
that in agreement with (13), T = p 17 (%gfi

Viewing the matter from the viewpoint of the oscillation

*Oompare, for example, page 62 of "Proceedings of the Second In-
ternational Congress for Technische llechanik, 1937."

and to the absolute value }%g
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theory, this assumption signifies that the correlation between
u and v 1is supposedly unaffectsd by the location. This hypoth-
esis is so obviously like our assumption of similarity, that- it
is not surprising to find the equation confirmed.

But now our study of similitude reveals decidedly more, for
it yields an equation defining the ﬁixing distance which in
first approximation appears as ratio of the first two differen—

tial quotients of the basic velocity.
Flow between Parallel Walls

Consider the vasic flow in direction =x between two paral-
lel walls y =% h (Fig, 1). With 7, as shearing stress at

the wall, it equals

0 % (18)°

at y distance away from the channel center, so that the veloc-

ity distribution becomes

¥ 2 . Ut® .
Tox =¥ P Gus (17)
or
U" — k '\/fil— 1
gr® VACR'SE
P

One integration yields

I T 2 k = ?ﬂ_ Jy + const.
v e
.. P
or (a = a constant)
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(18)

The constant a, is to be defined from the relation with

the conditions at the wall. For great Reynolds Numbers %g as—
sumes a high value near the wall and finally approaches the lim-
a T ;
iting value E; = 1?, which, due to the smallness of U Te-
ferred to %g at a distance away from the wall, is very high.
As a result the value vy, at which %g becomes infinite, may
be allowed to coincide with y = h, so that
/To
av _ 1 o 1 (19)

& m /n- Sy

wherefrom integration yields the velocity distribution. The

maximum Upsx 18 reached at y = 0. Then

.
~u=/ /T 1 dy

0 o 2kh LT
n
UmaX—U=~%./IpQ<10g<l— /%\,4»/%7) (20)
U = Upax + ./—;9 [1og (1-/—5’;}+,/ %] (20a)

. 5 . 1
This formula was compared with two measurements of Donch and
_T-

or

Nikuradse.* Both defined the values j§3 leaving %k as sole
constant to be determined, which appears to have a value of

about kX = 0.38. The resistance law yields, as shown later
? 3

* . Donch, Forschungsarbeiten, No. 283, 192386.
J. Nikuradse, Forschungsarbeiten, No. 389, 1929.
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k - = O-SB-

Figure 2 illustrates the coﬁpariéon, which is found to be
good. One more word about the behavior of mixing length 1.

The calculation yields

S AL VA SCENED NN (21)

Near to the wall we may write .

so that | = S =
1=2kh <,/ 1-3 PR 41} Ry (1 T oE T (22)
The course of L. f K*l is noted.ll Fi ré 3 It does not )
h - / ES J. g‘u. . O °
correspond to Dénch and HWikuradse's data ‘(détted -1line), which -
they arrived at with formula -
BT .

dy

Their chief oontentign'iéjthat;quanpity"HZ.§s§umes a constant
value in the channel ceiter, whereas it:att;ins a maximum at
v, = % h and drops to zero for: yi‘éﬂh; -agfording to our calcu~
lation. Cur comments are: L '

In the first place, l' 1s exceedlﬁgly dlfflcult to deter—
mine on account of the uncertalnty of une dl;‘ereptlaulon of
the point-by-point reoorded velocity ourve tnen tney compute

the mixing length in. tne c annel centcr by a nodlfled formula,

the authenticity of Wnlch is not qulte beyond quesclon. It is -



Memorandum No. 611 13

bt
1
4
¥
Q
1]
o
3
O
Q
ju g
o
[
Q
Y
}.J

agsumed forthwith that

HI

o ~

=0 for y = 0, that is, the veloc-
ity is smoothed out at the apex. Our formula shows a hump for

vy = O,Aa sure sign that the degree of approximation in the cal-
culatioﬁ is insufficient at this point, but it is strange that

the unsmoothened velocify curve also shows a definite bend.

I believe the observation material was not extensive enough to

define the behavior of 1 in the channel center conclusively.
The Resisﬁance Law

3y a uigh velocity gradient %g, as near to the wall, our
similitude consideration no longer holds true, because the omis-
sion of the viscosity appears to be no longer justified. It is
a question of whether V8 %g can be disregarded or not along
side of the kinematic shearing stress — P U v. It has been
proved experimentally that near to the wall something like a
"laminar 1a§er" exists and, in order to define the resistance
law, i.e., the Upyyx value corresponding to a certain value of
%Q, the connection from the veleocity curve to the laminar layer
must be established.

Before discussing a more exact theory of the oscillatory
field, we attempt two different applications which, however,
yield the same plausible results:

a) We assume the mixing length ! to diminish below zero
to a value proportional to the thickness of the laminar layer.

This minimum is‘supposedly reéached at the boundary of the lami-
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nar layer Where th e la ainar layer 1is tﬂen uttached

To carry this idea t“rourh we reso t to G. J. fawior's con-
ception, who arrlved at the conclu51on tbat the vortex d1V131on.
(i.e., the mixing 1ength z) of the turbulence at the wall can
only pe*affgctequy thg(ggga;§ng sggess To,u and that 1t must

be proportional to the velue  —e. Trltlug Lo P for

w/*fg*" A o x.:7_Fg‘
R TR VTN SO S © S o T
this limiting value, we obtain for thé relevant quantity of -
1 : fp -€ T T
V=g v,/ e and U~ = Ujgsx - J(Y),-uhat is for the ve1001ty
lo .
difference between channel center and laminar layer boundary

A BT oo B O
A V P 4 omst.| . (23)
—E P g : ON8T.{ 7 s .

]
-

Then we estlmate tne dlf?e eﬂce Ain ve1001ty U betweca
' T
both ooundarles of the 1am1nar 1ayer 1 e., between tne wall

and the free boundgry Since uhe _1okness on one 31de is
' ' ' Uee

. and we can put T, = p on the Obner We ootawn

~ v
i 5

$
yee Zﬁvfégf:*éhd the difference bpetween the wall and the channel

To h TO |
[t

B

center becoies

Upay = U° + U°° =

]

The .constents -k and A - are jindependent .of d;me: ions 316 3 ey~
nolds Hunber.
b)Y rThe. result is- identical wben we gssume. the "jurbulentA
componént"xfT»er,QE to be proportional-to o 1® .(g;nz :ing‘
ay ST dy/

2tead of: the whole shearing stress.. T@en;l may{quietlyvdimin—
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ish to zero and the velocity distribution near to the wall be-

conmes

E
T - d0 =K oAUy
5 v (& (25)

This is the same equation used by Hr; Wada* in formulating
the resistance law, but which, oﬁing to havibg been published |
in an inconspicuous place, Has not received sufficient attentlon.
Unfortunately, Mr. Wada held the eouaulon valld for. the whole
channel which made his formulas a llttle $00 complloated, a1~
though n this paragraph are reéily c&ntained in
his report in an implied form.

To derive the resistance 1aw, I slightly deviate from the

conventional parameters and introduce the factors

/ T
Vo= —2= (26)
w/ o Unax
2

In place of the mean veloclity the meximum velocity appears

as reference quantity, so that (234) yields

k»/~_—

==L =1log (Rp v ¥) + A~ 3 log 2
'V
(37)
or

 We-derived the relation Tetween Umax and ¥V for plane flow.
*Journal of Japanese Soc. Raval Arch. 41, 1937, p. 103.
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But it can also be proved applicable to circular pipes, where
even constant k retains the saxme value and where constant C
alone is different. 1In our derivation we used the mixing dis-
tance k X wall distance and estimated the thickness of the
laninar layer. But it way be assumed that this is valid for a
circular pipe also, for the further course of the mixing dis-
tance comes in evidence only in the C constant.

Figure 4 shows some observations of 77/F and logs Rpy S

U T
— max
(gi = _,

> r = pipe diameter).* It will be noted that there

is a linear relation between both quantities, extending from
Ry = 300C to By = 1,800,000. Conetant

k.

i

0.38
(29)

C =1.83
the first being perhaps universal, the second applying particu-

1ar1§ to circular pipes.
The So—called Power Laws

It is known that the resistance law within large ranges
of Reynolds Numbers can be adequately expressed by the interpo-

lation formula

v = con;ﬁ. (30)
g

Upon this prenise it can be proved by a line of reasoning
advanced by Dr. Prandtl that the velocity distribution (figured

as beginniag at thae wall) is given by formula

*The data on very large Reynolds Numbers were supplied by Ir.
Wikuradse, who placed his, as yet unpublished material, at my
disposal.
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‘ Toyé_xtnm C
U = const. / %9 G—TGE——-> (31)

Thé validity of this power formula ceases in the immediate neigh-
borhood of the wall (effect of laminar layer)}, but extends in
éurpriéing manner to the other side nearly to the charnel cen—
ter. The exponent n drops as the Reynolds Number increases
(within about % %0 §%§ in the range examined thus far).

This puzzle is simple tO‘explainf; Slightly transformed, our

derived formulas express the

Resistance law: l -a+0bp 102 (R./

J["‘“ (53)
) ) . ‘ . Lo i U i
Velocity distribution: = a' + 1! log (

So when we make n = , equations (30) and (31) can be

2 —-m
written as :
Resistance law: L - const. (RV V)P
R WA
. s p
Velocity distribution: = const.<:;_;~;_> (33)

The decrease in expénents n with'the Reynolds Number becomes
readily apﬁaient from the following:

Comparlng Tlow attltudes in the same channel which corre-
spond to an 1dentlca1 value of o” and permitting the viscos-

ity to vary, for instance, © to decrease gradually; the velos—
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ity distribution is dbfiéuélY‘the éame:ﬂﬁito %he point where
the infliuenge of the vispcosity becomes noticeable. There a kind
of laminar-layer is.setr up, altiough the.point continues to
shift along.the velocity distrihution.curve as. the viscosity de-
creases, iie., as therReynolds Fumber rises. -The conjointed.
distribution curve:i- . - S ek

oy owE (Umaxifxujz;
which is, aside from the channel cenfer, ‘exponential (Fig. 5),

1/n .-

is to be approximatéed to y =TU by a series of power curves

Which touch the axis vy = 0, 1ndu01n the contact point %o grad-

i
ually shlft toward the Ilgnt acooralﬁgly l/n increases and

LA
BT

n decveases. ' 3f‘

_.Roughmness

It has been repeatedly empnasized that the ratio between
the thickness of the Taminax- layer an the mean Drotubefance
of the roughness predominates the phenomena on rough walls. I

call a wall’ rougn when the .proj

'tlons are large referred to. the

laminar layer tnlckness. In tals ‘case it nay be assuned tnat
the minirum velue of the mixzing length 1 1s rot condltloned by
the thickness, but by the size of the roughness. elements. Thus
if € -is.the mean roughness projection (the characterlstlc
length measure of the rgughgess)*}therminimum Valueiqf I may be
made proportional te ¢, - which dLsoloses as relatlon Hetween

velocity in channel center Upysy and the shearing force at the
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wall T,
/T -
Uy, = ..1:!{: NV 59 <_|_og 1—2 + COI’lS‘b.) (34)

0T for the resistance coefficient

;

N = log ? + const.

In other words, the flow resistance follows the "square"
law, and the resistance coefficient is dependent on the rela-
tive roughness according to (35). This equation admits of a
check winen comparing experiments in grooves, where the distance
of the walls (3h) wvaries, but where the nature of the walls
(quantity €) is to remain constant. This, however, is to be
treated in a future report.

Translation by J. Vanier,

National Advisory Committee
for Aeronautics.
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