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WRINKLING OF REINFORCED PLATES SUBJECTED TO SHEAR STRESSES*
By Edgar Seydel

Resume

It is common practice to stiffen flat plates by ribs or
special shaping (corrugations). Now in many load cases the
principal stress in a plate is the shear which, upon reaching
a bertain limit, the so-called critical load, forces the plate
to wrinkle.

When these reinforcements are appropriately applied the
stiffened plate can be treated as a homogeneous plate (orthogo-—
nal—-anisotropic) with uniformly and closely spaced reinforce-
ments (different in both directions), and the formula for buck—
ling in shear is deduced from a differenﬁial eduation of the’
fourth order. By introducing the characteristic wvalue of the
orthogonal-anisotropic plate and applying further appropriate‘
parameters the solufion can be carried out for a plate strip of

great length by arbitrary plate stiffeners. The edges may be

freely supportéd or rigidly constrained.

*"Beitrag zur Frage des Ausbeulens von versteiften Platten beil
Schubbeangpruchung." From Jahrbuch 1930 der Deutschen Versuchs-—
anstalt fur Luftfahrt e.V., Ber lin-Adlershof - Verlag von R.
Oldenbourg, hunohep~Ber11n 1930, pp. 235-354.
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SLntizgiduction

The buckling strength in shear (and the vibration) of long,
thin, isotropic plates supported at the long edges has been
treated quite exhaustively by R. V. Southwell and 8. W. Skan
(Reference 1). St. Bergmann and H. Reissner (Reference 2) ex—
tended Southwell's theory to include the case of anisotropic
{Ybfthééohai—anisotfopié) plafes with vénishing and comparably
low bending stiffness longitudinaily. Their data are included
iﬁ this repoxrt. ‘C. Schmieden (Reference 3) treats‘the case of
e@Qal longitﬁdinal stiffness in bending and distortion, but his
methods were incomprehensible to me and his data are confirmed
only f&r the“case of infinitely low distortion stiffness.

. T. Huber (Reference 4) established the theory and the
general differential equation of bending in orthogonal-aniso-
tropic plates.

In the preseﬁt report the problem of buoklihg strengtﬁ and
lobed form of failure of anisotropic plate strips is carried to
a certain conclusion and the data for arbitrary stiffness in
bending in two directions at rightAangles to each other; and for
arbitrary distortion stiffness is exhibited diagrammatically.
For the suggestionslon this}report and helpful advice I am in-

debted to Professor K. Reissner.
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Problemn

1. The system (the reinforced plate).- The thin plate (met-—
al or plywood) is a structural element which finds extensive use

in girplane construction. Among others it is intended to form

a substitute for bracing aﬁd for that reasoﬁ lt'is in many load
cases chiefly.subjected to sﬁeai,_ The 1ow stiffness of_ﬁhe thin
plate which induces bulging‘(lob;ng, Wrinkliﬁg) e&en under rela~
tively low shear strésses, and thg inabilitj to absorbd éomﬁreé—
sion and bending stresses, necessitates reinforcements. This
stiffening can be accomplished with riveted or glued strips
(ribs), or by special shaping (corrugated plate), usually in

one or tWo directions. |

Wrinkling is. an elastic form change in which deflectioné
and distortions occur in the originally flat plate center, and
depends therefore .on the stiffness in bending and distortion of
the .plate. .

This stiffness (with respect,tp unit length) of the homqge~
neous isotropic plate, being the same at every point and 1in ev-
ery direction, is higher at the reinforcements than at the non-
reinforced points. In addition, the bending stiffness (depend~,
ing on shape of reinforcement) 'is usually different in differ-
ent directions of the stiffened plate.

If the reinforcements are equally spaced and under certain
circumstances of ‘equal thickness, the stiffness (with respect

to unit length) is periodically variable along the two axes.
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A flat plate may be visualized as ‘taking the place of a corru-
gated gsheet (1ocated in the ideal medien plane of the corru~
gated sheet)? Whose‘stiffness corresponds at every point with
that of the corrugated sheet. In this casc the stiffness again
is subject to periodic changes -~ here, continuous -~ while in
the plate with reinforcing strips the croes sectional inertia
momente and through them, the stiffness cnﬁnges irregularly

(at 1east;vwhen making the usual 81mpllfy1ng assumptlons regard-
'ﬁv the strees ef a beam in.bending). Thus, the stlfLened plate
represents, even 1f it oon81sts o; 1sotrop10 mate rial, a non—‘
homoweneous system, oeeauee the elaetlc prOpertles of the plate
are not ‘the same at every p01nt But‘we speak'of a mean bend-
ing SblffnCSu in one ard in the other direction (parallel and

at right angles to the dlreotlon of uhe re1nforc1ng strip).
Hence, we must dlSthgulSh Detwoen the mean bendlng stiffnes

D and the mean bendlng stlffness Dz,' w1th respect to two

10
axes given by tne dlIthTOP of *he reinforcements, and which
may be asaumed as the X and v axes of a system placed in the
(ideal) median plane of the relrforoed plaue. Hereby D, is
the bending stiffﬁees correspondlng to une stress in bending
Oy, in the x—direetien, and De conformal to the normal ten-
sion Gy. In this'mannef we arrive:at en'ideeiized hemogeneous
plate system whose elastic properties are different iﬁ two di%
rections, which, in fact; igs conformal to a flat nonreinfoiced

plate of orthogonal-anisotropic’ material (originally, isotropic -
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or, better, quasi-isotropic material when rolled, assumes such
qualities to a slight extent).

Now, when the periods of the stiffngéé~chﬁhge of an actu-
ally'reinforceduplatggare sufficiently small, the elastic sur-
face of this nonhomogeneous plate in bending (and distortion)
deflection differs only slightly from the elastic surface of the
corresponding homogeneous orthogonal-anisotropic plate, and we
may speak of a quasi-homogeneous system. Hereby i1t should be
borne in mind that the periods of stiffness-change must not only‘
be small with respect to the plate length, but also be so small
that the elastic. surface of the ideal system conforms to the
actually-existing,gyStém{ S

_Disxsgar@ing ﬁhé tfanéveféé eloﬁgationTWith its trifling
and frequently‘negligiﬁlé;effeét, the ‘bending stiffness is the
product of the Ygung's.modulus éf éﬁe haterial and the (mean)
inertal moment of the reinfoxcéd pléfe section per unit length.
The determination of the distortion stiffness requires an exam-
ination of the elastic form changes of the reinforced plate,
where 1t ié assumed that only shear moments (no bending moments)
act in every inte:sect;on parallel to the x—-axlis and parallel
to y-axis, due to the load being applied to the edges. As a
rule, the stiffeners do not materially Taise the distortion
stiffness of a flat plate when therréinforoing strips are small
in comparison to their spacing, although the edge attachment
of a corrugated plate seems to affect its distortion stiffness

considerably.
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The present report is confined to thg‘reotangular plate of
(infinitely) great length (in the z—direction) and of 2a width
(in the y-direction). The stiffeners are parallel to the edges,
and the plate thickness 6 is small with respect to the width.
At the edges y = X a +the plate is freely supported or rigidly

constrained.

8. Loading.— Such a strip is subjected to an»e#enly distrib—
uted constant shear +t, per unit length, which acts along the
four edges in the median plane of the plate and is in outside
equilibrium. The result is a constant shear stress in the whole
quasi-homogeneous plate.

While t 1is low the plate remains flat, but as the shear
increases and finally becomes maximum, the plate reaches its so-
called shear strength tyy, and upon exceeding this critical
limit, the plate wrinkles. Figure 1 shows the basic form (con—
tours and éross sections) which the elastic surface assumes by
incipient wrinkling. (This elastic surface is discussed in a
subsequent section (III). It depends on the ratio of bending -
and distortion stiffness and the boundary conditions.) The
stress attitude of the plate changes, bending and normal stresses
occur, the plate attempts to assume a new attitude of equilib-
rium, but fails if the ultimate strength 1s exceeded or local
buckling sets in. We begin with the determination of the shear

strength typ.
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II. T .e:

st Data

3. The shear strength.— Befdére going into details, we wish

- to state the result.

-

" The shear Stréhgth. by

i1s computed from one of two formu~

last 4
oL ‘t . Dl D33' (
kr = Ca 5 la)
/D, D,
Txr = Cp 02 (1b)
or, according to Bergumann and Reissner
typ a2 Y
i 2 C\ D (11a’)
D'2 a
t 3 —
.._..}S.j;«_._'__ = O-b M (l!b)
D, )Y
with D,
5, - °F
2
(2)
Dy _ :
o)
Here a = half width of plate strip,
D, = mean stiffness in bending in direction of
x (length),
D, = mean stiffnese in bending in direction of
y (width),
D, = mean stiffness in distortion (when disregarding

the transverse.

.of the reinforced plate, the

‘elongation) ¥

stiffness ig expressed in units of

cross sectional width, that isg, in kg cm, while Cg,_and cp are

*See footnote, next page.
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absolute coefficicnts contingent upon

7&__,\/ Dl Da L AP
¥ o= 5 . =

= - (3)

and which become apparent from Figures 3a and 2b. If ¢ > 1,
these figures show that it is preferable to use equation (la)
cor (1'a), but if & < 1, that formula (1b) or (1'b) would be
more suitable. When the bending stiffness vanishes in the
x;airection, that is, if D, = O, then ¢ = 0, and formula
(1a) yields typ = X 0, or an indeterminate value, but (1b)

and (1'b) give in this case

D, D, D, /1

tprs= 1L.71 e T 11.71 *EE?-—' by free support

!

and

D/

D, D |
txp e= 18.59 —=2—2 = 18,59 —E——o

a” a®

it

by rigid restraint

on the edges y = * a. When thé bending stiffness disappears

*(Footnote from page 7)
Considering the ideslized Poisson's ratio, Vg and Vv in the
%~ and y—direction (compare section VI, formulas (6) and (7) )
would yield the more accurate values for the bending stiffness

in unit length (ET)
, D, = X

= —. in x-direction
1 1~DX vy b

D, = Té%%l%; in y—-direction,
while Dz is given by
~ (E3) (E7)x
2 Dy = Vg T:T§~%§ ot 4 (GT) zy

where 23 (GJ)Xy is the distortion stiffness of the orthogonal-
anisotropic plate with respect to the cross—-sectional width
"one." The definition of Vy and Yy 1is given in section VI.
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in the x-direction the shear strength fkr* is therefore not
zero (but D, = 0 yields ‘tyy = 0l On the other hand, if the
distortion stiffness is Dy-= 0, +then <4 =o and, according

to (la) and (1'a)

Yo, o - Do /0
aE

az

i

8.12 by free support,

tkr £

and

LS o 4
o D, D° D,./P
tyre = 15.085 —“Z--;*é-%- = 15.085 —— Dy rigid restraint,

|

while (1b) for the time being yields an indeteiminate value
© X 0.

If vaiue{ % is very large or verysmall, or, at any rate,
much higher or lower than "one," one may figure with the Cy,
value for & . and ¢, for & = 0, where the 1Txr figures
will be somewhat too low; the error coumlitted here can be seen
on Figure 3a where the qguotient cg; ca(g ~w) 18 plotted against
#. The shear strength (for & > 1) is computed as

ca */n, 0?2
——

typ = m—r—r 8.125 by free support

. Cald =) ?
and o y
| : c J D, DS
= — 8 15.065 ~—2—2— Dy rigid restraint
a(«&:oo) . a :

where Gcg/cy( =) Slightly exceeds "one " and on Figure 39 with

*Bergmann and Reissner first resolved the problem by assuming
D1=O, Their value
/TN _8.283 /3 xJ/u
az

et o

\= .
D2/ min

“is in exact agrecment with the above formula. In their second
report 2&§y gshowed the initial tangent of the function

Ch = Cp
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oy /¢4 b(g=0) DPlotted against 1/%. Thus the shear strength for

4 < 1 Dbecomes:?

byp = o 11,71 V/ 23 (by free support)

2
b (8 =0) &
c /D, D, |
and =B 18.59,----D2 Q~ (oy rigid restraint)
b =0) e

quotient cp/Cp=p) being slightly higher than "one," when ¥

is materially lower than "one." When ¢ = 1, 8o that 0 = u=*

*The case ¢ = 1 weas examined by Southwell, and our data, al-
though established for the isotropic plate, apply for certain
cases of the anisotropilc plaﬁe as well., OSchmieden first treats
the case p = M(=A) and when resol lving the problem, confines
himeel® to very small p(=A) values. He asszumes the Kk value,
which he denotes by k, and which is inver;ely proportional ©o
the wave 1on‘"h of the elastic surface, to h»e inversely propor-
tional to t/p = N/A'.") in the case of critical shear load, so

that K- §@5'(= k%ﬁ) is constant, (i.e., unaifected by P). From
the gpeciel case P = U < 1 he proceeds to the more general case
w=0, px Q0 and, amsumlng vcrishing plate thickness, publlshes
the res uTt w1tn0uu giving a correct derivation. When P =P = A,

then = 1/./4A; when A woves toward’ zeéro, 4 goes toward in-

finity. The term K 7P ecquals a«/é = m/C',, and equals
ﬂ/oa' in the shear ctrength cese; here Cy' depends on ¢ only.
Thus it nmay be p“ovod that Kix J?; is actually c-nstant for a
cbr+@1n ¥ value {(say, for % = o). With Schmied:n's assumption
P =Hd, 4 = oo, of course, is synonyrous with 0 = U = 0; that is,
w1th the svpp081tlor that bendlpr stiffness Dy and distortion
stiffness Dy disappear, in this case the shcar stress is alto-
getier unstable. To confine the computation of ¢y in the shear
strength formula to this case alone would be superfluous, be-
cause tne formila yields tkr = 0. anyway. The proof that fac-
tor ¢y (which is arfected by ¢) arrived at for & = o, can be
introduced for high, but finite ¢ wvalues, becomes apparent in
this repordt. Acco dln@ to Figure éa, the error committed (sav,
for ¢ = 20), does not excced 3.6% when uubstltutlng factor ¢y
for & = o (instead of ¢ = ?O), waile with ¢ = 1, the discrep-
ancy is meerly 50%. When the 613"0¢oemonts are a"“ nged in

length and widsh as Schiicden asgwacs (b = O), the supposition
of venisning plate thickness cquilvalent to that of venishing dis-

tortion stiffncss, corregponds to the case ¢ = o, which (with
M= 0) wvieclds a shear sitrength diffcrent from zero. Scaumiedon's
computed numerical values agrce with our deta for & = o,



»N.A:CfA. Tecianical Memorandum.ﬁo(,GOB 11
then
Cy = Op.

To‘ma;e a étable sheaf e@ress at ell possible reqﬁires a
certain>bending stiffnese D, (>0) aifhough the eeear stress by
‘yanishing‘“Dl orlna‘ is stable at the beginning (as long-as
R <’tkr)- | | | _ |
" To enable us to meke comparison ﬁith‘éeissnef*s. and Befg«
mannts latest experiments in which they erove thet Cyp, Waen
approaching § = O; is a feguiar function of ©° = o/M® and
¢, when near 1/% = 0 a regular function of 1/8 ='HA/E:j
we plotted in Figuraséb and 5b, the ¢, factors against 7.
(The ¢, factor is the saﬁe as in Figure 3b, the only difference
being the abscissa.) Thevdotted'eeoants through the points with
abscissas 9 = 0 and % = 0.04, in Figure Bb, denote the di-
rections of the tangents in the ovoints with the abscissa ¥° = 0.
Figure 4b and 5b are alike but for the larger scale of #° and
its range confined to 0 = ¢ T 1.

In sinilar wanner Figure 4a shows theA_ca factor plotted
against 1/% (like in Figure 2a but for the abscissa), and
Figure 5a, o, plotted against 1/% for 05 1/8 S 1. To ap-
proximate the tangent direction in the points with abscissa
1/% = 0, the dotted secants are defined by the‘points with ab-
scissa 1/9 = 0 and 1/% = 0.085 (% =« and § = 40). (The
abscissa sceale is different from Figufe 4a. j

On comparison, we now find that curve cb(gz); in fact

from 0 =0 (D, = 0) +to about & = p/u® = 0.35, that is,
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4 = 0.5, can be substituted by its initial tangent, and that
curve Ca (1/%) from u=0 (D = O) t0 aporox1mately 1/8 =
M/vf“— | can be substltuted by 1ts 1n1t1al tangent As a re-
sult ob,' in the nelohborhood of p O, 'can be developed in a
power serles accordlnq to &2,> and oa; on aoproachlng M= 0,
in a power serles accordlng to 1/&,» as proved analytically by
-:Bergmaon and Relssner | .i" |

The dlagrams Can be summarlzed as follows

Incroduolng the constanto

8.185 and 15.065

Cao =

Cqr = 5.64 " 7.685.,
Cge = 0.8 " 0.6
Cpy, = 11.71 " 18.59
¢py = 2.155 "  5.86
Cpz = 0.7 " 2.3

we have for pin-jointed and constrained support

Ty a°
T B 1

D, o

(from %‘: 0 to % = 1)

tkr &

D/

~ 2 4
C-b = Opq -+ O.'bl, ¥ - C_'b;;z 3

1).

it

(from ¢ = 0 to ¢
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4. The wave length of the elastic surface.— We have already

stressed .the importance of the tests on the deformations in in-
cipient wrinkling, s0 as to gain at least an approximate con-
ception of the feasibility of the orthogonal-anisotropic plate
(with evenly distributed stiffness).

In this the chief interest centers in the }ength l of a
half wave of the wrinkle measﬁred in the dirécfidn of the x-axis,
which must be greater than the spacing of the stiffeners, or the
assumption of a mean value for the bending stiffmess I 1is no
longer valid. The 1ength of the“half~wave'of,theAelastié‘sur—
face (measured along:the‘plats 1eﬁgth) whiéh begins to fofm un-
der critiéal sheaf o#h be computed fbr”thé ideai orthogonalé
anisotropic plate With_one of_ﬁhe two‘équaﬁiéps:, |

lyp = Cg' & E’ —cgtaJe (4a)
v Ds
opta /2ot e/ (4b)

2

It

it

bgp

The absolutevfaétofs‘ oa' and cp! are,llike oaAand Cp, depend—
en% on * (férmﬁla 3) and can be read from Figures 6a and 6b.
(Factor cg!' 1is used to determine‘(for 4 é 1)“the halféﬁave
length forming on the elastic surface at wrinkling (lxr = cg!

aé 0), Figure 6a; and cp' (for & < 1)' to determine the half—
wave length at wrinkling (lxr = op! awfﬁs, 'Figure 8b.) When

8 > 1Y, equation (4a), when ¢ < 1, equation (4b) should be used.

The approximate formulas for the wave lengths with constants
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Ga'lo = 2.05 and 1.38, +eplo = 1.92 and - 1.16
co'y = 0.44 " 0.38, Cpiy = 0.57 " 0.9
ople =0 . " 0.4
are
cyt = dafoi+ Cy! % (from % = 0 to % = 1)
cpt = Cplo + Opli ¥° - Opta SR . 0 "9=1).

for elastically and rigidly constrained support.

5. Example.— A 1ong,‘f1af, rectangular duralumin piate'bf'
2a = 100 cm width Cvmd 5 = 0.05 cﬁ thicknesé, like the croééﬁ
section shown in Flgure 7 (along X—-ax 18, plate length) is equip-
ped with riveted angle plates which run parallel to the y—axis
(plate width alrectlon). The even spacing (distance at center)
of tac stiffeners is d = 4.0 cm. ©No stiffeners are provided
in the x-axis.

We disregard the transverse elongation for the present, so
that Poisson's ratio becomes Vv = 0; of course, this does not
hold good when the shear modulus'of the material is ¢ =% E;

E = Young'!s modulus. |

Owing to the difficulty of corréot intérpretation of the
elastic edge restrain$, it is ﬁormpre fhan a rough calculation,
so that our 31mp11fy1ﬁg asaumptlon is “ust1¢1able Mareover,
the cross stress in a relnforced plaue is decidedly less effec-
tive than in a strictly homogeneous plate.

The angle plates have no appreciable effect on bending
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stiffness D 80 that we can substitute that of the nonrein-

1

forced plate, which, ignoring the trangverse elongation, yields

L I o T4
Dl T 13

_ 7 X 10° X 0:05°
12

I

i xAi.dé kg om
E = 700,000 kg/om2., |
The st;ffeﬁers hava,likaWise nqvma;ked“effect on the &isu
tortion stiffness, soAthat (omitting vy and vy):
D, = 3(6T)xy
E &%

IR L
o= 7’x.l.0%;kg ém N
The cross—sectional inertia wmoment of four angle plates with re-
spect to the x-axis is .
J =.O.665 cm#4,
sb thdt ﬁhe mean bénding stiffness b; becomeé

a 12

N PN
f' . “‘
Dy =

=7 X 10° X 0:665 + 7 x 1,04

7 X 1664 kg om

i

According to (3)

o= 7 x4/ 1.04 X 1664
o 7 x 1,04

40.

31
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‘The figures, 3a-.and 3b, yleld the corresponding value: :

‘ Ggf =- 8.35 (free support),
and '

i

Cge = 15.35 (rigld edge restraint),

go the shear strength qomputed.with (1a) becomes:

_ o7 X/ 1,04 X 18648

it

6.1 kg/om (free support),

and
. : . W x 1.04 X 16643 . .
tgpe = 15,85 x LS 664" - .

11

A

11.35 kg/om (rigid restraint).

To determine the distance ,}k? of the junction lines on the
elastic surface, we resort to the factors given in Figures Ba and
6b. For & = 40, we substitute the figures for & = o
Gals = 2.05
cagle = 1.38

and

where, according to (4&),'thé,half—wave'iength is defined as

; /1.0
hrg = 205 X950/ Tees

= 16.3 cm
kr e x50/ Teed
= lo.90m. : v

In the present case the half-wave 1ehgth exceeds the center
distance 4 of the stiffeners; moreover, the distribution of

the reinforcements is coﬁparably uniform within length 1, so
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that the calculated sheas sﬁrengﬁﬁ.should be quite accurate.

In a subsequent sectidﬁ (ib;.page 49) (Figures 15a and 15b),
we show that a slight deViation‘(iﬁcféaéeiér decrease) in half-
wave length -~ in a homogeneous Qrthogoﬁal—anisotropic plate -~
presupposes an increase in shear load only sliwhtly lower than
that of the shear strength. A certaLn dlscrepamcy from the flg;
ure given by formula (4) alwayu w1ll ox1st unlcss the rein-
forcements ore distributed perfectly evenly and W1th vanlshlng;’
ly smell spacing.

Haturelly, we must not cogclude}herefIOm thHat the shear
gtrength computed by equation (1) would always be 'a little too
low. The local reinforcements affect, the position of the junc-
tion linecs (at varlapce with the %pprox1mate caloulatlon) 80
that the reﬂnforced p01nts on the pllte are subjected to lower
form changeu than the. approximation calls for, and the whole
work of deflection at ernkllng,.and thereby the shear strength,
is perhaps lower than the calouidtion ﬁarrants.

In order to define the influence -of the reinforcihg plates
on the shear strength we examine the nonreinforééd 0.5 mm thick
duralumin plate (plate strip without angle piﬁte; 2a = 100 cm).
Again digregarding"the,transversé elbngation,“the plate stiff-

ness is written as

=7 X 1.04 g cm

Including the transverse elongation, we have instead of E 6%/13,
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for D (D, Dy, Dg):
12 (1 - v2)

»

" The D value now is multiplied by a factor

= 1
Cy = —
1 - v2

" Poisson's ratio v for metals is
| s o to 0.3
Tﬁiéloofiesﬁonds'to faotor' o B
cy .= 1.07 to 1.10.
With ¢, = 1.07 for duralumin, we obtain*

D=1,07 x7 x 1,04 = 7.8 kg on.

Since . % = 1, we have:
typ = 13.165 X gég‘ = 0.041 kg/¢m (freely supported)
tgre=. 33.15 X gég' = 0.069 kg/cm {rigidly restrained)
Tkr £= %f%%; a = 0.82 kg/cm
_ 0.089 -
Tere= oo o= 1.38 kg/cm
. oy
hepe= .49 x 50 / £:8 = 124.5 om |
lire = 1.66 X 5O =  83.0 cm.

¥Bending and distortion tests on duralumin plates yielded as high
a8 v = 0.24. (Compare Z. f. Tech. Physik, Vol. 8, 1937, pp. 355-
359t 1. Bergstrasser, "Determinaticn of the Two Elastic Constants
in Platelike Bodies,“S The equivalent of v = 0.24 would be

cy = 1.06.
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For v =0, the figures for tyr and. Tyy would be 7%
lower; 1y, would remain unchanged.

The critical shear stress of the nonreinforced strip lying
between the angle plates caﬁ be calculated in the same manner
- (Fig.. 7). The half-width of these strips is less than 1 cm.
Calgulafing without restraint, we obtaih a critical shear

stress which in any case is higher than

i

tlep 13.165 X 17-8

02

It

103 kg/cm
As is to be expected, this figure is far above that found:for
the whole reinforced.platé, _ | .

The conformity of very thin iéotropic homogéneous plates
with our assumptions set up in the dévelopment of the formulas -
. plate thickness small compared to length .and width, and small
elastic deflection relative to plate thickness — may lead one
to conclude that thefcompgted elagtic surface would appear par-
ticularly well in tests with very thin ptates. This, however,
- is not always frue, because such plates c@nnot be manufactured
~absolutely flat and show swmall bulgee waich, owing to the thin-

nesg of the materidl-must be taken into consideration.



20 F.A.C.A. Technical Hemorandum No. 602
III. Inves*ti gation

6. The differential equation of the elastic surface of an

orthogonal-anisotropic plate.— Let

P = load per unit of plate area acting perpendicularly
to the median plene;

My and My = bending moménts per unit of length acting on
areas of interscection 6 dx and O dy;

ny = ny = H = ghear moments per unit of length acting on
the -areas of intersection.

The equation of equilibrium vetween load p and moments
Mg, My, and H then reads:

Uy  39°H 27 Iy | '
- + + + p =0
3 x® dxy- 3Y?, P Ot (5)

Vo assumptions as to the elastic properties of the plate
were made, and the equation applies equally to a plate with any
elastic property or with any elongation in plate area.

Each of these moments, My, My, and H induces certain elas-
tic deformations, but of which only the deformations w (in the
direction of the z axis, positive, downward) hold any particular
interest for us. With only a constant bending moment M, (that
is, Uy, = H = 0) acting in an arbitrarily long part of the
plate, the result - when all points of the plate are identical
in elastic property, i.e., the plate is homogeneous -~ is
1) a constant curvature (about y—axis) aiong x—axis}

2) a certain (lower) curvature (about x-axis) in the y-direction,

due to the transverse elongation. So in order to describe
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this form change, we naturally must know the two necessary quan-
tities on which the elastic propertiés of the material depend
(constant in homogeneous materials). This applies to moment My
also. With oniy H (that is, Ny = My = 0), active, a distor-
tion results. H acts on all four intersections (86 dx and

6 dy) of the assumedly cut-out. plate elements, which, to de-
scribe this attitude of deformation, requires only one elastic
guantity (a constant in homogencous material).

The special (orthogonal) anisotropy of the plate is inferred
from the absence of'distortion by the bending moments My or My,
and from the abéenoe of deflection by diétortion moment H with
respect to the X, ¥ axes,‘ Owing to the limitation to small de—
fleotioné w, the ensuing small quanﬁitiéé are negligible and
the curvature is>éipressed as Sig and %ig ’ éna the distor-

: ‘ _— : X ; ¥y

-
tion as S W_

0Xay ' ‘
Wow the described elastic properties of the ortiaogonal-

anisotropic plate can be written as

ARw_ o oy v Yo )
3 x° (Br), ~* (& v 7
O° w 1 Vg .
O W e My + o E— U (6
a yg (EJ)y y (EJ)X 0 )
w1
) 3}{ oy 3 (GJ)Xy

J

with Py and % as certain ideal Poisson's ratios. Resolving

these equations according to My, My and H, we have
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(7)) 2w LR wy |
' ~vg vy '3 X 3y
(zJ) F w | P wN
W = — ¥ 4+ v (7)
v 1 - vy v <a y3 X3 x2> f
2” |
CH == 3 (aJ), L)

Xy ax oy /

The five elastic quantities (EJ)X, (E7)y, (GJ)xy, vz and
vy now are defined Dby formulaﬁ,(é)_and (7); thé,elastic'quanti~
- ties need not even be constants; they might alsd‘be funCtions of
the locus (nonhomogeneous plgte), Accordingly, these elastic
quantities must e defined by experiments in bending and distor-
tion in -which only ona_consﬁanp bending_and distortion moment is
active. .Poissonfs“ratio_ vx‘and Yy _is,generally low enough %o
be set at zero for the conventional plate reinfbroements. Be-
ginniﬂg,_ ag in tbe:case of the flat, homogeneous plate, with
simple 1éad cases (cen31on and &near 1oad1ng) and deriving equa~
tions (6) by applying some known theorem (Hook e, Bernoulli), the
five elastic quantities can be deferminedlfrcm the tension and
shear load attitudes. But‘inasmuch as this does not enter into
the question in tﬁé majofify’of theisystemé.considered here, we
assume these elastic quantities defined by (6) and (7).

The work of form change of an orthogoﬁal—anisotropic plate,
loaded with moments :MX and My is unaffected by the sequence
in which My and ly are used, and the elastic quantities yield,

according to lMaxwell and Betti, the following relation,
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vy (EJ)x = vx (EJ)y
Thus the orthogonal anisotropy of a thin plate is charac-
terized by four elastic quantities, the case of general anisot-
ropy of a thin plate by six, and the three-dimensional body by
21 quantities. | ‘
Putting, briefly5
] (EJ)X__"" T . T ﬁ

1 »
e Uy uy

_(m1)y N o o '.}“ . (8)
1 - vy Vy ' . | T
(81)y , (=)

3 D, = Ve _ — + 4 (GJ :
8 X:--1 - Uy Dy o "1 é-vx-vy g _)xy

(=)
w
it

b

and inserting formilas (7) in formula (5) the differential equa-

tion of %he elastic surface of a thin orthogonal-anisotropic
: : p

plate reads

By
'S

4
a W

w
: — - 9
PP p =0 (9)

d y*

Dy S5 + 2D, o

7. Stability equation, edge equations and theorem for re-

solving the differential equation.- Subjécting the edges of an

elastic, orthogonal-anisotropic strip of infinite length and of
da width to an evenly distributed shear t, produces at first
a pure shear stress attitude in the plate, but as soon as

reaches a certain magnitude, the platevbegins to buckle, This

limiting casc of the stability is given for the lowest load
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t (tyxp), and equation (9} is complied with when we set

S Fw
-— = -+ t '
P R axey
and (9) becomes o 4 B
3*w 3w o*w £ w _
D + 3D; ————= + D + 2t =0 10
b axe ® dx23y? ® dy* ox oy (20)

Since the strip is of infinite length it is necessary that
the solution be periodic in the longitudinal direction (x).
According to Southwell and Skan, we wrire

ik X Te= % ih 1’%;

w=e & § Cpe . o (11)
T=2
where k is to be real, and the‘quantities  A real or complex.

This equation, written in (10) then yields

: X e s X .
i K= r= % 1>\1- K4" 2 }\2
K T
e & | % Ohre 2 [D &+ 2Dy =0 —E= +
2 T ) 1 a§ ~3 ae az
Ap® K Ap
T .
+ — ——— ] =
"Dy — 3t »a‘aJ 0

Now we add the real quantities (Compare formula (2))

D .
= el —_— """l T o= 3
M p D - a,nd 1 ) -

and we arrive at the characteristic equation with the unknown
“factor A: . - R
M2 Uk N -3 1 kAFPp Kk =0 (12)

With Ay, Az, Aa, and As as the roots of this formula, we have

(M= Ag) (M=) (M= ha) (A= X)) =0 (122)
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Since the term with A3 - does not appear in.(12), as a compari-
son of the coefficients in (12) and (12a) shows, the four roots
must comply with

Mo+ A2+ A+ M= 0,

and we express them as

7.\.1 = (+ 1 + n) )

Ao = U (+ 1l - n) B .
L S (13)
>\3 = o (-1 +m . : S
Ae = & (= 1 - m)

.
The coefficicnts in (12) (+ 2 w k¥, =3 7, K and + p k*)
ere rcal; if this equation has a complex instead of real root,
the conjugate-complex number is a root also. The result is
that m and n are either real or purely:'imaginary (that is, in
no case somplex), end o always real.
A comparison of the‘faétors in (12) with those in (12a)

yields for A, that ig, for a, m and n

D
a) a® (- 3 - 1n% -m?) =3 UK =3 g K"
2
D _
D) ot (1-wf) (1-me)=p k= LT (14)
=]
c) o (p® - ) =mk = 2ok
D, |

" and further relations bétween" a, m, and n furnish the edge.
equations.
The plate strip is supported on the edges y =+ a and

y = - a, and we assume that there is no deflection on these
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edges. Now, the first two equations are

‘a) (W)y‘:v-i-a, =0

(15)
b) (W)y:-a =

!
o

This conforms to the supposition of bending-resistant edge sup-
ports.*

Moreover, we must determine the effect of the type of sup-

port on the tangent slope %@ of the elastic surface at the
. J .

edges. If the support is on knife-edges the plate is nd>t pre-

*The inclusion of béndlig of the longitudinal support could be
accomplished by means of one of the ¢ollow1nv equations for the
elastic line of the edge suppo+t with (E'Jb7 bendlng stiffness,

namely +
(8t Jp) (ZX) = - 1
OX ’y:i‘a
or
(2t Jy) (a LA =

ox* /y_ +,
In the first formula the bending moment at point =x. of the edge
suppert 1s oalﬁulated as the sum of all turning moments of the
cross stress and of the turning moment "H of the plate at
the cut-off par% that is, when the girder is nowhere supported:

X o
i =/ [Qp (x- &) +Hl at

In the seoond equation the loading p pér unit of length, com-
prises the cross stress Qy and the Qerivative of H, that is:

— o B\
= (o * F5) 1

" The edge girder need no support beoauue, due to the periodic
oharmcter “of the solution, the edge stresses are in equilibrium.
If, however, a support is provided, the latter must be evenly
spaced (1) so as %o conform to the periodic solution (equation
(11) ) end, in addition, the solution is generally narrowed be-
cause of the added formula,

(W)yzifa, x=nl = 0
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vented from suph_a sippe-bffits elasticﬂsurfaoe. But as a rule,
the plate is sé fastehed to the edge sﬁpport that, by perfect
attachment, this supﬁért distdrﬁs”to an amouﬁt'equiﬁalent to
angle gg of the elastic surfacé on the besring. If the edge
support offers an elasﬁio#fesis%énce égainst this distortion,

it produces bending moments My in the plate and dis%drtion mo-
ments (per unit. length) -in the edge_su@port of‘the'sameféize as
the plate bending.momepts, and the restraint is elastic. Now

it may be 1nferred that "the 1ncrease 1n dlstortlon dngle (per
unit length of support axisy or, of uhe edge line) of the edge
support is at every p01nt pronortlonml to the (1n81de) turning
moment of the edge support.. ”hls corresnopds, strictly speakin 12,
to a support of oonstant, round orous section Wlth unlform dis—
tribution of the turnlng moments over the cross sectlonal per-
iphery. PRut in flfst approx1matlon it could equally be applied
to other than round cross sections.

At the‘édge v = + a the distortion angle at ahy point is

N o

and the increase in.distortion angle per unit length is

as _ Fwy
d x axayvy

the distortion load: my ”appliedfto.ﬁhé support per unit length
now equals tihe bending moment (My)y._._.+a of the plate; hence,

according to (7) and (8):



28 N.A.C.A:; Technical Memorandum No. 803

Fowy W\
=~ D, (2% - Lw
md 2 3 72 /y‘=+a Vx Do ( %2 /y_+a_

The inside dlstortlon momenu actlnv at 901ﬁt X is found by in—
tegrating over the.@1stortlon~logd _md, asuumlag tne edge sup-—
Dort to be unprotected against dlsto tlon. '

We erte » A
® w C - 'é .
Mg = - ( \ _+UXD2.<__ ‘]dx)*
oo y_ =t+a, : 0 ® =/ y*+a
with (G'Jg) as distgrtion resistanoe,lwe'have

d.'S I\u.d_
?G' Jd

P

and, by 1ﬁsert1ng the 00¢respond1ng values

x

-BQW‘A - L. L. 7 D o N 4
(B BYIY=+a G! Jgq) - 7R (E)YBJV=%a
] .
o ovg D (2-EY  Jax (1sc
X 2 aXQ ,ry_ to, ( )

For edge y = - a the oonformal equation (since distortion

2
§§T§§ has o corresponding distortion moment mg = - (My)y——g

is

*The integration can be avoided, as in the preceding footnote,
by using anotner (equivalent) form of torsion balance of the
edge support, namely,

(G J3) gxg =.’-"-;(."md

instead as above

(et Jq) %i— = Mg = --wfo ‘mg dx.

5
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(E8)  srgRmim@En
Y =~ —-m
dx dy y=—a (¢ Jd) Y S
+ vx D, (élgz Jd x (154)
y=—a

Yow we insert (11) in (15a) to (15d) and have:

| (2,0) eiK§ »zgf T
(0,a) &, 3 zgj Or Mp &5
BRI 2 "[Da E or kp? &*HPr ¥
S ';f':;"x D, Kzigjcr etitry |

In the terms with double signs, the upper sign (equations
a and ¢) is valid once only in each equation, and then the lower

sign for equations b and d. “The last term in (c,d) disappears

-according to e€quation (a,b).  The relation for = eihr is
Fihr U gog Xf + 1 sin A,
and we abbreviate
_ D, a
Now the ecquations (a,b) and (c,d) become:
IT=4% =%
(a,b) (2, Cpcos M i B Op sin N =
/I’:lL . =4 . \
(c,d) "'.(rél Cp Ap cO8 Ap +e:rZ:1 Cy Mo sin krj

T=4 .

=4 .
i <r§-1 Cp M sin A, -<.z Cp M COS ?\I.>:O
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Setting the real and the imsginary parts of this equation to

zero, the four-edge equations now read

, r=4 N\
‘a) LI, Op cos Ay =0
r=4
b) I'§1 Cr sin )‘vr o ‘ = 0
r=4 r= ' (16)
¢) I Op Mpocoshpte I Cp M sin M = 0
=4 T=
a) 2, Cp -Mp 8in Ap = € r§ Cpr Ap® cos Ap = 0 )

These are four homogeneous equations with the unknown O
factors. To assure nondisappearing C values, the determinant
of the denominator must disappear. This yields a transcendent
equation with the four A roofs; by introducing (13) we estab-
lish a relation between o, n, m, and €.

¢ depends on the form of the edge supports and may, accord-
ing to (G? Jg) assume any value between zero and infinity.

To simplify the calculation, we use only these two limiting val-
ues of € in the subsequent examination.

For
€ = 0,

it corresponds to an infinitely high (G' Jg), value, that is,

an edge rigid in distortion; this 1s the case of rigid restraint

oW

of the elastic
oy

(case "e"), where the angle of tangent slope
surface equals zero at the edge.

Wow we divide (16c¢c) and (16d) by €, and make

% = 0, that is, ¢ = &,
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which corresponds to the knife-edge support (free support, case
nf) of the platevedge, and Where bending moment (My)yzia dis-
appears.

When we insert the given values, and determinant of the de-
hominator becomgsvzero, the relations between a, n, and. m, for

cases "f' and "e" are:

f} 8 nmlcos 2 no cos 2 ma - cos 4 a A
efa (n® +mR) - (n? - m2)®] sin3nasin3ma =0
(by free support)
o (17)

e) 2nmlcos 2nacos 23ma ~ cos 4 A

-~ {4 - ~m]gin3na sin 3 ma =0

(by rigid restraint)

8. The critical shear stress.— The equation (14) oombinéd

with one of (17) yvield the relations between D,, Dy, D3, a
and that shear stfeés t, at which the pure shear stress ceases
to present a stable atﬁitude of equilibrium, but where the equi-
librium ecquations yield a possible state of deflection conforma~
bly to equation (ll). Hereby it is assumed that the stresses
consistent with this attitude do not exceed the proportionai
elastic limit..

The, four equations - (1l4a, b, ¢}, (17f) and (17e), respec-
tively, contain five unknown factors: k, o, n, m, and t. The
K value determines, in accordance with equation (11), the wave

length of the elastic surface in the direction of axis X.

In a definite system with definite Dy, Dz, Dz, and a, we
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may at first assume an arbitrery wave length, or a suitable K,
and then detérmine the respective t from the four equations.
The desired shear strength +typp is the lowest t value at
which the plate commences to wrinkle, or in other words, where
a function w (equation 11) diffevent from zero, prevails.

To extend the applicability of the systems considered here
(for arbitrary D, Dy, Dy, and a) we transform the equations.-
We introduce in (14) the factor & for. the orthogonal—anisotrop~
ic plate defined from equation (3)

s /D D _Jp
Dy Mo

which may assume any real value from zero to infinity. Then

we introduce the parameters

.
2t /-3: &= 5 @)
0) = %’j (gf =u (% ’ ' (18)
- L
3 J

ow we divide  (17) into a transcendent function ¢ eguivalent
for cases f and e, which contains o, m, and n, and into
an algebraic function V different for cases f and e, and
which contains n and m- only.

The result is
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- 1 2t mR :%:. Caamj_ - C'b
p) (1 - n?) (1 = mR) = C;" and = ¢° C_ba

D, D2 _ a2 (n® - m?)
: X

2 N

' Do D, o2 (n? - w?)

and =

a2ty

33

(19)

/

With Bergmann and Reissner designations (19¢) becomes:

t a® _ 0% (n® - m®) _ e ® (n?® - m?)

.' 2 t..2 - .2
e =T © 07 = )

‘ VS
f) ¢ =¥p (by free support),
‘e) A$A=ﬁwe (by iigid restraint);
it denotes -

o gin 2 n o 8in 2 m o
cog 2 nacos 2 ma - cos 40

it

i

w tan 31 & tan 3 m @

-if we make

0 L
1 - cos 4 &
,+..C08 3N cos 3 ma
and
Vo = 8 nn
T2 4 (o2 +m2) - (02 - m2)®
e 4.5 (ne +, me)‘ :

(20)
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This is simplified with

a) O = a?'(3%r~ mili '
) .Gb=ae§%;m2) | (e

it

Oavfg' (See equation 18b),

and the shear strength % of equation (19¢) now yields

4
' D, D,° 2 <
a) t = Ca 12 2 t a” _ Ca, / 0
. a D
. 2 N
a” Dy :

For the case that % represents the lowest value actually

obtainable, i.e., shear strength %y, we have

Y
. D D=3 tkI’ a= 4 —
8) " gy = Cp Tyt "’“"ﬁ;""‘"oa/p
N4 D, D 'tk 8.2 '
ko) 4 = C AT - ......,E...-..,.- = C M
) kT b T2 T LY
when
a) o, =[%(n® - w®)y
a V[Z— min , :
and a (211)
: = [ &2 (n® = rf
V&

These are values Whiéh, as we shallishow, may be represented as
simple functions of &, ‘

Now we proceed as follows:- We detérmine' n and m as terms
of ¥ and of ¢, or & , conformdlly.ﬁo (19a) and (19D);
then we compute the corresponding o from (20f) or (20e), and

Op and Cp from (31). O and Op assume, as {5 and § func-
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tions, certain minimums for each ¢ (value). These minimums
represent the desired coéffiqieﬁﬁs Cg and cb.r
Now we ascertain whether 0y and Op and théreby t as

functions of ¢ and & (and &) are so formed that these func—
tions represent a solution of equatiqn (11) when ¢ assumes any
value between zero and infinity; tﬂen'ﬁé rmast find the range of
ts and &, as functions and their minimum value.

We begin with %he partial functions which comprise function
0p, (and Opy) - equations (2la) and (31b).

- Frqm7(19a)-and (190) we.calculate n and m as well as

(2 + m2), (n® - m?), and n m:

H

ne + m2 o g
—— - )

and = - (1 + &)

N2 ~ m? PN 2
- ay .
—y— = * v//<2 + -2 Cs

and = + yfiz + P = R
ne + m n® - me
n = % V/ 5 a4 07 5
~‘*’/ (1+Ca>+/(?+—€@\2«-§2»
- - T A 4 &
and. = i,//~ (1 + &) +~¢/(2 + P - G L (22)

m = x '// n® + w? _ n? — nf

il
H-
1
N
H
+ .
e
*|g
N
I )
i::r~:‘
fav]
+
SN
~ Ay
ue
0,
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and =&,/ - (1+ &) -/ (8+ &) -8 &°
G
_ - Plal
and = /o2 lf -3¢ -3 }

According to assumption (equafions 1i and 13) K and Q,
as well aé & (equation 13) are real; thus it follows frbm (18)
that {5 and {y are'alwgys,réalland pésitive, But, according
to (22), (n® + m®) are aiwgys,;eal (énd‘negafive). .So n and
m are either real or pﬁrely im@ginary,}butMnever‘qomplex (Com~
pare equation 13); this is feasible only ﬁhen (n® - m®) is

real also; or, in other words, (Sompare eguation .23) when

L

gll:‘“e
\‘-—4/(\)
v

(2 +
AN

*

Then we can write
. 3 +

ol
RY

’Ca .

For ¢S 1 this equation is complied with for every posi-

tive ¢, while ¢ >1 yields -
¢ 39 (_ 2
a - ACEnE

o T

A

)

1+

o

and (for &'>f1) | (23)

n

For these {5 and {p values,
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Figures 8a and 8b show n and m as ordinates plotted
against the abscissas {5 and {p with & as parameter. In it-
self (aside from the limiting cases) one of these two would suf-
fice ({5 or {y, as abscissa). But for ¢ > 1 the numerical
calculation is mofe simple when lﬁa »is used as variable, but
for @& < 1; {p is prefefable. Accordingly, the curves are
more comprehensive when we select two different variabies {a

L= b and the shape

and ‘8, for different 4. Fér & =1,.
of the curves is the same (Compare ‘equations. 18 and 22).

Within the range of {5 and &, considered here, "and whose
upper limit for ¢ >1 is-given in equation (83), m is always
imaginary (equation 23). §%$£'imégi£§f§mv§lﬁés of mand n we

write, for short:

mn =

BlE

1=
H
bl

OJ:(énd~:§b"= 0) m has (independent of &)

For Cé

the value n = /3.
When (g ({p) increases, m increases at first (except

for % =), For 1= ¢ £ w, m becomes by

maximur
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and then drops to a minimum:

_111:

whichwis reached by the limit value ¢y in (33). For

0S¢ = 1, ‘m  tends uniformly to infinity. "For {3 =0 (&, = 0)

n  is maximum
| ; Nyax = + 1 (independent of ).

As 5(typ) increases, n remains-at first real and then
drops evenly to a minimum n = O, which with a perpendicular

curve tangent is reached at

C~1+,\/1+3193W
a = 5 _
and - > (25)
§_1+'~/l+562
b = ,
82 Y,

When (5(lp) exceeds this value, 1n becomes imaginary. For the
highest {5 value considered here (equation 33) curve n with
perpendicular tangent changes into curve m. Likewise, of im-

portance are functions

X, n?-—mz\

and A M G (26)
o S
%y T

illustrated in Figures (9a) and (9b). Both functions have an

infinite value when ({5 = 0 and { = 0. For & > 1, /,
turns uniformly to zmero, which it reaches with perpendicular tan-

gent by
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T (Compare equation 23).

1 - =
For & < 1, 'Xb reaches a minimum

Ty win = 4/ 2+ /1= 53

at
0
{p = —— - : e (281)
W/ 1 ~ 92
Peglnnlng at thls ‘minizum X goes ovenly to 1nf1n1ty when

{p 1ncreases _&’; 1 ylelds a. horizontal asymptote Wlth ordl-
nate 4 S,, Whlle X 5 and A p decrease when _*aggb) increases
beglnnlng af {a = 0 and (tp = 0), @_.and 0?2 inorqﬁseuandA
approach 1nf1nity,,s§,ﬁhat_the product,az.fxa;(and az Xy
(Compare equation 21) ;assumes a minimum value.

Every 4 value andnefery 'Ca(§b> vaiue within the range
defined in (23) has a certain pair'of n- and' m , values {See
equation 8) and, if beginning at ¢y = 0 (& = 0), n ié at
first real and m imagiﬂarj. This is why tﬁe letter 1 occurs
in the numerator of ¢ and ¥ in (20), and which is expressed by

® sin 2 na® gin 2 ma

i c¢os 2ncos 2 ma - cos 4 x

it

tan @ na tan 2 @ a w

The function ®/i* 1is shown plotted in“FigureilO for an arbi-

trarily chosen p%ir'(aCCordiﬂg to equation 23) n (=0.87)  and

*The aim is to express that m as imaginery. If m and h are
imaginary the expression ¢/i? (1Pstead of ~®) is used. V/i
and V/i® are used in the same manner. ‘ o
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m (= 1.72) which corresponds to & = 10; {5 = 0.98; the figure
also includes tan 2 n o and Wf/i and We/i plotted against
o (See equation 20). In a subsequent calculation of the criti-
cal shear stress we iﬁtehd to show that n is never much lower
than "one'; and even for materially lower n the course of
function ®/i is not much different from that on Figure 10.

The zero points of the function are usually at o values which
form an integral multiple of m/3n, while the functions at
those o values where the denominator disappears, have perpen-
dicular asymptofes and change from + «® to =~ ®, With a =0
denominator and numerator disappear; double differentiation of

numerator and denominator of function ¢ yields

(CP) - 2 nn
=0 4& -~ (n2 + m?)

This, according to (20) is the value for V., so that

v
), -5

i,

By a=0 function ¢Yi. has a horizontal tangent as be-

comes evident for the reason that

o(a) = 9(-a)

so that the function is symmetrical with respect to the ordinate
axis. From a = 0, ¢ goes evenly toward infinity. When

1 >n >2/3 there is an asymptote for a value a, which is

somewhat higher than % %;V in any case there is an asymptote
near this value and another asymptote near % %, and between
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the two @ intersects the axls of the abscissa when a =

ool
=14

Each o/i function with a pair of =n, m values has cgrtaih
Vr/i and Ve/i values (equatlon 20) Which are shown in Fiéurés
12a and 12b plotted against & and ((lp); Ve/i is always neg-
ative, and Vg/i positive. In Figure 10, V¢/i and We/i, .
beinélindependept from a, are parallels of the éx1s of absclssa,
ndvaf a = O the-straight Ve/i is a tanment of functlon ..
The interscctlons of the straignht ¥ Wlth curve ¢ yleld a as :
solution of equation (20) For (a O (Cb = O), Wf/l and We/l
yleld an absolute max1mum, Wnloh is equlvalent for every '8 _
value. | | -

For other possible pairs of‘ n aﬁd m’ tnen in Flgure 10
the same conditions preveil, When a 1s used as nultlple of T /n;
the position of the perpehdlcular asymptote and the ordinate of
(®)p=p 1is slightly shifted. For n .values near'zero the
~straighté"\lff/i and Ve/i are veryvcloSetﬁqithe'axis of the
abscissa, and coincide, 1ike ¢, with this axis when n = O.
Aside from this special case the solutions of equations /i =
Wf/i yield’d/-valués which are slightly’ lower than the integral
multiple of ' 7/2n, while = ¢/i = Vg/i ¥ields, aside from a = 0,
othei o values which are slightly higher than the. integral rmul-
tiple of - T/2n. -

Being able to compute o by approximation,. facilitates the

solution. According to (20) @/1 can be decompoged into

2= tan 23 nmo tan 2 m o W
5 =gl &
W = . 1

1 cog 4 o

T Cos 2 na COS @ wa
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tan 2 m o lies between O end 1; when 2 m o increases it ap-
proaohes-"one" véry quickly.'.Since m here is greater than n
(in most cases twice as great'éé 'n), taa 23 m a is not much
smaller than "one" for a ® /2 n  (for example,/%%%'z 0.999993).
The _w“vall_ue.f‘l‘or a=1/8m, 3/8m, 5/8 T, etc. is "one" (un-
ﬂleéﬁ n = 1); because then cos 46 = 0. By a = 1/4 x 7 /n,
3/4 x ﬂ/n, 5}4 X m/n, etc., 6= 0, because cos 3 n & = O.
For; q'valﬁes which satisfy equa%ioﬁ‘ cos 40 = 00512 na ¢cos

3 m o, ® =.i;r, becauseﬁthe denominator of (ﬁudisappears;

On these ﬁéinﬁslwe find the asymptotes of curve ®/i. Figure 11
shows'$0 plotted against the ®/i curve of Figure 10. Near

o ;.ﬁ/é n;i.ﬁe éppfoximate w/i as |

Q“z tan 3 n «.
i o

Having defined an approximate value for a we compute
w tan 8 m & and estimate the error of the approximation. The
dotted line in Figure 10 represents the approximation curve
tan 3 n Q. |

_0f all feasible solutions of equation ¢ =V, the solutions

o near  T/2 n represent only those values which yield the
critical shear stress. Presuming this assertion correct,  the
functions C, = 637(a and Cp = az)(b become minimum.

When ¢ > 1, . then o and a2 are finite for {5 = 0, and
increase evenly when ({, increases; for n becomes smaller as

¢

o, increases (Compare Figure 8k). Since the changes of Ve
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and Ve in eguation o/i = V¥/i (when ¢, changes) have a rel—

a
atively small eifect on the a solutions, the & values are ap-
proxingtely inversely proportional to n and thus increase
with {,; when =n goes to zero, o becomes infinite. But g
decreases evenlyiin this same range from ‘Xa = oo (for (g = O
and assumes for {5, where n =0 (8ee equation 25) a finite,
real value. TFor {5, = 0 and for 'éa conformal to (35), the
product of a® and 'Xa becomes also infinite, while between it
it assumes finite values. |

For ¢ < 1 the Yp function becomes infinite at {y = 0
and " {y, =; between these two is the minimum indicated by (261)
& becomes finite for Cb = Q. Aside from the limiting case
% = 0, n decreases as (; increases; when.’ﬁb approaches
the value given by‘(BS) — where n = 0 - fthen 0o Dbecomes infi-
nite. Between this value of {y and {r, = 0 the product of

~functions @* and Yp -~ has a minimum value. |

That  there is a minimum for a® Yp even if & = 0, was
proved by Bergmann and Reissner.

When n is very small, o approasches infinity. When

‘n = O, . any O satisfies eqguation /i = V/i.

Whet - {;(¢y)  increases beyond the value given in (35), for
which:wn = 0, then n Tecomes imaginary. Since in this range
(n® +m®) and Y and Yp (26) decrease still further, it
seems feasible that the minimum of 0Og(C0p) (equation 21) lies in

just this range. With (234), equation (30) now becomes
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@ _.'lfff and = \Ve
i® & i®
3; =wtan 8 n a tan 2 ma
l D . 3 — ooy —
® = L
1 - cos 4 o
cos 3 na cos 3 ma
Ve _ 8 nm
= - g ar
£ 4 (n° +n®) + (° - 2®)
Ve _ 2anm
i 4+ (n® + m®)

Now w and the product ic_a_m_é 2 no j__@g 2 nm o are a,lzwa,ys
posi_tivé, Q01lsequenfcly o/i® is positiﬂ*e aléﬁ. Buf Ve/i®  is
always negative. In the case‘_pf‘free. support this range of
to({p) vields no solution for a, except when n=0 (n=0).
Otherwise a _s'olution Wouid be praéticable only. in. the case of
rigid restraint, because Yo/i® is always lpositive.

The shape of‘ curve ©/i® with respect to o 1s like that
of curve ©/i; Figure 13 shows @/i® and tan 2 na tan 2 m a
and W plotted against o for ‘-2 = 0.63, m = 1.58 (equivalent
to o = 5, {g = 3.8); and for n = 1; m = 1 (equivalent to
Y = o, lg = 2.0),“ The étraight line Ve¢/i° is again (as Ve/i
by CP/i). the tangen’c to curve 9/i® at point o = 0. While
¢/i differs only slightly from fan 2 na when a increases,
the ©/i® function procseds‘like the function tan 2 no tan 3
m o (in F‘i_gureulz)-,‘ that is, approaches "one" asymptotically.
‘The difference between % /1 and function ten 2 n o tan 23 mo

is expressed in ®, which is also shown in Figure 13. When n
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becomes very small, @/iz again (like @/i) approaches the
axis of the.ébSGiésa,‘and coincides with it when n = 0 (n = 0).
By tae waximum value of {, for n and m as given by (23),
we obtain value "one" when ¢ = w. All @/i? urves for
% = lie between this upper limit curve and the axis of ab-
scissa. For smaller ¢ the limit curve (where n=m2Z 1)
shifts upward, n and m Decome infinite when ¢ deoreéses and
{5 dincreases. The linit curve ¢/i® (where n = m) approaches
when < decreases toward "one," thevst:aightvline with the ordi-
nate "one." It will be secn that in ihis iénge (for any n and
Q) the only solution of”the traﬁscendent'equation is the wvalue
a =0 for every 4 value. Forr/glz Q any valﬁe Ciifulfills
the equation /i =‘W/i? (like' @/i_;‘W/i)._

The next proﬂlem is td fin@ Which.of the Various solutions
o yields the minimum cy S sz and op = Gg'Xl)v(equatipn 21).
We begin with' & =0 and éaée'.n = O; where.any.Cy représenfé
a solution of ¢ = V, o

If a - 0, %6 Bee from (13)‘thatlail four roots %'Vdisap~
pear, i.e., they ére of the.same magnitﬁde ,<K1 =N = A3 = K4).
In that case (ll) dOGé nbt vield the géneral ihtégral for re-
gsolving the theofem in (115; instead éf the'four arbitrary con-
stants we have only one. With four equél roots Kr‘z Ay the

solution (conformal to 11) of the differential equation reads:

= i L ) RN~ A \3
ve o BN oo (Do (I o (]
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The case of n = 0 1is treated in the same manner; it yields

A = A2, and in place of équétion (11) for w we have

i [ g ik L ihg L
w:eaL (cl+02-3-’-> e %0 +te 2o,

Both cases (& = 0) and (n = 0) yicld a new theorem for
function w, and equatiors (16) supply new equations whose deter—
minant of the denominator, Whep'ﬁéde zero, leads to a relation
between n, m, and & as expressed in theorem 1 (equation 11)
by equations (17). The finai result is that there is no func-
tion W - not zero - 1n the form called for by two or more
equal roots Ap. (Southnell and Skan nade tnls examination for
4 = 1, and Bergmann and Relssner for § = O;' in Zeitschrift
fUT T 1ugtechn1k und Uatorlu?tschlffan*t Vél 20 1929, pp. 477-8.)

This leaves us the solutions o ‘which are near the integral
ﬁultipies of ﬂ/Bh and which result from an édﬁation o/i = V/1
(where n is real). . | :

Since we seek the minimum value of shearlEt, that is, of
Gy, and Cp (See'equation Zi), the solution @ near T/2n is the
oniy one to be considered“foi every < valﬁe. 2For the case (f)
of f;eé support o is slightly lower; for (e)“rigid restraint
somewhat higher than m/2n.

Now we can develop a formula for cy and oy {equation 21').

Within the range considered

! a =k arc tan
2 N

Ele
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can be very accurately approximated by introducing for w a
corresponding apoproximative function or simply a constant
(w = 1). | -

Writing the approximated o in (31) it is probable that a
‘differentiation yields an'aﬁalytical fuﬁCtion fdr the minimum
0o (0p) with varisble ¢. But tals function which the equation
would (éppioximately)rfepresent (See Figures 2a and 2b) would be
very complicated and unsuited to practical use. For that reason
we preferred to ealculate a series of points on this curve and

to express the result grapﬁically in Figures 2a and 2b.

9. Calculation of o5 and op qu various ¢ values.— For
3> 1 we havé'a.rahge of s, limited by & =.O and s 28
'defined in equation (35). .For 3 <1 the rénge is between
¢, = 0 and {1, as defined in (36'). For any -Ca and &, values
within this range, we have

2’ "2 2 . 2 : .
n® + m n B n, m and nm (according to eq. 23)

3 3 ) - A b

‘X ( " i ] 26)
v oand a ( " noot 20)
Oa u Gb ( i i " 21)

The sign of n and m is, according to (23), either posi-
tive or negative, but we confine ouréelvés to the positive; be-
cause the negative sign yields the same fesult. For, changing
the sign by m(m) or n that for o(¢/i) and VY(¥/i) changes
also, so that (20), (31) and (28) are not altered. The sign for

a , which likewise can be positive or negative (Compare (20) )
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has no effect on the final resﬁlt, because it is affected only
by the direction of t (Compare (14¢), which may be arbitrarilj
assunmed.

The solution of (20) is approxima%ed with ® = 1 [thét is,
a = (% ﬁ)"aro>tan'¢]', the solution o being insertéd énly near
m/3n. This is émﬁery‘satisfactory approximation for the casé of
rigidbreétraint. | | | o |

By ¢, = ot(gg - 0) we find n=1 and m= 43 for all
$ vaiﬁeé§ aﬁd'as o minimm we find: | | i

o ='1LZQG' (approximafed = 1.309) by free support.

. .

i)

1.8330 (- o = 1.8323) by rigid restraint.
As example, Figufé 14'shows the functions %'Xa: a, n, m/i,/aﬁﬁlb
Cs plotted against' {, for © =5 Dby free edgéAsupporf. The
rgnée of ‘Ca has been eniarged beyond practical use. TFor |
¢ = 1 the minimum cgy (op) of Cg (Cp) is at §a'> 0.7
(8 7 0.7), for % =0 at &, <1.35 and for & == at
fg ~ 1.0.

Tive réngé of Cé and &, for practical purposes is:

{g = 0.7 to 1.0 for ¥ > 1, free support

o = 0.7 "W1.35 " < 1, "
¢, = 0.9 " 1.1 ® §>1, rigid restraint
6 =0.9 "3.35 v S<31, 0

For ¢ =0, 1/5, 1/3, 1 and 9 =2, 3, 5, 10, 20, 40 and o,
the calgulations\are shown in Table I and tabulated in Table II.

Thé figures for ¢, (for ¢ £ 1) and cp (for & 5 1)
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were rounded off to five units, the calculation was made with
corresponding accuracy (i.e., the error for ¢y and cp does not

exceed 0.3 per cent). In Tigures 2a and 8b, c5 and oy are
plotted againét 3. |

10. Equation and calculation of cg! and cp! derived for

the wave length of the elastic surfsce.- Equatibn (11) expresses

the elastic surface of the strip when wrinkling under shear.

It contains, aside from a, . the five constants &, ¢, Oz, Ca,
c '
and Cu, of which the four/constants can be computed from the

linear homogeneous equations (16).. The K constant defines the
wave length of the elastic surface in the x-direction. Accord—
ing to €18) we have

7p. ot . /o e

K.:CX,I\/CSJ ——2—2 s and = O

¢
D, Wil : b v D JE

There are five comstaents for every pair of <, {5 and

¥, &y or, in other words, every pair has a corresponding elas—
tic surfece, which in a homogenecus orthogonal-—anigsotropic plate
would Decome that of the shear typ.’ But since the usual stiff-
ened platec never exactly agrees with our assumed ideél systemn,
the elastic surface of a plate when wrinkling deviates more or

less from the cslculation here.

Since .
o , :
/ N . . e
e & = cos KK 2V 4+ 4 gin <K ﬁ\A
. a/ a/

we infer from equation (11) that the half-wave 1 of the elastic

surface equals half the period of the sine function, that is,
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So, when we introduce k¥ conformal to (18) the wave length

is computed as

5 3
I o= t ,P.li. l. = 1 :L/
- (37)
D .
1 1 = ot 23 . Ot . &
o ) Ho & Dg Py ie} [ J

where '
Cy! = _wll__a C Op! = T = Ga'«/ﬁ (Gompare eq. 18b)

/T VA
Ir the réspectivevshearvequalé the shear strength Ty
we substitute lip and cg! and cp!  for l, Cq' and Cy', so0
that (4a) and (4b) yield
4 D 1.

4
. ' 1 kr _ .
lyr = Cg' a T = - Ca P
Z | t / DS lkl’ 1
kr = Cp' 2@ D, = - % VH

The calculation of 0Oyt and O,! made by equation (87) for
various ¥, (o and {y 1is shown in Table I (columns 9 and 13).

The values for c¢5! and cnw! are asccurstely computed 0 1 to 3
a b 0

Figure 15a shows Cp = t 82 /v/D, D.°. plotted against
A 1 . " 1 S o 2 en
5 v When 1 (Cg') changes near the minimum (cy) of
Op, the change in t (C,) is comparatively slight, particularly
by free support. |

Figure 15b exhibits Op = 1 a?/w';g'rg plotted against

L4

-0 1 . N . . _ . ; .
Cpt = = ,7ﬁ:-' This figure likewise shows the slight change in

t (Op') when 1 (Cn') changes near the minimus cp) of Op.
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TABLE I

Calculation of coefficients C, (0y,) and Cyt (Cy1). The figures for the shear strength ty., i.e. for
minimum C, and Cy are underscored.

.V;'O.V.N:

*ON WNPUEIOWSW TEOTUNOd]

209

1] 2 |3 4 | 5 6 | 7 | 8 | 9 10 | 1 | 12 | 13
; - Free Support Rigid Restraint
omnm f \r
S E’b n m= ’i‘ X.D - E—‘ (04 C'b cbx 'Ie‘ ) 2 C-b C-bg
According |gpt 22 26 20 20 21 27 20 20 21 27
to eguation
0.3 l 1.898 8,400 0.4803 | 1.34692 | 15.24 4,265 | 0,576 | 1.8325 |28.20 3.13
0.5 2.000 7.075 0.4%20 | 1.3670 | 13.220 | 3.255 | 0.5715| 1.8304 |23.72 2.43
1.0 2.236 6.000 0,3440 | 1.4047 111.839 | 2.238 | 0.559 | 1.8256 {<0.04 1.72
1.0 2.3664 | 5.7885 | 0.3055 | 1.4222 | 11.7085;, 1.9274
1.32 | 2.3749 | 5.7794 | 0.8033 | 1.4233 | 11,7079 | 1.5212 |
1.54 . 2.383% | 5.7796 | 0,3010 | 1.4244 | 11,7081 | 1.9033 i
2.00 2.64575 5.6568%) 0.2405 | 1.4528 | 11.939 | 1.529 | 0.5292| 1.8144 |18.6227 | 1.224
2.22 || | 2,7276 | 5.6646 { 0.5285 1.8116 |18.5894 | 1.1639
0! 2.24 |(1]| 2.7350 | 5.6659 0.52191 1.8113 !18.5889 | 1.1588
2.26 2.7423 | 5.6874 0.5213] 1.8111 {18.5896| 1.1539
25 P 2,827 5.690 0.2078 | 1.4684 | 12.260 | 1.353 | 0.5142| 1.8083 18.682 1.10
3.0 | 3.000 5,775 | 0.500 ! 1.8025 !18.75 1.01
4,0 i 3.315 6,000 0.1443 | 1.4990 ilsdéso | 1.047 | 0.474 | 1.7921 |19.27 0.88
€.0 4,359 7.071 0.0739 | 1.5340 ! 16.640 | 0.724 | 0.396 | 1.760 [21.89 | 0.63
20,0 } 6554 9.850 0.0249 | 1.5583 |23.82 | 0.452 | 0.285 | 1.7100 |28.83 0.41
30.0 I 7,933 11.690 0.0143 | 1,5636 | £8,€0 0.367 | 0.240 | 1.6885 |33.28 0.34
50,0 J 110.149 14.708 0.0072 | 1,566 | 26,070 ! 0.284
L | j |
71(“n min

es



TABLE I {(cont.)

7'. l

1 2 3 4 5 6 | g ) 10 11 | 12 13
- Tree Support w Rigid Restraint
“ - I —_— e
S|k n =7 Xb -3 a Cy | Cps T o C,, Cys
According 22 22 26 20 20 21 27 20 20 21 27
to equation
1.24 0.995 }2.339 | 5.8022 0.2121 11,4260 | 11.798 ! 1.978 ‘
1.27 0.995 !2.352 |5.7857 0.3086 | 1.4279 { 11.797 | 1.953
1.26 0.995 | 2.356 | 5.7806 0.3074 | 1.4285 | 11.796 ] 1,944
41,30 10.995 | 2.365 |5.7707 0.3051 !1,4298 1 11,7971 1.927 10.546 | 1.833 | 19,40 1.506
1/5{2.00 |0.9899 ; 2.642 ! 5,6285 0.2395 | 1.4681 | 12,13 | 1.513 |0.523 | 1.8302 | 18.8527 | 1.214
2.04 | 0.58961 2.657 | 5.6282*) 0.522 | 1.8302 | 18,8523 ' 1.202
2.05 |10.9895| 2.6607 | 5.6282 : C.521 | 1.8302 | 18.6526| 1.199
2.08 |0.9893 | 2.6718 | 5.6265 | | 0.520 | 1.8303 i 18.8538 | 1.195
0.4 0.995 | 1.947 | 7.564 0.4564 { 1.363 | 14.05 E 3.65 |0.573 | 1.840 | 25.64 | 2,702
1.08 | 0.9758] 2,2610 | 5.836 0.3%04 | 1.4459 12,199 2,091
1.10 | 0.9755| 2.2697 | 5.819 0.3277 | 1.4476 . 12,195 2.069 | 0.541 | 1.864 | 20.22 1.605
1.12 | 0.9743 ! 2.2780 ! 5.800 0.3249 | 1.4506 | 12.206| 2.144
1.40 | 0.9629 | 2.3932 | 5,624 ‘ | 0.52237 1 1.8818! 19,215 | 1.411
1/2 1.50 | 0.9525| 2.4329  5.5€3 0.5182 1 1.8881 | 19.90% | 1.25%
1.80 | 0.9538| 2.4718 5.550 0.5125] 1.8951! 19,831 | 1.311
2,00 | 0.936 | 2.62 5.475 0.2335 | 1.556 ; 13,24 | 1.427 | 0,4204 1.921 | 20.15 1.156
2,309 5,464%) )
4,00 | 0.8105] 3.2645 | 5,653 0.1260i 1.860 | 19.567! 0.845 | 0.408 | 2.013 ! 22.85 0.780
6.00 | 0.6451| 3.7942 | 6.055 . | 0.0710 ! 2.3800| 34.258! 0.538 | 0.269  2.658 | 42.85 0.482
8,00 | 0,4064| 4.,2621 | 6.477 0.0340 | 3.824 i_94.8 0.448 g

* 7Lb min

]

*T ST
v ~

’VOO

*Of WHPURIOWON TLOTUWODL
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TABLE I (cont.)

1 2 3 4 5 6 | 7.1 & | g 10 | 111z 113
7 Free Supnort : Rigid Restraint :
m - £ ‘ g ue l
s £ n mo. 5 }(b -1 a ; C, | Cyt T E a C, Cs
{ i
According 22 22 26 20 0| =20 ) 27 =20 | =20 21 27
to equation ‘ : : : ! ]
0.182 |0.9962 | 1.8321 110.194 g @ ! | 0.5736 | 1.8382 | 34.444 | 4.006
0.3306 | 0.9883 | 1.907 | | 1.366 | 14.97 | 4.00 |
10,4025 | 0.9828 : 1.9419 | ; i : ;1.858 | 25.78 | 2.665
0.6813 | 0.9548 | 2.0673 | j i ! 5 11,903 |22.75 | 2.000
0.70 10.8527 12.0755 | 6.2336| 0.3877! 1.4538] 13.1739| 2.562¢ !
0.73 | 0.9480 56 0882 | 6.1578 0.3818 1.4622  13.1645, 2. 5147
0.74 10.947712.0924 | 6.1337 | 0.37991 1.4650! 13.1647 2. 928 |
l0.75 | 0. 0464‘ 2.0965 | 6.1101| 0.3780| 1.4679 | 13.1656] 2.4713 | ‘
0.80 |0.9398|2.1174 | 6.0000 | 0.3685| 1.4826 18.1895"2.36905
0.90 | 0.925612.,1580 | 5.8119 ! ! 0.5122 | 1.9527 | 22.1600 | 1.6959
,0.52 | 0.9227 | 2.1659 | 5.7785 i | | 0.5058 | 1.9580 | 22.1528 | 1.6728
1%%)i0.93 -1 0.9211 | 2.1699 | 5.7623 | | ; 0.5086 | 1.9607 | 22,1513 | 1.6615
{0.94 | 0.9196' 2.1739 | 5.7464 ; | 0.5074 | 1.9634 | 22. 1520! 1.6504
20‘96 | 0.9165 | 2.1817 | 5.7155 ; 0.5049 | 1. .5690 | 22.1577 | 1.6285
11,0191 | 0.9062 | 2.2044 | i 1.556 | 13.63 | 2.000 t
|1.2811; 0.8595  2,2040 { ‘ g = 2.079 | 22.07 | 1.335
| 1.5442 | 0.8021 | 2.3967 i ; 2.208 |25.00 | 1.145
' 1.6181 1 0.7849 | 2.4211 1.850 | 17.42 | 1.385
|1.778 | 0.7453 | 2.4721 , 2.355 | 27,718 | 1.001
12,0295 | 0.6707 | 2.5515 2.205 | 23.77 | 1.000
12,1248 | 0.6411 | 2.5809 ; 2.694 | 35,22 | 0.800
12,5370 | 0.5023 | 2.6832 .996 | 42.56 | 0.665
| 2.6773 | 0.3958 2.7404 3.840 | 69.20 | 0.500 |
**For $=1 we used in part Southwell & Skan's data.
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TABLE I (cont.)

1! 2 3 4 5 8 | 7 | 8 R 10 [ 11 | 12 13
Free Support Rigid Restraint
m v v,

3 §a n B=7 Xa T ¢ Ca Ca’ E—e— * ca ca'

Accordirg ao 22 26 20 20 21 27 20 20 21 27

to equation
0.30 ' 0.988 {1.810 | 7.77 0.524 | 1,346 | 14.08 4,265 | 0.568. | 1.851 |26.62 |3.096
0.70 | 0.945111.8956 | 5.365 | 0.4634 | 1.4307 | 10.975 | 2.624 ! 0.5358| 1,921 |19.77 11.956
0.80 | 0.5288!1.5138 | 5.0556| 0.4489 | 1.4626| 10.823 | 2.402 | 0.5228 | 1.9504 | 19.247 |1.801
0.86 | 0.918071.9242 | 4,9014| 0.4402 ! 1.4839 | 10,795 | 2.285
0.90 | 0.9103!1.9310 | 4.8035 | 0.4344 | 1,4992 | 10,797 | 2.209 ! 0.5095| 1.9843 | 18,915 1,669

210.95 0@002!1.9892 4,6930 | 0.4272 | 1.5195 | 10.828 | 2.126 | 0.5024 | 2.0035 | 18.824 |1.608
0.99 | 0.8917i1.9455 | 4,60341 0,4213 | 1.5369 | 10.8741 | 2.054 0,4964! 2.0199 | 18,783 |1.563
1.01 | 0.8874:1.9487 i 4.5620 0,4185 | 1,5458: 10.9012 ; 2.022 | 0.4934 2.0284 1 18.770 11.540
1.03 | 0.8828'1,9518 | 4.5214 | 0.4802 ; 2,0375 | 18.771 |1.519
1.50 | 0.7458!'2.015 | 3.76680! 0.3406 | 1.886 | 13,390 | 1.361 | 0.4010' 2,362 120.99 |[1.084
1.66 | 0.679512,032 | 3.5560| 0.3097 | 2.8404, 15.535 | 1.166 | 0.3603 | 2.568 |23.45 [0.947
2,00 | 0.4845|2.056 | 3.1600| 0.2201 | 3.020 | 28.89 0.735 | 0.249 | 3,496 |38.70 10.635
D.87 ' 0.910111.8462 | 4.5421 1 0.4755 | 1.4802| 9.9548! 2.2755
0.50 | 0.9037|1.8484  4,4622; 0.4718 1.4925| 9.9404| 2.2187| 0.50€2 ; 2.0026 ; 17.895 |1.6536
0.93 | 0.8970{1.8505 | 4.3853 | 0.468L | 1.5055| 9.8393 | 2,1639

3 |0.96 | 0.8399:1.8526 ! 4,3114 0.4644 | 1.5190! 9.9484! 2.1120 |
0.99 | 0.882711.8545 | 4.=2357 ‘ l 0.4916: 2.0383 | 17.6141|1.5481
1.05 | 0.8674;1.8581 | 4.1034 0.4520 1 1.5680| 10.07 1.955 | 0.4811| 2.0694 | 17.5716{1.4816
1.11 ; 0.8509;1.8612 ! 3.9751 i C.4699 ] 2.1041 | 17.5991|1.4172
1.20 | 0.837;1.8651 | 3.7948; 0,4317 | 1.660 l 10.46 1.810 | 0.4518; 2,1645 | 17.7792|1.324°
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TARLE I (cont.)

VOV E

8

T09 ],

5

1] 2 3 4 5 6 | 7 1 8 | 9 10 | 11 | 12 | 13
Free support Pigid restraint
H T
2 ﬁa’ n m = ? An - fﬁ a Ca Ca! gﬁ a Ca Ca'
m 7 E |

According 5y 22 26 20 20 21 27 20 20 21 27

to equation
0.20 0.995 1.752 2.07%9 0.5623 | 1.321 15.84¢ 8.317 1 0.E735 5 1.240 30,747 | 3.818
0.30 0.989 1.760 7442 0.5852 | 1.332 13.205 4,306 1 0.568B3; 1.850 | 25.465 | 3,101
0.40 0.980 | 1.766 6.46 0.5475 | 1.351 11.80 34679 0.5623 1 1.86835 1 22,415 {2,666
0.50 0.970 | 1.732 D.78 0.54 1.365 10,744 | 2,285 0.,5541 1.8815; 20.421 (=2.361
0.75 | 0493 1.779 5.58 0.5244 § 1.9487 1 17.69 1.863
0.%2 0.83%26] 1.7790 ) 4.1302; 0.5048 | 1.4958} 9.2426 ] 2.1900
0.95 0.88501 1.7785 1 4.0490; 0,5018 | 1.5100| 9.2290 | 2.1338

5 {0.98 0.,8770| 1.7780 | 3.9703] 0.4887 { 1.8256| 9.2403 | 2.0801
1.00 0.87161 1.7775 | 3.9192; 0.4965 | 1.5383 9.2743 | 1.9586 | 0.4841 | 2.0609 | 16,647 | 1.525
1.075 | 0.8495% 1.7753 | 3.7340 0.4891 | 2.1071 | 16.586 |1.438
1.15 0.82461 1.77201 3.5821 0.4523 | 2,1623 | 16,665 |1.355
1.25 Q.787 1.766 | 3.347 | 0.4635 {1.726 | 9.965 1.628 1 0.4277 2.2527; 16,98 (1.248
1.50 0.666 | 1,745 ; 2.850 | 0.412 [2.066 | 12.155 1238 | 03521 { 2.6127 | 19.43 0.982
1.75 C.467 | 1,708 | 2.371 0.3084 | 3.0404 1 21,919 [0.781 0.2383 | 3.6116 1 30.93 |0.658
1.80 0.408 | 1,689 2.275 Q.2744 ' 3.5235 | 28.248 | 0.665 0.2082 | 4.101 38.27 10.571
1.85 0,336 | 1,520 12.180 | 0.2300 | 4.335 41.00 0.833 0.1687 | 4.225 52.9 0. 469
0.96 0.87591 1.7203 : 2.80321 0.5321 |1.5113 8.6865 | 2.1216
0.87 0.8730 1 1.7194 | 3.7755] 0.331e | 1.5168 8,06861 | 8.1030
0.98 0.8701 | 1.7184 1 3.7477| 0.5305 | 1.5222| B8.6836 [2.0848
0,99 0.8571 ¢ 1,7175  8.7204] 0.5296 | 1.5279 8.6854 | 2.0665

10 1.00 0.8641 | 1.7166 | 3.69321 0.5288 | 1.,5336 8.6859 12.0485
1.07 0.84151 1.7094 § 3.5094 0.4630 [ 2.1244 | 15.8375{1.4297
1.08 0.8381 | 1,7083 | 3,4839 0.4606 | 2,1319 | 15.8347{1,4180
1.08 0.8346 | 1,7072 | 3,4587 0.458% | 2.1296 | 15.8340]11.4064
1.10 0.8310 1 1.7060 | 3.43536 0.4559 {2.1476 | 15,8358]1.,3948
1.11 0.8274 | 1.7049 !5.4086 0.4534 | 2.1557 | 15,8400{1,3832
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TABLE I (cont.)
1 2 3 4 5 6 | 7 T 8 | s 10 | 11 ] 12 ] 13
Free Support Rigid Restraint
m Vg v
S ga n m = I' -X,a - E—— 04 Ca Cag —]_—.g o4 Ca Cag
According | g2 22 26 20 20 21 27 20 20 21 27
to equation
0.80 |0.914 { 1.708 | 4.1949 | 0.5570 | 1.438 | 8,66 2 .44
0.95 [0.876 | 1.682 | 3.7223 | 0.5472 | 1.504 | 8.43 2.15
1.00 {0.860 | 1.685 | 3.5792 | 0.5470 | 1.533 8.42 2.05 2.084 | 15.548 | 1.507
1.05 10.843 | 1.679 | 3.4430 | 0.5426 1 1.566 | 8,44 1.96
20| 1.08 [0.8325] 1.674 | 3.3628 2.144 | 15.458 | 1.410
1.10 ;0.825 | 1.671 | 3.3098 2,160 | 15.448 | 1.386
1.12 10.817 | 1.667 | 3.2590 2.178 | 15.463 | 1.383
1.15 !10.805 | 1.662 | 3.1828¢ 2.207 | 15.499 |°1.328
1.20 10.785 | 1.6563 | 3.0600{ 0.5270 {1.650 |8.,71 1.693 2.260 | 15.618 | 1.299
0.98 0,864SE 1.6721: 3.5730 , 0.2572 | 1.8195 | 8.2678| 2.087¢
1.00 10.8578 1.66911 3.5217 | 0.5560 | 1.5320 | 8.2655 | 2,0507
1.02 10.8511! 1.6680 3.4653 | 0.5546 | 1.5447 1 8.2682 | 2.0138 |
40 1.05 '0.84072 1.6611‘ 3.3824 ' 1 2.1256 | 15.2823 | 1.4424
1.08 10.8297 | 1.65601 3.3011 2.1501 | 15.26061 1.4060
1.10 10.82201! 1.6625| 2.2478 2.1675 1 15.2584 ! 1.2820
1.12 0.81412 1.6488; 3.1251 2.1854 | 15,2537 | 1.5584
1.15 O.8016§ 1.6432 1 3.1170 ! ' 2.2154 1 15.29841 1.3224
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TARLE I (cont.)

3 4 5 6 | 7 | 8 | 9 10 | 11 ] 12 | 13
Free Support Rigid Restraint
n m= = be Y% o c c Ve a | c c
=i a i a al i a at
According 22 22 26 20 20 21 27 20 20 21 27
to equation
0.15 | 0.556 | 1.730 | 10.2918| 0.577 | 1.320 | 17.96 | 6.15 0.5743 1 1.839 | 34,82 4,4075
0.25 | 0,992 | 1.727 $.9720 ] 0.577 | 1.319 | 13.6 4,7625 | 0.5707 | 1.843 | 27.00 3,405
0.50 | 0.9675| 1.714 5.4758 | 0,577 | 1.353 | 10.00 |3.295 | 0.56 |1.887 | 19.52 2.36
0.75 | 0,924 | 1.68% 4.28161] 0.574 | 1.421 8.63 12,570 | 0.52 1.96 16.44 1.853
0.95 ! 0.872 | 1.661 2.6114| 0.5684 | 1.509 8.139 | 2,147
0.98 | 0.8623 | 1.6563 | 3.5224 0.5667 | 1,519 8.128 | 2.0856 | 1
1.00 | 0.85561 1.6627 | 3.464 | 0.5656; 1.5315| 2.125 ! 2.0515 | 0.4714 | 2.092 | 15.14 1.5025
1.02 ! 0.8487 1 1.64%% | 3,4052| 0.55644 ' 1.5445| 8.127 | 2.014
1.05 ] 0.8379 | 1.6438 | 3,3222 0.5625] 1.5655| 8,142 {1.958 | 0.4591 | 2,1312 | 15.089 | 1.4385
1.08] 0.8266! 1.6381 | 3.2395 0.4514 ! 2.1566 | 15,067 | 1.4017
1,10 0.8185] 1.6340 ! Z.1846 0.4458 | 2.1750 | 15.065 | 1.377
1.12 | 0.8105{ 1.630 3.1312 0.4403 | 2,1936 | 15.067 | 1.3535
1.151! 0.7975! 1.624 3.0517 0.4317 { 2.225 | 15.108 | 1.3165
1.25 1 0.749 | 1.600 2.79241 0.540 | 1.768 8.74 | 1.573 | 0.3993 | 2.352 | 15.43 1.195
1.40 ! 0.654 | 1.560 2.4138| 0.505 | 2,045 | 10.10 | 1.299 | 0.3397 | 2.652 ! 16.95 1.000
1.50| 0.562 ; 1.524 2.1604{ 0.462 | 2.388 | 12.33 | 1.073 | 0.2887 | 3,015 | 19.68 0.85
1.60 | 0.447 | 1.483 1.8974] 0.3866; 3,100 | 18,23 | 0.801 | 0.2213 | 3.76 26.73 0.66
1.65 1 0.359 | 1.468 1.7579 ] 0.32181 3,945 | 27.3 0.62 | 0.17581 4.62 37.35 0.53
1.66; 0.342 | 1.453 1.7233 1 0.3062 ! 4.16 29.95 | 0.586 [ '
1.70 ) 0.333 | 1.433 | 1.6168] 0.214 | 6.32 | 64.65 | 0.382 |
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N.A.C.A. Technical Memorandum No. 602
TARLE II

Recapitulation of shear strength factors: cg and cp (for
computing ti, according to la and 1b) and cy' and cyp!

(for computing the confcrmel wave length Iy of the
elastic surface according to 4a and 4b).

59

1 12 [ 8 1T 4 15 6 | 7 | 8 [ 9
s | Free support Rigid restraint

Cy, Cy cg ! cyp'! Cq Ch cy! cp'?
o | & .71 | o | L9 | w 18.59 | oo 1.16
1/5 |26.4 11.8 | 4.35 | 1.94 %@15 18.85 | 2.69 | 1.20
1/2 {17.25] 12.2 | 2.93 | 2.07 i28,15 19.9 | 1.92 | 1.36
1 |13.165 13.165| 2.49 | 2.49 (22.15 | 22.15 | 1.66 | 1.66
2  |10.8 15.25 | 2.28 | 3.23 |18.75 | 26,55 | 1.54 | 2,18
3 9.95| 17.2 | 2.16 | 3.75 [17.55 | 30.45 | 1.48 | 2.57
5 9.25 | 20.65 | 2.13 | 4,77 |16.6 Z7.1 | l.44 | 3.22
10 8.7 27.45 | 2.08 | 6.59 |15.85 | 50,05 | 1.41 | 4.45
20 8.4 37.65 | 2.05 | 9.17 |15.45 | 69.1 | 1.39 | 6.20
40 8.25 | 52.25 | 2.05 {12.97 [15.25 | 96.5 | 1.38 | 8.74
w 8.125 o® 2.05 | o 15.065| o 1.38 | o5




. N.A.C.A. Teclinical Memoranduﬂ Fo.602

Figs.1,2a,3b
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N.A.C.A. Tecanical iemorandum Y¥o.802 Figs.da,3b

2.0
i
I Cuzve e,rigid restraint g,1.620
\-l_,g ! f, firee support h,1.470
Al 1,1.328
1.5 5 T 5,1.246
g k,1.223
\O1 4
Cy %fkm ; 1,1.166
e e T L 136
- oy = .2 1069 s ) m, 1.
al 1)0 P TS LI 1017 n,1.101
) 1.051  1.p25 1.013
c
0.5335 10 20 30 L

$

Fig.3a Quotient c,/c (9§ =) plotted against 9.

2.0
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" f,free support g,1.192
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Fiz.3b Quotient cp/cp(s = 0) plotted against 1/%.



N.A.C.A. Technical demorandum Fo.602 Figes.4a,4b
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Fig.4b cp plotted against ¢



N.A.C.A. Techniceal Memorandum No.802

Figs.ba, 5b
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Fig.5a c, plotted against 1/¢ within range of 0 £ 1/¢
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N.A.C.A.Technical Meuorandum Fo.E03 Figs.b6a,6b,7
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Fig.7 Section of reinforced plate{example).



N.A.C.A. Tachnical Memorandium Ho.B02 Figs.B8a,8b
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Fig.8a n(n/i=n) aad m/i(=m) plotted against {, end §
(1 28 £ ) .{Compare equation 22)
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Fig.8Db n(n(/i:;l and m/i(=m) plotted against {}, and 9
(02 %2 1)(see equation 23)



N.A.C.A. Technicol ¥eamorandum To.602 Figs.92,9b
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N.A.C.A. Tecanical Ilemorandum No.80Z Fizs.10,11
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N.A.C.A. Tachnical M¥amor-ndum No.802 Figs.13a,12b
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