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THEORY OF THE LANDING IMPACT OF SEAPLANES.*

By Wilhelm Pabst.

The present investigation is an endeavor to express the

jolting stresses, designated as landing impacts, undergone by
seaplanes in landing and taking off from rough water, as func-
tiong of specific factors, in order to enable the evaluation of
empirically obtained results and thus acquire theoretical data
for the construction of seaplane floats and hulls. A physical
explonation of the landing impact, on which the following math-
ematical investigation is based, was given by F. Seewald,**
Director of the Aerodynamic Section of the D.V.Li, who first

suggested the present investigation.

4
v8

General Considerations on Landing Impac

ls An ideal landing on smooth water resembles a take-off
from smooth water, except that it takes place in the reversed
order. The bottom of the seaplane is gradually submerged when
the step approaches the smooth water surface tangentially. The

increasing drag gradually reduces the spced of the seaplane,

simul taneously replacing the 1ift of the wingsby the buoyancy of

¥"Theorie des Lendestosses von Seeflugzeugen." From Zeitschrift
fur Flugtechnik und Motorluftschiffahrt, May 14, 1930, ppe. 817-
3236,

**Digcussion of F. 2. Diemgr's lecture on "Flugboot und Seegung,"
1887 Yearbook of the W.G.L.
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the water. The braking resistance consists of wave-producing
and frictional resistance. Another resistance is due to the
fact that, when a moving tody is plunged into water, a certain
mass of the water is accelerated, corresponding to the flow
about the body. When the bottom plunges very quickly into the
water, as may occur in alizhting on rough water and meeting a
wave head-on, the last-named resistance becomes so great that
the first two can be neglected. Froude's and Reynoldé® laws
of similority may therefore be disregarded as applied to the
impacts actually considered in this connection. The following
considerations prove that Newton's law of similarity does not

fully apply to all ceses.

2. As shown by F. Seewald, the magnitude of the impact is
affected by the elasticity of the airplane, as well as by the
usual factors of current methods of calculation, such as the
roughness of the water, the weight of the seaplane, the landing
speed and the size and shape of the float bottom. With a stiff
float bottom ond assumed compressibility of the water, the
acceleration of a finite mass of water would take place in an
infinitely short time, thus producing, according to the momentum
theorem, infinitely great forces. Tne fact that the forces do
not become infinitely great is chiefly attributable to the in-
fluence of the elasticity of the seaplane, since the compressi-
bility of water is negligible in comparison.

This eonsideration is confirmed experimentally by the fact
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that the impact acceleration decreases from the float bottom up.
This fact, which is taken care of, in the loading conditions of
the D.Vel., by a higher load factor of the float, can be £z~
plained only by the effect of elasticity. The process therefore
involves elastic forces in addition to inertia forces. Hence
Cauchy's 1aw of similarity is apolicable in this case. I states

that two phenomena are dynamically similar only when Cauchy's

i b = vv/%)/E has the same value in both cases. The fact
that Cauchy's number contains the velocity v, leads directly
to the surmise that the landing impact does not, or not in all
cases, depend on the square of the landing speed, as would fol-
low from Newton's law of similarity without modification. It
should also be investigated as to whether, considering the ef-
fect of elasticity and the short duration of the impact, the

latter is also affected by the damping action of the material.

3 The area of the float bottom coming simultaneously into
contact with the surface of the water has a decisive effect on
the magnitude of the landing impact. The sige of this area de-
pends on the region in which the water surface and float bostom
are parallel when coming into contact with each other, hese
conditions are greatly affected by the roughness of the water
and the manner of alighting. Certain simplifications are re-
quired by the great variety of the seaways, which change in wave

shape and length according to the force and duration of the wind,
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the length of the unobstructed wind path and the depth of the
sea. In most cases a seaway consists of several superposed sea-
ways. Such diagrammatic representations, as are successfully
used for strength calculation in shipbuilding practice, hold good
only in a very few cases but enable a mathepatical estimation
of the various factors, a comparison between the different mod-
els and, an improvement in the load conditions, when supplement-
ed by experimentally determined values. Hence, the following
calculations apply to the so-ealled "established" seaway - a sea-
way Which, according to numerous observations,* is constant
when there is a long enough unobstructed wind path, sufficient
depth of water, and a steady wind of constant direction and
force. The adopted wave shape is trochoidal.
s Similar simplifications and assumptions should be made on
the manner of landing. It would then be possible to work out
landing cases for specific seaways and to calculate the landing
impaot by the method set forth below, using the bottom contact
areas obtained from the drawing. The general conditions and the
extent to which the pilot can be expected to avoid very rough
landings are chiefly matters of opinion and depend moreover on
the aerodynamic properties of the aircraft. Also, the seaworth-
iness requirements vary in the different cases according to the
structural problems to be solved. Therefore, the methods of
calculation presented below should be applied with discrimination
in the different cases,

*Zimmerman, Von KOppen and Lsas. Sec also Johow Foerster, "Hilfs-
buch f.d. Schiffbau," 5th edition, Vol. I, pp. 418 and 420.
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Among the different possibilitles of alighting on rough
water the maximum landing impact which a seaplane should be
capable of withstanding is produced in the following case: The
seaplane strikes the water flatly with the straight portion of
the bottom. This may happen when, in attempting to land with
the tail down, the seaplane meets an oncoming wave, or in start-
ing, takes off prematurely and falls back on the water. The
alighting moment is shown diagrammatically in Figure 1. Seaway
8 with a wave length of 11 m (38 ft.) and a wave depth of 1 m
(3,88 £h.) is roughly represented in the figure. The wave is
represented as usual by a trochoid. The wind speed correspond-
ing to the seaway is approximately 3 m/s (9.8 ft./sec.). Let
C, DPe the seaplane speed with respect to the water. It consists
of the corresponding components of the speed above ground com-
bined with the velocity of the water. In general c, can be
replaced by the corresponding component of the landing speed nor-
mal to the keel at the maximum angle of attack. Inasmuch as the
seaplane is usually brought down against the wind, the reduction
in the landing speed caused by the head wind is balanced by the

opposite motion of the water. Of course, the actual values may

be used in any particular case.
The Accelerated Water Mass

4. As already mentioned above, all the cther forces are

assumed to be small in comparison with that of the impact of the
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float bottom on the water. According to Lamb* the following
formulas are then obtained under the sole action of the impulsive
pressures of the float bottom in a two-dimensional solution,

when the motion is started from the position of rest

u:,_l‘.a{;
Py X
-

in which & is the impulsive pressure.
By means of the equation of continuity, we then obtain

g6 4+ F& - ¢
oz | B

)

provided p is constant which, on account of the slight compress-
ibility of water, seems admissible even for very large impact
forces. We shall now consider the marginal conditions for a
plate of infinite length and width b 1lying on the water.

If the impulsive pressure of the above equations is replaced
by ® = p ® in which ® is the velocity potential, and it is
considered that no impulsive pressures are exerted on the open
water surface, i.e., @ =0 and ® = 0, the same marginal con-
ditions prevaeil &4s for the plate of infinite length en a ' infi-
nite 1liquid surface. The following formula is then obtained for
the plate velocity at the end of the impact period, provided the

one-sidedness of the process is taken into consideration.

*L,amb-Friedl, "Lehrbuch der Hydrodynemik," paragraph 13.




N.A.C.A. Technical Memorandum No. 580 7

8 J
W, = 8
o'm T a8 .a

This applies to a plate element of width b and length Aa

when J = P At . Hence the mass of water to be accelerated is

Mw=pg-b2Aa (1)

The distribution of the impact pressures over b isg elliptical.
It is assumed that the plate is absolutely rigid. In practice

the flow and the pressure distribution are subject to variation.

S5« The assumption of an infinite length does not apply to
the actual float bottom. In fact, the length of the bottom
portion which strikes the water is of the same order of magni-
tude as the width. Since, on the assumption of an infinite
plate length, the bottom width goes into the second power, while
it has a smaller power in the case of a finite bottom length,
the latter must be taken into consideration, in order to avoid
wrong conclusions regarding the effect of the width of the hull
on the impact. Ip this case the bottom portion concerned can
also be considered as a plate in an infinite liquid, the one-
sidedness of the process being taken into consideration. The
water mass accelerated by such plates of a finite chine ratio
was determined experimentally by means of small vibrations. When
a body vibrates in a nonviscous, incompressible, infinite fluid

at rest, the mass of the body is increased by the flow which de-
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velops during the motion {Stokes*, Green**). In an ideal non-
viscous fluid this flow is a potential flow. In viscous fluids
the potential flow can be maintained with a good approximation,
provided the body makes very shoTt and guick wibrationschss
Under the above assumptions of disregarded friction and wave
formation, this fact permits of easily determining the acceler-
ated water mass as already suggested by thtinger for other pur-
poses but, so far as I know, never put into practice.

Figure 2 shows the test installation. Plate 1, stiffened
by a longitudinal rib, is secured to a duralumin tube 2, which
connected with two steel springs 3 and 4, can vibrate along
its longitudinal axis. This system, which 1is capable of vibrat-
ing, is deflected approximately 0.2 mm (0.008 in.) and then sud-
denly released by severing a wire. The resulting damped vibra-
tion was plotted by means of a scratch recording device O,%%¥%
directly and without lever transmission, with a diamond on a
glass plate moved laterally by the electric motor 6. The Tre-
sulting diagram was estimated under a micTroscope using the simul-
taneously recorded time marks. This estimation, made on the as-
sumption of proportional damping, showed that the influence of

the damping on the period of vibration Was negligibly small.

*Stokes, "On Some Cases of Fluid Motion." Qamb. Trans., 8,

1843, Math. and Phys. Papers I, p. 17.

**xGreen, "Researches on the Vibration of Pendulums in Fluid
Media," Trans. R. 5. Edin., 1883, Math. Papers, p. 315.

***Fottinger, Jahrbuch d. Schiffbautechn. Gesellschaft, 1934.
**x*¥Pabst, W., "Aufzeichnungen schneller Schwingungen nach dem
Ritzverfahren,* Zeitschrift des Vereines deutscher Ingenieure,
19229. No. 46.
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Figure 3 is a microphotograph of such a vibration and of the cor-
responding time marks. Before the tests, the spring constant
was determined by loading the device with known weights and re-

cording the resulting deflection (Table I).

TABLE I. Determination of Spring Constant

Load Distance from ¥ o Mean X.
No. base line 5§ value
kg 1/100 mm kg/cm kg/cm
3 Be5 14.3 175.0 5
3 3.0 1740 176.8
3 3.5 30.0 175.,0
4 4.0 33,0 17450
5 4.5 85,5 176.5
6 5.0 28.0 178.5 '-17600
7 S 31.0 LT o8
8 6.0 34,0 176.2
8 6.5 37.0 176,98
10 7.0 40.0 1L78.0
3% Twl 43.5 176.5 i

The mass of the instrument was then determined by causing it to
vibrate in air. A comparison of the mass determined by vibra-
tion with that obtained by weighing showed that the steel

springs participated in the vibrating mass of the device to an

extent of 35.,8% of their total mass. The vibration of the plates
(the dimensions and weights of which are given in Table II)

against water was then tested by placing the device over the
water-filled tank shown in the background of Figure 3. The water
surface was approximately 45 cm (18 in.) above the plate and did
not seem to be affected by its vibration. At the point of im-
mersion of the tube, a concentrically progressing undulatory

motion of very small amplitude was observed. It was merely due
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to friction and capillary action and probably did not affect

the vibration of the nlate. The longer of the four plates test-
ed were stiffened in the plane of symmetry of the flow in order
to avoid natural vibrations of the plate. The plate edges were

rounded off elliptically. The results are given in Table itk U

TABLE II. Dimensions and Weights of Plates

Plate a b 2eb G

No. mm mm - g

x 100 100 b 82

2 300 100 2 247

3 300 100 3 343

“k 400 100 4 460
A1l moved parts without plates and springs G = 170 g
Weight of springs G = 420 g

TABLE III. Results

Total Mass of lass of a‘?
Plate T mass device water MWGB:
No. 8 M My My gk
_g,’;sf-? _g__s2 _.g_se _g_sz
cr cm cm cm
i against air 0.0096 - - = -
il . water 0.01391 0.863 0,410 0.453 0.453
2 B i @.01890 1,753 0«08 1.174 0,146
9 # i 0.,02438 3.633 CoBé T 1.855 0.073
4 e ; 0.023840 3.590 0.796 2.794 0080

The four measured values provide seven points of the diagram in
all, since the moved mass can be easily calculated for the recip-
rocal edge ratio. The results are plotted in Figure 4,

As was to be expected, the curve runs, for large a/b val-
ues, parallel to the line p % ¥ o for a plate portion of the

length a of the infinitely long plate. Thus, for the finite
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G
plate length, a constant value p 57 ¥, must be deducted for

the edge effect when &3 1, so that
ian p° - 22
MW = 8 e (a D -~ CO, (2)

For very small values the curve approaches the parabola
p-g a® b. Approximately within the range % = 1 - 3, which con-
cerns the present problem, a material reduction of the acceler-
ated water mass is achieved by taking the finite edge ratio into
consideration.

Impact of a Flat-Bottomed Seaplane

€. The whole seaplane~float system is based on Figure 5.
Let the mass M; of the seaplane be¢ concentrated in one point
and a spring exerting a force P = kf, assumed to have no mass,
be fitted between the float bottom also, assumed to be without
mass. A certaim wgter mass M, 1is accelerated when the flat

float bottom strikes the water.

Mass of seaplane M,
Mass of accelerated water M,
Force of spring P = ki
Deflection of spring f
Length of spring L

Effective weight after
deducting wing force v G
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Then
d® =
M, ——= = kf - vG
1 d. t2 W]
> (3)
g% %
Mo 2 = . kf J |
kT
For
2 2 2
a & L T -
a4 . e a ik
12 f
ﬁ+kf‘/ +_-—_—\;—vg'—-0.
d t(: \I\/Il l"v.g 7
e solwubion is
f = A 8ih Wt + B cog w ik %%
where
wg i k EL/I:?. v+'7111"> = _}E
iy Mg U
for
=)
and Wt =0
whence i
B=-2Ya
w
The constant A results from the following consideration.

gitge - Xy

(61850
dt

i =

C

o

X2

d x, _

T Lk

is the path of the water mass.

at

represents the path of the C.G. of the seaplane,

0,

Rox @b 0

op
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Hencge

Gl ol > a X,

= -— = =0

g g d + i

whence
c
Loen
h = o

The solution therefore reads

i %% Sy = l%g cos w t + %%E
=Asin(wt—B)‘+-_Ee_g,
where 1/ vg\e 2 e
LA
and g
B = arc tan

<
for the maximum impact force

zzg=«/(vgu)2+c;fkn+vgu (4)

P =%k fpgx = A +
where A
:\/Il M,

e

This formula is quite general and therefore applicable to
landplanes as well, provided the mass of the wheel is disregard-
eds In this case M, = o and the expression becomes u = MN,.
When ¢35 =0 and v =1, then P =23 G, which corresponds to
Poncelet's theorem of mechanics. For a seaplane M, 1is usually
onityia fraction of the mass.

The water mass obtained by approximate calculation for the
HE 5 Heinkel monoplane corresponds to the straight portion of

the flat bottom and is 30% of the mass of the seaplane. Thus
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M, M,
M, + M,
with the expression c¢,2 k M, especially when it is recalled

the expression in the formula is small in comparison

that the spring constant k of seaplanes is very large and that

the 1liiting forces have not, in most cases, become zero, so that

va4l. We can therefore neglect the expression v g 4 and ob-

tain, for the landing impact
’ P >

[ ¥, M —
Pm ax Ca / k 'I:';l-;—-;,—; oxr . = ¢C B k M 1 P
where o N M,
P d i V-‘} angd W = M—: ( S )

On the preliminary assumption that the impact is propor-
tional to. N = (1/L}® where 1 is an arbitrary length of one
and L the corresponding length of another larger and geomet-
rically similar float, the stress 0 = E%%—: %;—: 1 1is there-
fore independent of the increase in length, a condition which
should be required. For the same material and modulus of elas-
ticlty E; the sgpring constent k is proportiensl to ' K
Hence, since M is proportional to X°, By, ~ \°, as above
temporarily assumed.

The impact is therefore proportional to the dimension of a

surface and the impact load P/F 1is independent of the size of

the seaplane, provided geometrical similarity is assumed. More-

over, the elastic impact represents a vibration of the system,
1ts mass congisting of the bodies which strike each other. The

initial conditions of the vibration arc determined by the rela-
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tive motion of the two bodies at the beginning of the impact.
The eccentric impact for the considered approximation is
obtained in the usual way when the reduced mass is substituted

for the actual mass of the seaplane

TR RN, (8)
W e

where 1 1is the inertia rddius and

r the distance of the percussion force from the.C.G.

7. The above approximation method is not quite satisfac-
tory, since the seaplane itself is assumed to be rigid, while
. only the bottom is considered elastic. The same load factor for
all parts is therefore obtained by calculation. As a matter of
fact, the elasticity is distributed over the whole mass system,
so that the seaplane portions nearest to the point of applica-
tion of the impact forces, such as the floats, must withstand
greater impact forces than more distant parts, such as the fuse-
lage, wings and engines.
Yet an accurate calculation seems impossible. Therefore
we must endeavor to divide the whole system into separate masses
connected with each other and with the wgter mass by elastic
members having no mass. Analytically speaking, the separation
of the seaplane into two masses leads, in general, to difficult
- calculations, but supplies analytically simple results which

make it possible to answer a number of questions. The calcula-
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tion is based on the diagram in Figure 6, Asgume the fuselage,
with the engine, wing and tail surfaces, to be rigid and have a
mass M, and a moment of inertia @, and represent .it by the
line AB. The float, likewise assumed to be rigid, is given a
mass M, and represented by the line CD. The float and fuse-
lage are connected by two elastic members which are assumed to
have no mass. The spring constants of these members are k, and
kp. Between the float and the water mass there is also insert-
ed an elastic member which represents the float bottom and whiéh
has a spring constant k,. The other notations are given in
Figure 4.

The manner of calculation is derived from Lagrange'!s equa-

THul i

= Fl)

.ok
dt o 4di
in which E 1is the energy of the whole system,

Q;, the coordinate of the respective C.G.,

4i, . the first derivative after the time 1,

the external force.

Hence
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Then, for the mass M,, we have in the X direction

g4 OE
d t 8

Moreover, the elastic forces are introduced as an external force,

S0 that
Fi =ky {{x, +a9) =-(x, *0, +ag ] %
+ B fx, ~b o) ~(x, + L, ~ B9 s
Then y v
My x # (ky + Kp) g (ke a~ kg i ies
when
Xl = Xz = L], il 1 flz
9, - 9, =9

Similarly, for q =49,,

0, $+ (ky a - kp b) £,, + (ky a® + kp V*) 9 = 0

the
and for/ other masses M, 6, with their coordinates X, ,and

¢, and M, with =x,;. The following expressions are then ob-

tained for the present problem

dgxl
My 355 +(ky + kp)fi, + (kp a - kg D)P, = O
o, o
0, = t2-+(kv a - kpb)fi, + (kp a2 + kpb?)e,, = 0
Chet 3 &
Mz d 2 —(kU e kh)f12 ——(kv a — khb)@lz + k2 123 =
dewe i
S g &= ~(ky a - kpb)fy, ~(kp &% + kpb® )@, + kT fo5 = 0
s e 9
M, R =0,



NeA.C. A, Technical Memorandum No. 580 18

After a double differentiation of the formulas

Xl"XB:L—f],E a4ndX2+r@3—X3=L2—faaa,nd.cp—%ztp

These equations can be introduced into the system of equations
for the eccentric impact of the two-mass system for any arbitra-

ry distribution of elasticity between the two masses.

az f 1 1 H
e 8 s (ky 4k o e
R <Ml ) Tie
1 1 k,
{ 3 v el \ el
¥y, e R B <Ml TR T
g B /l 1 \ :
——————d t2 = (k".) a - kh b) \-91— S —é;/ f1_2 o
1 1 Ko Sy
+ (kp a® + Iy b®?) (é? + ——jcpl22 L3 —e—j c i (7]
il 1 P v
S oo f SR S -
& e . <L£2 S T
e chitle ky & - kn b
) ( v h i) i r\ £ ¥
M, 0, J 1=
2
2 kb &~ ky'b  kyah+ Ky © Y i
Mo 02 /e a

As shown by the preliminary formulas, the problem leads to

vibrations with force combinations similar to the torsional vi-

brations of shafts. The graphical methods of calculation used
for torsional vibrations of multi-mass systems may possibly be
advantageously applied to the present case. It should be taken
into consideration, however, that the problem differs slightly

in the present case. From the analytical viewpoint, the solu-
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tion of this system of equations requires a very complicated |

calculations.
8., .For the centric impact (step impact), = = O, -Moxe—

over, the equations with

.
and a=D>b= 5
are simplified whence there is obtained for the impact force
M, -P =Kk, £,
k?. f23

where f,, and f,; are derived from the system

1t

and I\lig e P2

-
e ¥ 1 k
51__—%&+k1(__+ N wln g o e
d % \ M, M,/ M,
2 = e
d k
_“‘_f%g"*'kz ‘]:—+1_‘\f23“_;‘}‘f12:0
at | M, Mg/ Mo L)
or "
a £
e t}ge + 0,° f5 - a® f55 =.0
@ f
—a——‘gg—s + G:se f23 g (142 fla = O

This system can be easily solved in the usual way. Solved with
respeot to £, and with £, = & e®? 4 quadratic equation

e o WP, With wve-dok; ol o0 PN

¥ o= dlo? + @ £/ (07 ~57) + 4067 o (2)

and we obtain for

g
v
I

4, sin N\, t + 4, cos )\, t + By s8inA; t + By cos Ay ©
% a2
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|
or Wi i B W e 7
‘ 2 3 i) . 1 oy
f23 = e Al —‘—52"2———" 818 )\,1 1 e AE ——-——a-—e-—— COs )\.2 t — ‘
‘ i e R Ko @ o (e
- B, *——2 sin A\, t - By —F——1 cos A, t.
Ctee 0“32 ‘

The arbitrary constants are

d £ g s Gl
G’E ____?_32 (,\2‘“ L a'l'“ ) _._d___l_g_o_ ‘
B =
3 2 2
1 g (Kl - A7)
A 1 ng fea + (>\'22 B a’lz) fleo
" e
AT (= K2
Q.2 E;EEEQ S MRS S ﬁ;fuaL
N 2 d % i il d t
ol e BT - |
Al =
T a2 fzao B {XgB e B8 floo
o i )
(kle — xez)
where
d flz d f23
flzo) faso, Tk S gl d -tnn
are the values for A t = 0.
Thewimitisgl conddtiions £ it =10 are
d X, d
Ey = Ls % Uj Xy = 0O i R k- SR ol
d x
X = L R IRCD) o C
o o il j
when
Xy = X =Ly - £, and x -—-my = Ly — £33
a £ a &
flao =08 f230 == 0 _ﬁ_ﬂ_ = 0; _’d‘_'"?t‘?‘o" =
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Hence
A, = 0 By =0
A e B Og”
= =5 - C = - = (¢ .
1 L) as N Uiy~ Wl a
For
Bi=k e and B S0k lon
the forces on the hull or float are
P By b Oe” i Mo
= g Ky = BRIl th T RGsn
? >\1 ()\.12 A )\,22)
a 2
- 2 sin A, t] (10)
g Rl e
P T Wil Ny b+
2 400 o T e sin
2 s 2 2 1
T
A2 = @.2
I L—— sin A, 1] (11)
JME S e
For a more convenient calculation, let
M = mass of the whole airplane = M, + Mg,
M; = mass of fuselage = Tl,
M, = mass of float = sk,
M; = mass of water = Wi,
k, = ok = elasticity between M, and M,
ks = ek = elasticity between M, and Ms,
;T kl Kz 1 . . < - o r
B —2_. total elasticity between M, and Mj.
R
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Forces on the fusclage (mass M, ):
Bi = eg /Moy i Ay B g atn 0 (13)
£ G £ C
o S
O R BT e
2 B/A+ B 2 BJ USSR
T+ 8 s + W
Qe e S s R
© Al 1) o S W

i A/ M . 2 X M
i / ARG k. - g = W\ 460 €
B = -5 \ oo i) SaaET e o e
2 b e R s W S

Forces on the float (mass M2)3

B o= og/k Wi~ ¥ sin kit + i sln s Gl

3: ) WIS Ol .
o 2R S e N e
i o B ,\’/dA - B

G c_z’._.i-.___
T s

9. When it is too difficult to calculate the spring con-
stants, they can be determined by vibration tests on similax
models. The seaplane is elastically suspended and caused to
vibrate by a rotating weight eccentrically sttached to the fuse-
lage. Then, the naturasl vibration number of a structural member
can be easily determined by its resonance with the revolution

number of the eccentric weight, From this the spring constants
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can be easily determined. A mean spring constant

= %gfki d Fi must be introduced for the elasticity of the
float bottom, whence the mean bottom pressure is obtained. At
the points where the spring constant of the bottom is smaller
than the mean spring constant, the bottom pressure decreases,
while it increases at the points where the constant is greater,

namely, in the neighborhood of the bulkheads.

10e A numerical example is given in the form of a calcula~
tion for a float seaplane of the Heinkel monoplane type, €.g.,
the HE 5, HE 8, HE 9, etc. The elasticity between the fuse-
lage and float is determined by a vibration test made by H.
Hexrtel and Lelss of the Static Division of the D. V. Le OB an
HE 8 for the determination of wing vibrations.

The float was found to develop vibrations with a frequency
of 550/min., as shown in Figure 7. In the above equations
therefore, we should put ky = ®, since the axis of vibration
passed through the rear suspension point of the float. However,
as a first approximation, we shall use the formulas derived from
the simplified assumptions which, strictly speaking, hold good

only for ky = kp and a = b, or for a single spring located

)

in the line of gravity of the constant k,.
Let Xk, Dbe the constant of a soring mounted in the line
of gravity g h and producing the same type and frequency of

vibration as that of the observed vibration. For the latter
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(Fig. 8) we have the approximations

. 2 dz cp:l.
(l\ill Joi ot 91) a t; = kp e Iy
s @ ¢
(Mg Pl 92) d ¥% Co kv e fv

in which the following notation is used.

M,, . mass of fuselage = 275 kg2/m
8,, 1inertia moment of fuselage = 8235 kgm?
M,, mass of float = ' 30 kg2/m
©2, 1inertia moment of float = 1. BB JEgme

Moreover, b = 0.86 and D! = 1.33. ¢, and @, are the
angles of the fuselage and float motion; fy and ky the de-

m

flection and spring constant of the forward suspension. For
fV sxials (@1 azt @2)

& £ 1 1
% = ku ee fu [_ s + : = - ] .
d % MY + 8 (Mg B + 85)

We now replace the spring constant ky at a distance e by a

spring k, at a distance b and obtain the angular velocity

.......

of vabration
il i % m 550

w = Ry B° ¥ =
w// > <Eﬁ1 b°® + 0 M bte 4+ 6./ 30

By this formula k, = 574,000.

This spring constant produces a deflection of
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under the static load of the weight of the fugelage. Acocording ‘
to a numerical estimate, the spring constant at the bottom |

amounts to about k,/F = 1,750,000. For a float water line area

of approximately 10 m® the mean deflection would be

iy 3000 kg
~ 17500000 kg/m

= 0.175 mm

under the weight of the seaplane.

The landing case represented in Figure 1 is used for the
calculation, Let the airplane speed be V = 90 km/h = 35 m/s,
the line of flight roughly horigontal and the angle of inclina-
tion corresnond to the angle of attack in leveling off (about
1 Hence, the normal speed component is ¢y = 5.8 m/s, the
length of the bottom striking the water is approximately 1.3 m,

according to Figure 1, and the spring constant of the bottom

ke = 3,500,000 kg/m for a width of b = 0,88 m.

For M = 305 kg?/m M, = 375 kg?/m
U, = 30 ‘¥, =25 (at? - %i> = 46 kg? /m
k, = 574000 %% k, = 3500000 %?
(A E%i~5%; = 483000 kg/m,

(bah 18, = = 0.9; 8=10.1; w=0.18; o =71.068 & & USEul
the impact on the fuselage is

B P, = 17800 sin 94 t - 3880 sin 430 t

and the impact on the float is
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P, = 36800 sin 450 t + 4830 sin 94 %.

A

(&}

shown by the calculation, the impact is a vibrational
phenomer:on. For the designing of airplanes it is therefore im-
portant for the struts which, during the first moment of the

impact, work in tension, to be subjected immediately to a com-

)
0
(6]
part

ol ive force of nearly the same magnitude. Some struts may
also develop vibrations in resonance with the impact and there-
fore collapse prematurely. The frequencies of the impact are

n,- = 15/

fig = Teli

11, As wgs to be anticipated from the preliminary state-
ments, the result was confined to the purely elastic impact
with the impact coefficient 1. 1In practice the impact is
damped, chiefly by the internal damping of the material and by
friction in the connections, joints, etc. This damping action
and its effect on the impact must be determined by tests. The
question will be only briefly considered here. According to
Plankf Hondsa and Konnof*the demping of the material is directly

proportional to the velocity of deformation, so that

d
!
b
Hh
+
™D

'!{

Ty
‘_l
(9]
S

If this formula were substituted for k f in equations

(23 and (8 the solution of the system for A2 would give a
2 p AR

*Plank, "Betrachtung uber dynamische Zugbeanspruchung," Zeit-
schrift des Vereines deutscher Ingenieure, 1912,
**Honda and Konno, Zeitschrift fur #hgcewandte Mathematik und
Mechanik, 1921, p. 481.

e i S s e et e s i i ke R L L e L L R
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biquadratic equation. Aecording to the magnitude of the damping
coefficient, the amplitudes thus obtained are smaller than those
of undamped vibrations which, moreover, die out rather quickly.
The damnping cocefficients must be determined experimentally. It
is still uncertain whether the linear agreement is actually
maintained. For plywood this assumption is not even approximate-
ly correct. For metals the damping effect seems to reach values
considerably above the proportionality limit, especially for
durslumin. This is apparently the reason why the permissible
load can be greatly exceeded with duralumin bottoms without
causing fallure, but merely bulging or other permanent deforma-
tion. The above statement is based on the assumption that the
permanent strength is not exceeded for the corresponding load-
shifting coefficient and that the material is not impaired by
corrosion. Owing to the brief duration of the procesg and to
the damping effect above the 1imit of proportionality, the break-
ing strength seems to be much greater than could be anticipated
from the calculation based on static tensile tests. Within th
elastic range, which alone is of interest here, the damping
seems to be negligibly small, as shown by a short test made with
a vibrating duralumin plate, and does not warrant the tedious
calculation. I% is therefore suggested, as the best approximate
way of estimating the damping of duralumin floats, to use only

the maximum value of the greater vibration for the maximum im-

pact. The reason is that although, when damping is taken into
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consideration, the amplitude does not differ much from that with

no damping, the difference becomes apparent at a greater number |
of vibrations. Owing to the difference between the frequencies
of the individual vibrations n; and n,, the maximum value of
the impact force may be approximately expressed by the sum of

the maximum values of the individual vibrations. With damping ‘
We can approximately assume instead that, when the maximum de- ‘
flection of the larger slow vibration is reached, the smaller

but quicker vibration has already died out. Similar considera-

tions apply to the impact force on a float. 1In this case the
deflection of the short slow vibration remains small when the

maximum value of the long, fast vibration is reached, while, for

the maximum of the short slow vibration the long fast one has

already largely died out. In this case the maximum value of

the undamped vibration of great amplitude can be substituted,

with a fair approximation, for the maximum impact. Hence, the

maximun impact force of the case calculated above is P,y x=

17800 kg, or the load factor e = P/G = 5.9 and B .o =

36800 kg or the bottom pressure

= 1.8 kg/cm?

In spite of the limitation ky = kp these formulas can be
used for the approximate calculation of a whole series of prob-

lems, when mass and elasticity are properly subdivided. Thus,

for float seaplanes, the impact force on the engine bearers or




N.A.C.A. Technical Memnrandum No. 580 29 ‘

wing can be calculated with a fair degree of accuracy, if the
rest of the fuselage and the float are considered as a single
mass M,, 1if a mean elasticity between fuselage and water 1is

put for k., and if the corresponding values of the engine bear-
ers or wing are substituted for U, and k,. Similar calculations
can be made for flying boats. A subdivigion of the fuselage

and wing is particularly advantageous for large flying boats,

the weight of whose engines, fuel, etc., is distributed over

the wings.

18. In dividing a seaplane into two masses, the system of
three combined vibrations mentioned in Section 7, which is Trath-
er difficult to calculate, is obtained for the eccentric impact.
However, the problem seems to be covered sufficiently when the
reduced mass is substituted for the mass M of the seaplane
(equation 6) in the formulas for the step impact. On the sense
of the calculation developed in this connection, the formula
assumes the elasticity is located between the water and float

and not distributed according to the above assumptions.

13, The favorable influence of elasticity leads us to at-
tempt a reduction of the impact by installing shock absorbers
as on landing gears. This can be done to a certain extent.

Yet too soft springs may easily have an effect contrary to the
one desired. In taking off from a choppy sea and even from

slightly rippling water, instabilities may develop under the
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action of the accelerated mass of water subjected to short-

period variations and owing to the small natural frequency of
the system. Such instabilities, like the resonance of forced
vibrations, may lead to premature failure. This probably ac-
counts for the failure of the repeated attempts to equip float

gears with shock absorbers.
The V-Shaped Bottom

14, Let us also investigate the V-shaped bottom for the
case represented in Figure 1. A wedge of the length a (Fig.
9), assumed to be without mass, is connected with the mass M,

by a spring member. This wedge penetrates into the water at the
3

time t with the speed z zz. A water mass I, no longer

constant but a function of the width y, corresponds to the

bottom portion of a width y and a depth =x, immersed at the
time t. The force on the bottom, which is assumed to have no
mass, now equals the momentum increment of this variable mass
with respect to time

" a (u4x)
o at /

a %

As in the case of equation (3), we now have

5 8
g:kf
d &

M,
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Moreover, x,

For very sharp V-bottoms and very large

d Ry Qi d =

iR e SR

put

o)

a 'y

and we then obtain

d‘x\‘

a? X _\ g el
M e
oa b at
or
Al e X w8

e o lia.e

oL RET =
nEdE d %

The integration constant is

gitmee in the case bf +

il
@
¢ J
=
fa
]
©

+ C.

e — Cg,.
dt M, + 8,
tae lmpact foroe
o K.° eg 4dMdX
P = R el P WegE T .
dt (B, +M5) dazas
As above, we again have
e
d x M,

= e sl G
a t dly + g &

a dy
3 | dx’
make an angle of a

Moreover, tan

with each other.

Hence

For the greatest width, which, with the

likely to produce the maximum force, we

usuval bottom shapes,

A e
aave

k values we ¢

31

an

when the bottom walls are straight and

is
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The impact force on the hull of a flying boat or on the

fuselage cf a float seaplane with a sharp V-bottom is therefore

"
\ L Bl a s e
e et (17)
‘ 4 1N :
‘ (l + 2
\' l‘dl/l

‘ -
| when o is the keel ‘angle,

- ca the components of the landing speed normal to the keel,

o the denslity of the water,

a and b the length and width of the bottom striking the water,
a being smaller than Db,

the mass of the seaplane,

T
it B ofs s THER o8 ;
| e =gP(ab - when a>D.
\ [&]

‘ For twin-float or twin-hull seaplanes we would have

i .O/ab—g’-bg\
\ 4 i/

P = tan.% G e (18)
(1% 20
\ L 1/

*A similar formula, though on the assumption of an infinitely

long plate, was developed by Von Karman in a report published in
o October, 1989, by the Fational Advisory Commitiee for Aeronau-
tics (Technical Kote No. 331l: The Impact or Seaplane Floats
during Landing).
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Since, according to our assumptions, the sharp V-bottom is
not affected by elasticity, the development of a load factor ap-
plicable to the whole airplane is warranted. The forces on the
fuselage, as compared with its mass, are therefore smaller than
the forces on the float bottom.

According to the formulas, the impact is infinitely great
for o= 180°. Even with a flat keel, the impact forces are
excessive, so that the elasticity must then be taken into ac-
count. The equation can be integrated numerically or graphically.
As a first approximation, we might confine ourselves to deter-
mining the impact of the flat bottom, taking elasticity into
account, and the impact of the sharp V-bottom by the above formu-
las. The impact of the flat-keeled bottom may then be approxi-
mately determined by drawing through the point o = 180° a
tangent to the curve of the sharp V-bottom.

We do not feel justified in expressing the keel of so-calléd
wave-binding shapes (Fig. 10) by the angle a of Figure 10, as
was hitherto usually done. In this case, equation (16) would
have to be integrated graphically or numerically or else the im-

pact of o flat bottom would have to be considered instead,

15, The moximum bottom pressure is exerted on the immersion
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pf the keel, It is then

for single-float or single-hull seaplanes, and

p = tan % e M P (20)

for twin-float seaplanes or twin-hull flying boats. The maximum
stress on the bottom surface, however, is probably produced at
a mean bottom pressure exerted over the whole bottom surface.

This bottom pressure can be easily determined by formulas (12

and (18).
15. The eccentric impact can be calculated with the same
3% ; & 12 :
formulas if, as above, the reduced mass M' = M — — Adagsube
-G

stituted for M, (page 15).
Summary of the Results

17, Figures 11 and 123 show the results which can e theo-
retically anticipated for Heinkel monoplanes calculated for a
geometrically similar increase of dimensions but variations in
landing speed and bottom angle. Inasmuch as the impact force
for flat or V-shaped bottoms is proportional to a surface,

P = 01/55; can be expressed as a function of the weight. Ian

this formula the coefficient ¢ depends on the speed and the

keel angle only. The load factor is then



-

N.A.C.A. Technical Memorandum Np. 9580 35

The length of the waves which the seaplane can withstand
is also increased, since the contact length of the bottom sur-
face is included in the calculation and would also have to be
proportionally increased, in order to preserve the geometrical
similarity.

The load factor calculated for the fuselage of the 3000-
kilogram seaplane in seaway 2 was 6 g. It would be wrong, how-
ever, to conclude that a seaplane calculated with this load fac-
tor cannot resist stronger seaways, since a skilled pilot usu-
ally succeeds in avoiding the case represented in Figure 1 by a
tail landing. Yet seaway 2 seems to be the 1limit at which a
pilot can bring his plane down without special training. Be-
sides, seaways seldom correspond to conditions which can be rep-
resented diagrammatically. .However, such a representation is
also used in shipbuilding practice for strength calculations

and is necessary in order to obtain a basis for the calculation.
Comparison with the DVL Load Assumptions

18. The load assumptions of the D,V.L. developed from data
supplied by Lewe and the experience of various companies are
based on geometrical similarity. The load assumptions do not
account for the influence of bottom width, mass distribution,
elasticity, etc. Figure 13 shows the influence of the flying

weight on the load factor, according to theory and to the D.V.L.
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load assumptions.* Figure 14 illustrates the influence of the ‘
bottom angle on the impact according to the two methods of cal-
eulation. There is also plotted a point taken from Bottomley'!s
model tests,** which is closer to the theoretical values than
to- those of the D.V.L. load assumptions. According to theory,
the velocity is proportional to the first power for flat bottoms
and to the second power for sharp V-bottoms, while it 1is propor-
tional to the 1.5 power under the D.V.L., load assumptions.
According to these load assumptions the bottom pressure is
calculated from the 50% greater fuselage loading. In theory
the float has about twice the fuselage loading, provided it is
not carrying additional loads (fuel tanks). The area over Which
the load is distributed is about the same in'theory and accord-
ing to the load assumptions. In general, it can be said that
the theory is not in fundamental contradiction with the empir-
ically developed load assumptions. One advantage of the theory
over the load assumptions lies, however, in the possibility of
considerably more accurate calculations and thus hitting the
best compromise of the different float factors, especially as
regards quick take-off and adequate strength. The theory, how-
ever, requires experimental confirmation and extension by experi-

ments which are now under way and which will soon be reported.

*Lewe, Zeitschrift fur Flugtechnik und Motorluftschiffahrt,
1920, p. 1235,
**Bottomley, "The Impact of a Model Seaplane Float on Water."
British A.C.A. Reports and Memoranda No. 583 (1919).

Translation by
National Advisory Committee
for Aeronautics.
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Fig.6

Diagram of eccentric impact of the two-mass
system.
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Fig.8 Diagram of the test according to Fig.7.
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Fig.9 Diagram for V' bottom tests.

Fig.10 V bottom of wave-binding
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