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NATIONALﬁADVIéORY COMMITTEE FOR AERONAUTICS.
TECHNICAL MEMORANDUM NO. 574,

CALCULATION OF PRESSURE DISTRIBUTION ON AIRSHIP HULLS.,*

By Theodor Von Karman.

Introduction

These caloulitlbmi;'iuuﬁe at the request of the Zeppe;in,Aii; e |
ricHef i Germany, were based on the shape
owi; 'u;ﬂ,lificati'ons. e

Cars, fins, and rgddéiﬂ

ship Company of Friiua“

VA

of the ZR III, with the fo

All cross sections replag,g 0y e
cross sections; : .}?HJH

Under these assumptions the pressm M}bution Was cal-
culated for the following cases: A
Symmetrical case, or flow parallél to the axis;
Unsymmetrical caae; or flow at an angle to the axis,
In both cases the simple potential flow first forms the
basis for the determination of the pressure distribution. Case

a then yields no drag, while Case b yiélds a turning moment

which tends to bring the hull crosswise to the air stream, but
no perpendicular force. For determining the latter, which con-
siderably modifies the pressure distribution, especially at the
stern, it was assumed that the hull is followed by a vortex

trail in somewhat the Same manner as an airplane wing. A simple
7

*"Berechnung der Druckver +ei1ung an Luftschiffkorpern." From /
Abhandlungen aus dem Aerodynamischen Institut an der Technische
Hochschule Aachen, 1927, KNo. 6, pp. 3-17. ///?
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assumption regarding the distribution of the vortices leads, in
fact, to results which agree very well with the measured ones.

The calculations are no more difficult than the static calcula—-.

tion of a statically indeterminate system.

Symmetrical Case

It is assumed that the flow is produced by superposing a
flow arising from a system of sources and sinks on the pamallel
flow of velocity U. The system consists of line souwces and
sinks of differing productiveness, in which the yield per unit
length is kept systematically constant over 10 m (32.8 ft.)
lengths. A preliminary survey showed that the flow at the bow
is practically independent of the sinks and, conversely, the
flow at the stern is i;dependent of the forward sources, so that
the calculation can be made separately for the bow and the stern,
i,e., for a so-called half-hull, with very close approximation.

A symmetrical flow with respect to the axis can be repre-
sented either by the potential function or by the stream func-
tion. We first introduce the coordinates of the cylinder:

x, 1in the direction of the axis~of symmetry; |

r, as the perpendicular distance from the x axis;

@, as the angle of orientation of the meridian plane, cal-
culated from the vertical section of the body of revolution.

Then the velocity components in these three directions are:
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in which ® is the potential function. After introducing the

stream function V¥, the same velocity components read

- 1% =_1lgav -
Uz = 33 YT T T ax up = 0.

If the cylinder coordinates are replaced by spatiel polar coor-
dinates,
p, the length of the radius vector,

$, the angle between the radius vector and the
axis of symmetry,

®, the potential function,
then the formulas for the velocity componehts, in the direction

of the radius vector and perpendicular to it, read

_0 .1 av
ap p2? sind Aad

The two functions ¢ and V¥, for a simple source With yield Q,

read ' @- sireny gA stk

. -gvAnt "\7 7/7 ""'/‘/A;'/c j'f'""

V.= - Zgﬁ (1 + cos 9).

For the following applications, we will calculate the func-
tion of Tflow and the velocity components for a line source of

length a eond yield q per unit length.
Tl re ¢ 9 1 p2 o‘—y‘W
G - gtrnrm T e prlat e

[N ———— i
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.Stream function.- The contribution of an element df to the:

stream function at the point P 1is manifestly

a¥ = - g% (1 + cos 8) d ¢

and the stream function of the ﬁhole line source is
a
V= i% é (1 + cos 8) dt.
Now, according to Figure 1, .
af cos § = —~ dp.
Therefore, if p' and (' respectively, represent the distance

of the point P from the left and right end of the line source,

q .
V=cgnlato -p")

If the total yield of the line source Q = da is introduced,
T ——

the stream function reads
N Q. e - e\,
v (1 + - N\ (1)

=T 4m 7

Velocity‘components.- The components ux and ur, calculated

with the 2id of the formulas

1 3V 1 a3y
ux = 3 %; and  Ur = - 3 3%
are
___Q " op'
Ux 4T ar (nr dr )
1 t
up = - Q ap" _3p'\.
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Jow, in general, p =« T° + x°, consequently
ap
ar
o] 2] 3
T cos

and the two velocity components become

uy = — Q& __ (sin ¢ - sin §'),

4_':'“ arzrT

Q (cos 8" - cosd'). (2)

Uy = = —
o 4T ar

The General System of Equations

We retain the division of the construction drawing placed
at our disposal by the Zeppelin Airship Company and adopt line
sources of 10 m (32.8 ft.) so that the transverse frames 120,
130, etc., lie in the middle of the line source. The correspond-
ing designations of the frames are shown in Figure 2. The line
sources are numbered according to the frames, so that, for ex-
ample, the line source which is symmetricaily located with re-
spect to frame 120 is called the twelfth line source and its
-~ yield is designeted by Q,2. Then (on designating the distances
of the given streamline point from the end points of the 1
1ine source by p'i ond p''i) the stream function of the system

of sources and sinks reads

p'. -~ p".
L SR W Y

n
, 1
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The stream function of the parallel flow must then be superposed
on this streamline function. If the flow is from the left, the
stream function reads

\VO=U%2-
The stream function of the whole flow then becones
( Py - Fy&\

.
’
N s

=
i
NM o]

___E
1w

The lines V = constant represent the streamlines, and the line
¥V = 0 must yield the axis and the envelope curve, Therefore,
if we put ¥ = O for just as many points of the envelope curve
as there are unknown line sources, Wwe obtain a system of linear
equations for the detérmination of Qi.

In the following calculations, the unit is a = 10 m, and
the nondimensional quantities -

Qi

—"'-—_:Zi
2Uma?

are unknowns. Moreover, P'ix and ©'j dcnote the length of
the radius vectors which lead from the end points of the 1
line source to a marginal point on the k frame, and the coef-
ficient

Pl = Py 5o

a ‘K

1+

,wiil be designated by ¢y . Lastly, I, denotes the radius of

the %k frame. Then the condition V¥ = 0, applied to n 1line

sources and n marginal points, yields the equations
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The system of equations has the following important charagtexr-

istice The coefficients

when k differs greatly from i, approach either 2 or O;
according to whether the frame k 1lies to the right or left of
the 1 line source. For example, it is obvious that,'when the
frame k 1lies to the right, P'y - P'yy approaches a and,
in the opposite case, - a. Values differing substantially

from zero or two are therefore to be expected only when k and

i 1lie near each other, that is, in the vicinity of the diagonals

of the system of equations. The coefficients ¢,,, o,,, etc.,
are all equal to unity. These characteristics make it possi-

ble to solve the equations in a relatively simple manner.
Arplication to the Bow

Figure 2 represents the forward portion of the hull as en-
ployed for the calculation. The line sources are so chosen

that the frames 180, 170, 160, etc, coincide with the middle of

RPN
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of the formers The linc sources arc numbered according to the
nunbers of the frames. Forward of frame 135 the source strength
is represented as zero. Thercfore, therc are six unknown source
strengths, which will be so defined that the streamline V =0
will pass through six points of thé envelope curve, Thesc
points arc chosen on the frumes 180 to 130, rhese radil are dos-
ignated by 134 to I3

The coefficients of the cquation systenm are then corbined
according to the above-mentioned poin’cs, cjx Genoting the con-
tribution of the i 1line source to the k point. For large

values of kX -~ 1 we have

r

ITHh, \2

1 Tk 1
3 - —_—, k rizht
- O = Pl G owr (ke

cig = 1 + a =

1Y 1
5 == — (% left).
2(&./ (1 - k) ( )

The 36 coefficients are given in the following table. The last
colurn contains the velues of (I'k_/a,)2 which fora the right

gide of the equgtions.

. 2
kK 1=18 17 16 15 14 13 fgs)

18 1.000 0.203 0,058 0.024 0.017 0,009 0,478
17 1.895 1.000 0.305 0,110 0.050 0.031 0.986
16 1.830 1.633 1.000 0.367 0.140 0.080 1,335
15 1.924 1,841 1.602 1,000 0,398 0.159 1.610
13 1.965 1.948 1.910 1,835 1.5877 1.000 1.851

The simplest way to solve the systern of equations is as follows,

For the first approxiimation, take only the coerficients which
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1ie to the left of the step line in the table, while calling
the renaining coefficients zero at first. Then the equations

can be solved in the reverse direction., For the first approxi-

).335 - 18607, ~ 1635 %,
g,\31
ey - pe7 -89

ke
1d 37

mation we obtain _ 2,7
z,g = 04478,
= 0,988 -~ 1,695 z,4-
£10

75
Then the values of the first Epproximation for z; are intro-

duced into the members at the right of the s%ep line and the ré—
verse operation repeateds The following table gives the values
thus obtained to the fourth approximation. It is obvious thatv

the method conﬁerges yery well. The source intensities are rep-

resented graphically in Figure 2

- IV.

21 I. . 111. (approximate)
18 0.478 0.430 0,424 0.434
17 0.176 0.191 0.194 . 0.193
16 0.177:1%3 0.2306 0.211 0.212
15 0.083.:3 0,080 0.075 0.073
14 0,049 ¢= "~ 0,060 0.068 0.071
13 0,005 0.002 0.008 0.008

= 0.977 04965 0.965 0.965

b

The radius of the half-hull at the bow end, if only the line

sources are used, is obtained by the summatiom of all the sources.

(.:.’L) =32 (Zi).

In the present case 2 % (z3) = 1.932 and I, = 13.88 m. The
maximum diameter of the model is Tp,y = 13.76 m, hence somewhat

less than would correspond to the approximation I, Wwould be
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reached only at infinity.

.On‘the other hand the course of the stream;ine can be con-
trolled at the nose. A slight discrepancy is obtained for the
center of the nose, namely, 186,9 m, instead of the coordinate
187.4 m of the design. The exact course of the streamline is
shown by the dash line in Figure 2. + is evident that the
discrepancy is practically negligidle. If it is des;red to cor-
rect this slight discrepancy, a supplementary point source can
be adopted at about point 185 of the axis, which brings the
center of the nose to the right place. It-hés a vanishing ef-
fect on the further c?urée of the streamline, so that the source
strengths are not changed.' I have refrained, however, from

making this correction.

Application to the Stern

The calculation for the stern is made in the same Way as
for the bows The length of the 1line sinks is likewise assumed
as a = 10 m. They are numbered according to the frames tetween
-10 and 90. Betwecen frames 90 and 135 thc strength of the
sources and sinks is assumed to be zero. The distribution of

the sources and sinks is shown in the lower part of Figure 3.
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Calculation of Pressure Distribution on the Airship Hull

According to Bernoulli's equation, the pressure increcse,

at any point where the flow velocity has the value kU, 1is
Y
p=§-g'(1-k2) Uan

The first of the formulaé IT is used for calculating k. After
Qs '

the introduction of the quantity zy = — =2 ___  the velocity
21U a?n
in the x direction reads

n
—- % - - [} _ : ]
ux = U4 U o igz z4 (oip # 1 - sin 9'y)

and the velocity in the r direction is

n
— <71 8 . oo ‘ 1,y .
up =-U Ay £, (cog § § - cos ¥¢'y).

>

We then obtain:

n
K= [1 - -2-%]; 1Z, 21(sin $" -sin $'1)1%+ _4:‘;2 [Z z;(cos "-cosdy )F

The pressure distribution thus obtained is plotted in Figure 3.
It agrees remarkably well with Klemperer's results, which are
plotted in the same figure (Cf. W. Klemperer's Aachen disserta-
tion which is soon to appear)., Only at two points are there
noteworthy discrepancies: |

a) Between frames 180 and 150 there is an actual negative
pressure somewhat smaller than that calculated;

b) A% the stern the pressure increase is somewhat less
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back of the -5 frame.

The discrepancy a may be due to the effect of the cars.

.The second discrepancy is due to.the separation of the flow.

It produces the so-called "form drag" of the airship huil. Ob-
viously the separation pccuré‘in the immediate vicinity of the
tail,

Unsymmetrical Case

Theory of Unsymmetrical Flow

The oblique flow can always be obtained by superposing
a) The case of zero incidence and

b)' The case of 90° incidence.

It is only necessary, therefore, after thdroughly investi-
gating case a, to degcribe the method of calculation for solving
case Db,

We assume that the airship is subjected to a perpendicular
flow with a velocity W and undertake the task of calculating
the flow potential for this case. The principal theorem may be
stated as follows: ¢

If the x axis of an x y z system of coordinates is cov-
ered with double sources whose axes are oriented in the z direc-
tion, then the flow resulting from these ¢double sources, super-
posed on a parallel flow in the z direction, produces the stream-
1ine form about a body of revolution ezposed to a flow at right

angles to the axis of symmetry.

’
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We first derive the principal formulas for a double source.
For this purpose we consider a source and a sink of like yield
Q separated by a distance of 2¢. In order to fix the ideas
in mind, we will locate the source and sink ét the points
x=y=0 and z=1%¢ (Fig. 4). The potential function of

the source reads

..........

) - _ % 1
(+) 4n A/X2+Y3+ (z - ¢)2

——— —— —— - J— ) .

and the potential function of the 81nk reads

®(-)= L
"4“fxa+y2+(z+e)2

If we add both potential functions and develop the sum according

to €, we obtain for the resulting flow

2 € 32

+ higher terms.
T Am (x2 + y2 + 22

= gyt &) =

)3/2

The z axls, on which the source and sink lie, is the axis of
the source pair and its moment is 2 Q ¢. If the angle of in-

clination of any radius vector to the z axls is designated by Y,

cos Y = 2
ST+ 2
and with
p=43x2+y%T+ 22
we obtain

¢ = - —gfgﬁ— cos Y + higher terms
4 11 p2




e

3

N.A.C.A. Technical Memorandum No. 574 14

If we now let ¢ decrease toward zero and Q increase to-

ward «, but so that 23Q¢ aporoaches a finite value M, then

l}:—-;—TT—p—a-COS'Y,

the potential of a double source or doublet. The corresponding
flow about the gz axis is symmetrical. The fluid flows in the
direction of the positive z axis and from the negative =z axis

towé;d the double source.

The superposition of the double source on the parallel flow
in the z direction produces the flow about a sphere., The ve-

locity component in the direction of the radisu vector p is |

Wp:"z"—ﬁ}é"p—a‘ cos Y.

The parallel flow in the z direction at the velocity -W ob-
viously produces a velocity increment in the p directioﬁ amount-

ing to Wy = - WocosY. If we put
Wp+7’lp=0,

it is obvious that, for the surface of a sphere with a radius

of

. —
@y
p = Znw

the velocity tomponent perpendicular to the surface of the sphere
disappears. Therefore the flow resulting from a parallel flow

and a double source produces the flow about a sphere.
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If the entire x axis is covered with doublets of constant
intensity, whereby the moment pér unit length is designated by
K, we obtain the flow crosswise to an infinitely long cylinder.
We now introduce the polar coordinates p, ¢ and @. 3 is the
angle between the radius veétor and the x axis and ¢ deter-
mines the position of the meridian plane passing through the x

axis, @ = O corresponds to the xz plane, Then
cos Y = sin 4 cos @
and the potential function of the double source is

M sin § cos @
4m p2

d = -~

or of the element having the strength M d £

pdé gin & cos @

d? = - T4 p2

From Figure 1 we derive the following expression:

X ~- ¢t =1 cot ¥,

whence
—dt = - —=
sin®9
Further r =p 8in 9,

so that

d¢=—74—1%—r-sin6décoscp.

For future uses we will calculate the potential for a line

.0of doublets of the length a. We obtain

e e = et et a1,
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B

® = g5

1l

a
[cos 8] cos @
. 0

or, if we indicate the angle § corresponding to the left and

right ends of the doublet line by ¢' and 8" , respectively,

- M "o '
® = 4np’£°°8 3§ cos 98') cos 9. (3)
If we integrate from 3 =0 to ¢ =m, that is, from .

=~ to £ =oo, we obtain
- b
¢ = -~ 5ep °08 @.

The velocity component in the r direction is

w. = _H

= cos 9.
T anr2

Since the parallel flow in th:.same direction yields the compo-
nent W cos ¢, it is obvious that the resulting flow represents

a flow around a cylinder with a radius

=~/ 2w

In other words, the perpendicular flow about a cylinder of radi-
us I can be obtained by e0vering the cylinder axis with a doub-
let of moment

=3 1TV

per unit length,*

*The doublet covering can also be effected by letting the two
.vortex filaments of a rectilinear pair of vortices come together
at constant moment.
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1f the uniform distribution of the doublets along the x
axis extends only from X = b to x =, we obtain the flow
about a unilateral body of revolution extending to infinity,
whose meridian line can be easily calculated.

The potential function of a system of doublets is ex@ressed
by |

——= = COS8 CP QO (p,i”),

in which ¢, represents the potential function for the vertical
section ¢ = 0 and depends; only on p and & or X and T.
The velocities wy and wp are derived from this function

(Fig. 5) with the aid, of the formulas

@
Wy = %; = %?% cos @ = Wxo CO8 @,
3¢ 3%, _
r=3r " 3r cos 9 = wry cOS 9,

so that, if the velocities Wy, and Wy, in the plane @ = O
are known, the corresponding velocities in any meridian plane
can be obtained by multiplying by cos 9.

The same is true of the components of the flow velocity W

in the meridian plane. Its components are
wx = 0, wr = W cos 9.

If the streamline pattern in the vertical section ¢ = 0 1is de-
termineq, this immediately furnishes the streamline pattern in

any meridian plane, and the corresponding velocity components
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are obtained by multiplying the velocities found for the merid-
ian plane ¢ = 0 by cos Q. '

The task of determining the perpendicular flow about the
alrship hull is reduced therefore to the solution of the problem
in the plane ¢ = 0. The distribution of the doublets along"
the axis of symmetry must be ao determined the the prescribed

meridian section becomes a streamline in the plane ¢ = O,
The General System of Equations

The arrangement and notation of the construction drawing
are retained again and the axis is covered with doublets, form-
ing line sources of cohstant intensity (constant moment per unit

length). The potential function of the i source is

_ _ul | Ui "
o3 = ~ Irs (cos ¢'f - cos 8''1).

Computing the velocity moments Wy and Wy, we obtain
39y
3 X

¥ _ M

a V,"i\
3x  4mr

s n
- sin 974 5%/

Wi (siq ¥

2% _ My L A m, 8%
w P R S, . - +
i ax 4xr (sin 91 ar sin ¥y ar )

Hy

e (cos &% - cos &'t)e

Now
J

arc tan %,

oot
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whence oz
as . x|
oX 1 4 (_1.'.\,2
. x/
1
28 __ %
oT 4 4 (3:'.\
X/
and with T
sin & = —L—a-’ cos 9 =‘___.];_.__2.
T ‘ T
/1 + ( x) [1+ (§>
Wyi = —Eig (sin® §"j - sind @)
X 4nr ) e
wpy = —% (8(cos¥y ~ cos §"3) - (cos® 8'y - cos2® §'3) ).

4mir2

We introduce the functions

\?
(T _ X/ C winB &
2
2 (N +1
EAN x/ = , 3
g = 575 = & €08 & - cos3d

6

and designate their values by £y

' or fi" and gp' or gr",

when we calculate x from the left or right terminal of the 1
source. The functions f and g are represented in Figure 6.

The velocity components‘produced by the whole system of

double sources are
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n
1
W = T 15 M (fT - 1Y),
1 n
= ' . ny,
Tt LM (et - et

The condition that the prescribed meridian line shall be a
streamline may be expressed.as follows, The whole flow is pro-
duced by superposing the system of doublets on the parallel

flow with the components

ix'—'o, ﬁr=—w.

Let & denote the angle of inclination of the meridian line.

The following expression must then hold good

tan § = Wr *t Wr _ ¥r - W

Wwx Wx
" wr - Wg tan 6 = W.
Hence

o I, M Uer' - @) +tan 8 (£ - 13")] = W
Introducing "
2= InacW (a = unit length of 10 m),
we obtain
n | .
15121[(81' ~gy") + tan & (£4' -~ £3")] = 3 (4)

Applying this equation to n points on the hull curve (n be-
ing the number of line sources), we obtain n equations for

determining the n unknown zj.
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Application to the Half Hull

(An approximate method)

Figure 7 is a schematic arrangement for the bow. The nota~
tions are the same as in the previous calculation of the sym-

metrical flow., The coefficients
gix! - 8ix" + tan & (fip' - fix")

are most easily calculated by the use of the curves {Fig. 6).
The coefficient scheme is characterized by the fact that only
the elements in the vicinity .of the diagonals differ much from
zero, so that one repetition in the reverse direction generally
suffices for the detevmination of the unknown 3z's.

Figure 6 contains the calculated zj; values, It is odb-
vious that the course of the 1z values conforms to the incre-
ment of the radius. If the 1 airship frame is imagined re-
placed by a portion of an infinite cylinder of radius TIj,

the intensity of the double source is expressed by
p.i=2ﬂ'1‘iaw

L1 TV
Zi = 3 \2 > P4

or

The table contains, along with the values '% (;%)2, the com-
puted approximate values of zj. "It can be shown that the
slight discrepancy is entirely negligible in the calculation of
the pressure distribution, It may therefore be assumed (as a

simplified method for calculating the perpendicular flow), that
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every circular frame of the alrship element of mean radius Ty

is covered by a line doublet whose intensity is expressed by
pi = 21ri® W.
Then the velocity components at any point Py are expressed by

the formulas
2 z (rk/ (£1" - f1x"),

- (1'1 \2

7, (8ik' - Bix")

This method leads to the direct determination of the transverse-
. force distribution, which is more accurate, for example; than
Munk's method, in that it indicates correctly the decrease in
the transverse forces at the bow and stern, without any diffi-

cult computations.

19

Determination pf the Transverse-Force Distribution

Following Klemperer's example, we have adopted the trans-
verse-force coefficient (Querkraftbreite) with the following
notation: i

U, the axial component of the flow;

W, +the perpendicular component of the flow;

Cgy Cp, Cp, the three components of the whole flow at any
point; '

Po» the pressure at « distance from the airship. We

then have y . .
D - Do = g5 (U7 + W* = oz® = or - cpf).
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Now ¢y and cy each consist of two components, the value of the
former being independent of ¢, while the latter is proportion-
al to cos 9. Hence

Cx = Ug + Wx cos @,

1]

Cp = Up + Wp cos Q.

The third component cg 1is proportional to sin @. Hence we

write
Cp = Wp sin o.

Introducing these values, we obtain
P - pO = .a_YéEUQ + W2 - uxz - urz - wx2 cosacp - wre cos? q)_.

- Wp2 8in?9 -~ 2 (uy wx + ur wr) cos @] .

Only the last term

% (ux wgx + up:wp) cos?

contributes to the transverse force, because all the other terms
assume equal values for ¢ and - @ 8o that the corresponding
comp}ession forces are eliminated.

The resulting transverse force, as related to an annular

element of unit width, is

d :
3% = % nr (ug Wy + ur.wr).

(the upward direction being considered positive). Klemperer de-

fines the transverse-force coefficient by

p= gt B
P (¥ + w2) 9%
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go that we obt?;n o n u W. ug W, g Wr\

AT w oW U oW
in which wuy and ury are the components of the veloclties corre-
sponding to the axial velocity of flow U; Wy and wp are the
velocity components corresponding to the transverse velocity of

flow W, If the resulting velocities in the two cases are des-

ignated by u and W,
uy Wx + Up Wp = U W,

according to the elements of the vector calculation, and the

transverse-force coefficient

UW ux=
R8T T Erw W

Lastly we write

al=

w
s >‘=W"' :ta_na,l

so that kK or M represent the velocit%es corresponding respect-
and W = 1
ively, to the flow velocities U =1/ and @ designates the

angle of incidence. We can then write
B=mrk AN sinda.

The values k and M\ are given by the corresponding source sys-

tems, so that the calculation can cause no difficulty.

et A e p e A oo
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Comparison of Theoretical and Experimental Results

Figures 8 and 9 were plotted for the bow and stern, respec-
tively, for an angle of flow of 8°:

a) Transverse-force coefficient according to Munk's
theory;

b) Transverse-force coefficient according to the double-
source method;

¢) Transverse-force coefficient derived from the pres-
sure distribution according to Klemperer,

It is obvious that the double-scurce method correctly indi-
cates the increase in the transverse force at the bow, while,
according to Munk'!'s theory, the transverse force introduces
finite values above zeéo. Both methods give about the same re-
sults for the middle portion of an airship hull, which agree
well with the experimental results,’ The determination of the
pressure.distribution at the stern necessitated a special expe-
dient.

The positive and negative areas limited by the curves in
Figures 8 and 9 give, according to the definition of the trans—
verse-force coefficient, the total transverse force acting on
the bow and stern, respectively, According to both theories
(Munk's and the source-and-sink method) the positive and nega-
tive areas are equal, and the resultant of the calculated forces
is a simple couple, According to the tests, however, the down-

ward force at the stern is considerably smaller than the up-

s sk o



N.A.C.A. Technical Memorandum No. 574 26

Ward force at the bow, so that there is a resultant 1ift for the
whole airship. From the momentum theorem it is obvious that
this is possible only when there is a difference between tﬁe
perpendicular components of the momentum pdssing, per unit time,
through a plane in front of and another plane behind the air-
ship. Air must be accelerated downward coﬁtinuously, just as
in the case of an airplane'wing. The airship is accordingly
followed by a vortex trail, whose intensity and distribution
determine the 1ift. It is possible, by simple and plausible
a%sumptions corresponding to the well-known downflow condition
of the wing theory, to develop simple formulas for the magni-
.tude of the 1ift, whiéh will agree well with the results of ex-
périence. The pressuie-distribution calculated by this method
(which will be explained in a future paper) is fepresented by ..
the curve & 1in Figure 9., As seen from the figure, the agree-
ment is goods Mareover, I have tried this method of cdlgﬁ;ap
tion on published examples (measurements: by Fuhrmenn and meas-
urements on English airship models) with very satisfactory
agreement., ' '

Conclusion

It has been shown that the pressure distribution resulting
from the potential theéry for bodies of revolution can be ap-
proximated in a relatively simple manner by covering the axis of
symmetry stepwise with sources or double sources. Frpmlthe prac-

tical success of the method, it should not be concludes that the
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flow about a body of revolution can, in general, be accurately
represented by thus covering the axis of symmetry. This is pos-
sible only in the exceptional case when the analytical continu;
ation of the potential function, free from singularities in the
space outside the body, can be extended to the axis of symmetry
without encountering singular spots. }It is true, however, that,
even in cases for which this method'offers no accurate solutibn,
the potential in the surrounding space can be ascertained to

any desired degree of approximation by increasing the fineness
of division of the line sources. This may justify the method

even from the mathematical standpoint,

Translation by Dwight li. Miner,
National Advisory Committec
for Aeronautics.
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Figs.1,2,3.
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