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NATIONAL ADVISORY CO&ITTE FOR AERONTICS. 

TECHNICAL MEMORANDUM NO. 574. 

CALCULATION OF PRESSURE DISTRIBUTION ON AIRSHIP HULLS.*


By Theodor Von Karman. 

•	 Introduction 

These calculations, made at the request of the Zeppelin .Air-

ship Company of Friederic 4fón, Germany, were based onthe shape 

of the ZR III, with the followIng eip1ificatona: 

Cars, fins, and rüddes reoPet; 

All cross sections replaoed by equivalent o.rcular 
cross ,sections; 

Under these assumptions the pressure distribution was cal-

culated for the following cases: 

Symmetrical case, or flow parallel to the axis; 

Unsymmetrical case, or flow at an angle to the axis. 

In both cases the simple potential flow first forms the 

basis for the determination of the pressure distribution. Case 

a then yields no drag, while Caseb j1lde a turning moment 

which tends to bring the hull crosswise to the air stream, but 

no perpendicular force. For determining the latter, which con-

siderably modifies the pressure distribution, especially at the 

stern, it was assumed that the hull is followed by a vortex 

trail in somewhat the same manner as anairplane wing. A simple 
* tl Berechnung der Druckve:c1eilung an Luftschiffkrpern." From 	 , 
Abhandlungen aus dem Aerodynamischen Institut an der Technische 
Hochschule Aachen, 1927, No. 6, pp. 3-1?.

I
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assumption regarding the distribution of the vortices leads, in 

fact, to results which agree very well with the measured ones. 

The calculations are no more difficult than the static calou1a-

tion of a statically indeterminate system. 

Symmetrical Case 

It is assumed that the flow is produced by superposing a 

flow arising from a system of sources and sinks on the pa'allel 

flow of velocity U. The system consists of line souceS and 

sinks of differing productiveness, in which the yield per unit 

length is kept systematically constant over 10 m (32,8 ft.) 

lengths. A preliminary survey showed that the flow at the bow 

is practically independent of the sinks and, conversely, the 

flow at the stern is independent of the forward sources, so that 

the calculation can be made separately for the bow and the stern, 

i.e., for a so-called half-hull, with very close approximation. 

A symmetrical flow with respect to the axis can be repre-

sented either by the potential function or by the stream func-

tion. We first introduce the coordinates of the cylinder: 

x, in the direction of the axis of symmetry; 

r, as the perpendicular distance from the x axis;

cp, as the angle of orienttiofl of the meridian plane, cal-

culated from the vertical section of the body of revolution. 

Then the velocity components in these three directions are: 

.	 ux=	 ur=i, u=0

L. 
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in which	 is the potential function. After introducing the 


stream function 4t, the same velocity components read 

-0 
X	 rr'	 r	 rx' 

If the cylinder coordinates are replacied by spatial polar ocor-

dinates, 

p, the length of the radius vector, 

&, the angle between the radius vector arid the 
axis of symmetry, 

cp, the potential function, 

then the formulas for the velocity components, in the direction 

of the radius vector and perpendicular to it, read 

u==	
1 

-p	 p2 s1n' 

_iM_	 1 -	
- - p sin& 

The two functions	 and ', for a simple source with yield 	 , 

read	
f' 

= -

	

	
- a,iy, //"i 

4rrp 

= -	 (1 + cos 

For the following applications, we will calculate the func-

tion of flow and the velocity components for a line source of 

length a and yield q per unit length. 

9-	 fi1	 - 

c
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.Stream function.- The contribution of an element d to the-' 

stream function at the point P is manifestly 

d'=-(l+.cosô)d 

and the stream function of the whole line source is 

a 

	

'4' = -	 f (1 + cos &) d. 
0 

Now, according to Figure 1,

cos , = - dp. 

Therefore, if p' and 01 respectively, represent the distance 

of the point P from the left and right end of the line source, 

q	 - 

	

Ir -	 1	 .i.	 I	 I? y- 4 ai p -p 

If the total yield of the line source	 = qa is introduced,


the stream function reads 

	

= - -s-- (i + '	 (i) 4rr \	 - 

Velocity comporents.- The components U and ur, calculated 

with the aid of the formulas

and ur = -

are

U - _____	 ap'1	 ap'' 
- 4 ir ar	 - 

U =- _____ (P" 
r	 4.arx	 ax)
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Now, in general, p = /+ x2 , consequently 

sin &, 

a==cos& 
-	 x p

and the two velocity components become 

= 4•a	
(sin &" - sin i9'), 

ur = -	
( COB &" - cos tY ).	 (2) 

The General System of Equations 

We retain the di'vision of the construction drawing placed 

at our disposal by the Zeppelin Airship Company and adopt line 

sources of 10 m (32.8 ft.) so that the transverse frames 120, 

130, etc., lie in the middle of the line source. The correspond-

ing designations of the frames are shown in Figure 2. The line 

sources are numbered. according to the frames, so that, for ex-

ample, the line source which is symmetrically located with re-

spect to frame 120 is called the twelfth line source and its 

yield is designated by Q12 . Then (on designating the distances 

of the given streamline point from the end points of the I 

line source by p 'j and p t i ) the stream function of the system 

of sources and sinks reads 

E	
- z;:iT j	

(.1 + P'I	 Pr?) 
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The stream function of the parallel flow must then be superposed 

on this streamline function. If the flow is from the left, the 

stream function reads

r2 

The stream function of the whole flow then becomes 

=	 - ±L	 (i + P'i a! 

The lines t = constant represent the streamlines, arid the line 

4 = 0 must yield the axis and the envelope curve. Therefore, 

if we put ( = 0 for just as many points of the envelope curve 

as there are unknown line sources, we obtain a system of linear 

equations for the determination of j. 

In the following calculations, the unit Is a = 10 m, and 

the nondimensiona]. quantities 

2UTra2 

are unknowns. Moreover, P'jk and 	 ik denote the length of 

the radius vectors which lead from the end points of the I 

line source to a marginal point on the k frame, and the coef-

ficient

i	
P 1k	 ik	 CL, 

will be designated by Cik. Lastly, rk denotes the radius of 

the k frame. Then the condition it = 0, applied to n line 

sources and n marginal point s, yields the equations
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c li z + C21 Z2 + ... + Cf1 

S	 • 

-	 c11 z1 +	 + •.. +	 Zn = (
rfl)2 

The system of equations has the following important charaQtor-

istic. The coefficients

I	 It 

ik' P11r 

when k differs greatly from 1, approach either 2 or 0, 

according to whether the frame k lies to the right or left of 

the i line source. For example, it is obvious that, when the 

frame k lies to the right, P'1 - P"jj approaches a and, 

in the opposite case, - a. Values differing substantially 

from zero or two are therefore to be expected only when k and 

i lie near each other, that is, in the vicinity of the diagonals 

of the system of equations. The coefficients c, C22 , etc., 

are all equal to unity. These characteristics make it possi-

ble to solve the equations in a relatively simple manner. 

Application to the Bow 

Figure 2 represents the forward portion of the hull as em-

-	 ploycd for the calculation, The line sources are so chosen 

tbà.t the frames 180, 170, 160, etc. coii-ide with the middl .e of
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of the former. The line sources are numbered according to the 

numbers of the fraies. Forward of frame 125 the source strength 

is represented as zero. Therefore, there are six unknown source 

strengths, which will be so defined that the streamline 1! = 0 

will pass through six points of the envelope curve. These 

points are chosen on the frac 180 to 130, whose radii are des-

ignated by r 9 to ; 

The coefficients of the equation system are then combined 

according to the above-mentioned points, cik denoting the con-

tribution of the i line source to the k point. For large 

values of k - i we have

r2 ______ 
- . '	 ¶ -1	 (k right), 

1kik	 (1-k) 
Ck l+ 	 = a	 r\2	 1

	

k)	
(k left). 

The 36 coefficients are given in the following table. The last 

column contains the values of ( rk/a) 2 which form the right 

side of the equations. 

k 1=18 17 16 15 14 13 

18 1.000 0.202 0.058 0.024 0.017 0.009 0.478 
1? 1.95 1.000 0.305 0.110 0.050 0.031 0.986 
16 1.80 1.633 1.000 0.367 0.140 0.080 1.335 
15 1.924 1.841 1.602 1.000 0.398 0.159 1.610 
14 1.030 1.912 1.825 1.590 1.000 0.410 1.770 
13 1.965 1.948 1.910 1.825 1.57? 1.000 1.851

The simplest way to solve the system of equations is as follows. 

For the first approximation, take only the coefficients which 
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lie to the left of the step line in the ta'ole, while calling 

•	 the rer.iaining coefficients zero at first. Then the equations 

can be solvçd in the reverse direction. For the first epproxi-
•	 .	 ) 3S -	 - I.G 

mation we obtain - •(o 
= 0.478, 

z = 0.986 - 1.695 z. 

Then the values of the first approximation for Zj are intro-

•	 duced. into the members at the right of the step line and the re-

verse operation repeated. Tbe fo.lowing table gives the values 

thus obtained to the fourth approximation. It is obvious that 

the method converges yery well. The source intensities are rep-

resented graphically in Figure 2. 

Zj• I . II III Iv. 
(approximate) 

18 0.478 0.430 0.424 0.424 

17 0.l!?6 0,191 0.194 0.193 

16 0.l77 0.206 0.211 0.212 

15 0.08	 : 0.080 0.075 0.073 

14 0.049 0.060 0.069 0.071 

13 0.005 0.002 0.008 0.008 

0.977 0.965 0.965 0.965 

The radius of the half-hull at the bow end,	 if only the line 

sources are used, is obtained by the summation: of all the sources.

= 2 £ (zj). 
'i I 

I the present case 2	 (zj) = 1.932 and r0, = 13.88 in. The 

maximum diameter of the model is max = 13.76 in, hence somewhat 

less than would correspond to the approximation r would be 
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reached only at infinity. 

On the other hand the course of the streamline can be con-

trolled at the nose. A slight discrepancy is obtained for the 

center of the nose, namely, 186.9 m, instead of the coordinate 

187.4 m of the design. The exact course of the streamline is 

shown by the dash line in Figixe 2. It is evident that the 

discrepancy is practically negligible. If it is desired to cor-

rect this slight discrepancy, a supplementary point source can 

be adopted at about point 185 of the axis, which brings the 

center of the nose to the right place. It has a vanishing ef-

fect on the further course of the streamline, so that the source 

strengths are not changed. I have refrained, however, from 

making this correction. 

Application to the Stern 

The calculation for the stern is made in the same way as 

for the bow. The length of the line sinks is likewise ansumed 

as a = 10 in. They are numbered according to the frames betvreen 

-10 and 90. Between frames 90 and 135 the strenth of the 

sources and sinks is assumed to be zero. The distribution of 

the Bources and sinks is shown in the lower part of Figure 3.
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Calculation of Pressure Distribution on the Airship Hufl 

According to Bernoulli's equation, the pressure increase, 

at any point vthere the flow velocity haB the value kU, is 

p=(1_k2)u2. 

The first of the formulas II i used for calculating k. After 

the introduction o the quantity Zj = _________ the velocity 
2J a2rr 

in the x direction reads

n 
u = U('+ U --- E zj (sin Vj - sin 'j) 

2rk i=1 

and the velocity in t1e r direction is 

	

Ur t1 
k	

Zj (cos &"j - COB 

We then obtain:

n 
[1 - a	 E zj(sin & wisin &tl)] 2 + a2	 z1(cosi"1-cos&'1)]2 2r 1 i=i	 4rk2 

The pressure distribution thus obtained is plotted in Figure 3. 

It agrees remarkably well with Klemperer's results, which are 

•

	

	 plotted in the same figure (Ci. W. Kiemperer's Aachen disserta-




tion which is Boon to appear). Only at two. points are there 

noteworthy discrepancies: 

S

	

	 a) Between frames 180 and 150 there ts an actual negative 


pressure somewhat smaller than that caJ.culated; 

b) At the stern the pressure increase is somewhat less



a	
S
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back of the -5 frame. 

The discrepancy a may be due to the effec ,t of the cars. 

.The second discrepancy is due to the separation of the flow. 

It produces the so-called "form d.ragH of the airship hull. Ob-

viously the separation occurs in the Immediate vicinity of the 

tai1

Unsymmetrical Case 

Theory of Unsynetrical Flow 	 j 
•	 The oblique flow can always be obtained by superposing 

a)' The case of zero' incidence and 

b)' The case of 000 Incidence. 

It is only necessary, therefore; after thoroughly investi-

gating case a, to describe the method of calculation for solving 

•	 case b. 

•

	

	 We assume that the airship Is subjected to a perpendicular 

flow with a velocity W and undertake the task of calculating 

the flow potential for this case. The principal theorem may be 

•	 stated as follows: 

•

	

	 If the x axis of an x y z system of coordinates is cov-

ered with double sources whose axes are oriented in the z direc-

tion, then the flow resulting from these 4ouble sources, super-

posed on a parallel flow In the z direction, produces the stream-

line form about a body of revolution eposed to a flow at right 

angles to the axis of symmetry.
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We first derive the principal formulas for a double soarce. 

For this purpose we consider a source and a sink of like yield 

separated by a distance of 2€. In order to fix the ideas 

in mind, we will locate the source and sink at the points 

x = y = 0 and z = ± c (Fig. 4). The potential function of 

the source reads

__s_ _____ 
(+) -	 4 /X 2 y2 + ( z - c)2 

and the potential function of the sink reads 

Z,	 1 
4	 /x2 + y2 + (z + e) 

If we add bot1 potential functions and developthe sum according 

to c, we obtain for the resulting flow 

•	 •(_) = -	
2 C z	

+ higher terms.

41T (X2 + y2 + z2) 

The z axis, on which the source and. sink lie, is the axis of 

the source pair and its moment is 2 Q c. If the angle of in-

clination of any radius vector to the z axis is designated by 'Y, 

cosY=

	

	 z 

F2+ y2 

and with

	

	 ____________ 
p = Tx + y2 + •z2 

•	 we obtain

• = - 2Qc COG Y + higher terms 
4 ii p2
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7	 If we flow let c decrease toward zero and Q, increase to-

/	 ward	 , but so that 2c approaches a finite value M, then 

M	 cosY, 
41p2 

the potential of a double source or doublet. The corresponding 

•	 flow about the z axis is symmetrical. The fluid flows in the 

direction of the positive z axis and from the negative z axis 

toward the double source. 

The superposition of the double source on the parallel flow 

in the z direction produces the flow about a sphere. The ye-

•	 locity cornponent in the direction of the radisu vector p Is 

M 
Wp 

= 2 1•r p3 
COB 

The parallel flow in the z direôtion at the velocity .-W ob-

viously produces a velocity increment in the p direction amount-

ingto Wp=_WCOBY. If weput 

wP+p=o, 

it is obvious that, for the surface of a sphere with a radius 

of	 ____ 

•	 3M 

the velocity component perpendicular to the surface of the sphere 

• •	 disappears. Therefore the flow resulting from a parallel flow 

•	 and a double source produces the flow about a sphere.
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If the entire x axis is covered with doublets of constant 

intensity, whereby the moment per unit length is designated by 

.L we obtain the flow crosswiseto an infinitely long cylinder. 
1.•.

We now introduce the polar coordirates p, 	 and p .	 is the 

angle between the radius vector and the x axis and ç deter-

mines the position of the meridian plane passing through the x. 

axis, P = 0 corresponds to the xz plane. Then 

cos Y = sin cos p 

and. the potential function of the double source is 

MsinicoS 
- 4	 p2 

or of the elemeit having the strength L d. 

	

d-	
jsin&cosP 

	

-	 4ir	 p2 

From Figure 1 we derive the following expression:. 

x-=rcot&, 

whence
-d=- r 

s1n2' 

Further	 r = p sin , 

so that 

For future uses we will calculate the potential for a line 

.of doublets of the length a. We obtain 

a
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= .---, [cos	 p •	 4np	 0 

or, if we indicate the angle .3 corresponding to the left and 

right ends of the doublet line by ' and. t" , respectively, 

= --(cos &" - cos &' ) cos p .	 (3) 

If we integrate from , = 0 to & = U,	 that is, from 

=_cx to	 =o	 weobtain 

=-cosp. 

The velocity component in the r direction is 

w =	 cosP. r	 2TTr2 

Sjnce the parallel f1owin th same direction yields the compo-

nent W cos Cp, it is obvious that the resulting flow represents 

a flow around a cylinder with a radius 

r= JL, 
2TTw 

In other words, the perpendicular flow about a cylinder of radi-

us r can be obtained by COvering the cylinder axis with a doub-

let of moment

p=2rrr2V 

pr unit length.*	 -________________________ 
*The doublet covering can also be effected by letting the two 

•	 vortex filaments of a rectilinear pair of vortices come together 
at constant moment.
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If the uniform distribution of the doublets along the x 

axis extends only from x = 0 to x = , we obtain the flow 

about a unilateral body of revolution extending to infinity, 

whose meridian line can be easily calculated. 

The potential function of a system of doublets is expressed 

by 
•	 MjS1flj 
•	 = - cos	

•	 2 = COB 

in which	 represents the potential function for the vertical 

section	 = 0 and depends, only on p arid & or x and r. 

The velocities w and wr are derived from this function 

(Fig. 5) with the aid3 of the formulas 

Wr_rCO8wro008 

so that, if the velocities 'W o and Wro in the plane ç = 0 

are known, the corresponding velocities in any meridian plane 

can be obtained by multiplying by cos cp. 

The same is true of the components of the flow velocity W 

in the meridian plane. Its domponents are 

WxO,	 WrWcosc. 

If the streamline pattern in the vertical section 	 = 0 is de-




termin4 this immediately furnishes the streamline pattern in 

any meridian plane, and. the corresponding velocity components



/ 
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are obtained by multiplying the velocities found for the mend.-

Ian plane	 = 0 by cos . 

The task of determining the erpendicular. flow about the 

airship hull is reduced therefore to the solution of the problem 

in the plane cp 0. The distribution of the doublets along 

the axis of symmetry must be so d.etermined the the prescribed 

meridian section becomes a steainline In the plane	 = 0.. 

The General System of Equations 

The arrangement and notation of the construction drawing 

are retained again and. the axis is covered with doublets, form-

ing line sources of cotista.nt intensity (constant moment per unit 

length). The potential function of the I source Is 

= -	 (cos &': - cos 

Computing the velocity moments w and Yin, we obtain 

	

. =	 = -- (sin	 -. X	 4TTr\	 ax

It 
/ 

	

Yin =	 = - (sin 'i	 -	 &tti 
4rrr \	 r	 d.r 

+ Pj (cos 8'j - cos 
41rr2 

Now
= arc tan , 

x
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whence

a=
(r\2 
"xJ 

1 

1 + (r\2 
\X I 

and with

x 
Sifli

fçr)2

1 
co9&= - 

Wx3•	 4rTr2	
(sin3	 &j - sin3	 9!j), 

Wri =	
(2(cos '- COB	 - (co 3 &'j -	 cos3	 ')	 ). 

4U1'2 

We introduce the fnctions 

.	
= \xj	 = sins 

XJ 23/2 

\X) 

2 
(..'\ 2 + 1 

g	 =
\xj = 2 008 & - COS 

1 + 

and designate their values by	 fj'	 or	 fj" and	 g	 or	 glt, 

when we calculate	 x	 from the left or right terminal of the 

source.	 The functions	 f and g	 are represented in FIre 6. 

The velocity components produced by the whole system of 

double sources are
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= 4rTr2	
(t - fj'), 

	

= 4rrr2	 tj (gj' - gj"). 

The condition that the prescribed meridian line shall be a 

streamline may be expressed.as follows. The whole flow is pro-

duced by superposing the system of doublets on the parallel 

flow with the components

'Wr-W. 

Let 6 denote the angle of inclination of the meridian line. 

The following expression must then hold. good 

_____	 V 

or	 Wr_Wxta.ltôW. 

Hence	 n 

4rrr2 
• E Lj [(gj' - gj 0 ) + tan 8 (fj' - fju)] = L 

Introducing

	

Z =	 ( a = unit length of 10 in), 
4TTaW 

•	 we obtain
n	 2 

- g j") + tan 8 (fit - it" )] =	 (4) 

AppLying this equation to n points on the hull curve (n be-

ing the number of line sources), we obtain n equations for 

V	 determining the n unknown Zj.

V	 V



•1
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Application to the Half Hull 


(An approximate method) 

Figure 7 is a schematic arrangement for the bow. The nota-

tions are the same as in the previous calculation of the sym-

metrical flow. The coefficients 

gik' - gi" + tan 8k (1k' 

are most easily calculated by the use of the curves Fig. 6). 

The coefficient scheme is characterized by the fact that only 

the elements in the vicinity.of the diagonals'differ much from 

zero, so that one repetition in the reverse direction generally 

suffices for the deteDmination of the unknown z's. 

Figure 6 contains the calculated Zj values, It is o-

vious that the course o± the zj values conforms to the incre-

ment of the radius. If the I airship frame Is imagined re-

placed by a portion of an infinite cylinder of. radius r1, 

the intensity of the double source is expressed by 

L1=2TTr12W 

or	
- • 

(Tj\2 

	

Z1_2\a/	 -, 

1 r12 
The table contains, along with the values 	

(i-)	
the com-

puted approximate values of z 1 . It can be shown that the 

slight discrepancy is entirely negligible in the calculation of 

the pressure distribution. It may therefore be assumed (as a 

simplified method for calculating the perpendicular flow), that
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-	 every circular frame of the airship element of mean radius r1 

is covered by a line doublet whose intensity is expressed by 

.Lj=241rj2 W. 

Then the velocity components at any point k are expressed by 

the formulas

- W	
(ri2 (1k° - f wx -

W 
wr = .	 E	 (g.ji - glk") 

This method leads to the direct determination of the transverse-

force distribution, which is more accurate, for example, than 

Murik's method., in that it indicates correctly the- decrease in 

the transverse forces at the bow and. stern, without any diffi-

cult computations. 

Determination pf the Transverse-Force Distribution 

Following Klemperer's example, we have adopted the trans-

verse-force coefficient (uerkraftbreite) with the following 

notation:	 - 

U, the axial component of the flow; 

W, the perpendicular component of the flow; 

c,, cr, Cq, the three components of the whole flow at any 

point; 

p0 , the pressure at	 distance from the airship. We 

then have 
- ppi(U2+W2c2cr2cc2)
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•	 p 

-.	 Now	 and Cr each consist of two components, the value of the 

•	 former being independent of p, while the latter is proportion-

	

-	 a]. to COB P. Hence 

	

-	 = U + W COB ' 

	

•	
CrUr+WrCOSP. 

	

•	 The third component c	 is proportional to Bin p. Hence we 

write 

	

•	 CçWcpBiflCP. 

Introducing these values, we obtain 

P - Po	 tU2 ^	 -	 - Ur2 - W 2 COS2 - Wr2 C0S2 P-

- wcp 2 sin2 - 2 (U W + ur wr) cos q] 

Only the last term

(U W + Ur Wr) COB 'Y 

contributes to the transverse force, because all the other terms 

assume equal values for and 11 - (P, so that the corresponding 

compression forces are eliminated. 

The resulting transverse force, as related to an annular 

element of unit width, is 

=	 11 r ( u	 + ur wr). 

	

-	 (the upward. direction being considered positive). Kiemperer de-

fines the transverse-force coefficient by 

1.
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so that we obtain

=2TTr	
UW 

U2 +W2 \U W	 U WI 

in which U and ur are the oomponents of the velocities corre-

sponding to the axial velocity of flow U; w and w are the 

velocity components corresponding to the transverse velocity of 

flow W. If the resulting velocities in the two cases are des-

ignated by U and !

ux wx +	 Wr = 

according to the elements of the vector calculation, and the 

transverse—force coefficient

UW uw 2TTr2W2UW 

Lastly we write

K = ,	 X = ,	 = tana, 

so that	 or X represent the veloctties corresponding respect-
and W = 1, 

ive].y, to the flow velocities U = i/ and a designates the 

angle of incidence. We can then write 

= i r K X sin 2 a. 

The values c and X are given by the corresponding source sys-

tems, so that the calculation can cause no difficulty.

c
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Comparison of Theoretical and Experimental Results 

	

:	 Figures 8 and 9 were plotted, for the bow arid stern, respec-. 
•	

tively, for an angle of flow of 8°: 

	

•	 a) T'ansverse-force coefficient according to Munk's 
theory; 

b) Transverse-force coefficient according to the double-
source method; 

c) Transverseforce coefficient derived from the pres-
sure distribution according to Klemperer, 

	

•	 It is obvious that the double-source method correctly mdi-

cates the increase in the transverse force at the bow, while, 

according to Munk's theory, the transverse force introduces 

	

•	 finite values above zero. Both methods give about the same re-

sults for the middle portion of an airship hull, which agree 

well with the experimental results. The determination of the 

pressure distribution at the stern neceesitated a special expe-

dient. 

The positive and negative areas limited by the curves in 

Figures 8 and 9 give, according to the definition of the tra.ns-

	

-	 verse-force coefficient, the total transverse force acting on 

the bow and stern, respectively. According to both theories 

(Munkts and the source-and-sink method) the positive and nega-
•	

tive areas are equal, and the resultant of the calculated forces 

	

•	 is a simple couple. According to the tests, however, the down-

ward force at the stern is considerably smaller than the up-
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•	
Wa!bd force at the bow, so that there is a resultant lift for the 

whole airship. From the momentum theorem it Is obvious that 

this is possible only when there is a difference between the 

-	 perpendicular components of the momentum passing, per unit time, 

through a plane in front of and another plane behind the air-

ship. Air must be accelerated downward continuously, just as 

in the case of an airplane wing. The airship Is accordingly 

followed by a vortex trail, whose intensity and distribution 

determine the lift. It is possible, by simple and plausible 

assumptions corresponding to the well-known downflow condition 

of the wmg theory, to develop simple formulas for the magni-, 

.tude of the lift, which will agree well with the results of ex-

perlence. The pressure distribution calculated by this method 

(which will be explained in a future paper) is represented by 

the curve d In Figure 9. As seen from the figure, the agree-

ment Is good. Moreover, I have tried this method of calcula-

tion on published examples (measurements • by Fuhrmann and meas-

urements on English airship n g4q3 s ) with very satisfactory 

agreement.

Conclusion 

•

	

	 I has been shown that the pressure distribution resulting 

from the potential theory for bodies of revolution can be ap-

proximated. in a relatively simple manner by covering the axis of 

symmetry stepwise with sources or double sources. From the prac-

tical success of the method, it should not be concludes that the
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flow about a body of revolution can, in general, be accurately 

represented by thus covering the axis of symmetry. This is pos-

sible only in the exceptional case when the analytical continu-

ation of the potential function, free from singularities in the 

space outside the body, can be extended to the axis of symmetry 

without encountering singular spots. it is true, however, that, 

even in cases for which this methodoffers no accurate solution, 

the potential in the surrounding space can be ascertained to 

any desired degree of approximation by increasing the fineness 

of division of the line sources. This may justify the method 

/
	 even from the mathematical standpoint. 

C'

Translation by Dwight M. Miner, 
National Advisory Committee 
for Aeronautics. 

V.
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