
N94-71103

2nd NASA SERC Symposium on VLSI Design 1990 2.1.1

Reliable VLSI Sequential Controllers
S. Whitaker, G. Maki and M. Shamanna

NASA Space Engineering Research Center
for VLSI System Design

University of Idaho
Moscow, Idaho 83843

Abstract - A VLSI architecture for synchronous sequential controllers is
presented that has attractive qualities for producing reliable circuits. In these
circuits, one hardware implementation can realize any flow table with a maxi-
mum of 2n internal states and ra inputs. Also all design equations are identical.
A real time fault detection means is presented along with a strategy for veri-
fying the correctness of the checking hardware. This self check feature can be
employed with no increase in hardware. The architecture can be modified to
achieve fail safe designs. With no increase in hardware, an adaptable circuit
can be realized that allows replacement of faulty transitions with fault free
transitions.

1 Introduction

This paper presents a VLSI architecture for controllers that provides real time fault de-
tection and reliability enhancements. The reliability advances are based on a new VLSI
architecture for synchronous sequential circuits. This controller design supports important
features such as real time fault detection, fail safeness and fault tolerance. The class of
faults that is covered by this design are stuck-at, stuck-open and stuck-on. Controllers on
two full custom VLSI data compression chips for NASA have been implemented using this
architecture [1].

Most digital systems include a controller. This can be either a general machine such
as a microprocessor, or a dedicated, custom designed sequential state machine. Dedicated
controllers can be implemented as programmable PL A based structures, or as a random
logic designs. The realization of state machines based on random logic often results in
the most compact and highest performance circuits, but the logic is a function of the
state assignment, flip flop type and flow table (actual sequence). Controllers can also
be implemented in PLA structures, reducing the layout effort, but are less area efficient
and have reduced system performance. PLA based controllers can be reconfigured to some
extent but the reconfigurability is limited by the number of minterms available in the PLA.

An architecture that retains the traditional strengths of dedicated state machines, but
offers the programmability of a microcontroller was presented in [2]. This architecture
produces controllers whose logic is invariant with respect to the actual sequence desired.
State machines designed using this method approach the performance and size of random
logic based state machines and have a programmability superior to a PLA based design.



2.1.2

zs

1(0).
«3

«3 Xj

1(0).

1(0).

1(0).

«1

«3

Z3

«3

1(0).

.y

Figure 1: General three-variable BTS network.

2 Binary Tree Structured Logic

Pass transistor logic can have significant advantages in speed and density when compared
with gate logic [3,4]. A pass transistor network realized in Binary Tree Structure (BTS)
form often requires fewer transistors and displays attractive fault detection characteristics
[3]. In general, a BTS circuit is characterized by having a maximum of 2" — 1 nodes, each
node having exactly two branches. One branch is controlled by variable Xi and the other
by x7. The maximum number of transistors in a BTS network is 2n+1 — 2. A general BTS
network contains the maximum number of transistors and represents a complete decoding
of an input space and hence only constants are input to the network. A general BTS
network is employed here to formulate the next state equations for sequential circuits.
Figure 1 shows a general BTS network which implements all three-variable functions, any
of which can be realized by simply changing the pass variable constants, 1(0), at the input
to the appropriate branch.

The delay through a series string of pass transistors is proportional to the square of the
number pass transistors. This limits the size of a sequential circuit using BTS structures to
about 5 state variables. However, this is not a significant limitation. Large state controllers
can almost always be partitioned into small distributed state machines. Two full custom
developments [5,6] illustrate this partitioning. About 100 bits of state control excluding
counters and pipe delays were required on the 200,000 transistor Reed Solomon decoder
for the NASA Hubble Space Telescope [6]. The state control was partitioned such that
no state machine required more than 5 state variables. About 225 bits of state control
excluding counters and pipe delays were required on the 210,000 transistor Auto Centroid



2nd NASA SERC Symposium on VLSI Design 1990 2.1.3

B

Table 1: Example flow table.

Calculator chip designed for Lawrence Livermoore Laboratory [5], Again the state control
was partitioned such that only one individual state machine required more than 5 state
variables.

3 State Machine Design

3.1 Architecture

The logic that forms each next state equation, YJ, consists of the following elements: a
storage device (normally a flip-flop), next state excitation circuitry which generates the
next state values to the flip-flop, and input logic. Present state information is fed back
by state variables y; to the excitation logic. The excitation logic is a combinational logic
function of the input and state variable information. In general, the information needed
to generate all possible next state values for the circuit is resident within the excitation
logic. The current input and state variables select the specific next state value.

In order for the circuit to implement arbitrary state transitions, the next state circuitry
must assume a unique form. First, the hardware for each next state variable must be
identical. Second, specific next state information must not be hardwired into the logic
that forms the next state equations. Rather, specific next state values must be presented
from an external source. The architecture presented here yields a circuit that can realize
any flow table up to a maximum of m input states and 2n internal states without a change
in hardware.

Conceptionally, the new architecture operates as follows: For each predecessor state
of Si, there exists a pass transistor path in the excitation network that presents the next
state value, S^ to the flip-flops. Predecessor states for state Si under an input Ip are all
states which have Si as a next state entry. In Table 1, the predecessor state for C under I\
is A. Whenever the circuit is in a predecessor state of 5",-, the next clock pulse will effect a
transition to Si. The pass transistor network consists of a single pass implicant that covers
each predecessor state such that when any state is entered, a unique pass transistor path
is enabled that passes the proper next state value to the flip-flops.

All equations are identical when they are realized with general BTS networks that
completely decode all the internal states. That is, if there are n state variables, then the
BTS network must decode all 2n states. The value for the next state entries for each



2.1.4

I
Input
Switch
Matrix

All
Next
States

i .1 •

{
Next
State
Logic

y; D
FF

Destination
State
Codes

Figure 2: General block diagram.

predecessor state for 5< is the code for Si and the constants for this code are input to the
BTS network. A general block diagram is shown in Figure 2, where the next state logic is
a general BTS network.

3.2 Operation

The following illustrates specifically how this architecture works. Let Table 2 depict an
example for a general 3 state variable, 3 input state machine. Ii,/? and /a are the inputs,
SQ...ST are the present states, and N^i^N^i, • • --^ST/, are the next states. This can
be generalized so that Nsjj are the next states for 5,- under input /_,-. Ng^ has been
abbreviated as Nij. The set of N;J also comprise the destination state codes. Let the state
assignment be 50 = 000, 5j = 001, S2 = 010, . . . , 57 = 111.

The next state logic is a general BTS circuit with paths that decode each state. The
input switch matrix is a pass transistor matrix, that passes the destination state codes to
the next state pass network as shown in Figure 3. The circuit realization of this network
operates in the following manner: All of the destination state codes N^ are presented to
the input switch matrix. For each input state I,-, all of the destination states in I, are
presented to the next state logic. The present state variables, y, select one and only one
next state entry which is passed to the flip-flips. If the machine is in state 5i and input J2

is asserted, then N^ would be passed to the input of the flip-flop for next state variable Yi.
The current input state selects the set of potential next states that the circuit can assume
(selects the input column) and the present state variables select the exact next state (row
in the flow table) that the circuit will assume at the next clock pulse.

3.3 Design Example

Consider the state assignment and next state entries shown in Table 3. The circuit in
Figure 3 shows the logic for implementing each state variable j/,-. Each state is covered
by a path through the BTS network that forms the next state logic. The logic of Figure
3 is replicated three times and the inputs are driven by the destination state information
which is taken from Table 3. Figure 4 shows the programming of the input switch matrix
for next state variable Y3. Except for the constant values driving the input switch matrix,
the design equations and pass transistor realizations for each state variable are identical.



2nd NASA SERC Symposium on VLSI Design 1990 2.1.5

So
Si
sa

S5

ST

#01

#21
#31

#51

#61

#12

#22

#42

#52

#03

#13

#23

#33

#43

Table 2: General eight-state three-input flow table.

N

Ji-j-

ol. 02i 03iN03

2i N23i

-̂ 32,-

Ji JV43.

/3-P

2.- ^73,

_

if3

_

Figure 3: General eight-state three-input next state equation circuit.



2.1.6

yi
0
0
0
0
i
i

2/2

0
0
i
i
0
0

2/3

0
1
0
1
0
1

A
B
C
D
E
F

010
Oil
100
101
000
001

001
010
Oil
100
101
000

000
001
010
on
100
101

Table 3: Example flow table with, next state entries.

Since only six of the eight available states are utilized, the paths decoding Sg and ST can
have arbitrary next state constants. Here they are set to 0.

It is no longer necessary to derive the pass logic configuration for each next state
equation. The next state information is only used as the input pattern to the input switch
matrix. Since the next state information is stored in the input switch matrix, only the
programming of the destination codes needs be changed to implement a different flow table.

3.4 Safe Operation

In some circuit designs it is possible to enter states that are not specified in the original
flow table and it is then impossible to return to an original specified state. If this occurs,
the circuit is termed unsafe [7]. The above architecture can be guaranteed to operate safely
by simply defining the next state for all unspecified states as any of the originally specified
states. Since the BTS network generates the next states for all possible states, there is no
increase in the hardware necessary to produce a safe design.

4 Reliable Design

4.1 Real Time Fault Detection

In the following discussion, specified internal states denote those states that are specified
in the original flow table and fault states denote those that do not appear in the original
flow table. For example, in Table 3 state 001 is a specified state and 110 is a fault state.
A circuit never enters a fault state under fault free conditions.

A key feature of the design presented in the previous section is that each state variable
utilizes independent logic. Because of this feature, a failure in any component in the BTS
network affects at most only one state variable. The occurrence of a fault may force the
circuit into a state that is at most a distance one from the intended state.

Meyer has shown that a minimum distance-two state assignment will provide real time
fault detection if the fault detector can detect the presence of a fault state within one clock
period [8]. With a minimum distance-two state assignment, a single fault forces the circuit
into a fault state. When this happens, the fault detector must simply detect the presence
of fault states to detect the presence of a fault. For example, suppose the state assignment



2nd NASA SERC Symposium on VLSI Design 1990 2.1.7

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 0 0

0 0 0

2/3

ys

ys

ys

ya yi

ys ya

ys ya

yi

Figure 4: Programming of the input switch matrix for next state equation



2.1.8

encodes all specified states to possess even parity and encodes the fault states to have odd
parity. The fault detector would simply detect the presence of odd parity over the state
variables. The hardware for this fault detector could be realized by adding another BTS
network that is identical to any state variable circuit. However, a smaller more efficient
fault detector would be a simple exclusive-or gate. A typical VLSI trade-off has to be
made at this point. If design time is important, then replicating the BTS network is best;
if minimum area is critical, then implementing the exclusive-or gate is best.

Open-circuit faults often create problems for fault detection because the charge stored
on the node can mask failures. For example, if a transistor experiences an open circuit,
the input to the D flip-flop will float when the path with the faulted transistor is enabled.
If the previous input value to a flip-flop is 1(0) and the next value ought to be 1(0), then
the state variable will not change when an open circuit is present. This assumes that the
inputs change at a rate faster than the time it takes to discharge the input node to the
flip-flop. In the case where there is no change in state, the circuit remains in a proper state
and the fault is not detected. The circuit will malfunction whenever the previous input
value to a flip-flop is 1(0) and the next value ought to be 0(1). In this situation, the input
should transition but the presence of an open circuit does not allow a transition. Whenever
the faulted path ought to force a transition in a flip-flop and does not, the presence of an
open circuit will result in an unchanged state variable and the circuit entering a fault state
which is detectable. In general, the fault detector detects only those faults that cause the
circuit to assume a fault state. Open-circuit faults which cause a circuit to remain in a
proper state are not detectable.

Only one extra state variable is needed to translate a minimum variable state assign-
ment into a minimum distance-two state assignment. As stated above, a BTS circuit
identical to a state variable can be used as the fault detector. Therefore, two additional
BTS circuits are required to provide real time fault detection. If n BTS circuits are needed
to implement a non-fault detecting circuit, then n + 2 BTS circuits are needed for real
time fault detection. The depth of the each BTS circuit increases by one upon adding an
additional state variable. Since each additional BTS circuit is identical, the extra VLSI
layout and checking efforts are small.

Checking the checker is an important issue. To generate confidence in the checking
hardware, it is important to have a mechanism that can achieve a self check. Detection
of faults in the checking circuit itself is difficult because the states that the fault detector
decodes are states that the circuit never enters under fault free conditions. One method to
check for detector faults is to force the circuit into a fault state during an off-line test. A
complete test would require that the circuit cycle through all fault states. Since the next
state entries for the fault states are unspecified, it is a simple matter to specify the next
state entries such that the circuit will cycle through the fault states.

Cycling through the fault states in the checking circuit is illustrated with the example
shown in Table 4. In this example, let the next state entry of all fault states be specified
such that the circuit cycles through all the fault states when a fault state is entered. Shown
in Figure 5 are the next state entries which implement this condition. The specified states
are noted on the K-map and their next state entries are left blank. The fault detector



2nd NASA SERC Symposium on VLSI Design 1990 2.1.9

2/i ya 1/3 2/4
0
1
1
1
1
0
0

1
1
1
0
0
1
0

0
1
0
1
0
1
1

1
1
0
0
1
0
1

1
2
3
4
5
6
7

Table 4: Fault example

00 01 11 10

00

01

11

10

1

0010
0

7
1

0100

1

0111
0

1
1

1101
0

6

0

3
1

1110
0

2
1

1000

1

1011
0

5
1

0001
0

4

Figure 5: Cycle operation



2.1.10

output is noted in the top half of each cell with 1 denoting a fault state. The fault states
show the next state entry in the bottom half of each cell. Notice that the states cycle
among themselves: 0001 -> 0010 -* 0100 -» 0111 -> 1101 -> 1110 -» 1000 -* 1011-* 0001.

A BTS circuit can easily be altered to enter the above cycle. A single change in any
one of the constants feeding an input to the BTS network, like the one shown in Figure
3, will cause the circuit to enter the fault states. The input that effects the change can
be an external signal to the controller. The important features of this fault checker are
that it can be tested, there is no increase in hardware and the cycle test can be invoked
externally.

4.2 Fail Safe Operation

A fail safe circuit is designed such that a fault can never produce an "unsafe" output.
Whenever a fault occurs in a sequential circuit, the circuit must be forced into a well
defined set of fault states with safe outputs. A circuit must not be allowed to assume
random states, because unsafe outputs could be generated [9].

In an n-van able minimum distance-two state assignment, there can be no more than
2n~1 specified states; at least half of the total states are fault states. Under worst case
conditions, a single fault will force the circuit into a fault state. For fail safe operation,
the next state entries for the fault states must be specified in such a manner that they will
prevent the circuit from re-entering any specified state. The circuit architecture defined
earlier will allow the next state entries for fault states to be specified in any desired manner
without a hardware penalty. A judicious choice of next state entries can provide the desired
fail safe qualities.

Let So be the state where all state variables are 0. A fail safe design must consist of
the following elements:

• Minimum distance-two state assignment

• S0 and all states a distance one from So are specified as fault states

• All fault states are programmed with a next state entry of So

• Outputs are programmed to be safe in all fault states

Since there is no sharing of hardware, the occurrence of a single fault can immediately
affect no more than one state variable. Fail safe operation is guaranteed for the following
set of fault conditions. Let the circuit be in state Sj with the next state entry Sj under
input Ip. The combination of Si and Ip selects a unique pass transistor path that presents
the next state value for 5,- to the inputs of the flip-flops. Assume that a fault is propagated
to cause faulty operation in a next state variable.

Stuck-at-fault within the BTS network A fault can occur in one of two locations:



2nd NASA SERC Symposium on VLSI Design 1990 2.1.11

1. A stuck-at-fault is present within the BTS network, including the primary input
lines. In this case, the next state will be fault state Sj © e, where e is an n-tuple of
weight 1. Since the next state for all fault states is So, the circuit transition is Sj —»
Sf —> So- Since the next state for So is So, the circuit is safe.

2. A fault occurs at the output of the BTS network for state variable Yk. In this case,
fault state So © e is assumed, where e is an n-tuple that is all 0 except bit position
k = 1. Since the next state entry for this state is the fault state So, the circuit will
not transition further, and is therefore safe.

Consider the example in Figure 4 and the circuit shown in Figure 6. The next state
entry for the fault states are denoted with an "f" and are coded 0 for So- Let the current
state be 6 (0110); the next state is 7 with code 0011. The pass transistor path corresponding
to 0110 is enabled for each state variable, passing the code for state 7 to the output of
the BTS network. If there is a stuck-at-1 fault along this path, then the possible next
states are 1011, 0111 or 0011 depending on which next state variable is affected. Notice
that a stuck-at-1 fault for either Y3 or Y^ is masked since a 1 is suppose to be passed. If
states 1011 or 0111 are entered, then the next state will be 0000, unless the outputs of
the BTS network for YI or Y2 are stuck-at-1, in which case the circuit will assume state
1000 or 0100. Since present state and next state are the same in all three cases, the circuit
remains stable. A similar situation occurs for a stuck-at-0 fault except state So is entered
and e = 0.

Transistor stuck-on If a given transistor is stuck-on, then two paths are enabled at
some node. Along one path is the code for the specified state, and along the other is the
code for SQ. If the two signals agree, the fault is masked. If they differ, then a conflict
is present and the exact logic level is determined by the electrical characteristics of the
network. If the path for code So dominates and propagates a 0 to the output, then the
circuit will assume a fault state. At this point one of two things can happen:

1. The fault state can enable an entirely different set of transistors causing the stuck-on
fault to be isolated and guarantees that the circuit enters fault state So-

2. The fault state does not isolate the stuck-on fault. So will still be entered because
only O's are being passed when the circuit is in the fault state.

Continuing with the above example, let the circuit be in state 6. If the transistor
controlled by t/4 in path 0111 is stuck-on, then there is a conflict between 0 (coming from
f) and 1 (coming from 7) at the first node. If the 1 dominates the 0, the circuit will operate
fault free. If the 0 dominates the 1, then the next state will be 0001 or 0010 if Y3 or Yt are
affected. Either of these states will force the circuit to So and the operation is then fail
safe.



2.1.12

3

f

f

4

f

5

6

f

f

7

2

y.4

2/4

2/4

1/4

1/4

1/4

1/4

f

f

f

1/3

3/3

1/3

1/3

1/2

1/2

Figure 6: BTS network for fail safe operation.



2nd NASA SERC Symposium on VLSI Design 1990 2.1.13

State variable stuck-at-1 If the output of flip-flop j/,- assumes a stuck-at-1 value, then
an entire set of transistors controlled by T/J or its complement are turned on. Let the circuit
be in state 5,- where yk = 0 and the output of the flip-flop for Yk becomes stuck-at-1. The
BTS circuit will respond as if the circuit is in fault state Si ® e, where e is all 0 except
for bit k = 1. The next state entry for this state is 0 for all state variables which will
force the circuit to So © e. This state is another fault state with a next state entry of SQ.
Therefore, the circuit is stable and safe.

This circuit cannot be guaranteed to operate in a fail safe manner for stuck-open or
for state variable stuck-at-0 faults. These faults can disable the pass transistor path that
drives the flip-flops and can cause a instate input to the flip-flops. A instate input to the
flip-flops may or may not force the circuit to a fault state. The circuit can remain in the
same valid state until the charge at the BTS output node leaks ofF. Many clock cycles
could occur and since the circuit is in a valid state, the fault detector and fail safe circuitry
would not respond to the failure.

4.3 Fault Tolerance

A designer can achieve fault tolerance using either of the following procedures:

1. Place an error-correcting code on the state assignment as proposed by Meyer [8].
For single fault tolerance, all fault states adjacent to a specified state are encoded
with the same next state entry as the specified state. If a single fault occurs, a fault
state adjacent to the specified state is assumed. However, since the states adjacent
to each specified state have the same next state entry, the circuit will transition to
the proper next state, or at least to a state within a distance 1 of the specified state.

2. Use n + 1 safe circuits to achieve an n fault tolerant circuit [10], Either a simple
AND or a simple OR gate could be used to produce the fault tolerant output.

4.4 Adaptive Operation

One of the attractive features of the architecture proposed here is its adaptive nature. The
constants, which are input to the BTS network, can either be derived from connections to
Vdd and V,t lines or they can come from a register or other storage cell. Destination con-
stants (codes) coming from a register can be changed. With each change of the destination
constants an entirely different set of transitions can be implemented.

If it would be possible to identify transitions that are affected by faults, then changing
the flow table could be accomplished to avoid the faulty transition. For instance, if a
given transition from state Si produced a malfunction and it was determined that some
transistor along the path decoding Si had failed, then that particular pass transistor path
could be a avoided. A spare non-fault state S, could assume the role of S,- and every
transition to Si could then transition to state S,. This change can be effected with a new
set of constants that define S, as the next state for all predecessor states of S,-. Moreover,



2.1.14

all next state entries for Si can be mapped to 5,. Therefore, state S; is no longer entered
and the particular pass transistor path that contained the fault is not used again.

5 Conclusion

A new architecture is presented that has attractive features for producing reliable
sequential controllers. A design procedure that is applicable to VLSI is given for realizing
the new architecture. Without any increase in hardware, a circuit can be designed to be
safe. Through the addition of only one more state variable and its associated BTS network,
a circuit can be realized that has real time fault detection and fail safe capabilities. The
new architecture also allows for the implementation of adaptable circuits that are capable
of initiating alternative transition sequences to replace those that are faulty. The adaptable
nature of the circuit is achieved through no increase in the fail safe design hardware.

References

[1] J. Venbrux, and N. Liu, "VLSI Chip-set for Data Compression Using the Rice Al-
gorithm," NASA SERC Symposium on VLSI Design, Moscow, Idaho, pp.41-51, Jan.
1990.

[2] S. Whitaker, S. Manjunath and G. Maki, "Sequence Invariant State Machines", sub-
mitted to the IEEE Journal of Solid State Circuits.

[3] G. Peterson and G. Maki, "Binary Tree Structured Logic Circuits: Design and Fault
Detection," Proceedings of IEEE International Conference on Computer Design: VLSI
in Computers, pp. 139-144, Oct. 1984.

[4] D. Radhakrishnan, S. Whitaker and G. Maki, "Formal Design Procedures for Pass-
Transistor Switching Circuits," IEEE Journal of Solid State Circuits, pp. 531-536,
Apr. 1985.

[5] K. Cameron, "ACE: Automatic Centriod Extractor for Real Time Target Tracking",
accepted for publication at IEEE Northcon, Seattle, Washington, Oct., 1990.

[6] S. Whitaker, K. Cameron, P. Owsley and G. Maki, "Custom CMOS Reed Solomon
Coder for the Hubble Space Telescope", accepted for publication in the IEEE Military
Communications Conference.

[7] R. Wickersham and G. Maki, "Safe Asynchronous Sequential Circuits," IEEETC Vol.
C-23, pp. 494-500, May 1974.

[8] J. F. Meyer, "Fault Tolerant Sequential Machines," IEEETC, Vol C-20, Oct. 1971.

[9] G. Maki and D. Sawin, "Fail Safe Asynchronous Sequential Machines," IEEETC Vol.
C-24, pp 675-677, June 1975.



2nd NASA SERC Symposium on VLSI Design 1990 2.1.15

[10] D. Sawin and G. Maki, "Fault Tolerant Asynchronous Sequential Circuits," IEEETC,
Vol. C-23, pp. 651-657, July 1974.

This research was supported in part by NASA under the NASA Space Engineering
Research Center grant NAGW-1406 and by the Idaho State Board of Education under
grants 88-038 and 89-041.




