- NASA-CR-194386

o

r

” o
o

N 27
Vil s 1
LI &% L

e
Ry

I

el

oy | =

- RICIS 88 SYMPOSIUM

s

"

(NASA-CR-194386) RICIS SYMPGSTUM N94-T71135

1938 (Ressarch Inst. for Computing -=-THRU--

and Information Systems) 187 p N94-T1152
unclas

Z9/61 0185350

32
=

i

I
4

'

’L/)}}/ ST 7o
J /3

RICIS SYMPOSIUM'88

Co-Sponsored by:
NASA/Johnson Space Center

and

University of Houston-Clear Lake

November 9-10, 1988
Houston, Texas

RICIS SYMPOSIUM '88

Steering Committee

Technical Co-Chairs: o oo I

A. Glen Houston, Director - RICIS, University of Houston-Clear Lake

Robert B. MacDonald, Assistant Jor Research and Education -
Mission Support Directorate, NASA/JSC

Conference Coordinator:
Katherine Moser, Coordinator - SEPEC, University of Houston-Clear Lake

Members: ,
Glenn B. Freedman, Director - SEPEC, University of Houston-Clear Lake

Bryan I. Fugate, Technical Manager - Software Technical Support, SoftwareTechnology
Program, Microelectronics and Computer Corporation

John R. Garman, Associate Director - Mission Support Directorate, NASA/JSC
Richard Kessinger, Manager - Space Programs, SofTech, Inc.

Everett Lyons, Project Manager - Space Station Sofware Support Environment, Lockheed
Engineering

Charles W. McKay, Director - SERC; High Technologies Laboratory, University of Houston
Clear Lake

James Raney, SSE Project Manager, Mission Support Directorate, NASA/JISC

University of Houston-Clear Lake
RICIS Steering Committee

Michael C. Gemignani, Provost and Senior Vice President for Academic Affairs
James T. Hale, Vice President Jor Administration and Finance

E. T. Dickerson, Dean, School of Natural and Applied Sciences

L. Todd Johnson, Dean, School of Business and Public Administration

Joan J. Michael, Dean, School of Education

Wayne C. Miller, Dean, School of Humanities and Human Sciences

David A. Hart, Executive Director, University Computing

All rights reserved by the University of Houston-Clear Lake. Use of any materials contained herein
is prohibited without the expressed permission of the Software Education Professional Education
Center, 2700 Bay Area Blvd., Box 270,Houston, Texas 77058-1088

mii |) i 1] R E W |

Introduction
Welcome to RICIS SYMPOSIUM '88!

Considerable national interest is concentrated on enhancing productivity to help ensure a U. S.
competitive advantage in the world marketplace. The technical community has realized the
importance of software in meeting this goal for some time (15-20 years!). Over the past three to
five years, the business community has come to understand and accept the importance of software. |

In fact, software has surpassed hardware as the key element to the success of many products,
systems and businesses.

Despite this growing awareness of the importance of software, much work still needs to be done in
addressing software development issues. Because an increasing number of people have recognized
the need for a more disciplined approach to software development, "software engineering" is
emerging as an important professional discipline. Unfortunately many remain unaware of modern

software engineering methods and procedures, and too many organizatiops are still developing
software in a haphazard fashion.

Given this perspective, plus the fact that the focal point of RICIS research is the NASA Space
Station Program, "Integrated Environments for Large, Complex Systems" is an appropriate theme
for RICIS SYMPOSTUM '88. Distinguished professionals from industry, government and academia

have been invited to participate and present their views and experiences regarding research,
education and future directions related to this topic.

Within RICIS, more than half of the research being conducted is in the area of Computer Systems
and Software Engineering. The focus of this research is on the software development life-cycle for
large, complex, distributed systems. Within the education and training component of RICIS, the
primary emphasis has been to provide education and training for software professionals.

However, RICIS research has grown to the point that it is not feasible to cover the many on-going
rescarch activities in a single day-and-a-half conference. Hence we have elected to have a series of
conferences, with each focusing on a specific technical area or topic of interest within RICIS. An
overview of the accomplishments to date, research plans for the coming year, and upcoming

conferences will be presented by the RICIS research area directors for each of the five RICIS
research areas.

We hope you find RICIS SYPOSIUM '88 both informative and enjoyable!

A I BH e Oomalf

A. Glen Houston) Robert B. MacDonald .
Technical Co-Chair Technical Co-Chair ’

o

lmu

I‘“W
e

IS i

[
|

[

Table of Contents

Program Agenda 1
Keynote Speaker
Larry E. Druffel
Software Development Environments: Status and Trends 7
RICIS Research Review 9
Charles W. McKay
Computer Systems and Software Engineering 11
Peter C. Bishop
Research Review for Information Management 17
Terry Feagin
Artificial Intelligence and Expert Systems 27
A. Glen Houston
Mathematical and Statistical Analysis 33
Glenn B. Freedman
Research Review for Software Engineering and Training 37
Session | Requirements Analysis Fundamentals 43
Colin Potts
Requirements Analysis, Domain Knowledge, and Design 45
Lawrence Z. Markosian
Knowledge-Based Regirements Analysis for Automating Software Development 57

Dinner Speaker
Frank Belz
Integrated Software Support Environments: Some Lessons Learned 69

Scssion 11 Space Station Software Support Environments 71
Tim Porter and Paul Babick

Lessons Learned from an ADA Conversion Project 73
Gokul Bhaumik
Modernization of Software Quality Assurance : 85

Herb Krasner
Empirical Studies of Design Software:

Implications for Software Engineering Environments 93
C.T. Shotton and C. L. Carmody
Tool Interoperability in SSE OI 2.0 99

Session [I' Developing Software Engineering for
Competitive Advatage-Industry and

Federal Government
Dana L. Hall

113

The Role of Software Engineering in the Space Station Program 115
John B, Munson
Unisys’ Experience in Software Quality and Productivity
Management of an Existing System 117
Howard Yudkin
Next Generation 125
Panel I Software Engineering as an
Engineering Discipline 127
Glenn B. Freedman
Software Engineering as an Engineering Discipline 129
John W, Brackett
Meeting the Challenge of Industrial Software Development:
The Boston University Graduate Program in Software Systems Engineering 135
Edward V. Berard
Software Engineering as an Engineering Discipline 149
Robert B. MacDonald
Software Engineering as an Academic Discipline 159
Norman Gibbs
Software Engineering as an Engineering Discipline 161
Panel 11 Computer-Aided Software
Engineering Environments
for Real-Time Systems 177
Charles W. McKay
A Conceptual Model for Evolving Run Time Support of Mission and Safety Critical
Components in Large, Complex, Distributed Systems 179
Miguel A. Carrio
A New Technology Perspective and Engineering Approach for Large, Complex and
Distributed Mission and Safety Critical Systems Componets 201
E.Douglas Jensen
Alpha: A Real-Time Decentralized Operating System for Mission-Oriented
System Integration and Operation 213

1

[HA

Integrated Computing Environments
for Large, Complex Systems

Wednesday November 9,1988

12:30 - 1:00 Welcomes and Introductions Crystal Ballroom

A. Glen Houston

Conference Technical Co-Chair, Director RICIS
UH-Clear Lake

Robert B. MacDonald
Conference Technical Co-Chair

Assistant for Research and Education Mission Support Directorate
NASA/)Johnson Space Center

Michael C. Gemignani
Senior Vice President and Provost
UH-Clear Lake

Joseph P. Loftus, Jr.

Assistant Director (PLANS)
Office of Director
NASA/Johnson Space Center

1:00 - 1:45 Crystal Ballroom

Keynote Address
Software Development Environments:
Status and Trends

Larry E. Druffel

Software Engineering Environments offer significant opportunity forimproved productivity. A collection of tools is not
sufficient. To realize that opportunity, the environment must support a disciplined software engineering process and

consistent methodology. The presentation will describe a current state of practice, expose some current trends and
offer some considerations for future development.

1:45 - 2:00 Break ' Ballroom Deck

2:00 - 3:30 o RICIS ResearCh Review Crystal Ballroom

A.Glen Houston, Director, Research Institute for Computing and Information Systems (RICIS), University of Houston-
Clear Lake

Dr. Houston will introduce the directors of each project area within RICIS. Fach project director will summ

arize his
past year's research accomplishments.

Computer Systems and Software Engineering—Charles McKay,

Director, High Technologies Laboratory and
Software Engineering Research Center (SERC), UH-Clear Lake

Information Systems—Peter Bishop, Director, Space Business Research Center (SBRC), UH-Clear Lake
Mathematical and Statistical Analysis—A. Glen Houston

Artificial Intelligence and Expert Systems— Terry Feagin, Professor of Computer Science, UH-Clear Lake

Education and Training
(SEPEC), UH-Clear Lake.,

3:30 - 3:45 Break

—Glenn B. Freedman, Director, Software Engineering Professional Education Cenler

Ballroom Deck

3:45 - 5:15 Session |
Requirements Analysis Fundamentals ,

Session Chair: Bryanl. Fugate, Technical Manager- Moderator: Michael J. See, Head, Advanced Pro-
Software Technical Support, Software Technical ject Section Facility and Support Systems Division,
Program, Microelectronics and Computer Technol- Mission Operations Directorate
ogy Corporation

Crystal Ballroom

Requirements Analysis, Domain Knowledge and Design
Colin Potts

Requirements for software-intensive systems constantly evolve. A design architecture thatis based on the structure of
the functionality at one point in time is vulnerable to requirements changes. An alternative, more stable approach,
domain modeling, should facilitate iterative design, encourage the reuse of design abstractions, and may enable usto
treat traceability more formally. Such techniques are new with the expected benefits potential.

Mr. Potts is a member of the technical staff in MCE’s software technical program, previously he lectured at Imperial
College, London, and was Principal Investigator for two academic/industrial projects addressing requirements

analysis and formal specifications techniques. His current research interest includes specification and design methods
and hypertext applications in software engineering,

Knowledge-Based Requirements Analysis for Automating Software Development
Lawrence Markosian

Aknowledge-based approach to representing and reasoning about requirements support the automation of software
development. It shows how to formalize system requirements and apply domain-specific analysis techniques to

validate the formalized requirements and simultaneously derive detailed functional specifications. General

programming knowledge can then be applied to the functional specifications to yield executable code that meets the
validated requirements,

As a research associate at Stanford University, Mr. Markosian specialized in computed assisted instruction of
logic-oriented courses. At Systems Control Technology, he applied Al to DOD applications. As a founder of
Reasoning Systems, Inc.,, Lawrence Markosian has applied software specifications synthesis technologies to
communication, program translation, C3, equipment configuration and product planning and integration.

5:15 - 5:45 - Break Ballroom Deck
1
5.45 - 6:30 Reception-Cash Bar Ballroom Deck
2

l

6:30 - 9:00 Dinner and Speaker Crystal Ballroom C

~ Integrated Software Support Environments: Some Lessons Learned
Frank Belz

TRW has developed and applied several software support environments on several dozen software projects, with
varying degrees of success. This talk will summarize the major lessons learned which distinguish the more successful

environment applications from the less successful ones. These lessons learned will be related to a new research and
development program in environment technology being conducted by the Arcadia Consortium.

Thursday November 10, 1988

8:00 - 8:30 Continental Breakfast " Ballroom Deck

8:30 - 10:30 Session I Crystal Ballroom
Some Lessons Space Station Software Support Environment

Session Co-Chair: Everett Lyons, Project Manager- Session Co-Chair: }im Raney, SSE Project Manager,
Software Support Environment, Lockheed Engi- Mission Support Directorate NASA/Johnson Space
neering Center

Learned From an Ada Conversion Project
Tim Porter

Mr. Porter will present lessons learned from the development of Ada software programs to support large command
and control systems. The presentation will cover lessons learned about reusability, maintainability, portability,
productivity and virtual interfaces from large projects. Special emphasis will be on the lessons learned from porting the
SAVVAS tool to the IBM environment to support the development of NASA's software support environment,

Mr. Tim Porter, Deputy Division Manager for Science Applicators International Corporation (SAIC), was chartered
with the funding of the company’s future software engineering environment. He has 15 years experience designing
and developing command and control systems, software productivity tools, database design and management
systems. He has specialized in the application of Ada and relational database technology to support large command

and control systems. Mr. Porter has also focused on the development of reusable software to improve programmer
productivity,

Automating Software Quality Assurance
Gokul Bhaumik
Software quality assurance within an automated software development process control environment. New quality

evaluation concepts utilize automated process management features of the system architecture for concurrent
verification of design, the development activities and their attendant products for quality.

'Mr. Gokul Bhaumik is Manager for Lockheed, Safety Reliability & Quality Assurance (SR&QA), Software Support

Environment System Project. Mr. Bhaumik has over 20 years experience in software test and evaluation, software
development, and software quality assurance assignments. In recent years, he has focused on the application of
modern software engineering technologies and practices to the quality assurance process,

SSE Tool Interoperability
C. T. Shotton
How to make heterogeneous tools work together.
C. T. Shotton is Technical Director of Planning Research Corporation (PRC). Mr. Shotton has been concentrating on
using grammar based technology to solve software interoperability problems for over four years.

10:30 - 10:45 Break Ballroom Deck

10:45 - 12:15 Session 11

Developing Software Engineering
for Competitive Advantage-lndustry and Federal Government

Session Co-Chair: lohnR.Gammn,AssocinteDiri’ct()r- Session Co-Chair:

Mission Support Direclorate, NASA/Johnson Space
Center

Crystal Ballroom

Richard Kessinger, Manager-
Space Programs, Sof-Tech, Inc.

The Role of Software Engineering in the S

Dana L. Hall
The Space Station Program is characterized br‘ extensive application of software throughout its distributed flight and
ground environment. Software represents both the key means by which complex functions and user services will be
accomplished as well as a likely source of develo i i

Pace Station Program

Dr. Dana L. Hall i Space Station Program Office at NASA

Experience in Applying Quality and Productivity Engineering
into an Existing System
Jack Munson

management systems and people from disparate cultural backgrounds. Also addressed are the results to date and the
quality goals for the near future, L

Jack Munson is Vice President and General Ménager for Unisys Houston Operations. Mr. Munson wasin charge of the
Unisys aclivity which, in conjunction with Rockwell as prime, won the Space Transportation System Operations
Contract (STSOC) in the Fall 1985. The major consolid

ation contract started in January 1986, with Unisys responsible
for all existing ground based shuttle software at JSC—previously maintained by eleven different contractors,

Next Generation
Howard Yudkin

12:15-1:30 Lunch4 Crystal Ballroom C

U

]

[T

g

LI

. variety of perspectives: theoretical foun

Dr. Brackett has been
Graduate Studies.

" Mr. MacDonald h
discipline. He has
employee develo

Director of Education, Software Engine

Dr. Gibbs has num
education. He recei

——

1:30 - 3:00 Panel 1

Crystal Ballroom
Software Engineering as an Engineering Discipline

The Panel will explore the emerging discipline of software engineering from a

dations, educational foundations, and
field. Panelists will address the nature of software

ering discipline distinct from computer science and
ther, they will assess software engineering in relation to
ation and training programs that support industry and

future directions of the
engineering as an engine
electrical engineering. Fur
the development of educ
government demands,

Panel Chair and Moderator: Glenn B, Freedman

Director, Software Engineering Professional Education Center (SEPEQ)
| ~University of Houston-Clear Lake

Dr. Freedman is responsible for university education and traini
NASA/JSC and the sur

Ng programs in software engineering offered to

rounding derospace community. He is also an associate professor in the School of Education,

Panelist: John Brackett
Professor, College of Engineering, Boston University

a leading software industry executive and was a faculty member at the Wang Institute of

. Panelist: EdV. Berard
President, EVB Software Engineering, Inc.

Mr. Berard is recognized as one of the nation’s leaders
«

in software engineering and Ada education and training. In
dition, he has pioneered the development of large libraries of reusable Ada components.
Panelist: Robert B, MacDonald
Assistant for Research and Education, Mission Support Directorate, NASA/JSC
as been a strong advocator for th

tware engineering as a rigorous engineering
recently been instrumental in providi i implementation of a comprehensive
pment program in software engineering,

Panelist: Norman Gibbs

ering Institute, Carnegie Mellon University

eaderships in software engineering and computer science
e from Purdue University. !

erous professional affiliations and |
ved his Ph. D. in Computer Scienc

3:00 - 3:15

Ballroom Deck

3:15 - 4:45 Panel 11

Computer-Aided Software Engineering Environments
for Real-Time Systems

V(Erﬂyrstal Ballroom

Large, complex, distributed systems with operational requirements to support
non-stop and mission and safety critical (MASC) components pose life cycle
challenges that can not be safely or cost effectively supported with the traditional
models, methodologies, and tools that sometimes suffice for smaller and simpler
applications. Furthermore, these challengesrequire an integrated approach across
three environments (host, integration, and target) to acceptably reduce and

control risks. This session will concentrate upon some of the most crucial issues in
each of the three environments.

Panel Chair and Moderator: Charles W. McKay
Director, Software Engineering Research Center, High Technologies Laboratory,
University of Houston-Clear Lake

of Computer Systems Design at UH-Clear La
engineering environments, with emphasis on larg

Dr. McKay, Professor ke, will address the development of
comprehensive software

e, real-time Ada systems.

Panelist: Miguel A. Carrio, Jr.

Manager, Advanced Technology Programs, Teledyne Brown Engineering

Mr. Carrio will address modeling, method and tools appropriate for the first two phases of the life cycle:

requirements analysis and the partitioning and allocation of these requirements among software, hardw.

systems
operational interfaces.

are, and

Panelfstﬁ E Dodglas]enseh
Director, Research and Development, CONCURRENT

Mr. Jensen will address critical support issues in the kernel 3

nd fiBrary of the run time support environment of the
target processors.

4:45 - 5:15 7 Closing Remarks and Wrap Up Crystal Ballroom

L

2l

S

gal o ot A ol

Lyt
| EHI

(VI

L . Keynote Address

Software Development
Environments:
Status and Trends

Larry E. Druffel

(NOTES)

[1 4 [| 1

e

T

e

t7oer e

SRR (R |

r'

RICIS Research Review

Charles W. McKay
Peter Bishiop
A.Glen Houston
Terry Feagin
Glenn B. Freedman

PRECEDING PAGE BLANK NOT FELMED

fz.ﬂ..o.‘i--"““w A

10

B Vi

1l L

\/
e
N94- 7113
\

Computer Systems and
Software Engineeing

Dr. Charles W. McKay

PRACENDING PAGE BLANK NOT FUMED

11

il 10 smentionaLy pa:

12

il

1

NN EETA o

{

ki

1

o

E

I

I
!

i

I
f

i

mey

um om

ity

Bl

B

PR a—

Distributed Ada Task Force

Transfer Network, known as AdaNET.

PRICEDING PAGE BLANK NOT FALMED

Computer Systems and !
Software Engineering .

Charles W. McKay
SERC @ UHCL

The High Technologies Laboratory (HTL) was established in the
fall of 1982 at the University of Houston Clear Lake. Research
conducted at the High Tech Lab is focused upon computer systems
and software engineering. There is a strong emphasis on the
interrelationship of these areas of technology and the United
States! Space program. = In January of 1987, NASA Headquarters
announced the formation of its first research center dedicated to
software engineering. Operated under the High Tech Lab, the
Software Engineering Research Center (SERC) was formed at the

~University of Houston Clear Lake. The High Tech Lab/Software

Engineering Research Center promotes cooperative research among
government, industry, and academia to advance the edge-of-
knowledge and the state-of-the-practice in key topics of computer
systems and software engineering which are critical for NASA. The
center also recommends appropriate actions, guidelines, standards,
and policies to NASA in matters pertinent to the center's
research. Results of the research conducted at the High Tech
Lab/Software Engineering Research Center have given direction to
many decisions made by NASA concerning the Space Station Program.

Current research involves the investigation of computer
systems and software engineering concepts, principles, models,
methodologies, tools, and environments. The relationship of this
research to large, complex, non-stop, distributed systems is
emphasized. Work also continues in the areas of reusability, data
management systems, security, distributed systems, and the Ada
programming language and programming environments. Some members
of the High Tech/Software Engineering Research Center Team are
principal members of the ARTEWG (Ada Run Time Environment Working
Group), which was founded as an international task force to
address the issues of standardizing the interface to the Ada Run
Time Support Environment. Team members currently chair the

and the Subgroup responsible for
evolving the Catalog of Interface Features and Options.

This year the High Tech Lab/Software Engineering Research
Center worked on a major project on reusability with Martin
Marietta Energy Systems, with support from STARS, AIRMICS, DOE and
six other universities. . This project involved developing a
conceéptual model for reusable Ada software that spanned the
requirements across host, integration, and target environments. A
reusability guidebook is to be published later this Year with
contributions from all participating organizations. =~ It is
entitled Guidelines Document for Ada Reuse and Metrics. The High
Tech Lab/SERC has participated with MountainNET, Inc. on a related
project on reusability which is jointly sponsored by NASA, AJPO,
and DOC. This has led to the establishment of an Ada Technology

AdaNET is intended to be used

13

)V INRENTIONALLY

as a repository of reusable products and processes across the life
cycle of Ada based projects. The repository will be accessible to
public and private organizations for potential use in the non
classified community. Ford Aerospace is also working with the
High Tech Lab/SERC on a project in reusability. Ford is

developing tools and procedures for support of a reusable software
library. -

_ SofTech, Inc. has worked with the High Tech Lab/Software
Engineering Research Center on many projects. Several of these
have been related to NASA's Space Station Program and the use of

Ada. Emphasis on software engineering, systenms integration and
verification, and Information System technology has been prevalent
in the center's research. Studies have been conducted to

understand the important evolving Ada standards, quidelines and
policies. When necessary and appropriate, the center has sought
to influence these standards to reflect the best interest of the
Space Station Program. Research in the area of multilevel
security has been conducted to discover ways to enhance the safety
of life and property in the Space Station Program. The need for
automatic verification tools for the Space Station Program has
also been addressed. Another area of research which has been
investigated has been ada support software, particularly in the
areas of its effective use in embedded computer systems and
testing and verification of flight software. The implications of

the use of Ada for expert and knowledge based systems have also
been studied.

Guidelines for extending the CAIS (Common Ada Interface Set)
as a baseline for the System Interface Set of the Space Station
Program Software Support Environment were investigated through the
High Tech Lab/SERC, with support from SofTech and Rockwell.
Honeywell, GHG Corporation, and the High Tech Lab/SERC have
participated in research in the areas of run time environments.
Together this team has worked to implement a baseline model with
guidelines and tools to support the distribution of entities
within Ada programs with tailorable run time environments. A part
of the work has produced demonstrations of distributed Ada and of
run time instruments for performance monitoring and command based
interactions with the integration environment. The work continues
to advance toward a bare machine prototype.

Research in the areas of object based information management
systems has been conducted in conjunction with IBM. This project
has focused upon identifying the key problems and promising

approaches associated with the development and support of such
systems.

‘The High Tech Lab/SERC and Inference Corporation studied the
issues and approaches for developing tool support for integrating
Ada and artificial intelligence. The project is intended to
result in an Ada-based, expert system generation toolset.

For the next five Years, the principle thrust of the ;center's

ex : : '

14

F— R T
; == - i
W, W H AT

1 Wy «®1 €U # ' NI i

yir
it

[

S

"
{ !

T

b i

ry

1

!HM”
b 14 i

o

T

um

L
il

g

"1

o

rr‘
i

Wl

"
LY

(Rl

i1

research will focus upon a new generation of integrated systems
software. The PCEE (Portable Common Execution Environment)
pProject is intended to provide a common execution environment for
Ada applications software and users. The principal domain of
interest is large, complex, distributed computing systems with

Mission and Safety Critical (MASC) components which require non-
stop operation.

The integrated systems software is to be built in Ada, and
supported by a heterogeneous collection of bare machines. The
goal is to provide systems software which is tailorable to the
needs of a variety of applications, while insuring that
performance, fault tolerance, security, extensibility and the
requirements for non stop operation are satisfied. The intent of
the object based approach is to create an appropriate run time
kernel with catalogs of interface features and options. These
features and options allow tailoring of system software interfaces
to the specific requirements of each application.

By designing the underlying implementation as a set of
integrated modules, unnecessary redundancy and conflict among the
various subsystems can be minimized while support for performance,
robustness, and security can be enhanced. Furthermore, the
complementary features and options of the underlying subsystems
can be selected for their ability to support MASC components in
non-stop, distributed, and embedded applications rather than a
more benign, general purpose programming environment. Examples of
the types of applications which would benefit from a PCEE include
the FAA's next generation of air traffic control software, the
Space Station Program, the next generation of c31 systems, and the
next generation of process control and flexible manufacturing
systems. The High Tech Lab/SERC is currently working on a project
with GHG Corporation to investigate the use of Ada in distributed
and fault tolerant real-time applications. The PCEE is being
proposed as a standard interface for this project also.

The High Tech Lab/Software Engineering Research Center
strives to advance the edge-of-knowledge and the state-of-the-
practice in computer and information technologies. Working
together with dedicated researchers from government, industry, and
academia, the center continues to make important contributions to
some of the most critical research areas of today.

15

16

| I

| { [

{

Nos-71137 2 —
o geRe T

124
.ﬂ,

RESEARCH REVIEW FOR INFORMATION MANAGEMENT

Peter C. Bishop, Ph.D.
Space Business Research Center
University of Houston-Clear Lake

Pmc PAGE BLANK NOT FLNMED |

e\ nmenmonaly s 17

Research Review for Information Management

The goal for RICIS research in information
Management is to apply currently available
technology to existing problems in informa-
tion management. Research projects include
the Space Business Research Center (SBRC) ,
Management Information ana Decision Ssupport
Environment (MIDSE), and investigation of
visual interface technology. several addi-
tional projects issued reports. New projects
include: 1) the AJaNET project to develop a
technology transfer network for software
engineering and the Ada pProgramming language;

Productively.

RICIS instituted the research review process during the
institute's inaugural symposium in 1987. The review is an

management. JSC, like any other large organization, is a wonderful
proving ground for such applications.

Space Business Research Center

Today, I would like to share some of the results from the
prototype operation of the Space Business Research center. The
Center emerged from the Space Market Model Project, initiated in

Last year, I reported the results of Phase I. Quite simply,
the Center located a 1lot of information about Space, especially
from the media and the scientific and technical communities. we

did not find as much information about business activity in space

18

€ &I & oen w0 4q

{

i

{ L

{

did not find as much information about business activity in space,
but we did find people who wanted it. .

Figure 1 shows an analysis of the groups we interviewed to
gauge their need for additional space business information, and
their ability to pay for such data. We concluded that the two
groups most likely to use additional information were the service

businesses and government agencies that facilitate the
commercialization of space.

Figure 1

Comparison of
Information Needs by Sector

INTERNAL =~
NEED CAPABILITY RESOURCES

Business High Low High
Service
Aerospace High High High
Entrepreneur High Low Low
Government

-general _ Low High High

-space High Low High

commerciali-

zation

—— —— o

e — __—=_.——.-..._..—.—..-—.__-..—._———_—-—_—_———::_—.———: —_——

During Phase II, which started in September 1987, the Center
distributed space business information to any business person or
U.S. government official who requested it. The Center had
approximately 30 clients monthly and handled more than 400 requests
for information during the ensuing vyear. The shear volume of
information requests confirmed one of the results from Phase I--
that the business community wanted additional data about space.

Figure 2 shows the Center's client-profile. As expected, the
business service sector accounted for 50% of the requests. The
next figure indicates the types of information clients requested.
Directory information, 38% of all requests, was the type more
frequently sought. The business community wants to know who is
active in space business, and who the potential clients and
suppliers are. Economic statistics on the space industry in

general and on its respective markets were also requested
routinely. ’

i
The Center is still taking requests for information, although

19

their frequency has diminished. oOn July 1, the Center began its
Phase III operation and started to charge, although at a subsidized
rate, for research. The rate of requests, predictably, is lower
than it was when the information was free. However we still receive
requests steadily, confirming that businesses not only need
information about space, but are willing to pay for it.

Figure 2

Number of Contacts by Client Category
February 1987 - April 1988

Number Percent
Academic 35 13%
Business Service 138 50%
Government 47 17%
Information Companies 14 5%
Large Aerospace 10 4%
Media 6 2%
Miscellaneous_ 7 3% ,
Small Aerospace 17 6%
TOTAL 274 100%

Figure 3

Number of Questlions by Queslion Calegory
Fab 87 - Ape 88, N~4T1

Olher 116.3%

D RE.7X
4] 192X

ST noTx

GC maxy

Number of Questions by Question Category
February 1987 - April 1988 - -

Category Number

Directories 151
Market Studies 62
Government Contracting =~ =~ 49 _ _ somrninn
Space Technology - - : 43 o
Documents 38
Law and Policy 22 .
Economic 15 f
Education 7
Miscellaneous 23
Total 411
20

Y

1
|

.

Y

I
i

il

i}

1“ “
JTE

A

rop

L

{ "

i

T

A ST (I

o

o

£

W‘WHWW !
Wi

1

Jie

e

gre v

" Cn '

Ll

{

~The Center has established two other methods to disseminate
information during Phase III. The first is a publication program,
launched in August with release of the booklet Space Business 1988,
an economic profile and executive summary of the space industry
today. The public's response to the publication has been very
gratifying - the Center sold more than 100 copies in the first
month following its release.

The second method of information dissemination is the use of

seminars for the purpose of education. The Financial Aspects of

the Space Industry was the 1st seminar which the Center co-
sponsored with the Houston Chapter of the Texas Society of
Certified Public Accountants. The seminar was very successful.
It attracted forty Houston business professionals who learned some
of the more technical aspects of financing and controlling space
ventures from people who are space business veterans.

The Center is poised to become an autonomous and self-
supporting research center for space commercialization. In
addition to offering research, publications, and seminars, the
Center also plans to provide an on-line retrieval service for
information on launch histories, space transportation vehicles,
and satellites. Proposals to start this prototype service and to
continue our other services are currently under review by NASA.
To date, the Space Business Research Center has successfully used

current technology .to productively disseminate information to
businesses. , :

Management Information and Decision Support Environment

RICIS has supported two other research projects to help JScC
manage information. The first is the Management Information and
Decision Support Environment (MIDSE). MIDSE 1is a research
prototype of an information environment that will enable JSC

managers and employees to more efficiently access information in
JSC's databases.

A 1986 JSC report, "The Strategic Plan for 1Information
Systems", identified a key problen. While the operational
databases at JSC were well developed, managers and other employees
could not retrieve information quickly or easily. The report
, Yecommended that access needed to be improved.

MIDSE is the RICIS response to that need. Briefly, the
information environment hinges on a common user interface for all
NOMAD2 databases on the JSC cCenter Information Network (CIN).
Figure 4 is the first screen of that interface, the Johnson Space
Center Management Information System (JSCMIS). The interface uses
the new mainframe window technology available with the NOMAD2
programming language. The interface also operates according to the
best principles for the human use of computers, specifically:

H

21

the new mainframe window technology available with the NOMAD2
programming language. The interface also operates according to the
best principles for the human use of computers, specifically:

- users can select input parameters in the order that best
suits their job needs

-
[4

parameters are backed up, not only with information to help
use the interface, but also the database itself;

the interface keeps track of det
request;

ails and presents them on

’”ﬁééf§“ban'seéﬁfﬁé;rééﬁlts of their selections almost
immediately, and modify those selections as they wish;
and o '

. users can save their wo

rk at any time and retrieve it
later.

3

The interface currently can produce re
edition of the Jsc Personnel database. Work is now underway to
add JSC's financial systems to that environment. The interface
eventually will be used with all of JSC 's NOMAD2 databases.
Information on other DBMS systems will be ported over to a special
NOMAD database or interfaces to be constructed in the DBMS's own
4GL and have the same operational characteristics.

ports from a special

Figure 4

Johnson Spéce VCenter Management Information System

T e e e e e e e e e et e e e e e

Version-0.8--
=Main === =

APPLICATION name:
REPORT name
FORMAT name

CONDITIONS name :

Function Keys
2:Clear 3:Prev 5:Modify 6:Delete 9:Save

10:List ENTER:Proceed

Visual Interface

A second_rRICIS research prototype is helping with the
information management of Jsc's photograph's and film 1footage
archives. JSC is the repository for all still, film, video and

22

i

r\

€

LA

b

""

{

¢l

oo

{4

{1

LIS

!

Fﬂ? X“
“I Ln

'

o
Il JL

LU

collection mount exponentially as its size increases. Dr. Mark
Rorvig at the University of Texas at Austin has worked,tpg,past
year to design an interface specifically suited to this and

similarly large repositories of visual material.

_The standard strategy to catalog and retrieve images depends
on the use of words. cCaptions and/or keywords are assigned to each
image. A user who wants a particular image enters one or more

words (linguistic search terms), and the system retrieves
associated images. - . -

. The system's weak point is that linguistic symbols (words) do
not always match visual symbols (images). Not only is it difficult
for a cataloguer to use a consistent set of words to describe all

images, it is also difficult for a user to select the right words
to establish search parameters.

Dr. Rorvig's approach to the problem includes representation
of the image itself as a search tool. In this way, linguistic

terms can be associated with their images, and searches can be more
thorough and more precise.

The visual interface has potential application in any
organization that maintains ‘collections of images, including
museums, news organizations, publication houses and government
agencies. This is another example where existing technology,
intelligently applied, can solve pressing problems for those who

must manage both information and human resources to obtain high
productivity. (See Reference 1.)

Reports

- There isn't sufficient time to describe all the current major
research projects in information management at this same level of

detail. There are several significant reports, however, which T
would like to mention.

Last year, Dr. Chris Dede reported the preliminary results of
his technology forecast for new knowledge-based documentation
systems in the Space Station era. His report has been published
and is now available for distribution. (See Reference 2.) The
report also was the basis for a national RICIS conference on
hypertext and hypermedia, co-hosted by Dr. Dede in September.

Dr. Robert Hodgin completed his survey of the computing
capabilities of JSC and the Clear Lake areas, and released his
report last Spring. (See Reference 3.) The report contains a brief
summary of the computer hardware and software used locally, and a

comprehensive list of the aerospace contractors who contributed to
this census.

Dr. Robert Mayer of Texas A&M continues his work to develop
a formal methodology for software requirements analysis, We

23

received an interim report from his research team last Spring.
(See Reference 4.)

Finally, the Center for Space and Advanced Technology has
submitted the drafts of two reports in the final phase of their
RICIS activity on the commercialization of the U.S. International
Space Station. The first report analyzes the forces and factors
that will promote or inhibit space station commercialization. The
second report scrutinizes the potential for biotechnology in space.
The biotechnology study includes the results of an industry survey
indicating that the commercial potential for research in space is
higher than anticipated. (See References 5 and 6.)

The final reports of these studies are available through the
RICIS office or through the Space Business Research Center. Also,
their principal investigators will be happy to discuss their

projects in detail with individuals who would 1like additional
information. ,

?

Next Steps ~ ——

Most of these projects will continue into 1989. I expect to
report additional results at this symposium next Fall. 1In
addition, the Space Business Research Center is working on two new
projects in information management.

- The first of these is the AdaNET project to develop a
technology transfer network for software engineering and the Ada
programming language. AdaNET is funded by the NASA Technology
Utilization Office with the assistance of other 'government'
agencies. Most of the development work is being conducted by
MountainNet, Inc., a West Virginia based firm. The network effort
has been undertaken to transfer knowledge, experience, and

artifacts - from government projects which have used software
engineering principles and/or the Ada language - to the private
sector. A central goal of the research is to advance an

understanding that software reusability is the theoretical
foundation for the next generation of software repositories.

AdaNET is a main RICIS project, and I expect you will hear a great
deal more about it in the coming months. L

Another information management project was started last August

for JSC's Space Station Project Office. The project entails

designing a communication systems to 1let office managers
communicate the status of their work to each other and to the
project manager effectively and efficiently. This deceptively
simple requirement, however, has become a problem of enormous
magnitude in today's world of large scale projects spanning long
time frames. The Space Business Research Center is working with
the Department of Decision and Information Science at the
University of Houston to help build the system. S

24

L. 01l ¢! € «1 ai U = el 4 wil u g 1

[

u ti

ORI S

m o
L i

€l

{

W

I
A

£

TR AR SR THN (S B R SN it

r

Conclusion

All these projects have the same central aim - to use
information technology to help people work more productively.
Individual projects change as we make progress in many ways. Last
year, we discussed goals. This Year, we report results. However,

much remains to be done. Next Year, I expect to report even more-
of our accomplishments.

25

REFERENCES

Rorvig, Mark E.,
Year Two, August 1988.

Déde;"EﬁfiEEbbﬁéffEf:ifééthé;%”511n
Electronic Documentati

the Evolution of
Systens, January 1988.

Hodgin, Robert F. and p. Bishop, Clear lake Area Computer
Capability Census and Directory, 1988.

Mayer, Robert, Methodologies for Inteqrated Information
* Management Systems, 1988.

The Center for Space and Advanced Technology,

ace
Station Industrialization, 1988,

The Center for Space and Advanced Technology,}Sgace and
Biotechnology: An Industry Profije, August 19s8s,

26

N { (vl { { q € & i N

i

RICIS RESEARCH REVIEW OF

ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS

submitted by

Dr. Terry Feagin

27

ABSTRACT

The paper summarizes the research accomplishments
of the past year for the artificial intelligence
and expert systems areas. Most projects have been
underway for only a short time, but overall
progress within the areas has been steady and

worthwhile. Several projects have already attained
their major objectives.

28

| 4| g w u |

{1

(

RICIS RESEARCH REVIEW OF

ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS

This past vyear's research accomplishments in the

area of artificial intelligence ang expert systenms
are summarized below.

The first pProject (Communications and Tracking
Expert Systems Study) is being conducted by faculty
at the University of Houston-Clear Lake and
involves the development of expert, automated
software for the sSupport of fault detection,
isolation, ang recovery from failures in the
communications ang tracking system on the space
station. As a result of this work, a very fast
method for isolating single-point and two-point
failures in the system has been developed.
Simulators for testing the software have been
developed and used to evaluate the systen.

Distributed expert systems have also been studied
and developed for work in this area.

Another project (Computer Graphics Testbed to
Simulate ang Test Vision Systems for Space
Applications) is underway at Rice University.
During the first Year of work, this project has
seen the' development of a preliminary graphics

direction with gray shading or Gouraud shading.
Physical models include hexagonal cylinders and
attachment devices. Evaluation is underway as to
the suitabilitxﬂof 3M VDL vision systenms.

Another project has culminated at the University of
Michigan in 1983, The project involved path
Planning for robotic equipment, including foreign
code encapsulation and automating the process.

29

Another project, underway at Massachusetts
Institute of Technology, concerns the development
and application of fuzzy sets and related theories
to failure detection and control in space systems.

A project currently being carried out at Rice
University involves the demonstration of a 3D
vision algorithm for space applications. The
research concerns developing object recognition

algorithms that are insensitive to object
orientation and distance.

At Yale University, the use of the T programming
language on the Cray X/MP is being investigated.
The language, a superset of Scheme which is a
dialect of LISP, is being ported to the Cray with
an eye toward making use of parallel computation.

Another project, carried out by Lincom Corporation,
involves research and development for onboard
navigation and ground-based expert/trainer system.

Object-oriented programming systems (OOPS) and
frame representation schemes using Ada are being
studied by Softech and Brown University. The
possibilities for merging O0OPS and Ada has been
pursued. The merits and demerits of OOPS as a way
of addressing the applicability of OOPS to various
programming tasks has been investigated.

(2

A University of Lowell study is underway regarding
a unified robotics control system using a parallel
CLIPS environment. The goals include
identification of enabling and enhancing
technologies for space operations, and the
application of emerging technologies to problems in
space and planetary exploration, with particular
attention to ways of increasing computational speed
via parallel processing and expert systems.

The last project, underway at Rice University,
involves the development of algorithms and software
for the recognition and location of single
unoccluded objects based on fusion data from a
single camera (intensity image) and from a laser
range imaging device (range image). The algorithm
discriminates the objects from the clutter and
obstacles in the field of view.

30

(!

!

(.

!

UL ARE
Wi

i

]
i

Most of these projects have been in pProgress over
only a year or two and most results are only of a
preliminary nature. Nevertheless, it is apparent
that the overall progress within this area of
research has been steady and worthwhile. Several

projects have attained major objectives already and
new results are forthcoming.

31

|

Bl i«

€

Mathematical and
Statistical Analysis

Dr. A. Glen Houston

PRECBOING PAGE BLANK NOT FULMED

a8 D INTENTIONRLY A N

N94-71139 , —

O

)55 354

P

34

n & u m v i

v
[V

t MATHEMATICAL AND STATISTICAL ANALYSIS

Research Goal , , _ , —

statistical techniques for aerospace technology applications.
Specific research areas of interest include modeling, Simulation,
experiment design, reliability assessment and numerical analysis,

To date, there has been only one research activity in
mathematical ang statistical analysis. This research activity is
entitled "Space Station Momentum Management and Attitude Control"
and referred to as MS.1], This research is Sponsored by the

Analysis Division within the Mission Support Directorate at
NASA/JscC. The NASA technical monitor is David Geller, an
aérospace engineer in the Guidance Analysis Section. The UH~
Clear Lake technical representative is pr. Terry Feagin,
pProfessor of computer science.

The research is being done at the University of Texas under the
direction of pr. Bong Wie, an assistant professor in the
Department of Aerospace Engineering and Engineering Mechanics.
Co-investigators include Dr. Jason L. Speyer and Dr. David G.
Hull, pProfessors from the Same department. Tyo graduate research
assistants also support this activity. - T

The research effort was initiated February 1, 1987, for a planned
three-year period.

stabilization over a wide range of geometry and mass
distribution, which will occur during the initial assembly and
follow-on configuration growth stages. ' The study focuses on
developing fundamental concepts as well as advanced analytical
techniques for designing a robust adaptive control system.

guidance, navigation and control computer system. 1In particular,
the momentum and attitude control equations have been modified to

attitudes (TEA’s). The new control equations utilize quaternion
feedback. The modifications Were required since the space
Station navigation computer is planned to provide attitude
information in quaternion form, ang the space station may be
required to maintain large pitch TEA’s.

PRBGDING PAGE BLANK NOT FILMED

35
aﬂ.}i,.m&mmmr ek

Al

As a '‘result of this investigation, a significant new feature has
also been added to the controller. It now has the capability to
seek a dynamic TEA. This is a time-varying torque equilibrium
attitude that virtually eliminates control moment gyro (CMG)
momentum occilations. The new feature plus the above

modifications greatly enhance the overall usefulness and
flexibility of the controller.

Other accomplishments include the development of algorithms for

identifying station mass properties includlng bendlng modes and
frequencies.

In the coming year, plans are to continue the study and
development of adaptable control equations and 1identification
algorithms for the Space Station GN&C flight computer; attempt to
define robustness measures that are meanlngful for Space Station
momentum management control systems, investigate techniques for
establishing the inertia bounds in which the station will remain
stable; and determine the optimum gain selection technique for
the momentum management controller.

Future Plans

For some time, we have been attempting to initiate a research
activity related to software reliability modeling. During the
past year, exploratory conversations were held with members of
JSC’s Safety, Reliability and Quality Assurance office. These
discussions have now led to a potential relationship between UH-

Clear Lake and the Safety Group within the Boeing Aerospace
Company.

The plan is for UH-Clear Lake to lead a project to establish a
quantitative risk analysis methodology for the software portions
of Boeing’s, computer-aided user-oriented system evaluation
(CAUSE) hardware and software analysis model. The intent is to
automatically generate detailed fault trees from which single and
multiple failure points of systems (due to software) can_ be
identified and analyzed as a part of the risk analysis process.

In support of this project, a workshop is planned to be held in
the coming year. Experts in the field will be invited to

participate and discuss the issues 1in modeling software
reliability.

36

i ||

nir n | | ui E

RN

Research Review for
Software Engineering Education and Training

Glenn B. Freedman, Ph.D.
Software Engineering Professional Education Center
University of Houston - Clear Lake

|, SEPEC

37

38

]

i Wi w | 1

v

(an

e
b,

LT

i

[T

L

; EDUCATION AND TRAINING

particular, this component emphasizes research in technology
transfer, information transfer, ang dissemination of research in
computing and information systems. During the past Year the level
of research activity in education and training increased, as the

Highlighting the year's activities was the formation of the
Software Engineering Professional Education center (SEPEC) SEPEC
assists all RICTS researchers and research Sponsors through its
conferences, seminars, and technology transfer activities. SEPEC
also assists al}l RICIS components by coordinating cooperative
Programs and affiliations with various NASA branches, other
university groups, and industry. fThese Cooperative relationships

link organizations concerned with educational innovation, research

In review, there were seven research activities in the
education ang training area that were begun or completed during the
past year. 1n this research overview, the activities will be
reviewed in the temporal order in which they were funded. For each

activity, the title, major points, status and deliverables are as
follows:

1. ADA TRAINING SYSTEM (CBATS)

. Completed by SofTech, Inc., the Computer Based Ada Training
Systenm (CBATS) was developed through funding with the U.S. Navy to
meet the need for an Ada reference system that could be on-line and
easy to use. L R b - ‘

[2

CBATS used hypertext technology to link the Ada reference
manual, syntax eXamples, Ada and software engineering information,
and commentary in a straightforward, useful manner.

A coordinated approach bringing together Nasa management,
UHCL, and SofTech resulted in a field—tested, three day course
entitled "Software Engineering: Concepts and Implementation
Strategies." The burpose of the course is to provide managers with
the software engineering background and ada technology information
necessary to assist with transition to Ada and its related software
environments. Tee et oo L e T TR RR

Completed in October, 1988, the course is now available.

PRESEDING PAGE BLANK NOT FHmep

A BY N, o N

3, RESEARCH IN INTELLIGENT TUTORING SYSTEMS FOR KNOWLEDGE POOR
DOMAINS

This project is sponsored by the US Air Force Human Resource
Laboratory at Brooks Air Force Base. Working with the Artificial
Intelligence section and flight training branch at NASA/JSC, as
well as UHCL, this project will provide a prototype tutoring system
for the Mission Operations Directorate to use in training personnel
to use the flight control panel, a task that requires coordinating
a knowledge base, with automatic motor skills, auditory and visual
overload, and a detailed understanding of flight data. The work

for this project is being conducted at Southwest Research Institute
in San Antonio.

4. SOFTWARE ENGINEERING EDUCATION AND TRAINING IMPLEMENTATION
RESEARCH

- This research activity will result in new training tapes for
NASA, featuring the 1latest available information on design
strategies in support of Ada use. In addition, the activities
supports maintenance of an education and training database for
courses, resources and services. The activity fosters the
dissemination of research information on software engineering.
Sponsored by the Mission Support Directorate, this activity focuses

primarily on space station applications, intended for the
deliverables.

5. PROTOTYPING CAPABILITIES FOR MISSION OPERATIONS DIRECTORATE ~

This activity provided access to the Mission Operations
Directorate to use the facilities of the Advanced Technology Center
for training and research purposes. The activity is on-going.

6. HYP E TOOLS FO ILDING TECHNICA RAINING SYSTEMS

This activity, sponsored by the US Air Force's Human Resource
Branch 1Intelligent Systems, investigates advanced knowledge
transfer technologies and their application to future training
systems. The research is to be conducted by Dr. Christopher Dede
and will be directed both to Air Force requirements and those of
NASA's space station training offices.

As the project has just begun, results will not be available

until late 1989. - : o
CROCOMPUTER INTELLIGENCE FOR TECHNICAL TRAINING ~PHA IX

This project features a continuation of work developed by
Search Technology for the US Air Force and NASA/Mission Operations
Directorate. The project will build on the initial product of a
rule-based system to teach shuttle fuel cell understanding through
sophisticated simulations of malfunctions. The second phase will

extend the capabilities of the system and add an authoring system. ...

The second phase has just bequn. . S

40 e e

i

T Ivl L I Iuv
l‘ 0o b iy i |

[y
Vid vl

| AR S

tro

In summary,
assists all other
Yesearch on innova

the education and tr

aining component of RICIS

omponents through dissemination of information,

lo:
tive systems, and Support for advanced technology
in education and training settings.

41

42

[T)

!
It

|

R 1

|

I

| il

{10

"

LN
Lm.i

i

L I

I

“Sesﬁon I
; :

. . o7
Requ1rengents Analysis
Fundamentals

Session Chair: Bryan I, Fugate

Moderator: Michael J. See

Speakérs
Colin Potts

Lawrence Markosian

PRceDig PAGE BLANK NOT FimeEp

G 43
BN L JHBRENUOBALY e

[T

I

(Ll
bl

e

L (R (R T T

1

T

N94- 71140

Requirements Analysis, Domain /O H

Knowledge, and Design

Colin Potts

MCC Software Technology Program

PRECEDING PAGE BLANK NOT FELNTD

TR "V‘L‘ SHEENTOHAILY Bered 3

/7

4
)85 227

ih

ﬁa

U

!

11— i

!

L

0"
1,

[
IH i

IS

g

oy
A

|

(

(e
\‘Wu\l

R

w1

C

(R T

Requirements Analysis, Domain
Knowledge, and Design

Colin Potts
- MCC Software Technology Program

requirements - specification. Artificial intelligence techniques may eventually be
applicable for domain modeling. In the short term, however, restricted domain

_and fucntional specification heuristics. They are discussed in the context of the
o _preliminary design of simple embeddeq systems.

Introduction

The Role of Domain Knowledge

In most dev
pecially during s early design phases. Desi

FRBGEDING PAGE BLANK NOT FILMED

3 N 47
s 4V pnomonniy mos

[L¥]

¢

to changing requirements, one could base the design on anticipated as well as existing requircments.
Unfortunately, it is hard to anticipate requirements.

An alternative is to base designs on a model of the application domain. A domain model contains
the objects, relationships, and concepts that are considered important to the users. It is likely to be

more stable than the requirements, because the domain evolves more slowly and less significantly dur-
ing the lifetime of of a system than its requirements.

There are other advantages to formulating a domain model before specifying the requircments in
detail (Bruns and Potts, 1988): terms and concepts defined in a domain model can be used with less
risk of misunderstanding; domain knowledge may be shared across projects; the activity of domain
modcling acts as a goal-directed familiarization activity prior to specxﬁcanon and, the existence of a
domain model may improve the training of new developers and maintainers. -~ — -

The use of domain modeling in software design has been proposed before. Greenspan, Mylopoulos
and Borgida (1982) give a good overview of the domain modeling approach to software development,
and why it was felt to be necessary in the TAXIS information systemns design project:

In considering the development of a variety of information systems we have found it
necessary to become initmately familiar with a wide range of subject matters:
medical knowledge, hospital procedures, available therapies (drugs, surgery, etc),
legal responsibilities to government, and so on. We believe that this kind of real
world knowledge needs to be captured in a formal requirements specxﬂcamn .

A valid domain model can only be formulated by people with sufficient knowledgc of the appli-
cation domain, but this runs up against the relative absence of domain expertise in most development
projects, One possible long-term solution is to apply artificial intelligence techniques to require-
ments analysis, Intelligent requirements analysis tools are envisaged that will be able to use deep
knowledge of the application domain to question the analyst about possible inconsistencies or gaps in
the stated requirements. Some promising research is underway (Fickas, 1987; Rich, Waters and Re-
ubenstein, 1987), and ultimately the problems of requirements analysis may be addressed by these
means. A recent review of domain modeling approaches (Bruns and Potts, 1988), however, concluded
that the most effective’ applications of domain modeling in industrial system development to date
have incorporated restricted modeling primitives, modest goals, and a systematic method. Examples

of such restricted domain modeling approachcs include JSD (Jackson 1983) and Booch's (1987) object-
oricnted Ada design method.

Systematic Requirements Analysis =

A second major problem with requirements elicitation and analysis practices is their unsystematic na-

ure. To some degree this is unavoidable; requirements elicitation and analysis are inherently open-end-
ed. Much can be done, however; for example by usmg dxagramm:_wc techniques such as CORE -

(Mullery, 1985) 10 increase confidence in requirements consistency. Another place where grcater con-
trol could be exercised is the interface from requirements to design. Better practical techniques are

needed to ‘graft’ requirements onto design specifications, pamwlarly in view of the inevitability of
changes to the requirements once the design is underway. If this could be done, it would have the bo-

nus of improving traceablhty that is, the ability to be able to demonstmte that every requirement is
satisfied by the design.

48

al [

!
|

(A { {

0

. |

I

L]

L

[

il

(

£

"
r
Y™

{

1l

(i

{

[

"W
ill |

L

w '
I

{

JSD as an illustration

ISD (ackson, 1983) serves as a good example of a system development method that attempts to fuyl-
fill both short-term objectives. It has a restricted form of domain modeling (Bruns and Potts, 1988),
and its many heuristics can be cast in an issue-based framework (Pouts, 1988b).

Entity/action FAt e eesetaeatiocanans '
modeling | !
“heuristics : i
E Domaiﬂ !
\ Model !
! !
{ :
' \
: i
:: Spec. 5 Implementors
| s
: !
: :
= |
| Stated ;
: Reqts. !
\ \
{ !
| ;
= |

et Embedding or imposing
funcu'_ons onto model

Figure 1: The ‘procurement interface’ when domain modeling precedes specification,
JSD activities and heuristics are shown,

49

l

tomers to the lmplementors. only forward flows are shown, This does not 1mply that feedback does
notoccur) .. -

JSD is only an illustration of fiow systems can be specxﬁed and desxgned when greater emphasis is

given to domain modeling and systematic analysis. JSD is not universally applicable, nor is it perfect
where it is applicable.

The Development Method JSD

Although Jackson does not dcscnbe JSD lhxs way, JSD consists of two major phascs Spectf cation
and implementation, each of which involves a series of steps. The strategy of JSD, the major steps and
their rationale, is described in this section, and the tactics, or modeling heuristics locally applicable
within the steps, are illustrated later. The product of the specification phase is an operational specifi-
cation, which describes the desired functionality. It consists of a set of concurrent processes which

communicate asynchronously. The goal of the subsequent implementation phase is to sequentialize the .

specification until an efficiently implementable amount of concurrency remains. Only the specifica-
tion phase of JSD will be described will be described further.

The JSD specification phase follows the formula:
System = Model + Function

A system comprises a model of its environment and mechanisms to accomphsh its functionality.
For example, a patient monitoring system in a hospital must include a model of patients and their vi-
tal signs, etc., and operations that perform the required functions, such as sounding alarms when a pa-
tient’s vital signs fall outside a safe range. A model is created by first analyzing the entities and
cvents of the relevant part of the real world (in the case of a patient monitoring system, the real
world is an intensive care unit). The resulting model contains a set of regular expressions, each one
specifying the lifecycle of a real-world entity in terms of the actions it performs or suffers. An ex-
ample is given as a structure diagram in Figure 2. A PATIENT is ADMITted, MONITORed and DE-

*
PATIENT
m
ADMIT MONITOR DETACH
MEDICAL ° °
DIE DISCHARGE
EVENT
o o o
FLUID
vn.l‘—— m BALANCE ADMINISTER
fon CHANGES DRUG

Figure 2: A structure diagram showmg the llfecycle of the BED cnmy
of an intensive care unit. -

50

e u' 0 g N W

ol

!

l

KL
Al

L
du

M
|u‘

(!

i

£

S

{

G

.
W

{l

Lt
I

L (‘ o {
c\ [T il

iy

C

Wl

{

TR
il g

i

e
Wiy

e
[X"

{

Next, an ‘initial model’ is constructed, in which (to simplify slightly) every entity is connccted
lo a monitoring process inside the system boundary (see Figure 3).

Once the requirements have been elicited and documented — however that is done — desired func-
tions can be introduced into the initial model to create the full system specification, Simple reporting
functions can be accomplished by augmenting existing monitoring processes. These functions are said

Real-world
System

DR& CHECK
PS SAFETY

--

..............

Syste

x '.
Environment
Boundary Safety
Embedde Imposed
Function Function

o

51

f

rent PS yalruc with constants symptomatic of sensor disconnection or failure). Thxs function can be
cmbedded in M MONITOR PATIENT. The othe(alarm is activated when the gam:np s v1tal 51gns Tall

outside a range e defined by ‘the DOCTOR in the input DRS. Since this function requires mtegrauon of

multiple inputs from the envxronment, it is an lmposed funcuon and requues the mtroductmn of thc

CHECK SAFETY PROCESS

Issue-Based Domaln Modelmg and Specnficatlon |

Before illustrating some of JSD’s modeling and specification heuristics, the issue-based framework
that is used to represent it will be introduced.

The Issue-Based Framework

In the issue-based framework (Potts, 1988b) there are only five kinds of entities: arufacts (method-
spccxﬁc deSIgn documents) steps (revxsxon ‘refinement or elaboration operauons) issues, posmons
and arguments. Artifacts (c.g. data flow dxagmms) and steps (e.g. “top-down decomposition) are a

standard component of all design methods, but the representation of reasoning and rationale in terms
of issues, positions, and arguments is less familiar.

The representation stems from Rittel’s work in uvsing his IBIS (1ssuc “based mforrnauon Sys-
tems’) model to support the discussion of policy and design alternatives in architectural planning (see
Conklin and Begeman, 1988 for a summary). Issues pose questions about some focus of concemn. For

example, ‘How can the heartbeat sensor fail in such a way that the patient’s vital signs appear threat-
ening?’ is a domain-related issue. A position is a candidate response to an issue, such as ‘Heartbeat sen-

sor failure mode F gives rise to apparently threatening vital signs’. An argument may support or ob- - -

ject to a position. For example, an argument that supports the above position might be ‘Failure mode
F apparently quadruples the heart rate because of a masking error’, whereas an argument that opposed
the position might be ‘Failure mode F can always be detected independently by self-test procedure P,
Issues, positions or arguments may spawn sub-issues. For example, a sub-issue raised by the last argu-
ment could be ‘Can self-test procedure P be run sufficiently fast whenever the patient’s heartrate ex-

ceeds X beats per minate so that it can be ascertained within a therapeutically safe interval whether
Failure mode F has arisen?’

Issue-Based Reasoning in the Early Stages of JSD -

Figure 4 illustrates a small part of an issue-based representation of the heuristics of JSD. Ignore for
the moment the nested boxes, and consider only the heavy outer boxes. These represent the five basic
cntity classes of the representation. From the names of the relations in Figure 3 it can be seen that
steps modify artifacts, issues review artifacts, positions respond to issues, and so on. Within the
heavy outer boxes we see that — for example — JSD’s issues form a taxonomy of classes. Although
positions in general respond to issues, we see that only some JSD positions are valid responses to par-
ticular issues. For example, the position sub-class not entity! is a valid response to issues of sub-
class enttty" which address lhe quesuon whcther a candldate cnmy ns an entity in the model accord--
ing to JSD’s modelmg criteria. Furthermore, arguments of type not individuatable can support this
type of position, whereas arguments of type not 'OMB (for ‘outside the model boundary’) cannot.
The legality of relationships is inherited. For example, any issue of type EA check, including enti-

52

N

)
L

o

| !
|

i
an

il

{ 111

{i

[

n'
ili

2

U

I

g

0

bl

1

[i14}

L

i

1

; R .
ARTIFACTS !
l artifact STEPS '
Support- ? \
lng gocu EA doc
man

fodifles anhicee | | delaip I Ad on,
e

contributes to
ey
contributes to

reviews

TION

tity? action? §Esl
en \
responds not Identificn
supports to 41 entity! mec&
not OMB

Figure 4: part of the Entity Class Hierarchies for JSD with

Telationships.

ty? and action? issues, can be raised to review the JSD entity-action list document,

Example

53

ARTIFACT ARTIFACT ——1
Supporting Entl don ARTIFACT
documentation: ":'.ty-ac Entity-actlon modifies STEP
Tha'elsvz;torw Entites Hist: - replace entity
0ive! :
'{"?:m p;s s’;P ors Passenger| Entities: PASSENGER -> BUTTON
only when they Elevator Button A
press buttons. Actions: Elevator
Get in, Get A‘ﬁ_:'s‘:: contributes to
s reviews POSITION
e
supports not entity!
ARGUMENT = PASSENGER is not an entity
not Individuatable ISSUE w, to
Individual PASSENGERs cannot Entity check
be discriminated by the system Is PASSENGER an entity?
selected? = true
Key: - L T
= =) Entity instance =
ARGUMENT - Generic entity class
not Individuatable —e— . . _
Individual PASSENGERs cannot JSD-specific entity sub-class
be discriminated by the system "\

Instance definition

Figure 5: Simple (PASSENGER replacement) design episode

ment of which is shown here, is a network structured template.

The preceding illustration is atypically simple and the reasoning is restricted to a small part of
the model. The topic is the content of the entity-action list, and the evaluation of a small number of
modeling criteria are sufficient for the exploration of the alternatives. Most decisions are more com-
plex than that; they rz;nge more broadly and necessitate more open-ended reasoning. Potts (1988b)
contains a detailed example, also from Jackson’s elevator system, of the reasoning behind the way the

scheduling function is imposed on the initial model. This involves several interconnected analyses, ar-
tifacts and sub-issues,

As an analogous, though abbreviated account, consider the introduction of the CHECK SAFETY
process of the patient monitoring system specification (see Figure 3). The reason for introducing
CHECK SAFETY, explained in terms of the issue-based framework, is as follows: an issue is raised
concerning the requirement that a safety alarm should be sounded whenever the patient’s vital signs
fall outside the doctor’s specified bounds. The issue is how the requirement should be supported: by

embedding inside DOCTOR MONITOR, or (more likely) in PATIENT MONITOR, or by the addi-

tion of a new imposed function process. Many subsidiary issues will be raised at the same time: for
example, how are the bounds 1 be specified? how often should the comparison be made? are the
bounds all single valued or can the doctor specify logical combinations of different vital signs? etc.
The usual reason in JSD for introducing a process to support a required function is that it must com-
binc inputs from several monitor processes or other function processes. This is the case here. The algo-

54

gy 8 s W Wi

]

"
i

4
"

[

e
Vi

C

we'
il

{

noopm
T ™

C

oo

t ::1 ::]:i‘m

L

- g
T

{

i

i

{

{

€z,

How long a delay is acceptable between the doctor entering a new
the comparison process of CHECK SAFEFY? These issues ad
they might not be raised if the interconnected procedures of ISD did

Conclusions

Domain models can be expressed with richer semant
Wile, 1982) introduces relationships and provides several

(1987) version of structured anal
quite prescriptive, The issue-based framework was not designed
may be cqually suitable for other prescriptive methods,

ysis for real-time Sysiems are also
specifically with JSD in mind, and

in the short-term, The issue-based analysi
posed discipline when using the general

55

1988).

It must be stressed that JSD has not been the topic of this paper. It is only an illustration of the
ways in which informal development methods that are based on sound design pnncxples can lead to a
more systematic approach to the earliest phases of system development. They can do this in two

ways: by encouraging the explication of apphcatmn knowledge in a formal dcscnpnon of the domain,
and by providing the analyst with a structured network of checks and heuristics.

Acknowledgements -~ —— S e

Some of the content of this paper is denved from a review of domain modelmg approaches writ-
ten jointly with Glenn Bruns, who also commented extensively on an earlier draft.

References

Balzer, R., N\M. Goldman and D.S. Wile, ‘Operational specification as the basis for rapid prototyp-
ing’ ACM SIGSOFT Software Eng. Notes, 7(5): December, 1982.

Booch, G. Software Engineering with Ada, Benjamin Cummings, 2nd Edition, 1987.

Bruns, G. and C Potts, Domain Modehng Approaches to Soflware Dei:eiopment MCC Techmcal Re-
port, STP-186-88, June, 1988

Conklin, J. and M. Begeman, ‘gIBIS: a hypertext tool for exploratory pohcy dxscussxon ACM
Trans. on Oﬂ'ce Info. Sys., October, 1988 S

Curtis, B., H. Krasner and N. Iscoe ‘A field study of the software design process for large systems’,
Comm. ACM, 31(11), November, 1988

Fickas, S. ‘“Automating the analysis process: an example' Proc. 4th Int. Workshop on Sofrware Speczf
cation and Design, TEEE Comp. Soc. Press, 1987.

Greenspan, SJ., Requirements Modeling: A knowledge representation approach to software require-
ments definition, Univ. Toronto, Technical Report CSRG-155, March 1984,

Greenspan, SJ., J. Mylopoulos and A. Borgida, ‘Capturing more world knowledge in the require-
ments speciﬁcat.ion: Proc. 6th Int. Conf. Software Eng., IEEE Comp. Soc. Press, 1982.

Hatlcy, D.J. and LA, Pirbhai, Strategies for Real-Time System Specification, Dorset House, 1987.

Jackson, M.A_, System Development, Prentice/Hall, 1983.

McMenamin, S.M,, and J.E. Palmer, Essential Systems Analysis, Yourdon Press, 1984,

Mullery, GP., ‘Acquisition - Environment’ in M.W. Alford, J.P, Ansart, G. Hommel, L. Lamport,
B. Liskov, G.P. Mullery and F.B. Schneider (eds.) Distributed Systems: Methods and tools for
specification - an advanced course, Springer-Verlag, LNCS 190, 1985.

Potts, C., ‘The other interface: specifying and visualizing computer systems’ in TR.G. Green, G.C.

Van der Veer and D. Murray (eds.), Working with Computers: Theory versus outcome, Academic
Press, 1988(a). '

Potts, C., A Genenc Model for Representmg Deszgn Methods MCC Techmcal Repoxt, STP-312-88,.
1988(b) - - . S

Rich, C., RC Waters and H. Reubenstem, ‘Toward a requirements apprentice’, Proc. dth Int. Work-

shop on Software Specification and Design, IEEE Comp. Soc. Press, 1987.

56

O qn an al g mg own wh -

U (RS I

Ll

HA

T
il

’ﬂ 1\ il

ow
{r

N94-71141 . /

J o

/ .

Knowledge-based Requirements
Analysis for Automating Software Development
= Lawrence Z, Markosian
- Reasoning Systems, Inc.

1801 Page Mill Road
~ Palo Alto, CA 94304

57

58

‘I\

Pt

U
Lui

Loy

L

u
i

i

1]
[

il
b

Ll

) rge
i [il

LOBIS +f

aur ol

G

oo

1

e

Knowledge-based Requirements
Analysis for Automating Software Development!

- Lawrence Z. Markosian

Reasoning Systems, Inc.
- 1801 Page Mill Road
- =-_ Palo Alto, CA 94304

‘Abstract. We present a new software development paradigm that automates the
derivation of implementations from requirements. In this paradigm,
informally-stated requirements are expressed in a domain-specific requirements
specification language. This language is machine-understable and requirements
expressed in it are captured in a knowledge base. Once the requirements are
captured, more detailed specifications and eventually implementations are derived by
the system using transformational synthesis. A key characteristic of the process is
that the required human intervention is in the form of providing problem- and
domain-specific engineering knowledge, not in writing detailed implementations.
We describe a prototype system that applies the paradigm in the realm of
communication engineering: the prototype automatically generates implementations
of buffers following analysis of the requirements on each buffer.

Introd_ucﬁbh. Our goal is to increase softwarc development productivity by automatin g the
development process. We attack several weaknesses in current software development models:

* lack of formal connection between requirements and code,

« emphasis on manual production of code, an error-prone process, and

_« inability to reuse previously-developed code.

Our approach is to provide domain-specific requirements specification languages that allow
machine-capture and machine-understanding of requirements in a particular domain. Next we
provide very high level compilers that automate the generation of more detailed specifications and
implementations (code) from the requirements specifications. These compilers are also
domain-specific and embody knowledge about how to generate specifications and implementations
in particular engineering domains. Thus the compilation process occurs in a knowledge base, and
every step in the generation of code from requirements is explicitly represented in this knowledge
base. The software development environment that we propose tracks design and implementation
decisions made by the user as well as those made by the system itself. Because the process as well

_ ,1 The work reported in this paper has been partially supported by the Naval Oceans System Center under U.S.
Navy contract N00039-86-C-0221. The views and conclusions expressed in this paper are those of the author and
should not be interpreted as representing the policies of the U.S. Government or any agency thereof.

PROCEDING PAGE BLANK NOT FiLMED

In

a;_ﬁ;_, EAWANGLY BDH s

1
as the products of software development are machine-captured, the entire devel
available for analysis, and future applications in the sa
of earlier derivations.

opment history is
me domain can be derived in part by a replay

Our prototype development environment is for the realm of radio communications. The underlying

software development environment, on which the communication-specific automated environment

is based, is REFINE™, REFINE is a specification-oriented, general-purpose software development
environment. REFINE has many features that support the development of domain-specific
languages, the capture of domain-specific requirements and programming knowledge, the synthesis
of executable code from specifications, and recording and replay of the derivation process.

Related work. Our work is a continuation of research in program synthesis and automatic
programming initiated by Green ez al. [1]. Rich and Wat

ers [2] discuss this work and provide an
extensive collection of literature on the domain of program development by transformational

synthesis. Barstow has writtren extensively on domain-specific automatic programming systems in
[3] and the state of the art in transformational programming in [4]. Kelly and Nonnenmann [5]
have developed a knowledge-based approach to the synthesis of communication protocol
specifications from informal scenarios of typical system operation.

applications the synthesis process procedes entirely automatic
this paper, the process is interactive, with the user supplyi
system’s knowledge base is inadequate to identify a refinement.

An important feature of the transformational synthesis process is that transformation rulés are =
correctness preserving. Each rule that is applied to a partially refined set of requirements preserves
faithfulness of the partial refinement to the requirements. Correctness-preservation is a property of
transformation rules that has to be ensured when the development environment itself is built. But it
needs to be ensured only this one time instead of each time a new application is built.

We contrast the representation of knowledge about requirements, specifications and programs with

~ 60

[i Wi w4 1 1

L

L

ik

i

i
I

C

{

"
"
il

{

{0

W

L

"
i

i

Ll

i

8

6 ig

| \4 u\‘d

{ -
The REFINE system. The basic REFINE system [6] that underlies our prototype provides a
general-purpose specification language. The REFINE specification language includes first-order
logic and set-theoretic data types such as sets, sequences, mappings and relations. Thus it is
possible to write purely declarative functional specifications of system behavior in the REFINE

implementations (lists, arrays, hashtables, etc.) of abstract sets, as well as the appropriatc
implementations of set-theoretic operations such as union, intersection, membership, equality tests
among sets, etc. Customer experience over the 4-year history of REFINE use shows that there is an

Because most of the programming knowledge in REFINE is general-purpose, we believed an even
greater productivity gain could be achieved by customizing the System to a particular application
area. A key component of REFINE that allows this customizing to be done is the language
definition subsystem. This subsystem allows a user to develop an extension to the basic REFINE

language, or an entirely distinct language. The language definition subsystem includes a grammar
specification system, a parser generator and a printer generator.

The REFINE compiler can also be extended by a user to generate implementations of the extended
specification language. An extended compiler will perform semantic analysis of specifications and
apply tmnsfonnatiqq ;u!;s to generate implcqujcma‘ﬁoqs__.: et

-+

PIED LD soF Lo EBLIFEeD

Al} of these Aéarpabilities are illustrated in the application to communication systems that we describe
below, , .

The problem domain, Our prototype domain-specific requriements analysis and synthesis
cnvironment was developed for communications engineering. Specifically it addresses the
synthesis of different kinds of buffers to meet different requirements. Before illustrating the

operation of the prototype, we discuss requirements analysis issues regarding buffers and the
Impact of the requirements analysis on implementation,

synchronous and an asynchronous process. Hence every time a data flow between such processes
is explicitly required or discovered in a system design, it could trigger the need for a buffer. For
our discussion we make the simplifying assumption that the buffer feeds a synchronous process.
We list several general properties that one needs to know for any use of a buffer:

* the buffer’s input data rate,
* its functional behavior and
* the desired type of implementation,

The requirement for a buffrer at a particular point in the development of the design may be
represented in a suitable system as a logic assertion:

61

“If process P1 transmits data to process P2 and P1 is asynchronous and P2 is
synchronous then a buffer is required between processes P1 and P2.”,

Similar assertions specify requirements for buffers under other conditions.

Engineers will expect certain parts of the buffer design process to be similar in all cases and other
parts to depend on the particular context in which the buffer is used. C

« a data store of some capacity is required; -

buffer behavior is generally (but not always) that of a FIFO queue;

« we may assume data can be removed from the buffer at a constant rate, because the output is
assumed to be synchronous;

« we may assume that the mean input rate (over suitable intervals) is equal to the output rate;

overflow control may be required;
+ underflow control may be required.

Differences among implementations will include different values of parameters in the above buffer
attributes (e.g., the actual capacity of the buffer); also, we expect

« different specifications of functional behavior for different requirements, and
« different implementations in different environments.

Input data rate requirements analysis. We first consider three possible characterizations of
input data rate:

+ normmally distributed and
* bursty.

Alternative implementations of the buffer store are appropriate for the different characteristics of
inputdatarate: - T eeeT T s B AR

« approximately constant: fixed-length array, length dependent on:
— input rate distribution, e
- — output data rate and
*‘ ;rgquircmem on avoiding saturation.2

2 A model for determining buffer length is given in Lynch [9]

62

JEGTE IRT IR F. | ul ¢ |

i

il

L

TEe

LT |

g

¢

gl

L

e

g

T

"

{
* normal distribution: dynamically-allocated structure such as a list

* bursty: a combination of array and list.

Overflow control requirements analysis. Next we consider possible requirements on

buffer behavior under overflow or near-overflow conditions. Possible choices of overflow
behavior include: , , , ,

* input process blocks,
'+ no blocking; oldest data lost,
* no blocking; most recent data lost,

* feedback to an input filter control,

feedback to an input aperture control,

feedback to an ihpﬁt sampling control and

adaptively changing the buffer store size.

Each of the types of overflow control is appropriate in some situations. For example, in a textbook
specification of a buffer as a FIFO queue, the input process typically is represented with a guarded
command that waits (blocks) until space is available. In a radar system, a buffer receiving plot data
may overwrite the oldest plot data. In a mouse click handler on a workstation, the buffer may drop
the most recent mouse-click data because the display handler cannot keep up with rapid clicks and
thus the most recent clicks are unlikely to be meaningful. In digital transmission of analog signals,
feedback to control the sampler, aperture or filter may be appropriate.

Underflow requirements analysis. Underflow control is often necessary to insure that there

dre no transmission gaps, which could cause loss of synchronization and an eventual loss of data.
Possible ways of handling underflow include:

« output process blocks
* output process extracts a “null” data item
+ feedback to an input filter control, etc.

The discussion thus far should provide an idea of the kind of requirements a communications

engineer must analyze and the resulting design decisions that must be made in building a system to
meet these requirements. - : —

Buffer analysis requirements and synthesis in REFINE,

We indicate how knowledge about buffers is represented in our REFINE-based prototype, and how

the requirements analysis and code synthesis process proceeds. (A more detailed discussion of the
process can be found in Ladkin er al. [8].)

* Buffers are an object class in the knowledge base with attributes that include:

63

— a'partial specification, common to all buffers and therefore associated with each
instance of theclass ~ ~~ ° R

— input data rate requirement
— output data rate requirement
— the partial implementation of the buffer, in its partially refined form
Figure 1 shows some of the attributes of the buffer object class and the possible values of these

attributes. The order in which the attributes appear reflect approximately the range from highest
abstraction level (requirements) to lowest (coded implementation).

Buffer

Input data Approximately constant Underflow | = Outpaf process blocks
rate « Uniform distribution behavior + Extract a null data item

. Bursty : }:te:dback to inpul filter
Acceptable Store size)
prob. eror | 0<pe< 1.0 i [derived]

Functional

* Input process blocks : .

+ Oldest data lost | specification [pantly derived] =~

* Newest data lost - Sre e o

» Feedback to input filter Impl tati)

* Feedback to input aperture --mprcmentation [derived)

* Feedback to input sampling

Figure 1: Buffer object class, attributes and
possible values for attributes

When the need for a particular buffer is recognized by the system, an instance of the buffer object
class is generated. The values of the input data rate, ourrput data rate, and partial implementation

attributes may at this point in the development be undefined. They will become defined, and may
change, as the system draws conclusions about the use of the particular buffer,

Note that in particular a knolwedge base object representing a buffer contains the partial
implementation of the buffer as an attribute. It is this feature of our representation, along with the
retention of previous KB state via the context mechanism, that enables backtracking to previous
design stages, and reimplementation of the buffer with a different design decision. -

Here is an example of an abstract buffer instance in the application-specific language developed for
this prototype: o : .

the-buffer BUFFER-1 with-input-data-rate 9600 baud
with-discipline FIFO with-underflow-action
EXTRACT-NULL has-element-data-type CHARACTER

Some of the attributes of the buffer have been defined—for example, the input data rate. The value

!

(K
Ikl

1l

gy aw «uw an

g

g

'

(n

il

‘lu (L]

P

-
i

Giil

L

An example of 3 partial requirement on the larger communication system

in which this particular
buffer is embedded is the following:

The—comm—system CS-1 with transmitter ALPHA-3
communicates ALPHANUMERIC data and
has SPORADIC traffic distribution

with nomina] rate 50K baud and pPeak rate 65K baud.

This is a fairly high-level requirement and says nothing about im
transmitter of ty ALPHA-3 is to be used. The]

* Logic assertions relate buffer properties to System properties such
properties are maintained throughout the synthesi
in REFINE, ‘

An example of such an assertion is that the buffer capacity is to be computed using a particular
mathematical model from the input and output data rates and the allowable error rate due 1o loss of
data. A model for computing buffer capacity can be found in Lynch [9].

as input data rate, and these
s by the logic constraint maintenance facility

human—are of this high-level type: they require either additional
be provided, on the basis of which the System can draw a needed
ask the user to supply some value for an attribute of a buffer. In general, the profotype will attempt

to derive needed buffer characteristics by backward chaining to the original requirements or
consequences of the initia] requirements, If the requirements are insufficient to supply the answer,
or if the prototype’s rulebase is inadequate, the user will be asked to supply a valye.

65

Other transformation rules are more complex and determine details of the buffer specification and
implementation. An example is given in Figure 2. This transformation rule derives part of the
buffer’s detailed functional specification (the buffer store). The specification to be derived depends
on, among other things, the type of the data to be stored and the required overflow action. These
rules, which are fired after the high-level attributes have been determined, are entirely automatic and
do not require user intervention.

Thus the user supplies engineering knowledge and guidance, while the system handles program-
ming details. In particular, the underlying REFINE system is capable of deriving implementations
automatically from complete functional specifications, and thus the user concentrates on higher-
level, application-oriented tasks rather on coding.

Rule Make-Data-Structure-for-buffer-contents (a: DATA-BUFFER)

A = ‘##r comm-grammar
the-buffer @n
with-overflow-action @o-a
element—-data-type @d-t
implementing-data~structure @undefined’

and defined? (d-t)

and impl-ds = new-var (build-symbol-name ([n, ‘datal),
(if o-a = 'flush-newest-require-reset then
‘tuple (integer, seq(@(copy-expr(dt)),
"7 "boolean)’ else = o 7 ,

‘tuple (integer, seq(@(copy-expr(dt)))’))
-—>

variable? (impl-ds) = true
and initial—value(impl—ds) =

(if o-a = 'flush-newest-require-reset then ‘<0, [1, true>’ else
<0, [1>")
and scope (impl-ds) = 'globai
and bufer-data-structure(a) = impl-ds

and 1isp—¢odg}§mpl—ds) = undefined

and lisp—initializatibn(irﬁpl—ds) = undefined)

Figure 2: Transformation rule to construct buffer store

Note that, in general, if a buffer has » high-level properties and each of these attributes have m .
possible refinements, then representing each refinement as a transformation rule requires roughly

66

| [JIER g§1 1 &1 & i

"
i

'K

¢

i

o

L

L
ol

L

n * m transformation rules. On the other hand, use of subroutines to represent this knowledge
would require on the order of m” subroutines. Thus representing engineering knowledge about
buffers in the form of transformation rules represents an exponential decrease in the amount of code
that needs to be written, and a corresponding increase in reusability.

References,

1. Green, C.C,, Luckham, D., Balzer, R. Cheatham, T. and Rich, C., “Report on a
Knowlcdge-Based Software Assistant,” RADC Report RADC-TR-] 95, Rome Air
Development Center, New York, also Kestrel Institute Technical Report KES.U.83 .2, Kestrel
Institute, Palo Alto, CA, 1983, also reprinted in Rich and Waters [2]

2. Rich, C. and Waters, R. C,, eds., Artificial Intelligence and Software Engineering, Morgan
Kaufman, Los Altos, CA, 1986

3. Barstow,D.R,, “Domain-Specific Automatic Programming,” IEEE Transactions on Software
Engineering SE-11, 11 (November, 1985)

4. Barstow, D. R., “Artificial Intelligence and Software Engineering,” Proceedings of the 9th

International Conference on Software Engineering, Monterey, CA, March 1987, 200-211,
IEEE Computer Society Press, 1987

5. Kelly, V. and Nonnenmann, U.,, “Inferring Formal Software Specifications from Episodic

Descriptions,” Proceed ngs AAAI-87 Sixth National Conference on Artficial Intelligence,
July, 1987, 127-132

6. The REFINE User’s Guide. Reasoning Systems, Palo Alto, CA, 1987

7. Linden, T. and Markosian, L. Z., “Transformational Synthesis Using REFINE™ ” jn Richer,

M, and Yazdani, M. (eds), Artificial Intelligence: Tools and Techniques, Ablex Publishing,
Norwood, NJ (to appear)

8. Ladkin, P., Markosian, L. Z., and Sterrett, A., “System Development by Domain-Specific
Synthesis,” Proceedings of the Third International Conference on Applications of Artificial
Intelligence in Engineering, August, 1988, Palo Alato, CA

9. Lynch, T.J,, Data Compression Techniques and Applications, Lifetime Learning, 1685

67

68

| | ! Ui all W 1 N

i

s

!
i

o —Dinner Speaker

: Intergrated Software Support
Environments: o

) Some Lessons Learned

i Frank Belz

e (NOTES)

ol

PREBGEDING PAGE BLANK NOT FUMED

- 69

Gk

70

S

6§ 10 W

"
[

—Session II

Ayl

Space Station Software ¢
Support Environments

Session Co-Chair: Everett Lyons

Session Co-Chair: Jim Rainy

Speakers
Tim Porter
Paul Babick
Gokul Bhaumik
Herb Krasner
C. L. Carmody

C. T. Shotton

PREEDWNG pacE BLANK NOT FimEp

71
mer 10 woenmonany sewm

L

72

¢ .- Cnoon Gt (il

A
155357

- 71142
N94- 711 .

Lessons Learned from an Ada Conversion Project

Tim Porter and Paul Babick

Pmcusamuorrm

W.ﬂlﬁ.mmmw R

73

74

(

e

(Gl

mim
iy

it ©IT

o

" n
b w

ol

PRBGEDING PAGE BLANK NOT Fi mpp
@g-;;;sl‘i_,mmmuw AN

« Abstract.

Recognizing the Importance of building software with
the robustness to accommodate rapid advances in
technology, developers have focused on methods which
and in providing an advanced software engineering
environment that frees the engineer, to the extent
possible, from the more routine aspects of software
design and development. The software engineer is
permitted to concentrate on the Creative aspects of
problem resolution. Standard languages such as Ada
maximize portability across hardware and operating
systems. Standard interfaces which enhance portability
and permit the incorporation of new technology as it
becomes available have been developed. Software design
and development techniques which maximize portability
-receive increasing emphasis, Experience “gained in
porting an Ada application between two widely varying
environments s evaluated in light of current practices
to maximize software portability.

lntroduction.

The Software Automated Verification and Validation System
(SAVVAS) is an automated tool used to manage and track software
requirements during development projects. Developed in Ada on a
Digital Equipment Corporation (DEC) VAX/VMS environment, SAVVAS
has been ported to the IBM 3090/vM environment and will be
delivered to NASA to support software development in the Space
Station Software Support Environment (NASA SSE). For the purposes
of this paper SAVVAS functionality is immaterial but can be
Characterized as an information management tool, with a few
relatively simple embedded algorithms, and consisting of
approximately 25 000 Ada lines of code (LOC). SAVVAS depends on
the services of gz database management system (DBMS) and was
originally designed to use the INGRES relational DBMS. |t was
subsequently modified to use the ORACLE relational DBMS in the
VAX/VMS environment, and uses ORACLE in the I1BM environment.
Figure 1 illystrates the SAVVAS architecture.

75

Virtual Interfaces

Terminal) /
interface §

Project Database

SAVVAS || 4

W, 9
T OO NN IS RAVHN 2

Figure 1. SAVVAS Architecture.

Software Portability.

The degree of software portabmty is defmed as the relatwe ease 7

with which source code can be moved between alternative hardware,
compilers, operating systems, and other external interfaces. High
degrees of portability are desirable in order to protect software
investment, prolong product life, and promote software reuse. As a
result new technological innovations can be easily introduced.
Various measures can be taken to improve software portability.

However such measures may also adversely impact software
performance in several ways.

Applications written in Ada have been reputea to be highly ~

portable. While the Ada language has been standardized (MIL-STD-
1815A) and extensive compiler validation tests have been developed
to evaluate the degree of standard compliance by Ada compilers,
high degrees of portability can be difficult to achieve unless

76

I

{1

I

c

-
€z

{

e
i

1
‘Ih it

accompanied by the use of other more important portability
enhancing methods and techniques. These include the isolation of
non-portable source code, constraints on the use of certain language
features, and standard or virtual interfaces. Each of these is

reviewed in the context of the SAVVAS port and in light of previous
experience. '

Isolation of Non-Portable Code.

Rarely is it possible to totally eliminate all non-portable code
from application programs. Even simple operations such as cursor
positioning on a terminal or text display require the transmission of
special control sequences to the display device. System calls to the
operating system are usually unique to the operating system. Some
operating systems will accept leading or trailing blanks in
filenames. Others will not. The cost associated with porting
software can be minimized by isolating identified classes of such
software to specific Ada packages. This makes the task of finding
and correcting non-portable source code much simpler when porting
a software application. A trivial example is the set of routines
required for terminal input and output. The package specification
contains procedure and function declarations with specific machine-
dependent control sequences isolated to the package body. Figure 2
illustrates a simple terminal interface package. This package also
illustrates another of Ada's advantages in that by isolating machine
dependent code to the package body, as illustrated in figure 1, only
the package body must be recompiled before the program is re-

to a package body, thus minimizing recompilation time and
development costs. In many applications only a few such packages
may be required to isolate all known non-portable source code.
Experience has also shown that identifying all non-portable source
code can be very difficult, and undetected occurrances often result
in bizarre program errors that are even more difficult to correct.
Clearly lessons learned in this area should be reflected in the
Organization's software Standards and procedures.

77

package SIMPLE_TERMINAL_INTERFACE is
procedure GO_TO_POSITION (X, Y: in INTEGER);
précedure DISPLAY_TEXT (MESSAGE: in STRING);
“end SIMPLE_TERMINAL_INTERFACE:

with TEXT_IO; use TEXT_IO; - '
package body SIMPLE_TERMINAL _ INTERFACE is

procedure GO_TO'_POSIT‘ION (x, Y: in INTEGER) is
begin

e Send the appropriate code sequence to the terminal.

-- These are different for varying terminal types.
end GO_TO_POSITION;

procedure DISPLAY_TEXT (MESSAGE: in STRING) is
begin

-- Send the message to the terminal

-- including any required code sequences.
end DISPLAY_TEXT,;

end SIMPLE _TERMINAL_ INTERFACE

Flgure 2, Scmple Terminal Interface Package.

T TN R S SN A0S ES s radar e W W EE BERE BGOSR SN R E R R B R e R e W eE M eww e e

With respect to terminal interface, the mechanisms available on

the IBM 3090/VM system are radically different from those on

VAX/VMS systems. The block oriented nature of IBM terminals
required significant changes, and in some cases wholesale rewrite,
of the human interface modules. This is not surprising in spite of
the fact that SAVVAS has a very simple menu-driven interface.
IBM's Interactive System Productivity Facility (ISPF) was utilized to
recreate SAVVAS menus. The object modules created for each
screen were then linked into SAVVAS. Another important design
feature which minimizes software porting costs is to use software
layers of increasing abstraction. This simplifies conversion to

78

"=
ik,

'
t

t

it iy

1]
T

"

vastly different environments by permitting the introduction of

altern‘atives at various levels of abstraction depending on the degree
of product deviation. _

much less efficient (and may not even work) when ported to other
perhaps less optimized, but validated, compilers. Validation of an
Ada compiler provides no guarantees with respect to run time
performance. There can also be wide variance in the implementation
of Ada pragmas. Pragmas are essentially compiler directives. For
example the Ada Pragma “interface" is used to provide direction to
the compiler in the linking of object modules external to the Ada
environment, e. g. assembly or other foreign language developed
modules. Many compilers provide pragmas that are unique to only a
single vendors compiler. Software which relies on such features ig
clearly less portable than programs which do not.

SAVVAS stores project data in a relational database. This eases
data manipulation and report production. It also means that SAVVAS
is dependent on some DBMS provided features and is linked to vendor
supplied C-language routines. Originally, SAVVAS was developed as
a stand-alone tool for the VAX/VMS environment to support U.S. Navy
software development projects. The original implementation relied
On a pragma unique to the DEC Ada compiler called "pragma
IMPORT_VALUED_PROCEDURE" to import object modules outside of
the DEC Ada environment such as the DBMS access modules. For
most relational DBMSs these access routines are written in the C
programming language. The purpose of "pragma
IMPORT_VALUED__PROCEDURE" is to specify parameter types and
Passing mechanisms for linkage to external modules. This DEC-
supplied pragma is non-standard but, as stated previously, is
allowed under compiler validation rules. It represents but one of
many approaches to defining the parameter passing mechanisms
required in linking external modules. The Alsys compiler used in
the IBM environment employs a very different approach. Needless to
say, extensive rework was required because of the rather
Sophisticated database interface requirements. This extra effort is
attributable solely to the use of non-standard language features.

79

This problem was compounded by the fact that the DEC pragma
permits parameter declaration "out of order." Since such out of
order parameters in many cases compiled successfully, erroneous
programs resulted that were very difficult to debug.

Ada's exception handling is a powerful feature designed to assist in
the construction of fault tolerant software. Typically the software
designer identifies potential categories of software failure creating
specially named exceptions and providing procedures for software
recovery in the event of failure. The exception handling feature also
provides a pre-defined "others" category of exceptions to be used for
unanticipated exceptional conditions. Deeply nested exception
handlers each of which has a catch-all "when others" path make for
bullet proof programs that won't fail catastrophically. They also
make programs extremely difficult to debug since it is virtually
impossible to determine at what level the software failed. The
SAVVAS experience indicates that the payoff in decreased test and

debug time usually exceeds the cost of additional care in the design
of exception handlers.

Virtual Interfaces.

The intent of a virtual interface is to isolate application
software from perturbations in the external environment. Virtual
interfaces have been developed which provide interfaces from Ada
application programs to relational databage management systems,
human interface systems, graphics display devices, and even
operating systems. These interfaces are sets of standard calls
providing basic facilities for accessing external capabilities. If
these interfaces are robust enough, applications are buffered from
changes in the external environment. For example technology
advances such as a new database machine may be easily integrated
into applications without incurring undue software maintenance
costs. In a sense virtual interfaces are an extension of the idea that
non-portable code should be isolated. In effect virtual interfaces
standardize well known classes of non-portable source code. They

therefore enhance software portability and protect software
investment.

Ada/SQL is a proposed virtual interrf'a'b'e to relational DBMSs. It
provides standardized native language (Ada) access to relational

databases using SQL-like syntax. SQL. or Structured Query Language,

is an American National Standards Institute (ANSI) approved

80

u .

LT
!Lu. ™

1
sl

Ll

Standard for database access. The relative merits of Ada/SQL over
other’ database access approaches, such as embedded SQL or the
module approach, are still being debated. It is however a relatively
mature virtual interface to relational databases. Applications
written using Ada/SQL can easily be interfaced to any relational
database management system. Porting to new environments s
especially easy once the "standard" non-portable components of the
interface have been developed for alternative DBMSs sjnce these
modules can simply be plugged into an application and a new DBMS
swapped in. The database itself must still be created and populated
using the new DBMS but application software remains unchanged. It
is significant that during the SAVVAS port no changes were required
to the Ada/SQL virtual interface. The source code which implements
this interface ig identical on both IBM and VAX systems. This
capability is critical to large systems representing investments of
many millions of dollars. Such systems cannot afford to be "locked

into" specific vendor products by relying on the vendor supplied
interface procedures.

In both the SAVVAS conversion from INGRES to ORACLE and the
port to the IBM 3090, several problems in the database interface
areéa occurred. Some of these required significant amounts of effort
to resolve. However al| eventually resolved to compiler
limitations/bugs or unidentified non-portable software modules.
For example, the original software design of SAVVAS assumed that

are obvious to the "monday morning quarterback” but are sometimes
difficult to detect in practice. Assumptions about the underlying

environment are often quite subtle and can permeate an entire
software design. =

It has proven to be a versatile, comprehensive interface package.
The Ada~X_Binding is a formalized virtual interface for the
construction of human interfaces and would be used in place of

81

developer created terminal interface packages such as the simple
example included above.

Standards for graphic displays are also important. Several have
been proposed such as the Graphics Kernal Standard (GKS). An Ada-

GKS Binding has been developed to vnrtuahze this mterface for Ada
applications.

Standard operating system interfaces such as POSIX have also
gained considerable momentum. Other candidates include the
Common APSE Interface Set (CAIS) and the European-sponsored
Portable Common Tools Envnronment (PCTE). Each of these are
attempts to provide a standard set of operatmg system primitives.
POSIX is receiving widespread support in industry, government and
academia. Ada-POSIX bindings are being developed. Programs such
as the NASA SSE are evaluating these alternatives in the hope of
finding a suitable standard. A virtual interface to the operating
system would eliminate many of the portability problems which
result from subtle assumptions about the external environment such
as the user disk space issue discussed above.

Conclusion.

Clearly a consistent software design methodology coupled with
design and coding standards which enforce effective modularization
and limit the use of less portable language features is essential to
achieving a high degree of software portability. Standards and

guidelines should be constantly reviewed and updated based on new
insights and experiences.

Virtual interfaces such as Ada/SQL, the X Window System, POSIX
and Ada-GKS significantly contribute to software portability, and in
addition have significant productivity implications. These tools

should be incorporated into Ada software libraries and made readily

available to the software development staff. On the other hand they

also clearly add to program performance overhead, and must be

weighed in light of performance requirements.

The SAVVAS port has validated past experience and cautions with
respect to achieving software portability and will be capitalized on
in future tool development and integration efforts. The SAVVAS

experience also highlights the importance of adequate training to-

take full advantage of an advanced programming language. Putting

82

l L i | i [(I (I i

1 i 1

L.

programmers through familiarization courses will not normally
result in Ada programs which evidence modern software engineering
practices. Instead they will result in poorly written programs that
are error-prone, difficult to debug, and costly to maintain, SAVVAS
was originally developed by a team with mixed experience and
education. The software engineers which conducted the port to the
IBM environment could almost guess which programmers wrote
which modules. This reemphasized the importance not only of
adequate training but also of comprehensive standards and
procedures, automated standard checkers, and thorough program
walkthroughs and reviews led by experienced programmers.

83

84

U

"R

N94- 71143

Gokul Bhaumik

Modernization of Software Quality Assurance

PAGE BLANK NOT FILMED

85

86

L

-
lm ™

[

,”..u |- "
l.hlwi Ll

[

' NEED FOR MODERNIZATION OF QUALITY ASSURANCE
FUNCTION

The evolution of the modern day programmer-analyst, in a sense, has followed

a path similar to the Freemason of the middle ages. During the early days of the -
computer technology, any understanding of how to build a computerized system -
set the individual apart and was licensed for personal success. It has been
said, however, that often, systems were built much like the Wright Brothers
designing airplanes: build the whole thing, somehow, push it off a cliff, and if it
flies, fine. If it crashes, start all over again. Of course, some designs were
monuments to initiative and individual talent, but - like the builder of old planes,
we have not yet fully come to grips with all the variables of system design. The
need for results have out-raced the time needed for developing techniques to
design, develop, and more importantly assuring the quality software systems or
products. The above speech was given by John W. Luke, President, Infonet

NEED FOR QUALITY MANAGEMENT

The customers satisfaction depends not only on functional performance, it also
depends on quality characteristics of software products. And it is this quality
aspect of software products need to be examined which will pro vide a clear ,
well-defined framework for quality assurance functions to improve the iifse-cycle
activities providing significant leverage on software quality.

We need to be aware of the thoughts expressed by many quality experts and
they are:

. Quality cannot be added on. It means that unlike present day, traditional
inspective type of control, it must be engineered from the very beginning
of the software development process. The quality function must start at
the same time when system conceptualization begins.

. The level of quality built into a program is a function of the quality

attributes employed during the development process. Standards,
practices, tools, and techniques are needed to define these attributes. If
they do not exist, the quality process remains a subjective evaluation.

. Quality therefore, must be managed. It must be planned, it must be

organized. It must be directed and it must be regulated or controlled.

The above thought provoking comments, therefore, lead us to the necessary
definition of Software Quality Assurance function.

PRRGEDING PAGE BLANK NOT FILMED

v o posnsonsn e

87

Definition: Software Quality Assurance is a formal, planned approach of actions
designed to evaluate the degree of identitiable set of quality attributes present
in all software systems and its attendant products.

To support the above definition, the architect of quality evaluation must plan and
implement necessary tools, techniques, and methodologies in such a manner
that brings to fruition another important advocacy advanced by many experts in
the quality disciplines :

"A strictly orchestrated Interdependency between the design and
development processes or product and their concurrent verification
measures for attributes relative to quality.”

QUALITY MANAGEMENT ROLE

The Quality Management Role on any Software project must then be to:

. Monitor
. Regulate
. Evaluate

the Software Development Process and Products and recommend/initiate
necessary corrective action(s) as depicted in the following figure.

CORRECTIVE ACTIONS

CORRECTIVE ACTIONS |

PRODLCT ENFORCE/AUDIT
REVEWS

STANDARDS &

AS RLANNED

88

[}

Lo

W

il

.‘...H.‘

QUALITY EVALUATION

For the purpose of Ouélity Evaluation, necessary criteria must be established for
both the process and the products as waell. ,

PROCESS EVALUATION CRITERIA

"« Activities required by approved pro]éct plans are performed.

* Processes are compliant with the approved project plans.

* Tools, Techniques & Methodologies described in the project plans
are utilized. b e

* Processes are adequate to meet the contractual requirements.
* Adequacy of configuration control system

* Adequacy of discrepa_ncxreponing and corrective action system.

PRODUCT EVALUATION CRITERIA
* Compliance with contractual specification requirements
« Adherence to required format and documentation standards
. Technicagl Adequacy R
. Consisténcy with indiéated documents
* Traceability to indicated documents
* Appropriate degree of Quality attributes(factors), namely,
Correctness, Efficiency, Flexibility,
Integrity, Interoperability, Maintainability,
Portability, Reliability, Safety, Reusability,
Testability, etc
* Adequacy of test cases,and test procedures

* Completeness of testing

+ Adequacy of retesting.

89

SR&QA TOOLS AND METRICS

A significant amount of the work done to evaluate quality is manual, tedious,
and subject to human error. Tools are desirable in order to monitor
development process, compliance to standards, change control etc. Automation
aids should be used extensively to simplify many of these tasks to overcome the
complexity and volume of products. Automation aids can be used to correlate
and centralize the software requirements. Software design can be directly
verified by software tools. A variety of design and code checkers, both static and
dynamic should be used for detailed verification of resultant code. Traditional
review/audit checklists can certainly be made computer aided. Some other tools
are:

* Impact analysis tool

« Requirements traceability matrices

« Test specification tool

. Régfé:;éfdn test identification tool

QUANTITATIVE EVALUATION OF SOFTWARE QUALITY UTILIZING
METRICS

In order to evaluate quality quantitatively, quality of software must be defined in
terms of measurable attributes of software and only then mechanism can be
devised to measure it quantitatively.

Light and Fisher have defined software quality as "the composite of all related
attributes which describe the degree of excellence of computer software”.

General Electric study, sponsored by RADC, has refined the above notion of
quality further into identifiable factors which are some conditions or
characteristics that contribute to software quality.

Based upon the result of these studies, T. J. McCabe has defined the process of
Quality Evaluation as the identification of important factors in a given
environment, the specification of these factors and the measurement of the
degree of their presence during and after implementation.

Units of metrics are defined as the ratio of actual occurrences or non-
occurrences to the possible number of occurrences of caertain software
attributes. ,

Defining the actual metrics that are used to determine the quality of a specific
product is beyond the scope of this paper. :

1

IO SR

il

(s

W

(

WHAT LOCKHEED IS DOING TO AUTOMATE THE QUALITY
EVALUATION PROCESS

Through the Space Station Freedom Software Support Environment(SSE)
Project, we are called upon to meet a new challenge in orchestrating a quantum
leap forward in software development productivity and methodologies.

The SSE architecture provides an important quality technology breakthrough by
allowing the implementation of quality evaluation techniques in an automated
fashion. This automated support results from the "product test control* features
inherent with the SSE framework. The following figure describes the information
flow in and out of a SSE System Project instance that supports quality
management. The SSE instance not only ensures the application of quality
criteria, it also maintains current status data on the progress of development
and quality evaluation.

Project Quality
Manager Manager
AREEE
etrics etrics
Report Reports Aasality RS:;‘&Z Standards
Lessons IV&V Test Metrics SR&QA
Learned Reports Reports Plan
tatus Status System
Reports Reports | Managemen
Test and Tools Reports
Integration) Products,
Lovels Tests and Data

SSE Project Instance

i

In summary, the SSE architecture, supporting the automated quality evaluation
is in the process of bringing to fruition already stated advocacy advanced by the
quality experts and that is:

“a strictly orchestrated Interdepéndency between the design

and development processes or products and their concurrent
verification measures for quality.”

92

] [JHIN. | I

il

| N94- 71144
“
!'. | 55-4/
/553567

Empirical Studies of Design /- /
Software:
Implications for Software
Engineering Environments

Herb Krasner,
Lockheed Software Technology Center

o9

94

i | L | IR {

I P Gl o o

(]

Liid

—
L g i’

Empircal Studies of Software Design : Implications for
Software Engineering Environments
Herb Krasner, Lockheed Software Technology Center

1]
it

1. INTRODUCTION

The empirical studies team (Herb Krasner, Raymonde Guindon, Diane
Walz, Neil Iscoe, Vincent Shen, Barbara Smith, Bill Curtis and Nancy
Pennington) of MCC's Design Process Group conducted three studies in
1986-87 in order to gather data on professionals designing software
systems in a range of situations. The first study (the Lift Experiment)
used thinking aloud protocols in a controlled laboratory setting to study
the cognitive processes of individual designers. The second study

(the Object Server Project) involved the observation, videotaping and data
collection of a design team of a medium-sized development project over -
several months in order to study team dynamics. The third study (the
Field Study) involved interviews with the personnel from 19 large
development projects in the MCC shareholders in order to study how the
process of design is affected by organizational and project behavior.
The focus of this report will be on key observations of design process (at
several levels) and their implications for the design of environments.

i T

2. OBSERVATIONS

In our study of individual, experienced designers working on the Jift
problem we observed: the differences in design strategies and solutions,
the ways in which many levels of abstraction and detail are worked at the
same time, the ways in which designers understand and elaborate
requirements tnrough explorations of their mental model of the problem
environment, and the discovery-oriented nature of their problem solving.
Furthermore we identified the main sources of process breakdown [see
Guindon, Krasner and T meme e e
Curtis, 1987] as: 1) lack of specialized design idioms, 2) lack of
knowledge about design process and methods, 3) poor prioritization of
issues leading to poor selection of alternative solutions, 4) difficulty in
considering stated or inferred constraints during solution

formation, 5) difficulty in keeping track of and returning to

postponed subproblem solutions, 6) difficulty in keeping track

of steps or test cases during evaluative simulation, 7) difficulty

in expanding or merging subproblem solutions into the complete

system solution, and 8) premature committment to an initial solution
skeleton based on a priori criteria. Implications for the design of

software tools to Support individual professional designers were
generated.

WNG PAGE BLANK NOT FiLMED 95
B AT\, | INRENTIORALY B

In our longitudinal design team study [Walz, Elam,

Krasner and Curtis, 1987] we observed the processes of group
disagreement about goals, processes, plans, issues and system design. We
saw that problems can arise in the

accomplishment of a group task when individual team members hold
conflicting assumptions, goals, beliefs, etc. which are not surfaced

and/or resolved. These conflicts can cause conflicting or incompatible
system components. Team members attempting to integrate various
individual efforts may find difficulties/incompatibilities due

to the differences in these underlying beliefs. The process of design by a
team is an information pooling task and therefore difficulties in
communication can be expected. The identification and characterization
of design "inflection points” can lead to more effective management of the
divergence/convergence process in team design. Implications for

software environments to support a high performance design team were
developed.

In our field study of 19 large software projects, we identified the key
problem areas spanning the boundaries between project, organization and
external settings. We identified problems in: the acquisition and
dissemination of sufficient application knowledge, the effect of
requirements change and uncertainty, the artificial barriers to software
technology transfer, the dynamics of design evolution and the special
problems of government contract developments. We also identified and
described project level phenominae related to multi-group interaction as
[Krasner, Curtis and Iscoe, 1987]: 1) the typical communications
breakdowns in large programming projects, 2) the cultural and
environmental differences that create barriers to effective intergroup
communications, and 3) the boundary spanning activities that coordinate
five crucial topical networks of design information. Four types of
communication breakdowns observed on the projects were characterized.
Implications for software environments to support large projects of
remotely distributed teams were developed.

3. CONCLUSIONS

Across these 3 studies we observed how some breakdowns

occur, how some get solved some get amplified, and how some _
new types occur as you go from individual to team to large projects
and organizations. The mechanisms underlying the breakdowns
at the individual level were the lack of knowledge about some
important aspect of the design or limitations in human information
processing and memory capacity. At the team and organizational
levels these mechanisms were still important precursors of many

96

1 wi

I

LD

o
I‘ ({7

1] ul! N“‘
‘C\ Wi,

LIt

L .

ot the breakdowns observed, however, these mechanisms were augmented
by interpersonal and organizational processes to Create the breakdowns

in a multiperson, multigroup design effort. We have identified
interpérsonal mechanisms providing synthesis and integration that allow
teams to compensate for individual limitations. These are the
communication mechanisms that provide for the coordination of mental
models of the design and its process across a project staff. The

processes of design integration and synthesis cannot be effectively

translated into a software system unless cognitive coordination
processes are effective.

4. The Lockheed STC Effort i

The Lockheed STC Software Process Management Group is currently
exploring process models of design that support at least the following
components: the decomposition of system requirements/designs, the
synthesis of relevant design idioms, the intelligent management of
project resources, the coordination of models of the design and its
process across project staff, the constraint-based exploration

of requirments under changing/negotiated conditions and the
capture/reuse of historical design rationale.

97

98

I

grr oD

gor @1

B

4 I

Lo 11l

,
L

G uin

Sr6-C

Tool Interoperability /%j “o

in SSE OI 2.0 :

C. L. Carmody
and
C. T. Shotton

PRBOEDNNG PAGE BLANK NOT FHLMED

oD peenmonans nie 9

100

(0

(

1
1

(ol

€ s

([

Cii

Title: Tool lnteroperabiiity in SSE 01 2.0

Authors: C.L.Carmody and C.T.Shotton

Date: October, 1088

Abstract: This Paper presents a review of the concept and ,
implementation of too] interoperability in the Space Station Software
Support Environment (SSE) 01 2.0. By first providing a description of
SSE, the paper describes the problem at hand, that is; the nature of the
SSE that gives rise to the requirement for interoperabiiity - between SSE
workstations and hence, between the tools which reside on the
workstations. Specifically, word processor and graphic tool
interoperability are discussed.

The concept for interoperability that is implemented in OI 2.0 is
described, as is an overview of the implementation strategy. Some of the
significant challenges that the development team had to overcome to
bring about interoperabiiity are described, perhaps as a checklist, or
warning, to others who would bring about tool interoperabiiity.

Lastly, plans to expand tool interoperabiiity to a third class of tools in o]}
3.0 are described. ']

PREGSDING PAGE BLANK NOT FHLMED C’ 2.

i

101

e 00 woenmonAY DR

102

o TES

I

. w o
"w § o

[N "
‘\\‘u i

L it

N

L

Ll

r
Ik

C o
it
l i

g vs:s«eu"..:,,_mxmmv e

Tool lnteroperability in SSE 01 20

Background

The SSE System is an integrated system consisting of computer hardware,
communication networks, SSE, and all other elements that support the life-cycle
management of all Space Station Freedom Program (SSFP) operational
software. The Space Freedom Station Software Support Environment (SSE) is
an evolving collection of software, procedures, standards, hardware
Specifications, documentation, policy, and training materials which, when
implemented in hardware and a computer network(s), provides the environment

geographically distributed ang networked computer facilities, typically a host
processor with attached user workstations. The near-term evolution of the SSE
System, in operational increments one through four (01 1.0 through Ol 4.0),
involves replacing the COTS from the Interim and Initial Systems (O! 1.0 and O

2.0) with non-proprietary, SSE developed software which is more tightly
integrated into an environment.

P'-amm PAGE BLANK NoT FiLMED

103

TypnCally, a Space Station Freedom software development pro;ect will consist of
several developers and testers working as a team. Each team member will do a
major portion of his work on his own workstation (any one of the supported
workstation types), and then place that work under conflguratlon control on the
host for integration with the work of others. In order for that integration to take
place, whether it be the integration of code, of design products, or of document

sections, there must be a concept and method for the interoperability of
functionally equivalent tools.

In OI 2.0, a portion of the functionality that is allocated to the workstations is the
preparation of document sections, both text and graphics. To satisfy that
requirement, the workstations are equipped with the following word processing
and graphics packages;

. Microsoft Word and MacDraw on the Macintosh I

. Microsoft Word and Gem. Draw Plus on the IBM P/S 2
Interieat 3.0 on the ApoHo (for both text and graphucs)
Each word processing and graphic package outputs a different format; even
Microsoft Word on the Macintosh I outputs a different format from Microsoft
Word on the IBM P/S 2. In order to support the common text and graphic
functionality (with distinct output formats), Ol 2.0 contains a set of transformation
procedures which will transform tool-specific format to a common
interoperability format, and from that format back to tool-specific format.
Planning Research Corporation (PRC), subcontractor on the SSE project, has
developed a set of word- -processing transformation procedures, to support a
Text Interoperability Format (TIF), and a set of graphic transtormation
procedures, to support a Graphic Interoperability Format (GIF).

104

o

)

{

o ()
m\\ il I i

Lo

iz

'
i

€

[

"
sl

”
L b

-
ia b,

P
Lo

e

The &oncept of Tool Interoperability

Mac 1l
Apollo Project Object Base
‘\ -
- "4 N, text
P/S D S >-T— graphic

text and graphic objects
are placed under
configuration controf
in Interoperability format

developers and
testers work
on any of three
SSE workstation lypes

. the set of transformation procedures
and the dsfined interoperability formats

P e flow of text objects
<49 the flow of graphic objscts

Figure 1; The Concept of Interoperability within SSE 0Ol 2.0

As is indicated in Figure 1, The Concept of Interoperability within SSE Ol 2.0,
SSE users do a major portion of their work with tools that reside at the
workstation. In this context (which is shown to be the development of text and

105

figure are spelling correctly, and the figure itself conforms to project graphic
standards. Using the transformation procedures, the tester does not need to
have the same type of workstation as the developer; he doesn't even need to
know on what kind of workstation the objects were originally developed. And, if
an object needs rework, a different developer with a different type of workstation
can do the rework. Ultimately, when all planned tests are passed, the objects
are integrated into the final product on the host; in this case, a document. [SSE
Ol 2.0 also contains transformation procedures which will transform text and
graphic objects from interoperability format into a merged document using the
VAX host-based document processing tool, Scribe].

As shown in Figure 2, Text Interoperability Procedures, there are six text
transformation procedures; three transform tool-specific output into text
interoperability format, three transform from text interoperability format into a
form acceptable by the SSE baselined wordprocessors.

(DCA format) (DCA format)

Microsoft Word on IBM Microsoft Word on IBM

Microsoft Word Text

on Macintosh Interoperability
(RTF format) Format

Microsoft Word
on Macintosh
(RTF format)

LEAFINT
Interleaf on Apollo

Interleaf on Apollo

Figure 2; Text Interoperability Procedures

As shown in Figure 3, Graphic Interoperability Procedures, there are six graphic
transformation procedures; three transform tool-specific output into graphic -
interoperability format, three transform from graphic interoperability format into a

form acceptable by the SSE baselined graphic packages.

106

wil

[z

-
L

{20

Gém Draw on IBM & Gem Drawon IBM
m] INTGEM
MacDraw !A Gr aphic MacDraw
on Macintosh Interoperability (INTPICT)

~ 0n Macintosh
et | G
Interleaf on Apoli A

° Interleaf on Apollo

Figure 3; Graphic interoperabiiiiy Procedures

by

Implementation Overview

Desigri Drivers

System Concept. Document) mandated for the SSE System which the
transformation Procedures support directly. ,
Commonaiity; "from the users’ Perspective, each host/workstation
combination will have exactly one set of tools available for SSP software

Support.. These tools will support interoperability between
host/workstation combinations”

Expandability; "the architecture of the SSE System will be amenable to
addition of new capabilities or externaj System interfaces”
Technoiogicai Transparency; "every aspect of the SSE design will

enable change brought about by advancing hardware and software
technologies to be of minimal impact"

107

Transformation Procedures Design Drivers

., Data Type Transparency; "the SSE will shield the user from explicit,

" required knowledge of the data types addressed for work in levels where
such is not appropriate”

Integration; "the SSE will be a tightly integrated whole, centered around
a policy of software life-cycle management. Tight integration is comprised
of maximizing information transfer between SSE functional capabilities
with a simultaneous minimization of user intervention.”

Use of Ada; "the SSE supports the use of Ada for the development of all
SSP operational software, including itself"

Vendor Independence; "the SSE design will be highly portable so as to
avoid dependence on any particular vendor, computer hardware system,
workstation, data base management system, operating system, network,
or application program. The interoperability features provided by the
SSE System remove much of the dependency on vendor-specitic
hardware and software, minimizing the risk in that area”

Maintainability; Once a vendor puts out a word-processing or graphic
package, there is no guarantee that when an update is released, the
vendor will have maintained the old format. The lack of control over
vendor output has forced the design of the transformation procedures

into a highly data-driven design, to reduce impact on the software when
the input file format changes.

Reusability; Each transformation procedure is structured in a similar
manner, using the same skeleton Ada package specifications, and
calling the same service procedures. When a new transformation
procedure is required, it is not developed from scratch, but rather
assembled from existing components and tailored for its new use.

Portability; The SSE requirement to support equivalent functionality on
each host architecture has driven the transtormation procedures to
identify and isolate machine dependencies.

108

i

[

iz

"
fi

‘Reliability and Usability; The transformation procedures are used several
times daily by nearly all current SSE developers and testers; the PRC
developers have made reliability and usability the highest of design
priorities, the PRC testers have exercised creatlvuty in the design of test
cases which attempt every unforeseen way of making the software fail.

Implementation Details

Each transformation procedure is either a LALR(1) parser or a context sensitive,
recursive descent parser, which scans the input format and, based on parse
tables containing the syntax for the input format and action rules transforming
input constructs into output constructs, creates a file in the desued output format.
(An LALR(1) parser Looks Ahead from Left to Right 1 symbol) Rather than
writing each parser from scratch, a public domain parser generator (developed
for NASA Langley) was used to create the skeleton for each transformation
procedure and the parse tables to be used by the transformation. The parser
generator used was PARGEN, part of the MYSTRO suite of compiler-compiler
tools. PARGEN takes as its input a production grammar which describes the

transformations from one format to another in unambiguous terms. From this

grammar, the LALR(1) parse tables are built, along with procedures to do the
lexical analysis, or scanning, and the syntax-semantics synthesis. B

As SSE is require:j to be completely in Ada, PARGEN was modified to generate
Ada, and all host-resident transformation procedures are written in Ada. Due to
vendor restrictions on access to their proprietary formats and routines accessing
these formats, two transformation procedures, GEMINT was developed on the
IBM P/S 2, and PICTINT was developed on the Macintosh Il; both in C.

Interoperabllity Formats
Key to the design and implementation of the transformation procedures is the
definition of the interoperability formats. Each format (text and graphics)
attempts to define in a tool- mdependent format that tunctionality which is both
common to all baselined’ workstation tools and reqwred by the majority of the
users. Both text and graphic interoperability are defined in Backus- Naur Form

109

(BNF), however the graphics interoperability format provides a, more extensive
object-oriented language, by virtue of the nature of graphics, and standard
manipulations on graphic objects. For example, drawing a rectangle filled with
your choice of patterns is a fairly standard capability for a graphics package.

Significant Challenges

Any integrated system (office automation, software development, etc) which
provides a set of tools with equivalent functionality should provide some means
for the interoperability of those tools and their outputs. It is worthwhile to review
some of the challenges that must be taken into consideration. :
Parsing techniques; the development of the SSE transformatlon
procedures requnred an in-depth understanding of parsing techniques, at
least equnvalent to the information provided in a typical compiler design
course. Properly managed, the entire team need not have this degree of

expertise in compiler construction, but should have mastery of the
fundamentals of the theories involved.

Determination of common functionality; Probably one of the most
controversial aspects to achieving interoperability is the definition of the
mteroperabxhty format. During this exercise, the common subset of the
functionality provided by the baselined tools is defined formally as a
grammar. The main problem is dealing with users who would prefer the

interoperability format to provide a superset of all the functionality
provided by the tools.

Control of vendors; The SSE Program has no control over the schedule
of update releases from vendors, or the content of update releases. This
can create serious schedule problems, as the transformation developers
attempt to keep up with several package updates at once, especially as
an older package may cease to be available before the corresponding
transformation procedure or format has been updated for the updated
package A second severe problem |s the access to the vendor formats.-
Not all vendors subscribe to open systems as a result some

transformation procedures must reside on the system on which the

“vendors provide access routines to their proprietary formats. The ideal

110

1 [(R T I

-
[wanlli ai

. Solution to the problem of controlling vendors is to publish the

interoperability formats, for use by each vendor to provide their own
transformation procedures.

Plans for Ol 3.0

Transformation Procedure Maintenance

No extensive enhancements in the word processing and graphic transformation
procedures are planned for SSE O| 3.0. Typical maintenance will consist of
making any changes necessitated by vendor updates, modify any undesirable

" " features, and analyze the widening of the interoperability formats.

Design Tool lnleroperability_

A significant enhancement to SSE tool interoperability is planned for Ol 3.0
through the introduction of a new class of transformation procedures. PRC plans
to define an interoperability format and implement the transformation
procedures to bring about interoperability between the SSE baselined CASE
tools; Cadre's TEAMWORK on the Apollo, Excelerator on the IBM P/S 2, and
Iconix PowerTools on the Macintosh. Again, the most significant challenge will
be to determine the common required functionality and a means for
representing that functionality in a production grammar. The transformation

procedures themselves will be built upon the legacy of the word processing and
graphic transformation procedures.

111

112

) | | [N m | |

L1

L

— Session ITI
| :

Orn | T

Developing Software Engineering
for Competitive Advantage-
Industry and Federal Government

Session Co-Chair: John R. Garman

Session Co-Chair: Richard Kessinger

Speakers
Dana L. Hall
Jack Munson

Howard L. Yudkin

PRECEDNG PagE BLANK NOT FUNED

exs)| 0 INENTIONALLE DM 113

114

Wy o ET

[1 | ui m ¥

I |

Uil

Gl

A Wiiieh

LT
[T

'- :

924 /7

The Role of Software Engineering in
the Space Station Program

Dana L. Hall

(NOTES)

PRAGEONNG PAGE BLANK NOT FYNED

s UM vienionain suans 13

116

1

g
I

‘ﬂ‘ ,.‘..H l
L B [

"
L

poy
i

1
[

UNISYS” EXPERIENCE IN SOFTWARE
QUALITY AND PRODUCTIVITY MANAGEMENT

- OF AN EXISTING SYSTEM

By John B. Munson
Vice President and General Manager

Unisys Houston Operations

A summary of Quallty Improvement techniques, implementation
and results in the maintenance, management and modification

of large software systems for the Space Shuttle Program’s

ground-based systems.

PRBCEDING PAGE BLANK NOT FH.MED

e e INTENTIONALLY BERKS 117

UNISYS’ EXPERTENCE IN SOFTWARE QUALITY AND PRODUCTIVITY
MANAGEMENT

For more than a quarter-century, the Johnson Space
Center (JSC) in Houston, Texas developed and operated large
computer systems to support manned spaceflight. Until three
years ago, JS5C used 11 contractors to develop, operate and
maintain these systems. Integration and management were
performed by government personnel.

In 1985, JSC decided to separate system development
from maintenance and operations. Unisys Houston Operations,
as part of the Rockwell STSOC team, was selected to manage,
modify and maintain the Space Shuttle Program’s ground-
based, flight-support systemns..--

We are responsible for the Shuttle program’s more
than 14 million lines of executable code, which was written
in 15 different programming languages. The code operates on
equipment made by eight manufacturers, and runs on 173
computers located in 13 separate JSC facilities.

The software spans the entire life cycle of every
mission, including flight planning, astronaut and flight
controller training, flight simulation, flight software
verification and flight support. Our Shuttle program
software responsibilities encompass JSC’s:

o Flight and Mission Planning,
o Flight Software Verification
o Flight Simulation and Training, and

o Mission Control Center Operations and
Communications.

In addition, we support the integration and testing
of all associated software and its flight-to-flight
reconfiguration. Our software includes the code that:

o monitors the Shuttle’s launch, orbit and
landing;

o maintains communications between JSC and

other NASA centers and flight support fa0111t1es, as well as
with the Shuttle itself;

o tracks the Orbiter’s progress, performance
and physical state; and

0 calculates the amounts of oxygen, water,

fuel, electricity and other critical onboard resources for
every flight.

We must complete our work accurately the first time
and every time in order to attain the gquality essential to

P

PiiTr oew Sowress o=

118

M

B

1l = g i

! ui |

|

L

1 "
i aii g

e

L

p
G

ensure safe Shuttle operations, and to meet cost and
schedule requirements. Any error of a magnitude sufficient

impacts. More importantly, any error in systems we support
could endanger astronauts, the Orbiter and Shuttle missions.
It is critical, of course, that we achieve the
highest degree of quality in every one of our tasks. We
constantly strive to make outstanding performance the

priority goal of every employee at every level,
. -.... At Unisys Houston Operations, this means we must

" achieve excellence in all requirements of very large

software systems, including their design, code generation,
testing and verification, and system release management. We
must meet the same standards while retrofitting software
generated by third parties, and in our support activities

~for flight simulation and training as well as for actual
‘missions themselves.

Attaining quality and productivity in all these
functions is a very large task in itself. ~ We have learned
that an organization must strive to prevent defects in every
process and every job to accomplish this. We believe that
procedures similar to ones we’ve implemented could be used
by any company to reduce the size of the quality task. By
concentrating on a few simple quality concepts and
capitalizing on commonalities in their application, the goal
can be achieved.

, It was clear to us at the outset that we could
benefit from the knowledge of quality improvement experts.
Several of our managers attended the Phillip Crosby Quality
College in Orlando, Fla. We understood that the courses gave
generic training in quality concepts and that it would be up
to us to apply these to our business. We began our Quality
Engineering Program by tailoring these guidelines to our
specific needs.

our management commitment to Quality Improvement. The policy
includes Quality Training for every employee, the
documentation and measurement of all software processes, and
an infrastructure consisting of quality improvement teams

and a formal, corrective action review process.

Our first step to implement the process was to
remove ambiguity from the concept of quality by giving it a
specific, easily understood definition. We define Quality as
conformance to requirements. We understand and practice
that preventing nonconformance while building a product is
more effective than finding and eliminating defects through
appraisals after the product is built. We measure the
effectiveness of our software processes in real terms,
rather than with indices, and we eliminate permanently
recurring nonconformances by correcting these processes. We

119

strive for 100% employee participation in all aspects of the
Quality Improvement Process.

How we achieve quality

The emphasis on quality must flow from and to

management. Employees have deep motivations to fulfill
management expectations. When management emphasizes

quality improvement and provides the dlrectlon, resources
and goals to attain it, management commitment is visibly
demonstrated. It is essent1a1 that employees understand the
51ncer1ty of our efforts. I personally participate in the
initial sessions and graduatlons of our Quallty Education
classes.

Through this Quality Education for all employees, we
provide a hands-on training environment which assures that a
consistent set of quality principles and concepts will
develop an organizational mindset for quality improvement.
An infrastructure of Quality Improvement Teams, Steering
Committees, and Corrective Action Teams raises the level of
quality awareness and the effectiveness of the quality
improvement process. We also document all software
processes, standards and procedures we employ; measure
process-defect yields and their rates of occurrence; and
conduct formal, corrective action reviews.

~ We have instituted the Oregon Objectives Matrix as
an aid to record and report our measurements of quality and
productivity factors. The Oregon Objectives Matrix,
developed by the University of Oregon, 1s used extensively
in the Unisys Defense Systems Group, of which we are a
division. The matrix provides a graphic method to track and
report several measurements on just one page. This enables
managements to quickly see trends in the measurements, which
are tracked monthly.

Quality improvement is an integral part of
everything we do. There are two very important aspects of
our Quality Improvement Process - the Quality Engineering
Process and the Quality Assurance Process. These are two
distinctly different processes performed independently of
each other. : - - - ,

It is the responsibility of the engineering
departments to define, document and implement processes
assuring that we produce quality products. It is the
responsibility of the Quallty Assurance Department to read,
understand and supervise implementatlon of the deflned
processes. We have the capability to file nonconformance
reports against the engineering process when product defects
are discovered, and within the engineering departments when
the correct processes are not followed.

In our software work, the engineering process begins
with the detection of nonconformances. We initiate a
thorough investigation to determine why the defect occurred,
then we correct it as soon as possible. In addition, we

120

{

|

IHT‘ !
11y

[orE.

i o il

O { I

i

i

{0

"
il

Gl

.
&

{

uncover commonalities or clues to root causes. We are
determined that no defect will recur. Our corrective action
pProcess review then locates the defect’s cause and

of defects.

How we achieve high reliability

We use the quality principles we’ve learned to maintain
the high reliability of our software systenms. Through our
experience, we’ve found what we believe are fundamental
principles to ensure the dependability of large software
systens. First, such systems must be allowed to mature so
that indispensable knowledge of their operations can be
acquired.

Also, No unnecessary changes should be made. 1In
fact, large areas of code may never heed to be changed. we

In addition, we:

© have identical software functions independently
developed to be able to compare results,

. © control and manage the number and size of changes,

o -ﬁse table-driven software to minimize software
changes,

© incorporate redundancy whenever possible,
© rigorously enforce software engineering standards,

O Submit our software releases to independent tests
and quality assurance audits,
0 conduct extensive regression testing of unchanged

Software plus structured hierarchical testing of
new software changes,

o exercise the software extensively prior to flight,
and

O establish failure/recovery pProcedures,

121

ol

Results to date

Oour efforts in quality and reliability improvement
have yielded outstanding results, particularly in terms of

productivity. Some of our major accomplishments are listed
below.

o Reduced our ihdépéndent verification and testing

schedule by six days, saving 440 labor-hours for
each major software release

o Reduced the number of database trajectory

discrepancies attributable to database reconfig-
uration from 80% to 5% -

o Reduced the mean4time to close discrepancies from
40 days to 2 days

o Achieved a 10% reduction in the backlog of change
requests

o Achieved a 40% reduction in the backlog of
discrepancy reports

o Reduced our mean-time to evalute new changes
from 16 days to 9 days

Future plans

We will continue our Quality Improvement Process for
the length of our Space program software responsibilities.
We will continue to evaluate every software process that is
instituted. In addition, we will:

o improve the quality characteristics of all
supported software bases,

o0 establish a requirements engineering program and a
test engineering program,

o consolidate and standardize wherever possible,

0o refine and evolve our metrics for measurement
processes, and

o automate software support and operations whenever
possible.

The Quality Improvement Process we employ was adopted
virtually in toto from the renowned Crosby method. The
process is now used throughout our entire corporation, but
we at Unisys Houston Operations are proud we were one of
the first divisions to implement the process and are a
leader in its application.

122

g, ¢ § g 1

H

1!

Il

[

sl 'e shall strive for excellence in gff endeavors
- We shall set our goals to deliver error free
= products and services, on time. = =~ -
B We shall understand and conform to the
= requirements. R
We shall understand the software processes
2 and standards associated with our jobs.
7 We shall measldé: our performance in terms
=R of satisfying the requirements.
- We shall analyze failures and take corrective &
= action to prevent their reoccurrence. 2
3 i , — :,-/'MZ/__\,." _Jd—«-;,-
ThQlema M Dy
. UNISYS G
- Houston Operations
L 123

n
il

[

FH B T T EREeR S G Tabobi FEA—- aa = P IR L = o
1 S R - I -

g

| 0

124

| P | { ql

[

Lo

oA

i

"
|

LTS ARE U IS A

Gill

L
s

1

€l G

€

0

Next Generation e

Howard Yudkin

The synthesis process for incorporating reuse and prototyping ideas into large software system
development suggest how the acquisition process might be changed to support the new development

process.

(NOTES)

PREGEDING PAGE BLANK NOT FILMED

‘ll_ll/i.mxumuu [T 125

ALt

126

U

LM

!

i

(RTINS S TR A

Qi

(i

(R

AR]

g o

Gl

I

R

Qi

LG

G ‘W\L‘
 EEEEEE——,— RN Y

Software Engineering as an
Engineering Discipline

Panel Chair and Moderator: Glenn B. Freedman |

Panel
John Brackett
Ed V. Beard
Robert B. MacDonald

Norman Gibbs

PREBCEOING PAGE BLANK NOT FHMED

oar | Y wenmonany moue 127

il

i

128

W
§

!

[IRLRN
|1

S/2 6/
/IESREa

L%

NO4- 71147

Software Engineering as an
Engineering Discipline

Glenn B. Freedman

PRBCEDING PAGE BLANK NOT FiLWED

ﬁ:ﬁﬂi..-'“‘i" TIONALLY BRARA 129

130

1 @ g o« s €1 e1 wn € & 0 41 €

I

€L

! T |

Ei

GIWHS LON YNVIS 39Vd SNiIGESel

SRR TSI SUNY & JRRF (/1 B GRTY SUNN SRR CTNN [G QRN SR

SOFTWARE ENGINEERING
AS AN ENGINEERING DISCIPLINE

A Panel Presentation for

RICIS Symposium '88

Chaired by
Dr. Glenn B. Freedman, Director
Software Engineering Professional Education Center
University of Houston - Clear Lake
November 10, 1988

Purpose of the Panel

To explore the emerging field of software
engineering from a variety of perspectives:

¥ University Programs
¥ IndustryTraining and Definition
¥ Government Development

¥ Technology Transfer

L 0 ¢ «an € 1 ! ! 1 11 | LI 1 r 1 4 {

G o N fu 4% o 6 63 an gu e o oo 0%) Lt

INTRODUCTION

The panel will address the issues of what 2
current definition of software engineering
might be -- and what that definition could

become.

The panel will address the issues the |
distinctions among software engineering,
computer science, and computer hardware
engineering as they relate to the challenges
of Targe, complex systems.

INTRODUCTION

KEY POINTS

Software]ife cycle jssues are Higher productivity can result from
increasingly important for all use of modern software engineering
organizations. practices, software reuse, use of

commercial products, education and

training, automated support, and
good management.

Software systems that are large,
complex, distributed, non-stop and
have indefinite 1ife spans must be
engineered for change -- education
and training systems must also be
responsive to the environment.

There are two kinds of software
engineering costs: for acquisition and
for ownership. We can pay now or we
can pay later.

"N 1A R T NI R A ¢ ¢ v e 4] 1 ¢ a e f

t 1

Sel

il

N T (A R (I I I I 1 { { C

Meetingithe Challenge of Industrial Software Development:
the Boston University
Graduate Program in Software Systems Engineering

Panel Presentation
"Software Engineering as an Engineering Discipline"
NASA/Johnson Space Center and RICIS Symposium

Joh W. Brackett, Professor
Department of Electrical, Computer and Systems Engineering
Boston University

Key Aspects of the Boston University
Software Engineering Program

* Integral part of the Cdllege of Engineering

. Embedded system orientation
- required courses on hardware
- Ada as principal language

91

« Developed to meet industrial needs in cooperation with
Corporate Advisory Board
- ATT Bell Laboratories
- Digital Equipment Corporation
- GTE Laboratories
- Hewlett Packard
- MITRE
- Raytheon

-] Qo 4n ¢y oae oew ey o« 40 4 dn €W & €@ Wi q 1

C|oofu o0 e r o wR o ur gu a8 i t Lt I [| i (

Software Engineering Skills
Lacking in Most CS Graduates

Hardware/software integration

* Requirements analysis

Test planning

LET
°

Configuration management |

Design experience

Project planning and scheduling

Goals of the Boston University
MS in Software Systems Engineering

To provide graduates with

 theoretical foundations needed to assess and
new hardware and software advances

8¢l

« understanding of, and experience with, tools and
methods for embedded system software development

* managerial skills to plan, organize and Iead
a software development project

* experience as a team member

CTHTRA NN TNITRT I N B A I R R NE U NN BN N DU 1. 0 0 &,

(35 (10 I NIRH R BN O i (1 S ¢ N A N ! D if

4 Strategic Decisions

* To bunld a Wlde base of industrial support in order to
ensure long-term financial viability
- Corporate Associates Program
- Corporate Advisory Board

* To use interactive television to reach part-time students

» To emphasize software which is integral to
a hardware product

661

- To develop the program in the College of Engineering and to
seek faculty support for it as an engineering discipline

Why Software Engineering
In the College of Engineering?

« WHY NOT??
- relationship to systems engineering and computer
engineering due to embedded system emphasis
- little interest in an industrially-oriented program in
BU Computer Science department
- existing faculty have science and engineering degrees

ovl

« Eliminates problems with an "engineering" degree
that is not in the College of Enginering

- Engineering is the natural home for Software Engineering
in the long term
- computer science is to software englneenng as:
- chemistry is to chemical engineering
physics is to electrical engineering

i ‘ . S ;
by pi " [' '

U TR I ER DN N DNIERN IR N (i qu €0 Qo g5 Nl | | | [

ol Cf Gl g g owo o0 @ ¢uwoen ormooano onnoo¢o 1 {

Current Program Status

Enroliment as of 10/88:

- 5 full-time students -

- 20 part-time degree candidates
- 50 special students

4 faculty teaching required courses

4 courses a semester on interactive TV

vl

Over $1.3 million in support raised in 18 months from
- Digital Equipment Corporation

- Hewlett-Packard

- MITRE

- Raytheon

Embedded Systems Laboratory

- State-of-the-art showcase supporting modern software
engineering techniques for building embedded systems

* Network with 20 VAXStations and target machine equipment

* VAX Ada environment and "industrial grade" support tools

(474!
®

Central compute and file servers with remote access
» Over 50 mips of computing power

» Graphically-oriented analysis and design tools including
Teamwork and Statemate

* Made possible by grants from Digital Equipment Corporation,
Cadre Technologies and i-Logix

"TEEEE B BT /e NI T/ IR N SETET DT DS NINEEN I BN | 1 4 m 1 |

4|

(SC540

Prerequisite Structure
Hardware Background

SC504 SC517 SC511 SC518
Advanced Applications of Software Software
o Proj
Data Structures Formal Methods Systems Design olect
Management

SC912

| ’ SC714
|

The Computer 2
Introduction as a Software Technical
to Operating System Engineering Electives

Systems

Component Project

142!

Prerequisite Structure
Software Background

SC503

Switching Theory |

& Logic Design

SC517

Applications of

Formal Methods

SC513

Computer
Architecture

L

Qi

SC714
The Computer
o as a

System
Component

LS I

€1

Systems Design |

SC511

Software

i

SC912

Software
Engineering

Project

I

SC518

Software
Project

Management

1

2

Technical

Electives

4l

gl

am el dm @y oW @ 9w 4@ 9 ¢ o6l o f. i i {
1 T
SC503 SC517 SC511 SC518
Switching Theory Applications of Software Software
& Logic Design Formal Methods Systems Design Project
| Management
Fall Semester
Spring Semester
14 SC525
SC513 i S¢7
"'| The Computer , Embedded
Computer Technical .
_ asa , Computer
Architecture Elective _
= System SW Design
W
4 Component (elective)

SCo12

Software Track Softwere
Sample Fu”-T“‘ne Engineering

. Summer
Project
Program

Implications of Remote Delivery
by Satellite Television

-Will only be available to corporate sponsors of the
educatlonal program and selected government agencies
- 8-10 major corporations

- 2-3 agencies supporting Ph.D. research

o1

7 out of 9 courses can be taken on interactive television

Courses with team projects (511 and 518) require corporate
support for 2 faculty visits and easy access to software

-One semester required on campus for the degree

- "Computer as a System Component" requires the

Embedded Systems Laboratory and close faculty supervision
- "Software Engineering Project" is done in 4-6 person |

teams with frequent faculty interaction |

L i LRI i LIRTIN T Cu @ € 9 4yl & «n €l L | IFTE |

541

Obijectives for the
Next 3 Years

Grow enrollment to steady-state of 60 FTE students
- 25 full-time on campus

- 70 part-time Boston area (on campus and local TV)
- 70 part-time outside Boston area (satellite TV)

Develop additional laboratories
- human-interface laboratory
- networking/distributed processing laboratory

Build software engineering faculty to 6
Develop Ph.D. program and software engineering research

Be recognized as the leading graduate program concentrating
on software engineering for embedded/real-time systems

148

i dw s 1. 4 11 &

LI
i

I |

I

= -

I NI

41

1:. I H !IT“W'”‘NHW'W"‘ -

frm

'N94-71148
R
Pl

i S

LT A Ty iy

|1 e

Software Engineering
: ---asan
- Engineering Discipline
BY3

Edward V. Berard
EVB Software Engineering, Inc.

5320 Spectrum Drive
e Frederick, Maryland 21701
T ' (301) 695-6960

Presented at
Ressaroh inaliule tor
Oomputing and Information
Bystermn

Univensity of Mouston,
Clow Loke
November 10, 1988

[Seftware Englnsering

Software Engineering as an
Engineering Discipline

E'S

" Pretsnted ! Edward V. Berard

Reédeasch ingthtute for

oemeuting ane mormain | EVB Software Engineering, Inc.

Oysiorn
Universky of Houston, 5320 Spectrum Drive
Novarber 10, 1988 Frederick, Maryland 21701
\ (301) 695-6960

PRACEDING PAGE BLANK NOT FILMED

| .mﬂ;,,.mmmuw Beans 149

[Softwars Engineering

Belining Boliware Enginesring

O Early Use of the Term

O 1968 NATO Conference

O Barry Bochin's Definition

\DAdditional Criteria for Software Engineering

3 "
OEVD Borware Enghnesdng. ina, 1087, 1084

What Is Software
Engineering?

O Four Requirements for Sofiware Engineering

——kv3

Outining Boltwars Enginsering

O “Coder” - Early 1950s
O “Programmer” - Mid 1950s
3 “Programmer/Analyst” - 1960s

O “Software Engineer” - 1980s (1963)

SEVE Betwars Enginesdng, ina , 1957, 1548

150

.IQ@WWW@ Englneering I
Early Use of the Term

———Rv3

y Fil

e [i, g7 & .

.z

i

cunoe

¢

i [

Gl

{3l

.
L

(i

- ‘Q@WW&M@ EW@JW@@WWQ Detining 8ofiware Englneering
(1968 NATO Conference on
Software Engineering

O Is sofiware engineering

different from
Computer science 9

OIf so, what doeg soft
entai] ?

ware engineering

E@W&‘y@m@ EWQWD@OWW@ ‘ N Detining Sahtware Enginsering
r Barry Boehm’s 1976

Definition of Software
Engineering

computer programs,

ted documentation.

151

1)

Softwaire EW@JW@@WW@ I _Detiing 8atiwars Englnearing

Four Major Requirements
for Software Engineering

1. Computer Science
2. Mathematics
3. Engineering Disciplines

4. Excellent Communication Skills

\ 7
OEVE Balmnw ¢ Engineadng, e, 1047, 1088 102488 Evs

0

0

ftware Englnesring Datiing Sohwar Enginearng
f Computer Science

\Sorting and Searching, Trees, File Terminology, Sequential

Programming Topics: Algorithms, Programming Languages,
Programming Style, Debugging and Verification,
Applications

Software Organization; Computer Structure and
Organization, Data Representation, Symbolic Coding and
Assembly Systems, Agdrcssing Techniques, Macros, Program
Segmentation and Linkage, Linkers and Loaders, Systems and
Utility Programs

Hardware Organization: Computer Systems Organization,
Logic Design , Data Representation and Transfer, Digital
Arithmetic, Digital Storage and Accessing, Control and 1/O,
Reliability

Data Structures and Flle Processing: Data Structures,

Access, Random Access, File 1/O
\/
QEVD Botiwars Enginastng, ina., 1867, 1988 (LC7E T S g 5 S

152

«t. U « ! € no q€

v
[

T

¢l

|\ "
]

{ I
1

{

L

U]

{

din

!‘

.

(- LA
il il

£

G

,
il

ﬁ !

L. W A Gy g

Giil

m.
S

[Sottwars Englnesring

Defining Botiwar Engineering

O Integral Calculus

(7 Speclal Punctions

O Differential Bquations
O Linear Algobra

O Discrete Mathematics
O Set Theory

3 Oraph Theory

O Numcrical Analysis
0
0
a
A

Complex Analysis
Probability
Statistics

and more

OEVE 0chwars Inpinesdng, Ine., 1987, 1088

[Sortwrare Englneering

Mathematics

102488

Oslining Soltware Englnesring

3 Error Analysis
O Metics
O Methodologies
v Configuration Management
v Quality Assurance
v Testing
Vv Debugging
v Maintenance

-
!c.‘u H

v Development

Qiject Management o
.® s

T OEVE Sonwws Engordng. ino, 1907, 140

153

Engineering Disciplines

‘ _ls@mmr@ Engineering l

~.

Defining Boltware Engineeting™ -~

Communication Skills

(3 Oral
J Written
OEVD Botwirs Enpimeadng, lna., 1957, 1982 102484 Evs
Defining Boltware Enginesring

] Soltware Englaeenng I

Additional Skills Needed by

-

Software Engineers

(1 Creativity

O Ingenuity

O Interpersonal Communications
@ Analytical Thinking

M Logical Thinking

@O Organization

O ... and more

SEVE Bohwars Engineadng, ine., 1HB7, 1888 102408

154

B3

Y H R B |

ey
ﬂ\.].‘

[

0

fii

G

G G

d mmn
tcV gl

| Sottwers Englneering] Sottuar Enginsaing e
Software Engineering
Training

Given that software engineering is at least
as involved, as technical, and as rapidly
evolving as more formally recognized forms
of engineering (e.g., electronics
engineering), it is far more appropriate to
speak of the need for software engineering
education |, than for the need for software
engineering training . ,

1 — RV3
SEVD Bolwwe Engloradng, inc., 1987, 1000 1024788 N

78@%’/@0@ EW@I’W@@WW@ V Sattware Eﬂu:lmrlna Tralning
[A Healthy Dose of Reality

It is given that:

v Software engineering education at the
university leve] is virtually non-existent

v’ The need for properly educated
software engineers is enormous

v’ There are literally hundreds of

thousands of “programmers” already in

\ the field |
1" MEV£

155

fie J\

(' l SoMwars E@Qﬂ@@@ﬁﬂ@ I Soltwars Enginesring Tralning

Observations

O “Scientific” programmers are far less likely to accept software
engineering as a discipline than are “busincss” programmers.

O “Scientific” programmers are better equipped to handle the
mathematics and technical rigor associated with software
engineering than are their “business” counterparts.

O Europeans more readily accept the rigorously technical nature
of software engineering than do Americans,

3 The Japanese will do whatever is required, but scem to prefer
rote methods as opposed to thinking,

O The Japanese are far more willing to invest in the long term
than are their American or European counterparts.

.

——-—-—-———-——-EV
SEVE Boltwars Enginesting, Ino, 1057, 1088 102488 s

_.| Software Englnesring I Boliwsrs Brginsaring Training

Observations (Continued)

O Software engineering in the United States often involves the
installation and automation of technologies which are at least
ten (10) years out of date.

O The “half life" of software engineering technology seems to be
about three to four (3-4) ycars.

O Computer Aided Software Engineering (CASE) is a very
frequently used term, but its actual implementation, in most

cases, involves little more than an automated graphic design
tool.

O People other than programmers, €.g., managers, are often
ignored by CASE.

O Many life-cycle activities are ignored by most CASE

environments, e.g., activities outside of development are often
anorcd.
E. |
1’ GEVE Boltww s Enginaening, ine, 1987, 1988 102488 __MEZ_S I
156

[- |1
0 € € |

{

P O

[T

Gl

Coo

L0

i

=

[Sottware Englnesring

Observations (Continued)

O Many so-called CASE cnvironments not only sutomate

outdated technology, but often resemble a hodge podge of
unrelated tools,

(3 Too many CASE environments are one-dimensional (c.g.,

UNIX™) and too few are two-dimensional (e.g.,
Macintosh™.Jjke),

Boftwars Enginearing Trelning

Q

Too few environments are seamless (e.g., R ational™),

(3 Little thought is given to Integrating CASE tools with in-house
standards, government standards, training, methodologies, and
development platforms.

O Many colleges und universities ignore CASE altogether, Those
that do pay attention to CASE often . ail to realize that CASE

tools introduced to freshmen are often out-of-date before those
vrcshmcn gradu

ate four yeurs Juler,
y ,
! SEVE Boww's Engruewing. bno, 1887, 1064 Tozune Evs

Gotiwsre Enginsering Tealning

[Sottware Englneering
Observations (Continued)

3 Many students, like many programmers (There are very few
practicing “software engineers.”), have a reverence for both the

past and the difficult. They shun'efforts to change the status
quo.

O New technology is seldom what we expect it to be.

O Most of the training given 1o software practitioners places too

much emphasis on coding and too little emphasis on software
engineering,

O Those already in, and those Just entering the software
communig, are given little motivation to make use of such
things as CASE tools — primarily because software peaple
(managers and technical people alike) do not view themselves

\as being responsible Jor their own actions.

" BEYS3
OEVA Bolwas Engiosdng, ino., 1987, 1% 102488 .

157

[

A S

(i

(

(

PRBOEDING PAGE BLANK NOT FHLMED
G (S? INBEN TIOHALLY Bk

159

[

D

BT

160

Software Engineering as an
Engineering Discipline

Norman Gibbs

PREGEDING PAGE BLANK NOT FILMED

o 161
~ e 1G0 micnmmaisy s

162

l

1 1 (o (q t a

-
il

Education Program

Software»Engineerirng Institute

Carnegie Melion University
Pittsburgh, PA 15213

Sponsored by the U.S. Department of Defense

—=
% Carnegle Mellon University

— ijj\fgre Engineering Institute

Challenge

"The SEl shall develop and conduct courses and
seminars with respect to the evolving state of the
art and practice in software engineering for
mission-critical computer systems as well as the
results of its activities in technology transition. It
shall influence software engineering curricula
development throughout the education
community."

-SEl Charter

P .

Nov 10EDneg1

163

& ameg
[of @ Mellon Un{verslty

=
t

Software Engineering Inslitute

Education Program Goals

o Increase the number of highly qualified software
engineers

- new software engineers
- existing practitioners

o Be the leading center of expertise for software
engineering education and training

Nov 10EDneg2

—
=

Carmegle Meflon University
Soltware Engineering Institute

- Education Program Objectives

o Accelerate the development of software
engineering programs in academia to increase the
quality and quantity of the next generation of
software engineers

o Enhance continuing education opportunities to

improve the quality of the current generation of
software engineers

Nov 10EDneg3

164

=

1

Camegie Melon University
Software Engineering Institute

Problem Definition

¢ Substantial advances in the practice of software

engineering require a solid educational foundation

* Rapid developments in software engineering vs.
enormous inertia of the educational system

¢ Need more new software engineers

* Need to improve productivity of current software
engineers

* Need more qualified educators
* Need more and improved educational materials

* Need to identify the fundamental principles of an
emerging discipline

* Must balance principles and current best practice

Nov 10EDneg4

Carmegle Meflon University
Software Engineering Inslitute

Strategy

* ldentify, organize, and document the body of
knowledge of software engineering

¢ Create and disseminate high-quality educational
support materials

* Design, develop, and keep current a model
curriculum for a graduate degree

* Promote the implementation and delivery of software
engineering curricula in academia, industry, and
government

* Increase the number of quality educators through
faculty development activities

* Explore the use of advanced technol%q{ for delivery
of software engineering education an raining

Nov 10EDneg5

165

%_ Carmegia Mafion University
Software Engineering Inslitute

t

Education Program Projects
o Graduate Curriculum

» Undergraduate Software Engineering Education

e Video Dissemination

e Advanced Learning Technologies

Nov 10EDneg6

Camegle Meflon University

== Software Engincering Inslitute _

Graduate Curriculum Project
Purpose:

e Promote graduate-level software engineering
education

Major goals:

 Identify, organize, and document the body of

knowledge that might be taught in graduate-level
software engineering programs

o Design, develop, and support a curriculum for a
Master of Software Engineering (MSE) degree

Nov 10EDneg?
166

i ommn N 1 m i i | n m W W

L

oy

Ilul
[

M

[

G

=5
% Camegie Mefion University
Softwarq Engineering Institute

Graduate Curriculum Project

¢ Module development

¢ Support material development

MSE curriculum

Ada artifact

o Addison-Wesley book series

Nov 10EDnegs

% Camegie Mellon University

—_— Soﬂ\gvafe _E__ngineer_ing_ Institute

T T e e

Undergraduate Software Engineering
Education Project

Purpose:

¢ Influence existing computer science
undergraduate Programs to increase the quality
and quantity of software engineering content

Nov 10EDneg9

167

—iee
% Camegle Mefion University
Software Engineering Institute

Undergraduate Software Engineering
Education Project

e Providing support materials for teaching the senior
level software engineering project course

o Identifying the needs of educators and students
for more software engineering content

¢ Examining the use of Ada In the undergraduate

curriculum and Ada as a first programming
language

Nov 10EDneg10

Camegle Meflon Uriversity

—== Software Engineering Institute

Advanced Learning Technologies
Project

Purpose:

o Demonstrate the applicability to software
engineering of technologlcally advanced learning

media, such as

- |Interactive video discs

- intelligent tutors

- advice-giving expert systems

- compact disc read-only memory

- digital video interactive equipment

Nov 10EDneg11

168

Nl [A]/} S | }

Wi

T PV 1

L |

% Camegie Mellon University
Software Engineering Institute

Advanced Learning Technologies
Project

* First prototype developed to demonstrate
feasibility

* Producing a course for demonstrating the

applicability of digital video interactive and
. compact disc read-only memory technologies

Nov 10EDneg12

% Camegle Mellon Unversity
Software Engineering Institute

Video Dissemination Project

Purpose:

* Produce and deliver courses on modern software
engineering methods to practitioners in
cooperation with the academic, government and
industrial communities.

Nov 10EDneg 13
169

=
=
t

Camegle Meflon University
Software Engineering Institute

Video Dissemination Project
e Studio completed
e Pilot Course offered at CMU in January 1988

Academic Series

- Formal Methods in Software Engineering

- Software Project Management

Continuing Education Series

Current Technology Series

Nov 10EDneg 14

Camegle Meflon University
Software Engineering Institute

Faculty Development Workshops

Purpose: To transition SEl educational materials to
educators

« Fall 1986 -- Pittsburgh -- 110 attendees

¢ Spring 1987 -- Pittsburgh -- 140 attendees

o Fall 1987 -- Pittsburgh -- 100 attendees

e Spring 1988 -- Fairfax, Virginia -- 156 attendees
e Winter 1988 -- Scottsdale, Arizona, January 6,7
e Summer 1989 -- Pittsburgh, week of July 17

Nov 10EDneg15

170

[N

ul | n
| |
I Wi

o

i~
e

Irm LA
[N

A

==
==

{
i

Camegle Meflon Unversity
Software Engineering Institute

Annual Software Engineering
Education Conference

Purgose: Promote an exchange of ideas and
methods among educators from academic,
government, and industrial education and training
communities

e Spring 1987 - first SEI conference, 200 attendees

¢ Spring 1988 - second conference, first remote, 152
attendees

e Summer 1989 - Pittsburgh, week of July 17
Springer-Verlag contract for proceedings

Nov 10EDneg16

=

Camegie Mellon University
Software Engineering Institute _

Academic Affiliates Function

* Provides a mechanism for interactions between
the SEI and the academic community

* Administered by the Education Program for the
entire SEI

Nov 10EDneg17

171

Camegle Mellon University
—=£— Software Engineering Institute

| Academic Affiliates

Accomplishments:

e 41 academic institutions are academic affiliates

e 25 scientists have worked at the SEl under the
visiting scientist program

o First MSE primary test site has been designated

Nov 10EDneg 18

—é Camegie Meflon University

——

—=— Software Engineering Instilute

Affiliate Activity - 1

o Module Development
- Arizona State (3), Boston University, California
at Irvine, George Mason, Lehigh, Maryland,
Pittsburgh (3), Seattle (2), Stirling, Wichita State
(2), William and Mary, USC

¢ Support Material Development

- Arizona State, Pittsburgh, Stirling, Wayne State,
Wichita State (2)

¢ Video Pilot
- California State at Sacramento, East Tennessee
State, George Mason, North Carolina, Wichita
State

Nov 10EDneg19
172

| il (N | LY i

TR A W1V

|

|

\
|

P
\l.‘» .

[RILAN
[Ty

"
ey

L
e b

LR
Wi

o
il

LI]
)

i

pom il 1
iy 1.0

1

P o
b

ol
™

Ll

‘.
Wy

(AL A

=

{

Camegle Melion Unverstty
Software Engineering Institute

Affiliate Activity - 2

* Other SEI Programs
- California at Sacramento, Columbia, Michigan

 Curriculum Design Workshop
- Arizona State, George Mason, SUNY at
Binghamton, Rochester Institute of Technology,
Wichita State, William and Mary

 Primary Test Site for MSE
- Wichita State

* Ada in Freshman Courses

- Arizona State, Maryland, Washington, West
Virginia

Nov 10EDneg20

Camegle Melion University
Software Engineering Institute

- Current Academic Affiliates

Air Force Institute of Technology University of California, lrvine

Arizona State University University of Houston, Clear Lake
Boston University University of lllinois at Urbana-Champaign
California State University, Sacramento University of Maryland

Clemson University University of Michigan ’
Columbia University - University of North Carolina, Chapel Hill
East Tennessee State University University of Pittsburgh

George Mason University University of Texas, Austin

Lehigh University University of Southern California

Naval Postgraduate School The University of Stirling

Old Dominion University The University ot Strathclyde

Purdue University University of Tennessee, Knoxville
Queen’s University at Kingston University of Washington

Queen’s University, Belfast . Virginta Polytechnic Institute and Slate
Rochester Institute of Technology University

School of Informatics, Polytechnic University of Wayne State University

Madrid The University of West Florida

Seattle University West Virginla University

State University of New York at Binghamton The Wichita State University

Temple University The College of Willlam and Mary

Texas A&M University Wright State University

United States Air Force Academy

Nov 10EDneg21

173

% Camegle Meflon University
Software Engineering Institute

Uniqueness

« International focus for software engineering
education

o Permanent staff in support of curricula effort
o Catalyst for new ideas

¢ Notion of an evolving curriculum

o Visiting scientists

e CMU connection

« A research infrastructure exists; we provide
educational infrastructure

¢ A center for expertise unlike that in any discipline

Nov 10EDneg22

[} L

L [BN

% Camegie Mellon University

—=&— Software Engineering Institute

CMU MSE

o Two year program

o First year remote

- six core courses
-- Software Systems Engineering
-- Specificiation of Software Systems

-- Principles and Applications of Software
Design

-- Software Generation and Maintenance
-- Software Verification and Validation
-- Software Project Management

- two electives

Nov 10EDneg23

174

€

B

(DR

il

N

1
L [TET o,

T

IR [] [1
lwu i, et Y

e
(™

'
l‘u

=

i

Camegle Mellon University
Software Engineering Institute

CMU MSE

e Second year in residence

admissions procedure

project in three phases -- planning, execution,
evaluation :

visits by leading software engineers plus
student tasks to study their work

advanced courses

advanced electives in software enginevering
related topics

Nov 10EDneg24

175

1

Cr

LI

“ Panel I1

Computer-Aided Software
Engineering Environments
for Real-Time Systems

Panel Chair and Moderator: Charles W, McKay

Panel
Migual A. Carrio, Jr.

E. Douglas Jensen

PRECIING PAGE BLANK NOT FH.MED

e2ad (U inpENTIONALLE Din 177

oI

(I

it

o vr,vll
EM il

1

i

W

Y

r

{‘ e
g

Gk

iy

Il
"

{8

Py

/5 -6,
)55 545

N

N94- 71150

A Conceptual Model for Evolving

Run Time Support of Mission and
Safety Critical Components in Large,
- Complex, Distributed Systems

Charles W. McKay

PREGCEDING PAE BLANK NUT FULMED

m,{ﬁ_,mmmuu BrAN 17

A Conceptual Model for
Evolving Run Time Support of
Mission and Safety Critical
Components in Large, Complex

Distributed Systems

14

: 3 o - Charles W. McKay
s SERC/HTL@UHCL

Iname
i 'Y

LRt

' INTRODUCTION

Large, complex, distributed systenms should be evolved to

i maximize 1ljfe Cycle support for non-stop operation of mission and

s safety critical components. This paper outlines the key issues

and a recommended approach for tailoring a conceptual model of Ada

o run time support environments to meet the specific needs of such

it an application. Prerequisite concepts for this model have been

~ described previously by this author (e.g., McKay, 1987) and are
summarized in Figures 1 through 9. o

This model prdposes upward-compatible extensions to a
previously published model of Ada run time environments from the

i= ARTEWG (Ada Run Time Environment Working Group). Whereas the
= first model was used to identify Ada run time: requirements,

dependencies, issues, features, and options for single processor
- applications; the particular needs for distributed processing were

o not explicitly described. The purpose of this extended model is

to address the needed systems software support for Ada application
programs in:distributedzcomputing environments, - o

PR L]

£

OVERVIEW OF RELATED CONCEPTS AND TERMS

G il

Consistent with earlier documents by ARTEWG, this model
supportswmultiprogramming. Specifically, this model is intended
to support not only the distribution of entities of a single ada
program across a distributed Processing environment but also to
Support the distribution of entities of multiple Ada programs
across such an environment. The upward-compatible extensions to
the original ARTEwWG model address a spectrum of needs found in:
multiprocessors, 1local area networks, wide area networks, wide
area networks of integrated local area networks, and other forms
of distributed computing systems. Furthermore the extensibility
and tailorability of the model are intended to facilitate the
Support of such operational requirements as: non-stop operation,
fault tolerance, multilevel security, and others.

Gh @l

i

ol ||i

{

From the perspective of an Ada application pProgram which is to
have selected entities mapped to components of a distributed
the run time environment interface issues may be

PRECEONNG g7y BLANK NOT FiLmED

g | 181
= ﬂéﬁgﬁ_‘}wmmmwf Lt

]
i
0
o]
=]
o]
[
ot
[
3
<Q
77}
i
0n
t
1]
=

L
"

I i

{
macroscopically divided into four sets. From the top-down view of
an Ada application program, the ordered sets are identified as:
Distributed Information Services (DIS), Distributed Communication
Services (DCS), Distributed Confiqguration Control Services (DCCS),
and Distributed Operating Systems (DOS). Not all applications
will need all four sets of services. Even those that do need all
four are 1likely to benefit from tailoring to meet application

specific needs. Consistent with the philosophy underlying
previous ARTEWG work, such tailorability will be facilitated by
appropriate subsections of the Cata of Interface Features and

Options for each set of services.

Figure 10 depicts a logical view of these services at a site
in a distributed computing system. Applications software
components and users share the perspective labeled Distributed
Applications Services (DAS) of the DIS, DCS, and the DCCS. Not
explicitly shown is the DOS which provides integrated support for
all of the other sets.

Before proceeding with an introduction to the four interface
sets, it will be helpful to clarify and distinguish four terms:
services, resources, architecture of computing systems, and bare
machine philosophy. Services refer to operations performed on
behalf of a user. Resources refer to items available to or from
an object or user where the resources are distinct from the
services that provide, consume, or affect them. For example, in
the Ada statement "PUSH(x);", PUSH refers to the service and X
refers to the resource. S : s

For purposes of this model, the architecture of computing
systems refers to:

The structural organization and the interrelationships of

the software, hardware, and operational interface elements
that comprise the system.

Also for purposes of this model, a bare machine philosophy
recommends that all source code for: applications software,
subsystems software, and systems software be written in Ada and
transformed into executable object code by the same compiler and
associated tools. This may exclude some small percentage of code
required to interface machine dependent idiosyncracies to the
kernel of the system software. The reader should note that the
bare machine philosophy is in sharp contrast to the approach of
retrofitting Ada application software to systems and subsystems
software written in other languages and often representing older
models and paradigms which are inconsistent with the more modern

software engineering principles embodied in Ada. -

"Distributed Operating System"

The DOS encapsulates the system hardware. Three major
criteria for a good operating system, including DOS's, are:

182 e B

!

|

N N | 1l

ey € € (1 ot

p

R

£

LI O
s

i

13

!
I

e
il

m
{

w g

i il

LI

ar

G il

a7

G

Tl

MW

An explicit set of policies for managing the integrated
‘'operation of all categories of system services ang

 reésources which are to be sharable among independent
application program components and users.

2. An explicit set of management modules (software,

and operational interfaces) to implement and en
policies.

hardware,
force the

3. A precise model of the operating system which provides
rules and guidelines for modifications including
extensions, regressions, and reconfigurations.

DOS's typically involve some combination of

ten major
categories of system services and resources:

1. Workload; jobs, processes, tasks, and processors
2. Memory: primary..secondary

3. Devices and buses

4, Data and information

5. Stable Interface Sets: Users and applications software

6. Stable Interface Sets: Majdr subsystems and systems
software, hardware, and operational interfaces
7. Communications: systems..applications
8. Configuration control: , '
- ' System services and resources. .applications
software and users
. Normal processing..exception processing

9, Time and events

Access control including security and integrity

’

+ the application access should be provided at
a virtual interface set known as the DIS. For example, access and

manipulation of elements of a distributed data base should depend

upon compilation visibility of the DIS to the application
software. ' o

"Distributed Communications Services"

Communications resources and services which are to be shared

183

i

among multiple application programs or users in a distributed,
line environment should be accessible to the application at a
virtual interface set (ie, the DCS). Note that the DCS may also
view the DIS as a user and vice versa. For example, a user
request from the DAS to the local DIS for a resource of data might

result in a transparent (to the user) request to the local DCS to
obtain the data resource from a remote site.

"Distributed Configuration Control
Services"

As shown in Figure 1, the DCCS virtual interface set has
visibility of the: DAS, DIS, and DCS. This provides a unique
opportunity to exploit known semantics about the various
components that provide the services and resources of the three in
order to monitor, manipulate, and control distributed processing.
For example, programs can be distributed dynamically, processes
can be advanced or blocked, parameterized performance monitoring
can be enabled or disabled, and interactive debugging and
reconfiguration can be supported among remote sites. The reader
should note that this is a much higher semantic level of
configuration control services than is typically found in
underlying operating systems.

CONCEPTUAL MODEL OF THE EXECUTION ENVIRONMENT OF A DISTRIBUTED
COMPUTING SYSTEM ARCHITECTURE

"Abstractions: Four Functional Layers
and Major Interface Sets"

As shown in Figure 11, the major interface sets extend from
the DIS through the DCS, DCCS, and DOS functional layers down to
the hardware. These virtual interface sets built from a common

Catalog of Interface Features and Options provide a perspective of
a Portable Common Execution Environment (PCEE) to the application
program components and users.

"Issues Common to Each Layer"

Eight major issues common to all layers and major categories of
system services and resources are:

1. Five Management Responsibilities

a. Track the Status and Utilization of Each Service and
Resource

b. Enforce Policies
c. Schedule
d. Dispatch

€. Reclaim (e.g. Completion, Unrecoverable Fault,
Abortion,_Preemption)
2. Measurement, Testing, Debugging

3. Abstractions: Objects,”ﬁessages, Semantic Models

184

{1 w1 W i | i ¢

Il

a1 1 1 ¢ €

Wi

pt

]
(]

S

4. Synchronization

5. Protection

6. Errors and Faults

7. Naming and Identification
8. Baseline Modification

"Issues with a Large
Potential Return-on-Investment
for Optimization Across Layers"

Six issues with a high potential return-on-investment for
optimization across layers are:

1. Reusability
2. Interoperability and Transportability
3. System Measurements, Testing, and Debugging

4. Optimum Location and Reconfiguration of Services and
Resources

5. Universal Scheduling
6. Universal State Consistency and Congruity
"Important Issues for

Supporting Mission and
Safety Critical Components"

¢

Unfortunately, the difficult challenges of supporting Mission
and Safety Critical (MASC) components in large, complex,
distributed systems are less understood than the issues identified
on the other axes. This is particularly true in applications with
requirements for non-stop operation, fault tolerance, and meeting
real time deadlines of both periodic and aperiodic pProcesses. As

an example, twelve issues and components of one proposed model are
given below.

- Issues and Components of the

Clear Lake Model for Run Time

Support of Mission and Safety
Critical Components:

‘1. A tailorable RTSE developed & sustained in Ada upon bare
machines] e .

2. Software structuring which facilitates: firewalling,

185

{

‘layered recovery/capability, dynamic reconfiguration and
‘extensibility

3. Pools of processes and processors capable of non-stop
operation in a fault-tolerant environment

4, A command 1language interface between the SIS of the

integration environment's PCEE and the SIS of the target
environment's PCEE

5. System-wide, lifecycle-unique identification of all objects
and transactions/subtransactions

6. Dynamic, multilevel security in the integration & target
environments

7. A message interface which supports three forms of
communication among clusters: asynchronous send/receive
with 'no waits', remote procedure call, Ada rendezvous

8. Hierarchical runtime structure of the threads-of-control

9. A redundancy management subsystem for services and

resources which life and property depend upon

10. A stable storage subsystem for each cluster
11l. A management subsystem for distributed, nested transactions

12. A multiversion, fault-tolerant programming capability with
a granularity within any program which extends at least to
the subtransaction level and explicitly identifies the
recovery capabilities at that level

FIRST LEVEL MAPPING TO AN IMPLEMENTATION MODEL

Figure 12 depicts an extension of the original ARTEWG model to
include support for distributing entities of Aada application
programs across components of a distributed computing system.
Scenarios are useful for explaining the model. Suppose an Ada
application programmer logs into an APSE (Ada Programming Support
Environment) to prepare a source code version of a program to be
deployed and operated in a distributed target environment. The
capabilities assigned to the programmer on this project determine
whether the DIS, DCS, DCCS, or DOS virtual interface sets are to
be available to this programmer. (Note that these features and
options are part of the extended runtime library --ie, XRTL-~-
which are documented in the CIFO and legally go beyond the minimum
set of components in the runtime library which are required for
validation --ie, RTL.) Along with imports from the explicitly
"with'ed" applications 1library, every shareable service and
resource available at the four interface sets of the XRTL may be
explicitly referenced within the application source code of the

186

|

N

{ "IN B NI | ' A R R BN | (] |

w

"
oy

Lz

[Ny

i
il

A TR |

i

Lanl L
1 g

!
iy

i

iy

1y
i ol

Cifi

Gl

| ™
i

€

{
authorized application programmer. (Note that the XRTL is an
instance of the CIFO.) Now the source

as the application code and exported to the bare machine.
- However, two additional inputs are needed to determine the
remainder of the object code to be exported to the target
environment. First
~ determine if non-functional requirements which should be
transparent to the application programmer are to apply to this
program. For exXample, the Program might be required to execute in

T a B3 class, multilevel Secure environment. These non-functional
”“transparent-to-the-source-code requirements may cause still

additional components from the XRTI, and RTL to be transformed for

. deployment. Finally, the idiosyncracies of the hardware itself
- may cause a small pPercent of non

export to the target environment.
" ADDITIONAL WORK NEEDED TO FURTHER DEVELOP THE MODELS

Although this is a pPotentially very large and complex
-undertaking which can benefit from work stimulated principally
‘from issues on any one of the functional layers of this model, the
most crucial issues are believed to be the support of Mission and
_Safety Critical components in distributed, embedded computing
“systems. An integrated approach to these interface sets with MASscC

component support as the first priority should be developed and
Prototyped. , . : oz 1

BIBLIOGRAPHY

the Life Cycle of the Space Station Program", IEEE Compass 1987,

187

oM M e M

Host Environment
(shown as Distributed)

e Develop
e Substain

88

n M
>
o

© O O O ©

©C O © © ©

Integration Target
Environment Environment
e Monitor & e Deploy
Sustain Current e Operate
Baseline
o Control Integration
& Evolution
- @ Support Emergency
Interactions

Figure 1 Three Types of Environments Addressed by Software Engineering

"SRR AR LA R A IR

{ ¢ o« & 40 1 (I 1

1

681

C QU ¢ g oI 4m oo cl o . ¢ 1 un oo
]
4 T
Computer
Systems
Large, L -
g Engineering Complex,
é ™
Software ngp%%‘;'te Hardware
Engineefing Environment Engineering
. . WV,
Operations
Distributed and Applications
Logistics
—

Figure 2. Systems Perspective of a Life Cycle Support Environmen

J
t

Passive

Borrows thread
of control

% AlS

Impl.

061

Often called Triggers
in Al/KB/ES

UGS N TR (N BN

Figure 3. Obijects

Neutral

Contain types
& values only

Eg, "Relations" -
in Dr. Codd’s
Relational Data
Model

AlS

AlS

Note: Values are

accessable to a
collection of

Relational Operators
Untyped (normally)
Ada Typed (needed)

" B B U N g

Active -

Possess their
own thread of
control

(eg, Ada task)

Often called
Daemons:in
Al/KB/ES

=7

i 0L OF Q1 0F g oo W €I oeW Cmoogn o 0l o1ore g .

J A ,
Perspective Above L,—
the Virtual Interface <?
Perspective at

the Virtual Interface

161

Perspective Below
the Virtual Interface

Legend
Structure Object Relation l' M l' N

Figure 4. Virtual Interface Perspectives

Snapshots of Evolving Stable Frameworks

Legend

Stvucture 'Object Relation

Stable _ ‘
.................. Framework P : : :
' Bounary

Figure;{ 5.

................
..................................

‘ ‘ ‘ . L § e o y Y [] N &€
N EEE R R R RN R AR U A NATER NUIKENE LA DR ¥ t t

. Object Base

RTINS R 43R AN i o io4n W 8T 8% Cn o unoCcroowogo oo
Conceptual Model of a Life Cycle Support Environment
‘ f Documentation Phase Quality and Configuration
The 7recrnicas anag Hﬂﬂdﬁtmfﬂ/ dudL/es represent ‘ Saf‘ety Managemen‘ Management
e cttent's perception of Issves, needs. ang requirements. ACﬁViﬁOS Activities
Trn/s may tncltuce reguiatory agency reguirements. ~
:
:
P7
I { Acceptance
2
TECHNICAL SPYSS g‘:’(‘g . ! Testing of Maintenance
} System and
MANAGEMENT } Operation
]
]
|
f
I
]
!
3 |
w TRR |FCA PCA FDR 4
Conceptval Mocge/
Imalementation Mooe/s
Ji- User Interface Set ¥

Technical and Management Tools

System Interface Set

Quality and Safsty Management
Project and Configuration Management
Library and Object Management

Object Base: Tool Communication

Object Base: Next Baseline in Progress

Object Base: Current Baseline
""" (l.e. "Persistent* Object Base)

t 1

Figure 6. Implementation Model of this Life Cycle Support Environment

Life Cycle
Project

to Support:

Systems Eng.
Software Eng. |
Hardware Eng.

Operation and
Logistics

m

SECOND LEVEL |
ABSTRACTIONS 2 <

A Plail—oa—.
0] v op B
A Taxonomy of Taxonomies
2
The Life Cychs Sypport Enviconment has attibuted relatorsshis ? ¢
fo of hitsrfaces, phases, Qually and safely actindes, and '

profact configuration management actinbes.

A P Continved

Entargment of P! and /

assoclaled documentation ! O "~
A4 2\
ﬁ v A SECEERE TR TRPEPRRRRR
: P Education
Methods @—G-SYS—Q—-G and Training
@/ \W Resources
Reuse
Standards .
Requirements]
q ssn Figure 7a.
Tech Tools Management .
Tools

IR L SRR (IR RO R D A NN NINEE B N [[! u) f f q. f

'q. einbi-

404 VvOod voJ4

N/l el
P O P
l.l
(((

...
I Y

Had

d

N P %
o-f Uoaeiedo weisAg
_ -sgcucssas_ ' o.w:qﬁoom@

P

Hym E Ay
ey Vil

\ , Vi oy
I 16 RS I

uldl

¢

i, T T

195

206 $NO/INIIy wosy

il SIS T

THIRD LEVEL ABSTRACTIONS

Library and Component Management

Life
Development Phase: Cycle Project Primary Actual
Library of Reuseable yoo® Trojec

E's Object
Components Object Base : :

Alll % a111
*es ALl ¥ L
I .
SF

L S
Taxonomy °* Ps, Fkg, I

Network Compufiications Yervikes

961

Virtual Viftual unp
File Store Aerminal
% E ALl
AL11 %

¢ ¢ FoUrQS ¢« 1 w1 oot o

'R 'TRER LR FEEE THEE AN B

LRI VTS O VAR o (TN (I (I O 00 g ognl oy oG oon | A |
FOURTH LEVEL | (Primary PE of
Entlty Another Object
ABSTRACTIONS ﬂ/ _
- M ® ‘ P.E. of
Context j/} Another Object
Rationale —<>— Black Box |
Test Spec [Abstract
Results ¢ Interface .
Report SpeCiﬁcation \/>] Rationale
' Black Box .
Test Impl. (Public Spec)
P.E. P.E. The Context of each ¢ \K
implementation has
e ‘# relationships to
) multiple P.E.'s.
b CNTX AIS AlS [Rationaie
[Rationale L<>_ Implementation | (Private Spec 1)| |(Private Spec 2)
Variation 1 <>
Q Rationale CNT;)(
Rationale | White Box CNTX CNTX
Test Spec Implementation Implementation Implementation
Results (] ¢ Variation 2 Variation 3 Variation 4
— = Sy o
White Box
Rational Rationale Rationale
TestImpl. ationale ﬂ

Figure 9.

861

LISCE R IR vIMINY 8 S (4

Complex View
~ (Realistic for the Future)
Distributed

Configuration
Control Services

Distributed
Information
Services

(DIS)

(DCCS)

oan gl 4m s ogrn ¢

L

i

@-

Distributed
Application
Services

(DAS)

Distributed

Distributed Systems Cluster

Figure 10.

Distributed System Architecture Model

Major
Interface Functional :
Sets Layers ‘
(Top 3 Axes Adapted From
DAS 1 Applications . Lampson, et al, 1981)
PCEE
(Portable Common DIS Maj or
Execution Environment)y ~ DCS | Subsystems
DCCS

'DOS RTE CIFO
OS --> Bare Machine

661

Virtual HW | Hardware Issues Common
~ to Each Layer

Large Potential ROI
for Optimizing
Across All Layers

MASC Component Support
(Misslon and Safety Critical)

Figure 11.

o8 ¢ dp Cn ¢ oo g o« 4 €1 4l 4 e« € 4 g 4

LI GRS 1 (Y RN A TN 1T S (Y T I (RSTRNE (Rt S (I (R 8 T TSR It SOEATE SE DR SN

t.\ I i

A Model Supporting a ’ Bare Machine’ Philosophy for

Ada Runtime Support Environments (Ada RTSE’s) used in
Distributed Computing Systems

Application Program Perspective

[Ada Source]
compiler Note : Explicit Visibility

7_. @ | Apﬂg:gons

Object Code
& C.L. IF

n’.
-
.~

s 1S~ Note : Transparency
e S / : DIS
/ ‘ @ XRTL gggs
RTL | XRTL | | Pos
RTK > 297 \ RTL
Hardware ' Persistent Tool Set for Library &
Object Base Object Base Mgmt.

—Target Environment %_
Integration Environment

Host Environment

Figure 12. Implementation Model

B

A NEW TECHNOLOGY PERSPECTIVE & ENGINEERING TOOLS APPROACI
FOR LARGE, COMPLEX & DISTRIBUTED MISSION AND SAFETY CRITICAL SYSTEMS

COMPONENTS

Miguel A. Carrio
Teledyne Brown Engineering

201

1 a1

i g o wrt q

[

(1

L=

"
1l

rm

HY"

3

ar
.

4
-

o
o
(@]

p
Y

0% ik mgm, 0 -

A NEW TECHNOLOGY PERSPECTIVE & ENGINEERING TOOLS APPROACH
FOR LARGE, COMPLEX & DISTRIBUTED MISSION AND SAFETY CRITICAL SYSTEHMS
COMPONENTS ’

- ABSTRACT

Rapidly emerging technology and methodologies have out-paced the
systems development processes’ ability to use them effectively, if at

all. At the same time the tools used to build systems are becoming
obsolescent themselves as a consequence of the same technology lag
that plagues systems development. The net result is that systems

development activities have not been able to take advantage of
available technology and have become equally dependent on aging and
ineffective computer-aided engineering tools. New methods and tools
approaches are essential if the demands of non-stop and Mission and
Safety Critical (MASC) components are to be met.

INTRODUCTION

Expectedly, the systems development management and technical
communities continue to remain slow and reluctant to accept change and
ncw approaches in spite of the overwvhelming evidence in support of a
need for it, and the disappointing track record in systems development
of the last 30 years. The resistance to change in the midst of new
approaches and innovative concepts, is accompanied by a perceived
threat and expectation that there is now added risk to the ever
escalating cost of development by introducing new methods and tools.
The risk and added cost of development, unfortunately, result in not
accepting and implementing many of the recent approaches and methods
available in the marketplace and continuing to ignore them.

ISSUES

Because of the following, it 1is strongly felt that new
approaches to modeling; tools design and conceptualization in the
initial life cycle phases (i.e., requirements analysis, allocation,
and design synthesis) are necessary.

I. Systems have become so large that the traditional concept of
prototyping is not looked favorably upon due to the large costs,
expenditure of time, and complex issues raised 1in developing
prototypes.

II. It is a given and well known fact that the earlier in the life
cycle design weaknesses and errors are identified, the more cost
effective the design fix and less labor intensive.

PREGEDING PAGE BLANK NOT FiLMED

203

W @I ®I a§ o e

Ll

€L

L

n
Il

i

ILIN
|tk

[

T
o ol

f{

roant
Wl

{

[
{ [k

ITI. An inordinate amount of time and effort is expended on the
softvare coding phase (one of the smallest 1jfe cycle cost drivers -
less than 10%). Ironically, the latest industry tool craze intended
to focus on life cycle productivity - CASE, continues to focus on
software instead of systems. (Computer-Aided Software Engineering
instead of Computer-Automated Systems Engineering)

Iv. Requirements continue to change in any given Systems development
and necessitate a "control or harness" mechanism to provide
disciplined management of themn. The requirements instability,g/

together with scarce development resources is expected to result in
increased evolutionary and iterative system activities.

V. Design efforts require formal and global configuration
management (i.e., across life cycle phases) that does not presently
exist. If the cost of maintenance and support is to be significantly

reduced, design environments and tools must support configuration
management . R

VI. The very large amounts of softwvare generated in Systems, require
that serious consideration be given to the need for automatic code
generation from a formal specification, 1in order to achieve any
significant control and productivity gains.

vir, Hardware and software engineering, as well as their associated
integration efforts continue to be treated Separately for the most
part. The extensive amount of "requirements implementation dumping"
(RID) over the fence to software that occurs when a particular
hardware requirement cannot be implemented; for example, continues to
polarize these two communities.

VIII. Most’ design methodologiesé/ that exist today and are
incorporated into the many development tools are homogeneous (e.g.,
either purely data-flow oriented or control-flow oriented), and system
directed or application specific in nature. Homogeneity is not a
negative aspect if sight is kept of the application and problem space
intended for a particular methodology; and the discontinuities that
result when a domain or boundary is crossed. The complex real-time
issues of today amplify these discontinuities vhen data and control
flov theory are integrated together. At best, when integration
attempts are made, thesge homogeneous and domain specific methodologies
result in a loosely coupled effort achieving an "inefficient
bastardized methodology" that sells products, never intended for the
solution needs of the Systems they are supposed to assist.

IX. Static and dynamic analyses are attempted via uncoupled and
informaLLdg§ign representations (i.e., using a natural language with
one or more homogeneous methodologies), as opposed to using a formal

design reépresentation (i.e., using a formal syntax or design
language).

X. New life cycle models and paradigmsl’E/ must be employed if
quality, high confidence, fon-stop MASC components are to be designed
accompanied by high productivity rates.

204 | S s e

APPROACH

The ten points identified have served as requirements drivers in
molding Teledyne Brown Engineering’s TAGSR technology aimed at solving
problems early in a cost effective manner. The approach has been to:

A. Focus on the initial phases of the life cycle to ferret out
design issues and capture requirements.

B. Adopt a systems engineering perspective that looks at the
entire picture (i.e., views hardware and software engineering
together and as driven by systems engineering).

C. View alternative life cycle models relative to the specific
development activity, using automation based paradigms.

D. Employ a heterogeneous systems methodology with integrated
configuration management elements.

E. Use a systems design language supported by a formal syntax.

F. Use/develop tools that support and embody items A through E.

These issues will be addressed, but as a consequence of their
interrelationships, they cannot be viewed independently. Thus, for
example, focusing on the early 1life cycle phases vrequires an
understanding of the relationships of the various life cycle phases and
activities inclusive of the maintenance and operational phases (later
phases). Furthermore, the iterative life cycle forms and types must
also be understood. Despite an awareness and extensive documentation of
the lower costs of detecting and correcting errors in the early life
cycle phases,z/ program managers continue to ignore the early phases and
resources required to support them. The question should be repeatedly
asked of developers and tool builders - "Why haven’t past and on-going
efforts focused on the early phases to discipline and stabilize
requirements and design issues?" "Why haven’t the tool builders
addressed the front or early 1life cycle phases, and provided the
marketplace with extensive tools in this area?" The number of
commercially available requirements generation and analysis tools that
exist or can be integrated with systems engineering design synthesis
tools are virtually non-existent. A basic tenet of the automation based
paradigms is that early life cycle emphasis supported by automated tools
is a must, 1if significant achievements in productivity and
maintainability are to be made.

The development processes and thus modeling and prototyping
efforts must be initially viewed and driven from a systems engineering
perspective. The systems engineering view will insure that premature
allocations of requirements to either hardware or software are deferred
until the proper time and more important into the proper allocated
design specification. A systems engineering view ensures that from the

205

g ® |

{

1

1
[

(4

"
O TS

{

"ot
ikl

t

Ui

-
|

PR

ol

t

e
i

c. IO D G

(s

| lild

very beginning, that the System to be synthesized and hierarchically
decomposed is related properly to its operational environment and system
interfaces. System interface identification also ~insures that
perturbations generated across them can be properly accounted for and
contained. _ Encouragement to invoke reusability_/ at the architecture,
design, specification, algorithmic, logical and code level as early as
possible in the 1life cycle insures maximum reuse yields. This approach
is nothing more than a return to classical systems engineering supported
by functional flow block analysis, hierarchical decomposition, input-

output flov integrity and Structured design concepts, all considered
together. , ‘ - - : o

Additionally, this initial top-down design, through the iterative
nature established by the Systems engineering approach also enables a
bottoms-up view refinement that "kicks-in" as an overdrive when
requirements must be revisited and reallocated for vhatever the reason
from hardvare to software or vice-versa.

Embracing the concepts of automation based paradigms requires
that a formal executable design specification and prototype be
established. - .The design specification must also be formally
configuration manageable to enable the maintenance of requirements and
design. Formal maintenance of requirements and design envelopes
supported by executable prototypes based on the design provides
visibility into it, and assures the ability to maintain the resulting
System long after it has been built. Design enhancements, technology
insertion and preplanned product insertion activities are also vastly

facilitated by formal maintenance of the requirements and design
baselines.

The iterative nature of the different types of life cycles (e.g.,
spiral life cycle, technology 1life cyclef/), necessitates that
traditional forms (e.g., waterfall) be viewed in perspective and the new
ones viewed relative to the environment factors (i.e., evolutionary,

reusability, rapid prototype).

This brings us to a very important issue - a heterogeneous
systems methodology with integrated configuration management. Most
methodologies that have been developed over the last 30 years have been
tempered by functionality, applications or domain specific solutions
they were focused at to provide solutions. The MIS community has
benefitted tremendously from data flow methodologies for example.

However, different methodologies and views are required to
address the new solution Spaces presented by non-stop and mission and
safety critical components in complex systems. The ability to view
simultaneously architecture, functionality, data flows, control flows
and timing requires an integrated heterogeneous methodological approach
that both represents and integrates these elements in a "unified field
theory". Furthermore, the ability to examine, compare, and analyze
these elements requires greater formalism of representation than ever
before. A cohesive binding (i.e. a formal syntax) is required of the
methodology representation if subsequent dynamic analyses of design and
simulation, via executable design prototypes are to be performed.

206

Additionally, if an executable prototype and formal design
representation is to be generated and analyzed, then the concept of the
need for an integrated heterogeneous methodology must be further
extended to capture and represent other process, logic and algorithmic
elements down to formal mathematical representations. Thus, what
emerges is a need to capture both the methodology and design elements
via a unified and extensive systems engineering vehicle capable of
representing the engineering processes in a formal representation. A
sample representation of this is a systems design language, of Backus
Naur Form, called the Input-Output Requirements Language (IORL).Z/ It
is a high order language comprised of a character set and a graphical
set of pictures that support both the systems engineering processes as
well as the methodology requirements to bring together the elements
needed for viable design synthesis.

AVAILABLE TECHNOLOGY/NDI

TAGS technology consists of three components - a methodology and
paradigm; a formal systems design language; and an environmental suite,
consisting at this time of nineteen integrated tools (figure 1). The
workstation hosted environment is intended to support design teams in a
networked mode consisting of host, integration and target components.

TAGS APPLICATION SOFTWARE PACKAGES

CONFIGURATION
G MANAGEMENT
ﬁ&ﬁ.}t}',\‘;*g_f’&& 3
é\‘u“i“ !':“&h‘h‘b MULTIPLE BABCLINE
. TAGS DATABASE CATATION
R RO L b . N
AEQUIREMENRTS STORAGE | N["rrrreereeenes 4333 Aaataiad
VERIFICATION AND
TOOL sEY Y| RETRIEVAL
.......... DIAGHOSTIC
» REOUATWENTS EXTRACTION TOOL COATA FLOW b Trrrmmeeeseseneet AHALYER
« AEGUIREUENT ENTRY AND LABELING TOOL + CONTAOL FLOW
. AEGUIREUENTS TRACING STTWEEN DOCUMENT < OATA DEFIMITION
- DTA EWTRY ANO WAMTENANCE - DATA STAUCTURE UL TSTATIC DUSiGH
~STEPWISE REFINCMENT ANALYSID
- ANALYSIS
LIBRARY
SIMULATION . ou:‘glc‘v‘a‘ouuv
« 378 D47
COMPILER « DOCUMENT PROCESIOR
« FLOW AMALYS(S
- DYNAMIC DISION
LY3IS
. DISCRETE LVENT e -
JIMULATION
GENERATOR

« ADA
+ ¥HOL

Figure 1

207

K

L

I

il
i

i

P

CI

{

.t
i

(

i

TRL

{

Lo

Gl

AT}

L

{

 The technology is intended to also enable distributed design and
simulation activities to occur concurrently and independently, emulating
target environment characteristics and operational modes. The
simulation compiler supported by merge library utilities contained in
the Analysis Library enables parallel execution modes that provide
insight into the target environment performance. It's two-pass
simulation architecture enables the compiler to support the development
host activities on lesser capacity workstations, while enabling
simulation exportation to larger mainframes for execution of complex
problems requiring such (e.g., Strategic defense type problems). In
this manner large complex and parallel simulations can be performed
efficiently, requiring less execution and simulation run times, while
converging on target environment solutions.

ENVIRONMENT COMPONENTS
TAGS consists of the folloving tools:

0 A requirements verification tool set (RVIS) - to assist in

- the management of requirements. The four tools comprising
this module enable requirements traceability within and
across specifications, establish parent-child relationship
between system/performance and derived requirements, allow
the establishment of function, subfunction and keyword
associations, provide a document trouble report capability,
“enable the parsing of complex english sentences containing
‘miltiple requirements references into unique requirements
Statements, and provide the ability to automatically generate
different reports and trace matrices consistent with the
evolving specification tree hierarchies.

"creatiqn, Storage, retrieval, modification, viewing, and
updating; supported by menu-driven highly interactive
features. The SR module provides access to the IORL design
language and three levels of security to protect the design
pages. SR is the basic design module.

0 A storage & retrieval module (SR) - to allow the IORL page

o A configuration management module (CM) - provides system
integrity and formal Mil-Std configuration management to be
established on a single or multiple set of baselines. CM is

fully integrated into the TAGS-IORL data base to insure full
- management and control of design regardless of system
complexity and network/team size.

0 A diagnostic analyzer (DA) - to provide static analyses of
' the IORL design pages generated via the SR module, The
design is analyzed in g3 background mode, monitored via a
Separate process so as to allow a continuation of the other
designer activities on a non-interference basis. Designed as

208 7.5

an incremental compiler, DA allows the completion of
individual pages or modules that can be integrated and
analyzed in a background mode with other completed design.
Error messages with unique reference numbers provide for a

‘rapid and efficient troubleshooting mode that can be

supported by lesser experienced members of the design team.
DA performs static analysis (i.e., completeness, consistency
and closure checks on the design).

A simulation compiler (SC) - produces an executable discrete
event simulation of a system designed in IORL. The
simulation performs dynamic error analyses which can locate
problems such as timing and control faults; and errvors that
cannot be found through static testing. Also, the resulting
execution trace listing assists the user in determining the
optimum system and processing algorithm designs as well as
performance analysis.

An analysis library (AL) - consists of ten tools that fall
into three categories:

Auditing - to allow the user instant visibility into the
design database, and also provides for system partitioning
and ready identification of all system components.

Documentation Management - to allow the automatic generation
of data dictionaries, and provide a document processor
interface (e.g., POSTSCRIPT). The document processor

interface provides the user the ability to merge system
design text and graphics with other commercial document
processors (e.g., ContextR and InterleafR) to further extend
the ability to generate automatic documentation and support
such standards as Mil-Std-2167.

Reusability - to allow the reuse of design, architecture,
Functionality, specifications and code. These tools greatly
support the reusability development paradigms and enable the
invocation of reusability concepts very early in the life
cycle.

An automatic code generator (ACG) - alloving the designer to
generate executable source code from the IORL formal design
representation for transition and insertion into the target
environment. The code generator thus provides the capability

to support "software first" development, rapid prototype

paradigms and the early identification of source code that
requires further optimization via a lowver level software
engineering environment. Currently, the only language the
code generator supports is Mil-Std-1815A (Ada), with a VHSIC
Hardware Description Language (VHDL), IEEE Std 1076-1987 code
generator under development.

209

q

|

il

i

il

[
' 'm

VOO

{

-
Wl

C

ST

£

ey
i il

0 f

Wl
vidil

{

QUANTITATIVE RESULTS USING THE TECHNOLOGY

Use of TAGS technology on two DoD programs has provided both
qualitative and quantitative results that are most encouraging and
support predictions of achievable and significantly higher productivity.

The development approach and environment have clearly established
a direction that represents: a significant higher productivity yield,
life cycles with significantly reduced implementation time scales, lowver
development costs (figure 2), and higher design confidence and quality
levels. The two BM/C3 (Battle Management/Command Control
Communications) efforts, N-SITE and SIE, went from the requirements
phase thiough to integration, test and delivery of software end product
to the customer. The costs of investment and learning the new
technology are also factored in. While the total source lines of code
for each of the systems numbered in the 200-300K range, similar yields
equal to or greater are expected for larger systems of the type SDI or
NASA would ecncounter. Part of the rationale for this is derived from
the fact that program module size for manageability and optimization
require breakdown into smaller blocks of several thousand lines of code
(less than 10K LOC) independent of overall program size or wuse of
automatic code generators.

It should be noted that these two DoD efforts did not utilize the
Ada Code Generator, since FORTRAN was identified by the user as the
implementation language. The simulation compiler and RVTS were not in
product form when these efforts were initiated some fifteen months ago.
Thus, the expectation of using the extended tool set in future efforts,
provides an even firmer basis for supporting higher productivity and
quality. Given the existence of a code generator and simulation
compiler enables the developer to begin testing and integration earlier,
deemed essential to supporting higher confidence levels. The delivered
software, when used, performed satisfactorily as intended and as
specified in the user/operational environment.

210

i3 ks

o

lk

PROJECT A (N-SITE)
SOFTWARE DEVELOPMENT

SOURCE
INDUSTRY PROJECT COMPARISON
METRIC STANDARD:! EXPERIENCE (%)
Lines of Code/Hour 0.77 LOChr! 2.26 LOC/hrt 294
Calendar Schedule 8.4 monthsi.2 5.5 months 65.5
Effort (man-months) | 132 mm1 45 mm 34
Cost per LOC $45 to 503 $14.57 30.7
Total Cost L $0.237M 23.7
1. Based on Boehm: Software éﬁgineéring Economics
2. Compressed Schedule; Normal Schedule = 11.6 months
3. Based on $90K - 100K/man-year at 2,000 hriyr
4. Converted 3.1K LOC of Project B Monitor and Control; Reused Portions
of Project B IORL® Design
, PROJECT B (SIE)
SOFTWARE DEVELOPMENT COMPARISONS
AT BUILD 3
SOURCE
INDUSTRY PROJECT COMPARISON
METRIC STANDARD! EXPERIENCE (%)
Lines of Code/Hour | 0.69 LOC/hr! 1.17L0Chr 170
Calendar Schedule 12 monthst.2 9 months 75
Effort (man-months) | 316 mm! 188 mm 59
Cost per LOC $45 to 503 $34 72
Total Cost $2.1mM $1.02m 49

1. Based on Boehm: Software Engineering Economics

2. Compressed Schedule; Normal Schedule = 15 months

3. Based on $90K - 100K/man-year at 2,000 hr/yr

Actual Results obtained are shown in the

"Project Experience" column.

The significant

drop in cost per lines of code (LOC) in

Project A resulted from the reuse of design

and algorithms from Project B.

Figure 2

211

F

€l

€

L
Qi

{

("

L

m
i

o

o
M Sllidl

[
[

s

TR

{

Gl

CONCLUSIONS
i

In the near future, resulting data from other on-going
development projects is expected to provide further credibility for use
of the approach, technology and environment. Invoking the approach and
paradigms, with the type of environment identified will almost certainly
result in higher levels of design confidence and integrity
accomplishable in significantly lesser times. Early results in using
the technology on other on-going efforts continue to support existing
data. It is vrecognized that the technology and approaches will
themselves continue to evolve to more mature forms. It is also
recognized that with continued use, nev products and enhancements will
also occur in the environments either as a direct consequence of it or
as a result of integrating and interfacing other commercial products
with it. Furthermore, risk is less and certainly no more than that
which exists in on-going developments today. And, if expectations
should fall short for whatever the reason, the developer maintains his
status quo, with everything to gain by using vhat is presently available
and nothing to lose.

REFERENCES
1/ Balzer, Cheathem, Green - Computer, Vol. 16, No. 11, Nov. 83, pp.
39-45. Subject: Software Technology in the 1990's: Using a New
Paradigm.
2/ Balzer, Robert - Proceedings of COMPSAC 84 Conference on Computer

Software and Applications; Nov. 84, Chicago, I11.; IEEE #0730-3157, pp.
471-475. Subject: Evolution as a New Basis for Reusability.

3/ Boehm, B. - Software Engineering Economics; 1981, Prentice-Hall,
Inc.
4/ Carrio, Miguel - Proceedings of the 4th National Conference on

Ada Technologyi March 1986, Arlington, VA, pp. 75-81. Subject: The
Technology Life Cycle and Ada.

5/ Davis, Alan M. - Communications of the ACM, Vol. 31, No. 9, Sep.
88, pp. 1098-1115. Subject: A Comparison of Techniques for " the
Specification of External System Behavior.

6/ Jones, G. - Proceedings of COMPSAC 84 Conference on Computer
Software and Applications; Nov. 84, Chicago, Ill., Library of Congress

No. 83-640060, pp. 476-478. Subject: Software Reusability: Approaches
& Issues.

7/ Sievert, G. & Mizell, T. - IEEE-Computer; Vol. 18, No. 4, Apr.

85, pp. 56-65. Subject: Specification-Based Software Engineering with
TAGS.

8/ Yadav, Bravoco, Chatfield, Rajkumar - Communications of the ACM,
Vol. 31, No. 9, Sep. 88, pp. 1090-1097. Subject: Comparison of
Analysis Techniques for Information Requirement Determination.

RTAGS is a registered trademark of Teledyne Brown Engineering
Context is a registered trademark of the Context Corporation
RInterleaf is a registered trademark of Interleaf Corporation

212

- Alpha:
= A Real-Time Decentralized Operating System
for Mission-Oriented System Integration and Operation
E. Douglas Jensen
é g . Concurrent Computer Corporation

. Westford, MA
i 508-692-6200
edj@cs.cmu.edu, uunet.uu.net!masscomp!jensen

"
|

= 213

1 | U |

1 l |

-

o

[

"
A

"IN I
o bi s

cl

(

{0

"

lv
i

aU
s ih

L

LT

L2

itk

C

N
Lo

C

il

L1l

C:

! Alpha: :
A Real-Time Decentralized O perating System
for Mission-Oriented System Integration and Operation

S E. Douglas Jensen

. Concurrent Computer Corporation
o Westford, MA
T 508-692-6200

edj@cs.cmu.edu, uunct.uu.net!masscomp!jensen

AbSlrngl posrona M LN

Alpha is a new kind of opcrating system, which is unique in two highly significant ways. First, it is decen-
tralized, providing reliable fesource_management transparcndy across physically dispersed nodes, so that dis-
tributed applications programming can be done largely as though it were centralized. And second, it provides
comprechensive, high technology support for real-time system integration and operation, an application arca
which consists predominately of aperiodic activities having critical time constraints such as deadlines. Alpha
is extremely adaptable so that it can be easily optimized for a wide range of problem-specific functionality,
performance, and cost Alpha is the first systems effort of the Archons Project, and the prototype was creat-
cd at Camcgic-Mcllon University directly on modified Sun multiprocessor workstation hardware. It has becn
demonstrated with a real-time C2 application written by General Dynamics Corp. Continuing rescarch by
Concurrent Computer Corp. is leading to a series of enhanced follow-ons 1o Alpha; these are portable but ini-
tially hosted on Concurrent’s MASSCOMP line of multiprocessor products. Both the initial and the subse-

quent versions of Alpha are sponsored by the USAF Rome Air Development Center and are in the public
domain for government use. ;

A Decentralized OS is Ncw” o

Alpha is oricnied towards systems thz;ving on the order of 10 0 100 nodes which are physically dispersed on
the order of 1 to 100 meters (longer distances are possiblc). Alpha is for the most demanding kind of situa-
tion: mission-oricnted Systems where all nodes are contributing to the same application, not simply for the

logically integrated together rather than autonomous. Alpha provides this logical integration by executing on
the bare hardware and managing resources in the same sense as a uniprocessor OS docs, not by being just a
“UNIX-style' user process and providing standard application interfaces and protocols for simplc inter-node
resource sharing like conventional computer network style distributed OSs do. Resources must often be man.
aged by Alpha across node boundaries in the best interests of the whole application, not just on the usual per-
nodc basis. This necessitates that Alpha also accept responsibility for handling certain fundamental asyn-
chronous concurrency and reliability issues which arise in distributed systems, instead of passing them all up
to the users for recurring, lower performance solutions. Alpha provides mechanisms which are necessary and
sufficient o maintain counsistency of data and correciness of opcration at both the OS and application levels
despite concurrent cxecution, and node or communication path failures, using techniques similar to thosc nor-
mally found far above the OS in distributed dawbase systems—e.g., nested atomic transactions, replication.

With Alpha, the nod9§7col'l(;qti§crly form a single computer, not a computer network; thus, distributed appli-
cation software can be writcn as_though it were for a conventional uniprocessor—without even knowing
about, much less having to manage, distributed resources.

Alpha is decentralized in another valuable and difficult sense. It does not depend on the existence of any phys-

PRBGEOING PAGE BLANK NOT FHLMED
mﬂi o 215
MERHOKALLY Ay

ically or even logically centralized resource management cntity or service, such as a “‘location broker.”

“Real-Time” is Different in the System Integration and Operation Context

The term “real-ime™ is usually intended to mean “detcrministic behavior” and “faster is beuer”, particular-
ly in the arca of interrupt handling and context swaps. Recal-time control in this sensc applics only 10 com-
puicr systems which simply do low-level sensor/actuator sampled-data loop applications, and arc traditional-
ly designed 1o have rigidly periodic behavior. But real-time system integration and operation is far more diffi-
cult because it encompasscs not just such static periodicity but also predominantly dynamic and aperiodic
activitics which nonetheless have critical time constraints, such as deadlincs. These constraints are part of the
correctness crileria of the computation, and failurc to mect them is a threat to the systems’s mission and 1o
survival of property and human lifc. Alpha personnel invented a novel approach whercby the application’s
time constraints arc expressed in terms of the value to the system of completing cach activity as a function of
its complction time (dcadlines arc a simple special casc—a sicp function). In addition, activitics have relative
importances which are also time-dependent. These time value functions and importances are dynamic and must
be continuously re-evaluated. Every cvaluation is performed for all executing and pending activitics collec-
tively so as to maximize the total value o the sysiem across the whole time period represented by the expect:
cd durations of all these activitics. This sophisticated and explicit treatment of rcal time has been conclusive-
ly shown in both theory and practice o be exceedingly cost-effective. The conventional and scemingly sim-
pler notions of “priority’” in rcal-time systems arc zero'th order approximations which extensive expericnce
has consistently demonstrated introduces massive and uncontrollable complexity into all but the most trivial
rcal-time systems. Alpha cmploys this new rcal-time management technique to resolve all contention for
resources such as processor cycles, communication access, sccondary storage, and synchronizers (c.g.,
semaphores, locks). Time constraints and importance arc among the atiributes propagated with computations
which cross node boundarics so that resource management can be global. The ubiquitous client/server model is
unsuitable in this respect since it docs not maintain such cssential correspondences between the scrvice and
client on whosc behalf that service is being provided.

Alpha exhibits a fundamental philosophy which is contrary to that of OSs for other application cnviron-
ments. Instead of optimizing performance of the normal cases at the expense of infrequent oncs, it docs the
oppositc. It is in the exception cases such as emergencies (c.g., being in danger due to attack or failure) when
a rcal-ume OS must be depended upon to perform best, even if the system’s routine behavior must be compro-
miscd to ensure that. This is one of the principal reasons why real-time UNIXs are inherently limited,

Of coursc, Alpha also has all the featres usually sought in real-time operating systems, including a fully pre-
cmptable kernel, synchronization, asynchronous notification, i/o directly toffrom user space, contiguous files
on disk, memory-locked objects, pre-allocatable resource pools, low interrupt latency and services times, etc.

Extraordinary ‘““Adaptability’’ is Essential to Real-Time System Integration and Operation - - - — -

Real-time system integration and operation applications arc very complex, and arc not (perhaps cannot be)
well understood; in addition, the environment and technology are always in a state of flux. Thus, the func-
tional and performance requirements for their computers evolve continuously throughout the eantire life cycle
of the system, which can be decades. Alpha accommodates this situation through a varicty of (cchniques, many
of which ar¢ quite innovative. Its design is kemclized and stricly adheres to the principle of poli-
cy/mechanism separation. Specific OS policies are carefully excluded from its kemel Ievel mechanisms so that
a wide range of different service facilities, and indeed entire DOSs, can be cifectively constructed using
Alpha’s kemcl, in accordance with application nceds. For example, Alpha’s kemel provides atomicity, scrial-
izability, and pcrmancnce as orthogonal mechanisms. Conventional atomic transaction facilitics bundle all
three propertics together, with correspondingly high overhead, as the only choice of policy regardless of need
and affordability. But the client layers of Alpha’s kemel can base their policics on other combinations of
these mechanisms. For cxample, there arc many instances in real-time systems when problem-specific consis-
tency constraints yicld correct results more cfficiently than serializability would, or when permanence is not
worth its cost. This samc philosophy is followed in scheduling, communications, and all other types of

1 L

¥

AN

i
i

r

i

P

resource management.

Computers embedded in real-time systems usually must produce the highest possible performance from the
allowable hardware size, weight, and power, including memory space for the OS. A general-purposc comput-
cr system can casily be an order of magnitude lower performance than a special-purpose one for a particular
application. Thus, to achieve the balance of performance and flexibility needed for cost-cffectivencss in a mul-
tiplicity of changing system intcgration and operation applications, Alpha is gencral-purpose but unusually
mallcable so as to exploit all the problem-specific static and dynamic information available from the applica-
tion. In addition, application functionality can readily be migrated downward into the OS, and cven into its
kemncl, for increased performance when necessary.

Alpha’s intcmals are organized so that its subsystems such as scheduling, communications, secondary storage,
ctc. can all exccute truly concurrently at each node. We intend that these separate hardware points of control
within Alpha arc a mixturc of dynamically assigned general-purpose processors (i.c., cach node in the decen-
tralized computer can be a multiprocessor) and algorithmically specialized hardware accelerators (co-proces-
sors and other forms of augmentation). Alpha extends to its clicnt applications the same opportunitics for
taking advantage of multiple special-purposc as well as gencral-purposc processors at cach node.

Alpha presents a programming model which is object oricnted, in the sense of abstract data types. This impos-
cs a structure and discipline conducive 10 modular software at both the DOS and application levcls, as well as
improving fault isolation. The active entity, or unit of logical computation, is a thread stringing through
objeccts via opcration invocation, without regard for address spaces or node boundarics; fundamental distribu-
tion and rcliability issucs are the responsibility of Alpha instcad of the user. This network uniformity and
transparcency grcatly aids the creation and modification of distributed applications.

Status

Alpha Rcleasc 1 (donc at CMU) has been demonstrated to DoD agencies since latc 1987 with a real-time C2
application written by General Dynamics Corporation. Concurrent Computer Corporation is creating Releases
2 and 3 of Alpha which arc significantly enhanced and commercial quality; these will be available for experi-
mental usc on their multiprocessor products by the Fall of 1989 and 1990, respectively. Alpha is an open
operating system in the sense of being both intended and designed for portability to multiple vendors’ hard-

ware, and has begun to emerge as the de facto standard for next-generation mission-oriented real-time operat:
ing systcms.

Acknowledgment

Alpha is funded jointly by the USAF Rome Air Development Center and Concurrent Computer Corporation,
with additional support from General Dynamics Corporation and others.

References

Northcutt, J. D., Clark, R. K., Shipman, S. E.,, Maynard, D. P., Lindsay, D. C., Jensen, E. D., Smith, J. M.,
Kegley, R. B., Kelcher and Zimmerman, B, A.

Alpha Preview: A Bricfing and Technology Demonstration for DoD. .

Archons Project Technical Report #88031, Department of Computer Science, Camegic-Mellon University,
March, 1988.

Jensen, E. D, Northcutt, J. D., Clark, R. K., Shipman, S. E., Maynard, D. P. and Lindsay, D.C.

The Alpha Operating Sysiem: An Overview.

Archons Project Technical Report #88121, Depantment of Computer Science, Camegic-Mellon University,
Dccember 1988.

Northcuut, J. D.
The Alpha Operating System: Requirements and Rationale

Archons Project Technical Report #88011, Department of Computer Science, Camegie-Mellon University, Jan-
uary, 1948. -

Northcutt, J. D. and Clark, R. K.

The Alpha Operating System: Programming Model. o T e

Archons Project Technical Report #88021, Department of Computer Science, Camegic-Mellon University,
February, 1988.

Northeutt, J. D., Clark, R. K., Shipman, S. E. and Lindsay, D. C.

The Alpha Operating System: System/Subsystem Specification.

Archons Project Technical Report #88122, Department of Computer Science, Camegie-Mellon University,
Deccember 1988,

Northeutt, J. D. 7

The Alpha Operating System: Kernel Programmer's Interface Manual.

Archons Project Technical Report #88111, Depariment of Computer Science, Camegice-Mellon University,
November 1988.

Trull, J. E., Northcutt, J. D., Clark, R. K., Shipman, S. E. and Lindsay, D. C.

An Evaluation of Alpha Real-Time S cheduling Policies.

Archons Project Technical Report #88123, Department of Computer Science, Camegic-Mellon University,
December 1988,

Clark, R. K, Kegley, R. B., Keleher, P. J., Maynard, D. P, Northcutt, J. D., Shipman, S. E. and Zimmerman,
B. A,

An Example Real-Time Command and Control Application on Alpha.

Archons Project Technical Report #88032, Department of Computer Science, Camegie-Mellon University,
March, 1988.

Northcutt, J. D. and Shipman, S. E,
The Alpha Operating System: Program Maintenance Manual.

Archons Project Technical Report #88123, Department of Computer Science, Camegie-Mellon University,
December 1988. , SRR

Northcutt, J. D. and Shipman, §. E.

The Alpha Operating System: Programming Utilities. 7 e : , :

Archons Project Technical Report #88041, Department of Computer Science, Camegie-Mellon University,
April, 1988,

Northcutt, J. D.

The Alpha Distributed Compfaer System Testbed.

Archons Project Technical Report #88033, Department of Computer Science, Camegie-Mellon University,
March, 1988.

Northcutt, J.D,

Mechanisms for Reliable, Distributed Real-Time Operating Systems: The Alpha Kernel.
Academic Press, 1987,

kil

