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fOR A CLASSOr FLEXIBLESPACECRAft N94-71416

P. G. Maghami S.M. Joshi

J. E. Walz E. S. Armstrong
?

NASA Langley Research Center '/-

Hampton, Virginia 23665

INTRODUCTION

Future utilization of space will require large space structures in low-Earth and

geostationary orbits. Example missions include: Earth observation systems, personal

communication systems, space science missions, space processing facilities, etc.,

requiring large antennas, platforms, and solar arrays. The dimensions of such structures

will range from a few meters to possibly hundreds of meters. For reducing the cost of
construction, launching, and operating (e.g., energy required for reboosting and control),

it will be necessary to make the structure as light as possible. However, reducing

structural mass tends to increase the flexibility which would make it more difficult to
control with the specified precision in attitude and shape. Therefore, there is a need to

develop a methodology for designing space structures which are optimal with respect to

both structural design and control design.

In the current spacecraft design practice, it is customary to first perform the
structural design and then the controller design. However, the structural design and the

control design problems are substantially coupled and must be considered concurrently in

order to obtain a truly optimal spacecraft design. For example, let _ denote the set of
the "control" design variables (e.g., controller gains), and _ the set of the "structural"

design variables (e.g., member sizes). If a structural member thickness is changed, the

dynamics would change which would then change the control law and the actuator mass. That
would, in turn, change the structural model. Thus, the sets g and _' depend on each other.

Future space structures can be roughly divided into four mission classes. Class I

missions include flexible spacecraft with no articulated appendages which require fine
attitude pointing and vibration suppression (e.g., large space antennas). Class II

missions consist of flexible spacecraft with articulated multiple payloads, where the

requirement is to fine-point the spacecraft and each individual payload while suppressing
the elastic motion. Class III missions include rapid slewing of spacecraft without

appendages, while Class IV missions include general nonlinear motion of a flexible

spacecraft with articulated appendages and robot arms. Class I and II missions represent
linear mathematical modeling and control system design problems (except for actuator and

sensor nonlinearities), while Class Ill and IV missions represent nonlinear problems.

In this paper, we shall address the development of an integrated controls/structures
design approach for Class I missions. The performance for these missions is usually

specified in terms of (i) root mean square (RMS) pointing errors at different locations on
the structure, and {ii) the rate of decay of the transient response. Both of these

performance measures include the contributions of rigid as well as elastic motion.

CONTROLLER DESIGN METHODS

Control of large flexible space structures (LFSS) is a challenging problem because of

their special dynamic characteristics, which include: large number of significant
structural modes, low, closely-spaced structural mode frequencies, very small inherent

damping, and lack of accurate knowledge of the parameters. In order to be practically



implementable,the controller must be of a reasonablylow order and must also satisfy the
performancespecifications(i.e., RMSpointing error, closed-loopbandwidth,etc.). It
must also have robustness to "nonparametric" uncertainties (i.e., unmodeled structural

modes), and to "parametric" uncertainties (i.e., errors in the knowledge of the design
model). The two major categories of controller design methods for LFSS are "model-based"

controllers (MBC) and "dissipative" controllers.

An MBC generally consists of a state estimator (a Kalman-Bucy filter or an observer)
followed by a linear-quadratic regulator (LQR). The state estimator utilizes the

knowledge of the "design" model (consisting of the rigid rotational modes and a few
structural modes) in its "prediction" part. Using multivariable frequency-domain design

methods, such controllers can be made robust to unmodeled structural dynamics; that is,

the °'spillover" effect can be overcome [1]. However, such controllers generally tend to

be very sensitive to uncertainties in the design model, in particular, to uncertainty in
the structural mode frequencies [1,2]. An analytical explanation of this instability

mechanism may be found in [2]. Achieving robustness to real parametric uncertainties is
as yet an unsolved problem, although considerable research activity is in progress in that

area using H-infinity and structured-singular-value methods.

In view of the sensitivity problem of MBC's, dissipative controllers, which utilize

collocated and compatible actuators and sensors, offer an attractive alternative.

Dissipative controllers utilize special passitivity-type input/output properties of the

plant, and offer robust stability in the presence of both nonparametrlc and parametric

uncertainties. The simplest controller of this type is the constant-Kain dissipative

controller. Using collocated torque actuators and attitude and rate sensors, the

constant-gain dissipative control law is given by:

u ---Gpyp- GrY r (i)

where yp and Yr are the measured (3m x I, where m is the number of 3-axls sensors)

attitude and rate; G and G are 3m x 3m symmetric, positive-definite gain matrices. This
p r

control law has been proven to give guaranteed closed-loop stability despite unmodeled

elastic modes, parameter errors, certain types of actuator and sensor nonlinearities, and

first-order actuator dynamics [I]. The drawback of this controller is that the
performance is inherently limited because of its restricted mathematical structure.

In order to obtain higher performance while stillretaining the highly desirable

robust stability, dynamic dissipative compensators can be used. Two types of such

controllers were considered in [2] and are presently under development. The main

characteristic of all dissipative controllers is that, although they utilize the knowledge

of the design model to obtain the best possible performance, they do not rely on this

knowledge to ensure stability.

INTEGRATED DESIGN FORMULATION

In order to facilitate the integrated design methodology development, an

Earth-pointing geostationary platform concept was selected as a focus mission. The

"Earth-pointing System (EPS}" concept, shown in Figure I, consists of a IO-bay, 30-meter
long truss structure with two radial rib antennas ('/.Sin and iSm diameter) at both ends.

All the members including the truss, the antennas, and the antenna supports are assumed to
be hollow tubes with circular cross-section and 1.59 mm thickness. The mission

requirement dictates that the larger antenna be pointed to its target with a specified
accuracy (i.e., the RMS error not to exceed II micro-radians). The antennas are assumed

to be locked (i.e., fixed with respect to the truss) during normal operation, so that the

problem is that of controlling the pointing and vibration of the entire structure. It is
assumed that a three-axis control moment gyro (CMG) and collocated attitude and rate
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sensors,located close to the center-of-mass or" the structure, are used for accomplishing

the control.

The approach followed herein is to formulate the integrated design problem as a

single-objective optimization problem. The structural design variables used are outer

diameters of the truss and antenna support members with the thickness fixed. In

particular, the truss was broken into three sections and the outer diameters of the

longerons, battens, and diagonals within each section constitute nine design variables.
Two additional structural design variables are the outer diameters of the support members

for the two antennas, thus constituting a total of II structural design variables.

The control law considered herein is the constant-gain dissipative controller given

by Eq. (I), which is known to have excellent robustness to unmodeled elastic mode dynamics

and parametric uncertainties. The set l_ of the control design variables consists of the

controller gains G and G . In order to ensure that G and G are symmetric and positive
p r p r

definite, they are expressed in terms of their Cholesky decompositions:

G --FTF G _- FTF
p p p r r r

where F and F are upper-triangular matrices. Thus, the number of control design
p r

variables is 12, so that the total number of design variables is 23.

The sensor outputs are contaminated with zero-mean white noise processes w and w
p r

with covariance intensities W and W . It is straightforward to write the equation for
p r

the evolution of the state vector covariance matrix [3]. The steady-state version of the

covariance equation is a Lyapunov equation, which can be readily solved to obtain the

steady-state covariance matrix E of the state vector. The RMS pointing error at a given
location can be determined from E in a straightforward manner.

The objective considered herein is to obtain the best possible performance with the

least possible total mass. This is expressed as a weighted sum of the total mass and a
measure of the "time constant", as:

Minimize

J = fl (Mstruct'+ Mact! + Cl-_) i

,

with respect to: d I ..... dxx, Fp, Fr;

where Mstruct ., Mart. denote the structural mass and the actuator mass, _e_(A{) denotes the

real part of the ith closed-loop eigenvalue _,,, and the superscript "0" denotes the

nominal values of the corresponding variables. The coefficient _ is chosen to be between

0 and I, according to the relative importance given to the total mass and the response
"time constant", represented by the term inside the summation signs. The "time constant"
term is a measure of how fast the motion (including the elastic motion) is attenuated.

The reciprocal of the "time constant" term is a measure of the closed-loop performance and

is called the "controlled performance".

The constraints are given by:
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I) Limit on the maximumallowable RMS error at the larger antenna:

c _ c = ii _rad.
RMS MAX

2) Limits on the minimum and maximum allowable tube diameters:

di(MAX) :" dl > dI(MIN)'i = I..... iI

3) Matrices F and I" must remain nonsingular (i.e., must have non-zero diagonal elements)
p r

in order to ensure positive definiteness of G and O .
p r

INTEGRATED DESIGN RESULTS

For the nominal structural design, the first modal frequency was about 0.6 Hz at the

large antenna support with the first truss mode at about 6 Hz. A 0.5 percent open-loop

modal damping is assumed. The nominal control gain matrices were diagonal with elements
chosen to give satisfactory closed-loop frequency and damping for the rigid-body dynamics

and to maintain the RMS pointing error within the required tolerance. Optimization
studies were performed using an integrated design package under development at Langley

Research Center. Figures 2-5 show, respectively, the behavior (normalized relative to the

nominal design) of the objective function (J), controlled performance, structural mass,

and actuator mass as functions of the trade-study parameter _. A value of _ near zero
corresponds to a "performance" or "control" dominated design while _ near 1 corresponds to
a "mass" or "cost" dominated design. As _ ranges between 0 and 1, Figures 2-5 indicate

the trade-offs between structural and control properties of the optimal integrated design.

For _ ffi 0.1S, Table I compares the corresponding integrated design with a control-
optimized (i.e., conventional) design in which the structural parameters were held fixed

at their nominal values and the controller parameters are chosen to minimize J. The data

in Table I shows that the integrated design approach produces a lighter, more flexible

structure with greatly improved performance. Not only does the integrated design approach
reduce the structural mass, but the mass is also redistributed. Structural mass is

removed from the truss section and added to the antenna supports. The large antenna

support modal frequency was increased to near 2 Hz with a reduction of truss-mode
frequencies by as much as 50 percent at the higher end of the spectrum. However, the main

advantage of integrated design is in its capability to obtain a better design and not
necessarily reduction of the total mass.

CONCLUDING REMARKS

The integrated controls/structures design problem was formulated as a
single-objective constrained optimization problem with the structural member sizes and the

control gain as the design variables. Based on the numerical results obtained for a

geostationary platform model, the integrated design approach gave significantly superior
designs compared to the conventional control-optimized design. Our future efforts are

being directed towards developing more advanced control laws (e.g., dissipative dynamic

compensators) for incorporation in the integrated design method and towards experimental
verification of the method. Methods for optimal placement of sensors and actuators are

also under development [4].
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Table 1. Conventional Design vs. Integrated Design

Initial Design

Control-optimized
Design
[_=o.15

Integrated
Design
8=o.15

Objective
Function

1.0

0.75

0.32

Controlled
Performance

1.0

1.41

4.82

Structural
Mass

1.0

1.0

0.58

Actuator
Mass

1.0

1.33

1.97

Total
Mass

1.0

1.09

0.97

7.5 m 3

15m

Figure 1. Generic geostationary platform.
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ABSTRACI

Presented herein is a novel passive vibration damping technique that is

referred to as "Non-Obstructive Particle Damping (NOPD)." The NOPD technique

consists of making small diameter holes (or cavities) at appropriate locations

inside vibrating structures and filling these holes to appropriate levels with

particles which yield the maximum damping effectiveness for the desired mode

(or modes). Powders, spherical shaped, metallic, non-metallic or liquid

particles (or mixtures) with different densities, viscosiLies and adhesive or
cohesive characteristics can be used.

1. INTRODUCIION

The effectiveness of damping treatments in structures is related to the

amount of vibration energy converted into other forms of energy. The
performance of virtually all existing damping methods is affected by

environmental conditions. Vibration damping under severe temperature,

pressure, and fluid flow conditions is usually handled by structural design

optimization, material selection, and other measures. Systematic treatments

for passive damping are unavailable for cryogenic or harsh environments.

Existing Methods of Passive Damping

Presently used passive damping techniques can be classified into s!x_
broad categories: (a) viscoelastic material applications, (b) friction

devices, (c) impact dampers, (d) fluid dampers, (e) tuned dampers, and (f)
isolators.

ap Viscoelastic materials are very effective vibration suppressors at room

and moderate temperatures but lose their effectiveness in low and high

temperature environments. Viscoelastic materials have a tendency to

degrade, embrittle, and even disintegrate with time through outgassing

and other processes. _

bo Friction dampers are useful in many applications including harsh
environments such as rocket engine turbine blades. However, because the

performance of friction dampers is a function of the tightness of fit and
of thermal and environmental conditions,=the effectiveness of

frictional and thermal forces often degrades due to changes in surface
conditions.

Cl Impact dampers are used in applications where pyroshock conditions

prevail, such as in recoil guns, and are relatlvely effective. Their
effectiveness is attributed mainly to momentum exchange between the

moving parts and impacting particles.=Impact dampers become

impractical when the amount of energy to be absorbed is large.

d, Fluid dampers are devices that use the added mass effect, squeeze film
effects, and where applicable, the sloshing effects of the fluid to

enhance structural damping. They are also used to absorb sudden shocks

by dissipating energy through heat and acoustic effects, and can be tuned

to specific frequencies.'Fluid dampers are normally not applicable
under harsh environmental conditions and hence have specialized and

limited utility.
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e, luned dampers form a class of vibration absorbers that have to be

specially designed to attenuate the amplitude of a specific vibration

mode. These include dynamic vibration absorbers, acoustic cavities, and

other forms of passive tuned mechanisms, lhey are quite effective if

designed appropriately. Sometimes, however, changes that occur in time

can result in the detuning of the dampers. _

f, Isolators are damping devices designed to attenuate the transmission of

vibrations to sensitive instrumentation and equipment over a given

frequency range, lhese can be made from viscoelastic materials, fluid

dampers, NOPD, and other combinations thereof. Their effectiveness is a
function of vibration amplitudes, frequency bandwidth, and environmental

conditions.61solators can also be affected by constant loading and
vibration effects and can degrade in time.

2. Non-Obstuctive Particle Damping (NOPD) Related Experience

NOPD involves the potential of energy absorption/dlssipation through
friction, momentum exchange between moving particles and vibrating walls,

heat, and viscous and shear deformations. Initial NOPD test results

substantiate the effectiveness of thls damping technique. THowever, the
information available is insufficient to model, optimize, and predict its

effectiveness on different applications.

The following describes a Space Shuttle Main Engine (SSME) liquid oxygen
(LOX) inlet tee vibration problem addressed and test results obtained that

indicate significant vibration reductions using NOPD techniques.

3. SSME LOX Inlet Tee. In an effort to reduce the high amplitudes of

vibrations of an SSME componentT,*without changing its mass or
performance characteristics, four l-millimeter (mm) diameter holes were

machined inside one of the LOX inlet tee splitter vanes (Figure l). The holes

were partially filled with various particles and tested under hammer impacts
and high frequency/high amplitude shaker excitations. Acceleration
measurements were taken on the vane and on the outside shell of the LOX inlet

tee (Figure 2) with holes empty and filled with various particles. The
results showed significant effects in spite of the small size of the holes and
small amounts of fill materials.

Description of Tests. Vibration and modal tests of the LOX Inlet tee
vanes, wlth holes empty, were conducted and data was recorded and reduced to

the form of frequency response functions. Then, the four l-mm-diameter holes

were filled with 0.18 mm, 0.28 mm, and 0.58 mm (Figure l) diameter steel balls
to I/2-, 3/4-, and 7/8-full levels and tested. Next, zirconium oxide

(ZrO 2) ceramic balls of 0.25 mm diameter were introduced into the holes
and tested for vibration levels with the same excitation. Similar tests were
carried out with nickel and tungsten powders.

All of the tests were performed according to the standard practice of

modal/vibration testing. The tee was suspended by flexible rubber bands to
simulate a free-free condition, and the shaker was bolted onto a fixture with

the moving tip (with a load cell attached to It) glued to the bottom of the

tee as shown in Figure 2. The driving point response was kept at 13.7 g, and

the vane responses at different locations along the midspan ranged from 20 g

to 154.6 g at the leading edge midpoint of the right vane.



SSMELOX Inlet Tee Test Results. Two types of data were obtained in

the tests: modal data (mode shapes and damping ratios at various

frequencies); and vibration (accelerance levels of various modes with

different types and levels of fill.

lhe vibration mode shapes of the vanes were obtained from a 2S-point

uniform grid of acceleration measurements on each vane. These mode shapes are

shown on separate plots (Figure 3). As the summed frequency response function

indicates (Figure 4), there are approximately lO modes between 3000 and 6000
Hz and only a few below 3000 Hz. The dominant modes are above 4200 Hz and are

torsional with the strongest at 4740 Hz. The less prominent modes below 4200

Hz are bending modes (Figure 3).

lhe damping ratios of these modes were quite low. They ranged from 0.06%
for a strong symmetrical torsional mode at 4748 Hz to 0.20% for a mode at 5239

Hz. Eight of the lO modes above 3000 Hz were isolated with the accelerance

(acceleration per unit force) amplitudes and damping ratios for each material

fill (at 3/4-full) recorded. The changes in damping performance with so
little mass added (the mass of steel removed was approximately 1 gram and the

amount of the heaviest material (tungsten) added was also approximately

I gram) are remarkable. The amplitude reduction with tungsten was generally

the greatest (Table l). For example, for the torsional mode at 5021 Hz, the

damping ratio was 0.0006 and the amplitude was 52.B g/Ib when empty. It
changed to 0.0035 and g.5 g/Ib (Figure 5), respectively, when filled with

tungsten. This i11ustrates a damping effect exceeding a factor of 5. A

sample of three modes is presented in Figures 5 through 7. Also, it was found

experimentally that the damping characteristics of the undrilled LOX inlet tee
splitLer vane were essentially the same as the drilled one with empty holes.

4. Heuristic Evaluations. The modal and vibration tests described

contribute to the knowledge base of damping treatments. To the best of the
author's knowledge, the methodology presented here is new. The observation

that tiny amounts of various materials added to such a small volume at

selected points produces such a large effect is novel. The potential
application of such an approach to rocket engine components, spacecraft,

aircraft, rotorcraft, lasers, and many other structural systems, is

promising. Further research is necessary to fully understand the mechanisms
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involved, opttmal fill levels, and the best locations and dimensions of holes
for specific applications as well as other aspects of NOPD.

As the data in Table 1 indicates, the damping effectiveness is a function

of mass/density with other parameters probably playing equal parts. For

instance, 0.18 mm diameter steel shot performs better than other particles for
the modes at 3807 Hz and 4309 Hz frequencies, while nickel powder damps more

than other particles at 4257 Hz frequency. Similarly, Zr02 was found to
reduce vibration amplitudes in the above mentioned tests more than nickel or

tungsten powders at 4309 Hz and 5239 Hz frequencies. However, in most cases,

tungsten performs better than the rest. These facts indicate that vibration

reduction by NOPD is a complex function of the material and size of particles
relative to the cavities they are in. Hole diameter, density, and perhaps

other characteristics of each type of the particles related to adhesive and

cohesive forces, viscosity, friction surfaces and flexural properties, also

contribute to the overall effect.

The NOPD technique is proven to be a very effective vibration damping

methodology that has potential applications in all areas of structural
vibration and acoustics. The tests presented herein show effectiveness in the

high frequency range, but preliminary test data has indicated effectiveness
under low frequency vibrations as well. Moreover, the NOPD concept is simple,

easy to implement (holes can be made a part of the manufacturing process) and

is relatively inexpensive. It has advantages over viscoelastic damping, since
its effectiveness is independent of the environment (when appropriate

particles are used), has more mechanisms for energy dissipation, does not add

mass (it often can actually reduce mass) and does not degrade in time (among

others). Furthermore, damping can be optimized through experiment and

analysis by choosing the right location and size of holes in a structure, and
by determining the optimal size-shape-kind (or even mixture) and the

fi11/compaction of the particles utilized.
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Table I. Amplitudes and Damping Ratios of LOX Inlet Tee Splitter Vanes
Under Various Materials Damping

Mode
Frequency, Amplitude.

Damping Reduction
Factor

Frequency (Hz) B
Amplitude (g/lb)
Damping ratio
Vibration
Reduction factor

Frequency (Hz) B
Amplitude (g/Ib)
Damping ratio
Reduction factor

Frequency (Hz) T
Amplitude (g/lb)
Damping ratio
Reduction factor

Frequency (Hz) T
Amplitude (g/lb)
Damping ratio
Reduction factor

Frequency (I-Iz) T
Amplitude (g/lb)
Damping ratio
Reduction factor

Frequency (Hz) T
Amplitude (g/lb)
Damping ratio
Reduction factor

Frequency (Hz) T
Amplitude (glib)
Damping ratio
Reduction factor

Frequency (I-h) T
Amplitude (glib)
Damping ratio
Reduction factor

Empty

3,807
30.2

0.0009

4,064
57.5

0.0009

4,257
27.6

0.0015

4,309
55.5

0.0012

4,748
70.1

0.0008

5,021
52.8

0.0006

"5,239
29.5
0.002

5,606
7.9

0.001

Holes Filled With Different Materials - 3/4 Full

Zirconium Steel 7
Steel 23 Oxide

3,805 3,805
30.5 26.3

0.0009 0.0009
1 1

4,063 4.061
43.4 39.8

0.0011 0.0012
1.2 1.3

4,258 4.256
32.6 27.1

0.0011 0.0015
-1.2 1

4,308 ' 4,308
48.5 40.5

0.0013 0.0013
1.14 1.4

4,744 4,743
49.0 42.7

0.001 0.0009
1.4 1.64

5,017 5,018
30.1 27.6

0.0009 0.001
1.76 1.9

5,233 5,234
26.4 26.3

0.0028 0.0025
1.12 1.12

5,604 5,603
7.0 7.0

0.00011 0.001I
1.13 1.13

3,807
24.5
0.001

1.2

4,061
37.3

0.0013
1.4

4,259
30

0.0012
-1.i

4,308
52.8

0.0013
1.06

4,741
41.1
0.001

1.7

5,015
20.4

0.0012
2.6

5,235
20.5

0.0034
1.44

5,605
6.0

0.0012
1.32

Steel 11

3,805
27.0

0.0009
1

4,060
34.9

0.0014
1.6

4,257
30.5

0.0012
-1.1

4,306
38.4

0.0014
1.45

4,740
37.0

0.0013
1.9

5,014
18.9

0.0015
2.8

5,232
22.6

0.0025
131

5,603
7.0

0.0011
1.13

Nickel
Powder

3,807
29.3

0.001
1.2

4,057
29.0

0.0017
1.9

4,257
20.4

0.0013
1.4

4,306
46.4

0.0016
1.2

4,737
35.0

0.0017
2

5,010
17.1

0.0017
3.1

5,232
32.7

0.0016
-1.11

5,593
6.9

0.001
1.15

Tungsten
Powder

3,804
27.5

0.0011
1.25

4,056
25.2

0.0016
1.8

4,258
25.5

0.0013
1.1

4,306
41.5

0.0015
1.34

4,734
18.2

0.0028
3.9

5,010
9.4

0.0035
5.6

5,234
30.9

0.0017
-1.05

5,593
6.4

0.001
1.2

M
O
D
E
1

M
0
D
E
2

M
0
D
E
3

M
O
D
E
4

M
0
D
E
5

M
O
D
E
7

M
O
D
E
6

M
0
D
E
8

Note: B = Bending Mode
T = Torsional Mode

Reduction factor = Amplitude empty + Amplitude filled
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Introduct_oB

Consider the Daniels system in Fig. i with n brittle fibers of

independent identically distributed resistances (_}, i- I, 2 ..... n, that

is subject to a random load process S(t). It survives in any of the damage

states m - n, n-i ..... I having m unfailed fibers and n-m failed fibers.

System collapses when damage state m-0 is reached. Let Y= be the residence

period in damage state m. System reliability in a time interval (O,r) is the

probability

n

ps(r) . p( r. y > _) (1)
m-i m

n

that time to failure Z Y exceeds service llfe r.

m-i m

Figure 2 shows a plate with a crack of initial length 2a 0 that is

excited dynamically by stresses S(t), t _ 0, normal to the crack. Let A(t) be

half crack length at time t. System reliability can be defined as probability

Ps(r) - P(A(T) < a=, 0 _ t <___) (2)

where a= is a specified critical crack length. The determination of this

probability poses significant difficulties due to the coupling between system

response and crack growth rate.

The paper develops methods for estimating system reliabilities Ps(_) in

Eqs. 1 and 2 and corresponding failure probabilitles PF(_) -- 1 - Ps(r). The

analysis is based on properties of conditional differential random processes
and one-dimensional diffusion models.

Daniels Systems

It is assumed that fibers are brittle linear elastic with stiffness K and

damping C, unfailed fibers share equally the load, and system response is a

mean square differentiable process that takes on positive values with nearly

unit probability. Let X_(u) be system displacement in damage state m and u

_(0, Ym) be a local time in this state. System response is

X(u) I + + u)"'" Y +l+ (3)
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for quasistatic excitations and satisfies the differential equation

2 i

Xm'"(u) + 2 _m _m Xm(U) + _m Xm(U) " M S(Yn + "'" + Ym+l + u) !

(4)

in which _m _ - _-mn - , - _'_TM, and M - the" fn' _m Wn' fn Cn/(2_ n M) _n

system mass, for dynamic excitations.

Consider a sample 9 L < 9 2 < ... < 9Q of the ordered random resistances R"l

< _2 < ... < _ and denote by f® the critical threshold in damage state m.

Damage state m begins when X.+l(u) first upcrosses f=+t and ends when X_(u)

first upcrosses ft. Probabilistic characteristics of Xm(u) can be obtained

from Eqs. 3 and 4 under initial conditions X.(O) - f=+i X.(O) - Z=+ t -

X_+l(Y=.l)J{a f=+l-upcrossing of Xm+1(u) at time u - Y=+L}" It can be shown that

Z.+_ follows probability (I)

z f(z J _.+i )

(z J _m+l ) - (5)
fZm+ I

_dz z _m+l )
f(z J

o

where f(z [ _.+,) is the probability of _., (Y..,) J X.., (Y..,) - _..,.

Denote by u=(u) the mean _=-upcrossing rate of X=(u) J {X=(0) -_..,,

_(0) - z.+ l > 0} at time u _ 0. Assuming that the sequence of _m-upcrossings

follows an inhomogeneous Poisson process of intensity vm(u), probability of

event {Y. < y} given the above initial conditions on X_(u)

y
P

be approximated by exp {- J Um(U) du}. The safety requirement in Eq.can

I becomes 0

n

Z FYm I _n (m-i J Yn ..... Ym+l' Zn ..... Zm+l, Xn(O), O) (@(U2(n-m)+3)_
_>0

(6)

in which @ - the distribution of the standard Gausslan variable, U_.=)+3 -

independent Gausslan variables with zero mean and unit variance, and functions

F are distributions of conditional random variables Yn J Y. ..... Ym÷,, Z.,

.... Z.÷_, X.(0), X_(0) where {X.(0), X.(0)} define the initial state of the

system. First and second order reliability methods (FORM/SORM) discussed,

e.g., in Ref. 2 can be used to calculate probabilities Ps(r) and PF(_) based

on the safety condition in Eq. 6.

Figure 3 shows the probability of failure for a Daniels system with n-2

fibers of deterministic strength 9 t - 1.25 and 92 - 3.00 subject to a

quasistatic load process S(r) - d(_+() S(,), where (-0,i, d(=) - l-e "5 ,

and S(r) is a stationary Gaussian process with mean 2 and covariance function

(I + Irl'r,J) exp (- Jrl-r,J). Results have been obtained by FORM/SORM

algorithms applied to the safety condition expressed in the standard Gaussian

space given in Eq. 6.
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P_ate with Crack

Consider the massless isotropic and homogeneous plate in Fig. 2 with an

initial crack of length 2a 0 that has an infinitely stiff element of mass M at

its free end. The plate is subject to stresses S(t) normal to the crack. Let

2A(t), X(t), and g(A(t)) be crack length, plate deformation, and plate

stiffness at time t > 0. Displacement process X(t) satisfies differential

equation

e,

M X(t) + C X(t) + g(A(t)) X(t) - S(t) (7)

where C denotes system damping. Stiffness function g(a) can be obtained

numerically for various values of the crack length and plate geometry. This

function is approximated by

g(a)/g(0) - i - 1.708x _ + 3.081x _ - 7.036x 6 + 8.928x' - 4.266x m (8)

for _-i where x-2a/2.

It is assumed that (i) S(t) is a stationary broad band Gaussian process,

(ii) X(t) is positive with nearly unit probability, (iii) system is lightly

damped, and (iv) crack growth is slow. Thus, the probability law of system

response X(t) varies slowly in time so that it can be approximated by a narrow

band Gaussian process with central frequency _(A(t)) -

_g(A(t))/M. Let H(t) beM_he_ envelop of X(t) and R(t) - H(t)/_ =CA(t))
G O

where _(A(t)) 2 = 2 C g(A(t))is the response variance at time t and Go is

the coordinate of the one-sided power spectral density of S(t) at frequency

_(A(t)). It can be shown by use of the averaging method that R(t) satisfies

the stochastic differential equation (3)

[ l)dR(t) - - 9 R(t) - 2R(t----_ dt + _ dB(t)
(9)

in which p - C/2M and B(t) - the Brownlan motion process with independent

identically distributed Gaussian increments dB(t) of mean zero and variance

dr. Therefore, the range of displacement process X(t) at time t can

be approximated by 2H(C) - 2_ a(A(C)) R(t).

According to the Paris and Erdogan model, the rate of crack growth is (2)

da(c) _(A(c)) ]_
d"-'_ " 2. _ (t_(t) (i0)

where a and _ are coefficients and _(t) denotes the range of the stress

intensity factor. Let h(a) be the stress intensity factor at the crack tip in

Fig. 2 corresponding to unit stresses and a crack of length 2a. This function

can be obtained numerically and is approximated by

h(a) - _-x (0.467 - 0.514x + 0.960x 2 - 1.421x 3 + 0.782x 4) (11)

for 2-i. Thus, stress intensity factor range A_(t) is equal to h(A(t))

g(A(t)) 2 H(t). From Eqs. 9 and i0, process {R(t), A(t)} is a blvariate
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diffusion process satisfying the stochastic differential equation

[dR(t) - - 9 [ R(t) l]2R(t) dt + _ dB(t)

dA(t) - n w(A(t)) R(t)_ dt

(12)

_G

where _ - -- 2M -- and w(a) - _(a) h(a) Jg(a)

2, 4 C

These equations can be used to calculate the first passage time of A(t)

relative to level act(1).

An alternative approach can be based on the solution

t

A(t) - _-I [ _(a0 ) + ; R(s)_ ds ]

0

(13)

where d@(a) - da/(w w(a)). Since process A(t) has almost surely monotonically

increasing samples, reliability Ps(_) is

Ps(,) - p (_(,) < Xcr) (14)

where Xcr - _(acr) _(a 0) and R(_) - [ R(s)b ds. Thus, PS(t) coincides

0

with the distribution of random variable R(t) evaluated at x
cr"

An approximate method for calculating the distribution of R(T) can be

based on the observation that random variables R(t) and R(s) are strongly or

weakly correlated when It-sl < ,= orIt-sl> ,=, where r= is the correlation

time of R(t). This suggests to approximate R(t) by a stationary independent

series with time step r_ and the same marginal distribution as R(t) that

takes on co, tent values within a time step. According to

this approximation R(,) has mean

E R(r)- n rcorr [i + _ ] , (15)

variance

_2
Vat R(,) - n 2 _cor [ r(l + _) r(l + 3) ] , (16)

19

III|



and characteristic function

E[elU_(,)] n4(u) - - [_(u rcor)] (17)

m

where r - n r_ and ÷ i_ the characteristic function of random variable

R(t)_. Assuming that R(f) follows a Gaussian distribution reliability can be

obtained from

pS(r) . _ [ xcr " E _(r) ]

J Vat R(,)

(18)

where • - the distribution of the standard Gaussian variable. The Gaussian

assumption is asympcstically correct as r _ =. Alternatively,
the distribution of R(f) can be obtained from the characteristic function in

Eq. 17 and the inversion theorem that gives (4)

i i f elux 4(-u) - e"lux 4(u) duF(x) - _ + 2-_x iu

0

(19)

System reliability coincides with this distribution evaluated at x - x=, i.e.,

P,(,) = F(x_) (20)

Figure 4 shows reliabilitles in Eqs. 17 and 20 and Eq. 18 as a function

of crack length 2am for the plate in Fig. 3 with thickness of O.l in, 2 - 1

in, M - 0.3 25 sec 2 in"I, c - 20 2b sec i_ i, a0 - 0.05 in, _ - 0.0179 2b 2 sec

in4, n - I00, r=- 0.0_79 sec,= - 0.66 x i04, and $ - 2.25. Results by the

two approximate methods practically coincide.

Conclusions

Reliabllityhas been determined for two degrading dynamic systems subject
to random load processes. Damage is caused by loss of components for Daniels

systems and crack extension for plates with cracks. The analysis has

accounted for the coupling between response and current damage state of the
system. Ic Is based on mean crossing rates of conditional processes and

properties of diffusion models, Simple systems are used to illustrate

proposed methods for estimating reliability.
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ABSTRACT

The objective of this paper is to set up and analyze benchmark problems on
multibody dynamics and to verify the predictions of two multibody computer

simulation codes. TREETOPS and DISCOS have been used to run three example

problems --- one degree-of-freedom spring mass dashpot system, an inverted

pendulum system, and a triple pendulum. To study the dynamics and control

interaction, an inverted planar pendulum with an external body _orce and a

torsional control spring was modelled as a hinge connected two-rigid body
system. TREETOPS and DISCOS affected the time history simulation of this

problem. System state space variables and their time derivatives from two

simulation codes were compared.

1.0 INTRODUCTION

Growing interest in deploying flexible satellite and spacecraft structures
for various applications in space has made the subject of multibody dynamics

important again. Rigid and flexible systems interconnected in either closed

or open-loop configurations that undergo large rigid-body motions and/or small

elastic deformations constitute the class of problems referred to as multibody
dynamics problems. Prediction and control of systems for a combination of

rigid and flexible-bodies motions are formidable tasks, but must be considered

as part of the design strategy of multibody dynamic systems. The application

of appropriate multibody dynamics analysis methods can achieve objective de-

sign of these systems.
The primary objective of this paper is to address Likin's question(I) on

the absence of objective evaluation of government supported multibody computer
codes. Two simulation codes --- TREETOPS and DISCOS were selected for

evaluation. Three example problems were selected for analysis: they are a

single degree-of-freedom spring mass system, a triple pendulum system, and an

inverted pendulum with the base acted upon by a constant force. Time domain

results for all three example problems obtained from both codes are discussed.

* M. Swaminadham, Presently Associate Professor, Texas A_ University,

** Young I. Moon, Senior Engineer, ASIAC,

*** ¥.B. Venkayya, Principal Scientist, Flight Dynamics Laboratory, WRDC
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2.0 PAST RESEARCH

Two decades of research has produced a wealth of information about the

dynamics of multibody systems. Of late, spacecraft components, large space
structures and robotic manipulators with control elements were modeled as a

combination of rigid and flexible bodies with an expanded generality to the

system mathematical modeling and formulation of equations of motion.

Emphasis was given to the solution methods amenable to computers. Efficient

dynamic simulation codes development was the major thrust.

Proceedings of the SDIO/NASA sponsored workshop on multibody simulation (2)

provide important recent developments for computer simulations of rigid, flex-
ible mulibody machine and space structures. Fletcher, et al (3) derived

Newton-Euler equations of motion for two point-connected rigid bodies. Hooker

and Magulies (4) formulated a generalized procedure for several multibodies.

Kane (5,6) introduced a new approach called Lagrange's form of D'Alembert's
principle. This method contained the idea of generalized speeds for rapid

computation of simulation problems. Meirovitch (7) derived the equations of

motion of flexible spacecrafts and appendages by the conventional Lagrange's
method.

To adapt mathematical methods for computer simulations, Fleischer (8) was
the first to program the H_oker-Margulies equations. Several multibody

simulation codes such as DISCOS (9), MBODY, TREETOPS (IOA,IOB), ADAMS (11),

SADACS, MIADS, and CONTOPS have been developed. Some are designed for specific

applications, while others claim to be general purpose programs. Kim and
Haug (12) proposed a multibody dynamics verification library and presented

results of DADS, DISCOS and CONTOPS.

3.0 MULTIBODY DYNAMICS COMPUTER PROGRAMS

Two computer codes specified for this study, DISCOS and TREETOPS, are

briefly discussed in this section. Three example problems: (1) a spring-mass-

damper system, (2) a tripe pendulum system, (3) an inverted pendulum system

were selected and solved using each code.

3.1 TREETOPS

TREETOPS is a time history simulation of motion of a complex structure of

interconnected flexible or rigid bodies at hinges. The equations of motion

used by this code were derived via Kane's method, which is the generalization

of Lagrange's form of D'Alembert's principle. In addition to geometry and

material properties of the bodies of the structure, TREETOPS requires infor-
mation such as the numerical integration type,time step size, plot-data output

interval, simulation run time and other user supplied options.

The user can enter necessary data into the computer by running the interactive

setup program TREESET, which acts as an interactive preprocessor to help the
user enter and edit data in the various TREETOPS programs.
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3.2 DISCOS

DISCOS (Dynamic Interaction Simulation of Controls and Structure) is another

computer code written for the dynamic response analysis of topological systems

of connected rigid bodies. It uses the general form of Lagrange's equations to

derive the equations of motion. Lagrange multipliers are used as interaction

forces and/or torques to maintain prescribed constraints.

DISCOS was used to study the stability of an inverted pendulum and to calcu-

late the force which balances the system when the pendulum is released from a

given initial position.

3.3 EXAMPLE PROBLEMS

3.3.1 Spring-Mass-Damper Problem

The first example is a single degree-of-freedom spring-mass-dmmper system,

shown in Figure 1A. The oscillatory displacement of mass plotted against time

is shown in Figure 2. Both TREETOPS and DISCOS predicted identical results.

3.3.2 Triple Pendulum Problem

The second problem consists of three pendulums (rigid bodies) connected at
the hinged joints as shown in Figure lB. The body 1 from its initial -30

degrees and bodies 2 and 3 from parallel positions were released. Figure 3

shows time history response of hinge i, and other time histories of position

and angular velocity are reported in Reference 13.

3.3.3 Inverted Pendulum Problem

Figure IC shows the inverted pendulum mounted on a cart which is acted upon

by a constant force of I0 Newtons. The cart is free to move in a horizontal

direction unlike the previous two problems where translational motion of one
hinge point was constrained. DISCOS and TREETOPS were used to obtained

histories of positions and angular velocities of the hinge for the first 10

seconds. Details of these plots are shown in Reference 13. Figure 4 shows
the hinge angle as a function of time.

3.3.4 Stability of Inverted Pendulum

The stability of the inverted pendulum was tried by feeding back a force on
the cart. A constant row vector which is multiplied to state variables were

determined from the characteristic values of the state differential equations.

These nonlinear differential equations were solved numerically and plots were
obtained for comparison with DISCOS predictions. The problem was run on DISCOS

with I0 degree initial hinge angle displacement which was used to represent a

kind of disturbances. Results show that the hinge angle starts to decrease as

the computed force is applied to the cart and crosses the neutral line (upright

position of the pendulum) twice before the system approaches the stable posi-
tion asymtotically. DISCOS results are in good agreement with theoretical

predictions as shown in Figure 5 and 6.
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4.0 RESULTS AND DISCUSSION

From the results of all three example problems solved by both DISCOS and

TREETOPS codes (i.e. time history plots of position, both linear and angular
velocity, and acceleration), it can be concluded that both codes predict iden-
tical results. These identical simulation results support the conclusion in

Reference 14, which states that all approaches used to derive equations of the

motions will produce equivalent mathematical representatives. Reference 14
compares both these codes and presents capabilities and limitations. It also

recommends a few baseline simulation tests using simplified and idealized con-

figurations be conducted to eventually include actual configurations.
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INTRODUCTION

The issue of the utility of multilevel decomposition and optimization remains controversial. To dam, only

slructmal optimization community has actively developed and promoted multilevel optimization techniques. (See

reference 1 for a thorough overview and discussion of existing techniques.) However, even this community

acknowledges that multilevel optimization is ideally suited for a rather limited set of problems. Reference I warns

thatdecompositiontypicallyrequireseliminatinglocalvariablesby usingglobalvariablesand thatthisinturn

causesill-conditioningofthemultileveloptimizationby addingequalityconstraints.The purposeofthepresent

paperistosuggesta new multileveloptimizationtechnique.Thistechniqueusesbehaviorvariables,inadditionto

designvariablesand constraints,todecompose theproblem.The new techniqueremoves theneed forequality

constraints,simplifiesthedecompositionofthedesignproblem,simplifiestheprogramming taskand improvesthe

convergencespeedofmultileveloptimizationcompared toconventionaloptimization.

STATE-OF-THE-ART MULTILEVEL OPTIMIZATION

Multilevel optimization is illustrated by the schematic in figure I. The figure represents a three level decomposition

of a general optimization problem into subproblems such that each design variable is assigned to one and only one

subproblem. Startingwiththelowestlevel,eachsubproblem(e.g.sub3-I)isoptimizedwith respectto its subsetof

designvariables,holdingallotherdesignvariablesfixed.The objectiveofallsubproblemsistominimize constraint

violation.At thelowestlevel,onlylocalconstraintsmust be considered.However, atthemiddlelevel(e.g.sub

2-2),designvariablesmay notbe changed ina way which would violatelowerlevelconstraints.Finally,thesystem

leveloptimizationminimizesthecostfunction(objective)withoutviolatingconstraintsinany subsystem.The

whole processisrepeateduntilthevaluesofthecostfunctionand constraintviolationsareacceptable.

The key to multilevel optimization implementation is efficient minimization of constraint violations ineach

subproblem. Figure 2 illustrates how an envelope function (fa) is used to fit multiple conswaint functions (gi). This

envelope or cumulative constraint function is defined as:

[ zepg] O)

where p is an adjustable smoothing factor. Each subproblem minimizes f_,y) where p is a vector of fixed

parameters and y is a vector of local design variables. The subproblem also calculams sensitivity derivatives

(aLTapj) at the solutionpoint.
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In the problem illustrated by figure 1, the four subpmblems on the lowest level would minimize cumulative

conswaint functions D 1, Q2" Q3and D4" At the next level, the third subproblem (sub 2-3) Items Q3 and _4 as if these

were local constraints. The local design variables in sub 2-3 arc some subset of the pj which were fixed parameters

influencing sub 3-3 and sub 3-4. Thus, the derivatives (_Q/_p) calculated at the lowest level can be used to estimate

new values of each Q. At the system level, the actual cost function is minimized such that the conswaints from all

subproblems remain feasible (4<0) or such that initially infeasible constraints do not get any worse.

Decomposition techniques

Multilevel opt_nization works very well for all system design problems which decompose readily into subsystems.

Figure 3 illustrates the decomposition process. A grid of all system design variables (x) all subsystem design

variables (y) and all constraints (g) is constructed. The grid is ordered with the system design variables t-u-st.The

blocks indicate which constraints arc functions of which design variables. In this simple example, it is easy to

identify three subprobleJnswith the first two conswalnts in sub 2-1, the next two in sub 2-2 and the final two in sub

3-1. Notice that sub 2-1 and 2-2 belong on the highest level of subsystemsbecause they are functions of x. Sub 3-1

is on the level below that and connected to sub 2-1 by the first and second y design variables.

Unfortunately, not all system design problems arc easy to decompose. Figure 4 inuscates a typical simadon which

occurs when some of the "fixed parameters" arc not really independent design variables. Notice that in this problem,

a fixed parameter in the lowest level, v 1, is not an independent design variable, but rather, a behavior variable which

is a function of variables v2 and Y3 at the middle level. Multilevel optimiza_on is possible but the epproximafion of

Q at the middle level becomes more complicatc_l. For instance,

Q3(Y3+aY3 ) = D3(Y3) + {(af_31ay3)+(aD31aVlXaVllay3)} (ay3)
(2)

If there are numerous behavior variables, then the programming logic required to resolve such approximations can

quickly get out of conm01.

_fovel Implementation technique

A novel way m simplify the coding is similar to the approach pmsencd in reference 2. The dependency grid

concept is extended to include behavior variables,v, and cumulative cousuaints, D, as shown in figure 5. This

dependency grid is turned into a malzLx, denow.A !', by pulzing a 1 in each diagonal box, putting negative sensitivity

derivative values in each shaded box and putting a zero m each blank box. For instance, a lightly shaded box in row

v 1 and column Y3 is replaced by the most recent value of (-_Vl/_y3).

This global sensitivity matrix, F, is very useful. Ifa value for (at'_3/ay3) is required, a column vector, 13,which has

zeros in each row except for a 1 in the row which corresponds to )'3 is constructed. The solution vector, d, to the

system of equations

[rld=_ (3)

will contain the total sensitivity derivatives with respect to Y3" For instance, the row of d which corresponds to Q3

will contain

OX'LjJdY3)= (aD3/ay3}+(_D3/avl)(_Vl/aY3)
(4)
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Itisimportanttounderstandthattheglobalsensitivitymatrix,I',isupdatedasthemultileveloptimization

progressesand thatequation3 is solved by eachsubproblemabovethe lowestlevel. The matrix r' is initially the
identitymauix. Eachsubl_lem producessensitivityderivatives(_ap) andstorestheseintheappropriate

locationsofF. Thosesubproblemswhichevaluatebehaviorvariablesalsocalculateandstorederivativesof

behaviorvariableswithrespecttolocaldesignvariables.Eqnation3canbe solvedformany differentrighthand

sidevectorstherebyprovidinghighqualitygradientsofeachf_withrespecttoalllocaldesignvariables.

A globalsensitivitymaC-ixcanalsobecreatedandusedintheconventionaloptimizationprocess(i.e.withno

decompositionintosubproblems).Inthatcase,therowsandcolumnsaredesignvariables,behaviorvariablesand

constraints.The globalsensitivityderivatives(dg/dy)and(dg/dx)includetheeffectofanybehaviorvariablesand

canbeusedby thenonlinearprogrammingalgorithmtoestimatemoreaccuratesearchdirections.

RESULTS

TableIcontainsresultsforseveraltestcasescomparingconventionalapproach(includingglobalsensitivities)and

multilevelapproach.Thesetestcasesategeneratedandoptimizedusinganextensionofthemultilevelsimulator

reportedinreference3.The multilevelcasesareruntoconvergence.TheconventionalaPlxOachbeginswiththe

same initial values of design variables and is terminated after using approximately the same number of function

evaluations as required by the multilevel approach. Three test cases are rcpormclhere. As noel in table 1, these
cases vary in the number of design variables, numberof constraint functions and number of behavior variables. The

initial conditions are also varied (gsO is defined as the feasible region). In each case, the quality of the multilevel
solution far exceeds thai of the conventional approach in terms of smaller objective and constraint values.

The comparisonbetweenmultilevelandconventionalapproacheswouldbeevenmorelopsidediftableIcompared

thenumberofconswaintfunctionevaluationsrequiredtoconvergetoaglobalminimum. The conventional

approachtendstofollowconstraintboundariesandthereforeconvergesveryslowlyasmoreandmoreconstraints

becomeactive.Multilevelapproach,on theotherhand,minimizestheconstraintviolationforeachsubproblem.

Thus,thesystemleveloptimizationbeginsfarfrommostconstraintboundariesandhasconsiderablefreedomtoset

the system level design variables. This is one reason why the multilevel optimization converges much faster than
the conventional approach.

Figures6-8containdetailedconvergencehistoriesofthethreeproblems.Objective(OBJ')andmaximum constraint

value(Omax=maxi gi)areplottedagainstnumberofconstraintfunctionevaluations.Noticethattheconventional

approachperformswellwhentheinitialdesignisinthefeasibledomain(figure8)andperformspoorlywhen the

initialguessisfarfi'omthefeasibledomain(figure7).On theotherhand,multilevelapproachperformsequallyweU

fromanystartingpoint.

CONCLUDINO REMARKS

In conclusion, multilevel optimization can be implemented using a global sensitivity man-ix. This formulation is
easytocodebecauseeachsub1_'oblemisverysimilarandbecauseallthecouplinginformationispreservedinthe

sensitivitymatrix.Thisformulationextendstheusefulnessofmultileveloptimizationtoamuch widerrangeof

multidisciplinarydesignproblemsbecausedecompositionissimplifiedifbehaviorvariablesareallowed.This

methodisparticularlywellsuitedtoproblemswithlargenumbersofdesignvariablesandwithcomputatioually

expensiveconstraints.The recenttestssuggestthatmultileveloptimi,_tionconvergesmuch morerapidlythanthe

conventionalapproachforsuchproblems.
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ABSTRACT

In recent years there have been several hierarchic multilevel optimization algorithms proposed and implemented in design
studies. Equality constraints are often imposed between levels in these multilevel optimizations to maintain system and
subsystem variable continuity. Equality constraints of this nature will be referred to as coupling equality constraints. In
many implementation studies these coupling equality constraints have been handled indirectly. This indirect handling has
been accomplished using the coupling equality constraints' explicit functional relations to eliminate design variables
(generally at the subsystem level), with the resulting optimization taking place in a reduced design space. In one multilevel
optimization study where the coupling equality constraints were handled directly, the researchers encountered numerical
difficulties which prevented their multilevel optimization from reaching the same minimum found in conventional single
level solutions. The researchers did not explain the exact nature of the numerical difficulties other than to associate them
with the direct handling of the coupling equality constraints.

In this paper, the coupling equality constraints are handled directly, by employing the Generalized Reduced Gradient (GRG)
method as the optimizer within a multilevel linear decomposition scheme based on the Sobieski hierarchic algorithm. Two
engineering design examples are solved using this approach. The results show that the direct handling of coupling equality
constraints in a multilevel optimization does not introduce any problems when the GRG method is employed as the internal
optimizer. The optimums achieved in this study are comparable to those achieved in single level solutions and in multilevel
studies where the equality constraints have been handled indirectly.

INTRODUCTION

Recent studies (1-8) in the area of multilevel optimization have shown that it is a viable method for solving large non-linear

design problems. In multilevel optimization, the main design problem at the top level is decomposed into a hierarchical tree
consisting of subproblems at the lower levels. A coordination problem is introduced to preserve the coupling among these
subproblems. The advantage of the decomposition is that it allows the subproblems to be analyzed and optimized
independently with the coupling providing continuity between the levels.

In many multilevel optimization schemes one component of this coupling is achieved by placing equality constraints on
various design variables between successive levels. In several implementation studies these equality constraints are
eliminated explicitly and handled in some indirect fashion. Sobieski et al. (2,3) in their portal frame example implicitly
enforced the equality constraints by eliminating variables at the lower levels. This is possible when an explicit relationship
between local level and global level variables exists. Haftka (7) used two inequality constraints to replace the equality

constraints in his multilevel approach to the same portal frame problem.

Thareja and Haftka (6) encountered numerical difficulties when handling equality constraints directly in a multilevel
optimization. The numerical difficulties prevented their multilevel optimizing algorithm from reaching the same global
minimum found in single level solutions. In an effort to avoid equality constraints Thareja and Haflka (8), have extended
Haftka's earlier technique (7) in their single-level approach to hierarchical problems. The method provides a decoupling
technique to form a single level problem which avoids equality constraints. The method is proposed for structural
optimization. This decoupling may not always be an alternative in more complex engineering problems.

The objective of this paper is to demonstrate the utility of the Generalized Reduced Gradient (GRG) method for handling the
coupling equality constraints directly in a multilevel optimization. The GRG method is used as the optimizer for both the
system and subsystem optimizations within a multilevel optimization based on the Sobieski hierarchic algorithm (1-3). The
coupling equality constraints imposed between system and subsystem variables are handled directly by the GRG optimizer. Two
engineering design examples are solved, one being a two level study of the portal frame problem (2,7) and the second being a
two level study of the speed reducer example (4,5,10-13). Numerical results are comparable with published results for both
examples.

SOBIESKI HIERARCHIC ALGORITHM WITH THE GRG OPTIMIZER"

Jaroslaw Sobieski of NASA Langley Research Center proposed a linear decomposition scheme (1) for hierarchic multilevel
optimization in 1982. The algorithm has since been implemented in both two and three level design formulations (2,3). The
algorithm requires an internal optimizer at both the system and subsystem levels. In the Sobieski test studies (2,3) the
CONMIN (16) optimizer was employed as the internal optimizer, where the coupling equality constraints were enforced
indirectly through variable elimination prior to optimization.

In this study OPT3.2, a FORTRAN implementation (14) of the GRG method is employed as the internal optimizer, with
the coupling equality constraints being handled directly. In general a user can input equality constraints directly, when
employing a GRG optimizer. In its optimization routine the GRG method divides the vector of design variables into two
classes, nonbasic and basic variables, and employs the implicit function theorem to formulate a reduced, unconstrained
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problem in the nonbasic variables. This problem is then optimized using a linear measure of the gradient of nonbasic
variables (generalized reduced gradient). An important feature of the GRG method is that it can actively make variable basis
changes when required during optimization. This differs from the fixed choice inherent to an explicit variable elimination.

A brief description of the Sobieski hierarchic algorithm for a two level formulation is presented in this section. In a two-
level optimization, the original overall system design problem (standard form) is decomposed into a single problem at the
system level and one subproblem for each element at the lower level. In general some of the system variables (global) are
functions of the subsystem variables (local). At the system level only the global variables are used in the overall system
optimization. A linear approximation of the subsystems (eq. 4) is monitored at the system level in order to preserve inherent
coupling. The global variables being optimized at the system level serve as design parameters for the subsystems. Therefore
the subsystem design space consists of only its own local variables, with the global variables fixed at the sublevel and acting
as parameters.

At the subsystem the relationships between global and local variables are maintained and take the form of coupling equality
constraints linking the variables (eq. 9). The constraints of the original problem are divided between the system and
subsystems dictated in part by the variable reslructuring (i.e., global vs. local). At the subsystem level these constraints are

incorporated into an objective function referred to as a cumulative constraint function (eq 8). The goal in the subsystem
problem is to minimize the cumulative constraint function in terms of the local variables for a given global variable state.
After optimizing a given subsystem, parameter sensitivity derivatives (15) are calculated for both the local variables and

cumulative constraint function. These sensitivity derivatives are used at the system level in a Taylor series extrapolation to
form linear approximations of both the cumulative constraint and the local variables. System constraints are formed which
insure that the linear approximations of the subsystem's cumulative constraint function and of the local variables do not

exceed their respective bounds (eq 4.5). These linear approximations are of course functions of the global variables only.
Move limits of +10% are imposed on the global variables (eq. 6) to maintain the sensitivity derivative accuracy. The
algorithm loops through the system and subsystems in an iterative fashion until a converged solution is obtained. The
standard form of a two level optimization can be represented as detailed below:

SYSTEM LEVEL:

Minimize: f(x)

subiect to:

gSj(x)_0 j=1,2,3 ...... ,J

hSk(x)_3 k= 1,2,3 ...... K

(KS°+ (dKS/dx) T* (Ax)) e < 0 e=I,2,.NE

or achieve a 50% improvement if KS ° is positive (ref.17)

yl e < [y°e+((Ax)T* (dY/dX)e)T ] < yUe

/_8s(_) < (O.lO)*/_8SCx*)
x I < x < x u

x=[xl,x2,x3,...Xn]T

gs

lis

KS subsystemcumulativeconstraintfunction

dKS/dx=[dKS/dx l.........dKS/dxn]T

vectorofKS sensitivityderivatives

y=[yl,Y2,Y3,...yi]T vectoroflocalvariables(subsystem)

dY/dX={dYi/dX n} (nx i)matrixofy sensitivityderivatives

Ax=[Ax l'AX2.......Axn]T vectorofglobalvariablechange

subscript e refers to specific subsystem element(s)
superscript o refers to current value(s) at subsystem
superscripts I & u refer to lower and upper limits
hie total number of subsystems
superscript , refers to initial values

(1)

(2)

(3)

(4)

e=i,2,..NE (5)

(6)

CO

vector of g/oba/variables

system inequality constraint vector

system equality constraint vector

SUBSYSTEM:

Minimize: KS(x*,y) = (1/p)*ln[Yje'Pgj(x*,Y)]

subject to:

hk(X ,y)=Cx -f(y)) = 0 k= 1,2 ..... K e

X

gj(x*,y)

h(x ,y)

KS(x*,y)

P

subscript k

(8)

(9)

current global variable vector (fixed)

local inequality constraint j= 1,2...,J

normally stated as g(x*,y) > 0

coupling equality constraint vector

Kreisselmeier-Steinhauser function (11)
used asa cumulative constraint function

weighting factor in KS

particular coupling equality constraint

coupling equality constraints at subproblem "e"
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DIRECT HANDLING OF COUPLING EQUALITY CONSTRAINTS
This research focuses on the direct handling of the equality conswaints (eq. 9) which are used to maintain local variable (v)

continuity with the current system level variable state (x*). In the Sobieski implementation studies (2,3), these equality •
conswaints have not been handled directly but are enforced implicitly, using variable elimination. This implicit enforcement

results from using the coupling equality constraints to eliminate Ke local design variables by expressing them in terms of

the fixed global variables. The resulting subsystem optimization then takes place in a reduced local design space without the
equality constraints. This technique is not general and can only be used when an explicit relationship for variable elimination
exists.

Although the Thareja and Haftka study (6) used a different multilevel optimization approach, we will discuss thek work at
this point. In their study, the subproblem optimization is based on minimizing the sum of the squares of the coupling
equality constraints, where the coupling equality constraints have the same form as equation (9). Their subsystem inequality
constraints are then imposed directly. They conclude that the direct use of these equality constraints introduces numerical
difficulties which prevent a "true" optimum from being achieved. In fact their multilevel optimum was approximately fifty
percent larger than the optimum found in single level solutions. Thareja and Haftka did not explain the exact nature of the
numerical difficulties other than to associate them with the direct handling of the coupling equality constraints.

The Sobieski formulation at the subsystem (eq. 8,9) can be handled directly when using the GRG method. In this study the
coupling equality constraints (eq. 9) are not eliminated, and no loss of optimality is observed. It should be noted that the
GRG method does not require that the equality constraints be explicit functions. Therefore the use of the GRG method
allows for the most general implementation of the Sobieski algorithm.

In the Sobieski algorithm, when equality constraints are handled directly (eq. 13), the optimizer must be able to handle

infeasible starting points. This results from the fact that after a system level optimization is completed (new x*), the
subsystem coupling equality constraints (eq. 9) are likely to be in violation. Most GRG method implementations allow
infeasible starting points.

In this study, the linear estimates of the local variables (eq. 5) are returned to the subproblems and used as the initial starting
point for optimization. These linear approximations of local variables will tend toward satisfying the equality constraints and
serve as an improved starting point for the subsystem optimization. Details of the GRG performance in finding a feasible
starting point and of its optimizing performance are provided in the following engineering examples.

PORTAL FRAME EXAMPLE

The portal frame example which served as the test case for the Sobieski algorithm is recoded, and solved using the GRG
code, OPT3.2 as the internal optimizer, and leaving the coupling equality constraints in explicit form. The portal frame
shown in Figure 1 consists of three I-beams. The frame is designed subject to two loading conditions with the system level
design problem being to minimize mass subject to frame displacement constraints. The global variables for each beam are
the cross sectional area, "A" and area moment of inertia, "I." These terms are incorporated in the system level design vector
x. For each individual beam (i.e., subproblem) the cumulative constraint function KS, is minimized (for local stress and
buckling constraints), using the respective local design vector y, at each subsystem. These local variables, y are the cross
sectional dimensions of each I-beam.

The coupling equality constraints imposed at the subproblems require that the current system values of area and inertia be
maintained as explicit functions of the local y vectors. This constrains the y variables to those combinations which produce
the current x values (i.e., area and inertia). Formal details of the deflection and local stress constraints imposed on the frame
can be found in ref. 2. Additional details of this research's implementation of the Sobieski algorithm, with the GRG
optimizer can be found in ref. 17.

The multilevel optimization of the portal frame using the GRG method as the internal optimizer produced numerical results
which are improved, as compared to the Sobieski lest case results. Table 1 details the optimized portal frame dimensions and
system volume in comparison to Sobieski's results. It should be noted that the minimized volume achieved in this study is
only slightly smaller than the result reported in the Sobieski test case. The differing optimums most likely represent two
different local minimums for this highly non-linear problem.

Figure 3 details the convergence history of the portal frame's volume, where each node represents the system optimum as
found by the GRG optimizer during iterations of the Sobieski algorithm. At convergence the algorithm tends to cycle about

a portal frame volume of 90,000. cm 3 level. The minimum volume reported is simply the feasible minimum which occurs
during these final cycles (see ref. 17 for additional details on cycling of the Sobieski algorithm). Figure's 4a and 4b detail the
GRG optimizer's typical iteration history at the subsystems in the feasible start trial. The GRG optimizer was able to fully
optimize the subsystem problems taking on average only 6 GRG iterations per cycle of the Sobieski algorithm. An upper
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limit of 12 GRG iterations was imposed at these subproblems and was reached in only a few cases. This upper limit
prevented the m_e subsystem optimum from being reached for Otose few cases. This did not seem to impact the performance
of the Sobieski algorithm.

As noted earlier, the initial starting point passed to the subsystems from the system is generally infeasible, excluding the
original initialization. The infeasibility results from the coupling equality constraints being in violation. In this study the
GRG optimizer, during its phase 1 search, was able w generate a feasible starting point for all but 4 of the 132 subsystem
optimizations (i.e., the locations of the "zero n GRG iterations shown in figures 4). In these cases the last point generated in
the phase 1 search is passed back to the system level along with limited sensitivity information. This approach proved
adequate, as the GRG optimizer was able to generate a feasible starting point in the subsequent subsystem optimization.

The average of only 6 GRG iterations per subsystem optimization, along with the success of generating feasible starting
points, can be considered "good peffownance, _ and clearly indicates the effectiveness of the GRG method in handling the
coupling equality constraints imposed.

GEAR/SPEED REDUCER EXAMPLE

This example was originally modeled by Golinski (10,11) as a single level optimization. Several other optimization
schemes have been applied to the problem including those by Lee (12) and Datseris (13). More recently Azarm and Li (4,5)
solved the problem using a multilevel optimization scheme incorporating global monotonicity analysis. In their
decomposition the variables being optimized at a given level are not explicitly related to those at other levels and therefore
coupling equality consmaints are not required. In complex large design problems it may not be possible to decompose
problems such that variables are independent at different levels.

The Sobieski algorithm which allows for interdependent variables between levels is applied to the speed reducer problem in
this study. The decomposition applied in this study involves variables which are explicitly linked between levels and
therefore coupling equality constraints are imposed. These coupling equality conswaints are enforced directly using the GRG
optimizer.

Figure 5 shows a schematic of the speed reducer, which has been optimized for minimum mass subject to shaft deflection
and stress constraints and to gear teeth stress/design constraints. The problem is decomposed, with the system level problem
being to minimize mass subject to only shaft deflection and shaft stress constraints in a reduced design space. At the
subsystem the gear stress/design constraints are minimized in a KS function while applying the coupling equality constraints
to maintain variable continuity.

The global variables for the system are defined as follows: The variables at the subsystem or gear level are:

Xl= l1= shaft length 1 (between bearings)

x2=/2 = shaft length 2 (between bearings)

x3= dl= shaft dia. 1

x4= d2= shaft dia. 2

x5= partial gear volume (explicit function of subsystem variables)

x6= transmitted gear force (explicit function of subsystem variables)

Y1 = b= face width of the gear teeth

Y2 = m= teeth module or the inverse of

diametrical pitch

Y3 = Z = number ofpinion teeth

Where the coupling equality constraints for this formulation are;

x5--0"7854 Yl Y22(3"333 Y32+ 14.9334 Y3" 43.0932) - 1.5079(x32+x42)yl

x6=94000./(y2y 3)

(11)

(12)

Note that the partial gear volume, x5 which is dependent on all three subsystem variables (gear dimensions) is reduced to a

single measure of that volume at the system level. The transmitted gear force, x6 which depends on the gear dimensions is

also reduced to a single variable at the system level. In the decomposition, volume (i.e., mass) is minimized at the system

level using the shaft dimensions and x5 (partial gear volume). This system level optimization is subject to shaft stress and

deflection constraints, where the stress and deflection are caused by the wansmitted force, x6. At the subsystem (gear level)

two gear slress constraints and three gear sizing constraints are incorporated into a KS function. The KS function is
minimized (in y space) subject to two coupling equality conslraints which restrict the y vector (gear dimensions) to

combinations which maintain the current x5 and x6 values. Details of the decomposition used in this research can be found

in ref. 17, where the constraint equations and system level functions are patterned after those formulated by Lee (12).
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Figure6detailsthetwolevelstructureof the speed reducer optimization, where the decomposition breaks the design along
the lines of shaft and gear design. Table 2 details the results of using the GRG method as internal optimizer within the
Sobieski algorithm. One sees the results arc similar to those found in the single level approach by Lee, the heuristic
decomposition of Datseris's and the multilevel study of Azarm and Li's. Figure 7 details the convergence history of the speed"
reduccr's volume during the multilevel optimization applied in this study.

The Sobieski hierarchic algorithm is based on monitoring linear measures of the subsystem at the system level. The linear
approximations in this coding are based on sensitivity derivatives calculated using the Lagrange multiplier equations (15).
The inputs to the Lagrange equations were calculated using analytic first and second order derivative information along with
Lagrange multiplier estimates from OFI3.2. These analytic inputs result in highly accurate sensitivity derivatives. The
impact of the accurate sensitivity derivatives can be seen in the GRG method's performance at the subsystem. Figure's 8a and
8b detail the iteration history of the GRG optimizer OVI3.2, at the subsystem for trials 1 and 2 respectively. In these plots
the "zero" iteration points do not represent the GRG method's inability to generate a feasible starting point as in Figures 4 of
the portal frame example. Instead "zero" iterations indicate that the linear extrapolations of the susbsystem variables returned
from the system were feasible and optimal upon arrival to the subsystem. The Sobieski cycles requiring only one OPT3.2
iteration at the subsystem represent the case where the linear extrapolation returned from the system is infeasible, and the
feasible point generated in the phase one search of OPT3.2 is optimal. Cycles requiring two or more OFT3.2 iterations
represent an infeasible extrapolation from the system, followed by a phase one search, with a subsequent optimization using
the GRG method. This example highlights both the robusmess of the Sobieski hierarchic algorithm and the ability of the
GRG method to handle coupling equality

CONCLUSIONS

Multilevel optimization methods ate being considered for the design of increasingly complex systems. These multilevel
methods decompose large design problems into a hierarchical organization of smaller subproblems. The subproblems can be
optimized independendy with a coordination problem being introduced to handle system coupling. In the most general
decomposition it is likely that variables between levels will be functionally related. The multilevel optimization schemes
based on handling this type of decomposition introduce coupling equality constraints to maintain the variable relationships.
In some implementation studies these coupling equality constraints have been handled indirccdy through variable elimination
(2,3). This elimination is only possible when an explicit functional relationship between the variables exists. Another
implementation study (7) suggests that the direct use of equality constraints may introduce numerical difficulties which
prevent convergence of the optimizer. The ability to handle equality constraints directly, avoids the problem of variable
elimination. In addition it also reduces the need to develop algorithms which avoid coupling equality constraints.

This research demonstrates that coupling equality constraints can be handled direcdy by using the GRG method as the
internal optimizer in a multilevel optimization based on the Sobieski hierarchic algorithm. The two engineering design
examples presented illustrate the GRO methods general utility for handling coupling equality constraints. Those results arc
important in light of the fact that as multilevel optimization is applied to larger and more complex problems variable
elimination may not always be possible. We should note that this success may not be exclusive to the GRG optimizer.
Other optimizing algorithms which are robust in their handling of equality constraints may also work.
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In the design of complex built-up structures that are made of truss, beam,
membrane, shell, and solid, there are five different kinds of design variables: material
property, sizing, shape, configuration, and topological variables. Previous research has
shown that the improvement in performances obtained by altering the configuration of
structural components can be much more significant than those obtained when the
geometry is assumed to be fixed (Refs. 1~4). Using the variational approach, a unified
design sensitivity has been developed in Ref. 5 for the first three kinds of design
variables, and has been further extended recently in many structural analysis problem
such as nonlinear, structural dynamics, and frequency response analysis (Refs. 6-8).
In this paper, a continuum design sensitivity analysis method is developed for the
configuration design variable of built-up structures.

One of the key differences between the shape and configuration design sensitivity
analysis is the orientation change of the design component. In shape design problems, the
domain shape is treated as the design variable, and the orientation of the design
component remains fixed. On the other hand, in the configuration design, both the
domain shape and the orientation of the design component are changed. The configuration
design change of a design component can be viewed as a dynamic process of moving the
design component in three steps: translation, rotation, and shape variation. These three
steps are depicted in Fig. 1 for a line design component. Three similar steps can be
applied to the configuration design change of the surface and solid design components.
Since translation, rotation, and shape variation are three independent design changes,
configuration design sensitivity can be obtained by adding the design sensitivity results
that are obtained from each design perturbation.

X 3, X_. X °

\.,i : ',. e
x"2 ,_;1// o,

X3 P++ U'f + ,.-.,--,---IP" X

xl @ -- Rotation

x I _ -- Shoe Variation

Figure 1 Configuration Design Change of a Line Design Component
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It is shown in Ref. 9 that a translation of the design component does not

contribute to the design sensitivity result of a performance measure. Therefore, the
configuration design sensitivity result can be obtained by adding contributions from the
shape variation and rotation of each individual design component in the built-up
structure.

For shape variation, a unified shape design sensitivity analysis method has been
developed in Ref. 5 using the material derivative idea of continuum mechanics. The
domain shape variation can be viewed as a dynamic process of deforming a continuum
medium from .Q to _.c = T_(.Q,.t), with "c playing the role of time. A shape design

velocity field Va is considered as the perturbation of the shape.

Suppose the displacement z.=(x.=)is a smooth solution of the boundary value

problem on the perturbed domain .Q.=. The existence of pointwise material derivative _'vr_

at x _ _ is shown in Ref. 5. If z.=has a regular extension to a neighborhood U.=of the
i

closure _, then the partial derivative Zv=) exists and commutes with the derivative with

respect to x i as shown in Eq. (5). The pointwise material derivative of displacement is

obtained in terms of the partial derivative and the shape design velocity field as shown in
Eq. (4). Using the material derivative formulas of Ref. 5, the first variation of a
general functional due to the domain shape variation is obtained in Eq. (7).

Material Derivative for Domain Shape Variation

Figure 2 Domain Shape Variation

J (1)

v_ ,_)• _ = o--"_"-- ( 2 )

Zv_ (x) = dz,( x + "cVnCx)) i = lira z,(x-,.':V_(x))- z(x)
'_:-,0 ":,-,0 '¢

Zvn(X)=Zv=(X)+ _'zTvn(x)

az = (Zv), for i = 1, 2.3

V n

¥ = r f.(x_)d_ t
•" [ 2.= "

4'v,, = fifv_(X) "" (vITv_) * I(vTvcz)] d_2
JQ

(3)

(4)

(5)

(6)

(7)
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Similarto the shape variation, the process of orientation change can be viewed as
a dynamic process of rotating a continuum medium from Q to Q¢ = Te(Q,'_), with 'c

playing the role of time. An orientation design velocity field Ve is considered as the

perturbation of the orientation, and is normal to the domain of the design component.
Suppose the displacement z_(x_) is a smooth solution on the perturbed domain _-t.

The pointwise derivative ;'% at x e Q due to the orientation change, if it exist, is defined

by Eq. (10), where, a regular extension of z_ is defined as zt(x) ,=zt(x_), if x_ = x +
, t

'¢Ve. As shown in Eq. (13), very much like Zvn in Eq.(5), Zvo commutes with the

derivative with respect to xi. In Eq. (10), A is the rotational transformation matrix and

_/v, contains derivatives of the orientation design vel0cily field, and they are written in

Eqs. (11-12) for the line design component. The same derivation can be applied to a

surface design component with different A and V_'o" Using the regular extension of a

displacement function, and the fact that the determinant of the Jacobin is independent of
the orientation change, the first variation of a general functional due to the orientation
change is obtained in Eq. (14).

,,_ Derivative for Orientation
_<,,___ x3' x'3

'=. x2t

.t

o. o, __(=1 xj,

x 1

Figure 3 Orientation Change of a
Line Design Component
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The variationai form of a boundary value problem of the built-up structure is

given in Eq. (15). Taking the first variation of both sides of Eq. (15) and noting _' = _'v,-,

+ '_v,, Eq. (16) is obtained. Using the fact that z_ Z and a_ (z,z) = _(z), Eq. (16)

becomes Eq. (17).
Consider a performance measure in a general form as in Eq. (18). Taking the

first variation of Eq. (18), we can obtain Eq. (19). In the direct differential method,

Eq. (19) is solved for z with the given design velocity fields V_ and Me. Once the original

response z and the first variation _' are obtained, the configuration design sensitivity
expression in Eq. (19) can be evaluated. In the adjoint variable method, an adjoint

equation is defined in Eq. (20) and is solved for the adjoint response _,. Since _, is in the

space of kinematically admissible displacements, Eq. (20) can be evaluated at _. = z:and

Eq. (17) at _,=,_,, to obtain Eq. (21). Once the design velocity fields are defined, with
the original response z and the adjoint response _., the configuration design sensitivity
expression in Eq. (21) can be calculated.

Configuration Design Sensitivity Analysis

an(z.z) = Jcj(z), tor all z • Z ( 1 5 )

Ia,,(,.;,'. +a,,(,.:,)•

= • 6)

a_(z.z) = 2'v (z) + ,t; (z) - a_, (z.z)- a_,e(z.z), for all z, Z (17)

.t (18)

(A). Dicect Differenlial Melhod:

V' = S Igz,_ + g_'z,_Zi+ gz p,Zi,jk - gz,(_/eZ)i - g_z,V(_/ez)i - gz,,.((/eZ)i'jk

- gz,(_2zTvn) - gVz,_(vzTvn) - gz,./E'zTvQ).i k + VgTVc_ + g(v'rvn)] d_. ( 1 9 )

(B). Adjoint Variable Method:

an(_._) = S¢lgz,_ + g_z _.," gz..i'i.jkl d£Z. lot all _. • Z (20)

+ gzL,(_/ez)i,jk - gZ.(VzTV¢]), grz,V(T_zi'rv¢_) ._ gz,._(VziTV_),jk] d.Q

+ j" IvgTv_ + g(_'Tv_])} d_'_
(2_)
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A swept wing model shown in Fig. 4 is considered for the study of configuration
design sensitivity analysis. This wing model consists of the truss and membrane design
components. The wing is made by aluminum, and is subjected to a uniform pressure
(0.556 psi) acting on top of the skin panels. An established finite element code ANSYS is
used to create the finite element mesh. Because of the symmetry of the structure and
loading, only half of the wing box is analyzed. The finite element model consists of 60
truss elements (STIF 8) and 130 membrane elements (STIF 41).

For a configuration design change, the tip of the swept wing is moved forward as
shown in Fig. 4. The design velocity fields are defined so that all ribs (shear panels)
that are parallel to the y axis remain parallel while moving. The layout of the spars
(shear panels) and the skin panels will then be rotated accordingly. The displacement at
the tip of the wing and several stress performance measures are specified. The
configuration design sensitivity analysis is carried out using the finite element results
obtained from ANSYS. Results presented in Fig 5 show an excellent agreement between
the predictions V' and actual changes 4¥, where 4¥ is obtained by the central difference.

Configuration DSA of Swept Wing Model
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In summary, a unified configuration design sensitivity analysis of built-up
structures has been developed. The configuration design change is identified by the
translation, rotation, and shape variation. The material derivative idea of continuum
mechanics is used to account for the shape variation. In this paper, a design sensitivity
analysis method to treat orientation change of a design component has been developed.
The numerical implementation of configuration design sensitivity analysis is carried out
by using the results of an established finite element code. The results show thal the
method leads to an accurate and efficient configuration design sensitivity analysis of the

built-up structure.
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1. Introduction. The parametric nonlinear programming problem is that of determining the behavior of

solution(s)as a parameter or vectorof parameters a E 7?." variesover a regionof interestforthe problem

Minimize
(t.1) : h(x,a)= 0, > 0},

X

where f :_n+, _. _, h :_,_+r ....pj and g : _,_+, ...,_p are assumed to be at leasttwice continuously

differentiable.Some oftheseparameters may be fixedbut not known preciselyand othersmay be variedto

enhance the performance ofthe system. Inboth casesa fundamentally important problem inthe investigation

of globaJsensitivityof the system isto determine the stabilityboundariesof the regionsinparameter space

which defineregionsof qualitativelysimilarsolutions.The objectiveinthiswork istoexplainhow numerical

continuationand bifurcationtechniquescan be used to investigatethe parametric nonlinearprog1"amming

problem in a globalsense. Thus we firstconvertthe problem (1.1)to a clo6edsystem of parameterized

nonlinearequations whose solutionset containsalllocalminimizersof the originalproblem. This system,

which willbe representedas F(z,a) = 0,willincludeallKarush-Kuhn-Tucker and FritzJohn points,both

feasibleand infeasiblesolutions,and relativeminima, maxima, and saddlepointsof(1.1).The localexistence

and uniqueness of a solutionpath (z(ot),a) of thissystem as wellas the solutiontype persistas long as a

singularityin the Jacobian D,F(z,c_) isnot encountered. Thus we firstcharacterizethe nonsingularity

of thisJacobian in terms of conditionson the problem (1.1)itself.We then describea classof efficient

predictor-correctorcontinuationproceduresfor tracingsolutionpaths of the system F(z, a) = 0 which are

tailoredspecificallyto the parametric programming problem. Finally,these procedures and the obtained

informationwillbe illustratedwithinthe contextofdesignoptimization.

2. Systems Formulation and Bifurcation Problems. If M = diag(pl,..., _,) is a diagonal matrix

and £ = pp+lf(z, a)- _-_=l Ajhj(z,a)- _"_LI i_gi(z, a) is the Lagrangian, then any solution of the Fritz

John or Karush-Kuhn-Tucker first order necessary conditions is a solution of the closed system [8]

/ /
= | i = O, wherez = ,

L/jT/J + ATA -/_ J

* This work was partially supported by the Air Force Office of Scientific Research through Grant #

AFOSR-88-0059.
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and B0 is a fixedconstant. In the presence of a smooth F, a necessary condition for the existenceof

multiplesolutionbranches to the system F(Z, c0 - 0 in each neighborhood of a solution (zo,00) isthat

the Jacobian D,F(zo, _'0)be singular.Since solutiontype (minimum, maximum, saddle point;feasibleor

infeasiblepoint)can change only at such a singularity,we now give necessaryand sufficientconditionsfor

D, F to be nonsingular.

Theorem 2.1. [8] Let (zo,00) be a solutionofF(z, 0) = O,de_ned by 2.1,where f,g and h areC _,(k >_2),

ina neighborhood of(z0,a0). Definetwo index sets,_ and ,4 and a corresponding tangentspace T by

.A={i:1<i<p,g_(Zo,ao)'-O}, .d = (i e._'. pf # 0}

f = {V • P--'_: D=h(zo,ao)l/= O, O=ai(Zo,ao)V = 0 (i E .A)}

Then a necessaryand sufllcientconditionthat D_ F( zo,00) be nonsingularisthat each ofthe followingthree

conditions hold:

b) S := {V=gi(zo, ao)}_G._lU{V=h#(zo, ao)}_=t is a linearly independent collection of q + [.,{] vectors where

[.A[ denotes the cardinality of.4;

c) The Hessian of the Lagrangian V2=£. is nonsingular on the tangent space T at (z0, a0).

Having stated thin theorem, several comments are in order. If z0 is a Fritz John or Karush-Kuhn-Tucker

point, then condition (a) is called strict complementarity (gi(zo, oto) - 0 implies po is positive) and condition

(b) is the linear independence constraint qualification. Furthermore, if in addition to conditions (a) and (b),

the Hessian of the Lagrangian is positive definite on the tangent space T, then z0 is a local minimizer at a0.

An equivalent and more computationally efficient method for tracing solution path segments of (2.1)

along which D, F is nonsingular is to use an "active set" strategy in which a purely equality constrained

problem is considered, with active inequality constraints playing the role of additional equality constraints.

This amounts to deleting inactive inequality constraints and corresponding (zero) multipliers from the def-

initions of r_ and F and replacing the components -p_gl of F by -gi for each i E ._. In case a multiplier

for an active inequality constraint changes sign a/ong a path segment one has passed a singular point on

the path due to a violation of a) in Theorem 2.1. Paths branching from such a point correspond to various

choices of the active set.

3. Numerical Continuation and Bifurcation Methods. Since the subject of numerical continuation

and bifurcation methods has a formidable literature and since excellent introductions to this subject area can

be found in the books of Allgower and Georg [2], Keller [5] and Rheinboldt [9], our objective in this section

is to briefly introduce these techniques and show how they can be tailored to the parametric programming

problem.

To describe the predictor-corrector continuation methods, let 1# = (z, o) so that the problem is that of

tracing solution paths of an underdetermined system of nonlinear equations F(w) -- 0 where F : .g,,,+t _.
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R.". Assume that F(w) = 0 is continuously differentiable, has a smooth solution path P = {w E _m+l :

w = q_(s), s G I} where I is an interval of real numbers, and that the path is nonsingular in that [D,F]wep]

is of full rank. Most path following algorithms generate a sequence {(wk,s_)}_= 0 where wk is a point on or

near the path and w0 is a known solution of F(w) = 0. To go from a point w_ to a point wk+l, one uses

current and previous information to obtain a predicted point, say topt+l, which becomes the starting point

for a Newton-like correction iteration which terminates with a solution wk+l.

Given a point wk on the path, one predicts a new point by using a predictor of the form wpk+l -

w_ + Asd(As). The prediction direction d is typically chosen to be an oriented unit tangent T_, which is a

solution to [D_F(wt)]Tk = 0. However, a more robust and efficient prediction strategy which uses current

and previous tangents has been developed by the authors [6] and will be used below. Once a predicted point

is obtained, the correction back to the path can be based on a Newton-like solution of the augmented system

1(3.1) G(w) = N(u,,) = (w - 'wp_+1)'rd(As)J = 0

which confines the correction to a hyperplane orthogonai to the prediction direction d(As).

It follows from this brief description that the two main computational problems in a predictor-corrector

step are the determination of Newton corrections Aw for the system (3. i) and the computation of the tangent

vector Tk+l. (The computation of the tangent is essentially free after one computes the Newton correction.)

We now describe how to compute these in a way specifically tailored to the parametric programming problem.

In light of the comments at the end of section 2 it suffices to consider the case of an equality constrained

problem. For this case the techniques presented below reduce the matrix algebra in a continuation step

to that of the Lagrangian matrix W- [ V_L: -(D0=h)T 1-Dzh associated with the nonlinear programming
L

problem.

To solve the system [D_G(w)]Aw = -G(w) for a Newton correction At#, we give a variant of the

bordering algorithm of Keller [5], which also accounts for the presence of the additional augmenting equation

B(A,_I) - ATA +/J_ - _0_ - 0 in (2.1) and (3.1). Let _), _, fi E R '_+q be solutions of

o,] o)] 0 v.c(=o)](3.2) W_-- l -h(._,a) J' W_-- _ _ , and W,i- -_a'a -h(z,a) J'

(/respectively. Furthermore, let t,y, v and u be vectors in _'_+q+_ defined by t = , I/ = ,

v = , and u - . Then it can be shown [7] that a Newton correction step for (3.1) is given by

t N+_I"

If the vectors l, y, v and u are computed at wk+l (or some approximation to 10/_4.1) the tangent at tot+l

can be computed via

(3.4) Tk+l "-- 4" [(tT'v)'I/ -- (tTtl)V]/ll(tTv)u - (tTu)vll2.
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The sign depends on orientation and is changed when a fold point is encountered along the path.

The nonsingularity of W" is also characterized by conditions a), b) and c) given in Theorem 2.1; the

nonsingularity of DwG and of the 2 x 2 matrix in (3.3) follow from the nonsingularity of W" as long as the

prediction direction d is not orthogonal to the null space of DwF. The latter is the case for our predictor as

long as As is not too large. Fold points or bifurcation points along the path are indicated by a singularity

in IV, and may be detected, distinguished and handled by methods discussed by Keller [5] together with

methods we now describe.

The methods for solving the linear systems in (3.2) can be based on various linear algebra techniques

in nonlinear programming, modified to account for the possibility that V_£,/, maybe indefinite on some

segments of the path. One must also adapt these linear algebra techniques to determine sign changes in

three important sets which determine critical point type at regular points: (A) sign gi(z, _) for i E { 1,..., p},

(B) sign/zi for i E {1 .... ,p-t- 1} and (C) the signs of the eigenvalues of _7_£/,, the restriction of the Hessian

of the Lagrangian to the tangent space of the active constraints. To see how one may monitor and detect

changes in the signature of V_E.p in the course of using a generalized null space method for solving (3.2),

assume conditions a), b) and c) of Theorem 2.1 hold. Then the k x n matrix A T - ,._D_g,Dffihi E .A _t is of

full rank. In a null space method one first computes matrices Y" E _,xk and Z E 7_ '_x('_-k) of full rank

such that [Y:Z] is nonsingular, Ary - ! and ATz -- 0. In the course of solving (3.2) by such a method one

must form and factor the (n -/¢) x (n - k) matrix ZT_7_£Z, whose signature is the same as that of _7_£__.

Given that zTv_£z may be indefinite in the continuation process, one generally would compute the LDL r

factorization of this matrix by using, e.g., the Bunch-Kaufman algorithm [3, _ 4.4]. Here, the matrix D is

a block diagonal matrix with 1 x 1 and 2 x 2 blocks whose signature is easily computed and is the same as

that of ZT_7_£Z.

Once a change in a sign in (A-C) is detected, a singularity is detected which one must deal with

appropriately, reversing the orientation in the case of a fold point or switching branches at a bifurcation point.

One particularly easy aspect of this problem is the case associated with a loss of strict complementarity:

to switch branches, one simply activates or de-activates a constraint. Further analysis and classification of

these fold and bifurcation Points as well as methods for detecting them numerically can be found in [8,10]

and in a forthcomming paper [7].

4. A Numerical Example. As a simple illustration of the above procedures we consider the following

problem from design optimization [4]

Minimize

(4.1) (d,h) {d: VdE(d,h;p)-O, h_<l.5, h>_0}

( )2where E(d, h;p) - -pal + _- x/1 + (h- d) 2 /v/T'_'_, and p is a parameter. This problem is

used to model the determination of the unloaded height h of a simple two bar planar truss with semi-span
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1 which minimizes the displacementd under a fixedload p. The solutionpaths :(p) of (2.1)were tracked

using our continuationmethod. The followingplotgivesthe displacementd asp vaties.

Fig 4.l:FeasibleSolutionsof(2.1)

D

O Fold • Bifurcation

Minimizers Maximizers

G g

This plot represents a projection of the feasible solutions of (2.1) into the (p,d) plane, and the dot

labeled with e,f _nd 9 indicates three distinct bifurcation points with p = d = 0 and h = 0, 1.41 and

1.5 respectively. Bifurcation points a, c, e and 9 result from a loss of strict complementarily in which an

inequality constraint becomes weakly active. The path of maximizers branching from point a corresponds

to h <_ 1.5activeand/_x < 0, and changes type at the singularpoint g, becoming the path of minimizers

labeledG. The other path branching from point a passes through f, acrosswhich the one eigenvalueof

V_£T changes sign.At f thereisa change in type resultinginthe path ofmaximizers labeledF.

Extreme sensitivityofthesolutionof(1.1)tovariationsinp occursatthe foldpointsband d (p = :I:.3704)

at which thereisa lossof linearindependence inthe _tive constaintgradients,and/_2 = 0. This isalsothe

case at the bifurcationpoint e,where in addition,strictcomplementarily isviolated.One cannot compute

near or past thesepointswithout the normMization B(A,/J)= ATA +/j2"# _ _02= 0,sincenear thesepoints

an unnormMized multiplierisunbounded. When the system isata statenear thesepoints,small variations

in load p can resultin very largechanges in the solution,or the lossof (local)existenceof a solution.The

lattercase isillustratedneat b where increasingthe parameter past p = .3704 resultsin the lossof the

solutionend a "snap through" ofthe trussto a staterepresentedby path D.Similarbehavioroccurs near d

and e.

Not pictured above ate branches of infeasiblesolutionsof (2.1)emerging at a,c,e and # (h > 1.5 or

h < 0). (In some problems such paths may providethe opportunityforfurtherbranching to other feasible

paths.) A path of feasiblesingularpoints with p = d = 0 branches from e through / to g, and can be

pararneterizedby #_. The solutionsto(4.1)need only be stationarypointsofthe potentialenergy E(d, h;p).

However, allpath segments,exclusiveofthe segments from d toe and from c to b,do correspond to physical

statesof the system (where E isminimized).
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Inthispaper we have describedhow continuationtechniquescan be tailoredto the parametric nonlinear'

programming problem and used to investigatethe globaldependence of the solutionon a parameter. The

use ofthe system (2.1),includingthe normalizationB(A, p) = 0 enablesthe computation to proceed through

singularpointswhere solutiontype may change and branching and/or sensitivityofsolutionsof(1.1)occurs.

Computing paths ofmaximizers,saddlepointsand singularpointsenablesone tolocateregionsofsensitivity,

multipleoperatingstates,and disconnectedpaths ofminimizers.

We think that thesemethods have great potentialtofacilitateparametric study innonlinearprogram-

ming and, for example, in nonlinearoptimal control. Further testingand development of the numerical

methods on some tractablemodel problems isneeded, as wellas furtheranalysisofthe behavior which can

be expected at more complex singularities.
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Optimum design parameter sensitivity analysis has become an important topic in recent years. The

principal reasons for obtaining optimum design sensitivity information with respect to various problem

parameters are (1) to predict revised optimum designs, associated with specified perturbations of the problem

parameters, without re-optimizing the problem and, (2) to provide sensitivity information in multilevel

optimization strategies. Methods for calculating these derivatives have been proposed by several authors

(see Refs. 1-5). The most important drawback in estimating parameter sensitivities by the current methods

is that they do not allow for changes in the active constraint set. Changes in the active constraint set produce

discontinuities in the optimum design sensitivities, and therefore, a correct formulation has to be cast in

terms of directional derivatives (Refs. 6-7). This paper addresses optimum design parameter sensitivity

analysis in terms of directional derivatives so as to include possible discontinuities and it also presents a

method for estimating optimum design sensitivities using finite differences.

Problem Formulation

The generaloptimizationproblem consideredinthiswork has thefollowingform

Min f(Y,P)
¥

s.t. gj(Y,P) > 0 j=l,...,m (I)

where Y = (Yt ..... Y,) is the vector of design variables andP = (Pt .... ,Pp) is the vector of design parameters.

It is assumed that for a fixed set of parameters P, the optimization problem has been solved, so that
the vector of optimum design variables Y'(P) is known, and that this optimal solution satisfies the first

order Kuhn Tucker conditions given by

Vrf(Y* (P),P)- _ _.j(P)V, gj (Y*(P),P)= 0
),,I

(2a)

Xj (P) g_ (Y'(P),P) = 0 j = l,...,m (2b)

gj (Y'(P), P) > 0 j = 1,...,m- (2c)

_.] (P) > 0 j --- 1..... m (2d)
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where _.(P) denotes the vector of Lagrange multipliers at the optimum design Y'(P) for the given vector of

parameters P.

If the vector P is perturbed, the set of active constraints for the new optimum will change depending

on the direction of move for P. This change induces discontinuities for the sensitivities of the optimal

solution, or in mathematical terms, the derivatives _ are not unique. References 6 and 7 prove that even

if the derivatives are not unique, the directional derivatives exist. In what follows the optimal sensitivity

problem is formulated in terms of directional derivatives, def'med as

Y (P + t _>P)- Y (P)
Y'u, (P) = lim (3)

t --*0" t

where _a° represents a unit vector (I 8P I = 1) in a prescribed direction of change for the vector of parameters

P.

Sensitivity Using Kuhn Tucker Conditions

If the vector of parameters P is perturbed by t_SP, t > 0, the Kuhn Tucker conditions.(T.x t. (2)) must

remain satisfied. Moreover, since the sensitivities are obtained when t _ C only first order approximations

for Y and _. in terms of t are required, and only linear terms in t should be retained.

Using the approxim;,_ions

Y(P + t _d_) = Y(P) + t }/_, (P) (4a)

_.(P+t _) = X(P) + t _,'u, (P) (4b)

Eq. (2) for the perturbed problem becomes

Vr f(Y(e) + t l/sr (p), p + t SP) -i_ _ (P) + t _.;_ (e) ) (Vr gi (Y(P) + t Y'_, (P), P + t SP) = O (Sa)

_x,(v)+,xj_.(e))_g_(r(v)+er'_.(P),e+,_P))=o j=l,...,m (sz,)

gj(Y(P)+tl/sr(P),P+t_u)>O j = l,...,m (5c)

_.j<e)+t _,(e) >_0 j=1,...,m (sa)

Expanding gj in fL,'St order Taylor series and retaining only linear terms in t, Eqs. (5b)-(5c) become:

_._ (e) [gj (Y(P), P) + t (Vrg _ (Y(P), e) Y'sr (P) + V _ (Y(P), P)SP] + t _.'_ (P) gj (Y(P). P) = 0 (6a )

g/(Y(P),P) + t(Vrgj (Y(P),P) YsP(P)+ Vp gi(Y(P),P) ¢5P)> 0 (6b)

_'i (P)+t _.j_ (P) > 0 (6c)

Several special cases arise from these previous equations when t --+ (3+:
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(1) _.j(P)=O, g._(Y(P),P)=O (active constraint, degenerate case)

V r gj (Y(P), P) l/w (P) + Vp g_ (Y(P), P) _' P. 0 (Ta)

(P)>O

(2) % (P) > O, g_ (Y(P), P) = 0 ( active constraint, non degenerate case )

Vrgj(Y(P), P) 11_ (P) + Vp gj (Y(P), P) _SP= 0 (7b)

_._,(P) has no signconstraint

(3) _.j (P) = 0, gj (Y(P), P) > 0 (not active constraints)

Vrgj(Y(p), p) I/_ (1") + V r g# (Y(P), P) F_P has no sign constraint (7c)

_.j_ (P) has no sign constraint

Equations (7) show that only degenerate active constraints arc allowed to leave the set of active

constraints, and that non active constraints can only become degenerate active constraints. Therefore, it

is not necessary to include passive constraints in the sensitivity analysis. Since the Kuhn Tucker conditions

are satisfied for the unperturbed problem (Fzl. (2a)), the expansion of Eq. (5a) in f'trst order Taylor series,
leads to

2
V_r L(YCP),P) Y'ae(P)+ VreL (Y(P),P)FaP- _ _.:e(P)V rgj = o (8)

j,,l

where

im

L (Y(P),P)=f(Y(P),P)- T. _.j(P)gj (Y(P),P) (9)
./=1

is the Lagrangian function and V2rr L = _ and V_, L = _ .

Equations (7) and (8) arc the conditions that the directional derivatives must satisfy for the perturbed

problem. Since only the active constraints are to be considered, these equations lead to the following

conditions which must be satisfied by Y's, (P) and _ (P):

V_r L(Y(P),P)II_ (P) + V_,rL(Y(P),P)T_P- _, _._s.,,(P)Vr&j(Y,P),P)

-._h 2L_ (P Vrg j (Y(P),P)=O

Vr gj(y(P),P)Y'_. (P) + v_j(Y(P),P)ae = 0 j e J,

Vrg j (Y(P),P) Y's.(P)+Vegj (Y(P),P)KP > O j e .I2

Xj_(P)_O j ¢ "/2

(10a)

OOb)

(lOc)

(_Od)

":i?

5_



wherethesetsof indicesYland ./2are given by

./,""{j [_.i(P)> O, gi(Y(P),P)=O}

./2- U I _.j(P)- o, ga(Y(P),P)= O}

Itiseasilyseen thatifallactiveconstraintsarenon-degenerate(12= _;i.e.the set./2isempty),then

the setof activeconstraintsremains invariantand no discontinuitiesexist.Therefore,ifthe strictcom-

plementary conditionholds atthe optimum, the Kuhn Tucker based methods presentedinRefs. 1 and 2

willgivethe correctoptimum designsensitivities.

The solutionofEq. (I0)forI/s,(P)and ),_(P)iseasilyobtainedifitisobserved thattheseequations

(Ref.7)correspond totheKuhn Tucker conditionsforan optimizationproblem where theobjectivefunction

isthequadraticapproximation of theLagrangian and theconstraintsare the linearizedactiveconstraints.

Thus, thesetof conditionsgiven by Eq. (10)isequivalentto thesolutionof theproblem

Min 1 Z r V_ L (Y(P),P)Z + Z r V_t,L(Y(P),P)

s.t. Vrg I (Y(P),P) Z + Veg i (Y(P),P) _d_ = 0 j e ./_ (11)

Vzgj(Y(P),P)Z + V..g/(Y(P),P)fiP>O J¢./2

Iftheoptimalsolutionforthisproblem isdenoted by Z*withtheassociatedLagrange multipliersrepresented

by 7",then

Y's,(P)= Z" (12a)

)'._ (P) = Y" (12b)

To further illustrate the concepts revealed by the foregoing analysis, consider the following one
design variable, single parameter example from Ref. 4.

Min f(Y,P) =2y2-2yP+P2+4Y-4p
!"

s.t. g(Y,P)=Y+4P>O

Figure 1 shows the optimal solution Y'(P), the optimal functions f(Y', P) and g (Y', P) and the

Lagrange multiplier _." (P) as a function of the parameter P. For P < _, the constraint g is active and the

2
Lagrange multiplier _. is positive, but for P > _, the constraint becomes passive and _. = 0. At P =; the strict

complementary condition does not hold and therefore the derivatives are not unique. At this point only

directional derivatives, which in this case correspond to the left and right derivatives, exist. For this simple
2

example problem (at P =; ) the quadratic problem given by Eq. (11) leads to

Case 8/' = 1 (right derivative)
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2Z2- 2Z

1 Xu, (2/9) = 0s.t. Z+4>0 =_ Y'u, (2/9) = _,

Case &P = -1 (left derivative)

Min 2Z: + 2Z

s.t. Z-4>0 _ Y'u,(2/9)=4, _._,(2/9)=18

When numerical techniques are used to determine the optimal solution If(P) and the corresponding

Lagrange multipliers X (P) for problem (1), the condition X_ = 0, for an active constraint, requires further

analysis. The Kuhn Tucker conditions (Eq. (2a)), show that the gradient of the objective function can be

written as a non-negative linear combination of the gradients of the active constraint at the optimum.

Assuming that the gradients of the active constraints are linearly independent (normality), then, ff one of

the Lagrange multipliers is zero, this implies that the associated constraint gradient does not contribute to

the non-negative linear combination of gradients in terms of which Vf is expressed. Therefore, the set of

indices J2 should include all constraints such that _2_ is less than or equal to a prescribed threshold.
J

Finite Differences

An alternative procedure for obtaining the optimal design sensitivities, (Ref. 4) is to use finite dif-

ferences for small perturbations of the parameter P. Since only directional derivatives are sought, the

direction 8/' is prescribed and therefore, perturbations for t rather than for P must be considered. The first

order Kuhn Tucker optimality conditions for the perturbed problem are given by

Vrf(y(p + t_),p + t _o)_ _ _.j (P + t 8P) Vrg i (Y(P + t 8P),P + t _) = 0
j,.l

(13a)

Xj(P+tr_P)g_(Y(P+t&e),P+tf_P) = 0 j:l,...,m (13b)

g_ (Y(P + t &P),P + t SP) > 0 j = l,...,m (13c)

X_(P+t_P) > 0 j=l,...,m (13d)

In a finite difference scheme, the new optimum Y (P + t _ and the associated Lagrange multipliers

_. (P + t _ are to be found such that the conditions imposed by Eqs. (13) are preserved. If the original

functions f and gi, J = 1, ...,m are replaced by approximate explicit functions ] and g_ in terms of Y,

j = 1.... ,m, then Eqs. (13) correspond to the Kuhn Tucker conditions of an apwoximate problem of the

form

Min ] (Z, P + t _P)
Z

s.t. §j(Z,P+tF_P)>O j = 1,...,m (14)

6O



If the optimal solution for this problem is denoted by Z" and the associated Lagrange multipliers are

represented by T', then

y_, (p) = Z" - Y'(P) (15a)
t

(P)=f - xCP) (15b)
t

Examination of Eq. (13a) shows that the approximate functions] and gi, J = 1, .... m, should be accurate

not only for the function values but for gradients as well. Also, from the formulation of the approximate

problem given by Eq. (14), it is clea-!y seen that these approximations axe needed only with respect to the

variables Y and not with respect to P.

Quadratic Approximations

A natural choice for approximating the function and its fhst derivatives, is to use a second order

Taylor series expansion with respect to Y. For a generic function, h, this approximation about Y'(P) has
the form:

f_ (Z,P+t 5P) =h (Y(P),P+t _)+ Vrh (Y(P),P+t 8P) (Z-Y(P))

1

+_ (Z - y(p))r V_ h(Y(P), P+ t _JP) (Z - Y(P)) (16)

and the approximate problem becomes

I

Min Vr f(Y(P), P+ t _) +_ (Z - y(p))r V_rf(y(p), p+ t &P) (Z - Y(P))z

s.t. g_ (Y(P),P + t _P)+Vrg j (Y(P),P + t _P) (Z- Y(P)) (17)

1 2
Vrr gj+ _ (Z - y(p))r (Y(P), P + t _P) (Z - Y(P)) > 0 j = 1..... m

which corresponds to the second order approximation of the original problem about Y'(P), at the optimum.

This is similar to the second order method given in Ref. 4.

Numerical Results

The methods presented in this paper are demonstrated for the 10-bar truss structure shown in Fig.

2. The cross-sectional areas of the members are the design variables and the objective function to be

minimized in the total weight. Constraints are imposed on the stress of each member. The allowable stress

is 25,000 Ib/in: for all members with the exception of member 9. Side constraints are such that 0. I in:

<Ai < 25in:, i = I, ..., I0.
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Figure3 shows the response ratios for the stress constraints (on members 2, 9 and 10) as a function

of the allowable stress in member 9 (o9). It is observed that when a9 < 30, 000 the stress constraint in

member 10 is passive while for o9 > 30, 000, this constraint becomes active. The opposite effect is observed

for the lower bound side constraint on member 10 t from active to passive). The change in the set of active

constraints produces discontinuities for the optimum design sensitivities at 59 = 30, 000 lb/in 2.

m

Tables 1 and 2 show the right and left derivatives for the optimum design with reSpeCt to CY9. The

first column correspond to the exact sensitivities using the Kuhn Tucker conditions. The second and third

columns correspond to the approximate derivatives computed via f'mite differences using a second order

approximation. For the third column only diagonal second order terms were retained. For both cases the

step was set to 500.

As expected, the sensitivities arc not continuous, and the Kuhn Tucker formulation gives the correct
directional derivatives. The finite difference results show a strong agreement with respect to the exact

solution, even when only second order diagonal terms are retained.

f_o.ndmimu

A general procedure for calculating the sensitivity of a optimized design to various problem parameter

has been presented. The method is based on the first order Kuhn Tucker conditions and possible discon-

tinuities in the derivatives are taken into account. A finite difference approach is also presented based on

second order information. The quadratic method proved to be very accurate in estimating the optimum

sensitivities. This method is particularly attractive _ince no distinction has to be made between degenerate

and non degenerate active constraints.
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Variables

AI

A2

A3

A4

A5

A6

A_

A8

A9

A1o

Table 1

Right Derivative of the Optimum Values of A,. with Respect to

Allowable Stress in Member 9

Sensitivities(in2/psix 105)

Optimal
Solution (in 2)

7.936

0.100

8.078

3.929

0.100

0.100

5.758

5.558

4.634

0.I00

Kuhn

Tucker

-0.400

0

0.400

-0.400

0

0

0.566

-0.566

-15.932

0.57O

Quadratic
Full

-0.399

0

0.399

-0.399

0

0

0.563

-0.564

-15.871

0.568

Quadratic

Diagonal

-0.405

0

0.405

-0.405

0

0

0.573

-0.573

-16.132

0.537

Variables

Ai

A2

A3

A4

As

A6

A7

As

A9

A1o

Tame2

LeftDerivativeofthe Optimum Values ofAi with Respect to

Allowable StressinMember 9

Sensitivities(in2/psix I(P)

Optimal

Solution(in2)

7.936

0.I00

8.078

3.929

0.100

0.100

5.758

5.558

4.634

0.I00

Kuhn

Tucker

0.167

0

-0.167

0.167

0

0

-0.235

0.235

15.656

0

Quadratic
Full

0.149

0

-0.175

0.172

0

0

-0.298

0.245

16.242

0.064

Quadratic

Diagonal

0.151

0

-0.176

0.172

0

0

-0.298

0.247

16.244

0.065
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FROM THE STRUCTURAL DAMAGE IDENTIFICATION PROCESS
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Abstract

An identification procedure proposed by Shen and Taylor [1] to determine the crack charac-

teristics (location and size of the crack) from dynamic measurements is tested. This procedure was
based on minimization of either the 'mean-square' measure of difference between measurement data

(natural frequencies and mode shapes) and the corresponding predictions obtained from the com-

putational model. The procedure is tested for simulated damage in tile form of symmetric cracks in

a simply-supported Bernoulli-Euler beam. The sensitivity of the solution of damage identification

problems to the values of parameters that characterize damage is discussed. A sensitivity formula
is derived.

Introduction

Many optimum or light-weight designed load-carrying structural systems such as tubines,

generators, motors, aircraft, and spacecraft are under sever operational conditions. One form of

damage that could lead to several failure of the system if undetected is cracking structural member

of the system. This motivates the search for new methods of crack monitoring which are not only

quicker, and cheaper, but also capable of detecting the integrity of structural members. Most

importantly, these crack monitoring schemes could even be performed on line.

An detection procedure was developed by Shen and Taylor [1] to determine the crack char-

acteristics (location, zc, and size, cr, of the crack) from dynamic measurements. The idea of this

procedure was related to methods of structural optimization. Specifically, the structural damage
is identified in a way to minimize one or another measure of the difference between a set of data

(measurements) Td, and the corresponding values for dynamic response :lld obtained by analysis of

a model for the damaged beam. This may be expressed symbolically ms the following optimization
problem:

min norm(T d - Md). (1)
J_C,C1P

Naturally, the minimization represented here is constrained by the equations which model the

physical system. Moreover, as indicated in the discussion by Shen and Pierre [2-4], one can note

thaf the more modal information used for crack detectior, the more accurate and reliable the result

that can be achieved. For practical purposes, the objective of Eq. (1) was formulated based on a

certain set of specific modes; specifically the first M modes are considered in the inverse procedure.

In this study the corresponding to the mean-square measure of the norm is examined. The

identification process is based on minimization of the 'mean-square' measure of difference between

measurement data (natural frequencies and mode shapes) and the corresponding predictions ob-

tained from the computational model. The identification procedure is tested for simulated damage

in the form of a simply-supported Bernoulli-Euler beam. The uniqueness and reliability of the iden-

tification process is confirmed by solving several crack identification examples with specified crack
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positions. Without knowing the damaged location, a restricted region in initial data space had been

found for which there will be a realistic and convergent solution from the identification process.

This region is small, and can be expanded if modal variables are well approximated and initial data

corresponding to higher modes of the beam are included in the process. However, for practical

reasons, in structural dynamic testing only a small subset of the eigenvalues and eigenvectors can

be represented in the measurement data. Futhermore, even if substantially more modal informa-

tion would be available, the minimization search may be prohibitive for such a large-dimensional
feasible domain that would result.

A concept of improving the above identification procedure is also purposed in this study. A

sensitivity formula is derived there. Some questions related to the selection of proper modes to be

used in the optimization process is also discussed in this study.

A Brief Review of Cracks Identification Procedures [1]

Ill reference [1], the mean square differences between measured and modeled values of frequency

and mode shape are employed as the objective function in the variational formulations for the

identification of a cracked beam with one pair of symmetric cracks are presented. In other words,
the inverse process seeks to determine the crack parameters, xc and cr, in the mathematical model to

minimize the mean square difference between the test data and analytical predictions. In addition,

the identification problem was treated as well in the form of a rain-max problem in [1]. For

simplicity, only the mean-square problem formulation was presented in form consistent with having
the beam deflection data stated in discrete form. These problem formulations are

M T

a=l m----i

subject to constraints that define the beam response wa (ie., the equations for free vibration), and

which prescribe appropriate normalization of w_ and test data w_a. subject to:

=o (3)

'r-i

(w_(xt,n)w_(x,m))Axtm - rl,,_ = 0 (4)
rn----2

(or + a xct- R <0 (51

c_z 5 cr < (6)

xc < zc < (7)

where a,3=l, .... M, _a is a weighting factor on the cr and xc, R represents the upper bound on

value cr + a_xc, and 2"_,z¢, and _'_, c..rrrepresent the upper and lower bounds of the crack (damage)

parameters xc and or, respectively. Here cr = _ represents crack ratio (a measure of crack

depth), and xc identifies crack position (see Fig. 1).

The effect of cracks on the structural properties of the beam is reflected by factor Q in Eq. (3),

as described for symmetric surface cracks in Shen and Pierre [2] and in Christides and Barr [5],

and for the single surface crack problem in Shen and Pierre [3,4]. In other words, the optimization

parameters xc and cr cited in Eq. (2) enter the problem via Q.
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Numerical Examples

The numerical optimization technique set forth in this study for vibrating cracked beam iden-

tification problems is accomplished using the VMCON optimization package program (this imple.

ments a sequential quadratic programming method). The damage properties (cr and zc) of the

simply supported cracked beams are identified by direct solution of the optimalization problems
described in the previous section.

The cracked beam model to which the identification procedure is applied is shown in Fig. 1. It

is a simply supported beam of length I equal to 18.11 of it's thickness d, with uniform rectangular

cross-section area A, and a pair of symmetric cracks of cr = 0.5 located at mid-span (zc = 0.5).

Examples with position of the crack (damage) specified

Consider the first example for crack identification, the simply supported cracked beam, for

which the crack position zc is known. In other words, only the crack ratio cr is to be identified;

therefore, the variables in this problem are cr, _'8, and mode shapes w_(z) (K_ = {cr,_a, w_(zt,_)}).

Furthermore, according to the observations in Shen and Pierre [2,3], the even modes of a simply

supported beam are not sensitive to a mid-span crack; therefore, in effect only first and third mode

(a = 1,3) information is used to represent crack damage.

In Table 1, the top row denotes the assumed crack ratio and corresponding first and third

eigenfrequencies. The symbol • denotes the expected optimal solution through the identification

process. The first two column entries, _1,_3, indicate the fundamental and the third frequencies

corresponding to the initial crack ratio cr which is given in the next column. The last three columns

give the final values corresponding to previous entry values. These final values are obtained at the

stage where computation is terminated when the further optimal search obtains improvements for

criterion F less than the specified tolerance (10E - 5 was adopted in the present study}. Recall

that for an uncracked beam cr is identically zero. Therefore, in this example, it is decided to start

with the case of the initial value cr = 0.0 and for each case thereafter the cr value is increased by
0.1.

In Table 1, rows 5 to 11 present the results for cases with initial cr = 0.1 to 0.8. The corre-

sponding final point values listed in the columns 4-6 show that these cases exhibit, as expected,

similar solution characteristics a_d accuracy. This provides a physical understanding of the geome-
try of the solution set: for the inverse cracked beam problem with specified crack position, the mean

square criterion of Eq. (2) is a convex function and it is bounded by the constraints of Eqs.(3-7).

Hence, one may conclude that the convergence of the present optimization problem is obtained

independent of the initial data chosen. In other words, as long a._ the iJfitial data is selected within

the problem's feasible domain, an accurate and unique solution through the identification process
is expected.

Examples with simultaneous identification of crack position and depth
The second numerical example deals with the crack identification of a simply supported cracked

beam with unknown crack ratio and with crack position unknown. In this treatment, the variables

in the optimization problem are cr, zc, _'s, and mode shapes wa(z) (z_l = {cr, xc,_o, wa(zt,n)}).

Table 2 shows that almost all of the cases have unacceptable final estimates of zc and cr. For
instance, if the initial position is selected as zc = 0.4 and cr = 0.4, the values of zc and cr at the

final iteration are 0.99789 and 0.36289 which are appro.'chmately 98% and 28% different than the

given test data. In other words, evidently the configuration with re = 0.99789 and cr = 0.36289
is able to provide another minimum value of the criterion {besides the one associated with the

expected result). Except for the case with initial cr = 0.4 and zc = 0.48 which provides less than

1% estimation error. A number of similar examples can be found in reference [1].

Questions arise concerning the conditions under which the identification procedure can pro-
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videda uniquesolution. As discussed in Shen and Pierre [2-4] and concluded in the studies of

Gladwell et. oL [6], if all the mode information is used in the identification procedure, then the

system's properties can be identified uniquely. However, for practica_ reasons, in structural dy-

namic testing only a small subset of the eigenvalues and eigenvectors can be represented in the

measurement data. Futhermore, even if substantially more modal information would be available,

the minimization search may be prohibitive for such a large-dimensional feasible domain that would

result. These comments are intended to point out certain limitations inherent in the identification

procedures.

Sensitivity Analysis of the Optimal Solution from the Damage
Idnetification Process

Without using higher modes information, a concept of improving the above identification pro-

cedure is presented in this section. The idea is first to obtain the optimal solution of a damage

identification process with cr_k position specified. The actual crack position can then be deter-

mined by characterizing the sensitivity of the solution of damage identification process to the value

of assumed damage position. In other words, the final solution from damage identification process

should be preserved at the new damage position zc" = zc + _zc. It is clear that the variables

z.j= {cr,_,w_(ztm)} are dependent on parameter :re.From the K-K-T necessaryconditions,a

setof the equationscan be writtenfornew variablesz_ and new damage positionzc°.In order to

achievean improved solutionfrom damage identificationprocess,bxc can be selectedsuch thatthe

criterionbe reduced and constraintsbe preventedfrom violationsas well.Therefore,to find15zc

and z_ is equivalent to find a optimal solution of the following problem :

subjectto :

rain (_(z_,zc) + O'(z_,xc))6xc
6zc

(8)

[#,_+ ¢_o_-'*+ V_)6_c]l,< o (9)
dxc

.. dz T
[_*+ (_:_"_xc+ ¢',)6zc]I,= 0 (10)

where (')- _i','and (')= _. Functions@/,_/,/,and O, are the criterion,inequalityconstraints,

and equalityconstraints,respectively.

Conclusions

A general method for crack identification of a simple beam with one pair of symmetric cracks is

presented. The method may be useful as a component of an on-line nonintrusive damage detection

technique for vibrating structures. A variational formulation is expressed as a direct minimiza-

tion problem statement with a criteria of the mean square difference of natural frequencies and

mode shapes between test measurements and corresponding model values. The crack identification

problem is reduced to finding the cracked beam's damage parameters that will satisfy appropriate

constraints and minimize the mean square difference.

The uniqueness and reliability of the identification process is confirmed by solving several crack

identification examples with specified crack positions. Without knowing the damaged location,

a restricted region in initial data space has been found for which there will be a realistic and
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convergent solution from the identification process. This region is small, and can be improved via

the process of sensitivity analysis of the optimal solution from the damage idnetification procedure.
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Test Data: _[=0.84703, _]=70.1348, or'=0.5

Initial Data Final Data

1.0 81.0

0.98841 80.0769

0.97217 78.8135

0.94815 ?7.0062

0.91032 74.3024

0.73638 63.7848

0.54574 55.0511

0.27233 45.9316

Cr

0.0

0.1

0.2

0.3

0.4

0.6

0.7

0.8

cr

0.84684 70.1348 0.50033

0.84697 70.1346 0.50019

0.84704 70.1347 0.49998

0.84701 70.1348 0.50007

0.84694 70.1347 0.50024

0.84705 70.1348 0.49962

0.84703 70.1348 0.50034
0.84700 70.1347 0.50009

v_

Table I: Numerical results based on mean square problem statement of Eqs. (2-7) with the crack
(damage) specified (zc = 0.5).

Test Data: _[=0.84703, _=70.1348, cr'=0.5, zc'=0.5

[nitial Data Final Da.ta

6
0.91806 78.5161

0.91371 76.6365

0.91158 75.1335

0.91056 74.7464

0.91063 74.5157

0.73472 63.8062

0.73711 64.2643

0.73617 64.7619

0.73929 65.6727

0.73909 66.6112

0.75452 74.0109

cr xc

0.4 0.4

0.4 0.43

0.4 0.46

0.4 0.47

0.4 0.48

0.6 0.51

0.6 0.52

0.6 0.53

0.6 0.54

0.6 0.55

0.6 0.6

0.69639 70.1359

0.70007 70.1362

0.84610 70.1347

Cr Z¢

0.99789 0.36289

0.99440 0.39620

0.91029 0.53775

0.84711 70.1347 0.67125 0.49033

0.84704 70.1348 0.50554 0.49972

0.84704 70.1348 0.60027 0.50526

0.84704 70.1348 0.60083 0.50531

0.84704 70.1348 0.60141 0.50534

0.84705 70.1348 0.60255 0.49459

0.84702 70.1348 0.99721 0.24709

0.70040 70.1363 0.99079 0.59307

Table 2: Numerical results based on mean square problem statement of Eqs. (2-7). The position
of the damage ze is a variable.
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ABSTRACT

S_

Ill-conditioned systems arising in analysis and optimization can display

a high sensitivity to numerical precision for changes and errors in data input.

Such data may be in the form of system parameter input or desired system

response. The ill-conditioning we refer to generally arises from the lack of

sufficient independent data to define a complex system or the weak

sensitivity of response to source input parameters. In this paper we shall

show how small errors in data and assumed fixed and known parameters can

lead to highly erroneous results in ill-conditioned linear algebraic equations.

A simplified detection and correction of critical input data arising in the

coefficient matrix and desired response (i.e., right hand side) is proposed

herein.
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INTRODUCTION

Ill-conditioning is characterized by high sensitivity of solutions to

small changes in system parameters and data inconsistencies. In this paper

we shall trace response data and input parameter errors, and show how they

can create significant solution contamination for ill-conditioned systems.

We will then show how a simple detection of these inconsistencies is

possible from an examination of the zero and near-zero eigenvalues and

eigenvectors of the system. This will be followed by a correction procedure
which can be used to identify the sensitive data and to correct it as well as

indicate how to correct the system response or design parameters to achieve

reasonable solutions.

TECHNICAL APPROACH

A technical statement of the problem is as follows: Determine the

parameters, {r}, which will deliver a desired performance or response, {Y},

starting with a design based on initial parameters, {ro}, which deliver a non-

optimum response, {Yo}"

Assuming the elements of {r} are reasonably close to the desired design,

a Taylor series expansion yields

[Y] = [Yo] + [S]{r'ro} + {R} (1)

where { R } are the remainder terms in the approximation and [ S ] is the

response sensitivity, given by

[ S l = (2)

{r} r =r o

The usual linearization procedure employed for such problems

involves performing a least error-squared minimization of the remainder

terms which results in the symmetric formulation

[A] {x} = {b} (3)

where

[A] = [sTs]

{b} =[S] T {Y-Yo} (4)
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{x} = [r-ro}

If there is insufficient independent performance data { Y - Yo } to

uniquely determine the system parameters, { r }, [ A ] will be ill-conditioned

and a solution of Eqn. (3) for the system parameters { r } will be difficult to
achieve.

One procedure for solving Eqn. (3) if [ A ] is ill-conditioned (i.e., [ A ]

has zero or near-zero eigenvalues) is to use the Singular Value

Decomposition (SVD) method. 1 This requires that the analyst obtain all the

eigenvalues and eigenvectors of [ A ], which can be computationaUy

expensive if the size of [ A ] is large (e.g., 300 by 300) even when the rank

deficiency of [ A ] is small.

A more efficient procedure is to use Epsilon-Decompositions 2 (E-D)

which only requires computing the zero, near-zero and lowest non-small

eigenvalues. This is reasonable since it is only the zero and near-zero

eigenvalues which make the system ill-conditioned. In this paper we will

show how to detect and eliminate critical data errors and parameter
contamination errors.

CHARACTERIZATION OF ERRORS

Let us replace Eqn (3) by its approximate version, i.e.,

A' x'= b' (5)

where we have dropped the brackets surrounding the matrices and vectors

A' _ A

b',- b

but x'J x since A is ill-conditioned.

The approximations in A' are caused by system parameter and

sensitivity errors, whereas the approximations in b' are due to response
errors.

Let _ be the normalized eigenvectors of A and _.i be its corresponding

eigenvalues. Thus,

(6)
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where

and

(9 =[ 01,¢2,... ¢ n ]

h

\
,k i

The approximation to the eigenvalue matrix, A is A'
where

A' = A+P

i.e., Xi = X'i + Pi

We shall assume that

(_' _(9

Therefore,

(gT[A'] (9 .- A'

Letting
X' _ (9 C'

b'-_ (9_'

and substituting Eqn (5) and (6) into Eqn (4) yields

(Xi + pi) ci' = _i'

where we have made use of Eqn (5) and (6).

Subtracting Xi ci =

ci'- ci

fli from Eqn (9)

t f pici'Xi

and rearranging terms yields

(7)

(8)

(9)

(10)
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EFFECT_ OF ILL=CONDITIONIN(_

If the matrix A' is ill-conditioned then there will be one or more very

small eigenvalues, _.'i- Therefore, errors in b', as reflected by _i' - [_i, can have

a significant influence on errors in x, as reflected by ci' - ci. This can be easily

seen from Eqn. (10).

Similarly, errors in the sensitivities and input parameters, as

characterized by the Pi, can also influence errors in x ( or ci' - ci).

SIMPLIFIED CORRECTION OF DATA SENSITIVITY

Since the large error source in x, for small errors in. A and b, are caused

by the very small eigenvalues, _.'b it is proposed that the _ associated with

these Xj be computed and their contributions to A' and b' be removed as
follows:

b'-b = Z0tj0j (11)
where

aj = _jTb'
and

A'= A = Z _.j' [ 0j _)jT ] (12)

Thus, the A' parameter matrices and b' response vectors are changed

only as they affect the ill-conditioned nature of the problem. Once these

critical changes are proposed, the analyst must decide if these potentially

sensitive changes should be made consistent with the potential error sources
in the data obtained.

One may also wish to traceback the proposed change in A' and b' to [S']

and {Y'- Y'o} using Eqn. (4).

CONCLUSION

A simplified detection and correction of critical data sensitivity for ill-

conditioned systems has been proposed. It requires computation of the zero

and near-zero eigenvalues, an their corresponding eigenvectors, for the

system at hand. Only a theoretical derivation has been presented. Numerical

examples will be treated in future investigations.
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Abstract

In thispaper we compare threeoptimization-basedmethods forsolvingaerodynamic design problems.

We use the Euler equations for one-dimensionalduct flow as a model problem, and compare the three

methods for efficiency,robustness,and implementation difficulty.The smoothness of the design problem

with respectto differentshock-capturingfinitedifferenceschemes, and in the presenceofgrid refinement,is
investigated.

1. Introduction

Most ofthe effortindevisingschemes forsolvingcomputational aerodynamics problems has focusedon

the forward,or analysisproblem: given the shape ofthe airfoil(oraircraft),what willbe the flow ofairover

it?Of more directuse indesigningan aircraftisthe solutionofthe more difficultinverse,or designproblem:

given the flow,what shape willproduce it? Recently,due to improved methods for solvingthe analysis

problem, and also due to increasesin availablecomputational power, there has been renewed interestin

attackingthe designproblem.

Many differentapproaches to solvingthe design problem have been developed; these are nicelysum-

marized in [I].For our purposes,these approaches can be separated intotwo fundamental classes.In the

firstclass,one attempts to solvethe inverseproblem by (essentially)manipulating the equations governing

the geometry and the flowso that the geometry can be solvedfor,once the flow isspecified.In the second

class,a method forsolvingthe forward problem isused iteratively,employing an optimizationstrategyto

vary the airfoilshape in some systematic way until(closeto) the desiredflow isobtained. The second

classof methods, while generallymuch more computationallyintensivethan the first,offersmore promise

for handling difficultgeometriesand complex flow phenomena, and takesadvantage ofexistingmethods for
solving the associated analysis problems.

The objective of this paper is to compare several optimization-based approaches for solving the design

problem. To do so, we introduce a very simple model problem. The analysis problem for this model is well-

known and has been widely used for testing numerical methods for flows with shocks; it is the problem of
determining the'steady, one-dimensional flow of an inviscid fluid in a duct with a specified spatially-variable

cross-sectional area. The design problem for the model is to determine the duct shape from the flow solution.
Except for one-dimensionality, the flow phenomena exhibited by solutions of the model are quite similar to

those in two-dimensional inviscid flow over an airfoil; this point is illustrated in Figure I. Thus, we may

hope to gain some insight into the nature of the airfoil design problem by studying the vastly simpler duct
flow model.

In Section 2 below we present the model analysis and design problems. In Section 3 we present three

distinct optimization methods for solving the design problem, and discuss the relationships between them. In
Section 4 we display some computational results using the three methods, and discuss the tradeoffs between
them. In Section 5 we present our conclusions.
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1t

2. Model Problem

2.1 Continuous Analysis Problem

The steady flow of an inviscidfluidin a duct of variablecrce_s-sectionalarea A(_) isgoverned by the
Euler equations

Y_ +_;- O, 0 ____¢___1, (I)

where

_'= (pu2+p)A|, _;= - _ ,
(pE + p)uA/

is distance along the duct, p is density, u is velocity, E = • + u_/2 where e is specific internal energy, and

p is pressure. Here, the subscript _ means differentiation with respect to _, and it is assumed that A(_) is a
given, differentiable function. The pressure p is given by the equation of state for a perfect gas, p - (7- 1)pe,

where 7 > 1 is the gas constant. (For air, 7 - 1.4.) We assume supersonic inflow at _ -- 0 and subsonic

outflow at _ = 1. Under these circumstances, it is proper to specify three boundary conditions at _ = 0 and
one boundary condition at _ - 1 [2].

In [3] we show how, under these conditions, (1) can be reduced to a single ordinary differential equation
in u. This equation is

h + g = 0 (2)

where
A.

/(u) - u + R/u, g(u,_) -- _-(#. - A/u),

and _ = (7- 1)/(7 + 1) and/_" - 2H_ are given constants. Here, H = 7e + u2/2 is the total enthalpy, which

is evaluated at the inflow boundary. Equation (2) is fully equivalent to (1); no approximations have been
made in the derivation.

Now we pose our analysis problem, specified so that the solution contains a single shock at _, is
supersonic for 0 < _ < _,, and subsonic for _a < _ < 1.

Analysis Problem
Given:

Aft), & > 0 Can)

Find:

u(_) satisfying

fe+g =0,

ur • uR =/'t and UL > u. > u/t,

u(_ = O)= ui. > u.

u(_ = I) = u_., < u.

and other technical conditions

away from the shock;,

at the shock;

(3b)

Here, u. is the sonic velocity v/if, the conditions at the shock are the Rankine-Hugoniot jump relation
and the entropy condition, and the specified boundary vffiluee are the inflow and outflow conditions. The

technical conditions amount to certain relationships between u_n and u,ut that must hold in order for a

solution to exist; see [3].
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2.2 Discrete Analysis Problem

We introduce three discretization methods for (2) to be used in solving (3) ; these methods differ in
their degrees of continuity, which has an effect on the results obtained with the design optimization methods
presented later.

Let the _ -coordinate be discretized by a uniform, cell-centered grid with centers at _j = (j - 1/2)h,

h = l/J, where J is the number of unknown grid values. Let uj represent a piecewise constant approximation

to u on each grid cell. Then, a conservative difference scheme for (2) is given by

/i+l/_ -/s-1/2
ws - h + gi = 0. (4)

Ilere the source term 9j = g(uj, (A_/A)j) and we assume that the duct shape A(_) is given by a piecewise
cubic spline described in the B-spline basis [4] with coefficients bm for m = 1,2 ..... M and that A(0)

and A(1) are fixed. (A¢/A)s is obtained by evaluating the spline and its derivative at _j. The boundary

conditions on u are u0 = u(_ = 0) and us+l = u(_ = 1).

It remains to prescribe the fluxes fs+l/2 as functions of us and us+l. Three such prescriptions are
fG, fEo, and fay, corresponding to the Godunov, Engquist-Osher, and Artificial Viscosity methods for

numerically approximating hyperbolic conservation laws; see [3]. Tile Godunov flux fc corresponds roughly

to the first order upwind scheme frequently used in computational aerodynamics, and is a C O function of
its arguments. The Engquist-Osher flux lEO is a slight perturbation of fG that makes it C 1. The artificial

viscosity flux fay is entirely different, and is C °°. The abilities of these schemes for sharply representing

computed shock waves vary somewhat inversely to the degree of continuity, with the Godunov scheme having

about one grid cell interior to a shock, the Engquist-Osher scheme two cells, and the Artificial Viscosity
scheme many cells. Because continuity is an issue later, we will refer to these schemes as the C °, C t, and

C °_ difference schemes, respectively.

Once the discretization has been made, we are faced with solving a system of nonlinear algebraic
equations. The system is

Discrete Analysis Problem

Given: bin, m = 1,..., M (spline coefficients describing A(_))

Find: u s satisfying

w(u) = 0 (5)

Here W is the vector of discretized equations (4) for j = 1,2,..., J and the boundary conditions on u. We

will refer to the method for solving the analysis problem as the analysis code. The actual method employed

in the analysis code may be Newton's method (or a variant), some other iterative method (e.g., multigrid),
or a time-marching scheme that approximates a time-dependent differential equation.

2.3 Continuous Design Problem

We next turn our attention to posing the design (or inverse) problem: given the flow solution u(_),

what is the duct geometry A(_)? In other words, we want to find that duct geometry A(_) such that the
solution of (3) is some specified function t_(_). Some of the obvious ways of stating the design problem

are mathematically improperly-posed; see [3]. Given these difficulties, we are led naturally to seek a least
squares approximate solution; that is, we want to solve

Design Problem

Given: fi(_)

Find: A(_), Ae > 0 such that u(_) satisfies (3b) and Ilu(_) - '_(_)112is minimized.

We note that this particular objective function puts a large premium on getting the shock located

correctly, and that precise location of shocks may not be as important in practical design problems for
airfoils or aircraft.
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2.4 Discrete Design Problem

We assume that a desired (or goal) velocity distribution dj is given for each computational cell in the

analysis problem. Then we have

Discrete Design Problem

Given: _j, j=l,...,J
Find: bin, m = 1,2,..., M (spline coefficients describing A(_)) such that (5)

is satisfied and i x''_ , (uj - fij)2 is minimized.

Later we will consider three variations on this problem that amount to leaving A(_) unconstrained,

requiring A_ > 0, and requiring A¢_ have the "correct" sign. The latter two translate into simple linear
constraints on the B-spline coefficients bin.

3. Approaches to formulating design problems using optimization

Most of the recent literature on the aerodynamic design problem features specific optimization ap-

proaches or specific design problems. In this section we present a general view of the problem of optimal

design. In particular, we consider three different methods for formulating the design problem as an optimiza-

tion problem. Concepts for these approaches are illustrated by their application to the duct design problem
discussed in Section 2. Except for these illustrations, this section is independent of the previous material.

3.1 Tile Black-Box Method

The black.boz method is the most direct approach to optimal design. In the black-box method the

analysis code is repeatedly invoked as the design variables are altered by the optimization code. Since the

analysis code is independent of the optimization code, it may be treated as a black-box.

If the design is characterized by a vector ZD of nD design variables then the optimal design problem is

given by
minimize _(zD) , >

x_v _ R"o (6)

subjectto C(zD) __0,

where _(ZD) isthe objectivefunction*and C(ZD) isa vectorof mD constraintfunctions.In the black-box

method, each evaluationof f(ZD) requiresa solutionby the analysiscode.

Often,the functionf willbe formulatedinterms offlow variableszF. The flowvariablesare the physical

variableson the discretizationgrid,such as velocitiesor pressures.For example, the objectivefor the duct

design problem isa functionof velocitieson the grid cells.In thissituation,_ isdependent on the design

variablesZD in an indirectmanner. That is,the variablesZD are linkedto the flow variableszF via the

differentialequationsor the discretizationofthese equations,sincethe flow variableswillchange when (for

example) the geometry isaltered.In general,f willhave both a directdependence on ZD and an indirect

dependence on ZD, due to the dependence of zr on ZD. Thus, one could consider the objectivefunction

to be _(zF(zD), ZD). The term zF(ZD) indicatesthat,givenZD, the valueofzr isobtained by solvingan

analysisproblem.

The constraintsC may alsohave an indirectdependence on the designvariables.However, they will

often be shape constraintsformulated directlyin terms ofZD. For example, one versionofthe duct design

problem requiresthat the duct area increasemonotonically.This constraintcan be formulated in terms of

the coefficientsof the piecewisepolynomials that definethe area functionA(_).

One of the drawbacks of the black-box approach ishigh computational coet. Typically,efficientop-

timizationcodes (see e.g., [5]) for solving (6) require computation of VD f and VI) C , the gradients of
the objective function and constraints with respect to the design variables. Computing these derivatives

* Note that the typewriter font f is used for the objective function to distinguish it from the flux function

f introduced in Section 2.
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byone-sidedfinitedifferences requires solving nD analysis problems, where each problem corresponds to a,

perturbation of a different component of ZD. One mitigating factor is that solving these perturbed analysis

problems should be considerably cheaper than solving arbitrary problems, at least when the analysis code

employs an iterative solver. This is due to the availability of the solution of the 'nearby' problem at the

nominal value of ZD as a starting guess for the iteration at the perturbed value of ZD. In the next section
we show that the first derivatives for the design problem can often be computed by another method for

considerably less cost than solving nD analysis problems.

An advantage of the black-box approach is that the analysis code can be used essentially without
modification. Thus, there is no need to tamper with complicated discretization schemes such as those used

in most advanced computational aerodynamics codes.

3.2 A Black-Box Scheme Using an Implicitly-Derived Gradient

In this section we describe a method, based on the implicit function theorem, for "cheaply" computing

derivatives required in the optimization. Similar methods are mentioned in reference [6] and the citations

therein. For simplicity, the unconstrained version of (6) is considered. However, tile results apply to the

constrained problem as well.

Assume that the analysis problem has been discretized so that an analysis consists of solving a system

of nonlinear equations. In this case function evaluations for the black-box method are computed as follows.

Given a design specified by ZD, the analysis code solves W(zF) = 0, where zF is the vector of nr flow
variables and W is a vector of nF nonlinear equations. Since the analysis problem is an implicit function of

XD it can be viewed as solving

w(xr, XD)= o

for zF, given a design specified by xD.

Suppose that zF and ZD are considered as subsets of the nF +nD vector x given by

x ---( I (8)

the Jacobian (first-derivative) matrix of (7) is then

[ ']J - JF [JD , (9)

I

where J is nF x (nr + riD), JF is the nF x nF Jacobian with respect to the flow variables and JD is
the nF x nD Jacobian with respect to the design variables. (The partitioned view of the Jacobian implies

nF :_ riD; this will usually be the case.) Note that JF is often available in analysis codes, especially those
based on Newton's method and variants.

Consider the function i(zr, zD), where i is the same as the black-box method objective function f,
except that xF and zz_ are considered to be independent of each other. The function i(zF,xD) is then

equivalent to the bla£k-box method objective function f(zr(zD), zD) only when (7) is satisfied. Computing
gradients of i is considerably simpler than computing gradients of f. This is due to the fact that the partial

derivatives of i with respect to variables in ZD can be computed with the assumption that ZF is fixed. In

contrast, the partial derivatives of f with respect to variables in zD must account for the fact that zF is a
function of zD.

Usually Vrf and VDi, the gradients of i with respect to the flow variables and the design variables,

respectively, are available as an analytic expressions or can easily be computed by finite differences. For

example, the discrete design problem for duct flow has (Vri(z)) i = uj - f_j and VD/(x) = 0. However,
the black-box method requires VDf, the gradient of f with respect to the design variables ZD. The theorem
below provides an efficient way to compute VDf, given Vri and VDi; the proof may be found in [3].

Theorem If W(_:F, ZD) -" 0 and W(ZF,ZD) iS C 1 in a neighborhood of _ = ($F,_D), with Jr

nonsingular at _ then
VD :t(_D) -- VDi(e) -- V_ V_r Vr i(e) . (10)
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(Here,superscript T indicates transpose.)
The following algorithm could be used for computing VD_ using equation (10). First compute VFi

and VDi, solve J_y = Vri for _ and then compute VDf = Vni - JnTy. Thus, computation of Vz)_ by the
implicit method requires computing JD and solving the linear system J_1/= VFi. Computation of 3D by

forward finite differences requires nD evaluations of W(zF, ZD). Note that evaluation of W(xr, xD) (some-
times referred to as "computing the residuals") is usually significantly cheaper than solving W(zF, zD) --- O,

i.e. solving the analysis problem. Solving J_y = VFi is trivial if the analysis code computes a factorization
of Jr. However, if an iterative method such as pre-conditioned conjugate gradient is used in the analysis

code, then the iterative solver must be adapted to solve the transposed system.

Some analysis codes do not provide JF or an iterative solver for systems involving ./F; an example is

a time-dependent code where the steady state solution is found by stepping through time. The implicit

gradient scheme can still be used in this case, provided that JF can be computed efficiently using sparse

finite differences (see e.g., [7]). The sparse difference approach only requires that the analysis code provide
the values of W(xr, xD) when values of _r and xD are input; most codes, if not already in this form, can

be easily modified to produce W.

In general, computing implicit gradients is much cheaper than computing gradients by finite diffcrences.

This is because the finite difference gradient computation requires the solution of nD analysis problems. In

contrast, computing the gradient implicitly requires nD evaluations of the flow equations W(xr, xD) and one

solve of a linear system with the matrix J_. A disadvantage of the implicit scheme is that. some (perhaps
substantial) modification of the analysis code is required.

T

3.3 The All-at-once Method

In deriving the implicit gradient method the objective function "£ and the discretized differential equa-
tions W were considered to be functions of tile independent sets of variables ZD and xr. Thus, one could

consider a design method where both zD and zF are treated as optimization variables and the flow equations

W(zF, zD) = 0 are treated as equality constraints. This all-at.once method can be described formally as

minimize i(xr, zn) ,

z E R (up+n°)

subject to C(xr,xD) __ O,

W(xr,xn) = O,

(11)

where z = (zF,zn) and the vectorC are the designconstraintsas in(6) . An iterationof the optimization

now involvessimultaneous modificationof both xF and ZD. A similarapproach to the design problem is

describedin [8].

An advantage of the all-at-oncemethod over the black-box method is the probabilityof requiring

considerablyfewer equivalentsolutionsof the largediscretizedsystem W(z) --0. This isbecause the black-

box method requiresthe solutionof W(ZF) ----0 foreach change inZD. However, inthe all-at-oncemethod,

each change in zD requiresthe computational equivalentofonly one stepofa Newton solverforW(z_.) - O.

Another advantage of the all-at-onceapproach isthat itdoes not requirethe existenceofsolutionsto

the analysisproblem for allvaluesof the design variablesgenerated in the course of the optimization. All

that isrequired isthat the residualof the system W(zr, zD) be computable for the valuesof zF and ZD

generated by the optimizer.However, by definition,the analysisproblem must be analyzableatthe optimal

value forZD.

A big disadvantageofthe all-at-oncemethod isthat the optimizationcode isnot isolatedfrom the anal-

ysiscode. That is,sincethe optimizationcode must simultaneouslychange the analysisand designvariables,

itmust contain allthe specializedsoftware requiredfor an analysis.In particular,even ifthe number of

designvariablesissmall,the optimizermust includecode forhandling largeanalysisproblems; forexample,

sparsematrix factorizationcodes or codes that compute preconditionersand conjugategradientiterations.

Consequently,the all-at-onceoptimizationcode may have to be modifiedsignificantlyforapplicationtoeach

new analysisproblem.
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Another disadvantageof the all-at-oncemethod compared to the black-box method was discoveredin

testson the duct design problem: the all-at-oncemethod ismuch more susceptibleto derivativedisconti-

nuitiesarisingfrom finitedifferenceschemes designed to sharplyapproximate shocks. This isbecause the

optimizationinthe black-boxmethod seespotentialdiscontinuitiesonly ifshocks move todifferentgridcells

from one converged analysistothe next.In contrast,the all-at-oncemethod has potentialderivativediscon-

tinuitiesifshocks move todifferentgridcellsforconsecutivevaluesofzr inthe optimizationiteration.Since

shock locationscan move significantlywhen zr isfarfrom an analysissolution,thistype ofdiscontinuityis

much more pervasivewith the all-at-onceapproach.

4. Numerical Results

In thissectionwe presentnumericalresultsobtained by applyingthe designmethods discussedinSection

3 to the discretedesignproblem forduct flowdescribedinSection2.The testingwas done on a Sun SPARC

workstation.The optimizationcode used was NPSOL, a product ofthe Systems Optimization Laboratory,

Stanford University.NPSOL isan implementation ofa sequentialquadraticprogramming method.

The designvariables(calledzD inSection3)were the B-splinccoefficientsdescribingthe duct geometry

A(_). The two end valuesofA were fixedat A(0) = 1.05and A(1) = 1.745.The testswere run forthe case

of two designvariables(riD= 2) and ten designvariables(nD= 10).The resultsfornD= 2 are found in [3]

,and those fornD= 10 presentedhere insome detail.The linearduct shown in Figure 2a was the initial

designforeach run.

Velocitiesalong the duct were the flow variables(calledzF inSection3) forthe duct design problem.

We took d = 40 gridceils,so there were nF = 40 flow variables.The boundary conditionswere u0 - 1.299

and u41 = 0.506. The flowvariablesresultingfrom an analysisof the linearduct, using the C o difference

scheme, appear as crossesinFigure 2b.

The analysesin allthe black-boxmethod optimizationruns were "warm started."That is,the initial

valuesfor the flow velocitieswere taken from the precedinganalysis.The initialvelocityprofileforthe first

analysisin an optimizationrun was a linearprofileconnectingthe boundary conditions.

The velocitiest_jused as the designgoalwere the evaluationson the computational gridof the analytic

solutionfora duct with a cross-sectionalarea given by a sinusoidalperturbationof the linearduct. This

velocityprofileisthe continuouscurve in Figure2b.

Figures3-5 show the optimal solutionsforthe nD= 10 duct designproblem usingthe C °,C'land C °o

differenceschemes, respectively.The nD= 10 case allowsenough degreesof freedom for "wavy _ ducts to

be generated in the optimizationprocess. Itisclearfrom Figures4 and 5 that strangelyshaped optimal

ducts resultfrom the highercontinuitydifferenceschemes that allow a "smearing" of the shock. This is

particularlytrueforthe Coo scheme.

Table 1 givesthe numerical resultsfor the nD = I0 design problem with no constraints._Bbox (fd

grad)" and "Bbox (impl grad),"respectively,denote the black-box scheme with finitedifferencegradients

and gradientscomputed using the implicitmethod. _Opt. Found? - Yes_ indicatesthat the optimization

code converged to the optimal solution(alloptimizationmethods converged to the same solutionfor a

given differencescheme). The number ofoptimizationiterations,number of functionevaluationsand CPU

time are indicatedin the "No. Itrns,_ _No. Fevals,_ and "Time" columns, respectively.The number of

gradient evaluationsisapproximately the same as the number offunctionevaluations.The "No. Equiv.

Newton Steps" column indicatesthe number of times the optimizationmethod requiresa computation

that isisequivalentto the work of a Newton step on the discretizedanalysisproblem, solve W(zF) = 0.

This measure of computation cost isused because thiscost willdominate for largeproblems. Inclusionof

equivalentNewton step resultsisintended to providea more meaningful basisfor performance evaluation

than would be obtained by solelyconsideringCPU times on a smallproblem.

The black-boxscheme using implicitgradientsisalways more efficientthan the black-box scheme with

finite-difference gradients. The advantage of using the implicit gradient scheme increases as the number of

design variables increases. This is to be expected since no is the number of analyses required to compute
the gradient by one-sided finite differences, whereas no is only a secondary factor in the computation cost

for the implicit gradient method.
In results not shown here, we found the all-at-once method to be susceptible to difllculties due to low-

continuity finite difference schemes; sometimes, it would not converge, or would converge to an undesirable
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Table I. Test ResultsfornD- I0,no constraints.

Problem

Formulation

Bbox (fd grad)

Bbox (impl grad)
all-at-once

Bbox (fd grad)
Bbox (impl grad)
all-at-once

Bbox (fd grad)

Bbox (impl grad)
all-at-once

Difference

Scheme

C 0

C 0

C O

C,l

C I

C I

Coo

Coo

Coo

Opt. No. No. No. Equiv. Time

Found? Itrns Fevals Newton steps (secs)

yes 31 48 1216 105.4

yes 31 48 317 35.9

yes 19 30 19 32.3

yes 30 46 1143 97.1
yes 28 45 315 27.2

yes 19 31 19 33.8

yes 28 40 998 68.9

yes 29 42 257 23.3

yes 11 12 II 18.2

localminimum. However, when the all-at-oncemethod does work, as in the C °o case,itismuch more

efficientthan the black-boxschemes. This isparticularlytrue in terms ofequivalentNewton steps.

To make tileoptimal duct designmore physicallyreasonable,designconstraintswere imposed. Initially,

first-derivativepositivity(monotonicity)constraintswere imposed. The optimal duct for the C o sdleme is

unaffectedby the monotonicity constraint.The monotonicityconstraintyieldsan acceptableoptimal duct

for the C I scheme. The optimal duct for the C °o scheme with monotonicityconstraintsisconsiderably

smoother than the optimal unconstrained duct,but itisstillsomewhat ugly.

In additionto the monotonicity constraints,second-derivativeconstraintswere imposed which required

the duct curvaturetohave the "correct"sign.The second-derivativeconstrainthas littleeffecton the optimal

C O and C I scheme ducts. However, the new constraintresultsin an acceptableoptimal designfor the C °O

scheme.

Table 2 compares the number of equivalentNewton steps required for the all-at-oncemethod with

those requiredforthe most efficientblack-box method, on problems where they both computed the optimal

design. The all-at-oncemethod has a significantadvantage in the unconstrained case. However, adding

design constraintsreduces this advantage. A partialexplanation of thistrend isthat the optimization

method solvesa quadratic prograxnming problem (QP) at every iteration.Since the all-at-oncemethod

includesthe flow variablesinthe optimizationproblem, itworks with a much largerQP than the black-box

methods. Thus, when constraintinequalitiesenter and leavethe activeset,the all-at-oncemethod must

perform linearalgebra computations on much largerproblems than the black-box methods. Despite this

disadvantage,the all-at-oncemethod always required many fewer equivalentNewton stepson Coo scheme

problems than the black-box methods.

Based on the duct design tests,severalsummary statements can be made. "A generaltrend isthat

increasingthecontinuityofthedifferencescheme reducesthe difficultyintheoptimizationruns,but increases

the degree to which the designmust be constrained.Summary observationscomparing the threeproblem

formulationsare giveninTable 3. They arecompared based on robustness,computational costand the extent

towhich they allow independence ofthe optimizationand analysiscodes. (The two black-boxmethods tied

forfirstin the robustnesscategory.)

The testresultsindicatethe desirabilityofimproving the robustnessofthe all-at-oncemethod sothat its

efficiencyadvantage can be exploited.One way todo thisistogivetl_eall-at-oncemethod a very good initial

estimate ofthe solutionforboth the flow and designvariables.This ideawas testedon the no = 10 design

problem, using the C ° differencescheme, with both monotonicity and curvature design constraints.The

initialflow and design variableswere taken from the optimal solutioncomputed by the all-at-oncemethod

on the Coo versionof thisproblem. The all-at-oncemethod then converged to the optimal solutionof the

C o problem at the costof 143 equivalentNewton steps.The totalcostforboth the C m initialsolutionand

the finalrun on the C o problem wm 198 equivalentNewton steps. This isan improvement over the 315

equivalentNewton steps requiredby the best black-box method.

The finaltestresultspresentedhere relateto the smoothness ofthe optimal design problem. For this
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Table 2. Equivalent Newton Steps for Bbox (impl grad) us All-at-once Method.

Avg. ratio of equivalent Newton steps for

nD

2

10

10

I0

Constraints
i

none

none

Ist Deriv.

1st and

2nd Deriv.

Bbox (impl grad) over all-at-once method

21.8

18.9

2.2

1.4

Table 3. Summary Comparison of Design Problem Formulations.

Problem
Formulation

Bbox (fd grad)

Bbox (impl grad)

all-at-once

Robustness
|

High

High

Low

Computational

Cost

High

Medium

Low

Independence of
'Optimization and

Analysis Codes ,,

High

Medium

Low

study, smoothness plots were obtained in the nz) = 2 design case. The smoothness plots show the change
in the black-box objective function as one of the duct-defining spline coefficients is perturbed over a range

between 0.9 and 1.1 of its nominal value. Figures 6-8, respectively, show the smoothness plots for the G °,
C 1 and C °O schemes. The continuity of the difference schemes is clearly reflected in the test results.

All the test results discussed thus far are for a fixed, coarse computational grid. Many analysis codes
employ grid-refinement techniques to capture the details of flow features, such as shocks. Thus, it is of

interest to consider the smoothness of the design problem when grid-refinement is used. Figure 9 shows the

flow in the optimal duct for the C °O scheme when a simple technique is used to refine the grid near the shock.

The shock detail is captured much more accurately using grid refinement than using the fixed, coarse grid.

The initial smoothness tests for the grid-refinement case were run using an objective function that is
the sum of squares, on the coarse grid points, of the differences between the computed velocities and the

goal velocities. Figure 10 is the smoothness plot for this objective function using the Coo scheme with grid

refinement. (Similar results are obtained for the other difference schemes.) Considerable discontinuity is
introduced into this objective function by grid refinement.

To remedy the discontinuities discussed above, a new integral objective function was used. For this

objective, both the computed solution on the refined-grid and the velocity design goal were interpolated
using cubic splines. The objective function was then defined as the numerical integral of the sum-of-squares

of the differences between the two spline curves. Figure 11 shows the smoothness plot for the C o scheme

with the new objective function and grid refinement. (Similar results are obtained for the other difference
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schemes.) Figure 11 indicates that the combination of grid refinement and the integral objective function

results in a smooth design problem, even for the C o scheme.

5. Conclusions

We have presented three methods for formulating design problems as optimization problems. The first

is the black-box method where the optimization code is completely separated from the analysis code, and

the optimization code repeatedly invokes the analysis code to provide values of the flow variables that are

used to evaluate the objective function of the optimization. Most of these invocations of tile analysis code
are made by the optimization code in order to evaluate finite difference approximations to the gradients

of tile objective function (and constraints) with respect to the design variables. In general, this is very

costly. We therefore presented a modification of the black-box method where these gradients are found by

an algorithm based on the implicit function theorem. This black-box method with implicit gradients inherits

most of the good properties of the black box-finite difference gradient method (good robustness, considerable
independence of the optimization and analysis codes), while substantially reducing the computational cost.

The black-box method with implicit gradients can be retrofitted to most existing analysis codes to turn

them into design codes. The amount of work required depends on the solution methodology employed in the

analysis code. The largest task is to solve linear systems with a coefficient matrix that is tile transpose of
the Jacobian of the discretized flow equations with respect to the flow variables. In many cases (primarily

in schemes based on Newton's method), this Jacobian is already computed by the analysis code. In other

cases, it can readily be obtained by sparse differencing. In all cases, a solution method for the transpose of

the Jacobian needs to be provided. While this is trivial if a direct factorization of the Jacobian is employed
in the analysis code, such will rarely be the case for large scale (three dimensional) problems. It remains to
be determined how iterative methods can best be adapted to solve transposed systems.

The other method we introduced was the all-at-once method where tile optimization simultaneously

varies the flow and design variables, and the discretized flow equations are viewed as equality constraints on

the optimization. The primary difference between the all-at-once approach and the black-box approach is

that the discrete flow equations are not required to be satisfied in the optimization iteration until the optimal
solution is reached. Obviously, the optimization methodology and the flow equation solution methodology

need to be tightly integrated in this approach, so that code independence is sacrificed. We found in our tests

on the model duct flow problem that the all-at-once approach was less robust than the black-box approach,

often failing to converge or converging to an undesirable local minimum. This was especially true when

difference schemes of low continuity (those giving the sharpest shocks) were employed. However, when the
all-at-once approach succeeded, it was dramatically less expensive than the other approaches. Since expense

is a key issue for large problems, further investigation of how to increase the robustness of the all-at-once
method seems justified.

The issue of smoothness of the black-box design problem was examined. It was concluded that the

optimal design problem can be quite smooth, even in the presence of low continuity difference schemes and

grid refinement, provided the design objective function is appropriately defined .
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DESIGN OF LAMINAR FLOW BODIES IN COMPRESSIBLE FLOW /'- _ '

Simha S. Dodbele, Research Scientist

Vigyan, Inc., Hampton, VA

ABSTRACT

An optimization method has been developed to design axisymmetric body shapes such as
fuselages, nacelles and external fuel tanks with increased transition Reynolds numbers in
subsonic compressible flow. The method involves a constraint minimization procedure
coupled with analysis of the inviscid and viscous flow regions, and linear stability analysis
of the compressible boundary-layer. Boundary-layer transition is predicted by a "hybrid"
transition criterion based on Granville's transition criterion and a criterion using linear

stability theory coupled with the en-method. A tiptank of a business-jet is used as an
example to illustrate that the method can be utilized to design an axisymmetric body shape
with extensive natural laminar flow. On the original tiptank boundary layer transition is

predicted to occur at a transition Reynolds number of 6.04 x 106 on the original tiptank. On

the designed body shape a transition Reynolds number of 7.22 x 106 is predicted using

compressible linear stability theory coupled with en-method.

lntroductio9

Recent advances in airplane construction techniques and materials employing bonded
and milled aluminum skins and composite materials allow for the production of
aerodynamic surfaces without significant waviness and roughness, permitting long runs of
natural laminar flow (NLF) over wings in subsonic flow. These advances lead to excellent
opportunities for airplane drag reduction by increasing the extent of NLF over wings [1].
As compared to lifting surfaces laminar flow research on nonlifting air-frame surfaces,
such as fuselages, nacelles, and external fuel tanks has received limited attention [2,3].

Reference 3 presents a recent overview of incompressible transition experiments on
axisymmetric bodies. References 4-6 presented results of mostly, incompressible, under-
water transition experiments over bodies of revolution with varying fineness ratio,
indicating maximum transition-Reynolds numbers of about 20 million for low fineness ratio
bodies.

A recent study [7] of bodies of revolution at high subsonic speeds without supersonic
regions demonstrated the potential for tripling the length of sufficiently stable laminar

flow at Mach number (M) -- 0.8 and Length-Reynolds number (RL)= 40 x 106, in comparison
with incompressible speed at the same length Reynolds number. A transition experiment
was conducted in the NASA-Ames 12-ft. pressure tunnel by Boltz et al., [8,9] at high subsonic
freestream Mach numbers, measuring the transition locations on two ellipsoids of fineness
ratios (fr) of 7.5 and 9.14. Transition occurred as far downsteam as 80 to 88% at M = 0.90 to

0.96. Reference 10 presents correlation of compressible boundary-layer-stability analysis
done for several of the experimental results reported by Boitz et al. and indicates that
integrated T-S linear logarithmic amplification factors (n-factors) of 8-11 are obtained at
the point of measured transition onset.

The transition process over an axisymmetric body shape is caused by large amplitude
growth of Tollmien-Schlichting qT-S) disturbance waves in the laminar boundary-layer
flow. In compressible flow, the presence of density gradients in the boundary layer in the
direction normal to the wall in addition to the velocity gradients can result in a large
reduction in the spatial growth of T-S disturbances in the laminar boundary layer. The
favorable damping effect of the T-S waves in compressible flow contribute to the
achievement of increased transition-Reynolds numbers (Rtr) on lifting as well as
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nonlifting aircraftsurfaces in the absence of strong crossflow [7]. This favorable effect of
compressibilityshould be exploited in the design of advanced NLF bodies for applicationto

general aviation, commuter, transport and business aircraft.

This paper presents a new design method in which Granville'stransitioncriterionand

the en-method (originallyintroduced by Smith [11] and Van Ingen [12]) has been

incorporated to generate body shapes with increased transitionReynolds numbers at
subsonic compressible speeds. Design calculationsfor a tiptank in compressible flow are

presented as an example case.

Optimization Procedure for NLF Body Design

The design method developed to obtain body shapes with extensive runs of laminar flow
is illustrated in the flowchart (Fig. 1). Initial values of the design variables describing the
body shape are input along with the length Reynolds number, Mach number of the free
stream, and the fineness ratio of the desired body shape. The axisymmetric body is

described by design variables representing the body ordinates in the forebody section and
in the afterbody section

A constrained minimization method (CONMIN) [13] is coupled with analysis of the inviscid

and viscous flow regions, linear stability analysis of the compressible boundary-layer and a
transition prediction method.The aerodynamic analysis program used in the present
optimization procedure is based on a low-order surface-singularity method (VSAERO) [14].,
Pressure distributions and velocity distributions can be computed by this method which
uses surface singularity panels to represent the body shape. The boundary-layer profiles

along the surface of the body, required for the en-method, are generated by a modified
axisymmetric boundary layer code (HARRIS) [15]. The boundary-layer finite difference
program calculates detailed boundary-layer velocity and temperature profiles along with
their first and second derivatives normal to the surface, including the effects of transverse

curvature. Analysis of the laminar boundary-layer stability along the body is done by
using compressible linear stability theory. The COSAL program [16] solves the finite-
differenced, boundary-layer stability equations by using matrix methods. The compressible
T-S eigenvalue problem is solved for each boundary-layer station along the body surface
giving temporal growth rates of the instability waves propagating at specific wavelengths
and wave angles. The temporal growth rates are transformed to the spatial growth rates
using Gaster's phase-velocity relationship [17]. Boundary-layer transition is predicted by

the en-method in which n, usually referred to as n-factor, is obtained by integrating the
linear growth rate of the T-S waves from the neutral stability point to a location
downstream of the body.

The correlation of a large number of wind tunnel data and flight transition experiments

with linear boundary-layer stability calculations has made the ¢n-method a consistent
transition-prediction method [18]. For experiments in wind tunnels with low turbulence
and low acoustic levels the onset of transition can be correlated with an n-factor of 9 to 11

in subsonic, transonic and supersonic flows. In the case of flight tests, higher n-factors of
the order of 12 to 15 have been observed to correlate transition. In the present design
calculations, the n-factor in the design method can be chosen so as to suit a particular

application- e.g., to design a body for a wind tunnel, a flight test article, or an under-water
body.

- A number of geometric and aerodynamic constraints are imposed on the design

parameters to generate practical and realistic body shapes for given design conditions. The
geometric constraints will be that the design variables are constrained by the specified
upper and lower bounds. Judicious choice of the upper and the lower bounds for the design
variables will accelerate convergence of the solutions. The level and the location of the
minimum surface pressure along the body surface are aerodynamically constrained by the

requirement that the turbulent boundary layer over the aft-portion of the body should not
separate until x=0.95 for the design conditions. The objective function is taken to be a
function of the location of transition predicted by the following "hybrid" transition
criterion.

".."."
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fobj=l - Xtr(h) whereXtr(h) = (Xtr(g)+ Xtr(en))/'2, (I)
4'

Xtr(g) is the transition location predicted by using Granville's transition criterion and

Xtr(en)is the transition location predicted by using an-method with an n-factor of 9. But for

calculating the gradients of the objective function Granville's transition criterion is used
for predicting transition.

The objective function given by Eqn. (1) is to be minimized subject to the constraints on

the design variables. The optimizer computes gradients of the objective function using
Granville's transition criterion and then, using either a conjugate direction method or a
method of feasible direction, determines a linear search direction, along which a new
constrained variable is constructed.

An improved or minimum feasible objective functional value is calculated by using the
hybrid transition criterion given by F_,qn. (I) and a series of proposed updated design
variables are calculated. The objective function and the constrained function are evaluated
using the updated design variables, interpolating over the range of feasible proposed
design variables resulting in a minimum value of the objective function. The results are
tested against a convergence criteria. The procedure will stop if the convergence criterion
is satisfied, giving a body shape with maximum transition length satisfying the separation
constraint. If the convergence criterion is not satisfied the design parameters go through
the analyzer again resulting in a new set of design variables and the procedure is repeated
until a final body shape is obtained.

Details of the Design Method

The present computational procedure is used to design axisymmetric bodies at zero
incidence. At zero incidence, the growth of the two-dimensional, T-S disturbances is the
most dominant instability mechanism on an axisymmetric body leading to transition in the
boundary layer if laminar separation does not happen earlier than natural transition. For
the aerodynamic analysis, the body is modelled by 32 panels in the axial direction and 8
panels in the circumferential direction. Using the VSAERO panel method inviscid pressure
distributions were obtained and interpolated at 200 axial stations. The boundary-layer
velocity and temperature profiles are obtained with 10[ points in the direction normal to
the surface and 90 stations in the streamwise direction. Presently, in the design method the
boundary layer calculations are carried out for adiabatic wall conditions and zero suction
through the wall.

The boundary-layer stability equations for the example considered are solved at every
5th streamwise boundary-layer station starting from the first station. The boundary-layer
stations are skipped from the point of view of reducing the computational time. ]n the
global search for eigen values, the sixth-order stability equation is solved at each chordwise
station and in the local search for the eigen values the full eighth order stability equation
is solved. Prior knowledge of the critical boundary-layer disturbance frequencies, which
are functions of the Mach number helps to identify the critical frequency spectrum during
the course of the design optimization. To assess the effect of extending the length of
laminar boundary-layer flow over the geometries analyzed, calculation of the viscous drag
is made using a modified integral boundary layer approach [3].

Computational Results and Discussions

To increase the speed of computations the design program is run with the initial body
geometry using Granville's transition criterion to obtain a converged body shape. The final
body shape obtained by using Granville's criterion is then used as the initial geometry
input into the design program and the hybrid transition criterion is selected. This

procedure greatly reduces computer time and also results in rapid convergence of the
design variables.
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Results obtained by the optimization procedure are discussed through an example. All
the computations were done on a CRAY-2 computer. A body of revolution whose maximum
diameter and length correspond to those of a tiptank of a representative business aircraft is
considered. The tiptank has a fineness ratio of 8.00 and the design flight conditions
considered for the present calculations are given by M=0.7 and unit Reynolds number (R')

=1.28 x 106/foot. The axisymmetric body is modelled by a set of 27 body coordinates with 12
points defining the forebody section and 15 points defining the aftbody section. Twelve
design variables representing the ordinates in the forebody region are allowed to vary
within the set of specified upper and lower bounds while simultaneously holding the tail
section aft of the maximum thickness point unchanged during the design iterations.

The final body shape obtained at the end of the optimization with Granville's criterion is
used as input data to the design program with the hybrid transition criterion. In the
present example, since the axisymmteric flow is subcritical zero TS wave angle is assumed
in the design calculations.

The original tiptank and the final body shape obtained using the hybrid transition
criterion along with the results of stability analyses are shown in Fig. 2 for comparison.
The envelope for the new body shape has a smaller gradient than on the original tiptank
shape. On the original body, the critical disturbance characterized by a frequency of 3500
Hz starts growing after 13% of the body length from the nose and reaches an n-factor of 9

at Xtr(en ) = 0.33 (Rtr(e n) = 6.04 x 106). A drag coefficient (CD) of 0.0491 is predicted on the

original tiptank with the boundary-layer transition fixed at Xtr=0.33. The design program

took 2785 secs. to predict the final design shape with the hybrid transition criterion.
On the designed body shape the transition location corresponding to n-factor of 9 occurs

at Xtr(en) = 0.39 (Rtr(en) = 7.22 x 106). Though the critical frequency leading to transition

remains at 3500 Hz on the original tiptank and the designed body, boundary-layer
transition as predicted by the en-method occurs much further downstream on the designed
body. A drag coefficient (CD) of 0.0415 is predicted on the designed body shape with the

boundary-layer transition fixed at Xtr=0.39

An optimization procedure has been developed to design axisymmetric body shapes with
increased transition Reynolds number. The new design method involves a constraint
minimization procedure coupled with analysis of the inviscid and viscous flow regions, and
linear stability analysis of the compressible boundary-layer. Boundary-layer transition is
predicted by a "hybrid" transition criterion based on Granville's transition criterion and a

criterion based on linear stability theory combined with the en-method. A tiptank of a
business-jet is given as an example to demonstrate that the method can be used to design an
axisymmetric body shape with increased transition Reynolds number. Boundary-layer

transition is predicted to occur at a transition Reynolds number of 6.04 x 106 on the

original tiptank. On the designed body shape a transition Reynolds number of 7.22 x 106 is
predicted using the en-method, an increase of 20% in transition Reynolds number.
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An approximation for dynamic displacements, which captures the nonlinearities associated with

resonance, is presented. This approximation is constructed using approximate intermediate response

quantities. When dynamic displacements are constrained using this high quality approximation, frequency

constraints are no longer needed to keep the design away from resonance.

During the structural synthesis process designs that have natural frequencies near the forcing fre-

quencies of the applied loads may be generated. This produces a resonance condition with large dynamic

displacements that are very nonlinear functions of changes in the design variables. The usual approach to

this problem is to place frequency constraints on the design to keep it away from the loading frequencies.

Choosing the values of these frequency constraints is difficult because if they are too close to the loading

frequencies, near resonance will occur and ff they are too far away the design may be overly conservative.

In this work an approximation for dynamic displacements is developed which captures the nonlinear effects
of resonance. The approximations introduced here allow the designer to forego the use of difficult to select

frequency constraints. An important feature of the approximations presented is that they can be used in

the context of modal analysis for dynamic structural response.

.Approximation Concepts

The use of the approximation concepts method is needed for efficient structural synthesis. In this

method an explicit approximate optimization problem is formulated and solved at each design stage. In

the nud 1970's approximate representations for constraints and objective functions were generated using

first order Taylor series expan, _ons in terms of direct or reciprocal sizing types design variables (see Refs.

1 and 2). More accurate approximations can be constructed using approximations of intermediate response

quantities, which were introduced in Ref. 2. The intermediate response quantity idea has been applied to

stress constraints (Ref. 3), frequency constraints (Ref. 4), and steady state harmonic displacement and force

constraints as well as complex eigenvalues constraints (Ref. 5). In this approach simple approximations

(e.g. linear reciprocal, hybrict) of intermediate response quantities (e.g. forces in the ease of stress constraints

and modal energies in the ease of frequency constraints) in terms of design variables can be used while

retaining the explicit nonlinear dependence of the consu'amts on the intermediate response quantities.

" Ti_ t_esearett wassupported by NASA Research grant NSG 1490 with supplementary support provided by
VMAEngineering.

" Graduate Research Assistant, currently Research Engineer, VMA Engineering, Goleta, CA.

"* Pmtdoetoral Research Associate.
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Mathematically:

/_=f(X) (I)

where the approximate intermediateresponse (RI)isa simple functionof the design variables(X). The

approximate value of theconstrainedresponse (]_c)isthencalculate.das:

Re = g(,_i,x) (2)

In otherwords, given the design vectorX, the approximate value(s)of the intermediateresponse (]_)is

calculatedfirstusingEq. 1.Then theconstrainedrcsponseRc correspondingto/_tand Xis evaluatedusing

Eq. 2.

Approximations for Dynamic Displacements

The matrix equation of motion for an undamped structure is:

[M] {a} + [K] {u} = {P} (3)

Assuming a sinusoidalloadingand response atfrequency_:

{P }= {p } sinD.t (4)

{u}= {a}sin_ (5)

Equation (3)can be transformedintothe frequencydomain:

(-t2 2 [M] + [K]) {a ) - {p } (6)

In the usual approach to approximating the dynamic displacements, Eq. (6) is solved directly for {a ) and

the derivatives of the a_ are found by implicitly differentiating Eq. (6):

a (a r =aM aK'l )_{a}=[-f_=M +K]-' E{p}-L-_ '_"_/+_";'.J {a} (7)

The dynamic displacements are then approximated as direct, reciprocal, or hybrid (see Ref. 6) functions

of the design variables so that

a_= at sin D.t =f(X) sinf_ (8)

The hyb:id approximation uses either a direct or reciprocal expansion in each of the design variables.

selecting term by term the alternative that is most conservative. It is commonly used for static and dynamic

displacement constraints and it will be employed here to construct the full order solution for comparison

purposes.

The approximation shown in F-.Xl.(8)has two drawbacks. The fnstisthatitisbased on the direct

solutionofEqs. (6)and (7)which isveryexpensiveforlargeproblems. The second drawback isthatitis

a poor approximation for the response whenever the loading frequency (t2) is near a natural frequency of

the structure, because of the strong nonlinear effects of resonance.
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In order to determine the dynamic response of large structures, modal analysis is often used to reduce

the order of Eq. (6). In modal analysis the response of the structure is approximated as a linear sum of an,

orthogonal set of basis vector {_}, that is

N

{a}= _ {_.}z. = [_]{z} (9)

where the z, are called the modal participation coefficients. The first N natural vibration modes of the

structure (eigenvectors) are usually chosen as the basis vectors {¢.} and that is the approach used in this

work. Substituting Eq. (9) into Eq. (6) and pre-multiplying by [_]r gives

where

[_]r (-O:[M] + [K]) [_] {z} = {f} (10)

and

_/'. - r _[M]

as linear functions of the design variables (see Refs. 4 and 5):
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(16a)

(16b)

{f} = [_]r {p} (11)

Defining the modal potential energy matrix

[U] = [_]r [K] [_] (12)

and the matrix

[T] = [_]r [M] [_] (13)

makes it possible to rewrite Eq. (10) in the following form

(-0 2 [T] + [U]) {z} = {f]. (14)

Note that the order of Eq. (14) is N which is much smaller than the order of the full system. The value of

N ischosen tobe thenumber of modes nce.xledtoaccuratelyrepresentthestructuralresponse.

When the basisvectors{_.} arc the naturalmode shapes of structurethey are orthogonal toboth

[K] and [M] so that[U] and [T]arcdiagonalmatrices.Equation (14)isthendccouplcd and theindividual

z.axe calculatedusing thefollowingexpression

L
z. - (15)

u. - n"r.

The approximation introduced in this work is constructed as foUow, s. Evaluate the derivatives of

U. and T. with respect to the design variables (,_ assuming the eigenvectors arc invariant, so that:



s't,v_U. x (17a)

_v_/" (17b)
f.= T.,+ j. , -_-_x,Z(xj- Xjo)

where NDV isthenumber of designvariables.Calculatetheapproximate modal participationcoefficients

as

f- (18)
i. = O. - _2 7_.

and finally the approximate amplitudes of displacement as

{a} = [¢] {i} (19)

The error associated with this approximation is small and comes from two assumptions. The first

is that the displacements can be represented by a truncated set of modes (N). This is the error associated

with the analysis and it can be controlled by choosing a satisfactory value for N. The other assumption is

that the mode shapes arc invariant with changes in the design variables. This error can be controlled by

putting move limits 0VI.L.) on the design variables at each design stage. In the example section of this

paper it is shown that 60% move limits are not unreasonable.

The reason for the accuracy of the approximation near resonance is now examined. If the numerator

and denominator of the right hand side of Eq. (18) are divided by 7", the result is

f'_" (20)
e, = O.r:. - _2

Note that 0,/'t, is the Rayleigh Quotient Approximation (see Ref. 4) for the structural eigenvalue (_.,)

corresponding to n" natural mode. Therefore, Eq. (20) can be rewritten as

f"_" (21)
i" = _ _ f22

Note that as the structural eigenvalue for mode n _.) approaches the loading frequency (ft), the modal

participation coefficient for the n" mode (_.) becomes very large, which is exactly what happens at reso-

nance. The full order approximation in Eq. (8) cannot capture this effect.

It should be recognized that an approximation based on the direct solution of Eq. (6) which does

capture the effect of resonance was presented in Ref. 7. However, this approximation cannot be employed

when modal analysis is used to solve for the dynamic response of the structure.

• (i: _

The example used in this paper will be the mass minimization of the antenna structure shown in Fig.

1. The structure is modeled ',#ith 10 beam type finite elements has 24 degrees of freedoms, and five modes

are used for the modal analysis. The elements are linked to produce a symmetric structure with five design

elements (see Fig. 1). Each design element cross section (see Fig. 2) has 2 design variables (th and tb) for
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a total of l 0 design variables. The response of node 7 in the y-direction due to a 500 N load applied in the

y-direction at node 9 with various forcing frequencies is shown by the solid line in Fig. 3. The off center

load will excite both bending and torsion in the structure. Note the response peaks near the first natural

frequency of 0.43 Hz (fast bending mode) and the second natural frequency of 1.04 Hz (first torsional

mode).

In the fast example problem the structure is loaded at 0.7 Hz, which is away from the resonance

peaks. The displacement amplitudes of nodes 5 and 7 in the y-direction are constrained to be less than i

cm. There are no other constraints on the structure. The design histories and error in the displacement

amplitude approximations are shown in Table I for both the modal and direct approximations for 30% and
60% design variable move limits. The design histories are plotted in Fig. 4. Note that with 30% move

limits both approximations perform reasonably well with 60% move limits the modal approximation gives

much faster design convergence. Also note that the modal approximation is more accurate and is still

accurate when 60% move limits are used. The response of the final design at various loading frequencies

is shown by the solid line in Fig. 3. In the final design the constraint on node 5 is active. The final design

is presented in Table 2.

The second example problem is the same as the fast except the loading frequency is now 0.5 Hz,

which is near resonance, and displacement amplitudes of nodes 5 and 7 in the y-direction are constrained

to be less than 10 era. The design histories and error in the approximations are shown in Table 3. The

design histories are plotted in Fig. 5. Note that with 30% move limits the modal approximation converges

rapidly while the direct approximation overshoots the optimum and oscillates with designs that have about

7% infeasibility with respect to the displacement amplitude constraints. Even when 60% m_ ,e limits are

used, the modal approximation is quite accurate and a near final design is achieved after only 4 iterations.

At the final design the constraint on node 5 is active. The f'mal design is shown in Table 2.

Conclusions and Recommendations

The modal approximation for dynarnic displacement response is quite accurate even when the design

is near resonance and large move limits are used.

The approximation presented in this work can be extended to damped response problems when modal

analysis is used. In these problems the quantities u,., ai, z,, {#,}, U, and 7", are all complex but the devel-

opment of the approximation is quite similar. Transient response of damped structures can also be

approximated in the manner presented in this work.

Finally, the problem of disjoint design spaces that occurs when constraints are placed on dynamic

displacements, observed in Ref. 8 and explained in Ref. 9, can be attacked using this kind of approximation.

By temporarily setting a particular modes participation coefficient equal to zero the design will be able to

"jump across" the resonance peak associated with this mode. This may help the design process converge

to a global optimum.
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Table 1

Design Histories for Example 1

Design

Stage

0

1

2

3

4

5

6

7

8

9

10

Mass 0cg) [% Error in Approximation]

Modal

(Intermediate

Response)
30% M.L.

4982

5991 [0.0]

5903 [0.3]

5562 [0.31

5436 [0.1]

5368 [0.1]

5340 [o.1]
5313 [0.0]

5302 [0.0]

5299 [0.1]

5296 [0.2]

Full Order

(Hybrid)
30% M.L.

4982

5991 [0.6]

5792 [2.8]

5618 [2.2]

5497 [0.6]

5424 [0.6]

5360 [0.2]
5329 [0.2]

5308 [0.0]
5302 [0.01
5299 [0.0]

Modal

(Intermediate

Response)
60% M.L.

4982

5881 [0.21
5321 [0.3]

5299 [0.0]

5296 [0.0]

5289 [0.1]

Full Order

(Hybrid)
60% M.L.

4982

5708 [4.5]

5560 [2.0]

5417 [0.1]

5351 [0.2]

5324 [0.1]

5308 [0.1]

5301 [0.0]

5299 [0.0]

Table 2

Final Designs

Design
Element

Design
Variable

Example 1 Example 2

0.52

0.77
th

t,

2 th 10.00" 0.50 b

tb 10.00' 0.50 _

3 th 1.46 0.50 b

tb 0.50 b 0.50 b

4 th 10.O0" 2.59

tb 10.00' 2.68

5 3.59

3.92

At upper bound

At lower bound

t_
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Design

Stage

0

1

2

3

4

5

6

7

8

9

I0

II

12

13

14

15

16

17

18

Table3

1000 cm

Design Histories for Example 2

Mass (kg) [% Error in Approximation]
i

Modal

(Intermediate

Response)
30% M.L.

4982

3749 [0.0]

2898 [0.3]

2245 [0.21

1748 [0.2]

1401 [0.3]

1219 [0.21

1129 [0.1]

1169 [0.41

1168 [0.0]

1165 [0.i]

0 node

0 analysis element

deaJgn element

D]®
t

.====..====4m_ K

FullOrder

(Hybrid)

30% M.L.

4982

3749 [3.4]

2995 [17.4]

2344 [15.3]

1835 [12.0]

1472 [2.1]

1264 [2.6]

1181 [1.6]

1163 [3.0]

1155 [5.6]

1137 [6.4]

1146 [5.6]

1137 [6.0]

1140 [7.3]
1125 [7.7]

1140 [6.91

1127 [7.6]

1138 [7.9]

1123 [8.3]

Modal

(Intermediate

Response)
60% M.L.

4982

2508 [0.4]

1368 [0.6]

1180 [0.3]

1175 [0.01

1171 [0.1]

1170 [0.0]

1169 [0.0]

®"

[]

@rn

A

@lt_l_l) cm

r_

?

Figure I. Antenna Structure
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B = 7.10 x 108 Nt/c: 2

p = 2.788 x 10 -3 kg/cm 3
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Figure 4. Mass Iteration Histories for Example I
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INTRODUCTION

Effective methods of approximate eigensolution reanalysis of modified nonclassically
damped structures are developed in this paper. For structures with passive or active

discrete damping devices or with damping treatment, the system becomes non-
proportionally damped and the computation of its dynamic responses may require the use

of complex modes. For larger systems, the computation of complex modes is very
expensive. Thus it is desirable to have approximate reanalysis techniques for the efficient

evaluation of the effect of design changes.

In recent years, the assumed mode reanalysis method has been successfully applied to
minimum weight design of undamped structures with natural frequency constraints [1].

The accuracy of the assumed mode reanalysis method can be improved dramatically if the

global approximation function indudes the normal modes of the original system and their
derivatives [2]. This approach has been demonstrated to be effective even for a system
with shape changes. In this paper, the approach used by Noor et al. [2] for eigensolution

reanalysis of undamped structures will be extended to treat a nonclassically damped
system.

EIGENVALUE PROBLEM FOR DAMPED STRUC'IXJRES

Consider a linear structure with general viscous damping. The equations for free

vibration of the discrete system are

Mi_+C_l + Kq--O (1)

where M, C, and K are mass, damping and stiffness matrices respectively, and q is the
displacement vector. Assuming these matrices are symmetric, the system of second order

ordinary differential equations can be expressed as:

B1R- Alx = 0 (2)

where

and
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-K 0 ]BI= 0 M
¢

(4)

AI=[0 -K]-K -C (5)

The eigenvalue problem corresponding to Eq. (2) is

or

_.iglui = AlUi (6)

Aui = _,iui (7)

A = BilA1 (8)

where

provided Bi 1 exists.

Assuming all the eigenvalues of Eq. (6) or (7) are distinct, then, it can be shown that

the eigenvalues satisfy the following orthogonality conditions:

uTA1ui - _TBIui =0

for i _ j.

It should be noted that Eq. (9) is true since A1 and B1 are symmetric matrices.

(9)

When the system is being modified, its mass, stiffness and damping matrices are

changed by AM, AK and AC respectively. The new eigenvalue problem is given by

(10)

(11)

" ' A1 'B1 u i = u i

A I = A1 + AA1

where

B 1 = B1 + AB1 (12)

(13)
AA1 =[ 0 -AK]

-AK -AC

and

AB1=[-AK 0 ]
0 AM (14)

For an n-degree of freedom system, the eigenvalue problems of Eqs. (6) and (10) are of

order 2n. For underdamped structures, the eigensolution includes n pairs of complex

conjugate eigenvalues with n pairs of eigenvectors that are complex conjugate to each

other. Assuming L pairs of eigensolutions are computed for the nominal structure (i.e. Eq.
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(6)), the reanalysis problem is to use this information to solve the eigenproblem of the
modified system (Eq. (10)).

i

EFFICIENT EIGENSOLUTION REANALYSIS METHODS

For undamped structures, efficient reanalysis has been studied quite extensively by
many researchers [1-4]. For local modification, a receptance-based reanalysis method for a

general damped system has been developed [4]. In this paper, several reanalysis

approaches based on the classical Bubnov-Galerkin approach will be presented.

Substituting Eqs. (11) and (12) into (10) the following equation is obtained after we

split the operator:

Let

(_' B1 - A1) ui' = -_.i'AB1 ui' + AA ui'

Equation (15) can be written as

X_ (B1 - A_)_ = fi

where

t t t

fi = - _ AB1 ui + AA1 ui - AXi B1 ui

It should be noted that Eq. (17) is the exact eigenvalue problem of the modified system

written in a different form. For approximate solution, let us substitute A_ i -- A_,

- " fi= _,i = _,i + AXi, u i = ui into to yield

where

(_iBI - AI)u_ = fi

ii =-_.aB,_ +aA,_ -a_.B,u_

It should be noted that AXi can be estimated from

A"_ = u? (_LAI - _kiAB1)ui

and the eigenvectors are normalized so that

uiTB,_ = I

The general solution of Eq. (19) is then
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Ui - U i .4-AU i

where Aui is the particular solution of the system of equations (19).

can be interpreted as a derivative of the eigenvector uij and can be solved by several

techniques, such as Nelson's method [5].

Equation (23) is the explicit approximate reanalysis for the ith eigenvector. Once u i is

available, the corresponding eigenvalue can be computed from

xi,=.i'TA1'ui'
ui'TBl'ui'

Another approach of solving the reanalysis problem is to assume

(23)

It should be noted Aui

(24)

a

u_ = T rli (25)

The modified eigenvalue problem then becomes

where

B1 vii = A_ rli (26)

t

B_ =T T B I T (27)

A_ =T T A 1 T (28)

The accuracy of the above approach depends on the choice of basis vectors in the transfor-

marion matrix T. The simplest choice of T would be a set of truncated eigenvectors, that is

(29)T = [ul u2 "-"UL]

In view of Eq. (23), one may incorporate Aui and form T as

T = [Ul --. urn, AUl ... AUL] (30)

Since the computation of Aui by Nelson's method is quite involved, the following scheme

may be used to find an approximate _ii for Aui. Let us add 0_iBlUi' to both sides of Eq. (17)

and then evaluate the right side as before to get the following equations for Aui

((I + o_)Xi BI- A1)A'u'i = fi- a Xi B I u i (31)

where 0c is a small positive number. In the numerical example, a value of 0.01 is used for

c_. Note that Aui is an approximation to the eigenvector derivative. For numerical

stability, the contribution of lower modes to A_i should be filtered out. The resulting
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vector Aui can be considered as a "residual mode" of the system. The transformation
matrix T can then be constructed as

'r = (32)

In summary, the following eigensolution reanalysis methods are available.

I° Explicit Method

Use Eq. (23) to compute approximate u i and then use Eq. (24) to compute _-i.

II. Implicit Methods

The implicit methods involve the solution of Eq. (26) for X( and 11i and then use Eq.
t

(25) to compute u i. Three variations are available.

(1) Assumed mode: Use Eq. (29) for the transformation matrix. This method is

designated as Ai in Table 3, where i is the number of pairs of modes used.

(2) Improved assumed method using Eigenvector Derivatives: Use Eq. (30) for the

transformation matrix. This method is designated as AIi in Table 3, where i is
the number of pairs of modes used.

(3) Improved assumed mode method using Approximate Eigenvector Derivatives:

Use Eq. (32) as the transformation matrix. This method is designated as AAi in
Table 3, where i is the number of pairs of modes used.

The above methods are applied to a numerical example in the next section.

NUMERICAL EXAMPLE

The ten degree of freedom mass-spring-damper system shown in Figure 1 is used to
test the reanalysis methods proposed in this paper. Five cases are studied. They are

defined in Table 2. These cases range from uniform change in stiffness and damping
properties (Case A) to more severe modifications that include the removal of one of the

support springs (Case D) and the removal of all dampers (Cases E).

The first two eigenvaiues of the modified systems are summarized in Table 3. These

include the exact solution and reanalysis results by several methods.

For Case A and C, all reanalysis methods perform well. For cases B and E, the

assumed mode method requires the use of two pairs of modes to yield reasonable
estimates of the fundamental eigenvalue. For case D, which involves the removal of

spring No. 11 in the model, the assumed mode method performs poorly, even with four
pairs of modes. On the other hand, the improved methods yield good results for all test

cases when using one pair of modes plus the associated residual modes.
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CONCLUDING REMARKS

Several methods for approximate reanalysis of damped systems are presented in this

paper. For systems with moderate modification, allmethods yield reasonable results. For

systems with extensive modification, the reanalysis results may indicate a bogus unstable

eigenvalue (i.e.eigenvalue with positive real part). Thus, the reanalysis method should be

used with caution. The improved assumed mode methods provide significant

improvement over the assumed mode method. These reanalysis formulations can be

used to construct high quality approximate models for optimum design of damped
structures.
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Table 1. Data for Numerical Example

i mi ki ci

1 1 1000 5

2 2 2000 10

3 3 3000 10

4 4 4000 15

5 5 5000 15

6 2 6000 10

7 3 700O 5

8 4 10000 20

9 2 30000 25

10 5 20000 25

11 30000 0

Table 2. Definition of Cases

Case Modifications

Mass

A None

B None

C Am3 = 52

Am9 = 208

D None

E None

Stiffness Damping

Aki = 0.25 ki Aci = -0.3 ci

Akl = 5000 AC2 = 10

ak6 =  oooo

None None

_Mkll - - 30000

Akl = 5O00

Ak6 = 10000

Aci = -0.3 ci

Aci = - c i
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I. Abstract

The cost of implementing new technology in aerospace propulsion systems is becoming

prohibitively expensive. One of the major contributors to the high cost is the need
to perform many large scale system tests. Extensive testing is used to capture the

complex interactions among the multiple disciplines and the multiple components

inherent in complex systems. The objective of the Numerical Propulsion System

Simulation (NPSS) is to provide insight into these complex interactions through

computational simulations. This will allow for comprehensive evaluation of new
concepts early in the design phase before a commitment to hardware is made. It will

also allow for rapid assessment of field-related problems, particularly in cases where

operational problems were encountered during conditions that would be difficult to

simulate experimentally. The tremendous progress taking place in computational
engineering and the rapid increase in computing power expected through parallel

processing make this concept feasible within the near future. However it is critical

that the framework for such simulations be put in place now to serve as a focal point
for the continued developments in computational engineering and computing hardware and

software. The NPSS concept which is described below will provide that framework.

II. Introduction

The traditional design and analysis procedures applied to complex systems decomposes
the system into isolated disciplines and components to reduce their complexity.

Consequently, the interactions between disciplines and components is limited by the

amount of interaction between individuals or teams working the problem. When severe

demands are placed on the size, weight, and performance of the system, then the designs
by nature become highly integrated with tight coupling between disciplines and

components. The tight coupling can result in unforseen interactions which would

produce unsatisfactory system performance. If the coupling is not resolved until the

system has been built and tested, then the system must undergo redesign and retesting.

Typically several iterations of the design-build-test cycle are required before desired
performance is achieved. This is an extremely costly and time consuming process. As

a result, the introduction of advanced technology takes many years as these systems

slowly evolve. Pressure exists to reduce the time and cost associated with introducing

new technology. This can be achieved through optimizing existing design practices and

through introducing a higher level of concurrent engineering into the design process.

NPSS is a top-down systems approach which would provide designers with a tool to
incorporate the relevant factors which affect system performance early in the design

and analysis process when changes or modifications can be made relatively

inexpensively. In terms of a propulsion system, such as an air-breathing gas turbine
engine, this means coupling of disciplines and components computationally to determine

system attributes such as performance, reliability, stability and life. Since these

system attributes have traditionally been obtained in the test cell, NPSS is referred

to as the "numerical test cell". A complete system analysis which includes multiple

disciplines Is a computationally intensive task requiring a high performance computing
platform including massively parallel processors and a user interface consisting of
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expert systems, data base management systems and visualization tools. These essential _C

elements of NPSS are depicted in Figure I. The integrated, interdisciplinary system _

analysis requires advancements in the following technologies: I. interdisciplinary
analysis to couple the relevant disciplines such as aerodynamics, structures, heat

transfer, chemistry, materials, controls; 2. integrated system analysis to couple

subsystems, components and subcomponents at an appropriate level of detail; 3. a high

performance computing platform composed of a variety of architectures, including
massively parallel processors, to provide the required computing speed and memory; and

4. a simulation environment that provides a user-friendly interface between the analyst

and the multitude of complex codes and computing systems that will be required to
perform the simulations.

The implementation and integration of these technologies is a major challenge. The
simulation environment and integration capabilities are depicted in Figure 2. The NPSS

system simulation is represented by the horizontal bar to signify that NPSS integrate

into a system simulation the advancements that will continue to take place in the

single discipline, component and computing fields. In this way, NPSS will provide a
focus for research and development in the disciplines, components and computing fields.

An additional challenge in NPSS will be the formation of interdisciplinary teams across

NASA, industry, universities and other government agencies to develop and implement
the needed technologies.

This paper describes the approach being developed at the NASA Lewis Research Center
to address the issues of high-fidelity propulsion system computational simulations.

The focus is on system simulation, interdisciplinary analysis, simulation environments,
and parallel computing.

Ill. Approach

A. SYStem Simulation

The computational system simulations will be based on the view that only phenomenon
that affects system attributes, such as life, reliability, performance and stability

of a propulsion system, is of interest to the designer or analyst. In addition,
detailed analyses of an entire propulsion system will be so complex that even computers

of teraFLOPS speed will not be sufficient to perform cost effective computations.

Consequently, a framework is being developed that will allow the physical processes

resolved from a detailed analysis of a component or subcomponent to be communicated

to a system analysis performed at a lower level of detail for purposes of evaluating

system attributes. Conversely, the system analysis will provide the ability to

evaluate which physical processes occurring on the component and subcomponent level

are important to system performance. This will allow the engineer or scientist to
focus or "zoom in" on the relevant processes within components or subcomponents. The

zooming concept is depicted in Figure 3. In this particular example, a detailed
analysis of the fan would be performed to study, for example, the effect of a new blade

design on system performance. The inlet and compressor would be modeled a slightly

lower levels of fidelity to resolve phenomenon such a inlet distortion or upstream
influences of the compressor blading. The combustor, turbine and nozzle would be

modeled at less detail, perhaps to determine shaft horsepower and thrust.

The implementation of the zooming approach requires a hierarchy of codes and models

to be in place to provide a wide range of capabilities from detailed three-

dimensional, transient analysis of components to time- and space- filtered analysis
of the subsystems and systems. Modeling approaches will be developed for communicating

information from a detailed analysis to a filtered analysis. This will require

additional research in understanding the mechanisms by which phenomenon on different

length and time scales communicate. Research already underway in computational fluid
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dynamics and structural mechanics to develop this modeling approach will be extended
to consider processes and scales appropriate for the entire propulsion system.

physical processes.
and energy sources
which are based on
simulations. The
conditions for the

The fluid dynamic simulation model that will serve as the basis for the integrated
system model will be the Adamczyk[I] average-passage formulation which has been"
developed for multistage turbomachinery analysis. The average-passage is based on the
filtered forms of the Naiver-Stokes and energy equations. This model was designed to
resolve only the temporal and spatial scales that have a direct impact on the relevant

The effects of the unresolved scales, which appear as body forces
in the equations, are determined through semi-empirical relations

results from physical experiments or high-resolution numerical
results from the lower resolution analysis appear as boundary
high-resolution simulations. This model is currently applicable

to time- and space- averaging of phenomenonon the scale of the blade passing frequency
and passage size. Further development is required to extend the model for filtering
in the presence of multiple scales and for other system components.

The structures modeling will be aimed at developing a comparable computational
capability that will provide a meansto traverse multiple scales of spatial resolution
with a minimumnumberof variables at each level. In this way, an analysis can proceed
from a blade to a rotor to an engine core to the complete engine. The resulting system
will have a minimumnumberof degrees of freedom consistent within the objectives of
the analysis and will minimize the computational requirements. The methodology will
be applicable to the solution of linear and incremental nonlinear analysis problems.
This capability will be achieved through the formulation and implementation of a
progressive substructuring technique [2].

B. Interdisciplinary Analysis

Aerospace propulsion systems are complex assemblies of dynamically interacting

disciplines. The traditional approach is to handle the interactions by single
disciplines in a sequential manner where one discipline uses information from the

preceding calculation of another discipline. This is a lengthy, tedious, and often

times, inaccurate approach. The alternative to this approach is using

multidisciplinary coupling on a more fundamental level. A hierarchical approach will

be employed that will reduce the dimensionality of the system while still retaining

the essential system behavior. A variety of techniques will be evaluated for coupling

discipline variables for selected propulsion system subcomponents, components and

subsystems. These include the traditional sequential iteration, specially-derived
matrices, and coupling at the fundamental equation level. All three methods will be

applied to the filtered Naiver-Stokes and progressively substructured formulations with

space and time scales that are consistent with the physics of the phenomenon being
simulated. This approach differs from the classical analytical approach which

minimizes the number of variables retained in the governing equations by using formal

applied mathematical techniques. The proposed approach retains all of the primitive
variables in the primitive equations. Sensitivity relations will be used to scope

the degree of coupling and to decide on a solution strategy. Requisite technology base

required for the development and definition of sensitivity relations includes: advanced

methods of matrix operations for integration, differentiation, inversion and eigen

value extraction, adaptive matrix partitioning, transfer matrices, and symbolic
operators.

An essential element of complex system analysis is optimization. Optimization of

complex systems involving multiple disciplines and components require streamlined

algorithms for rapid solutions. Five different types of optimization algorithms will
be developed: I) hierarchical, 2) multi-scale, 3) multi-region, 4) multi-objective,

and 5) adaptive. The hierarchical algorithms will provide the capability to select
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dominant variables/disciplines/components during the optimization process. These

variables/disciplines/components will continually change as the optimization

progresses. The multiscale algorithms will provide the formalism for opitimizing at
different scales as the optimization progresses. These algorithms will allow local

optimization simultaneously with global but at different rates and with different

accuracy. The multi-region algorithm will be similar to that for multi-scale but

structured for regions and components. That is, different regions/components can be

optimized at different rates while the rates can change as the system optimum becomes

more sensitive to critical regions/components. The multi-objective algorithm will

handle the simultaneous optimization of multidisciplinary, multicomponent problems.
Formalisms will be included for coupled objectives and/or weighted objectives as well

as discriminatory selection for a critical discipline/component. The adaptive
algorithms will have the logic to progressively monitor dominant conditions and to

provide the hierarchical algorithm with information for selecting the appropriate

variables/disciplines/components during the optimization process. The technology base
to support development of these optimization algorithms include mathematical

optimization techniques: linear, nonlinear, continuous, discrete, constrained,

unconstrained,substructuring, variable linking as well as a variety of direct nonlinear

mathematical and optimality criteria search methods that have evolved over the years
[2].

C. Simulation Environment

The capability for users to simulate propulsion systems which include complex
analyses on high performance, massively parallel computers will require extensive

development of a user interface with a parallel/distributed computer implementation.
The user interface will shield the user from the details of the system while providing
sufficient guidance and assistance to perform the simulation at hand. The vision is

that of totally "seamless" environment. The environment consists of the integration
of physical sciences, computer sciences, computer systems software and computer systems

hardware under the control of a global simulation executive. The computational

simulation of multidiscipline, multicomponent problems consists of a large number of
variables that require simultaneous solutions of multiscale, multiregion problems in

local/global database environments. These types of problems can only be effectively
solved in (massively) parallel processor computers and networks where distributed

parallel programming concepts can be readily implemented. Logic and software will be

developed to adaptively allocate solution strategies and processors for a single
discipline and for interdisciplinary analysis of both the local and global levels.

Construction of simulations is aided by a visual simulation editor coupled to an expert

system "trained" in the use of the simulation codes. Artificial intelligence

approaches, including expert systems and neural nets, will be investigated for
assisting the user in making appropriate decisions in constructing a simulation.
Advanced computer graphics, visualization and animation complete this environment.

An important feature of the simulation environment is that it provides modularity

and flexibility. Modularity is important to facilitate the coupling of disciplines
and components at various levels of detail and to facilitate insertion of new or

proprietary codes. Flexibility is essential to efficiently expand the simulator with

increasing software and hardware capabilities. This will be accomplished through the
application of object oriented programming techniques. Consequently, a series of
objects appropriate for and completely describing propulsion systems will be defined

as will the inter-relatlonships between these objects. From this, a series of

standardized interfaces will be developed consisting of both object data extraction
and manipulation routines.
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D. Parallel Computinq

It is expected that advances in parallel computing will make the integrated,.

interdisciplinary analysis of complex systems practical in design and analysis

environments. At the same time, it is expected that approaches to problem formulation

and algorithm design will have to change to be able to exploit the new parallel

architectures. Therefore, NPSS will establish a testbed environment so application
and computer scientists can work closely together with state-of-the-art hardware and

software tools to develop algorithms and to identify the appropriate computing

architectures for the propulsion system applications.

The long-range goal of NPSS is to implement the shared memory model, in either

hardware or software, on massively parallel platforms. In the shared memory model,

the programmer sees a uniform programming platform even though the hardware platform

may consist of a variety of architectures such as cubes, rings, etc. This not only

simplifies the requirements for developing new code, but provides the easiest, most

flexible platform for the conversion of serial FORTRAN code which proliferates the

computational engineering community today. Much of this code is now and will continue
to be useful in NPSS applications. While the shared memory model is a long range

objective, other technologies will need to be evaluated in the near term.

The near-term goal for the testbed development is to acquire a relatively small
parallel processor system of approximately 5 gigaFLOPS peak performance and 20

gigabytes of disk storage. The initial testbed, planned for 1992, will provide a

dedicated platform to begin the parallelization of single discipline codes; develop
coupling algorithms and interfaces, and to develop the zooming concept. These

activities will culminate in the demonstration of a simulation of the High Speed Civil

Transport propulsion system. The testbed is expected to be upgraded in 1994 to 15

gigaFLOPS peak performance with 30 gigabytes of disk storage. The upgraded testbed

will be utilized to perform a high-fidelity demonstration of the High Speed Civil

Transport with zooming capability on multiple components.

Parallel processing activities currently at the Lewis Research Center involve

investigating architecture and algorithm compatibility issues on the Center's
Hypercluster Testbed, porting of structural mechanics and fluid dynamics codes to

shared memory machines such as the Alliant-FX/80 and the Cray YMP-8/464 and configuring

transputer systems for use with structural dynamics codes. The Lewis Research Center
is also supporting the development of a 2-dimensional grid parallel computing

architecture at Mississippi State University. Activities are underway for the purchase

of two Intel iPSC/860 8 processor machines in Iggo. Additional hardware will be
identified and procured in 1991 through the newly formed Advanced Computing Concepts

Laboratory within the Computer Services Division at Lewis.

IV. Summary

The Numerical Propulsion System Simulation is a long range program with the ultimate

goal of developing the capability of reducing the cost and time of developing advanced

technology propulsion systems. This will be achieved through a cooperative effort of
NASA, industry, universities and other Government agencies to develop the necessary

technologies to integrate disciplines, components, and high performance computing into

a user-friendly simulation environment. The technologies associated with the physical

sciences must include model development that reflects an understanding of the relevant

physical processes rather than brute-force computational analysis. The computational
algorithms must be developed in concert with the computing architectures to ensure
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efficient performance, particularly with highly and massively parallel processors. In
addition, a strong and effective managementteam is required to form the
interdisciplinary teams from all organizations that will be required to define,
advocate, and implement these technologies.
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Figure I. The Numerical Propulsion System Simulation is the concept of a
"numerical test cell".
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Figure 2. System simulation through NPSS will involve integration of
disciplines, components and computing hardware and software.
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Figure 3. Cost-effective computations of complex propulsion systems will
require the ability to vary the detail of analysis or "zoom".
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1.0 ABSTRACT

The objective of this paper is to present results from investigating the

integrated use of five computer programs: ANALYZE,ASTROS,NASTRAN,OPTSTAT and

VAASEL for analysis and optimization of a given structure. The structure

designated for study purposes was the F-15E vertical tail. The concept of

integrated use is limited to the capability of using a NASTRAN structural model

to run each of the other specified programs. This was actually accomplished in

practice by converting a NASTRAN model of the designated structure into an

appropriate analysis model. For optimization purposes,the torque-box of the
F-15E vertical tail was used.

2.0 DESCRIPTION OF FINITE ELEMENT PROGRAMS

2.1NASTRAN

Although NASTRAN (NASa STRuctural ANalysis) is not a multidisciplinary

analysis program, it is the largest general-purpose finite element structural

system in use today and provides effective solutions for a wide variety of
applications. In this paper, NASTRAN was used to obtain nodal deflections and

element stresses for specified static loads and to compute natural frequencies

and corresponding mode shapes of the F-15E vertical tail.

2.2 ASTROS

ASTROS (Automated STRuctural Optimization System) is a finite element code

written primarily for preliminary design of aerospace structures. The basic

objective £or developing ASTROS was nto provide a state-of-the-art design tool
that integrates existing methodologies into a unified multidisciplinary package n

(Ref.1). For example, it adapts NASTRAN input format for structural analysis.

Many potential analysis capabilities are available in ASTROS. Those selected

for this investigation include: (1) Static and modal analysis of the F-15E
vertical tail using the NASTRAN finite element model, and (2) User-selected

optimization of boron/epoxy skin elements for one surface of the tail model.

2.3 ANALYZE

ANALYZE was developed to analyze aerospace structures using only membrane
elements (Ref.2). Thus, only translational degrees-of-freedom are allowed.

Since rotational motions are not permitted, element representations of the
structure are expected to be stiffer. Elements used in this code include

axial-force bar elements, triangular and quadrilateral constant strain elements,

and a shear-panel element to reduce the possibility of overestimating stiffness

resulting from the use of only membrane elements for webs. The User's Manual

(Ref.2) documents a comprehensive theoretical background for the program, and
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provides necessary information for both preparation of input data and interpre-
tation of results.

2.4 OPTSTAT

This computer code was written by the same authors who wrote ANALYZE (Ref.2).

It was developed primarily for in-house research to optimize structural designs
subjected to static loads. As OPSTAT uses the same types of element as ANALYZE,

rotational degrees-of-freedom are not allowed. Reference 3 provides the theore-

tical background underlying the program. OPTSTAT optimizes structures by

resizing every element in the structural model using allowable stresses as

design constraints; thus, it does not permit user-selected optimization.

2.5 VAASEL

VAASEL (Vulnerability Analysisof Aerospace Structures Exposed to Lasers), as

the name suggests, has been designed primarily for laser vulnerability analysis
of structures and has multidisciplinary analysis capability (Ref. 4). This code

was designed to maintain maximum compatibility with both NASTRAN and ASTROS, sad
utilizes the same framework as ASTROS. This means that a given problem input

data deck should run on each program with identical output results expected.

3.0 MODEL FOR ANALYSIS

The NASTRAN structural model shown in Figure 1 consists of 39 BAR elements,

1,529 ROD elements, and 1,160 SHEAR elements, with 673 nodes.
The vertical tail is made of three materials; boron/epoxy for skins,aluminum

for the honeycomb core,and titanium for the fore and aft spars and the root rib.
A structural model was first constructed and converted into a NASTRAN model, and

verified with the McAir model (Ref.5) by comparing its geometry,material proper-

ties, and deflections at points of interest under the given loading conditions.
This NASTRAN model has served as a basis for developing models for other comp-

uter programs. After verification of the model, the torque-box section of the
F-15E vertical tail was isolated and used for analysis and optimization instead

of working on the full model. Integrated use of other computer programs was
achieved by generating an input data deck by transformation of the NASTRAN bulk

data. Fortran programs were written for this purpose.

3.1 LOADING CONDITIONS AND TYPES OF COMPARISONS

Static analysis was performed for the complete vertical tail using NASTRAN,
ASTROS and ANALYZE for calculations of deflections and stresses. First,

a 400-pound load was applied at the tip of the model, followed by application

of the maximum panel load and the maximum inboard load (Ref.5). Next, the
torquebox was isolated from the complete tail model and run under three loading

conditions: a 400-pound tip load, the maximum panel and inboard loads.

For dynamic analysis, NASTRAN and ASTROS were used to obtain natural freque-

ncies and mode shapes.
For optimization studies, ASTROS was used for user-selected elements optimi-

zation while overall optimization was achieved by OPTSTAT. The number of plies

in each layer of the skin elements was computed for both user selected and over-

all optimizations and compared to the original structure.
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4.0 RESULTS AND COMPARISONS

4.1 STATIC ANALYSIS COMPARISONS

When static models were run, NASTRAN and ASTROS predict identical deflec-

tions under all loading conditions mentioned for both the complete sad torque-
box models. Differences occurring in shear stresses computed by each program
were noted, but were negligible. Comparison of results from ANALYZE with the

other two programs show that ANALYZE predicts smaller, but very close, deflec-

tions than either NASTRAN or ASTROS. A typical deflection curve along 50_ chord
line is shown in Figure 2, where ANALYZE is shown to predict about 3 _ less

deflection at the tip. This small difference is caused by the type of element

used in the ANALYZE program. The model is cantilevered with nodes points
fixed along the root, and therefore elements around the root exhibit stress

concentrations. Design engineers should pay close attentioin to these highly-
stressed elements.

4.3 DYNAMIC ANALYSIS COMPARISONS

For dynamic analysis of the torque-box, both the inverse method of eigen-

value extraction (INV) and the tridiagonal reduction method (FEER) were applied

in running the NASTRAN model. In ASTROS, the Given's method of tridiagona-
lization (GIV) was used. The ASTROS predictions of the first five frequences

and corresponding mode shapes are almost identical to NASTRAN results, and dif-
ferences are negligible.

4.4 OPTIMIZATION RESULTS

The finite element model for optimization has 137 elements for the skin,

resulting in 548 global design variables, since there are four layers in each
element. The skin thicknesses were selected ss design variables when the

torquebox was optimized for each of the two design loads (Ref. 5).

Optimization was carried out in two ways: user-selected elements optimization

performed by ASTROS, and overall optimization using OPTSTAT. Representative
results are presented in Figures 3 and 4, and Table 1. Element 39 shown in

both figures was selected ss a typical example to pictorially illustrate the

optimization results for the torque-box skin. Figure 3 shows that the original
element weight of 0.1352 ibs was reduced to 0.0728 ibs after optimization for
the maximum panel load and to 0.0364 Ibs for the maximum inboard load.

The original number of plies in O, 90, *45, -45 degree directions is (10, 2, 7,
7), respectively. Differences are expected to exist between user-selected and

complete structural optimizations for a given design loading condition.

For example in Figure 4, the number of plies in each direction for complete
optimization is (12, 1, 1, 1) for the net panel lo_d and (10, 1, 2, 2) for the

inboard loml. This set of results differs significantly from results given in

Figure 3 for user-selected optimization, where the number of resulting plies
are (5, 1, 4, 4) for the net panel load and (2, I, 2, 2) for the inboard load.

A complete set of results for every element in the torque-box is given in Refe-

rence 6. Table 1 provides a sample of these results for elements 1 through 24.
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5.0 CONCLUDING P_MARKS

The F-15E vertical tail was either analyzed or optimized using five finite

element computer programs. As ASTROS and VAASEL follow the same algorithm for
static structural analysis, identical results for nodal deflections and element

stresses were computed (Ref. 6). ASTROS and NASTRAN predicted almost identical

results in both static and dynamic analysis. Static predictions from ANALYZE

models were also very close to those from NASTRAN and ASTROS. From optimization

studies of the torque-box model, differences exist between types of structural

optimization method for a specified loading condition, and between design

loading conditions. Therefore, from the results of optimization, one can
observe the potential danger of arbitrarily selecting one or more of several

design load conditions and, independently, a type of optimization to arrive at

an 'optimized' redesign configuration. Unless all critical design loading
conditions are considered, such an assumption could result in a totally

inadequate design.
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Figure I - Structural _ of F-15E Vertical Tail
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Figure 3 - User-selected Optimization : Outside Skin Elements Only

Figure 4 - Overall Optimization Skin Elements
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Table ! - Overall Optimization ( OPTSTAT )

Ply counts in E1em
Loz_d 0 90 *45 -45 No. Load

INITIAL i0 2 8 8 INITIAL
PANEL 13 I I I 2 PANEL
INBOARD 5 1 2 2 INBOARD

i l

I_TIAL I0 2 8 8 I_TIAL
3 PANEL 8 I I i 4 PANEL

I_OARD 4 i I I I_O_D

INITIAL I0 2 8 8 INITIAL

5 PANEL 5 i 1 I 6 PANEL

INBOARD 4 I 1 I INBOARD

Ply counts in
0 90 *45 -45

i0 2 8 8
12 1 1 1

6 1 1 1
i r

I0 2 8 8

7 1 1 I

4 1 1 1

I0 2 8 8
5 1 1 1
2 1 2 2

INITIAL i0 2 8 8 INITIAL I0

7 PANEL 3 1 2 2 $ PANEL 3

INBOARD 2 i 3 3 INBOARD 2

INITIAL 10 2 8 8 INITIAL 10
9 PANEL 10 1 1 1 10 PANEL 9

INBOARD 5 1 1 1 INBOARD 5

INITIAL I0 2 8 8 INITIAL I0

II PANEL 7 1 1 1 12 PANEL 7
INBOARD 5 I J 1 INBOARD 5

INITIAL I0 2 8 8

13 PANEL 6 1 1 1

INBOARD 5 1 1 I
i

INITIAL 10 2 8 8

15 PANEL 13 1 1 1
INBO.4_U) 7 1 1 1

INITIAL I0 2 8 8
17 PANEL II 1 I I

I_TBOARD 6 I i i

INITIAL I0 2 7 7

19 PANEL 7 I I I
II_OAD 5 i I I

INITIAL I0 2 7 7

21 PANEL 19 I 7 7

INBOARD 8 I 6 6

INITIAL I0 2 8 8

23 PANEL 7 I 4 4

INBOARD 6 I 4 4

2 8 8

I 2 2

i 3 3

2

1
1

2

1

1

7

I

I

8

i
I

INITIAL I0 2 8
14 PANEL 5 i i

INBOARD 3 i 2

16

18

INITIAL i0 2 8 8

PANEL I0 I i 1

INBOARD 6 I 1 1
i

INITIAL 10 2 7 7
PANEL 9 1 1 1
INBOARD 6 i I I

20

22

INITIAL I0 2 7 7
PANEL 7 I I I

INBOARD 5 i i 1
i

INITIAL I0 2 8 8
PANEL 11 I 6 6
INBOARD 6 I 5 5

24

INITIAL I0 2 8 8
PANEL 12 1 6 6
INBOARD 7 2 6 6
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Structural Optimization With Constraints From Dynamics in

LAGR__NGE N94- 71433
F.Pfei_er, G.Kneppe, C.Ross
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eigenvector
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eigenvalue
e.xcitationfrequency

lowerbound for excitationfrequency

upper bound forexcitationfrequency

angularfrequency

indices

tran.sposeof vectoror matrix

valuein k-th iterationstep
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/
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I Introduction

Struc_ura/optimizationproblems are mostly solvedunder constraintsfrom statics,such as stresses,strainsor dis-
placements under staticloads.But in the designprocess dynamic quantitieslikeeigenfrequenciesor accelerations

under dynamic toads become more and more important. Therefore, it is obvious _ha._ constrmn_ from_dvna__'CSN_U_t
be considered in structural optimization packages. This paper address_ the dynamacs branch in MBB-.LA_RA: Gt:.
It will concemra_e on two _opics. namely on the different formul_ions for eigerffrequencv constraints ann on _requency
response constraints. For the latter the necessitv of a system reduction is emphasized.'The methods implemented in
LAGR._NGE are presented and examples are given.

2 Eigenfrequency Constraints

The main reasonforformulatingan eigenfrequencyconstraintins_ructura/optirnizat/onproblems istoavoid ranges
in the frequency spectrum where e.xcata:ionfrequenciesare -known to occur under the working conditionsof _he
s_ruc_ure.

To be able to formulate an eigenfrequency constraiut the eigenfrequencies have to first be computed. Thus, _he
eigenva_ue problem of the undamped s_ructure

(x - _)_ = o (I)

isconsidered.The eigenfrequenciesf can be computed from the eigenvaluesA of (I) by

f = _v_. (_-)

Now eigenfrequency cons:rs/nts can be formulated.

2.1 Upper and lower bounds forthe i-th eigenfrequency

The most common case for an eigenfrequency constraint is given in figure 1, where a lower bound fi._, and an upper

bound fi.m= are given for the i-th eigenfrequency. These constrsinm can be written in a normalized form
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Figure 1: Common eigenfrequency constraint

g,,_. = 1 - 'f_'_---.--_"> 0 (3)
.h -

g,,,,,= = 1 fl >0. (4)

The optim/zation algorithms which are most commonly used in structural optimization (e.g. SQP, SLP) require
gradient information. By differentiating (3) or (4) with regard to a design variable = E z one has

Og__= _g, Of, 0_ (5)

Thus, for computing the constraint derivative the eigenvalue derivative _t must be computed which is given by

(6)

EXAMPLE 1 A propulsion stage of the Ariane launcher was discretized by a FE model with ca. 2500 degrees of
freedom. A lower bound was given for the lowest eigenfrequency. The weight and constra/nt histories are shown in
figure 2. The initial violation of the frequency constraint of ca. 3.8 % was completely eliminated. The weight was

llga_¢tOu

g
..leo ......

• .*ed _ ' ' ,

| O(geAI IOOO

Figure 2: Weight and constraint history for Ariane propulsion stage

reduced by ca. 10 %. •

J

2.2 Formulation of a constraint for an eigenfrequency which corresponds to a given
mode shape

In some applications, however, the formulations (3) and (4) for a fixed eigenfrequency index ":'_ are not sufficient.
This shall be expounded by the following example.

EXAMPLE 2/I A satellite structtLre according to figure 3a) is regarded. In the initial analysis it was found that a
characteristic axial mode shape exists for the inne_ structure (figure 3b)). An excitation of this initially 9th mode shape
should be avoided, however,.b.ecm_., the inner structure contains zneasurement equipment. Therefore, it was required
tha.t the eigenfrequency of thk smal mode shape should be _-ster than a given lower bound. Some initial variations
o[ the structure indicated tha_ the corresponding mode shape changed between the 7th and the 10th eigenvector due
to structural changes. Thus, putting a constraint on the 9th eigenvalue would have resulted in a completely wrong
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Figure3:a)Satellitestructureb) 9thmode shape(initialdesign)

design because the mode shape that was to be kept under control had changed its position in the eigenfrequency
spectrum severz.[ times. B
Therefore, a strategy to pursue the given mode shape in consecutive iteration steps was developed. The strategy is
based upon the A_ - or K - orthogonMity of the eigenvectors

_,T_ i = m_,6u _,_/_i = _,,6u. (7)

To identifythei-theigenvectorofthek-th iterationstepinthe(k+ l)-thstep,thefollowingvectorsaredefined:

:_+'= L_+"_ +' (9)
whereL istheCholeskydecompositionofeitherK orAir.The requiredindex"j"oftheeigenvectorinthe(k+l)-th
iterationstepwhichcorrespondstothei-theigenvectorofthei:-thstepisdeterminedby

k i+, >m_ - (I0)
I:, I1=_ I ,., I:_11=_*'1

Graphically spoken, equation (I0) st_.es that the ansle between the vector s# and z# +' hs a minimum value (i.e.
a maximum value for the scalar product in (10)) compared to the _gles between :# and any of the vectors z_+_
(l # #) of the (k + 1)-th step.

EXAMPLE _,/I! Using this algorithm the constraint for the sstellite (figure 3a)) was formulated. Pursuing the given
mode shape with the described strategy turned out to be very robust and gsve correct results for other structures as
well. The required frequency for the axial mode shape was obtained accurately while simultaneously minimizing the
hea_ flux between the outer and the inner structure ([Kneppe89]). •

2.3 Multiple constraints for the i-th eigenfrequency

Anotherformulation,naanelyprescribingseveralboundsforthei-theigenfrequency,may occurinsome applications.
For thecaseoftwo boundsthetwo possiblevaxiationsaregiveninfigure4.Case a)(inclusion)can be handledwith

_clusion

_=2
p-1

Exclusion $_

rib:2 ]
p=2

Figure 4: Two_constraints for the i-th eigenfrequency
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.... d b the formulations iven so far however )_ ._]
two constraints ot type (3) and (4). Case b) (exclusion) cannot be aescri_e y " g , • 'r_ |
If, for example, the eigenfrequency f+ lies in the right interval (figure 4b)), cons.._ra£nt (3_).is satisfied whereas .(4) is i_]
severely violated. Simultaneously satisfying both constraints is impossible in tbm case. Thus, a new mrmuia_lon m _,!_|
requiredwhich isgiven by _'|

g+= (-I), > 0, (u)
j:l

where gi.j denote the constraints of the type (3) or (4), p the number of feasible frequency intervals and n5 the number
of bounds, respec:ively.For the exclusioncaseinfigure4b) the constraintcan be writtenexplicitlyas(2 = 2,nb= 2)

which gives constraint values greater than zero for the two feasible frequency intervals.

DilYerendadon of (11) with regard _o a design variable z yields

,_+ Ogci _b

O=
hIB_

(13)

which is a difrerentiable function in z (just as the constraint (1I) itself).-

EXAMP/;£ 3 The lowest eigenfrequency of a c/amped-free beam shall be constrained. The constraint is given by
three bounds _nd can be sketched as in figure 5a). The initial design (ID) lies in an infeasible frequency interval The

rib=3

i /
OD ID -+i--T:-!

.mN - • i_

I Yl IIIII t@w + _I It|IIIII I I Wll I il

Figure 5: a) Multiple constraint for lowest eigenfrequency b) Weight history c) Constraint history

optimization gives an optimal design (OD) at the lower interval bound which is physically reasonable. Weight and
constraint hmrories are shown in figure 5 as well. •

3 Frequency Response Constraints

A more advanced type of constraintsfrom dynamics isgiven by frequency response constraints.These may occur
when a structure is harmonically loaded and it is required tha_ the displacement, velocity or acceleration at certain
points of the structure must not exceed prescribed values.

For simplicity, only displacement amplitudes a_ are considered in the following sections. Velocities and accelerations
can be treated analogously.

In this case the constraint for the displacement amplitude in the/-th degree of freedom is given by

" gi:l a_(fl,=) Qr<Q<fl,_, (14)

where the excitation frequency fl varies in a frequency interval given by its lower bound f_ and its upper bound f_u.

The displacement vector V of & harmonically loaded structure (excitation frequency l'_) is computed by

, (-Q'.,'t,i r + inD -.I- .K') y : .f(n). (15)

/(Q) denotes the vector of external forces. The amplitude a+ is computed from the complex displacement in the i-th
coordinate as

= + (ts)
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Equation (15) isa system of complex linearequationswhich isquiteexpensive to solve.To make a solutionfar less
time-consuming one generallyintroducesa transformation

y = Yq. (17)

The transformationmatrix Y isa n x m-Matrix (m _ n) which reducesthe originalsystem to

yT(__M+i_D+ K) Yq = yTf(_) (18)

Fq - yT f(_). (19)

F isa diagonalmatrix ifY containseigenvectorsofthe structure.Inthiscase (17")isa usualtransformationtomodal

coordinates.In recentyears,other transformationhave been proposed instructuraldynamics (e.g.[Wilsonet ai.82],
[Nour-OmidClough84J or [Coutinho et ai.87]).A transformationto Lanczos coordinateswas shown to be especially
promisingbecauseitIsa load-dependent transformationthat istailoredto the respectiveload case and approximates
the influenceof higher modes as well.The startingvector YLo that isrequired for the Lanczos iteration(seee.g.

[Coutinhoetai.87])ischosen from

KyLo = f, (20)

7i ----mnax _/Re(.f,(_))2+ Im(f,(_))2 i= l(1)n. (21)

7 containsan assemblage ofthe frequency-dependentload f(_) which ensuresthat every requireddegreeoffreedom

isexcited.Ifthe Lanczos tranformationisperformed,forexample accordingto [Coutinho et ai.87],a reduced set of
equationsisattained,which isagaindiagonal.Thus, both modal and Lanczos transformationyielda reduced diagonal
set

diag(-ff" + if_2_wi+ w_)q = yrf(f/). (22)

For optimizationpurposes the derivativesof (14)are needed. Combining the derivativesof (14) and (16)one has

ORe(yi)Re,, _ OIm(Yi)im(, )
ag._.i_ 1 _ t#'J + _ _," (23)
OZ -- ai,ma z al

To compute the derivatives of the complex displacement vector y which are needed in (23), equations (15) and (17)
are differentiated:

by y Oq OY
0-7= + (24)

2 0q = OY T i_2 _ )q.d ag(- 2 + 0"-7/(n) - di g( + (25)

Thus, computing the gradients of (14) in a reduced system requires the derivative of the transformation matrix Y. If
Y contains a set of eigenvectors of the structure, the eigenvector derivatives have to be computed. This can be done by
the method originally proposed by [Nelson76] or by some approximation method (see, for example, [Haftka et al.89] )
which is usually based on a modal expansion of the eigenvector derivatives.

Numerical experience indicates that the influence of transformation matrix derivatives on the gradients of the fre-
quency response is often negligible. Differentiating (18) and neglecting the derivatives of the damping matrix and of
the transformation matrix Y , (24) and (25) are approximated as

= Y (26)
Oz Oz

,, O_ _yT ( n2 aM OK)

Equations (26) and (27) can be evaluated with Y containing either eigenvectors or some other transformation vectors
which, for example, can be obtained by a Lanczos reduction.

EXAMPLE ._ For a cantilever beam a constraint is formulated for the acceleration at the tip of the beam. Differ-
ent methods for computing the frequency response derivatives are compared. An approximauon of the eigenvector
derivatives by the method proposed by [l_im et al 871 gives identical results compared to the numerical radient and
the gradient obtained by Nelson's method. An exp'an_ion of the eigenvector derivatives in the eigenvecto g themselves

OY
-- YC T (28)

8z

with C as the matrix of the expansion coefficients, yields very good results for the response gradient, too (figure
6a)). Neglecting the eigenvectors derivatives totally (i.e. using equations (26) and (27)) also gives acceptable results
as shown in figure 6b). A difference between the exact and the approximated gradient can be found in the higher
frequency range only. •

EXAMPLE 5 Using the approximation method for the gradient, a cantilever plate (fig. 7a)) is optimized. Fig. 7b)
shows the amplitude response spectra in the initial and final design. The weight history is given in fig. 7c). •
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4 Conclusions

Several formulations for eigen_requency constraints were presented and implemented in the structural o?timiza:ion
pac.ka_e MBB-LAGRANGE. Examples show that the given formulations are very useful in practical apphcations.

The second topic of the. paper addresses frequency response cons_rainm. To save computational time it is necessary
_. perform a system reductmn, both in analysis and gradient caleula._ions. The sysr.em equations are tran_or_ned to
either m.o.aat or t,anczos coorainates. Neglecting the derivative of the transformation results in equations tha_ are
edmy ancL mexpe_..we to han..dle. The user may,-however, consider exact or approximar_,d ei_envecwr derivatives in
the response gradients ms well.

Work on transien_ re_.ouse and random response is in progress. Together with the formulations given above LA-
GRANGE can be used as a tool for solving a variety of structural optimization problems with cons_ralnm from
dynamics.
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ABSTRACT. Let V(t) be a vector-valued function for te[a,b) a

real interval. The main purpose of this paper is to establish

the existence of an interval [a,B] _ [a,b] for which there

exists a toe[a,B ]c [a,b] such that V(t o) = O, the zero vector.

Use of such information in the dynamic optimization theory with

multiple objectives present is needed. Examples of such sys-
tems will be given.

INTRODUCTION

Let V{t) be a vector-valued function for tE[a,b] and denoted by:

v(t) =

Vl(t)

Vz(t)

Vn(t)

(1.1)

where each {vi(t),i=l,2,...,n) are twice continuously differentiable real-valued

functions of t for te[a,b]. Associated with V(t) is the following non-self-adjoint

matrix vector differential equation:

!

(t) + q(t)V (t) + R(t)V(t) = 0 (I .2)

where [P(t)], [Q(t)], [RCt)] are n by n matrices of continuous functions of te[a,b]

and [P(t)] is an n by n matrix of continuously differentiable functions of te[a,b].

The main objective of this paper is to establish a sufficient condition for

the existence of a toe[a,b ] for V(t) a solution of (1.2) such that V(t O) = 0, a

zero vector of V(t) for which toe[_,B ] C [a,b]. Also associated with (1.2) is the

following matrix vector differential equation:

I I I

u (t) + [A(t)]u (t) + [DCt)]u(t) = 0 (I.3)

where the matrices [A(t)], [D(t)] are continuous functions of a real variable

tc[a,b] such that u(a) = u(b) = O. Such solutions of (1.3) will be called trial

functions where u(t) _ 0, for a < t < b. Such vector-valued functions u(t) will be

utilized in a computational decision process for the existence of a toe[_,B ]

[a,b] such that V(t o) = O.
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In section II an example which illustrates the basic theory which is developed ii_ __

in III will be given.

EXAMPLES

ExampIe 1. Let

C) (1.4)

be a given vector-valued function of t for t¢[a,b] and is a solution of the follow-
ing matrix vector differential equation

(:)-(::)(:)-<::)<:)(:) (1.5)

The basic problem of determining a t-interval [a,B] C [a,b] for which V(to) = 0
where toe[a,B ]C [a,b] and V(t o) = 0 will be considered.

Next, let a trial function be given by

(1.6)

which obviously has t-zeros at t : O, t : 1 and u(t) _ 0 for 0 < t < 1. Thus t o

for which U(to) = 0 = u(O) and U(to) = 0 for which u(1)= O. Let u(t) given by

(1.6) be a solution of the following matrix vector differential equation

<:)-(? :)C?)-C:)C:)(:)
and u(t) has t -zeros at t = O, t ffi 1.

0 0 0

Let

C? °0) C:)

(i .7)

(1.8)

for equation (1.7) above.

Then by making use of the following decision-function:
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=Iu,,.a.bj_,[< ,]2, = _ AU,U>
[<Au, u> ]Z
<v,v> I< ' , , >]• Iv ,v>- <v ,v> .<Cv,v

01\ 0 I I<('o_i)1],(]>

<(],1]>"<(i](],(to)>

1
=7 ((-')>1' (l.9)

[<(-"":'-"').('i-')>
t 2

• [_t2_l÷t 2]

and therefore V(t) has a te[0,l] : [a, 8] _C [u,b] such that V(to) = V{o) = 0 since

1

E[u,v; O,1]dt < 0 (1.10)

0

holds.

Example 2.

(('Ivector vft) = is a solution:

Given the matrix vector differential equation for which the given

(which has to = O)
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Ii).(7 I<211)-(Ii><*i*>-<i)

where B{t} = ; CCt) =

- I

Let the trial vector

2-t_

u(t) = \t_t2/
which has a t -zero at

0 {to = 0,I), u{o) = 0; u(1) = o, u(t) _ 0

and satisfies the matrix differential equation:

where

and

0 \l_2t/+ {t2"t_(_:>+(2_4t 2_4t)(2t-1_ (: :)\t_t2/ =(i)

I ! !

u (t) + ACt}u (t) + D(t)u{t} = 0

<7°) C:)A(t) : ; D{t) :

2-4t

{Decision Criteria)

E[u,v; a,b] _ 1[= _ <Au,u>']Z
[<Au,u >1

V,V > I ! ! ! ]• <By ,v>-<v ,v > + <Cv,v>

2-4t/\t-t2/ ' t-t 2

<CI-*),<*Z-*)>
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:)<.:1)<.:.>><<.:1)<.:_1)>

</'
0
i)<'i')<'i')>

1
=y

\2,-6t2+.t3/'\t-iV J

[ // 6t2-2t-4t 3- CI::/>
[(t2-t)2.t 2]

+<<8.:--).<.i-.)>
which guarantees the existence of a t-zero of v(t) for t_[O,1].

BASIC MATHEMATICAL FORMULATION OF MULTIPLE OBJECTIVE DECISION ANALYSIS MODELS

Multiple-criteria decision making (MCDM) has increased the need to identify
and consider simultaneously several objectives, particularly those derived from the

study of large-scale dynamical systems. The type of systems considered in this
work depend continuously upon time t with respect to the time-varying dynamical

system. Mathematical programming is a very useful and flexible framework for
multi-objective analysis when the objective and physical constraints of a problem

may be expressed as functions of decision variables.

The general problem of single-objective programming is the search for the

optimum, i.e., a minimum or maximum of a function of variables constrained by equa-

tions or inequalities called constraints. The inequalities may also be differential

inequalities or integral inequalities. A single-objective constrained optimization

problem can be defined and expressed as below:

max (z (x))
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subject sets of inequalities:

giCx) _< 0 ; Ci=1,2 .... ,m)
x. > 0 ; (j=l,2,...,n)
3 -

where the objective function zCx) and the constraints gi(x] are defined on an

n-dimensional Euclidean vector space of decision variables

x = (Xl,X2,X3,...Xn)eRn

with values in the set of real numbers R. The functions z(x) and gi(x) can be

either linear or nonlinear functions of the decision variables, xj, where

(j=l,2,3,...,n). The feasible region is denoted by X = (x : xER n, gi[x) _ 0,

xj _ O, kf i,j}. The optimization problem is to find an element x*eX of the feasible

region X which will give a minimum value for z(x), i.e., max z[x) = z(x*). If the

functions z(x) and gi(x) are both linear, then the optimization problem is called a

linear programming problem. If either z(x) and gi(x) are nonlinear, then such a

problem is called a nonlinear programming problem.

A single-objective programming problem consists of optimizing one objective

function subject to a constraint set. A multi-objective programming problem is

characterized by a p-dimensional vector zCx) of objective functions:

z(x) = (Zl(X),Z2CX),...,Zp(X))t, t = transpose

and a feasible region X = {x : x_R n, gi(x) _ O, xj _ O, k/i,j}, but instead of

seeking a single-optimal solution, a set of nondominated solutions is desired to be

found. This set of nondominated solutions is a subject of the feasible region

X = {x : xeR n, gi(x) _ O, xj _ O,k/ i,j}. For the nondominated set of solutions,

each solution outside the set, but within the feasible region X, there is a non-

dominated solution for which a11 objective functions are unchanged or improved where

also at least one is strictly improved. In general, one can't optimize a priori a

vector of objective functions. One first attempts to identify the set of nondomi-

nated solutions within the feasible region X in the consideration of multi-objective

problems.

One may formulate the problem as follows:

max-dominate z(x) = [zl(x),z 2[x),...,zp(x)]

subject to xcX the feasible region, where the object is to search and identify the
set of nondominated solutions, i.e., the set of solutions that dominate the other

solutions in X. Decision functions are used in this area for time-varying problems

developed by J. Jones, Jr. and the detailed mathematical proofs will appear else-

where due to page limitation of this manuscript. Parallel processing and large

computers are used to carry out the mathematical modelling and computer simulation

of large dynamical time-varying systems Cboth linear and nonlinear).

+
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FUZZY COMPROMISE: AN EFFECTIVE WAY TO

SOLVE HIERARCHICAL DESIGN PROBLEMS

J.K. ALLEN l, R.S. KRISHNAMACHARI 2, J. MASETTA 3 , D. PEARCE 3, D. RIGBY 3

AND

F. MISTREE 4

In this paper, we present a method for modeling design problems using a compromise Decision Support
Problem (DSP) incorporating the principles embodied in fuzzy set theory. Specifically, the fuzzy
compromise Decision Support Problem is used to study hierarchical design problems. This approach has
the advantage that although the system modelled has an element of uncertainty associated with it, the
solution obtained is crisp and precise. The efficacy of incorporating fuzzy sets into the solution process is
discussed in the context of results obtained for a portal frame.

1 MODELING HIERARCHICAL PROBLEMS AS COMPROMISE DSPs

Many real-world engineering systems are too complex to be designed as single systems. In the early
stages of design it is essential to have a method for partitioning and/or decomposing design problems into
subsystems which then may be designed concurrently. The nature of the problem itself and the method
chosen for analyzing the subsystems have dramatic effects on the efficiency and effectiveness of the design
process as a whole, and by extension, on its cost. Design through repeated iteration is costly, time
consuming, and may require endless iterations to adjust previously "designed" subsystems to take into
account new information. On the other hand, completely simultaneous design (except in the case of
variant design) is also impossible. The general formulation of a hierarchically decomposed problem is
shown in Figure 1. Methods for hierarchical decomposition have been proposed and tested successfully in
limited situations; Sobieski [1-3], Kuppuraju et al.[4], Shupe et al.[5], Wrenn and Dovi [6], and Padula et
al. [7]. There is, however, a major limitation to these methods, they require precisely defined information
and relationships between subsystems, and therefore they are impractical for use in the early stages of
project initiation. We assert that a procedure that incorporates fuzzy set theory would overcome this
limitation.

An abstract system made up of a parent system and three subsystems is illustrated in Figure la. The
subsystems interact with each other through lateral interactions and with the parent system through vertical
interactions. A physical representation of the abstract system (shown in Figure la) is a portal frame,
Figure lb. It represents a simple hierarchical system; the frame being the parent system and the I-beams
three subsystems. The objective is to minimize the overall mass of the frame while it is subjected to static
loads P and M. The system is subject to certain constraints covering normal stress, bending stress, shear
stress and buckling in each member. There are two types of design variables; one type for the parent
system and another type for the subsystems. The parent system design variables (A and I) are each
member's cross sectional area and moment of inertia. Each subsystem (I-beam) has six design variables,
namely, b 1, 132, h, t 1, t2, t3. The vertical interactions, Vi, that occur between the parent system and each
of its subsystems, as well as the interactions that occur between each subsystem, Lib are shown in Figure
lb. The lateral interactions necessitate the inclusion of constraints that match the subsystem variables to
their counterparts in the other subsystems. The vertical interactions necessitate the inclusion of constraints
that match the parent system design variables (A and I) and the subsystem variables (b, t, h). This
"matching" is modeled mathematically by system goals in the compromise DSP. An interaction system
goal constrains one subsystem variable to be equal to its counterpart in the other subsystem. For example,

1 President, JANCO Research, Inc., 450I University Oaks Boulevard, Houston, Texas 77004.
2 Graduate Research Assistant. Deparlmentof Mechanical Engineering, University of Houston, Houston,Texas 77204.
3 Graduate Student, Department of Mechanical Engineering, University of Houston, Houston, Texas 77204.
4 Professor, Department of Mechanical Engineering, University of Houston, Houston, Texas 77204.
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FIG. lb. PORTAL FRAME AS A HIERARCHICAL
MODEL

GIVEN

Geometry, material properties, loads, etc.
X 0 - the starting solution
i = 1,2,3 - member number
j = 1 and 2 - left and right end of member, respectively

FIND

X = {A i , li, bil .bi2, til , ti2 , hi }
SATISFY

System Constraints: Frame
-combined stressconstraints

S(Ai,Ii) < Smax
System Constraints: For each member

- combined stress in the top flange

o(b,t,h)ij < o a
- combined stress in the bottom flange

°(b,t,h)ij < _a
- shear stressconstraint

l:(b,t,h)ij < _a

- flange buckling constraint (top & bottom)
I o(b,t,h)i I< Oab(bil,til )

Ix(b,t,h) i I < Xab(bi l,ti 1)

Overall System Goal
- Mass Goal: minimize mass of system

Other System Goals
- Vertical Interaction Goals: V i (six goals)

A i + d'i+ 1 - d+i+l = A( b. t. h )i

Ii + d'i+ 4 - d+i+4 = I( b, t, h )i

- Lateral Interaction Goals: L12 and L23

(twelve goals)

L1 (b,t,h) + d-n- d+n = L 2(b,t. h)

L2 (b, t, h) + d"n - d+n = L3 (b, t, h)

Bounds on system and deviation variables
MINIMIZE

The mass of the system
The deviation between the system variable

in one member and its counterpart in tim other.

FIG. lc - MATHEMATICAL MODEL OF THE HIERCHICAL DSP FOR
THE PORTAL FRAME [5]

FIGURE 1 - THE HIERARCHICAL PROBLEM AND THE COMPROMISE DSP
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_ure lb, the individual dimensions of the center beam (subsystem 2) of the portal frame should match

,_j._ those of the beams (subsystems 1 and 3) on either side. Thus, lateral interaction equality constraints are

_. created to handle this, for example,(bl)I+ d'- d+ = (132)l
@

where (bl)1and (b2)lare the width of the bottom flangesof subsystems 1 and 2, respectively.The

deviationfrom thisequalityismeasured by thesystcm goal'sdeviationvariables(underachievement,d"

and o,,erachievement,d+) I. Similarly,the interactionbetween the parentsystem and subsystem I is
written as

" A 1 + d" - d+ = A(b,t,h) 1

where A 1 is the cross sectional area of member 1 (parent system) and A(b,t,h) 1 is the cross sectional area
::; of member 1 as a function of the subsystem variables. The interaction system goal provides an effective

and efficient approach for maintaining the interactions between the parent system and its subsystems and
between individual subsystems. Further details are provided in [5].

The crisp formulation, in succinct notation, of the compromise DSP for the portal frame is presented in
Figure Ic. The compromise DSP has been discussed in detail elsewhere (for example, see ref [ 10]) and
will not be repeated here). Given the geometry, loads, material properties and starting values for the

variables X o our intention is to find that set of variables X that minimizes the mass (modeled as volume in
the formulation [5]) and satisfies system constraints and goals, and bounds on the variables. The system
constraints include stress constraints on the parent system and stress and buckling constraints on the
subsystems. The system goals include vertical and
lateral interactions. Bounds are placed on both the
system and deviation variables. The objective,
unlike traditional optimization formulations, is in
terms of the deviation variables associated with the

goals. The stresses are calculated using SAP IV and
the compromise DSP is solved using DSIDES [ 10].
Shupe and coworkers showed the efficacy of using
compromise DSPs in modeling and solving
hierarchical design problems [5].

IX '°l0.5

0
/\

°I'-m
x

2 FUZZY SETS IN DESIGN
FIGURE 2 - A ONE DIMENSIONAL
LINEAR MEMBERSHIP FUNCTION

What is a fuzzy number? Using fuzzy set theory,
uncertainty in any variable is modeled by assuming that it is represented by a main value, m, surrounded
by a cloud of fuzziness (uncertainty) [8, 9] whose shape is specified by a membership function, It. The
exact shape of the membership function must conform to some conventions and numerical considerations:
(a) its only minima are at the end points of the interval and these must have a zero membership, and (b) its
only maximum should have membership one at the most likely value within the fuzzy set. A simple
function that satisfies these guidelines is the linear membership function which is illustrated in Figure 2.
In this case, the most likely value of the set is the main value, m, and the distribution of membership
decreases linearly and symmetrically until it equals zero at (m+c) and (m-c). Hence, linear membership
functions are completely specified by the value of m and the bandwidth of fuzziness, c.

What is the difference between fuzzy set theory and statistics? The analysis of Gaussian distributions in
probability and statistics is based on the rigorous mathematical foundation of measure theory. It is
inappropriate to apply identical manipulations to fuzzy sets - even the very basic definitions of addition and
multiplication of sets are different in the two cases.

The general formulation of a fuzzy compromise DSP is given below.

The system and deviation variables in a compromise DSP are always non-negative. To effect solution,

one of the following three conditions must hold, namely; [(dk" = 0) and (dk + = 0)] or [(dk" = 0) and

(dk + > 0)1 or [(dk" > 0) and (dk + = 0)]. This requirement is modeled by: [(dk" • dk +) = 0].
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GIVEN

• An alternative (a starting design): X 0 = {Xi01 i = 1 ..... M} .

• Estimatedfuzzifiers for constraints, _ const, = {cj}, and performance goals, c goals = {Cp} .
j = 1 ..... J and p = 1..... P.

• Upper and lower bounds on the system variables.

FIND

The values of system variables : X = {Xil i = 1..... M}.

Deviation variables dk+ and dk+ are a measure of the deviation of the system being designed
from the goals, k =1 ..... K where K is the number of goals. In the fuzzy formulation, there arc F
goals associated with the grade(s) of system compatibility, G goals associated with goal
satisfaction, and P performance goals (F + G + P = K)

SATISFY

• Fuzzy system constraints (capability, Ci, meets demand, Di)
Constraints are a function of the system variables, X, and constants, Aj. The fuzzy form of these
constants is represented as Aj(1-cjHj).

[Cj(Aj(1-cjHj), X_)] / [Dj(Aj(1-cjHj), _D] > 1 . j = 1..... J.

Fuzzy system goals
• Performance goals (performance meets target). Performance goals are a function of the system

variables, X, and constants, Ap. The fuzzy form of these constants is represented as Ap(1-
cpHp).

[Pp(Ap(1-cpHp), X)] / [Tp(Ap(1-cpHp), _x)] + dp" - dp+ = 1 p = 1..... P.

Maximize the grade of system compatibility. (Maximize the possibility of satisfying the fuzzy
constraints.)

Hj + dj" dj+ = I. j=l ..... J.

Maximize the degree of goal satisfaction. (Maximize the possibility of satisfying the fuzzy
goals.)

Hp + dp" - dp + = 1. p=l ..... P.

Bounds

• On system variables.

Xi rain < Xi < Xi max . i = 1, ..., M.

• On the possibility distribution variables associated with the consuaints and goals,
(0 g Hi, Hp, Hg, Hf g 1). j=l ..... J; p=l ..... P; gffil, .... G; fffil ..... F.

MINIMIZE

• Preemptive deviation function through lexicographic ordering

Z = [(dl'+dl +) ..... (dk'+dk +) .... , (dK'+dK +)].

Although fuzziness is introduced into the formulation of the compromise DSP, the design parameters

constituting the solution are crisp, i.e., not fuzzy. As the extent of the fuzziness is decreased, (c _ 0), the

solution, {X}fuzzy, of the fuzzy compromise DSP approaches the crisp (non-fuzzy) solution, {X}cdsp, in
the limit.
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What are some of the advantages of using a fuzzy compromise DSP?

• Some phenomena, particularly in original design, may be more accurately modeled by fuzzy
relationships than by crisp, precise ones.

• A fuzzy formulation particularly useful because it can be used over a relatively large portion of the
design time-line. As design proceeds, information about the object being designed becomes more
and more certain (less and less uncertain). As the certainty increases a designer is required to merely
decrease the value of the fuzzifier, c (the fuzzy formulation reduces to the crisp formulation when
c=0).

• Notions such as - "as much as possible" or "approximately I0,000" can be modeled. These are
more likely to occur in the early stages of project initiation.

• We believe that the fuzzy compromise DSP provides an added flexibility to the problem's
mathematical structure which is very useful in modeling large-scale systems problems. This is
particularly so when subsystems are being designed by different groups and must be integrated into a
system:
• In practice, at a point on the time-line, the degree of certainty associated with different

subsystems will vary. A fuzzy formulation allows a designer to account for these variations in
obtaining a solution for the system.

• In a fuzzy formulation it is possible to permit some constraints to be "somewhat violated" and
then to "instruct" other subsystems to compensate appropriately.

• We believe that the fuzzy compromise DSP provides an ideal way for modeling hierarchical
problems. Shupe et al. [5] and Krishnamachari et al. [ 12] have demonstrated the efficacy of solving
these problems using crisp and fuzzy formulations, respectively.

3.0 IMPLEMENTATION, VALIDATION, INSIGHT AND FUTURE WORK

Implementation
To ensure that the DSP template is correct for both the crisp and fuzzy formulations and to gain an insight
into the workings of the model four cases of the portal frame were run:

Regular, involves minimizing the system mass only while allowing the geometry of the portal frame
to take on any satisficing values.

Lateral. above plus the goal that forces the equivalence of the beam geometries.
Vertical - above plus the goal that forces the equivalence of the beam areas and moment of inertias

between the subsystems and the parent system.
Comprehensive - makes use of the goals from the regular formulation, the lateral formulation and the

vertical formulation, simultaneously.
Mass is an indirect measure of economic efficiency whereas the interactions are secondary (strength,
buckling, etc. being primary) measures of technical efficiency. Hence, in the preceding a preference is
shown towards minimizing mass at the expense of the interactions. The solution scheme is illustrated in
Figure 3. By way of example a plot of the design history of the volume for three different starting
solutions is shown in Figure 4.

Validation

Both the crisp and fuzzy formulations have been exercised with different initial starting solutions to
establish the global nature of the solution and to ascertain the effect of infeasible starting solutions on the
final design.

Establishing the crisp formulation: The crisp formulation of the DSP proposed by Shupe et al. [5]
forms the basis of this study. The volume obtained by Krishnamachari et al. [12] for the lateral and
comprehensive cases is within 5 % of the results obtained by Shupe and coworkers and the results
for the regular and vertical interaction cases are within 10 %. The difference is attributed to the
pseudo-preemptive approach used by Shupe in 1985 and the true preemptive approach used by
Krishnamachari and coworkers in 1990.

Effect of different starting solutions: The starting solution did not have much effect on the convergence.
All the runs took almost the same number of cycles for convergence for both the crisp and fuzzy
formulations. This has been verified for fuzziness varying from 5 to 30 %.

Does the fuzzy model behave as expected? Both formulations have been extensively exercised and the
answer is yes.
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Observations
Using the fuzzy DSP increases the swiftness with which a solution is obtained: The convergence of the

fuzzy DSP of the portal frame problem is considerably faster than the corresponding crisp
formulation. This rate increases as the fuzziness value is increases. The time for convergence
decreased from approximately 12 minutes for the crisp model to 7 minutes for the comprehensive
case with a fuzziness of 30 % on the su'ess limit.

The efficacy of using the fuzzy DSP in the early stages of project initiation: Increasing the fuzziness
decreases the effect of an initial infeasible design on the number of iterations needed for
convergence. This observation is of particular importance in the early stages of project initiation
when little is known of the system and the uncertainties associated with the information are high.
Increasing fuzziness increases the speed of convergence and is useful for negating the deleterious
effect of an infeasible starting solution on the solution process. The fuzzy model is particularly
appropriate when a designer is interested in obtaining a satisficing, approximate design rather than
obtaining a design that is accurate and optimal.

The efficacy of using the fuzzy DSP over a range of the design time-line: In practice, uncertainties
should decrease as one proceeds along a design time-line. The solution of the fuzzy DSP with c=0
(i.c., no fuzziness) is within 1% of the solution obtained using the crisp formulation. This is
indicative that the same model can be used over a wide range of the design time-line.

The utility of the fuzzy DSP to a designer: Post-solution analysis of the uncertainty value 'H' for the
constraints that are fuzzified can be used by a designer to determine which factors are of importance

in improving the quality of the solution and thence directing his/her efforts according!y. Fuzziness
can be used in two ways, namely, model uncertainties and to study the effect of certain parameters
on the solution. The latter allows a designer to pin-point a part (within a subsystem) for which it is
important to get further information, i.e., to reduce the uncertainty. This insight should make it
possible to direct resources towards activities that provide the "biggest bang for the bucks".

The efficacy of using the fuzzy DSP to model hierarchical problems: Shupe et al. [5] have shown the
efficacy of solving hierarchical problems via the compromise DSP. This observation is further
reinforced by Krishnamachari et al. [12]. The use of the fuzzy DSP does not result in a better design
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per se but provides a means for recombining the subsystems into a system when design is in
progress. Further, there are strong indications that the use of the fuzzy DSP could result in an
increase of the efficiency of the design process.

Future
The portal frame test case represents much more than a structural optimization problem. The same

philosophy can be used to model other tyl_e,s of projects in which different departments or groups interact
to achieve their goal. The fuzzy comprormse DSP can be used to model interactions between systems even
though the nature of these interactions may be unclear or fuzzy. This is the case in concurrent engineering.
Based on our experience, we believe that investigating the efficacy of using the fuzzy compromise DSP in
concurrent engineering is warranted.
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AIRFRAME STRUCTURAL OPTIMIZATION FOR MAXIMUM FATIGUE LIFE

_' By

Dr. D.P. Schr•ge and A.K. Sareen
Georgia Institute of Technology

ABSTRACT

A methodology is outlined for optimization of airframe structures under
dynamic constraints to maximize service life of specified fatigue-critical
components. For practical airframe structures, this methodology describes the
development of sensitivity analysis and computational procedures for
constraints on the steady-state dynamic response displacements and stresses
Strain energy consider••ion is used for selection of structural members for
modification. Development of a design model and its relation to an analysis
model, •s well •s ways to reduce the dimension•lity of the problem via
approximation concepts is described. This methodology is demonstrated using
an elastic stick model for the MH-53J helicopter to show service life
improvements of the hinge fold region.

INTRODUCTION

Excessive vibrations degrade the service life as well as the ride qualities
of helicopters. Studies on vibration reduction by optimization of rotorcr•ft
structures are underway •t NASA Langley •s a pan of an ongoing
NASA/Industry rotorcraft structural dynamics program. The objective of
these studies is to develop practical computational procedures for structural
optimization of airframes subject to steady-state vibration response
constraints (Reference 1). Efforts are also underway at developing an
integrated, multidisciplin•ry, optimization-based approach for rotorcr•ft
design (Reference 2). One of the objectives of this NASA/Army Aerostructures
Director•re research program is to establish • procedure to include airframe
dynamic effects in rotorcr•ft system dynamic optimization.

While analysis capability for vibratory response has been pursued for
quite some time, the vibration reduction in existing helicopters has, for the
most pan, been achieved through add-on vibration control devices Such
after-the-fact structural alter•dons imply •dditionai weight penalty and are
often not effective. These problems can be alleviated if the helicopter
designers rely on analysis during design in their efforts to limit vibrations.
This will require the development of advanced design analysis methodologies
and attendent computational procedures which adequately take vibration
requirements inlo account (Reference 3). This paper outlines an airframe
structural design methodology aimed st airframe dynamic structural
modification to reduce vibratory response, thereby increasing the service life
of fatigue-critical components and producing • better vibration environment
for crew, passengers, and equipment.
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_ODOLOGY

Airframe structural optimization involves structural analysis capability to be
coupled with the optimizer which modifies the design variables so that
structural responses meet user-prescribed criteria. For practical helicopter
structures, the structural responses arc computed using standard structural

Improved _
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, -tlDESIGN MODEL
MODIFICATION

UPDATE BULK
DATA DF_.CX

DESIGN
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I FINITE ELEMENT
STRUCTURAL ANALYSIS

(ANALYSIS MODEL)
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STRUCTURAL ANALYSIS
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I Response &
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Information

OPTIMIZATION J
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Figure I. General Airframe StructuralOptimization Methodology

analysis tools such as MSC/NASTRAN applied to specifically constructed finite
element analysis models. Figure 1 shows the basic airframe structural design
optimization process.

Initial airframe design is in the form of a complete finite element
analysis model along with the description of mtor-ioduced loads. Figure 2
shows the finite element model of the MH-53J helicopter which has been
subjected to static and dynamic analysis, and the design model is bcing
constructed Once the static analysis has been performed and static-to-dynamic
model conversion is completed, the dynamic model is analyzed using
MSC/NASTRAN. However, there are obstacles to the implementation of
efficient mathematical programming based structural synthesis of the
complete finite element model due to
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i) large number of design variables
ii) large number of inequality constraints
iii) many inequality constraints are computationally
burdensome implicit functions of the design variables.

To overcome the efficiency barrier in structural optimization problems
with mathematical programming approaches, approximation concepts can be
used. The basic idea is to transform the problem statement involving s large
number of implicit functions to a sequence of a relatively small number of
approximate problems that incorporate only the explicit functions which are
easy to evaluate ('Reference 4,). The size of the problem is dictated by number
of design variables or the number, of constraints. The number of design
variables is reduced by linear transformation called design variable linking.
The number of constraints is reduced by temporarily deleting constraints
which were sufficiently feasible and not likely to become binding for
moderate changes of the design variables. Graphically, the approximation
concepts methodology is depicted in Figure 3.

I
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!
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Figure 3. Approximation Concepts Methodology

(Source: Reference 5)

For the approximate model, the analysis computes the various structural
responses, such as stresses, displacements, natural frequencies, etc. together
with their sensitivities with respect to a specified set of desien model

parameters. These response data are fed into the optimization program to
propose an improved design. Based on the new design, the analysis model is
modified and a new iteration cycle starts.

The use of the design optimization capability for practical airframe
structures is relatively simple and the key concept in applying the
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optimization capability is to make a "design" model in addition to the available
"analysis" model. A design model is a representation of a design optimization
problem statement in terms of design variables and structural responses. It is
closely related to the corresponding analysis model. To make the best use of
optimization capability, the user needs to have a good knowledge of the
hardware requirements and dcsigu criteria, and then create a design model
based either on the proposed structure or the preliminary drawings. The MH-
$3J design model for optimization is built based on the /'mite element analysis
model of Figure 2.
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ANALYSIS
MODEL DATA

FINITE
ELEMENT

ANALYSIS

ANALYSIS

RESPONSES

RESPONSES

CONSTRAINT
FUNCTION

OB_CITCE
FUNCTION

l_gure 4. Basic Design Model Conceptual Structure
(Source: Reference 5)

In general, the description of a design model must contain the following
four components in addition to the associated analysis model description
(Reference 5):

i)
ii)

iii)

iv)

Definition of design variables which are allowed to be modified.
Description of relations between the analysis model variables and
the design variables.
Description of a measure of design based on the responses
calculated by the analyses.
Description of the design criteria based on the responses
calculated by the analysis, in the form of inequality constraints.

Conceptually, the design model description implemented in
MSC/NASTRAN may be visualized u shown in Pigure 4. The elements in the
analysis box represent the conventional MSC/NASTRAN analysis capabilities.
The design variables are defined as separate entities from any of the
parameters which describe the analysis model. These variables could be
normalized area or moment of inenias of the sections. Subsequently their
relationships to the analysis model data is defined directly and or through the
user supplied equations. In the Figure 4, Type-I (or direct) responses are
those analysis results computed directly by finite element analyses. These are
available for printing or for being read by other modules. The objective and
constraint functions are formed either directly from the Typc-I responses or
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from the Type-2 responses which arc defined as user-supplied equations in
terms of the design variables and the Typc-I responses.

The selection of appropriate design variables is one of the most
improtan_ decisions in creating a design model. It is highly desirable that the
design variables selected have an appreciable influence on the objective
and/or the constraintfunctions. Another factor to keep in mind is that each

design variable should be directly related to physical significant quantity

such as dimension of a pan, so that the designer can modify the drawing or
the hardware based on the proposed design. The total number of design
variables is limited only by the computational resources (i,e. memory size,
secondary storage size, etc.). The optimization process is efficient for a
reduced number of the design variables. The design model is under
development at the writing of this paper, and therefore, not presented here.

MODIFIED METHODOLOGY

The above mentioned generalized methodology, depicted in Figure 1, was
modified taking into account the specific efforts undertaken at NASA Langley
Research Center in developing the DYNOPT program for tuning frequencies of
helicopter airframe structures under dynamic displacement constraints.
Ongoing research on helicopter optimization for vibration reduction at
Langley Research Center has resulted in the development of computational
procedures for optimization of practical airframe structures under dynamic
constraints (Reference 6). As a pan of these studies, sensitivity analysis
procedures for constraints on the steady-state dynamic response displacement
of the Bell AH-1G helicopter airframe were developed, under rotor-induced
loads. Research work in this regard involved development of a solution
sequence based on direct matrix abstraction program (DMAP) of
MSC/NASTRAN to compute the sensitivity coefficients for the dynamic
response constraints. The sensitivity results from the application of the
solution scequence to an elastic line model of a helicopter airframe structure
are discussed in Reference 1.

In the research study of Reference 6, a computational procedure based
on the nonlinear programming approach of optimization was developed which
incorporates the dynamic response sensitivity solution sequence. The
procedure has the capability to solve optimization problems with frequency
and static constraints in addition to forced response (displacement only)
constraints. Implementation of the procedure resulted in a computer code,
designated DYNOPT, for optimization of airframe structures under dynamic
constraints.

The analysis block of the general methodology of Figure 1, on utilizing
the DYNOPT program can subsequently be modified as shown in Figure 5. As
can be noted, DYNOPT program can be modified by writing DMAP alter for
dynamic stress constraints as well as a DMAP alter for associated sensitivity
analysis. Furthermore, to bring in fatigue life into picture, • synthetic
response needs to be constructed. Fatigue life will be computed for the MH-53J
airframe components based on S-N curve methodology. Alternate fatigue life
computation methods exist but would not be used for this work.
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The selection of the regions considered for service life improvcmcnts
are shown in Figure 6. Thesc regions were dctcrmincd from the 98 failure
analysis reports for I4-53 components and structure at Warner Robins Air
Logistics Center (WRALC) to take advantage of the I-1-53 service history. The
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percent of breakdown by fatigue phenomenon accounted for 40% of all the
failures (Reference 7). The structure failures noted in the failure analysis
reports were mapped onto the H-53 structure to determine the frequency and
location of failure as an aid to locate potential "hot-spots" (Figure 6).
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ANTICIPATED RESULTS

Modification of DYNOPT program is underway to develop DMAP alters for
dynamic stress constraints and associated sensitivity analysis. Once the
fatigue life synthetic response is formuated, the sensitivities of dynamic
stresses at prescribed "hot-spots" can be computed with respect to the design
variables of the design model. This sensitivity data will be used by the
optimization algorithm along with the response information for dynamic
structural modification of the MH-531 airframe. The final results will show the

reduction in dynamic stresses with a corresponding increase in service life at
the "hot-spots" after a certain number of iterations.
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ACOUSTIC DESIGN CRITERIA IN A GENERAL SYSTEM FOR STRUCTURAL OPTIMIZATION

INTRODUCTION

by

Torsten Brlkrn&

SAAB-SCANIA AB, Saab Aircraft Division

S - 581 88 LINK_)PING, SWEDEN

Passenger comfort is of great Importance in most lransport vehicles. For instance, In the new generation of
regional turbopropaircraft, a low noise level Is vital to be compatitlve on the rnarkat. The possib,itles to predict
noise levels mWytlcally has improved rapidly in recent years. This will make It possible to take acoustiGdesign
cdterla into account Ineerty project stages.

The development of the ASKA FE--system to indude also acoustic amdysishas been carded out at Scab Aircraft
Division and the Aeronautical Reseerdl institute of Sweden In a Jointproject. New finite elements have been
developed to model the free fluid, porous damping matedals and _ intemctfon between the fluidand stnctta'al
degrees of freedom. The FE approach to the acoustic analysis is best suited for lower frequendas up to a few
hundredHz. For accurateanalysis of interior cabin noise, large 3-1) FE-cnodeis are builtbut also2--D modeb are
considered to be useful for pmametdc studies and optimization.

The InterestIs here focusedon the inlroductlonof an acoustic designcritede In the general structure/optimization
system OPTSYS available at the Saab AircraftDivision.The first implementation addresses • somewtmt limited
class of problems. The problems solved are formulated; Minimize the struclural weight by modlfylng the
dlmenslonsof the structure, while keeping the noise level Inthe cavity and other structural design cdteda within
specified limits.

THE OPTSYS SYSTEM

OPTSYS ', dev_ together wlth the Aeroneutlcal Research Insffiute, is a modular system wflh w_l defined
interflces to FE-programs ( ASKA or ABAQUS ) and codes for lleroelssUclty.A _ progrenw._
approach Is adopted were a sequence of convex appmxknatfons of the inltlal problem is solved, using lhe MMA
method ".Gradients are caiculatod semi--ecaMlc_ty. Design vedables associated to the shape of the structure,
the element oroas section propertiesorthe matedsl directionIn the case of compositematedais, can be treated.
This approach makes Itpoeslble to talcs several dMerent design oriteda into accmmt SinltY_mlouldy. Cortslrak_
can so far be defined on dlsl_acemen¢ stress, eigenfrequancy, bucldlng,flutter and aileron eflldancy. Ot_r
ImportantIngredients are; the IntegraUonof a preprocessor to define shape verlsbies, the ITeatmentof discrete
variables and the possibilityto deal with substnJcturedFE models.OPTSYS has been applied to both _mrcel_me
and automotlve slructur_ *, e.g. an Investigatfonof the potantlel weight savlngs in a cornpceltewing of • fighter
aircraft Inwlving more I_an 700 design verlableo, simultaneousshape andthld(neu optlmizdon of a Sub 9000
car SUSl_nafon am_, detahd shape _ of the cross sectfon of a seperatfon system for satellites to avold
snss _. OPTSYS o_rmes t_xn an eady version of _ OASIS system developed by Espy'.



_Et_cPOr_N_ equation describing the coupled fluid-structure pmblern '. To

_ avoid complex adthrnetlc Incurrent prototype Implementation, the excltatlon isrestricted to the harmonic case and
_,* no porous elements are aJlowedIn themodel, ffthe damping effects are neglected the dynamic response problem
•_ o,_-_ can be wrttten as,

where m Is the excttdon frequency, F Is the load vector and u Is the response vector. Vector u contains both the

$tructuraJresponse and the aooustic pressure degrees of freedom. The equ_on can be sotvod directly in the

pdmKy degrees of freedom or by modal synthesis.

The dedvath,e of the acoustic pressure p Ina certain node wtth respect to a design vadal_ x is caJ_lated, using

the adJointmethod, according to;

where ke Is the element stiffness matrix, me Is the element mass mal]tx and ve Is the response vector

corresponding to a unit load applied to the degree of freedom In which the acoustic constraint is defined. The

summation is made over all elements associated to the design variable x.

The sound pressure level, SPL, is defined as;

where p Isthe peak vaJueof the acoustic pressureln aspedflclocationlnthe e_:,ustJccavtty and po is the acoustic

reference pressure provMed by the user. The dertvsttve of the sound pressure level is then given by;

:_

g

o_ (SPL) 20 log e o_ p
J gB

_)x P _)x

The acoustic constraint, which is a spatial case of dynamic response, proved to be fairty easy to implement In

OPTSYS. The _reatment ISsindlarto the case of displacement constraints. The character of the acoustic cortsCaint

is however not as mctive to deal wnh ss the displacement constraint The acoustic response is not a
monotonous function of structural size variables, as a maximum will occur when a etger_Kluency gets ctoseto

the exaltation frequency. This w41lead to unconnected feasible regions in the design space which is a major

difficultyforan opUmizdon algorl_m.

CAVITY WITH FLEXIBLE WALL

The cavlty, FE model shown In figure I, Is surrounded by rigiclwails on five sides. The _et we/l, where the

pressure IS spplled IS however flexlble. The oxdtatlon frequency IS60 Hz and the exc#mlon rome Is qN)aed es tour

Ix_nt Ioe_, F, 0.25 N, on the flexible wd corresponding to an external uniform pressure. Air density 1.205 kg/r#,

speed of l_.,nd 340 nVs4._ _ : E - 7.2 10'° N/rn_, dens_y - 2700 kg/rnS.The r_e kw_ mide
the ¢ev#y was examined es a function of the thldmese disffilx,tJon Inthe flexible wall. The resulUng maximum SPL

In IPmcavfly Is _ed In flguroe 2 and 4. Note the asymptollc betmvlor of the dyrmmk_ response wt_en the

gets c_ose to me exdl_on _lUen_,
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flexlblewWl

F
•,:_--.4 F

3.0 interface elements (_nvtstble')
Figure 1

Inthe firstoptlmlzatlonproblem, see figure 2, one design variable was associated to the uniformthicknessof the
whole wall. Note that dMerent solutions are found, depending on the starting point, due to the unconnected
feaslble regions.

As Indicated Infigure 3, a second design variable was associated to the center element. The iteration history in
this two dimensional case Is Illustrated In figure 4. It can be noted that the constraint boundarycorrespondingto
SPL = I 10 dB seems to be veryclose to a straight line and that there Is a small feasible region unconnectedto the
large one,whk:h Is not roached from the stmllng polnt.The final design Is In this case bounded by the aooustic
design criteriaand the lower limit of the first design varl_le.

SPL(dB) !! o_, ............ |1 ..... ,.

,°°_i/. %,

0 1 2 3 4 5 6 7 8 9 10_
Rgure 2
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Figure 4

CROSS SECTION OF THE SAAB 340 AIRCRAFT

The 2-0 FE-model, representing a cross section of the Sub 340 fuselage close to the plane of the propeller,

consists of one subsVucture for thestn_ctuml part and another substructure for the cavlty, see figures 5 and 7. The
cavity substructure contains 2--0 acoustlc elements and interface elements connectlng the cavity model to the

outer flange.The excltatlon force was simplified to be harmonic, I.e. the phase difference around the fuselage was
neglected. The obJec_e function Is here _ weight of the Inner flange, I.e. lhe welght of the elements associated

to design variables. The acoustlc constraint Is applied to three points in the cabin corresponding to measurement

points inflight tests. The location of the design variables ( 1 - 37) and _e conslreJnt pointsare indicated infigure 6.

_ng FEmdd Cm_ m_tk3noffrwne

RW, S Flgure $
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Two sequential optimization problems were solved. Figure 8 shows the Iteration historyfor the objective and
constreint functlons. In phase I only Increased flange areas were allowed. After six Iterations the process
converged wlthout having reached the desired noise level as all variables gMng a favorable contrlbutlonto the
SPL have reached their upper llmlt.The addltlonal 0.076 kg reduced however the noise level from 122.3 dB to
120.5 dB. In phase II the flange areas were also allowed to decrease. The desired noise level of 119 dB was
reached after 4 Iterations with a reductlon Inweight of 0.135 kg.The ASKA FE-model in figure 7 shows _e final
SPL dlstrlbutlonand the correspondingstructuraldeformationfor the final design.The picture looksvery muchthe
same forthe Inltlal deslgn, the dlfferen¢e belng that the noise level Is lowerforthe final deslgn. In the final daslgn,
matedal has been added inthe reglon controlledby design variables 2- 8 and removed elsewhere, making the
structure less symmetric. The nolse level In thistestexample Ismuch hlgherthen inthe real alrcraftand In amore
realistic application of course other design cdteda have to be consldered as well.

Figure 7
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J

COMMENTS ON CURRENT AND FUTURE DEVELOPMENT

The currentdevelopment Includescomplexexaltationwhich Isthe case ofthe turbopropaircraft. Itis alsodesirable
to be abte todeal withtuned dampers, heavy piecesof metal boltedto the fuse_ge wtthelasticdamping elements,
dudng optimization.A new finite element is beingdeveloped to model the damper and design verlables can than
be connectedto its proportles. The problem isto selectthe propertiesof the damper endto decide where to attach
it to the structure. Another Interesting future extension is for instsnoe to usociete design variables to the
distributionof damping matedal.
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ABSTRACT

This paper presents the fuzzy dynamical reliability and failure probability, as

well as the basic principles and the analytical method of loss assessment for

nonlinear seismic steel structures. Also presented is the optimization formulation

and a numerical example for double objectives (initial construction cost and

expected failure loss) and dynamical reliability constraints. The earthquake ground

motion is based on a stationary filtered non-white noise and the fuzzy damage grade

is described by damage index.

INTRODUCTION

A reasonable structural design should achieve both serviceability and economic

objectives; optimum structural design is one of the means to achieve the

objectives. Traditionally, structural optimum design is to minimize the initial

construction cost under the constraints of structural safety. But, the optimum

design of aseismic structures is not only to minimize the initial construction cost

but also the failure loss of the structure damaged by earthquakes. For this purpose

an optimization formulation of aseismic structures was presented in Ref. 3, based on

the double objectives (initial construction cost and expected failure loss) and

reliability constraints.

Since a structure under strong earthquakes will undergo inelastic deformation

and dissipates hysteretic energy, earthquake ground motion is a random process, and

the safety criterion of structure has some fuzziness, all these properties should be

considered in the optimum design of aseismic structures and are therefore discussed

in this paper.

STRUCTURAL MODEL AND MOTION EQUATION

For a SDOF steel structure shown in Fig. i, the motion equation can be expressed

as

mX + c X + f (X,X) = -mA(t) (i)
O S

in which the earthquake ground motion is simulated as a Gauss stationary filtered

non-white noise with zero mean and power spectrum

i+4_; ___2_2 S
= o (2)

SA(_) 4C; _2_ _ w2-- + (I-_-_)2 I+ --
w_ g _2 h
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where_g and _n are respectively the damping ratio and predominant frequency of site

soil, m h = 8w Pad/s is a parameter of bedrock spectrum, and S^ is the spectral ,

factor corresponding to seismic intensity degree, fs(X,X) i_ the restoring force
of a structure and can be expressed by a bilinear model shown in Fig. 2, in which k

is the primary elastic stiffness, _ is the second stiffness coefficient and f is

the yielding shear force. They are respectively obtained by the elastic and _lastic

analysis of structure as

4M
24EI = _./

k = H_ , fy H (3)

for the section shown in Fig. 3,

_s - I

., (4)

a=l V_ I"_ i a _i
_S + (2 + _S) 1 - _S ) ,sZ----_

in which E = elastic modulus; I = moment of inertia of the cross section; and _s =
M /M is the shape factor, M (c Z ) and M (u Z ) are respectively _heYyielding and

p_as[ic moments; a is the _iel_i_g stresS; { Pand Z_ are respectively the elastic

and plastic sectionYmoduli. The symbols H, h a_d 6 ar_ given in Figs. 1 and 3.

RANDOM DEFORMATION AND HYSTERETIC ENERGY DISSIPATION

By means of the stochastic linearization technique, Eq. (i) can be written as

following equivalent linear equation.

mX + c X + k X = -mA(t) (5)
e e

in which c and k are respectively equivalent linear damping and stiffness, and c
_ e e.

co + Cef. By uslng the energy balance technique of equivalent linearization and e

my assumlng the displacement response X(t) with random amplitude r, Cef and k e can
be respectively obtained by (6)

-- mm -

Uef = IO Cef(r)p(r)dr' ke = Io ke(r)p(r)dr (6)

in which

_ F 4-(l-a)

Cef(r) _0 _er2(r-xy)xY k

(r>x)
Y

(r _<xy)

[_ cOs-I(1- r-_ ) + _ - _,r- (r-2xy)_y(r-Xy)] (r > Xy)

ke(r) = (8)

- (r _<xy)

(7)

r r 2
p(r) o": _ exp (- 2_ ) {9)

x X

2 2
where x is the yielding displacement of structure, _ = o./o , o and o. are the

• e x x - . x .
station_ry variances of the displacement and veloclty responses. XBy Introduclng the

state vector Z = IX, u, X, 6, w], the covariance matrix _ = [Z(t)zT(t)] can be

obtained by the following algebraic matrix equation
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(I0)

in which

B

0 0 -i

0 0 0

k c

_2e __2 _£e
m g m

0 .,2 0
g

0 0 0

0

-i

0

-2_g_g 0

2Cg_g _h

o

• 2_S o

where 04 and 04 are respectively 4th order matrix and vector.

The correlation function matrix R(_) can be obtained by

_(_) : _$T(_) (Ii)

in which _T(_) is the transfer matrix of state vector Z(t). Let X = max X(t) be
m 0<t<T

the structure's maximum displacement, in which T is the duration of earthquake, the

mean and variance of X can be respectively obtained by
m

0.5772 (12)
E[Xm] = (_£n(Uo T) +_)c x

c 2 = _2 02 v = __e (13)

x m 12£n(9oT) x" o _ "

Let _(t) be the hysteretic energy dissipated of a structure during the

earthquake, its mean and variance can be respectively obtained by

E[e(T)] = CefC x T

vE CT J:4c fSoTIT- )R .( )d 

in which R2.(_) is the correlation function of the velocity response X(t).
x

DYNAMICAL RELIABILITY BASED ON FUZZY GRADED DAMAGES

(14)

(15)

Damage Index - Taking the influence of both the deformation and the hysteretic

energy dissipated on the damage of a structure, a damage index of the hysteretic

steel structure can be defined as

Xm B
D = (q_) + (_/I)_ (16)C

U U

in which X and e(T) are respectively the maximum displacement and hysteretic energy

dissipatedmof a structure during the earthquake, x and E are respectively the
u . u

ultimate displacement and ultimate hysteretic energy dlsslpated of a structure, 8_i,

a factor determined by experiments.
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lastlc analysls and conslderlng the buckling of column, we can obtain the

ultlmate dlsplacement as follows

<f)fu/k (fu - y (17)

=\ - )/ek (f >Xu xy + (fu fy u fy)

in which f = 4M /H, M is the ultimate moment which is given in Eq. 18 with the

axial forc_ effect, u

Mu = < Mp N

1.18(I - _-)Mp
Y

where N is the axial load, N
Y

(0 < N < 0.15N ,)

<N < N )
(0.15Ny _

(18)

= OyA, A is the cross-sectional area.

By using the low cycle fatigue experimental results of steel structures (5), the

ultimate hysteretic energy dissipation can be expressed as

£u = 2(l-e)E[_]fyXy(2Nf) (19)

in which E[_] is the plastic ductility and Nf is the number of full cycles, they are

respectively obtained by

EIXm] - x
E[_] : Y (20)

x
Y

= (E___I)- i/0.6 (21)
2Nf

is t_e ultimate plastic ductility, i.e.
where Hu

X - X

u y (22)
_u x

Y

Fuzzy Damage Grades - The damage of a structure under earthquake is often

divided into the following five fuzzy grades:

[B I, B 2, B_, B_, Bs] = [Slight, Minor, Moderate, Severe, Collapsed] (23)

Obviously, all these grades possess strong fuzziness in their definition. If the

damage index D c is taken to express above grades, then _i (i = i, 2 ..... 5) should

be a fuzzy subset on the value region of D c and has the membership function as shown

in Fig. 4.

Let B__ represent the fuzzy state region in which ~Bi or more severe damage will

not occur for the structure, its membership curve should have the form as shown in

Fig. 5 and may be expressed by

d-di_ I

_B.(d) = [I - sin(
-l di-di-I

(d _< di_ I)

I)_] (d i l<d < di) (24)2 - -

(d > d.)

in which d. (i = i, 2 ..... 5) are the parameters of fuzzy damage grades and their

values arelshown in Table 1.(2)
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D_gamical Reliability and Failure Probability - Based on the fuzzy graded damage

and fuzzy safe region shown in Table i, the dynamical reliability that the structure

will not suffer B. or more severe damage can be obtained by
-i

d,

l

Ps(B*i ) = IO fD (d)_s*(a)da
C -i

(25)

in which fD (d) is the probability density function of the damage index D c and

assumed as The extreme value distribution I, i.e.

1 d__ ] exp [-exp( d-_a )]fD (d) = _exp[-
c

in which

(26)

= o D /1.2826, 8 = <Dc> - 0.5772_ (27)
c

where <Dc > and OD2 are respectively the mean and variance of Dc and approximately
c

obtained as

EIXml,B (E[£(T)])_
<Dc> = (-_'--; + e (28)

u u

o 2
x o 2

2 = ( m.g _ (29)OD _._.) + ( )8
c u u

Obviously, the failure probability that the structure will suffer B. or more severe
-1

damage is

 f(q) - PsCB;.) (30)

Then, the failure probability the structure will suffer only B i graded damage is

(Bi+I) (31)

in which i = i, 2 ..... 5, and Pf(B E) = 0

LOSS ASSESSMENT

Basic Principles of Loss Assessment - According to the definition of damage

grades, we can put forward some basic principles to the loss assessment of

structures.

The loss to the slight or minor damage includes only structural repair cost.

The loss to the moderate damage includes structural repair and replacement cost.

The loss to the severe damage includes additional replacement cost; the loss

also includes property damage but excludes the loss of expensive equipments.

However, the liability less due to minor or serious injuries of the people and loss

due to business interruption are included.
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The loss to the collapsed damage includes additional replacement cost, the loss

of all equipment, liabilities due to death or serious injuries of the people and

loss due to business interruption.

According to the economic condition in China, all losses mentioned above are

estimated based on the following assumption: The losses of structural repair

corresponding to the slight and minor damage are respectively assumed to be 15% and

35% of the initial construction cost. The loss of structural repair and replacement

corresponding to the moderate damage is assumed as 85% of the initial construction

cost. The additional replacement cost is about twice the initial construction cost.

The loss due to property damage, excluding the loss of expensive equipment, is taken

as 25% of all equipment cost. Loss due to death is calculated based on an average

death age of 30 and is the sum of the person's salary until he reaches the

retirement age of 60 years. Thus, this loss is 30 times the average annual net

income (approximately 2,000 Chinese Yuns). The loss due to serious injury is

assumed to be 30,000 Yuns per person. The loss due to minor injury is 2,000 Yuns

per person. Business interruption is estimated as the net income of structural

service during a reconstruction period. The loss due to legal service may be

assumed to be 15% of the total failure loss.

Based on the principles mentioned above, let Lf(Bi) be the loss corresponding to

the damage grade B. (i = I, 2 ..... 5), we have

Lf(BI) : 0.15 C I, Lf(B2) = 0.35 C I, Lf(B_) = 0.85 C I

_ + 2000N + 30000 + R C )Lf(B_) = 1.15 (2C I + 0.25C e m Ns4 p s

_ + 30000 + 60000N d +Lf(Bs) = 1.15 (2C I + C e Ns5 RpC s)

(32)

which C I is the initial construction cost, C is the cost of all equipment, C is
_e net income of structural service per year, _ is the reconstruction period s

(years) of the structure, N m and N= are respectively the number of minor injury and

death of people, N . and N . are t_e number of serious injury people respectively
4 SD

corresponding to t_e damage grades B_ and B_. According to the statistical results

of the injury and death of people due to earthquake in China, we approximately take

= 0.05 Np, N d = 0.15 N _ (33)Nm p

JNs4 = 0.02 Np, Ns5 0.35 Np

in which N is the mean number of the people in the building.
P

Expected failure loss - By using the results of failure probability Pf(Bi ) and

estimated 10ss Lf(Bi) (i = I, 2 ..... 5), we can obtain the expected failure loss of

the structure

5

Cf = Z Lf(Bi)Pf(Bi) (34)

i:l OPTIMIZATION FORMULATION

By taking the sum of initial construction cost and expected failure loss as the

objective function of structural design and considering the reliability constraints

of structure, the optimum design of structure can be formulated as (3)
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Find I 1
Min CT = CI + Cf

s.t. Z

(35)

in which I is the cross sectional moment of inertia, C_ is the initial construction

cost• Cf is the expected failure loss, Ps(B_) is the r_liability that the structure

will not suffer B. or more severe damage, P*. is the lowest allowable reliability,
-i Sl

and the index i in the constraint equation that signifies the relationship with the

allowable damage extent of the structure under earthquake.

NUMERICAL EXAMPLE

The SDOF steel structure shown in Fig. 1 is designed based on the following

seismic input: earthquake with intensity degree of 8, S = 63.98 cm2/s _, T = 7.0 s,
o

__ = 0.72, and _ = 20.94 rad/s. Using structural properties given in Table 2, and

t_e column's cro_s-section shown in Fig. 3, the cross sectional area• elastic and

plastic section moduli have the following relationships:

A = 0.8I 0"5 Z = 0.78 I 0"75 Z = I 0"75
Y P

For the structural losses assumed in Table 3, and the initial construction cost

is taken as

C I = i000 Cg

in which C is the cost of structural steel, then, based on the optimization

formulation in Eq. 35 and by taking 8 = 1.0, i = 4, P_, = 0.9950, we can obtain the

relationship curve between the objective function C_ _d the cross sectional moment

of inertia I, which is shown in Fig. 6. The numeri6al results are given in Table 4.

The optimum design results are I" = 8400 cm _ and C_ = 428300 Yuns.

CONCLUSION

This paper presents the fuzzy damage grades described by the damage index. It

also presents the basic principles for the structural loss assessment corresponding

to the grades based on the economical condition in China, for which the loss

functions to the damage grades are given. An optimization formulation and a

numerical example of the nonlinear aseismic steel structure are shown on the basis

of double objectives (initial construction cost and expected failure loss) and

dynamical reliability constraints.
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TABLE i. PAR]tMETERS OF FUZZY DAMAGE GRADES

d I d 2 d 3 d4 d 5

0.i0 0.25 0.45 0.65 0.90 .]

TABLE 2. PARAMETERS OF STRUCTURE

m

(kg s:/cm)

65

C

(k@°s/cm)

I00

H

(cm)

400 2x10 _ 2400

TABLE 3. PARAMETERS OF LOSS ASSESSMENT

C C R

(milleon Yun) (million Yun) (yeCar)

0.I0 0.20 1

N
m

(person)

5O

Ns 4 ,
person)

20

Ns 5 .
person)

350

N
S

(person)

150

TABLE 4. RELATIONSHIP BETWEEN THE SECTION AND THE COST

Section I

Cost

C

(million Yun)

C

(mi{lion Yun)

C

(miTlion Yun)

[
I

8000 8200

(cm_) (cm_)
8400

(cm')
8600

(cm')

8800

(cm')

9000

(cm_)

0.2824 0.2859 0.2894 0.2928 0.2962 0.2995

0.1465 0.1426 0.1389 0.1358 0.1328 0.1302

0.4289 0.4285 0.4283 0.4286 0.4290 ! 0.4297

m

]
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Fig. 2. Restoring force model Fig. 3. Cross section
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ABSTRACT'
i

This paper first presents a brief review on the application of optimization
and active control of seismic structures along with some of the author's recent
work. It then assesses the practicality and future development of seismic

structural optimization, and some practical problems associated with active
control.

REVIEW OF SOME APPLICATIONS

Since the author has reviewed the subject in 1983 (6) and 1985 (12), this

article is intended to highlight some recent results and includes only pertinent

publications after the year 1980. Generally, the literature review can be

divided into the following categories: 1) nature of structures, such as

frameworks, buildings, and bridges; 2) construction materials, such as steel,
reinforced concrete, and mixed steel and concrete; 3) objective functions of

minimum weight or cost; 4) optimization methods; 5) deterministic or
nondeterministic in response and resistance; and 6) optimum control.
Apparently, the above categories are quite nebulous and they overlap, and
optimum control could be in an independent category.

Most structures that are optimized are frameworks (1, 2, 4, 5, 11, 13), only
a few are building systems (8, 10, 38), and bridges (42). Major research work
is for steel structures, a few are for reinforced concrete (1, 2, 21, 26), and

very few are for mixed steel and reinforced concrete construction (3, 45).
References 9, 15, 25 are based on minimum cost; the others are based on minimum
weight or other types of objective functions. Most of the results were obtained
by using conventional mathematical programming. A few were based on analytical
procedures and iteration schemes. However, References 4, 7, 14, 16, 22, 40 were
based on the modern optimization techniques currently in vogue. Other notable
works related to optimization are: based-isoiation (28, 30, 31), friction-joint
(36), mode- and active-control (19, 20, 34, 35, 41, 43, 44), and fuzzy
applications. (27, 29)

This presentation is summarized in the following classifications as i)
deterministic structures, 2) nondeterministic structures, 3) active control, and

4) structural optimization with active control.

Deterministic structures - A number of publications are dealing with deter-

ministic systems for mathematical models or parameter investigations, or both.

Refs. 9, 13, 38 are not only the mathematical developments, but also have
associated computer programs for both parameter studies and practical structural

design of 2-D and 3-D structural systems. The 2-D structures are formulated on
the basis of the displacement method and the consistent mass model with the
second-order P-a effect. The structural systems are trusses, and unbraced and

braced frames of single-, double-, k =, and eccentric-bracings. The dynamic
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forces may be 1) seismic excitations at the base with either one horizontal or
one horizontal and one vertical earthquake motion, and 2) dynamic forces or wind '_i_!

forces at the structural nodes. The earthquake motions include 1) the actual _;_
earthquake records, 2) various response spectra, 3) building code provisions in 4
the U.S. and abroad with and without soil-structure interaction. The structural

members are either built-up sections or hot-rolled wide flange sections. The
objective functions can be the minimum weight or minimum cost of a structural
system. For 3-D structures, the structural elements are steel and reinforced
concrete members. Seismic input includes response spectra and code provisions.
The response spectra are developed for multicomponent excitations. The
provisions include the equivalent lateral force technique and the modal analysis
procedure. For both 2-D and 3-D structural optimization, various static loading
conditions are included.

Nondeterministic structures - Several references (7, 15, 18, 26, 33, 41, 42)
are related to nondeterministic structures. UMR's work was emphasized on the
optimality criteria developments, formulation of structural response and
resistance, and parameter studies (7, 15, 24). Three types of seismic loading
models were employed in the study: UBC codified forces, Newmark's
nondeterministic seismic response spectra for both horizontal and vertical
ground motions, and Gaussian random process with a constant or varied seismic
spectra. Four live loading models were also used in the study: ANSI (American
National Standard Institute), NBS (National Bureau of Standards), UK (United
Kingdom), and UNREDUCED (actual) models.

The cost objective function has initial construction cost (C T), future

failure cost (I T ), and system probability of failure (Pf_. The tStal cost is
expressed as

= C[ + Lf PfT (I)

for which the reliabilityis based on normal and lo_omal distribution with two
different 1st and 2nd variance approaches.

Active control - Notable review on active control has been reported by Soong
(39) from which one may find various theoretical and experimental studies of the
control system. UMR's work has dealt with the issue of whether the placement of
actuators at certain location of a structure more advantageous than for those at
other location (37). The term optimal actuators placement reflects upon the
reduction of the structure's response while using the minimum control effort.
The UMR studies include the minimization of a control energy performance index;
minimization of response performance index; and maximizing a controllability
performance index. The three methods are compared and simulation studies are
carried out using various earthquake records. The results are useful and
practical.

UMR's studies also dealt with another issue; that is in application of
structural control, it may be necessary to limit not only the magnitude of the
control force, but also the control force time-rate at which we demand the
control force to be supplied (20, 25). This is especially important when large
magnitudes of control forces are required. Two optimal control algorithms were
developed. The first algorithm is an extension of the traditional quadratic
performance index to include a control derivative term. The second algorithm,
in addition to introducing a control derivative term in the quadratic
performance index, imposes a constraint on the upper bound of the control rate.

The results show that the control rate can be prespecified and practically
necessary.
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Structural optimization with active control - Structural optimization allows
one to design and construct a structure to satisfy an economical and serviceable
objective. The application of active control is used as additional redundancy
to minimize the deformation of structure for safety and serviceability; the

structure itself, however, is designed based on conventional trial and error
procedures but not the optimum. It is therefore UMR's work has combined
structural optimization with control (20, 23). The advantages of the combination
approach are that it can have all the strong points of both structural
optimization and optimal control. The studies dealt with the optimal design of
building structures equipped with active control systems of mass damper, tendon,
and a combination of both. The structural optimization is formulated as a
constrained minimization problem for which the design variables are the floor
stiffnesses of the building and certain control parameters. The constraints
include floor drifts, floor displacements, control forces, and natural

frequencies. A control energy performance index is also minimized to find
optimal weighting matrices that yield the least optimal control forces
satisfying the constraints.

CONCLUDING REMARKS ON ASSESSMENT OF PRACTICALITY AND PROBLEMS

Structural optimization is a scientific approach which is remarkably
different from the conventional design that is based on trial and error

procedures. Structural optimization has been in practical use in many
engineering disciplines. For seismic structures, a great deal of research
results and a few large capacity computer programs are available for practical
use in engineering practice. However, much more research work is still needed
in developing more efficient algorithms for multiple objective functions and
multiple damage levels associated with low-, median-, and severe earthquakes for
both deterministic and nondeterministic systems.

Although the application of active control in civil engineering has been
investigated in the past two decades and the recent research results show that

the system is very promising in preventing structural damages, the practical use
of the control in real engineering construction has some problems which are
worthwhile to be noted. They are 1) back-up energy supplies to ensure the

control system remains to be operational during the earthquakes; 2) discrepancy
between the mathematical structural model and the actual structures such as how

to include structural members' inelasticbehavior or failure into the feedback

system; 3) the effect of multicomponent seismic input on structural response
because the earthquake motion has six components of three linear, one torsional,

and two rocking motions; and 4) the effect of soil-structure interaction. Some
of the aforementioned problems are currently being studied by various

researchers, including the author. A great deal of research efforts must be
carried through national and international cooperation in algorithm

developments, laboratory tests, and full scale verifications before the system

can be practically implemented in engineering practice.
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Abstract

The JPL Control/Structure Interaction Program is developing new analytical methods for designing micro-precision

spacecraft with cona'olled structures. One of these, the Conceptual Design Tool, will illustrate innovative new
approaches to the integration of multi-disciplinary analysis and design methods. The Tool will he used to demonstrate
homogeneity of presentation, uniform data representation across analytical methods and integrated systems modeling.
The Tool differs from current "integrated systems" that support design teams most notably in its support for the new CSI

multi-disciplinary engineer.

The Design Tool will utilize a 3-dimensional solid model of the spacecraft-under-design as the central data organi-
zation metaphor. Various analytical methods, such as finite element structural analysis, control system analysis and
mechanical configuration layout, will store and retrieve data from a hierarchical, object oriented data structure that sup-
ports assemblies of components with associated data and algorithms. In addition to managing numerical model data, the
Tool will assist the designer in organizing, stating and tracking system requirements.

The Design Team

A team oriented model underlies the CSI design process and a brief description will be presented by way of intro-
duction to provide a working model of the Tool's "user community." The principal objective of the design team is to
find a design that solves a given problem in some optimal sense. Before candidate designs can be generated, the prob-
lem to be solved must be determined and all appropriate constraints identified. The design space, or those solutions that

might be considered, must be searched and the performance of feasible designs evaluated. The team may find it has
been given several problems to solve or that certain aspects are vague and ill-defined.

Project leadership is frequendy split between a program manager and a technical manager, where the technical
manager leadsg the design team with the help of a systems engineer. The team works on behalf of stakeholders such as
sponsors and benefactors. The problem statement comes, in some form or other, from the stakeholders. The team ana-
lyses possibilities, presents aitematives with descriptive data to a "decision maker", and returns to work with the decision
and additional data to refine the solution.

The life cycle of a system spans stages such as design, production, operations/maintenance, modification and retire-
ment. While theanalyticalelementsofthe designenvironmentcouldwellbe used intheinvestigationof anomoliesdur-

ing the operationsphase and certaindesignfeaturescouldbe used inthe modificationof a mature system,thepresent
discussionisaimed atthe initialdesignphase. Here,theclean-slatenatureof theearlydesigneffortsprobablyrequires

significandydifferentdesignersupport functionsthan the modificationand maintenancephases where the system

configurationistightlyconstrainedand thehistoryof thesystemprovidesconsiderableinertiatochange.

Even withinthe designphase,variousrequirementscan be identified.During conceptualdesign,the team will

have only a few members and possiblybejusta singlesystemdesigner.The objectiveistocapturetheintentionsof the

end user,turntheseintorequirementsand generateone or more candidatedesigns.Use of analyticalmethods isminimal

sincetheconfigurationand component parametersmay be poorlyknown and thedesignprocesssupportmight be mosdy

visualpresentationof theconfigurations.Simple representativemodels and compilationsof broaddesignrulesmight be

used toquantifyperformance.At theend of thisphaseof design,reasonablecandidateshave been identifiedand major
advantagesand shortcomingsof each described.User requirementshave been negotiatedwith anticipationof "what is

possible"havingbeen tradedagainst"what isnecessary."

In the next stagewhich culminatesin a reviewof thepreliminarydesign,theconfigurationof the leadingcandi-

datesareoptimizedand the uncertaintiesassociatedwith criticalelementsareevaluatedinsome depth.More analysisis

possibleas fullfeaturedsystem levelmodels can be builtand quantitativepreformancemeasurescan be evaluated.By
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the end of this phase, a single candidate system has been identified and analyzed with little risk remaining in most
requirement versus performance areas. The system design team has grown significantly to as many as ten members and
representatives of the major subsystem elements have received their initial requirements.

In the remaining period prior to full scale production, detailed analyses of subsystems and components are per-
formed to evaluatethe remainingriskelements and to preparefabricationand assembly details.Since the system

configurationisquitestable,high fidelitymodeling can be employed to evaluatethe exactconsequencesof subsystem

interactionsand toprepareguidelinesforsystemleveltesting.

Advances in the development of designenvironmentsfor the prelimarydesignphase willcome primarilyin the

integrationof individualtechnologyanalysestosupportsystemlevelanalysisand allowefficienttradestudiesatthe sys-

tem level.Stateof the artdisciplinemethods aregenerallynot requiredand model interfacing,data passing,and infor-

mation management are thekey issues.Supportfor themulti-disciplinarydesignteam members requiresformulationof

formerlydisparatedisciplinemethods ina common symbology,terminologyand analyticalpresentation.Itisnot until
thelaterdetailedanalysisand verificationstagesthatin-depthanalysisby technicalspecialistswillbe required.

On the otherhand,considerabledevelopmentof new technologiesisrequiredto supportthe designteam during

conceptualdesign. Rapid preparationof realisticdepictionsof the system are requiredto supportconfigurationlayout

and evaluation.Knowledge basescontainingas yetunidentifieddesignrulesmust be integratedand made availableasa

consultationserviceon requestor an oversightfunctionwithnotificationon exception.Surrogatesubsystemmodels must

be cataloguedand availablefortrialand evaluation.The datamanager must maintainseveralcandidatesystemconcepts

completewith models,analysisresults,and notes.Historyand audittrailswilleventuallybe required.Finally,a smooth

transitionto thepreliminarydesignphasemust be supportedby translationand extrapolationof models,selectionofcan-
dictatestobe carriedforward,and selectiveimprovement inmodel fidelityand systemdetail.

Additionaldevelopment isrequiredinthe areaof requirementscapturing,quantifcadonand tracking.The design

team must interpretuserneeds and generatea database of system requirementsand derivedrequirements.These must

be availablelaterfor comparisonto analyticallypredictedsystem performanceand for reconciliationof discrepancies.

Traceability is very important and some capability beyond simple text documents must be provided.

The Nature of Problem Solving and Synthesis

The construction and application of models can serve two different purposes and the design tool should support
both.[l] The traditional use of models is to analyze the performance of a system, typically for the purpose of making a
decision about its adequacy or acceptibility. The design tool must at least accomplish this, but with a new capability to
analyze multi-disciplinary systems in a team context. The usefulness of a given model or analytical method depends on
its accuracy versus its cost. More to the point, in a system design context, the merit of a tool lies in the ability of the
team to control the accuracy versus cost trade in order to invest in increased accuracy when required and to avoid
unnecessary charges when more approximate results are appropriate.

The second purpose of modeling is to achieve an improved understanding of complex systems as might be required
early in the design process when subsystems are being synthesized into system concepts. The tool must provide a more
exploratory and investigative style where interaction and quick response are important. In this context relatively little
might be known about the system and the designer may be working more to establish a well posed problem. "The pur-
pose of the model lies in the act of its construction and exploration and in the resultant, improved intuition about the
system's behavior, essential aspects, and sensitivities."[1]

A general tool must support various world views and approaches to problem solving. No single model of the syn-
thesis methods employed by designers exists and several different approaches can be discerned with little trouble. While
a completely general enviomment might be desirable, it is probably impractical. Consider the fundamental differences
between declarative languages such as Prolog and procedural languages such as Fortran. Therefore, an understanding of

the major elements in approaches to design can indicate which functions should be implemented and made available for
trial and proof testing.

An Analysis of Design Tasks

The activities accomplished by a designer span a broad range in terms of level of abstraction and technical
knowledge. By understanding the tasks, attitudes and activities of the designer, the feature set of the design tool might
be chosen to include a rich set of supporting functions. It remains to be seen how automation will change the way

designers work and what changes this will bring to the evolution of such design tools.
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Tasks can be describedby the levelof abstractionrequiredto comprehend thebreadthof thetaskand the under-

standingof the actionsinvolved.t2]For example, the firstthreelevelsrepresentwork thatinvolvesrelativelyconcrete

typesof thinking."Perceptual-motorconcrete"isa mode of work thatinvolvesdirectperceptualcontactwiththe physical

output.The secondlevel,"imaginalconcrete,"requiresthe use of imaginationinconstructinga project,but dealswith

projectsfor which the finaloutputcan be visualizedin concreteterms. The thirdlevelis"imaginalscanning"which

involvestaskswhere itisimpossibleto comprehend an entireareaof responsibilityatonce,althoughthe whole can still

be mentallyscanned,one pieceata time.

There isa significantchange inthe levelof abstract/onbetween levelsthreeand foursincethereisa change from

theconcreteto theabstractmode of thoughtand work. "At levelfour,neitherthe outputnor theprojectcan be foreseen

inconcreteterms,even by imaginalscanning.The projectcannotbe completelyconstructed.Itremainsa combination

of a consciencesubjectivepicture,incompletein itself,whose specifictotalform and contentare unconsciouslyintui-
tivelysensedbut cannotquitebe consciouslygrasped."[2]The fifthlevelisbased upon the intuitivetheoriesthe indivi-

dualhas developedfrom hisexperience.Itseems thattheartsuppliedby seniorspacecraftdesignersinvolvesoperations
at these higher levels.

Six activities can be identified within the design task that might be impacted by the design tool. Many of these

tasks are currently accomplished mentally, particularly in the earlier design phases, and cannot be easily shared or
transferred. A goal of this tool development is to facilitate both the shared construction of the design and the depiction
of the design so that it might be transferred.

Table I.Complexityof Design Activities

Activity Level ofAbstraction Task Examples

RequirementsAnalysis low

imaginalconcrete

ConfigurationSynthesis intuitive

imaginalscanning
Model Building concrete

imaginal

Analysis imaginalscanning
concrete

DecisionMaking highestintuitive

Reporting moderate

high

data gathering and fact finding
synthesis of requirements
choosing among alternatives
assembly of system configuration
preparation of model data
planninganalyses
assimilatingsystem performance
executinganalysis programs
choosing"best"alternatives

preparingadvocacy strategies

buildingdocumentation

respondingtocriticism

An alternativeview considersthe preferencespeoplehave forassimilatingdataand making decisions.For exam-

ple,approximately75% of the generalpopulationprefertostudydatainquantitybeforeidentifyingstructureand draw-

ingconclusionsor making predictious.[3]Such peoplecollectdataand view theproblem from many sidesbeforefinding

an understandingof thestructureand natureof theunderlyingphenomina. Othersgeneralizemore readily,hypothesizing
structureand lookingforlargescaletrends.Furtherdataisthencollectedtosee iftheysupportthegeneralizations.

Although largeamounts ofdataexiststodescribetheseand otherpsychologicalpreferencesinthegeneralpopula-
tion,no data has been collectedon the specialsubsetmade of spacecraftdesignersand designteam members. To the

contrary,itiseasytofindexamples ofthediversequalitiesand habitsexhibitedintheaerospacedesigncommunity.

A few general requirements might be proposed based upon these considerations. Beyond support for interactive
multi-disciplinary analysis, various forms of data handling, analysis and viewing will be needed. For example, data col-
lection and querie systems will be needed to support those who find structure in data. Testing of ideas and possibilities
will be required for those who generalize and then verify against the data. Various levels of data aggregation will be
required as questions move from the concrete of element and component analysis to the general questions of overall
spacecraft success.

The Design Tool

A few central themes are embedded in the implementation of the Design Tool that differentiate it from existing
tools. These lie in the unified formulation of the analytical methods and the structure of the computer program itself.
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The following sections describe the visual presentation of the tool, management of internal data, information analysis
features, and the modeling methods for structural dynamics, controls, optics, and thermal analysis.

Visual Presentation

The multi-faceted nature of system design and the "fire fighting" character of system level trade studies suggest the
design team can best be supported by environments that provide multiple, parallel access paths to the design tool ele-
ments. For example, model building and analysis should be supported with simultaneous access to a documentation and
note taking facility. Workstation computer systems with windowed presentation managers provide this capability by
allowing the user to activate any tool method in a window and directing his attention or focus to the needed window.
The manipulation of the data base by the underlying tools must be coordinated in a consistent, non-disruptive manner.

A principal tenet of the present effort is that a realistic depiction of the system be available at all times. A 3-D
solids model of the system is to be shown in a window which has controls for rotating and otherwise manipulating the
presentation. Results of analysis, trades and configuration changes are to be fed back visually through interactive altera-
tion of the solid model. Selection of components, element groups, and system features should be available by pointing
into the 3-D display and the selections made available as inputs to other tools in the environment.

Analytical Methods

Traditional discipline methods for modeling and analysis can readily be employed in system design if care is taken
to cast them into a common framework so that efficient integration can be accomplished. In general, system level ana-

lyses do not require in-depth analysis or non-linear methods and models are frequently large collections of simple ele-
ments. This necessitates efficient data storage and careful attention to implementation of numerical algorithms but such
developments have largely been made within each discipline.

Spacecraft design requires several analytical methods, most notably structural dynamics and controls. Certain
spacecraft require other methods in addition, such as optics for space interferometers or large space telescopes. A com-
mon formulation and notation is required to simplify usage by the multi-disciplinary design team and is readily achiev-

able for most constituent methods. The following briefly summarizes several examples.

Structural dynamics am well captured by finite element methods and most spacecraft systems require only simple
3-D truss and frame analysis. The geometry is defined by nodes which are points in 3-space that might have up to three
translation and three rotational degrees of freedom. The structural members are described by connectivity lists of nodes
and a property list containing parameters such as thickness and material properties. The structural dynamics equations
can be stated shnply in terms of the system matrices and nodal degrees of freedom as follows.

[MI* {d} + [D]* {d} + [K]* {d} = {F}

The vector of forces, {F }, might include external forces acting on the system such as disturbances, vibrations of on-
board equipment, gravity, and forces caused by a control system.

Most methods for the modeling of controlled structures are based upon a description of the system to be controlled
(known as the plant) which utilizes first order ordinary differential equations. The degrees of freedom of the plant are
collected in a state vector, {x }, and the forces provided by the controller are in {u } so that

{._} = [A]* {x} + [B]* {u}

In certain situations, the states themselves may be directly measured, but as is common in controlled structures, the
sensed variables {y} are not the states but are related to the states by

{y}= [Cl*{x}

The control law will be implemented in a controller that coexists with the structure, taking measurements {y } and
computing commands {u }. Typical linear control laws compute controller commands based upon constant gains via

{- } = -[G 1" {y }

When the plant is modeled by finite elements, the stractm'al dynam/c equations can be cast into the first order form
used in control analysis by identifying the structural displacements and velocities as the states of the plant. If, instead" a
modal model reduction has been applied, the states are the modal amplitudes and velocities. Let {x } = [d d Ir. Then

the structural dynamics equations become
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(._}= 01K M_l Ix}+ _ *[B]*{u}+ -I {F}

With theapplicationofthe linearcontrollaw,theclosedloopequationsbecome

'
Other observations that describe the system performance might be constructed from the states by

{z} = [C]* {x}

These might include optical beam positions, motions of mirror attachment points, or even the spacecraft line of sight.
Optical elements can be used to describe the n'_nsfer of light paths through the spacecraft and the image perturbations
that result from spacecraft dynamic excitation.

Optical elements are described by the coordinates of the intersection point of the nominal ray and a list of optical
parameters such as principal axis direction, focal length and eccentricity. The input ray describes the deviations in terms
of an input offset d_, an input orientation i, and a path length differential alL/. The departing ray is described by the
offset do, direction r, and path length differential dL o. With these degrees of freedom, the element transformation

"_o _o

dr dr

ddL ddL

; It, l=

matrix[t.] is

0

0

I

The components of this transformation matrix ate based upon the physics of beam reflection from a general reflective
surface.[4] In general, all degrees of freedom between element 0 which might be an input and element n which might be
an output, can eliminated by the compaction

°
The resulting matrix It] provides the desired observation matrix [C'] that describes the perturbed state of the beam.J5]

Another discipline that can readily be included in the common formulation is thermal analysis of the spacecraft
structure. To describe distortions and misalignments caused by temperature changes in snuctural elements, thermally
induced strains can be considered to cause additional loads [F ] which deform the structure. To retain a simple, linear
analysis, dynamics properties and heat transfer properties must be considered to be independent of temperature, an
assumption that is reasonably valid for small temperature excursions. In this case, the degrees of freedom are nodal tem-
peratures T and the heat conduction equations are

[C] * {:t} + Ix] * {T} = {Q }

where [C] are heat capacities, [K] are conductivity coefficients and {Q } arc the extexnally imposed heat loads. With the
nodal temperatures,the thermal strucmrailoadscan be computed from

{F} = [o_]{r}

where a is the coefficient of thermal expansion, A is the element area, and E is the element modulus.[6]

Extensions to include radiative transport mechanisms, as is required for the direct calculation of the heat load {Q }
must be developed in light of the non-linear nature of the radiation effects.[7] When this problem is combined with the
structure heat conduction problem, the coupled problem is non-linear since the energies are proportional to T 4. Since
thisinvolvesthe absolutetemperature,one possibleapproximationistofactorT3 intothe heattransfercoefficientand

restrict the relative temperature variations to ranges that produce error comparable to other sources. Furthermore, the
calculation of the requited view factors involves extensive calculations in 3-D geometry and may not be cost effective in
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tradesinvolvingradicalchanges in system configuration.These llnearizafionsand approximationsare appropriatefor
preliminarydesignanalysesand have been used inthepast.

Data Analysis and Synthesis

The abilitytocollect,organizeand evaluatedataefficientlyiscriticaltothesynthesisofideasand theirevaluation.

For example, thestructuralperformanceof thecandidatespacecraftmust be cataloguedand evaluationssummarized suc-
cinctlyinorderto comprehend trendsversusdesignvariables,to capturephenomina relatedto resourceallocationand

expendituretradesbetween subsystemsand tocreateaudittrailssupportingchoicesand decisions.Analysisof meaning-

fulmodels in the necessarymiriadofcasescan generatedata inseveralforms and largevolumes. Not only must tradi-

tionaldatamanagement techniquesbe integratedintothe analyticalenvironmentbut implementationsof new juxtaposi-
tionsof technologiesmust be evaluated.

Analysisof data basesformed from regulartablesof case datacan be supportedwith structuredquery language
(SQL) investigationsof relationaldata bases.J8]A typicalareamight be to collectina tablethe maximum stressin

structuralmembers forvariouscasesand geometricdatasuch aselementlocationsinanothertable.Requestssuch as

willgenerate therequestedlists.

select

from
where
and

member#, maxslxess
stresstable, locations
rnaxs_ess > somelimit

isin rtboom (location)= TRUE

Use of such data basesrequiresthatanalysisdata be castinto,relationaltablesof "tuples",eg. {member#, case#,

maxstress}.Constructingsuch tablescan be difficultin system tradeswhen differingconfigurationslead to different

typesofsu'ucturalelementsor non-equivalentcases.A more generalizeddatastructureand inquiryprocessisrequiredto
supporttheinvestigationand exploratoryevaluationsthataccompany systemsynthesis.

Hierarchicaland objectorienteddata bases allow a generalknowledge data base to be constructedby tagging
objectswithpropertiesand relationships.For example,trusselementsmight have a structuresuch as

name trusselement
id number 1012
matl id 3
connectionA 22
connectionB 103

max.stress 1324.5

Then structural assemblies can be viewed as objects with properties, one of which is a list of elements.

name left boom

element list { .... 1012 .... }
instrumentlist {...}

InquiriessimilartotheSQL example can be answered by searchingtheobjectdatabase forobjectswith propertyvalues
thatsatisfytheconditionsintheclause.

The dataassociatedwith a designproblem can be storedina baseand viewed as requiredasa relationaldatabase

and queriedviaSQL or as an objectdata base and queriedbased upon descriptiveproperties.J8]This datacan alsobe

viewed inotherforms,such as logicor productionrulesand queriedin Prolog-likelanguages.The implementationof

such a versatiledata manipulationand analysisfacilitywould probablystoredata inan efficientinternalrepresentation
butprovideeach of theseveral(SQI.,object,rules....)views attheuser'sdiscretion.

Data Storage

While the most common data type in traditional spacecraft analysis is the numeric array, a more general structure
can facilitate tagging, tracking, documenting and auditing of analyses. For example, a mixed type record could store
case results:
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case name "vertical pitch maneuver"
conj_uration "pre-deployment"

pitchrate 32.5
case id 13

max_tress..list [ ........... }

A generalization of this is contained in the object oriented approach to data representation. While current object
oriented programming practice includes many features such as encapsulation, object specific methods, it may suffice to
simply support user defined mixed type records and methods to associate such records into hierarchical sets.

For spacecraft design, considerable attention to efficient handling of numeric data will be required. For the most
part, internal representations of arrays can be hidden from the user as can the type casting issues associated with mixed
mode arithmetic. Implementation of sparse arrays, possibly in several formats, is a necessity. Structural dynamics, heat
conduction, and certain control algorithms utilize sparsely populated arrays and prior experience in structural dynamics
suggest a large payoff here. Certain linear algebra routines and standard analysis practices destroy the sparse matrix pro-
petty but some work arounds are possible. For example, in control system design, eigen analysis typically results in the
calculation of all system eigenvectors. If standard practices of structural dynamics can be adapted, only a few eigenvec-
tots in the band of interest could be calculated, saving calculation time and storage.

Thus, the data manager must support efficient storage for named objects with a general structure. Functions for
creation, deletion and copying must be provided, as well as merging, partitioning and structured assembly. Arithmetic
operations must be supplied for the base numeric types and a facility for user defined operations on general types will be
required. Advanced systems must address archiving, backup, persistence across interrupted sessions and auditing.

Summary

The Design Tool will support spacecraft design teams with an integrated set of analytical tools, a versatile data
manager, full-time 3-D solid model views, and a multiple thread presentation manager. Tasks with a range of complex-
ity from data input to analysis to system synthesis are supported through a general data manager and query system. The
requirements for the Design Tool have been developed and an initial implementation begun although the completion of
the first prototype has been delayed due to funding limitations.
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INTRODUCTION

The author has developed several general purpose optimization programs over the past twenty years. The

earlierprograms were developedasresearchcodes and servedthatpurposereasonablywell.However, in

takingtheformalstepfrom researchtoindustrialapplicationprograms,severalimportantlessonshave bccn

learned.Among theseatetheimportanceofcleardocumentation,immediate usersupport,and consistent

maintenance. Most important,has been the issueof providingsoftwarethatgivesa good, or at least

acceptable,design at minimum computationalcost. Here, the basic issuesdeveloping optimization

softwarefor industrialapplicationsare outlinedand issuesof convergence rate,reliabilityand relative

minima are discussed.Considerablefeedback has bccn receivedfrom users,and new softwareisbeing

developed to respond toidentifiedneeds. The basiccapabilitiesof thissoftwareare outlined.A major

motivationforthedevelopmentofcommercial gradesoftwareiseaseofuseand flexibility,and theseissues

arediscussedwithreferencetogeneralmuhidisciplinaryapplications.Itisconcludedthatdesignproduc-

tivitycan be significantlyenhanced by themore widespreaduseofoptimizationasan everyday designtool.

The CONMIN program (I)was writtenin1972 asageneralpurposeoptimizationcode,and itisstillwidely

used. Thiscode isbasedon theMethod ofFeasibleDirectionsand was documented viaaNASA Technical

Memorandum. Itwas developedasaresearchprogram atNASA Ames Research Center.While numerous

enhancements were made over the years,therewas no formal maintenance or upgrade mechanism.

Conscquendy, theuserdoes not even know what versionof theprogram he may bc using.In 1984, the

ADS program (2) was released.This code was alsodeveloped in a researchenvironment under the

sponsorshipof NASA Langley Research Center. ADS containsnumerous Strategy,Optimizer and One-

dimensionalSearchoptionsfora totalofabout 100 differentoverallalgorithmspossible.A privateUser's

Group was createdtomaintainand enhance theprogram, and thisexisteduntil1988. ADS proved tobc a

very usefulacademic aid sincestudentscouldexperimentwith a wide varietyofmethods. However, this

generality,aswell as thefactthatmany of the algorithmscontainedin ADS areinefficientor otherwise

obsolete,made theprogram lessattractivetotheindustrialuserwho wishes tohave a simpleand reliable

interface.Thus, thewide rangeofcapabilitiesof ADS were, inmany ways, a detrimenttoefficientuse of

theprogram. Also,itwas supportedonly on a partdineconsultingbasis.

185



Recognizing the need for a simple interface with optimization, in 1976 the COPES/CONMIN driver

program was mated. This main program made it much simpler to interface the user's analysis program

with CONMIN, since he no longer had to provide a main program to create the optimization task in standard

form. The design variables, objective and constraint functions were identified via input data. Also, COPES

provided additional features for parametric studies and optimization using approximations. This last

feature allows the user to perform optimization based on experimental data. This code was developed as

a research program and was not formally documented until it was converted to work with ADS in 1984 (3).

In 1986, the DOT optimization program was released as a commercially supported general purpose code
(4). Development of this program was heavily influenced by experience gained with CONMIN and ADS.

Version 1 contained only one optimization algorithm, the Modified Method of Feasible Directions (5), and

was small enough to be used on a personal computer (this version was called Micro-DOT). DOT is written

in FORTRAN 77, and is more fommlly documented and supported. COPES was modified to become

COPES/DOT. Version 2 of DOT contains a second optimization algorithm, Sequential Linear Program-

ming. It is noteworthy that the algorithms contained in DOT are not considered to be "robust" by the

theoreticians in optimization, who today prefer the Sequential Quadratic Programming algorithm. How-

ever, these algorithms are used because they retain an acceptable level of efficiency and reliability over a

wide spectrum of applications. This is a key issue in development of software for widespread commercial

use, where we must choose between what is best in theory and what is best in practice.

Today, most optimization applications in industry are still in the research departments, where the users are

reasonably expert in the underlying theory. However, there has been a consistent (long overdue) trend to

move this technology from the research to the production environment. This is more pronounced in Asia,

where the distinction between research and applications engineers is not usually clear and there is a greater

interest in new technology which will improve product quality, even when that technology cannot be shown

in advatice to generate a short term profit.

Based on experience with this growing group of users, several key issues can be identified which are

important to the industry user. These issues (this is not a conclusive list, but is representative) can generally
be ranked as follows:

I. Immediate and competent response to t_hnical problems must be provided. This includes com-

petence in general engineering design, since a critical issue is often problem formulation techniques.

2,

3.

,

Ease of use by practitioners who have little or no background in optimization theory is essential.

The softwaremust reliablyachievea reasonabledesignimprovement. A preciseoptimum isrecog-

nizedas beingoflittlevaluesincethedesignwillchange anyway.

The softwaremust be efficientin terms of the number of analysesneeded to reach the optimum.

Gradientinformationwillalmostneverbe providedanalytically,butwillinsteadbe calculatedby finite

difference(thismust be availableaspartof theoptimizationsoftware).

5. Clearand concisedocumentationmust be available.
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6. Continual maintenance and enhancements must be assured.

7. Source code must be available(eventhough nobody readsorchanges it)

8. The software must be available at reasonable cost on a large variety of computers.

These issues arc much as would be expected, although their order may be subject to debate. Most

importantly, few users of optimization who are applying it to real design tasks have much interest in what

algorithm is contained in the program. They only care that it works! Also, while researchers worry about

relative minima, practitioners usually recognize this as a fact of life which exists whether or not optimiza-

tion is used. While they would like to have software that finds the absolute minimum, they quickly

understand the futility of this and are willing to run the optimization from several reasonable starting points

in search of the best solution. Finally, engineering design is a study in exceptions, rather than rules.

Optimization software must be flexible enough to accommodate this fact.

THE DOC PROGRAM

In response to input from the user community, as well as the fact that the COPES program was developed

as a research tool without a consistent format, a new interface program called DOC (Design Optimization

Control program) is being developed in order to enhance the usefulness of optimization. While DOC uses

the same philosophy as COPES, where the problem is defined via user input, the form of the input has

changed from a formatted type to a more readable mnemonics interface. DOC includes the capabilities of

general optimization, parametric studies and optimization using approximations, but is formally docu-

mented and supported. Also, new capabilities are included and others can more easily be added in the

future. Three key capabilities that have repeatedly been identified by the users as desirable arc multiobjec-

tive optimization, synthetic functions, and optimization with discrete variables. Because these topics are

still active research areas, there is little consensus as to which approach is best. Therefore, this decision is

based on experience with various methods and the necessary reliability of the final code.

Multiobiective Ovtimization

The usual comment made when first considering the use of optimization is that most design tasks are

represented by multiple objective functions. This may include weight and cost minimization, range and

performance maximization and a host of others. While it may be argued that this is a naive approach to

optimization, since such a problem statement will have no unique solution, it is nonetheless a real concern
which must be addressed.

Numerous methods have been proposed for multiobjective optimization, but the most acceptable appears

to be compromise programming (6), where the single objective presented to the optimizer is defined as;

JF= _w]j
k,i

where Rj is the jth objective function, R_ is the jth "target" objective value and R_v°rst is the worst known

value of the jth objective function. The parameter, wj, is a weighting factor defining the relative importance

of this objective. It is common to perform a single objective optimization to determine the target value,
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R_. Thisprovidesa good baselinedesignwhich identifiesthebestthatcan be achievedforthisobjective

withoutregardfortheothers.The valueofR_v°rstisusuallychosenasthebestknown valueofthisobjective

priortooptimization.

Synthetic Functions

Itiscommon thattheuserwishestooptimizeorconstrainafunctionwhich isnotdirectlysuppliedby the

analysisprogram. Or he may wish touse parametersasdesignvariablesthatam not normallyinputtothe

analysis.For example, he may requirethatthe sum of two responsesbe lessthan the value of a third

respond, or he may wish totreatphysicaldimensions of a frame structur,asdesignvariables,although

theinputtotheanalysisissectionproperties,which arcfunctionsofthesevariables.Inmany cases,he can

simply modify theanalysisprogram toprovidethisinformationintheappropriateformat,butoftenhe is

not abletochange theanalysisprogram or wishes toexperiment withnew ideasbeforemaking changes.

The solutionthenistoprovidethecapabilitytouse "synthetic"functionsforoptimization(7).Typically,

theusermight input(asdata)an equationina form similartoa FORTRAN FUNCTION statement.

For example, ifitisdesiredtotreatthewidth,B, and height,H, of arectangularbeam asdesignvariables,

buttheanalysisprogram inputisthesectionproperties,thiscan be accomodated usingsyntheticdefinitions

oftheproperties.Thus, theareamoment of inertiawould be definedas

I(B,H) = B'H"3/12.0

A stressrecoverylocationatthecomer of thesectionmay be definedas

R(B,H) = 0.5"SORT(B'*2+H"2)

Similarly,the allowablebucklingstressina rod may bc definedas

Since thismust bc lessthantheactualstress,thesyntheticequationwould be

G(A,E,L,SIG) = (-40.0"A'FJL- SIG)/10000.0

whet¢ 10000.0 is a normalization factor and SIG is the calculated stress. Now this equation is identified

as a constraint to be non-positive in the optimization process.

By providing this capability, the user has a great deal of flexibility in defining the optimization task and

experimenting with various concepts, without making them a permanent part of his analysis program.

DiscreteVariables

Discrete variableoptimizationis stillan activeresearcharea,particularlyas itappliesto nonlinear

optimizationinengineering.However, itisan importantissueinsuchapplicationsascompositestructure

d¢sign and where partsmust Ix)selectedfrom a setof availablecomponents (such as steelstructure

sections).
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Perhaps the most common approach to discrete variable optimization is the branch and bound method (8).

Here, a single variable is held at a discrete value and optimization is performed as a continuous problem

with respect to all other variables. This variable is then increased to it's next discrete value and the

optimization is repeated with respect to the other variables. If the optimum is greater than before, this

"branch" is cut off and the variable is set to it's next lower value and the process is repeated. If an

improvement is found, the search is continued in this direction until no improvement can be found. Then

this variable is held fixed and the process is repeated for the next discrete variable, until all discrete variables

have been examined. One disadvantage to this approach is that a multitude of nonlinear optimization tasks

must be performed, which is a very expensive process. More importantly, this method was developed for

linear problems, but has been applied to nonlinear problems. However, a basic assumption of the method

has been ignored in making this step. This is that the problem must be separable, a condition that is seldom

true for nonlinear engineering design. The result is that the true discrete optimum can seldom be achieved,

even for the most simple cases.

An alternative approach is to first create a separable approximation to the real problem and then solve this

as a discrete variable problem using duality theory (9). This has the advantage that is quite efficient, but

retains the disadvantage of ignoring coupling among the design variables. Again, a true optimum cannot

be guaranteed. However, this method appears to be reasonable for applications such as structural design,

where a high quality separable approximation can be created.

The best compromise for general applications is to first solve the problem as a continuous variable task.

This provides a lower bound on the discrete solution. Now the problem is linearized and solved as a

discrete variable problem. One approach to this is to solve the linearized problem using discrete variable

linear programming with branch and bound methods (10). This has been found to be efficient, but to

oscillate about the optimum, due to coupling among the variables. An alternative is to use "convex"

(combined direct and reciprocal) approximations (9) and duality theory to obtain the f'mal discrete solution.

This can also create oscillations about the optimum that must be detected, but it provides the necessary

efficiency and provides a near optimum design, especially if the discrete values are closely spaced. The

net effect is that a discrete variable optimization capability can be provided in a general purpose

optimization code, but that the user must be aware of it's limitations.

As anyone who has worked in optimization theory and applications will attest, it is desirable to have a

fundamental understanding of the process in order to achieve reliable results. In special cases, such as

structural optimization, we have sufficient knowledge and experience to create highly efficient design

programs. However, the vast majority of potential applications are in areas where we know little about the

mathematical structure of the problem, but recognize that optimization has a great deal to offer. In these

cases, the key issue is our ability to provide software that efficiently gives some design improvement.

The step from research and academic use of optimization to industrial use as a design tool is a major one.

The practitioner has little interest in the actual algorithm used, but is very knowledgeable about the

practicalities of design. In the quest to make optimization an everyday design tool, the concerns of the user

cannot be ignored. Many of these concerns are related to ease of use, documentation and support.

However, a more fundamental issue is that of providing methods and software that are responsive to the

real and perceived needs of the design engineer. This is the fundamental challenge in moving optimization

from the research environment to the design engineer's desk.
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Abstract

Performance optimizationfor upper-stageexoatmo-

sphericvehiclesoftenisperformed withinthe framework

of a fullcapabilitytrajectorysimulationpackage requir-

ing eithera largemainframe computer or powerfulwork-

station. Since these software packages tend to include

capabilitiesprovidingforhigh-fidelityboost and reentry

simulations,the programs usuallyare quitelargeand not

very portable.The program TROJID isan attempt to

provide an environment for the optimizationof upper-

stagetrajectorieswithina smallpackagecapableofbeing

run on a standard desktop microcomputer. Utilizinga

state-of-the-artnonlinearprogramming algorithmand a

trajectorysimulatorimplementing impulsiveburns and

an analyticcoastphase propagator,TROJID iscapable

of producing trajectoriesfor optimal multi-burnupper-

stageorbittransfers.The package has been designedto

allow fullgeneralityin definitionof both the trajectory

simulatorand the parameter optimizationproblem.

Introduction

Performance optimization is an important tool in the

design of space vehicle missions. The high cost of trans-
porting a payload into space demands that missions be
designed to utilize all of the capability within the space

vehicles. Optimizing an ascentmay allow extraspacecraft

propellanttobe loaded,thusincreasinga spacecraft'suse-

ablelife.Similarly,optimizingthe maneuvers requiredto

move a spacecraftfrom one orbit to another also may

increasethe spacecraft'slifetime.

A number of general-purposetrajectorysimulation

packagesexistwhich containparameter optimizationca-

pability.Two state-of-the-artpackages are the General-

izedTrajectorySimulation(GTS) l System and the Pro-

gram toOptimize SimulatedTrajectories(POST) "_.Each

of theseprograms containsa fullcapabilitytrajectory

simulationpackagecapableofhigh-fidelitysimulationsin-

cludingatmospheric drag,winds,vehiclebody attitude,

and integrationof the equationsof motion for powered

flight.

In contrastto these largetrajectorysimulationsoft-

waze packages,the program TROJID (TRajectory Opti-

mization with J2 and ImpulsiveDelta-v's)isan attempt

to providean environment fortileoptimizationofupper-

stageexoatmospherictrajectorieswithina portablepack-

age capableofbeingrun on a standard desktopmicrocom-

puter.The package containsa state-of-the-artnonlinear

programming algorithm,NLP2 3'4,along with a trajec-

tory simulatorimplementing impulsiveburns and ana-

lyticcoasts. The analyticcoast phase propagator as-

sumes gravitationalaccelerationincludingthe J_ zonal

harmonic,suitableforthesimulationofmulti-burnupper-

stageorbittransfers.

Overview

TROJID is a PC-based software package designed to
optimize multi-burn exoatmospheric orbit transfers. Such
transfers commonly occur whe. a payload is injected into

a geos.vuchronous mission orbit or hyperbolic escape or-
bit from a low-earth park orbit, or when a satellite is
maneuvered from one orbit to another.

The code is composed of three main elements, as shown

in Figure 1. The elements are a system level driver which

defines the problem to be solved and interfaces with the
user, a robust nonlinear programming algorithm capable
of solving constrained optimization problems, and a tra-
jectory simulation package used as a fimction generator

for the optimization routiues.

ALGORITHM SIMULATOR I

Figure 1 Overall Program Flow

When a new application is designed within TROJID,
the system level driver is modified to defiue the new op-
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timization problem and trajectory simulation. Only tile
driver is modified and recompiled; the optimizer and sim-

ulator are maintained in object libraries and linked with

the driver to create an executable program.
User-modified input files can be used to initialize spe-

cific problems once a new application has been designed
and compiled. For example, a basic multi-stage vehicle
may be defined within the system level driver, with ac-

tual weights and propulsion characteristics being read in
from an input file at run time. In addition, definition of

the optimization problem can be set up in such a way as
to allow an input file to be used to choose the variables,

constraints, and objective function for a given problem.
Thus, if a new application is designed with care, an en-
tire range of problems may be solved without the need to
recompile any code.

The bulk of the code for TROJID is written in standard

FORTRAN 77. In addition to the FORTRAN, a few
routines used for the DOS run-time screen interface are

written in C. Since all but the screen driver routines are

written in FORTRAN, TROJID can be hosted readily on

any machine with a FORTRAN compiler, although this
would imply either running in a purely batch mode with

no user feedback during execution, or writing a screen
interface for the new environment. In either case, the

main elements of TROJID would carry over directly.

The Optimization Algorithm

Tile optimization algorithm utilized in TROJID is

NLP2, a projected gradient algorithm developed at The
Aerospace Corporation. Tile purpose of the algorithm is
to find the vector x which minimizes the objective func-
tion

f(x)

subjectto the equalityconstraints

c_(x) = 0

for i = 1,..., me and the inequality constraints

ej(x) _> 0

for j = (m, + 1) .... , (me + mr) where the total number
of constraints is m = m, + mr. The program has options

to use a quasi-Newton method with recursive Hessian up-
dates or a Newton method with finite difference tlessians.

The algorithm begins with a constraint satisfaction

phase to find an initial feasible point. Once a feasible

point is found, the algorithm switches to solving a se-
ries of equality-constrained optimization problems. The
optimization problems are solved by using an orthogonal
decomposition of the variable space, followed by a sepa-
ration of the variables into two sets, one of which is used

for eliminating the active constraints, the other of which

is used to mininaize the objective function restricted to

the active constraint surface. If a previously satisfied in-

equality constraint is reached, the minimization process is
terminated and restarted with the new constraint added
to the active set. When the minimum is reached for an

equality constrained subproblem, the Lagrange multipli-
ers are examined to determine whether ally of the cur-
rently active inequality constraints call be released from

the basis. Once a subproblem is solved and no inequality
constraints are added to or deleted from the basis, the
algorithm terminates at a local solution.

After a solution has been reached, a postoptimality
analysis operator is called s,6. This operator serves several

purposes. First, projected gradient, llessian, and eigen-
value data can be calculated in both scaled and unsealed

quantities in order to help determine how well NLP2 has

converged. Second, Jacobian and llessian conditioning

can be calculated in both sealed and unsealed quantities
in order to assist in choosing good scale factors for the

problem. These scale factors can be used to improve al-
gorithm performance on other similar problems. Third,
sensitivity data can be calculated in order to provide in-
formation on partial derivatives at the solution. This

information includes partial derivatives of the objective
function with respect to changes in constraint values, par-

tial derivatives of the variables with respect to changes in
the constraints to maintain feasibility, and second par-

tial derivatives of the objective functio,1 with respect to
changes in the variables while maiutaining feasibility.

The Trajectory Simulator

The trajectory simulator in TROJID is designed to

propagate a multi-burn exoatmospheric trajectory begiu-
ning with an initial state vector and utilizing a set of

coasts and instantaneous velocity impulses (delta-v's), as
shown in Figure 2. The simulator is used as the function

generator, and any real parameter defining the trajectory

can be used as an independent variable in tile optimiza-
tion problem. Typically, parameters s_lch as coast du-

rations, delta-v magnitudes, and delta-v pointing anglcs
are used as variables. Other variables could include vehi-

cle initialization time, initial orbital elements, and vehicle
mass and propulsion characteristics.

The initial state vector can be input either as position
and velocity relative to the earth or via orbital elements in

inertial space. In either case, the first step in tile si,nula-

tot is to translate tile state vector into cartesiaa position
and velocity vectors, /_ and I,_, within an earth-centered

inertial (ECI) reference frame. If desired, a time initial-

ization model may be called in order to align the Green-
wich meridian for an input time epoch. The initial ECI

state vector is saved before proceediug with the trajectory
propagation.
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After state initialization, the simulator begins execut-

ing n coast-burn pairs, where n is the number of burns

being utilized in the simulation. ECI state vectors are

saved twice for each burn, once after the coast but before

the burn, and once after tile burn. In this way, when the

trajectory simulation is completed, 2n + 1 state vectors

have been saved, containing all the relevant information

about the trajectory.

Calculate Initial

R and V

V

Coast with 12

Add Impulsive

Delta-v

[

,@,
Figure 2 Trajectory Simulation Flow

After completion of the trajectory propagation, the

state vector arrays are passed back to the driver inter-

face, where the objective function and constraints are

evaluated. If orbital elements are needed for any point

in the trajectory, whether at an intermediate point or

at the final point, a call to tile orbital state calculation

routine will translate the ECI state vector into orbital

elements corresponding to the desired point in the tra-

jectory. Thus, orbital elements are calculated only when

the values are needed by tile optimization routines. Typ-

ically, constraints are specified to define tile final orbit,

so orbital elements are calculated for the final state vec-

tor. The constraints and objective function may be any

smooth, continuous functions dependent upon the inde-

pendent variables. Constraints may be specified as equal-

ities, inequalities, or a combination of the two, and tile

objective function may be maximized or minimized.

Use of an analytic state vector propagation routine 7 al-

lows the function generator to simulate a trajectory with-

out the expense of integrating the equations of motion.

The analytic propagation routine assumes gravitational

acceleration including the J2 zonal harmonic (i.e., oblate

earth), and is capable of propagating a coast in an ellip-

tical or hyperbolic earth orbit. The length of tile coast

phase typically is input in degrees (argument of the vel_i-

tie), although coast duration in seconds also may be used.

The J2 propagation routine is based upon a perturbation

expansion of the oblate earth coast, accounting for both

short period and secular variations in the orbit. This rou-

tine has been in use within GTS for the past several years

and has proven to be quite accurate for coasts in earth

orbit of up to a few days.

The Driver

The system level driver defines tile optimization prob-

lem, defines the trajectory to be simulated, and oversees

communication among the optimizer, the simulator, and

the user. Initialization of the optimization problem in-

cludes defining the algorithm control parameters; objec-

tive function, independent variable, and constraint scale

weights; independent variable upper and lower bounds;

and initial values for the independent variables. Initial-

ization of the trajectory sinmlator includes defining the

number of coast-burn pairs, the magnitudes of the delta-v

impulses, the initial state vector for tile vehicle, and the

burn attitudes for the impulsive delta-v's. Burn attitudes

may be defined within either an inertial velocity reference

frame (VIECI) or an inertial velocity local horizontal ref-

erence frame (VIH), and attitudes may be specified using

either spherical or cartesian coordinates within tile ref-

erence frame. When tile trajectory to be simulated is

defined, any parameters to be used as independent vari-

ables for the optimization problem are assigned values

from the independent variable array; therefore, it is pos-

sible to choose any input parameter as a design variable

for optimization.

If an actual upper-stage vehicle is being sinmlated, sub-

routines required to define the trajectory sequence for

the vehicle are included in the driver portion of the pro-

gram, tailoring the driver for a specific application. For

example, user subroutines can be included to calculate

the delta-v magnitude for a giveq vehicle weight, propel-

lant load, and propellant lsp. This delta-v then can be

used by the trajectory simulator in its definition of the

trajectory.

During execution, after initializing the optimization

and sinmlation portions of the program, the driver begins

by calling the NLP algorithm. A reverse communication

technique is used, whereby the NLP algorithm never calls

the function evaluator directly. As execution continues,

whenever the NLP algorithm requires either a function

or gradient computation, control is returned to the driver

and tile current values for the independent variables are

passed in the argument list. The driver then oversees

calling of the function generator (i.e., trajectory sinmla-

tor) or the gradient evaluation routincs, and returns tile

requested data to the NLP algorithm.
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The gradient routine s used in TROJID calculates two-

sided partial derivatives of the constraints and objective
function with respect to the independent variables. The

routine begins by using user-supplied perturbation sizes
for computing the finite-difference derivatives. Error con-

trol techniques then are applied to vary the perturbation
sizes in order to achieve accurate derivatives. The user

has the option to turn off error control, holding pertur-
bation sizes constant throughout execution.

Along with controlling the function generator and gra-
dient routines, the driver also determines what informa-
tion should be written to the user screen and calls the
video screen interface routines to fulfill this task. The

video screen interface manages updates to the user screen,
providing current data on independent variable, con-
straint, and objective function values. The interface also

tells the user how many function evaluations have been
performed, what iteration number is being performed in

the search or optimization portions of NLP2, when the
postoptimality operator is entered, and when a new Jaco-

bian is being calculated. This information helps the user
determine how well the problem is running and whether

it should be interrupted and restarted with some sort of
modification.

Sample Problems

Several sample problems will be presented in order
to show a few of the capabilities available within TRO-
JID. The first problem deals with a generic, two-burn
orbit, transfer in which the variables are coast durations,

delta-v magnitudes, and burn attitudes for the two burns.
The objective function to be minimized is the sum of the
two delta-v's. The second problem deals with a generic

upper-stage vehicle utilizing two solid rocket motors. The
objective function to be maximized is the weight of the

payload injected into a near geosynchronous mission or-
bit.

Generic Two-Burn Transfer

Problem 1 is a generic two-burn orbit transfer problem.

The objective is to minimize the sum of the t.wo delta-v's
required to complete a transfer from an initial orbit to
a final orbit. The initial and final orbital elements are
defined as

parameter Initial Orbit Final Orbit

apogee altitude 160 nm 25000 nm
perigee altitude 160 nm 300 nm

argument of perigee undefined 90*
inclination 28.50 67.50

ascending node 180 ° unconstrained

The vehicle is initialized at the ascending node. All or-
bital elements are osculating quantities. The date is ini-
tialized as 21 March 1989.

The variables for the problem are

cstl coast to first burn (deg)

AV1 first impulsive delta-v (fps)
IPt yaw angle for AVt (deg)

01 pitch angle for AVt (deg)

cst2 coast to second burn (deg)
AV2 second impulsive delta-v (fps)
0._ yaw angle for AV2 (deg)

82 pitch angle for AV2 (deg)

The constraints for the problem are the four orbital pa-

rameters defining the final orbit. The objective function

is f = (AVx + AV2). The initial guess and solution for
this problem are

Variable Initial Value Optimal Value
cstt 90* 94.74970*

AVI 8000 fps 6695.006 fps
¢_ 00 2.870789*

0t 00 1.092968 °
cst2 90* 128.0318"

AVa 8000 fps 10767.17 fps
¢2 500 90.12544*
O_ 0° 27.69700*

The optimal objective function value is 17462.17 fps. The
problem was solved in 400 function evaluations and took

approximately 48 seconds on a 16 Mhz 80386-based ma-
chine with an 80387 numeric coprocessor. Partial deriva-
tives of the optimal objective function with respect to

changes in the constraint values are listed in Table 1 along
with second partials of the optimal objective function

with respect to changes in the variables while feasibility is
maintained. A '*' is used to denote the optimal function

value. All partials are computed by the postoptimality
operator.

Table 1 Sensitivity Itesults

Parameter O(AVI + AV._)"/0(.)

Final Apogee Altitude

Final Perigee Altitude

Final Argument of Perigee
Final Inclination

0.758616e-2 fps/nm

-1.37754 fps/nm

125.466 fps/deg
229.207 fps/deg

0-'(AV_ + AV2)'/0(.) 2
cstt 2.05364 fps/deg

AVt 0.274743e- 1 fps/fps
¢1 1.67737 fps/deg
Ot 1.34328 fps/deg

cst2 2.54722 fps/deg

AV2 0.274743e- 1 fps/fps

¢.. 27.1601 fps/deg
02 16.4011 fps/deg

The most sensitive variable is ¢_, and the least sensitive

variables are AVI and AV2.
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The date 21 March was chosen in order to demonstrate

the time and sun model capabilities within TROJID. De-

fine the beta angle for an impulsive delta-v to be the angle
between the impulsive delta-v vector and the vector from

the vehicle to the sun, as shown in Figure 3. A beta angle

of 0° implies that the vehicle is pointing directly at the
sun during a burn, and a beta angle of 180 ° implies that

the vehicle is pointing directly away from the sun during
a burn.

Figure 3 Vehicle-Sun Beta Angle

In the optimal transfer from the example problem
above, the beta angles for the first and second burns are

4.9 ° and 64.1 °, respectively. Consider adding a new con-
straint such that the vehicle is not allowed to point to

within 20 ° of the sun. A new inequality constraint must
be added to the problem, requiring that

81-20 >__ 0

The solutionto thisnew problem is

Variable Optimal Value
cstl 101.1227 °

AV1 7468.183 fps
_bz 18.14728 °
01 4.2660360

cst_ 126.7134 °
AV2 10173.47 fps

¢_ 93.88661 °
0_ 25.819130

The optimal objectivefunctionfor thisnew problem is

17641.65 fps,El = 20.0°,and B._= 69.0°. The increase

inthe valueof_i was accomplishedthrough delayingthe

firstburn by about 6.4° ofcoastarc and increasingthe

yaw angle forthe firstburn by about 15.3°. This ledto

an increasein totaldelta-vof 179.48fps. The partial

derivativeof the minimum totaldelta-vwith respectto

changes in the value of 81 is af'/cg_l = 24.8506 fps/deg
at the solution to the new problem.

Generic Upper-Stage Transfer

Problem 2 is a generic, upper-stage orbit transfer op-
timization problem. The objective is to maximize the

payload weight injected into the final mission orbit. The

upper-stage vehicle consists of two solid rocket motors,
SRMI and SRM2, and a reaction control system (RCS).
An RCS trim burn follows each solid rocket motor burn.

A propellant margin is set aside in the RCS to account
for dispersions. A four-burn simulation is used for the
two solid rocket motor and two RCS burns. The first and

third burns are the solid rocket motors, with burn atti-

tudes defined in spherical coordinates, while the second
and fourth burns are the RCS trim burns, with burn atti-

tudes defined in cartesian coordinates. Some propulsion
and weight data are listed in Table 2.

Table 2 Upper-Stage Vehicle Data

SRMI Propellant Weight 20800 lb

SRM1 lsp 300 sec
Stage 1 Inert Weight 2500 lb

SRM2 Propellant Weight 6300 lb

SRM2 Isp 300 sec
Stage 2 Inert Weight 2000 lb

The initial and final orbital elements are defined as

Parameter Initial Orbit Final Orbit

apogee altitude 170 nm 19493 nm
perigee altitude 160 nm 19153 nm

argument of perigee 0° unconstrained
inclination 28.50 0.5 °

The vehicle is initialized at the ascending node. All or-

bital elements are osculating quantities.
The variables for the problem are

cstl coast to first SRM burn (deg)
_'1 yaw angle for AVI (deg)

01 pitch angle for AVI (deg)
csta coastto second SRM burn (deg)

¢'3 yaw angle for AVa (deg)

0a pitch angle forAVa (deg)

AV_.,1 x component of AV2 (fps)
AV.%z y component of AV_ (fps)

AV4,1 x component of AV 4 (fps)

AV4,:t y component of AV4 (fps)

pl payload weight (Ib)

The constraints are the three final orbital elements and

two constraints that specify the weight of propellant used
for the two RCS trim burns to be 55 Ib and 65 lb, respec-

tively. The objective function is the payload weight.
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The initial guess and solution for this problem are

Variabl_ Initial Value Optimal Value

cstl 0 ° -0.3827614 °
_I 2° 3.457852°

01 0° -0.1289974e-I"
cst2 1500 147.1143 °

_b3 -50 ° -51.21512 °
03 0 ° 0.1007870 °

AV2,1 20 fps 21.61897 fps

AV2,2 0 fps 0.9339027 fps

AV4A 50 fps 50.60754 fps

-_V4,2 -20 fps -22.71261 fps
pl 5400 lb 5456.795 Ib

The optimal objective function value is 5456.795 lb. The

problem was solved in 735 function evaluations and took
approximately 121 seconds on a 16 Mhz 80386-based ma-

chine with an 80387 numeric coprocessor. Some charac-
teristics of the optimal trajectory design are

SRM1 Delta-v Magnitude
SRM2 Delta-v Magnitude

Transfer Orbit Apogee Altitude
Transfer Orbit Perigee Altitude
Transfer Orbit Argument of Perigee
True Anomaly at Final Orbit Injection

7938.230 fps

5868.143 fps
19325.42 nm
160.8560 nm

359.73220
291.94320

Sensitivity results for this problem are listed in Table 3.

Table 3 Sensitivity Results

Parameter

SRM1 Propellant Weight
SRM2 Propellant Weight
Final Orbit Inclination

Final Orbit Apogee

Final Orbit Perigee
Trim Burn 1
Trim Burn 2

0.4682 lb/lb
-0.1337 lb/lb

48.5807 lb/deg
-0.678607 lb/nm

-0.686725 lb/nm
1.08061 lb/Ib

0.578696 Ib/lb

Note that due to the fixed motor sizes of this vehicle,

the optimal transfer is not simply a Hohmann transfer
with plane change in which injection into the final orbit

occurs at apogee (see Figure 4); thus, this is not a prob-
lem for which a simple analytically derived solution exists.

As can be seen from the partial derivatives, the first mo-
tor is undersized and the second motor is oversized for

this orbit transfer. Transfer orbit apogee altitude at in-

jection into the transfer orbit is 19325.42 nm, well short

of the required final apogee altitude of 19493 nm. If the
transfer were reoptimized with final orbit injection con-
strained to occur at perigee, the optimal payload value

would drop to 5452.624 ib, a 4.171 Ib loss. If the transfer
were reoptimized with final orbit injection constrained to

occur at apogee, the optimal payload value would drop
to 5420.913 lb, a 35.882 lb loss.

I I III

Figure 4 Hohmann Transfer with Plane Change

An alternative problem could be to optimally size the
vehicle solid rocket motors in order to minimize total ve-

hicle weight. This problem was run with a constant pay-
load weight of 5400 lb. The optimal motor weights are
20675.84 Ib for SRM1 and 6062.297 lb for SRM2. The tra-

jectory produced with these optimal motors is a Hohmann
transfer with final orbit injection occurring at apogee.

Future Work

In its current state, TROJID has proven useful for

solving both generic, multi-burn orbit transfer problems
and vehicle-specific orbit transfer problems. In the near

future, the ability to integrate constant thrust and Isp
burns will be added, allowing a higher degree of fidelity

when specific vehicles with known motor characteristics
are simulated. Since the burns currently are being mod-

eled with an instantaneous delta-v impulse, integration of
the burns will increase the amount of computation time
required for each function evaluation (trajectory simula-

tion), although this increased computation time should
not be excessive for burn times of relatively short dura-
tion (on the order of hundreds of seconds). A natural
use for this added capability will be first to optimize an

impulsive burn problem; then, using this approximate so-

lution as an initial guess, to reoptimize using integrated
burns.

Conclusion

This paper has described TROJID, a trajectory opti-

mization package capable of producing optimal trajectory
designs for multi-burn, upper-stage orbit transfers. The
package utilizes a state-of-the-art nonlinear programming
algorithm along with a trajectory simulator capable of

simulating impulsive delta-v trajectories with an analytic

coast phase propagator incorporating the J_ zonal har-
monic. The package has beeu demoustrated to solve both
generic, multi-burn orbit transfer trajectory optimization

problems and upper-stage trajectory optimization prob-
lems in which a specific upper-stage vehicle is modeled in
the simulation.

!
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INTRODUCTION

Numerical optimization algorithms require the knowledge of an initial set of design variables. Starting

from an inidal design x0, improved solutions arc obtained by updating the design iteratively in a way
prescribed by the particular algorithm used. If the algorithm is successful, convergence is achieved to a
local optimal solution. Let A denote the itcrativc procedure that characterizes a typical optimization
algorithm, applied to the problem:

Find xE R n that
maximizes fix)

subject to x _ _ _ R"

i

We are interested in problems with several local maxima xj , j=l ..... m, in the feasible design space f2.

0l .

In general, convergence of the algorithm A to a specific solution xj is determined by the choice of

initial design x 0. The domain of convergence Dj of A associated with a local maximum x j* is a subset of

initial designs x0 in f_ such that the sequence {xk}, k=0,1,2 .... defined by

xk+l = A(xk), k=O,l ....

lit

converges to xj , that is,

Dj = {xe _ : Ilxj* - xkll ---) 0 as k---) -0 whenever

i

The set Dj is also called the basin ofattrac_on of xj .

xO=x and xk+l = A(x k) }

Cayley [1] fast proposed the problem of finding the basin of attraction for Newton's method in 1897. It
has been shown that the basin of attraction for Newton's method exhibits chaotic behavior in problems
with polynomial objective [2, 3]. This implies that there may be regions in the feasible design space where
arbitrarily close starting points will converge to different local optimal solutions. Furthermore, the
boundaries of the domains of convergence may have a very complex, even fractal structure. In this paper
we show that even simple structural optimization problems solved using standard gradient based (first
order) algorithms exhibit similar features.
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STRUCTURE OF DOMAINS OF CONVERGENCE

The following example is used to illustrate the more relevant features of the problem. Consider the beam
shown in Figure 1. Translation is constrained by rigid supports at both ends and rotation is restricted
through rotational springs of finite stiffness r. A finite element model is used for the analysis discretizing
the beam into four tapered beam elements. The element heights bl, b2 and b3 at nodal points are the chosen
design variables. The optimization problem considers the maximization of the smallest eigenvalue of the
beam, _.1, under an isoperimetric constraint on the beam volume, i.e., the problem (1) below:

Find {bl,b2,b3} that
maximize M

subject to bl + b3 + 21)2 = C
bi > 0

(1)

For the specific case considered here, we let C---4 and r=l.0, a relative large value corresponding to
nearly clamped ends. The objective function has three local maxima and two saddle points.

b3
i

I

Figure 1. The beam model

A first-order, gradient based optimization algorithm is used to solve problem (1). To facilitate the
graphical representation of the domains of convergence, the equality constraint problem is used to restate
the problem as follows:

Find x={ bl,b3 } that
maximize _.I
subject to bl + b3 <: 4

bl> 0, b3 > 0
(2)

The feasible set is the two-dimensional region

f_= {{bl,b3}eR2:bl+b3 <--4, bl>_0,b3> 0}

The algorithm used is a steepest ascent algorithm modified to account for the simple constraints. It can be
chaxacterized by the mapping

A(x k)- xk + a(xk)s(xk) (3a)

where

S(Xk) = Vf(x k) if xke hat(I2) (3b)

s(xk) = P_[Vf(xk)] if xke _ (3C)

3f2 is used to denote the boundary of f2 and P_f2[Vf(xk)] denotes a projection of Vf(x k) onto 3ft.

The scalar parameter ct is the step size obtained from line search along the direction s. Both exact and
inaccurate line search based on Armijo's rule axe used here.
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For exact line search:

Ct(Xk)--max {Ct:20: f(xk + Cts(xk))_ max } (4)

For inaccurate line search based on Armijo's rule:

cc(x k) = max { ai : f(x k + cci s(xk))-f(x k) - _ 0ci IVf(xk)l > 0 0q=e i 0Crnax}
is0.1,_ -- '

(5)

for fixed values of 5 and e (0.02, 0.5, resp). 0Cmax>0 is such that Xk + 0Cmax s(x k) is on 5f_. The
difference between these two strategies is illustrated in Figures 2 and 3.

I f(x-k+ccs(xk)) f(xk+o_s(xk)) ....

k) c (xk)
Figure2 Exactlinesearch Figure 3 Inaccurate line search

Arrnijo'srule

based on

To study the structure of the domains of convergence, the feasible design space is divided into a two-

dimensional grid of equally spaced, discrete starting points x0i. The algorithm A is applied starting from

each grid point until convergence to one of the 3 maxima, labeled x_,x_,x_, is achieved (Notice that for

the values of the parameters used eigenvalue crossing, a well known phenomenon that is common in
eigenvalue maximization problems, does not occur ). A small rectangular region Ri centered around

x0i is assumed to be in the domain of convergence Dj of x j* if the distance between A(x k) and x j* is

smaller than a prescribed tolerance for some K and k2K. Ri is colored according to the following
scheme:

dark if A converged to x_ from x0i

gray if A converged to x_ from x0i

light if A converged to x_ from x0i

The resulting figures are shown in Figure 4 for exact line search and in Figure 5 for inaccurate line
search. It is clear from the figures that the domains of convergence are structurally different for the two
line search methods. In the case of inaccurate line search, the domains of convergence have an extremely
fine layered structure in some regions of _ that is not present in this problem when exact line search is
used. The structural difference in the domains of convergence of the two methods is dominated by the
difference between the function cz(x) corresponding to exact and inaccurate line search. These results
indicate that commonly used optimization algorithms based on first order information have features

similar to those found in Newton's method: sensitive dependence on initial design and very fine layered
domains of convergence. The mappings which result from these algorithms cannot be chaotic due to their

inherent ascent properties, but they can lead to very complicated, possibly fractal, boundaries separating
domains of convergence. We conjecture that the source of this complexity is the same as that which leads
to similar boundaries in other dynamical systems, although the connection is not clear due to the
discontinuous natm'e of the optimization mappings, particularly those associated with inaccurate line search
strategies. To describe this we need some concepts and definitions borrowed from the qualitative theory
of dynamical systems.
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(a)

bl

(b)

bl

•........... [:,e

bl

(c)

b3

bl

(d)

Figure 4 Domains of convergence for exact line search

(a)

(b)

(c)

(d)

[0.0, 4.0] X [0.0, 4.0]

[0.196, 0.342] X [0.83, 1.61]

[0.25732, 0.27776] X [1.3292, 1.3926]

[0.2618168, 0.2642696] X [1.35456, 1.359632]
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Figure 5

(a)

(b)

(c)

(d)

Domains of convergence for inexact line search

[o.o,4.0]x [o.o,4.o1

[0.18, 0.20] X [0.95, 0.97]

[0.184, 0.190] x [0.950, 0.9561

[0.1852,0.18556] X [0.950,0.95036]
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First, note that all local maxima, local minima, and saddle points are fixed points of these maps. The set
of points which are mapped to, or are asymptotic to, a fixed point is defined as the stable manifold of that
fixed point ( for example, the stable manifold of a local maximum is its domain of convergence).
Similarly, the unstable manifold of a fixed point is the set of points which are mapped to, or are asymptotic
to, the fixed point under inverse iterations of the map (when the map is not strictly invertible, one can use
the idea of pre-image points). Note that the stable manifold of a saddle point is the boundary between
points which branch away from the saddle in different directions (it is often referred to as a separatrix).
For continuous maps, the source of complexity is the intersection of the stable manifold of one saddle
point with the unstable manifold of another saddle. Such an intersection leads to the stable manifold, and
therefore the boundary, winding in a very complicated manner which results in the infinitely fine layered
structure for domains of convergence, and it the most likely cause of the observed behavior.

We note that in order for such intersections to occur at least two saddle points must exist, which implies
that at least three local maxima must exist. In a system with only two local maxima the boundary
separating their domains of convergence cannot, if our conjecture is correct, have this layered quality. The
problem solved here has three local maxima. However, if the stiffness of the rotational springs r is
reduced to a sufficiently low value, the number of maxima changes. In the ease r--0, corresponding to a
pined-pined beam, the objective function has only one maximum and hence the domain of convergence is
f2. This observation indicates that the chances of success of the overall solution strategy can be
affected significantly by possibly small changes in the models used to represent the physical boundary
conditions. Extensions to problems involving more than two design variables can be made, but one must
be careful since the domain boundaries are formed only by the stable manifolds of saddles for which the
dimension of the stable manifold is one less than the design space.

1
i

t
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ABSTRACT:

We present a quasi-Newton interior points algorithm for nonlinear constrained

optimization. It is based on a general approach consisting on the iteratlve

solution in the primal and dual spaces of the equalltles in

Karush-Kuhn-Tucker Optimality Conditions. This is done in such a way to have

primal and dual feasibility at each iteration, which ensures satisfaction of

those optimality conditions at the limit points.

This approach is very strong and efficient, since at each Iteration it only

requires the solution of two linear systems with the same matrix, instead of

Quadratic Programming Subproblems. It is also particularly appropriated for

Engineering Design Optimization inasmuch at each iteration a feasible design
is obtained.

The present algorithm uses a Quasi-Newton approximation of the second

derivative of the Lagrangian Function in order to have suporlinear asymptotic

convergence. We discuss about theoretical aspects of the algorithm and it's

computer implementation.

1. INTRODUCTION

In this work we present a quasi-Newton interior points algorithm for

nonlinear inequality constrained optimization, based on a general approach

which solves Karush-Kuhn-Tucker optimality criteria by means of fixed point

iterates in the primal and dual space [4]. Given an initial point in the

interior of the feasible region, a sequence of interior points is generated

in such a way that the objective decreases monotonically and which converges

to a K-K-T point of the problem.

This approach is particularly appropriated for Engineering Design

Optimization since at each iteration a feasible design is obtained and it is

also very strong and efficient.

In the next section, we consider the inequality constrained problem and

discuss the basic ideas of the method. A quasi - Newton algorithm is

presented in the following section and then a technique for updating the

approximation matrix. Finally we briefly discuss some aspects about the

computer implementation of the algorithm.

• COPPE/Federal University of Rio de Janeiro, Mechanical Engineering Dept,

Calxa Postal 68503, 21945 Rio de Janelro, Brazil.

•" A_PATIALE - Cannes, 100 BD du Mldi, Cannes - La Bocca, 06400 and

Visiting Research Fellow at COPPE/Federal University of Rio de laneiro.

204



II I ,I

2. THE INEQUALITY CONSTRAINED PROBLEM

We consider now the inequality constrained nonlinear programming

problem :

minimize f(x}
X

submitted to g(x) _ O, (I)

and ger m are smooth functions in R". This problem is normallywhere feR

present in Engineering Design, however equality constraints can easily be

included using this approach [I].

Definitions

Definition I. d e Rn is a descent direction of f at x if dtVf < O.

Definition 2. d • R n is a feasible direction of the problem at x • _,

• {x • Rn/ g(x) _ 0}, if for some 8 > 0 we have x + td • Q for all

t • (O,e). a

Definition 3. A vector field d(x) defined on Q • Rn is said to be a

uniformly feasible directions field if there exists T > 0 such that for any

x • _ x + td(x) • _ for all t • (O,z). o

The present algorithm obtains at each iteration a search direction d,

which is a descent direction of the objective and also a feasible direction

of the problem. A line search is then performed to ensure that the new point

is interior and the objective is lower. As a consequence of the requirement

of feasibility, d must actually constitute an uniformly feasible directions

field. Otherwise, the step length may go to zero and convergence to

non-stationary points may occur.

Karush-Kuhn-Tucker first order optimality conditions consist on the

following system of equalities and inequalities:

C + AtA = O,

GA=O,

g(x)_ 0 and

AzO,

(Z)

(3)

(4)

(5)

where A • Rm is the dual variables vector, C = _f(x), A = Vg(x), and

G = dlag [g(x)], G • Rm.

Our approach consists on solving the system of equations (2),(3} in

(x,A) by means of a quasi-Newton algorithm. This is done in such a way to

satisfy inequalities (4) and (5) at each iteration, in order to ensure that

Karush-Kuhn-Tucker conditions are verified at the limit points.

205



I III

Conslder the fixed point iterates for the solution of C2),(3) defined by

the following linear system of equations:

E  II-II IB t x0 x = _ C + AtA

AA A° A GA

(6)

where B _ Rnxn is symmetric and positive definite, A • Rm is A = dlag(A),

(x,A} is the actual iterate and (Xo,A o} is a new estimate. Taking

2 (x} (6) becomes the Newton -B = H(x,A), where H(x,A) = V2f(x) + _ AIr g| ,

Raphson's iterates. In the present paper, we take B equal to a quasi-Newton

approximation of H(x,A).

Let be d = x - x. Then, (6) becomes
o o

Bd +AtA - - C and (7)
o o

AAd + GA = O, (8)
o o

which now gives a direction do in the primal space. It can be proved, in a

similar way as in [1,3], that do is a descent direction of f. However, do is

not useful as a search direction since it does not always constitute an

uniformly feasible directions field. This is due to the fact that as any

constraint goes to zero, (8} forces d to tend to a direction tangent to the

feasible .set. o

This effect is avoided by including a negative vector (-_e) in the right

side of (8), where the scalar factor _ is positive and e • [1,1 .... I]t,

e e Rm. Then, solving

Bd +AtA = - C, (9)

AAd + G_ = - _e (10)

we have a new direction d which constitutes an uniformly feasible directions

field [I].

Finally, since d can be considered as a perturbation proportional to

of the descent direction d , it is possible to establish bounds on _ which
o

ensure that d is also a descent direction of f.

The ideas pointed above are a basis for the iterative method that we are

studying. In the primal space, a line search is done in direction of d while,

in the dual space, updating of A is defined by

Ai:: sup[Aol;C lldoH 2 ]; t - l,m, c > O, [II)

which ensures that A is always feasible.
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3. THE ALGORITHM

The algorithm that we present is stated as follows:

Parameters. _ _ (0, I), _ _ i0,1), c > O, ntand _2_ (0,17, (WI >_ 7, _ >0
and _ _ (0,I).

Data. x e _, A > 0 and B E R "x" symmetric and positive

def inl te.

Step I. Computation of a search direction.

(i) Compute (d O, Ao) by solving the linear system

B d + AtA = - C,
o o

AAd+GA=0.
o o

If d = O, stop.
o

(ii) Compute (d%, A I) by solving the linear system

Bd + At_ = 0,
$ %

AAd + GA =- e.
% %

(ili) Compute the search direction

+ _'d 1d = d o J

where p = sup (_; sup [(_-1)dtC/dtC; 0]}.
o %

Step 2. Line search.

Find t>0 such that:

fix + td) s fix) + t nldtC, and

giix + td) < 0 ; i=1,m,

are true, and at least one of the following conditions

is also true:

dtVfix+td)z _zdtC, or

gl(x+td) z 7 El(x); 1=1,2 ..... m.

Step 3. Updates.

(i) Set

x := x + td, and

ll:= sup[Aol;C Ildoll2 ]; I = I,m.

(II) Compute a new symmetric positive definite approximation

B to H(x,X).

(ilL) Go back to Step I.

(127

i13)

(14)

(15)

(16)

(177

The search direction d given by (16) is the same as the one obtained in

(10) and condition (177 on p ensures that

dtC "( . m d t C
o
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Then, since d is a descent dlrectlon of f, d also is.
0

The line search criteria is very wide and easy to satisfy. We find the

step length in an iterative way by defining an initial t and, if the criteria

is not verified, making quadratic interpolations or extrapolations until a

satisfactory step length is obtained.

)

4. THE QUASI - NEWTON APPROXIMATION MATRIX

In unconstrained optimization problems by quasi - Newton method, an

approximation matrix B to the second derivative of the function is built up.

The formula preferred by several authors for updating B is the BFGS rule

B : B B66tB + @t= _ (18)

_tB6 6t_

where _ _ Rn is the change of the variables and W G Rn is the change of the

gradient of the function. Since the second derivatlve of the function is

posltlve definite at the mlnlmum, it can be proved that if the initial B Is

positive definite a new approximation matrix with the same property is

obtained, provided that

6t_ > O. (19)

In the present algorithm, B is an approximation to H(x,A) which is not

necessarily positive definite at the solution. We let T • R" to be the change

in x of {Vf(x) + At(x)A} and, In order to satisfy (19), we adopt a procedure

proposed by Powell [5] for the definition of _.

Consider ¢ ( R defined as follows:

= 1, if 6t¥ _ 0.2 _tB_, or

0.8 _tB_ otherwise.

6tB_ - _t 7

Then, we define _ to be

= @T + (I-@}B_

and B given by the updating rule (18).

5. NUMERICAL IMPLEMENTATION

Several items involved in the implementation of the present algorithm

merit a wider discussion. One question is that of efficiently solvlr_ linear

systems (12,13} and (14,15). It can be proved that the corresponding matrix

is nonsingular [3]; however it is not symmetric neither positive definite.

Different technics can be employed which lead to systems involving symmetric
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and positive deflnlte matrices with smaller dimensions. Another Important

polnt is that of the llne search procedure, slnce a good Implementatlon can

result in Important benefits in the global efflclency of the algorithm. Quasi

- Newton updating can be done as in (18) but it is also possible to

approximate the inverse of H(x,A} or to generate Cholesky's decomposition of

both approximation matrlces.

.i
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ABSTRACT

Previous work in 3-D shape optimization involved specifying design variables by
associating parameters directly with mesh points. More recent work has shown the
use of fully-automatic mesh generation based upon a parameterhed geometric
representation. Design variables have been associated with a mathematical model of
the part rather than the discretized representation. The mesh generation procedure
uses a nonuniform grid intersection technique to place nodal points directly on the
surface geometry. Although there exists an associatlvlty between the mesh and the
geometrical/topologlcal entities, there is no mathematical functional relationship. This
poses a problem during certain steps in the optimization process in which geometry
modification is required. For the large geometrical changes which occur at the
beginning of each optimization step, a completely new mesh is created. However, for
gradient calculations many small changes must be made and it would be too costly
to regenerate the mesh for each design variable perturbation. For that reason, a
local remeshing procedure has been implemented which operates only on the specific
edges and faces associated with the design variable being perturbed. Two realistic
design problems are presented which show the efficiency of this process and test the
accuracy of the gradient computations.

SHAPE PARAMETERIZATION

Of the many aspects of a shape optimization system, the most controversial
issue, and the issue still unresolved, is the process by which design variables are
assigned to the mesh. There are essentially four approaches being investigated, two
dealing with some form of mesh generation and two which work from an existing
mesh. The method based upon mapped mesh generation[I,2] requires the
association of design parameters with key nodes of 3-D iso-parametric hyper-patches.
In this case. as the shape changes, internal nodes are moved automatically. The
method developed by Yang[3] assumes the existence of a mesh generated manually
using a conventional model,ng system. Using graphics, design variables can be
directly assigned to mesh points. No attempt is made to move internal points. A
third method, originally developed by Belegundu and Rajan[4,5] also assumes a mesh
exists. This approach however uses fictitious loads as design variables. The
deformed shapes resulting from the application of special loading and boundary
condition sets are used as design variations. The advantage of this method is that
interior node movements are directly obtained. All of the above techniques pose
certain problems in developing the design models. For that reason Botkin[6]
proposed the use of fully automatic mesh generation based upon the use of a
parameterized 3-D mathematical surface model. For each step in the optimization
process, the current set of design variables produces a new geometrical model from
which a mesh can be automatically generated. There is no need in this case to
relate finite element nodes to design variables and internal nodes are moved
automatically. Since the first three methods directly assign nodes to design
variables, shape sensitivities are easily obtained, i.e., small perturbations in design
variables can produce small perturbations in mesh points. However, no such direct
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relationship exists for the fourth approach and special consideration will be given to
this aspect of the problem in the next section.

SENSITIVITY ANALYSIS

The following relationship expresses the association between the geometric
model, G and the mesh, M:

* U C1)

in which 6 represents the design variables. Whereas the model is an explicit
function of the design variables, the mesh is only obtained through the operation -_.

Using the symbolic relationship (1) the behavioral sensitivities can be computed
as follows:

BR BR 8M 8Q
=Sgx C2)

in which R is a response quantity. Most of the questions regarding shape
sensitivities have been answered[7] but have dealt only with the first term of Eq. 2.
Term three is analytical and can be easily computed. One aspect as it pertains to
automatic mesh generation still has to be investigated, and deals with term two. As
the design variables are sequentially perturbed, a resulting perturbed mesh must be
obtained. Figure 1 represents a two-dimensional segment of a mesh, the associated
geometry, and design variables using the notation of relationship (1). The bold
curve represents a typical shape variation. The subscripted variable M refers to
mesh points on the surface geometry and variable M! refers to points _n the interior.
It would not be desirable to regenerate an entirely new mesh for each design variable

perturbation, A8i, but only recompute the surface point locations, M o, locally. Since
the mesh is tied to the geometrical description through an operation, it is only
indirectly associated with the design variables. For that reason a local remeshing
procedure was implemented which operates only upon the mesh data for specific
edges and faces. Associativity information between the topology and the mesh
allows only pertinent nodes to be identified for repositioning. There is still some
question about the accuracy of this localized numerical process when only small
changes are required as in the sensitivity calculations. In an attempt to improve the
accuracy a methodology was developed in which rather substantial boundary
movements are first performed to obtain the direction of the velocity field[7] and
then scaled to the small changes required. Finally, it still may be necessary to
devise an approach, such as Laplacian smoothing, to move internal points, M i, as
well to use as velocities in Ref. 7. This aspect of the problem should be
investigated further since there is a possibility that too much nonlinearity exists in
such a smoothing operation to produce accurate sensitivities.
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DESIGN EXAMPLES

The following examples were modeled using the mesh generation capability
developed by Shephard and Yerry[8,g] and documented in Reference 6. Computer
times given are for an IBM 3090. Response sensitivities were computed using a
special version of NASTRAN in which semi-analytlc grid sensitivities were
implemented.

Two examples are used to investigate the efficiency and accuracy of shape
sensitivities using automatic mesh generation. For an idealized torque arm shown in
Fig. 2 and an upper control arm shown in Fig. 3 the model size information is given
in Table 1. The torque arm is loaded at one hole and clamped at the other. The
control arm is loaded at the small end and clamped at both holes on the large end.
The geometrical models are shown in Figs. 4 and 5. The cross-hatched surfaces in
these figures indicate the design variation usecl to compute sensitivities. In an actual
design study, it would be desirable to allow all surfaces to vary, but for this
example only a single surface will be considered. Behavioral sensitivities will be
computed for the displacement at the loaded node with respect to the specific
surface movement taking the form of a quadratic function. Stress sensitivities were
not computed since they are merely a function of displacement sensitivities. Table 2
gives the perturbation data. Only a small fraction of the initial mesh generation
time is required to locally update the mesh for sensitivity calculations and the
sensitivities agree quite well with the finite difference values. It is believed however
that the analytical values are more accurate than the finite difference values. It is
very difficult to accurately input the perturbed mesh data to NASTRAN, even using
extended precision fields, whereas the grid point sensitivity data for the analytical
calculation requires the veloclty[7] values which can be input much more accurately.

Table 1 Mesh Generation Data

NODES SOl.lOS MESH QEHEP,ATION TIME

;T

k

t

U

.i-

TORI;{4JEARM

CONTROL ARM

826 2875

975 3192

Table 2 Mesh Sensitivity Data

MESH PERTURBATION TIME SEHSITIVI"I'Y F.D. SEHSITIVI"TY

TORGLUEARM

CONTROL ARM

1.3 sec

1.8 sec

.00280

.00405

.oo28s(2 )

.oo4o1(-1 
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Fig. I Mesh-Geometry-Dimension Relationship
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Fig. 2 Torque Arm Mesh
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Fig. 3 Control Arm Mesh
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Fig. 4 Geometric Model for Torque Arm

Fig. 5 Geometric Model for Control Arm
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Summary: This paper presents a technique for the integration of structural optimization facilities into a Computer Aided
Design environment. Problems in connection with the flexibility ofthe mathematical formulationand the system design
are discusse d The techniques have been implemented in the structural optimization system CAOS, and a practical
example of the use of this system _ presented

1. Introduction

Structural optimization has attracted the attention since the days of Galileo. Olhoff & Taylor [I] have producedan excellent
overview of the classical research within this field. However, the interest in structural optimization has increased greatly during
the last decade due to the advent of reliable general numerical analysis methods and the computer power necessary to use them
efficiently. This has created the possibility of developing general numerical systems for shape optimization. Several authors,
eg., Esping [2], Braibant & Fleury [3], Bennet & Botkin [4], Botkin, Yang & Beonet [5] and Stanton [6] have published
practical and successful applications of general optimization systems. Ding [7] and HOrnlein [8] have produced extensive
overviews of available systems. Furthermore, a number of commercial optimization systems based on well-established finite
element codes have been introduced. Systems like ANSYS, IDEAS, OASIS and NISAOPT are widely known examples.

In parallel to this development, the technology of Computer Aided Design (CAD) has gained a large influence on the design
process of mechanical engineering. The CAD technology has already livedthrough a rapid development driven by the
drastically growing capabilities of digital computers. However, the systems of today are still considered as being only the first
generation of a long mw of Computer Integrated Manufacturing (CIM) systems. These systems to come will offer an integrated
environment for design, analysis and fabrication of products of almost any character. Thus, the CAD system could be regarded
as simply a database for geometrical information equipped with a number of tools with the purlx_se of helping the user in the
design process. Among these tools are facilities for structural analysis and optimization as well as present standard CAD
features like drawing, modelling and visualization tools.

The state of the art of structural optimization is that a large amount of mathematical and mechanical techniques are available
for the solution of single problems. By implementing collections of the available techniques into general software systems,
o.neratinnal environments for structural optimization have been created. The forthcoming years must bring solutions to the
problem of integrating such systerrw into more general design environments. The result of this work should be CAD systems
for rational design in which structural optimization is one important design tool among many others.

2. The structural optimization system CAOS

A CAD based structural optimization system by the name of CAOS (Computer Aided Optimization of Shapes) has been
developed at the Institute of Mechanical Engineering, Aalborg University, Denmark. The purpose of this work is to conduct
experiments with various solutions to the CAD integration problems outlined in the preceding section. The widely used
commercial CAD system AutoCAD is used as the basis for CAOS, but the system concept is independent of the AutoCAD
data structure and the tecniques used inCAOS can therefore be applied in connection with most other CAD systems as well.

CAOS has been under constant development over a period of four years and is today a fully operational shape and topology
design system with a number of interesting features. In particular, CAOS offers solutions to the following important problems
of CAD integrated shape optimization:

1. There is a large number of possible formulations of the shape optimization problem. One may choose to minimize weight,
stress, compliance, displacement or any other property that can be derived from the geometrical model or the output from
an analysis program which is usually a finite element module. The same set of possibilities should be available for
specification of constraints. Mathematically, these different formulations lead to very different optimization problems.

2. In order to use a mathematical programming technique to solve the problem, the continuous shape of the geometry must
be described by a finite, preferably small, number of design variables. This problem is closely connected with the data

216



3,

.

structure of the CAD system which is usually not flexible enough to allow for the shape changes required by the optimiza-
tion module. For instance a circle ks defined uniquely by its radius and the coordinates of its center point. In connection
with a general optimization system, this data storage scheme has a serious drawback: the circle is bound to remain a circle.
It cannot with this data structure be turned into something else, el., an ellipse. The interface to the optimization system must
provide a conversion of CAD data into a form more convenient for shape optimization.

The geometrical information is interchanged rather than just passed on, ie., the initial geometry is passed fzom the CAD
mode[ to the optimization application and the optimized geometry goes the opposite way.

In most cases, the initial geometry possesses certain measures and shapes that are crucial to the functionality or fabrication
and therefore cannot be changed during the shape optimization process. A method must be found to maintain the f_nctiona-
lily of the geometry throughout the optimization process.

The initial CAD mode[ of the structure has to be converted into a finite element model to be used for the analysis, and this
finite element mesh must conform to the changes of the geometry as the optimization process progresses. It is not acceptable
for each iteration to call upon the designer to perform a new mesh generation "by hand". On the other hand, automatic
redefinitions of the mesh must constantly take the intentions that were laid into the initial mesh generation into
consideration. For instance, local concentrations of node points in areas of expected high suress gradients mast me pre-
served.

3. Design model and analysis model

CAOS is based on the important distinction between design model and analysis mode[. The design model is a variabie
description of the shape o{ the structure. It is closely connected with the CAD model and totally distinct from the f'm/te
element model that is used for the analysis. The design model consists of so--c_lled design elements as presented by Braibant
& Fleury [3]. The design elements have a number of attractive features:

1. They lend themselves to a very easy mesh generation. A number of randomly placed nodes on the boundaries is the only
input needed for a complete mesh generation in the design elemem. Thus, automatic generation of an analysis model
based on the current shape of the design model is achieved.

. The boundaries of the design elements can be curves of almost any character. [t is therefere very simple to generate
relatieely complicated geometries with a sinai/number of design elements. Furthermore, geometrical requL-ements to t/_
firm[ shape are easily specified by assigning specific curve types to the boundaries in question.

. The shapes of the boundaries are controlled by a number of master nodes which the boundaries pass through. This c_eates
an evident connection between the design variables (namely the positions of the master nodes) and the shape of the
geometry.

4. With the drawing aids of the CAD system it is very easy to draw the design elements in a separate drawing layer on top
of the original drawing.

. Design elements provide a way of liberating the geometrical description from the data structure of the CAD system.
Through changes of the boundary shapes, design elements have the capability to represent several different shapes with the
same element configuration.

4. Optimization type

The design models of CAOS can be subjected to either topology or shape optimization. The topology optimization is
performed by the HOMOPT system developed by Martin Bendsee which represents an important Weak-through in structural
optimization. HOMOPT works directly on the finite element analysis model generated by CAOS. Furthermore, CAOS has been
equipped with facilir.ies for visualization of the optimized topologies that come out of HOMOPT. We shall see later, how the
user based on this information can continue with an actual shape optimization. The topology optimization minimizes the
compliance of the structure with a bound on the available volume. For further information on the homogenization method,
please refer to Bends_e [9].

The shape optimization is initiated by inserting the necessary specifications, ie. design element definitions, curve types,
master nodes etc., into the CAD model. This is all done interactively using the drawing and visualization facilities already
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available in the CAD system. This also means that the specifications can be erased, moved, redefined or otherwise modified
as any other entity in the CAD model. Based on these specifications, a number of simple text riles specifying the optimization
problem are generated. The actual optimization is solely based on these files and is therefore independent of the CAD system
data structure.

5. Mathematical formulation

The mathematical formulation of the shape optimization problem is as follows:

Minimize f(a._ i=l..n-I (I)

Subjectto g,(a_),_Gi, i=l..n-1,j=l..m (2)

a,., ai "_a,, i=l..n-1 (3)

where n-1 is the number of so--called design variables, a_,and m is the number of constraints. (3) are side constraints, i.e.,
upper and lower limits for the design variables. The functions f and gi are specified by the user as a part of the optimization
specification. They can be picked and combined freely from a library with the following contents:

1. Weight
2. Elastic displacement of a given material point
3. Maximum elastic displacement of any point in the structure
4. Stress (several types) at a given material point
5. Maximum stress (several types) at any point in the structure
6. Compliance

Mathematically, different entries in this list lead to very different optimization problems. Entries 2 and 4 are ordinary scalar
functions that can be derived directly from the output of the finite element analysis. Entries 1 and 6 are of integral type and

require some postprocessing of the results to be evaluated. Entries 3 and 6 lead to rain/max-problems with non-differentiable
objective functions.

CAOS makes use of the so-called bound formulation presented by Olhoff [10]. This formulation enables the CAOS system
to handle the optimization problem in a uniform way regardless of the blend of scalar-, integral- and min/max--cTiteria defined
by the user.

Given the min/max objective function f = max(f_ j=l..p,_ and a number of constraints, g, = max(g_)., G_, k=l..m, j=l..p_,
we get the following bound formulation of the problem:

Minimize 13 (4)

a_, B

Subjectto

f,(at)- 6 s O, j=l..p,,i=1..n-1 (5)

w_g,,(a3 - 13• O, k=l..m,j=l..p,,i=l..n-I (6)

a,,_a_,__, i=1..n-I (7)

An extra design variable, 13,has been introduced, rendering the total number of variables to n. By m we designate the
original number of constraints regardless of whether these are scalar-, integral- or min/max-functions. The number of points
whereby a mirdmax.-condition k is represented, eg. the number of nodal stresses among which the maximum stress is to be
found, is termed p_. This number is obviously I if condition k is scalar or integral. The weighting factors w,. are imposed on
the constraints to allow them to be limited by the same 13-value as L Prior to the carl of the optimizer, wk is found fi'om the
relation:
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G_w. = [3 -* w, = _/G_ (8)

The tableau(4)through(7)isvalidregardlessoftheblendoffunctionsland g,,and themathematicaloperationsperformed
are thereforeidenticalforany problem thatthe usercouldpossiblydefine.The problem (4)--(7)issolvedby sequential

programming usingeithera SIMPLEX algorithmortheMethod of Moving Asymptotes by Svanberg [I1].

6. Practical example

The example de_ribed hereistheoptimizationofa supportbeam fi'oma civilaircraft.Furtherexamples ofapplications
ofCAOS areavailableinref.[12].The structureinquestion(fig.I)hasthefunctionofcarryingthefloorinthefuselageof

an Airbus passenger carrier and must meet the following requirements:

m

2P P- 10 kN

t

2400
p,

Fig. 1. Initial geomeoy with loads and boundary conditions.

I. The upper and lower surfacesmust be planarand thedistancebetween them cannotbe changed.

2. The maximum deflection of the beam must not exceed 9.4 mm under the given load.

3. The maximum von Mises stress must not exceed 385 N/ram'.

4. There must be a number of holes in the structure m allow for wires, pipes etc. to peas through. The number, positions
and shapes of the holes are free as long as they are of reasonable size.

The purpose of the optimization is to find the design flint minimizes the weight of the beam while not violating any of the
requirements mentioned above. Because of the symmetry of the mructme, we shall analyze and optimize only the right haLf
of the beam. The geometry of fig. I has a deflection of 10.1 mm and is thus infeasible by 7.4 %.

We shall initially perform a topology optimization of the structure. As previously explained, this requires a volume bound
to be defined. We pick a volume bound of 56% of the fullbeam and require furthermot'e the rim of the structure to remain
solid. The topology optimi_tion minimized the compliance by dism'oming the available material optimally within contours
of the beam. The resulting topology is shown in fig. 2. It is evidem that a number of holes allowing for the necessary passage
of wires, pipes etc. have emerged.

We shall now anempt a shape optimization based on this topology. We therefore remm to the original definition of the
problem, i.e. minimize volume with a bound on displacement and stress. [n the creation of the shape opclrnization model, we
shall take the cost of manufacture into account. The complex/W of the geometry should therefore be keptat a minimum, i.e.,
thee is a limit to the number of holes that are practical for a _ like this. Furthermore, the upper right corner of the
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This part is
considered to

be one hole

This part has
no struc-
tural sig-

ficance

Fig. 2. Result of topology optimization.

Fig. 3. Initial finite element mesh of optimized topology.

Fig. 4. Final finite element model.

frame has been removed. This part of the geometry has a function,
but it is sa'ucmrally insignificant and can therefore be excluded
fzom the shape optimization and added to the modified structure
afterwards. This simplification greatly facilitates the generation of
the design model. Fig. 2 illustrates the modifications that have
been imposed on the optimized topology and the resulting initial
finite element mode[ is shown in fig. 3.

CAOS reduces the volume significantly by changing the shape
of the the design of fig. 3. The final design is illustrated in fig. 4,
based on which the designer can update the CAD model and
perform the final adjusmlents, eg. add the su-ucmrally insignificant
upper right corner that was removed in order to facilitate the
generation of an analysis model, and thereby yield the final design
of fig. 5. This design is feasible and the volume is reduced by
42% in comparison with the initial design of fig. 1. Because of the
CAD integration, this rather complicated geometry is available
direaly in the CAD system where the continued design process
can takeplace.

The initial topology optimization allows in many cases the shape
optimization to arrive at a much better final result than could
otherwise be achieved. A shape optimization of the topology of fig.
1 has been anempted and resulted in a volume reduction of only
5%, ie., for problems like the this, where there are large pos-
sibilities for geometrical variations, the topology optimization is a
valuable tool in the design process. It is the experience from the
present example that topology optimization should be used in the
early stages of the development in order to inspire the designer and
lead him/her in a beneficial direction. The result of the topology
optimization is merely a crude guess and can therefore safely be
modified by the designer to meet practical requirements, before the
more detailed shape optimization is performed.

/

Fig. 5. Example of final geomea,y slightly modified by the designer. The upper right corner has been added again.

X
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7. Conclusion

The experience from working with CAOS is that the CAD integration of structural optimization is a most valuable tool in
the design process. The interactive facilities of the CAD system greatly facilitates the specification of the problem and the
optimized geometry is placed directly in the environment where the continued design process will take place.

We have also learned the importance of se, ing a toolbox of various design facilities at the disposal of the designer.
Structural optimization enforces rather than removes the creative aspect of designing, and the final result is therefore very
difficult to predict. The collection of structural optimization facilities must be versatile enough to a/low the designer to continue
work no matter what type of structure emerges. The final design must be a product of creativity rather than availability or lack
of analysis facilities.

• .ii

[11

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

References

[1o]

[II]

Niels Olhoff & John E. Taylor: On Structural Optimization. Journal of Applied Mechanics, vol. 50, pp. 1139 - 1151
(1983).

Bj6rn J.D. Esping: The OASIS Structural Optimization System. Computers & Structures, Vol. 23, pp. 365-377
(1984).

[12]

V. Braibant & C. Fleury: Shape Optimal Design using B-splines. Computer Methods in Applied Mechanics and

Engineering, vol. 44, pp. 247 - 267 (1984).

J.A. Bennett & M.E. Botkin: Structural Shape Optimization with Geometric Description and Adaptive Mesh
Refinement. AIAA Journal, voL 23, no. 3, pp. 458 - 464 (1985).

M.E. Botkin, RJ. Yang & J.A. Bennet: Shape Optimization of Three-dimensional Stamped and Solid Automotive
Components. James A. Bennet & Mark E. Botkin (ed): The Optimum Shape. Automated Structural Design, Plenum
Press, New York (I986).

E.L. Stanton: Geometric Modeling for Structural and Material Shape Optimization.
James A. Bermet & Mark E. Botkin (ed): The Optimum Shape. Automated Structural Design, Plenum Pregs, New York
(1986).

Yunliang Ding: Compendium. Shape Optimization of Structures: A Literature Survey. Computers and Structures,
voL 24, no. 6, pp. 985-1004 (1986).

H.R.E.M. HOmlein: Take-Off in Optimum Structural Design. C.A. Mota Snares (ed.): Computer Aided Optimal
Design. Structural and Mech_ical Systems. NATO ASI Series F: Computer and System Sciences, VoL 27, Springer
Vetlag (1987).

Martin P. Bendsoe: Optimal shape design as a material distribution problem. Structural Optimization, vol. 1, no.
4, pp. 193-202 (1989).

Niels Olhoff: Multicriterion structural optimization via bound formulation and mathematical programming.
Structural Optimization, voL I, no. 1, pp. 11-17 (1989).

IC Svanberg: The Method of Moving AsymptoteJ - a new method for structural optimization. International Journal
for Numerical Methods in Engineering, vol. 24, pp. 359-373 (1987).

John Rasmussen: Collection of Examples - CAOS optimization System, 2nd. edition. Special report no. lc, Institute
of Mechanical Engineering, Aalborg University, June 1990. ISBN 87-89206--02-9.

221



S _ _ _._ z.¢ /

,.j _c ft /

A Geometric Representation

%
t

i-

N94- 71447

Scheme Suitable for Shape Optimization

Daniel A. Tortorelli

General Motors Advanced Engineering Staff

Warren, Michigan 48090-9010

!

Abstract

A geometric representation scheme is outlined which uti-
lizes the natural design variable concept. A base configu-

ration with distinct topological features is created. This

configuration is then deformed to define components with
similar topology but different geometry. The values of
the deforming loads are the geometric entities used in the

shape representation. The representation can be used for
all geometric design studies; it is demonstrated here for
structural optimization. This technique can be used in

parametric design studies, where the system response is
defined as functions of geometric entities. It can also be
used in shape optimization, where the geometric entities

of an original design are modified to maximize perfor-
mance and satisfy constraints. Two example problems
are provided. A cantilever beam is elongated to meet

new design specifications and then optimized to reduce
volume and satisfy stress constraints. A similar optimiza-

tion problem is presented for an automobile crankshaft
section. The finite element method is used to perform

the analyses.

1 INTRODUCTION

A shape representation scheme is outlined which utilizes
the natural design variable concept. It is ideally suited for

modeling objects with similar topology but different ge-

ometry. This approach is explored in [1, 2, 3, 4, 5] where
the values of loads, used to deform the body, are the de-

sign variables in the shape optimization; hence, the ter-
minology aatural design variables. The method is suited
for all geometric design applications; and is demonstrated

here for structural optimization.
Shape representation is a concern in parametric design

studies. In these studies, a base design is created which

is characterized by a series of fixed topological features,

(e.g. holes and fillets) and variable geometric entities (e.g.
dimensions). An analysis technique, derived from the ge-
ometric entities, is formulated to evaluate the system's

response. The response for new designs with varied ge-
ometries is then readily determined. For example, con-

sider a cantilever beam with transverse tip load P. In this
problem, the dimensions: length I, width w, and height

h, comprise the geometric entities; and the maximum

bending stress is defined through the formula # = _-_ht .
When the finite element method is used as the analysis
tool, an automatic mesh generator program is developed

which creates the input deck. This approach is presented

in [6] for piston design. Creation of these mesh genera.
tots can be time consuming. Furthermore, large geomet-
ric variations or changes in topology necessitate modifica-

tions to the mesh generation program; these modifications
may also be time consuming.

: Detailed reviews of structural shape optimization

methodologies appear in [7, 8, 9, 10]. In these articles it
is noted that geometric representation comprises a crit-
ical aspect of the shape optimization problem. A sub-

set of the geometric design entities are chosen as the de-
sign variables in the optimization. The remaining entities
are fixed to meet design and manufacturing requirements.

The design variables are altered to improve performance
(usually volume dependent) and satisfy constraints (typ-

ically stress and displacement dependent). For example,
in the cantilever beam problem one may wish to mini-

mize volume and limit the maximum bending stress to a

percentage of the yield strength. In this case, only two
of the three geometric entities that describe the beam are
used as design variables. The span is fixed by the design
requirements, so the length is invariable. Only the height

and width are varied to obtain the optimum shape.

Several means for selecting the geometric design vari-
ables have been proposed when the finite element method

is used to perform the analyses required by the shape

optimization algorithm. A convenient choice for these
variables are the elements of the node coordinate vector.

However, as noted in [13], this vector contains too many
elements which leads to convergence problems in opti-
mization algorithms, geometric discontinuities over the
boundaries, and poor quality finite element meshes. To

alleviate this problem, hierarchical parametrization meth-
ods have been suggested. In these methods the node coor-

dinates are related to a small number of control points, for

instance see [11, 12, 13, 14]. The control point coordinates
are then used as the design variables. Unfortunately, cre-
ation of the hierarchical design structures can be tedious

for large finite element models. Currently, commercial fi-

nite element pre-processors offer no capabilities to assist
the engineer with this task.

Recently, natural design variable concepts have been
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introduced for shape representation [1, 2, 3, 4, 5]. In
these methods, the original design configuration is sub-

ject to a set of design loads and a shape change analysis
is performed. The elements of the design load set, i.e. the

load parameters, are the design variables used in the op-
timization; and the deformation produced by these loads

transforms the original structure into the optimal shape.

To meet geometric constraints for design and manufac-
turing specifications (eg. fixed surfaces, planar surfaces

remaining planar, or cylinders remaining cylinders) addi-
tional loads in the form of displacement boundary condi-

tions are applied; and linear multi-point-constraints are
used. In this way, when the finite element method is

used to perform the analyses, commercially available pre-
processors can be used to create the design data. Internal

mesh distortions introduced from this natural design vari-
able approach are observed to be less severe than those

resulting from purely geometric methods [10].

To maintain boundary smoothness requirements, Ra-

jan and Belegundu [3, 4] lay second-order elements over
the existing structure when performing the shape change

analysis. Yao and Choi [5] pave the bounding surfaces
with Bezier surfaces in a manner similar to that sug-

gested in [14] to retain surface regularity. In this latter
technique, movements of all surface nodes are linked to

the motion of the control points. Prescribed displace-

ments, used as the design variables, are then enforced at
the control points to deform the structure. Mathematical

relationships are used to relate the displacements of the
control points to the surface points. By using prescribed

displacements as the design variables rather than forces,
the effects that the design loads have on the structural
shape are more readily interpreted by the designer.

In some cases, the design loads can be accumulated

throughout the optimization process {5]. In [2, 3, 4] this
accumulation is not performed. Instead, after each design

iteration during the optimization, the structure is rede-

fined by the deformed configuration resulting from the
shape change analysis; and the design loads are zeroed.

This can be thought of as an updaled-Lagrangian shape
representation If the shape change problem is linear, this

practice of resetting the design variables leads to unnec-
essary computations, as will be seen later.

In this paper, a detailed development of the natural de-

sign variable concept is presented as it applies to paramet-

ric design studies and shape optimization. The method-
ology follows that of in [1, 2, 4, 3, 5]. Here, as in [5],
the design variables are not reset after each design it-
eration, i.e. a total.Lagrangian shape representation is

presented. In this way, great computational saving are

obtained if the shape change problem is linear. Thermal
loads are introduced into the design load field to obtain

localized shape changes. For example, consider the can-

tilever beam problem. A global deformation of the entire
beam is produced if transverse design loads are applied

at the free end. Ideally, we would like to obtain localized

shape changes of the tip region to optimize the body.

This localized deformation can be obtained from thermal

expansion which results from heating or cooling the tip
region. Boundary regularity is maintained by using the

methods in [1, 4, 3, 5]. Geometric constraints are en-
forced with essential boundary conditions and nonlinear

multi-point-constraints, thus surfaces described by cylin-
drical, spherical, and toriodal surfaces are retained. To

incorporate nonlinear multi-point constraints the sensi-

tivity derivations that appear in [15] are utilized. The
treatment of nonlinear shape change problems extends

the works of [1, 2, 4, 3, 5].
In the following section, the shape representation

scheme is presented as it applies to parametric design
studies and optimal design algorithms. Then, two ex-
ample problems are provided. In the first, a cantilever

beam is elongated and then optimized to reduce volume

and satisfy stress constraints. In a similar problem, an
existing automobile crankshaft is optimized. The finite

element method is used to perform the analyses.

2 SHAPE REPRESENTATION

CONCEPT

In this section, the shape representation scheme is pre-

sented. Initially, it is described in the context of the opti-

mal design process. Then, it is specialized for parametric
design studies. Some general remarks regarding the algo-
rithm are also supplied.

2.1 OPTIMAL DESIGN ALGORITHM

In the optimal design process, two configurations of a
body fl with bounding surface F are considered, the base

configuration X_* and the design configuration X_d. X b
and X a denote the places that a particle X 6 r occu-

pies in the base and design configurations, respectively.

The base configuration remains fixed and coincides with
the body f_; so X b is the position vector of the material

particle X. The design configuration is obtained through
the deformation that results from an application of the of
design load field 5 a = [b a, E Id, S In, u pa, $pd]

X a = X * +u a (1)

b a,E td,and Sla denote the design body force,initial

strain,and initialstressactingin ft;and upa and spa

representprescribeddisplacementand prescribedsurface

tractionactingon r. ua isthe resultingshape displace-

ment field.
We consider two analyses in this development. The

shape displacement field u d, is determined by a shape
change analysis. Once u a is known, equation (1) is used

to define the design configuration X_- Next, the real

analysis is performed. This is the conventional analy-

sis performed by the engineer. The real load field ._ is
applied to the current design X_d and the real response

field if', of the system is evaluated. Thus, X_d is the
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undeformed (original) configuration for the real analysis.
Once ,.o. is known, the cost and constraint functionals

for the design are determined on X_d. The values of these
functions are the components of the constraint vector field
G.

Conservation of mass requires the density of the real

configuration to vary as .T _ is modified. Here, we consider
this variation when performing the shape change analysis.

However, before we perform the real analysis we equate
the densityofX_b to that of X_d;i.e.,we use a constant

densityin X_d forallrealanalyses.Ifthiswere not the

case,therealbody forcesand mass would remain constant

foralldesignconfigurations.Clearly,thissituationmust
not be allowed.

In a finiteelement implementation of the naturalde-

sign variableconcept second-orderelements (e.g.beams

and plates),Beziersurfaces,and multi-pointconstraints

may be used toretaindesignrequirements.Second-order

elements can be placedon the surfaceof the body when

performing the shape change analysis[3,4].In thisway,

boundary regularityof the deformed finiteelementmesh

(and hence the designconfiguration)ismaintained.These
elements must be removed beforetherealanalysisisiniti-

ated.Design loadsinthe form ofprescribeddisplacement

boundary conditions,definedthrough the controlpoint

movements of Beziersurfaces,can alsobe used to main-

tain boundary regularity[I,5]. Multi-pointconstraints

may be appliedtoenforcedimensionalrequirements.For

example, rigidbars can be arranged as the spokes on a

wheel ofa cylinderto fixthe radius,thus allowingtrans-

lationand rotationofthe cylinder.Likethe second order

elements,theseadded constraintsare to be removed be-

foreperforming the realanalysis.The suggesteduse of

linearmulti-pointconstraintsappears in [2].Here, we

use the developments in [15]toextend thisidesso that

nonlinearconstraintsmay be incorporated.

The realresponseisan implicitfunctionof the design

forces.Variationsin _'_,produce alternatedesigncon-

figurationsX_, and ultimatelyaffectthe valueofG. In

a shape optimization,the design_ieldisdefinedtomini-

mize the costfunctionand satisfythe constraints.Here,

the design field is equivalent to _'_.

In this paper, we rely on numerical optimization al-
gorithms to select the optimal load set _'_. These algo-
rithrns are restricted to finite-dimensional design spaces.

With this motivation, we parameterize _ over X_b by an
M-dimensional vector ¢_ and an N-dimensional vector

and a set of basis functions. This type of pararneteriza,
tion is used in the finite element method, where the load

fields are defined at node points and interpreted locally

in each element by shape functions [16]. The parameters
in @ are used to maintain geometric design and manufac-

turing constraints. Typically, they define prescribed dis_

placements over selected surfaces; they are held constant
during the optimization. The parameters in ¢ describe
loads which locally deform portions of the body into the

optimum shape. They are selected by the optimization

algorithm; thus they serve as the design variables. (; .iS
is written as an L-dimensional vector; its elements con-
sist of the values of the cost function and the L - 1 con-

straint functions. The discretized constraints components

Go a = 2, N can be defined by evaluating the constraint

field G at a distinct point or averaging the value of G

over a subregion of X_,.
For example, suppose it is desired to optimize a can-

tilever beam of length I' for minimum mass subject to a
constraint on'the maximum bending stress. A beam of

length 1, width to, and height h serves as the base con-

figuration X_,. To ensure the length requirement is met,
a prescribed displacement with value I' - 1 is enforced at
the tip face in the longitudinal direction. This value 1_- 1,

is given by a parameter in _b. Thermal loads are applied
to locally deform the beam's height and width. These
load values are related to parameters in _. The design

load field ._.d (composed of the prescribed displacement

and thermal loads) is applied to X_b; and a shape change
analysis is performed to determine the current design con-

figuration X_', of the beam. Then, the real loads _ are
applied to X_'; the real analysis is performed to evaluate
the real response ,b_'; and the maximum bending stress

is determined. At this point the mass is evaluated over

X,'. Next, G is assembled; its components consist of the
mass and the maximum bending stress. As the values

in t0 change, the design configuration X_,, is modified,
and the value of G is altered. To determine the _o that

will minimize mass and satisfy the stress constraint an

optimization algorithm is used.
Most numerical optimization strategies are iterative.

The existing design configuration X,d, is modified; and
G is re-evaluated on the modified structure. The design

must also be evaluated for each iteration.sensitivities

Sensitivityinformationisused by the optimizertoselect

the directionofthe designvariation6¢, that willproduce

the most improved design.The magnitude of6¢ isdeter-

mined by one ofseveralmethods [17].Once/_p isknown,

the designisupdated to_ - _+6_; and the next design
iterationcommences. Afterseveraliterations,the magni-

tude of6_ becomes small;at thispoint,the program has

convergedto the optimizeddesign.

In the presentapproach,one shape change analysisis

performed foreach designiterationto determine the de-

signconfiguration X_4. These time consuming analyses
represent one serious drawback of natural design variable
method. However, if the shape change problem is linear,

only one shape change analysis is required throughout the

design process. We use _superposition to define current

configuration X,_d for each subsequent design iteration,
i.e.

N
d

a=1

where u_ is the displacement field on X_b obtained by

equating _ in _.d to zero; and u_° is the displacement
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field on X,o obtained by equating _0o in 5 d to one, and

equating all the remaining parameters in ¢ and _o to zero.
In all, this requires N + 1 analyses to determine the dis-

placement fields defined in equation (2). If the finite el-
ement method is used to solve the shape change prob-
lem, then this amounts to one stiffness matrix assembly

and decomposition followed by N + 1 load vector assem-

blies and back substitutions for alldesign updates. In the

updated-Lagrangian shape representation approach, the
base configuration is updated after each design iteration.

This requires a stiffness matrix assembly and decomposi-
tion followed by N + 1 load vector assemblies and back

substitutions for each design update. Thus, in the total-

Lagrangian shape representation formulation, significant
computational advantages are obtained. Comparisons
between finite element meshes created by the updated-

Lagrangian and total-Lagrangian methods exhibit subtle

differences [5]. Thus, the total-Lagrangian method may
be preferred in light of its efficiency. In [5], the base de-

sign is updated periodically during the optimization.
Consider the case where we wish to design several com-

ponents which are characterized the same base configu-
ration but different values of _, i.e. they have different
dimensions. If the shape change problem is linear, we

express u_ as

M

where u_, is the displacement field on X_, obtained by

equating _ in _# to one, and equating all the remaining
parameters in ¢ and _o to zero. This equation requires

the solution of M additional analysis. In finite element
method implementations, M additional load vector as-

semblies and back substitutions are required. In all, one
stiffness matrix assembly and decomposition, followed by
M + N load vector assemblies and back substitutions are

performed for the shape change analysis. After this initial
analysis is completed, we can readily obtain the design
configuration that corresponds to any ¢ - ¢ combination

from equations (2) and (3); no re-analysis is necessary.

To evaluate the sensitivities _ we follow the approach

used in [18, 15]. Therein, explicit sensitivities of a general
response functional are derived with respect to the vari-

ations of both shape and non-shape design parameters.
Domain parameterization is used to derive shape sensi-

tivities [19]. In this technique, an invertable mapping
is introduced which relates the undeformed configuration
to a fixed reference configuration and a finite set of de-

sign parameters. The shape sensitivities are expressed
in terms of the explicit variations of the mapping. In

[11, 12, 13, 14] the mappings are defined by Bezier and

parametric curves and surfaces [20]. Variations of interior
line and surface points with respect to control point vari-

ations are readily determined for these mappings. Once
these explicit variations are known, the shape sensitivity

analyses can be performed by following the procedures

outlined in [18, 15]. As noted in [15], if the number of
design parameters exceed the number of constraint func-
tionals the adjoint sensitivity method requires less anal-

yses than the direct differentiation method and should
be used; otherwise the direct differentiation technique is

preferred.
When the natural design variable method is used, addi-

tion consideration is required to evaluate the shape sensi-

tivities. Here, equation (1) defines the invertable mapping
X _ = Xa(X b, _o), that relates the undeformed configura-

tion X_' to the reference configuration X_b and the design

parameters _o. The problem arises when we attempt to
determine the explicit variations of this mapping. X _

is implicitly defined by _ and a boundary-value problem;

thus the explicit variations of the mapping _g_-6_o are not

available. To determine o-¢ff_d-,_ consider thereadily identity

0X _ 0(X _ + u _)
w

0_ O_

0u d

- _ (4)

derived from equation (1); recall that X _ is constant.

°ud is the partial derivative of the shape displacemento¢
field with respect to the design vector _. This term can

be obtained by using the direct differentiation method

described in [15]. Thus, two sensitivity analyses are re-
quired at each design iteration when the natural design
variable method is implemented. First, a direct differenti-

ation design sensitivity analysis of the shape change prob-
lem (defined on X_* with loads _-a) is used to determine

°u_ Once °u_ is known, a second, adjoint (if L < N)
a_,- _,

or direct differentiation (if L > N) sensitivity analysis is

performed for the real problem (defined on X_d with loads

._') to determine _.
The fact that two sensitivity analyses are required for

each design iteration represents the second serious draw

back of the natural design variable method. Fortunately,
these sensitivities can be obtained in an efficient manner

if the finite element method is used. In the real sensitiv-

ity analysis, a minimum of L or N load vector assemblies

and back substitutions are required to determine °a--_.

These analyses are performed using the decomposed tan-
gent stiffness matrix from the real analysis. The form of
the load vectors and the means for evaluating the sensitiv-

is given in [15]. However, before these sensitivitiesity

are evaluated, °u_ must be determined. This requires N
additional load v_vectorassemblies and back substitutions.

These N analyses use the decomposed tangent stiffness
matrix from the shape change problem. Each of the N
load vectors is obtained by equating _o_, in ._-d to one, and

setting all the remaining parameters in ¢_and ¢, to zero

(see [15] for details). The resulting N displacement fields

equal the sens,t,vmes _u" a = I, At.

The naturaldesignvarmbh method requiresone shape

change analysisto determine the displacement u_ and
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one sensitivity analysis to evaluate the sensitivities _--
at each design iteration. In the finite element context,
this requires one additional stiffness matrix formulation

and decomposition, followed by N + I additional load vec-
tor assemblies and back substitutions in addition to the

used to evaluate S r and -_ at eachreal analyses design

iteration. Thus, a significant computational penalty is

paid.
This computational penalty is significantly reduced if

the shape change problem is linear• As previously noted,
one analysis is performed and then superposition is uti-

lized to evaluate u d (cf. equation (2)). In addition, we
will show that no additional analysis is required to eval-

• . • d

uate the senmhvlty _!:.. For this linear problem, the
tangent stiffness matrix is constant, i.e. independent of
ud; and from [15] it is seen that

oqu d

--u_, a= 1,N (5)

where u_° are the displacement fields which have already
been evaluated in equation (2). 1 Thus, no shape change

sensitivity analysis is required. In all, to evaluate the

deformed configuration X_d and sensitivities _ for all
design iterations, only one stiffness matrix assembly and
decomposition, followed by a total of M + N load vector
assemblies and back substitutions are performed. The

current design configuration is obtained from equations

(2) and (3); and the sensitivities are evaluated from equa-
tion (5). Further, ao additional shape change analyses
are required to optimize designs with different _ values;
i.e. only one shape change analysis is performed to opti-

mize any design created from X,*- For the linear shape
change problem only a small computational penalty is

paid when we incorporate the natural design variable
technique with the total-Lagrangian shape representa-
tion. In the updated-Lagrangian shape representation,

this computational savings is not realized.

We are now in position to outline the optimization al-
gorithm which utilizes the sequential linear programming

strategy [17]. Initially, a base design configuration X_h is
chosen; the geometric constraints _bare specified; a start-

ing value of the design variables _ is selected; and the real
load field ._ is supplied. For each design iteration, the
design load field ._.d is assembled; a shape change analysis
is performed to evaluate the shape displacement field u d

0_u2.
and the sensitivities _, , the current design configuration

X,, is updated from equation (1); the real response 5" is

determined; the constraint vector G and sensitivities °T_¢
are evaluated; and the optimizer is called. The design pa-

rameters in _ are modified by the optimizer and the pro-
cess is repeated until the design converges. If the shape

change problem is linear, then the shape change analysis
is initially performed, rather than at each design itera-

tion, to evaluate the displacement fields u_e, B = 1, M

z These sensitivities are consistent with those appearing in [2].

and u d = °u--Z_ a = 1,N. At each design iteration, the
qPo 8_ '

current design configuration X,_ is updated from equa-

tions (2) and (3).

2.2 PARAMETRIC DESIGN STUDY

In a parametric design study, a portion of the aforemen-
tioned algorithm is used. The base design configuration

X,b, is supplied and is subsequently deformed by applying
the load set ._-d. _bis chosen to ensure that the appropri-

ate geometric design and manufacturing constraints are
satisfied. The elements of _ comprise the design param-
eters. For each _, the design load field ._'d is assembled;

a shape change analysis is performed; the current design
configuration X_' is updated from equation (1) 2; the real

response 5 _" is determined; and the constraint vector G
is evaluated. Plots or tables of performance verses de-

sign parameters are then used to choose possible design
candidates. No sensitivity information is required.

When the finite element method is used to perform the
analyses, this procedure creates the finite element mesh

for each of the varied designs. For this reason, it is viewed

as a mesh generator [1]. If large geometric changes or
topological changes are desired, then the base design must
be altered. If a mesh generator is used, additional cod-

ing is required to reflect any such changes. Most likely,
changes to the base design can be performed more easily
than changes to the mesh generation program.

2.3 SIDE NOTES

The format of the optimal design algorithm is not unique.

Here, sequential linear programming is utilized. Other
possibilities are sequential quadratic programming or the
modified method of feasible directions [17]. In these meth-
ods, an inner l-dimension search loop is used to determine

the magnitude of the design variation vector 6_0. In this

loop, the the design variables are modified and the value
of the constraint vector G is re-evaluated; no gradient

information is requested. Often, rather than performing
a complete reanalysis to determine G, efficient approx-

imate problems are created to predict these values, for
example see [21].

The means for evaluating the shape sensitivities
is not unique. The material derivative approach [22] or

semi-analytical approach [23] are also viable options. All

of these approaches yield identical results when used cor-
rectly.

Several techniques have been suggested to reduce com-
putational requirements. In [3] it is noted that softer ma-
terial properties for the shape change analysis may lead

to faster convergence of the optimization. It is suggested

in [1, 5] to use substructuring when performing the shape

211" the shape change problem is line.r, the displacement fields

U:m, _ -- t, M and U_o _ = 1, N are evaluated once;, and the

current design confib'uratioa X,¢d is updated from equations (2) and

(3).
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Figure I: Cantileverbeam base design. Figure 2: Cantilever beam initial design.

change analysis.In thisway, the shape change analyses

can be performed more efficientlyifa portionofthe finite

element model isheld fixedduringthe designprocess.

Finally,note thatthismethodology isnot restrictedto

the finiteelement method, or structuralproblems. Any

means may be used to evaluatethe system's response,

and the response for any system which isgoverned by

geometricentities(e.g.heat transferand fluidsproblems)

can be optimizedor studiedin a parametric manner.

3 EXAMPLES

Two example problems are presented in this section. A
cantilever beam is elongated to meet new design spec-

ifications; and then it is optimized to reduce volume
and satisfy stress constraints. In a similar problem, an

automobile crankshaft is optimized. In all cases, the
displacement-based finite element method is used to per-

form the analyses; and sequential linear programming is

used to perform the optimization.

3,1 CANTILEVER BEAM

Consider the finite element model of a cantilever beam

shown in figure 1. The beam is fixed at the wall and sub-
jetted to a distributed transverse tip load of 10,000N. The

isotropic beaxn has a Young's modulus of 1.0 x 107MPa
and a Poisson's ratio of 0.3. The length, width, and

height of the beam is 50ram, 10ram, and 20ram, respec-
tively. The finite element model consists of 80 8-node

bilinear hexahedrons, 189 nodes, and 540 degrees of free-

dom. Current design requirements limit the maximum
allowable bending stress magnitude to 3000 MPa. A sim-

ilar problem appears in [24, 11].
For the current design problem, the beam is required

to be 60ram long and 10ram wide; only the height is al-

lowed to vary. The existing finite element model, i.e.
the 50 x 10 x 20ram beam, shown in figure 1, is used

as the base design configuration X,,. To meet the geo-
metric design constraints, prescribed displacements with

magnitude 10ram are applied in the positive z-direction
to the free end of the beam; the side surfaces are con-
strained in the z-direction; the fixed end is constrained in

the z-direction; and the bottom edge of the fixed end is
constrained in the y-direction. The parameters describ-
ing these prescribed displacements are the elements in 4,.
The first parameter _l = 10 = 60- 50, defines the beam's

length; the second parameter @2 = 0 = 10- 10, defines
the width.

The design variables in ¢ describe thermal loads that

are applied during the shape change analysis. Moving

from leftto right,elevenregionsB_, p = I,II which
consistof elements I-8,9-16,17-24,25-32,33-40,41-48,

49-56,57-64,65-72,73-76,and 77-80 are defined,s Each

regionischaracterizedby distinctcoefficientsof thermal

expansion;thus each regionissubjectedtodifferentther-

mal strainsE s_.The elevencoefficientscomprise _. The

temperature ofthe body isuniform, I'C. Initially,_ is

zero;ultimately,itisdefinedby the optimizationalgo-
rithm.

The initial design configuration is shown in figure 2.
This beam is slightly thinner than the base configuration
due to the Possion's effect. Results of the real analysis in

which the initial design configuration is subjected to the
tip load _e shown in figure 3. This contour plot depicts

the bending stress magnitude. As seen from this figure,

the beam is greatly over designed.
To reduce the beam's volume a shape optimization is

performed. The objective function is the volume and the
cdnstraints are the normalized bending stress less one (a

3( )d and ( )t denote qu_r#.ities defined in the desisn configura-
tion X,_dand b4m¢co_'l_r_tlon X,c_,.respectively.
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Figure 3: Cantilever beam initial design stress contours.

negative constraint value denotes constraint satisfaction).
The stress is evaluated at the nodes using nodal averag-

ing techniques. We use symmetry to define the stress
constraint locations. The node positions along the top

surface, specifically the center line and one edge, of the
beam are chosen; a total of 42 constraints are defined.

A linear shape change analysis is performed for this

problem. Before the first design iteration the stiffness ma-
trix used for the shape change analysis is assembled and

decomposed once. The displacement fields u_ _ = 1,2
d _O v

and U¢o - _, a - 1,11, are computed as discussed in
the last section. A total of thirteen load vector assemblies

and back substitutions are required.

For each design iteration, equations (2) and (3) are used

to update the current design configuration. A real anal-
ysis is performed over X,," to evaluate the real response
resulting from the tip load. The constraint vector G and

sensitivities _ are subsequently evaluated. Finally, the

optimizer is ca_led; and _ is updated.

Results of the optimization appear in figures 4 - 6.

These figures depict the optimized configuration, the
stress contours at the optimal configuration, and the de-

sign history. The top and bottom surfaces, with the

exception of the base and tip regions, are maximally
stressed. The volume is reduced from an initial value

of 10.97142 cm a to 4.38744 cm 3. 9 design iterations were

required, although convergence was reached after itera-
tion 7. A total of 93.28 CPU seconds were required on

a single processor of a CRAY XM-P computer. A ma-
jority of the computational expense was spent computing
the shape sensitivities _ a = I, 11. This result closely

resembles the theoretical solution given in [11].

Suppose we now wished to optimize a beam 70mm long
and 15mm wide. No additional shape change analyses

would be performed. @z and _. are equated to 20mm

: ,--"_l'_'_ ;'r-r _ "_

Y x

Z

_t

2--X

J_
Z x

Figure 4: Cantilever beam optimal design.
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Figure 5: Cantilever beam optimal design stress contours.
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Figure 7: Constrained cantilever beam optimal design.

and 5ram, respectively; and the optimization process is

repeated. It may be advisable to initialize the starting
value of _ for the 70mm beam optimization to the opti-

mized value of ¢ obtained from the 60ram beam design.

This initial guess may lead to quicker convergence, hence
reduced computational expense.

As a second exercise, the same problem is optimized.
However, this time, additional geometric manufacturing
requirements are specified that restrict the beam's top

and bottom faces to consist of four piece-wise planar sur-

faces. One way to maintain this piece-wise planar condi-
tion is to apply nonlinear multi-point-constraints to the

previous shape change problem. The form of these con-
straint equations are given in the appendix. Figures 7

- 9 are analagous to figures 4 - 6 for the first problem.
In this latter problem, the optimized volume is slightly

greater, 4.39131 cm a, possibly due to the shape restric-
tion. The optimization required 8 cycles, although con-
vergence was reached after 6. Computational require-

ments for this problem were considerably greater, 140.1s
even though fewer iterations were required. The increase
is attributed to the nonlinear shape change problem. 4

Several Newton-Raphson iterations are required to com-
pute the shape displacement u a at each design iteration;
then eleven additional load vector assemblies and back

substitutions are performed to evaluate the sensitivities

g-_, a = 1, 11.
As an alternative, we could have eliminated the non-

linear multi-point constraints by carefully applying pre-

scribed displacements over the planar surfaces. These

displacements would be prescribed at the plane interfaces
and vary linearly over the adjacent planes (in a manner
similar to that in which prescribed displacements are en-

4Nonlinearities are introduced via the multi-point-constraints.

All remaining relationahips are linear (eg. stress-strain, strain-

displacement ).
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Figure 8: Constrained cantilever beam optimal design
stress contours.
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1
Figure 10: Automobile crankshaft original design.

forced over linear finite elements). In this case, the shape

change problem is linear and the values of the displace-
ments represent the design variables.

3.2 AUTOMOBILE CRANKSHAFT

In this problem, an existing automobile crankshaft is re-

designed to reduce weight and maintain the original de-

sign's stress levels. To perform the analyses, the natu-
ral design variable concept has been implemented in the

general purpose GM optimization code, ODYSSEY. The
shape optimization portion of this program is similar to
that of the SHOP3D program [26].

The original design and response is illustrated in figure

10. Symmetry has been used to reduce computations.
The model consists of 135T linear solid elements and 1636

nodes. The contour plot illustrates the major principal

stress under a bending load. The load results from the
gas forces that are transmitted to the pin journal via the

piston and connecting rod. The main bearing journal

(with the cored section) is constrained by the engine block

and bearing caps.
Only the arm section geometry is allowed to vary dur-

ing the optimization. All three degrees of freedom of the
main and pin journals and the refined fillet area and the

radial degrees of freedom of the core are fixed by applying

homogeneous boundary conditions. The bottom width of
the arm is also fixed, as a counterweight is attached to

this region. The shoulder region around the pin journal

is fixed by constraining the fillet region. The shoulder

region around the main journal is similarly constrained.
The design loads consist of 42 thermal load sets and

2 prescribed displacement sets. All of the load sets were
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quickly created by using an interactive finite element pre-

processor program. The thermal loads are defined by ap-
plying unit nodal temperatures to sub-regions of the arm.

The thermal expansion coefficient is constant throughout
the crankshaft. Unit prescribed displacements are applied

to the surface nodes opposite the plane of symmetry in the
front view (lower left) in the transverse direction. Only
those nodes which are not attached to the two shoulders

are loaded. All the nodes in the axial direction are given

the same prescribed displacement. In all, two displace-
ment sets are defined. The nodal temperature values and

the prescribed displacement values are used as the de-

sign variables and adjusted during the optimization. In
the shape change analysis, one stiffness matrix decom-
position and 44 back substitutions are performed. The

analysis is linear and hence, it is performed only once.
The constraints consist of the maximum nodal major

principal stress for each element, except those adjacent to

the load application point. In all 1350 constraints were
defined, however only 5-6 were active during the opti-

mization. Eight optimization iterations were performed,
after which several elements experienced undesirable dis-

tortions so the optimization was terminated.
The results of the optimization are seen in figure 11.

The total mass reduction is 8.89%. This is computed

over the entire model, so the arm mass reduction is con-

siderably higher. The maximum stress was also slightly
reduced. It is seen that mass is added opposite the lower

pin and subtracted opposite the upper pin and main. It
is also noted that the width of the arm is reduced. How-

ever, it is believed that this arm reduction will lead to an

increased torsional vibration. Ideally, the optimization
should account for both the bending and torsional load
cases.

The arm surface opposite the pin is fairly rough. This
area could be smoothed by adding more temperature load

sets in this region or by using prescribed displacements
defined from Bezier surfaces as in [5]. The ability to ap-
ply these prescribed displacements is somewhat limited

as we have access to only the finite element model data.

Nevertheless, the trends obtained from this exercise give
designers invaluable information.

4 Summary

A shape representation scheme has been presented and

fully detailed. The method uses the natural design vari-
able concept which has been previously introduced in
the literature. The total-Lagrangian shape representa-

tion is incorporated which offers distinct advantages over
the previously used updated-Lagrangian representations

if the shape change problem is linear. The representation

can be used for shape optimization and parametric de-
sign studies; and it is applicable to any problem which is

governed by geometric entities.
When the finite element method is used to perform the

analyses, then the shape change problem can be easily

55._: :

6.6:6

Figure lh Automobile crankshaft optimal design.

created by applying additional load sets to the existing
finite element mesh. These load sets can be created by us-

ing commercially available finite element pre-proces.sors.
On the other hand, if the shape representation relies on

hierarchical parametrization methods, then the design
model may be more difficult to create as no commercially
available software has been developed for this purpose.

For linear shape change problems, the additional cost to
implement the shape representation amounts to one stiff-

ens matrix formation and decomposition followed by nu-
merous load vector assemblies and back substitutions.

In the example problems, thermal loads were applied to

deform the base con.figuration into the optimally shaped
design. Thermal loads were chosen to create a local-
ized deformation in the structure. In the cantilever beam

problem, the optimized designs appeared to be maximally
stressed and convergence was reached after a few itera-

tions. It was seen that the nonlinear shape change prob-
lem required a considerable amount of additional CPU

time as compared to the linear shape change problem. In
the automobile crankshaft problem, mesh distortions led

to an early termit, ation. Nonetheless, the modified design
was considerably improved.
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6 APPENDIX

A constraint equation which constrains an independent

point to lie on a plane defined by three dependent points
is defined as follows.

Initially the points Xo, a = 0, 3 are coplanar. X0 is the
dependent point and lies on the plane defined by the three

independent non-collinear points. Each point displaces

by the amount Uo, a = 0,4 under a deformation and the
new point locations are defined X_ = Xo + u°, a = 0, 3.

After the deformation, the point X_ is constrained to

lie on the plane defined by the points X_, a - 1,3. This
constraint is met if the the following equation is satisfied

[25]

h(u) - 0- n'.V_0 (6)

' X: -X_, a,_ = 0,4 and n' = V_ xwhere Va_ -
V_s/(IV_21 [Vlsl).• denotes the dot product; x denotes

the cross product; and [[ denotes the magnitude.
The Lagrange multiplier method is used [16] and

fB phdv is augmented to the generalized potential energy
function, where p is the Lagrange multiplier. The station-
ary condition of the augmented functional with respect to
admissible variations of u and p yields the solution to the

boundary-value problem. This problem is nonlinear due
to the form of h. Sensitivities for this type of problem

appear in [15].
In the cantilever beam example problem, each plane

consists of eighteen node points. Three nodes are chosen
as the independent points, fifteen constraint equations
are defined to ensure the remaining nodes will lie on the
plane after the shape change analysis. The element faces
defined by these nodes remain planer due to the form of

isoparametric parametric mapping. In all one-hundred
constraint equations are defined, some equations along

common edges are redundant, thus they are eliminated.
Additionally, the nodes along the bottom edge of the fixed

end are not constrained because of the applied boundary
conditions.
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1 Introduction

Optimal helicopter blade design with computer-based mathematical programming has

received more and more attention in recent years. Most of the research has focused on

optimum dynamic characteristics of rotor blades to reduce vehicle vibration, Refs. ] to

4. There is also work on optimization of aerodynamic performance, Ref. 5, and on com-

posite structural design, Ref. 6. This research has greatly increased our understanding of

helicopter optimum design in each of these aspects.

Helicopter design is an inherently multidisciplinary process involving strong interactions

among various disciplines which can appropriately include aerodynamics, dynamics (both

ilight dynamics and structural dynamics), aeroelasticity (vibrations and stability), and

even acoustics. Therefore, the helicopter design process must satisfy manifold requirments

related to the aforementioned diverse disciplines. In our present work, we attempt to

combine several of these important effects in a unified manner. First, we design a blade

with optimum aerodynamic performance by proper layout o_ blade planform and spanwise

twist. Second, the blade is designed to have natural frequencies that are placed away

from integer multiples of the rotor speed for a good dynamic characteristics. Third, the

structure is made as light as possible with sufficient rotational inertia to allow for autoro-

tationa] landing, with safe stress margins and flight fatigue life at each cross-section, and

with aeroelastical stability and low vibrations. Finally, a unified optimization refines the

solution.

2 Mathematical Formulation

For an optimal design process of a helicopter, our mathematical formulation can be

posed as a constrained minimization problem.

The baseline configuration used for the rotor blade is a box-beam model, Ref. 2. The

primitive design variables for the box beam are its width, its flange thickness, and its

web thicknesses. Two additional primitive design parameters allow for further freedom in

weight distribution. These seven design parameters (along with given material properties)

define the blade mass and structural properties. Naturally, they are constrained such that

the pieces must fit within the aerodynamic envelope.

The first phase in our multi-disciplinary design of rotor blades is to improve the aero-

dynamic performance. The objective function is chosen to be the power required for the

main rotor in hovering flight. In the aerodynamic performance analysis, the blade chord

and twist are chosen as design variables. In the current study, we do not confine ourself to

linear twist or taper only. A more general distribution is assumed. The chord and twist

are expressed in the following polynomial form

= co+ 0. 5) + - 0. 5) +... (1)
0(_) -- 00 + 0,(_ - 0.75) + 0,(_ - 0.75)' +... (2)

By doing this, the distribution coefficients co, cs, ..., and $0, gs, sad etc. become design

variables. Therefore, we create an opportuity to test various types of possible chord and

twist distributions for an optimum aerodynamic design,
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For the second phase of optimization, we work on blade natural frequency placement. ,:

A finite dement approach with coupled blade flapping, lead-lag, and torsion motions is

applied as an eigenvalue analysis. In the current study, our goal is to keep the frequencies

away from resonance with rotor speed harmonics up to the ninth mode. The prescribed

windows are set up such that each of these frequencies is away from any integer multiple

of rotor rotational speed. Because stress and flutter are important aspects of the current

optimization process, the yield stresses and fatigue life, as well as classical bending-torsion

flutter of the blade have been added as constraints in the optimization.

The CONMIN optimization code has been used as optimizer. It is a first-order pro-

granting method that uses a feasible search direction obtained from a compromise between

gradients of objective function and imposed constraints. Initially, we tried a unified ap-

proach where we chose the power required in hover as the objective function with all

contraints (autorotational inertia, blade natural frequencies, stress at each cross section,

chordwise c.g., and side constraints on design variables). We wanted to obtain an opti-

mum solution in one single run; but, this approach failed. The optimizer stops after it has

been unable to obtain desired improvements in the objective function within a reasonable
number of iterations.

Thus, we decided to phase the whole optimization process into several stages. First,

we use power required in hover as the objective function with autorotation inertia as a

constraint. Therefore, the blade chord and twist distributions, together with the lumped

mass, are applied ss design variables. After the performance optimization, the blade chord

and twist have changed significantly, thus resulting in a significant shift in blade natural

frequencies. It is then necessary to perform blade frequency-placement optimization to

bring them back into the prescribed windows. Next, we turn to minimize the rotor power

with aLl constraints (frequencies, stress, chordwise c.g.). Because blade weight is a strong

contributer to power required (for a given payload) and because the aerodynamic taper and

twist are already near optimum, this last phase is equivalent to minimizing weight. Thus,

at the end, we reach our overall objective (i.e., an optimum aerodynamic performance,

properly placed blade natural frequencyies, satisfied blade sectional critical stresses, and

free of aeroelastic instabilities).

3 Results and Discussion

The results obtained thus far show the interactions among aerodyanmic performance,

blade dynamics properties, and cross sectional stresses. Figures la-ld present hover per-

formance optimization results. As shown, the mathematical optimizer, like a helicopter

design expert, knows exactly how to make a tapered blade to reduce power required while

maintaining thrust needed to lift the vehicle. The original blade has a -80 twist which

offers quite good performance (Figure of Merit is 0.76). However, the optimization process

has been able to gain more benefit through taper. A 4% saving in total power required and

a Figure of Merit of 0.7892 are achieved from the optimum design even though the original

design, as mentioned, had a high Figure of Merit. Figure lc shows that the inboard section

has smooth blade loading. Thus, as expected, the power required varies in its distribution,

with less power consumed at the tip region (which is critical for the reduction of power
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consumption while maintaining the specified lifting capacity), Fig. ld. These figures also

compare the linear, parabolic, and cubic chord and twist designs. It is noted that we

obtain a curve-shape blade planform for both parabolic and cubic designs. The chord is

not decreased all the way to the tip. Instead, we have a cup-shape there. It is interesting

to know that we achieve almost the same final Figure of Merit (close to 0.79) for the de-

sign with either linear or higher-order chord and twist variations This is to say that the

linear twist and tapered blade produces the essential gain for aerodynamic performance.

At least, this conclusion is true for hovering flight. It remains to be tested in forward

flight. The higher-order distributions do have a faster convergence rate in the numerical

design process than the linear case. Since rotor performance is very sensitive to the blade

tip loading, it is interesting to examine different tip loss formulas. Fig. 2 compares the

optimized results with Prandtl, Wheatley, Wald, and Peters tip loss approaches. Prandtl's

and Peters' formulas yield similar design; Wheatley's formula produces more taper at the

tip; and W'ald's formula gives a relatively poor design.

Strong interactions exist between aerodynamic performance optimization and the tai-

loring of blade structural dynamics since the changes in both chord and twist distributions

significantly affect blade natural frequencies and mode shapes. Table 1 compares the blade

natural frequencies before and after aerodynamics optimization. Large frequency shifts oc-

cur on all higher frequency modes. For example, nondimensional frequencies of 1._t torsion,

and 4th and 5_h flapping modes change by more than 15%, and even shift into another

frequency window. To accomplish optimum design with respect to both aerodynamics and

dynamics, we need to bring these shifted frequencies into prescribed windows. The results

from the two-step frequency placement are presented in Table 1. As shown, all frequencies,

except the 5th flapping mode, are successfully brought into the windows, even though they

have been shifted greatly. The 5th flapping frequency is slightly off the window, but it is

going in the direction toward the inside of the window at each iteration. It just converges

slowly.

Both yield and fatigue stresses at each blade cross-section have been imposed as con-

straints to insure no structural failure due to excessive stresses for final optimum design.

Figures 3a and 3b show static and critical stress distributions for the initial blade struc-

ture, the optimal aerodynamic performance design, and the final multi-displinary design

with stress constraints. The optimal aerodynamic performance design (dashed line) has

a significant impact on blade cross-section stresses. In particular, large stresses occur

around the critical stress region (55% to 87% radial stations) as compared to the initial

design (doted line). Optimization with stress constraints (solid line) improves the design

around this critical region. Figure 3c compares the total critical stress distribution for

the optimum design with and without stress constraints. The optimum design without

stress constraint has a poor fatigue life, with possible structural fatigue failure (at about

82% radial station); but the optimum design with proper stress constraints has lowered

the total blade cross-section stresses, offering a safe fatigue life for the optimally designed

blades.

To summarize, the optimal aerodynamic performance in hover and proper rotor blade

natural frequencies have been achieved with constraints on autorotational inertia, blade

chordwise c.g. and blade sectional critical stresses. This has been done by a proper division
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of the design optimization into stases. The paper presents various types of taper and

twist for optima] aerodynamic performance and shows significant influence of the optimum

aerodynamic design on the blade dynamic properties and cross-sectional stresses.
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RANDOM SEARCH OPTIMIZATION
BASED ON

GENETIC ALGORITHM AND DISCKIMINANT FUNCTION

by

N94-71449

/ C::>

ABSTRACT

The general problem of optimization with arbitrary merit and constraint functions, which could be convex,
concave, monotonic or non-monotonic, is treated using stochastic methods. To improve the efficiency of the random

search methods, a genetic algorithm for the search phase and a discriminant function for the constraint-control
phase were utilized.The validityof the technique isdemonstrated by comparing the resultsto published test

problem results.Numerical experimentationindicatedthatforcaseswhere a quicknear optimum solutionisdesired,

a general,user-friendlyoptimizationcode can be developed without seriouspenaltiesin both totalcomputer time

and accuracy.

INTRODUCTION

Severalcommerciallyavailableoptimizationprograms with particularapplicationtoaircraftstructuresand perfor-

mance have been inuse fordecades.A greatmajorityoftheseprograms are deterministicand based on mathematical

nonlinearprogramming algorithms.They alsorequirethe evaluationof at leastthe firstderivativeofseveralfunc-

tionsinvolvedinthe calculation,userdecisionforthesteplengthsand, monotonic functionsforbest results.Several

methods have alsobeen triedto avoidthe localoptimum versusthe globaloptimum handicap. On the otherhand

the most important argument againstthe stochasticsearch procedures istheirinefficiencyand impracticalityfor

meaningful realworld problems involvingvery largenumber of designvariablesand constraintfunctions.With the

new computer capabilities,both the memory requirementsand the executiontime lengthsforeven the most complex

optimizationproblems ceased to be decisivefactorsforthe chanceofsolutionmethods. Thus the totalengineering

time requiredfora feasibleoptimum solutionbecame the most important parameter. Random searchmethods are

inherentlyeasy to use and do not requirespecialengineeringexpertise,thereforeimprovement effortswere directed

mainly tothe savingsinthe computer CPU+RESOURCE times.Replacement ofthe totalunbaised random search

with more logicalimprovement methods such as the geneticalgorithm method dates back to the FogeYs original

dissertationtitled" ArtificialIntelligenceThrough Simulated Evolution"[i]and sincethen ithas been subjectedto

several studies [2,3,4].
As of this time the authors are not aware of the existence of a complete mathematical proof of convergence for

the genetic algorithm methods, only numerical results showing convergence are available, and they are promising.

The other important cost saving area is in the time spent on checking the design points against the constraint
functions to decide whether they are acceptable or not. A method based on the discriminant function idea has been

utilized to reduce the effort of checking against the actual constraints by replacing them with a hyper separation
surface15,61.By minimizing the riskofacceptingan u_accep_ble designpointorrejectingan acceptablepointthis

quasi-constrainttechniqueprovidedtime savingsolutions.

DEVELOPMENT OF THE SEARCH PROCEDURE

The procedure has four phases:

i. Initialgridsampling and evaluation.

2. Establishmentof the Discriminantfunction,which isto_>eutilizedas a Quasi-constraintfunction.

3. Generationof new designpointsviageneticalgorithm,and evaluationwith the discriminantfunction.

4. Controloffinalnear-optimum designpointswith actualconstraints.

1. Initial Grid Sampling

In an optimizationproblem involvingn variablesthe designpoint.\'(zz,'2.....z,,)isthe member ofthe design

s Director, R& D and Engineering, Turkish Aerospace Industries, TAI-Mfirted, Turkey.

2 Associate Professor, Bilkent University, BiLkenL-Ankara, Turkey,

Senior Specialls¢, Tm'kilh Aerospace Industries, TAI-Mfirted, Turkey.

241

C-J



set S, which containsallthe possiblecombinations of the design parameters. S can alsobe consideredas an n

dimensionalvolume ina designspace bounded by the sideconstraints.This hyper volume isdividedintotwo regions

calledthe regionof acceptabledesignpointsA and the regionof unacceptabledesignpointsU. Both A and U are

assumed to be non-multiply-connectedregions. In other words allthe main constraintscan be combined intoa

singlehypersurfacedividingthe two regions.

By parcioningeach designparameter intot parts,t"cellscan be formed inS and, assigningone X tothecenterof

each cellinitialgridsampling can be performed. This type ofa uniformly distributedsampling providesinformation

in an unbaised manner about the whole space.

2. Establishment of the Discriminant Function

The initialsampling providesa setof pointsin the regionof acceptablepointsand another setin the regionof

unacceptabledesignpoints.Sinceboth regionsarenot multiplyconnected thesetwo setsare disjointsand a criterion

can be obtained todistinguishbetween the elements of these two sets.By using linearprogramming techniquesa

hyper surfacecan be found that separatesthe regionof acceptablepoints from the regionof unacceptabledesign

points.This hypersurfacethen can be used to replacethe actualmain constrainthyper surfaceforcheckingnew

designpoints.The main idea here isthe utilizationofthe informationobtained during the gridsampling phase to
createan artificialconstraintsurfacewhich ismuch easiertocheck againstthan the actualconstraints.Mathematical

derivationsinvolvedin the discriminationtechniquearegiven inAppendix I and reference[71.

3. Genetic Algorithm

In thisphase acceptabledesignpointswith bestmerit functionattributesare selectedas the parentpopulation

forthe second generationdesignpoints.In most geneticalgorithm applicationsdesignvariablesare representedin

stringsofzerosand ones ina binarymanner e.g.(0,0,i,I,0,i,0).However inthisstudy actualvaluesof the design

parameters are interchangedand mutated randomly to produce the characteristicsofthe new generationof design

points.

A random number generatorisused todecidewhich parameter ofwhich parentwillshow up inthenext generation

and what willbe the magnitude of the change inthat parameter ifany. In other words an attempt to mimick the

randomness ofthe naturalselectionprocedurehas been made. This way each new generationhad a chance toinherit

the best characteristicoftheirparents,who were alreadymembers of the top performance set,but not necessarily

inthe exactmagnitude.

Selectionprocedure was repeated untilno appreciableimprovement in the MF can be obtained.In thisphase,

decisionofacceptabilityisbased only on the discriminantfunctionfiltering.

4. Final Control

At the end ofthe geneticsearch,finalcontrolofthe selectednear optimum pointswere performed againstallthe

actualconstraintsto ensurethe acceptabilityof the solution.More than one, acceptableand near-optimum design
pointsprovidedsothatthe designerwillhave severalalternativesto choosefrom with similaroptimalitybut different

design parameter values.

CONCLUDING REMARKS

The aim of this study was to illustrate the feasibility of a direct, non-gradient-dependent search method which
also possesses good economic characteristics such as total engineering and computational expenses. This was achieved
by short cutting the time consuming constraint checks with the use of discriminant function and, move-direction
and step-size computations with the use of genetic search. Obviously more numerical experimantation both with

test problems and, meaningful real life problems are required to improve the present crude attempt.

Appendix I: Linear and Quadratic Discrimination

Given A = {al, a._..... at } of set of acceptable points and U = {ut, u-. ..... ue } of unaccepatable points in _", we
would like to determine a hyperplane cz = a separatm 9 A and U if possible. If the vector c E _", a E 7_ satisfies
the conditions:

a_z < a i = t,...,k (l)

t,jz>a j=l ..... e (2)
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then we say the hyperplane cz -- o_ separates A and U. Assuming such a separation is possible, one can find such an
hyperplane by solving the linear program (LP):

LPI : subject to

max6 (3)
¢,Cr,6

aic__ t_--6 i= I, ..., k (4)

u_c>_a+6 j=l .... ,g (5)

This LP is always feasible, (0, 0, 0) is feasible and for any feasible (c, a, 6) and _ > 0, ,a(c, a, 6) is again feasible. So
one needs to add a normalization or boundedness conditions to guarentee that the above LP has a finite optimum.
One such possibility is as follows:

llcll= = 1 or - e < _ < e (s)

where e is a vector of l's of suitable dimension. Now we can recast LPi with (6) as

LP.,

max 6
C, a, 6

This LP is always feasible and bounded. Let

subject to: (4-6)

A=26=inf{cuj : j=l, ...,t}-sup{cai : i+l,..., k}

If A >_ 0 (A < 0) then a linear separation is possible (impossible). When When 6 < 0, if we delete points satisfying

a+6<_cz<a--6

then the remaining points are separable. Thus LP., will find the 'best' separation in the above sense.

Weighted Linear Separation

Suppose, furher, we assign weights wi to ai and w_ to ui with conditions

usi __.0, wi >_0, and, W = to_ = wi =
j

By introducing slack variables si and z i to (4) and (5) we rewrite them as

aic-a+6+sl=O i=1 ..... k (8)

uic-et-6-zi=O j=l .... ,t (9)

s>O, z>O (I0)

Because of (7)we have the equation

E w, 6+s,J+ +:,)=

We can an LP to find the best weighted linear separation as

E Emax 26 - wis_ - w_.-_
g, S, &, _, $

LP_

s.t. (6),(8 - 10)

Clearly LP_ is feasible and bounded and for any optimal solution A = 26 is the maximum weighted linear separation.
As before A >_ 0 means separation is possible, othwerwise it is not pouible.
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4 Quadratic Separation
Now we would like to separate the sets A and U with quadratic function

I(x) = zTDz + cr= -- a. (12)

In other words, we would like to determine D E 7_"X", c E 7_", a E 7_ so that f(a_) <_ O, Vi and f(ui) > O, Vj. Since

the quadratic term zrDz is linear in D, we can cast the 'best' quadratic separation problem with normalization
condition similar to (6), in the spirit of LP2, as:

LP4

max _ (13)
'_TD., + arc < _ - _ V i (14)
urD,,_ + ,,re > _,+ 6 Vj (15)

-1 <_,t_ < 1 v i, j (16)

-I _<c_ < I V i (17)

Clarly LP4 is feasible, simply because D = 0, c = 0, cr = 5 = 0 is a feasible solution, and it is bounded because of
(16) and (17). Hence if 6 > 0 or 6 = O and (D # 0 or c _- 0), separation is possible. If separation is not possible, we
can reformulate the LP so that for the new LP will have 6 < 0. A possible method is setting

dii=_l or c_=el (18)

for some (i,j) or i respectively.
Clearly a weighted version of LP4 can be written similar to LP3.

Enclosing the A region by hyperplanes
Now consider LPx with normalization condition (6) and assume that linear separation is not possible. Then

c = 0, a = 6 = 0 is an optimal solution. Then one can find a 'best' separation by requiring, as in LP4

ci-- I or c; =--1

for some i. To fix the notation let us rewrite the resulting LP as:

LP'(io, +)

max 6

aic S a - _ Vi

uic>a+6 Yj

-l<ci< 1 Vi

ci. = l

(19)

Let the resulting half space H -+ = {z : c'z < a'}, where (c', or', 6") is an optimal solution of (19). Clearly one can

define LP'(io,-), and H_ simi!arly. Then

(nT:,Ht) n (n_=,H_)

can be consideredas the acceptableregionfound by the separationmechanism. Inother words,we findatmost 2n

hyperplanesof the form cz _<a which containsacceptableregion.Itshould be noted that one can relaxc*z _<a"

conditiontoc°z < a" - 6* conditiontoobtain a biggerestimateof the acceptableregion.

APPENDIX II - Results of Numerical Experimentations

Two sample problems were treatedtoillustratethe workingsof the optimizationprocedure.The firstone isa well

known controlproblem creditedtoRosen and Suzuki [5]and thesecond one ischosentoshow the applicationofthe

method to a realaeroelastic_ailoringproblem.

The followingstandard notationwillbe used:

MF _ Design Objectivefunctionto be minimized

X _ Design vectorin an n dimensionalspace,where n isthe number ofvariables

Gj _ Constraintfunctions,forboth sideconstraintsand main constraints.
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Test Problem _ 1

X = (zl, x2,_s, x4)
MF= ....z_+ z_ + 2z_ + z_- 5zl - 5z_- 21zs + 7z4

With side constraints -3 < zt < +3 i = 1,2, 3, 4 and with main constraints:

c,) - _[ - _ - _ - _ - _, + _ - _, + _, + s > 0
Gs) - _ - 2_ - _ - 2_ + _, + _4+ 10> 0
a,) - 2_ - _ - _ - 2_ + _ + _,+ 5>_o

Grid Sampling Consisted of 54, a total of 625 design points. (53) acceptable, satisfying all the constraints and,
(572) unacceptable, failing in at least one constraint, points were located. The best MF value for an acceptable

point, obtained from the grid sampling was (-33.84). The discriminant function based on the grid sampling results
was obtained using a linear programming (LP) type solution described in Appendix I is:

-l.2<zl_< 1.2, -1.2_<z2_< 1.2, -2.4_<zs_<2.2, -1.2 < z4 _< 2.4 for linear DF and,
zrDz <_ 0 =_ z E A ; zrDz > 0 _ z E U for quadratic DF
where

111/D'- 0 1 1
-1 0 1

-1 -I 0

Genetic Algorithm search consisted of selecting the four _cepteble points with best merit functions and cross

breeding them with a random number generator that picks both the parent and the amount of variation for the
particular design variable. In this problem max variation was limited to 40 percent. Genetic search results are shown

in figure 1. At the end fourth generation search, optimum design point was given as: X = (0.000, 0.864, 2.016, -0.576)

with MF = -41.48 which corresponds to the best point in the second generation meaning that further cross breeding
did not improve the solution. True optimum point was X = (0.000,1.000, 2.000,- 1.000) with MF = -44.00.

Test Problem # 2

In this problem the design variables are the orientation angles of the plies in a laminated composite box beam.
The box beam represen_ the main torque box of a swept-back wing [8]. There are several side constraints and

main constraints such as the minimum and maximum number of plies, minimum and maximum separation of ply
angles, plus strength, flutter and divergence requirements; but the main constraint functions are reduced to just one
constraint involving the required deflection shape of the wing under the given load conditions. The merit function is

the difference between the required shape of twist and the actual shape of twist obtained for the given design point
(Figure 2).

X=(zl,za,zs, z4) z_=gi i = 1,2,3,4 ( z4 is taken as zl + 90)

S

MF = E I _i(required) - _j(obtained) I (for a wing box with six sections)

Main constraint function G is [(Sj(given) - 51(obtained))/Si(given) I< 0.1 Vj

The main idea for this aeroelastic tailoring optimization problem is to obtain a twist shape as close as possible

to the ideal twist shape under a given set of load conditions while satisfying a given deflection shape in addition to
the usual strength and stiffness requirements. The results are shown in Figure 2.

The discriminant function obtained with the utilization of the grid sampling results is given below:

-18.8 <_ zt _< 3.2, -52.1 < z._ < -41.1, -128.9 < zs _< -111.1, -71.2 < z4 _< 93.2

for linear DF and

zTDz <O=_zEA; zTDz>O=_z E U

for quadratic DF where

1i)D= 0 1

-1 0
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I. Introduction. In this paper wc developed and investigated the Newton Meth<\_, for solving constrained (non-

smooth) optimization problems. This approach is based on the Modified Barrier Functions (MBF) theory (see

[4]) and on the global converging stepsi7.e version of the Newlon Method for smtx-qh unconstrained optimi_ation

(see for example [I] ). Due to the excellent properties of the MBF near pdmal-duat _,lution, the Newton Modified

Barrier Melhod (NMBM) has a better rate of convergence, better complexity bound and is much more stable in the

final stage of the computational process than the methods, which are ba_d on _he Classical Barrier Functions

(CBF) (_c [6] and bibliography).

2. Modified Barrier Function. Let f0(x) and -ft(x), i = l,--'m be convex, ft(x) • (", i = 0, _ : R _ --, R 1 and there
!

exists

(i) x* = arg rain {/',(x)lx _fl}

where fl = {x :ft(x) > 0, i = !, _} (int f_ _ _). I _t {i :ft(x*) = 0} = {I, ..., r}, f(x) - (it(x) ' i = I, m--)f(r)(x) = (It(x),

i = I, r-)f't(x) = gradft(x), i = 0, re, f '(x) = J([(x)), f'(r)(x) = J _r)(x)) the Jacobi matrix of the vector functions

f(x), f_r)(x) respectively. Beeau_ int fl _ e the Karush-Kuhn-Tucker conditions hohls true, i.e., there exists a vector

I/* ---- (U* 1..... U°m) _> 0

(2) L'.(x', u*) --/',(x') - _u',f'Zx') = O,/gx')u',-. o, _.. ,U'.'._m.

We also suppose that the aandard .,_:ond order optimality sufficient conditions are fulfdled.

(3)
m

rankf'{,)(x*) = r, u*, > 0, i = 1, •
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(4) (L",(x*, u*)y,y) > MY, Y), ,i > 0 Vy _ 0 ".f't,_(x*)y = 0

i.e., the problem (I) is nondegenerate. Let k>O, flk={kft(x)+ 1>0, i= I,-'-m}_fl ={x:k-Iln(kft(x)+l)

> 0, i = 1, m} . Therefore, the problem

(5) x* = arg rain {]',(x) I k-' In (kS(x) + 1) _ 0, i = 1,--'_}

is equivalent to (i).

Let us consider the Classical Lagrangian L (x, u, k) = fo(x) - k -I _ u t In (k ft(x) + I) for the equivalent problem
b_l

(5). The Modified Barrier Function, which corresponds to the Frith Classical Barrier Function ¢(x, k)=

1 m
fo(x) - k- 5". In ft(x) [2], we define by formula

iwl

F(x,u,k)={L(x,u,k), xe intflj, x • hat flj

The MBF properties have been investigated ha [4]. Here we are going to mention only the basic facts. Let

0 < _ < min {u* l / i = l,-"r}, Dr(.) = Dr(u*, ko, 6, c) ffi {ut : u_> _, [ ul - u't[ < 6k, k > k0 > 0}, i = 1, r,. D t (.) ffi D r (u*,

ko, _, c) ffi {ui: 0 < ul < 6k, k > ko > 0}, D(u*, k0' 6, c) = Dr(.)® ... ®Dr(.)® ... ®Din(- ) ; U k ffi {u ffi (u t.... urn) > 0 :max

{_, u* - _ k} _ ul _g h k, I < i < r, O < ut < tS k, i = r + l,m}, fl" f {x E fl :fo(x) f fo(x')}, Ilxll= max Ixt l.l fd.f,n

3 Basic Theorems.

Theorem 1 Let J_(x) and -fi(x), i = l,"'m are convex and smooth, fl is compact then for any u -- (u I ..... urn) > 0 and

any k>0

A A

1) there exisls such a vector x-x(u,k) = argnfin{F(x,u,k)lxERn}, and _ : u(u,^k) : [diag(kfi(_c)

m t ^ t A m

F _x, = L u) = f'o(_c) E uif I(x) -- 0+ l]t.tu that u, k) x(x, - ^ ' ^
/--I

^ •2) x(u , k) = x* = argrffm {F(x, u*, k) Ix • R n} Fix*, u*, k) --)_ (x*) and F'_(x*, u*, k) = L ix(X*, u*) --

m

frO(x*) - E u*tf'l(x*)= 0

A _1, ^3) u(u , k) -- u*, i.e. u* is a fixed point of the mapping u _ u(u, k)

Theorem 2 Let fix) E (7.2, i -- O, _ and the conditions (2) - (4) are fulfilled then:
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I) for any (u,k)eD(u*,ko, 6, t )

F 'x (_c,(u,k), u, k) = 0, the estimation

A

there exists x = x(u, k) -- _c(.) and _=u(u,^ k)--_(.) such that

(6) max {]_ - x'l[, Ilu- u*ll} < ck-'llu - u*[I= ykllu- u'][

holds true and c independent of k _: ko.

2) F(x, u, k) is strongly convex in the neighborhood of._ = ._(u, k) uniformly on (u, k) • D (u*_, 6, c) i.e., there

exists/z 0 > 0 that

mineigval " "F .(x(u, k), u, k) > .0 > 0, V(u, k) • D (u*, k0,6, c).

• , • Fttxx tt {/r)3) l.et U*=[dlagu l]t=l then (x*, u*, k) = L xx(X*,U*)+4f" (X*)U*f'(r)(X*) and there exists such

# > 0 thai

(7) mineigval F",, (x*, u*, k) > t, > 0, V 4 > k0.

4) Let k > ko fixed and M = maxeigval F"xx (x*, u*, k) then there exists 0 < a < 1, which is independent of

u • U k that the next inequality

(x) condF" " 4)>,, (x(u, k), u, cond F',(x*, u*, k) > a/_ M -m

A

holds uniformly in u e U,, i.e. cond F"xx (x(u, k), u, k) is stable for any fixed k > k0.

Remark 1 We would like to emphasize that theorem 2 takes place without the assumption of convexity

A(x) and -j_(x), i= l,

4. Newton ModifiedBarrierMethod (NMBM) We considera bounded setY ---X x U :X_R n,U • R',

I
x* • X, u* • U and k > 0 . On the Y × R+, we confider a nonnegative function v 0_, k) E v (x, u, k) --

max { -t__,/;(x), I[F'x(X, u, k)ll, Z ut ]ft(x) [}. It is clear that for any convex programming problem, the
/I-I

next relation

(9) vfy, 4) = 0_,y --y' = (x', u')
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holdstrue for any k > 0. Along with t'l,_t'l we consider a set _- = {x :ft(x) _>k -1, i = i, _} D fl, a small

enough c>0 and a monotone increasing sequence {ks}s=I :ks+ 1 >ks, s'_rnk._=oo. Let k=k(0)=

k I > k0, d(0) = 1, 0< y < t/2 is fixed.

_0 0 + 0
Now we are going to describe the NMBM. We will start with x = x = x e [2k , u = e = (1 ..... 1) G R '_,

_.s s s ,u one has to fulfilland let x , x , u , k(s), d(s) have already been found. To find the approximation (x s+! s+l)

the next operation.

0. Start x: =x =£.

!. Set u: = us, k : = k(s), d : = d(s).

2. Find _ = _(x, u, k) by solving the system

(]0) . #eF , (x, u, k) _ = - F',(x, u, k)

and set t:-- I.

1
3. Check x + t _ _ II k and F(x + t£, u, k) - F(x, u, k) < -_ t (F'x(x, u, k), _).

4. If x + t _ e ilk, the inequality is fulfilled and t - 1 set x : -- x + _ and go to 5, if x + t _ • Ilk, the inequality

t

is fulfilled and t < 1 set x : -- x + t _ and go to 2, if x + t _ _ fik or the inequality does nol fulfill set t : =

and go to 3.

5. If I1_11< • go to 6, otherwise go to 2.

6. Set _c: x, _t : [diag (kft(._) + "'-I"n ^ ^ ^ ^= = i_ jt=lu, y=(x,_) and check v_,k)<c. If v_,k)_<_ set y*: =y

^ )d+l sq-i ^ s+l ^ s-I.-I,otherwise, i.e. if c<v0/,k)< set x : =x,u : =u, start x: =x d(s+l):=d(s)+l,

k(s+l):=k(s),s+l: =sandgoto 1.

d+lA

7. If vO/,k)>_, set _'= max {t £ + t(_ - x-) • f_'}, _'+! _- _,_, + (1 - t')£, u,+!
0

: = u , k(s + 1) : = k.T+l,

d(s + 1) -- i, s + 1 : -- s and go to 0. The next theorem is a con.,mquence of theorems i and 2 and the Newton

Method properties (sec IS'J).

Theorem 3 lff0(x) and -ft(x), i = 1, _ are convex, ft(x) _ C 1, i = 0_ and the conditions (2) - (4) are fulfilled.

Then for a small enough t > 0 and 0 < r _ Yk< 'A there exists such so that for s > sO ('hot" start). The next

statements

!) k(s) = ks, = k and the stepsize t = 1,
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2) every NMBM step ('large" step), i.e., every updating of the vector u requires 0 (Ig21g2r-1) Newton steps,

$ $ $,,oo , 0
3) the sequence {y = (x , _--so y.u ))_ltY -- (x , e)) converges to -- (x*, u*) with the estimation

(11) max {llx'- x*ll, Ilu' - u*ll)_g_-'

holds true.

Now we are going to consider briefly the implementation of the NMBM for a sim.haneous solution of the next

dual pair Linear Programming (LP) problems:

(12) x* = argrnin {(p, x)/r(x) = Ax - q > 0}, r,(x) = (Ax - q). i = l,---'-m; N = {x : r (x) > 0}

(I 3) u* = argrnin {(q, u)/A ru = p, u > 0)

where A is m x n matrix, p • R n, q • R m, m > n, rank A = n, f_k = {x : rt(x ) > -k -I, i = 1, m}. The MBF and

v(y, k), which corresponds to the problem (12) are

u, ln(kr,(x) + I)
F(x. u, k) = x) - k -I _-I

frl

and v0,, k) = v(x, u, k) = max { - rain rt(x ), I_ - ua-S(x, k),4 II, gut lynx) I },
I _<t_<m

l,ffil

m
where A(x, k) = [diag (k r_x) + !)]/. I .

The sy_em (10) turns into the normal system of equations

(14) A rkUA-2(x, tc)AC -'= - (p - u & (x, k)A)

where U = [diag ul]_. I . Taking _ = 2-L(L - number of bits of the input data), we obtain due to theorem 3, that

for any nondegenerate, dual pair of the LP problems beginning at the "hot" start, one can improve (see (I 1))

the current approximation of at least twice (y < '/2) in 0 (lg2L) Newton Method steps in the worth ease.

Suppose that aU, pj, qt, i = 1_, j = 1, n are integers and
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maxsrl_l Ipsl Iq, I}_2'

J,

lJnder this natural assumption: 1< < n < m the input length L can be estimated by l(m + I) 2. So beginning

at the "hot" start, which depends on the "measure" of the nondegeneracy of the primal-dual solution, one can

improve the current approximation of at least twice in 0 (lg2m) Newton Method steps in the worth case.

Therefore it seems promising to combine the universal self-concordant properties (see [3]), of the CBF which

guarantees the polynomial complexity bound of the IPM, beginning at the "warm" start, with excellent MBF

properties (see theorems 1, 2 ), which guarantees the essential improvement of this bound beginning at the "hot"

start. In other words, following along the CBF trajectory from "warm" to the "hot" start, one can guarantee

the improvement of the current approximation at least twice in 0(.¢rm ") Newlon Method steps while following

along the MBF trajectory, beginning at the "hot" start, it is possible to guarantee the same improvement in

0 (lg 2 m) Newton steps in the worth case. Moreover, the system (4) is much more stable than the correspondent

system which one has to solve at every step in the interior paint methods.
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Summary: A new method for the solution of non-linear mathematical programming problems in the field o/ structural
optimization is presented. It is an iterative scheme which,/or each iteration, refines the approximation o/objective and
con$traint /unctions by accumulating the/unction values o/previously visited design points. The method has proven to
be competitive/or a number of well-known examples of which one is presented here. Furthermore, because of the
accumulation strategy, the method produces convergence even when the sensitivity analysis is inaccurate.

1. Introduction

Real-life structural optimization problems arc traditionally solved by sequential programming methods based on a sequence
of explicit subproblems generated by sensitivity analysis. The functions involved in structural optimization, for instance
stresses, displacements and eigenf_equencies, are usually highly non-linear in the space of design variables, and therefore

inaccurately approximated by linear functions. On the other hand, the task of sensitivity analysis is usually too time consuming
to allow for the use of higher order approximations.

A certain class of non-linear optimization problems, typically encountered in the field of structural shape optimization, is
characterized by a relatively low nmnber of design variables, eg. 10, and a medium number of constraints, eg. 100. This means
that the problem from a mathematical programming point of view is a modest one. However, the objective function and
constraints are implicitly defined as the result of costly numerical calculations, often performed by a finite element module.
Numerical sensitivity analysis is used for the generation of an explicit subproblem, the solution of which leads to an improved
design. The OASIS system by Esping [1] and the CAOS system by Rasmussen [2] are examples of implementations of this
strategy. The time consumption for a typical shape optimization problem consists of more than 99% analysis and sensitivity
analysis and less than 1% actual optimization.

Problems of this character are often solved using sophisticated move-limit strategies in combination with sequential linear
programming (SIP) or by generating alternative first order approximations which are more conservative and for physical
reasons in most _ represent the actual behavior of the structure better than linear functions do. Convex Linearization
(CONLIN) by Fleury [3] and The Method of Moving Asymptotes by Svanberg [4] are examples of such algorithms. SLP,
CONLIN and MMA have the common property that they base each optimization step on data evaluated in the current design
point and disregard the information obtained in previous iterations.

The method of accumulated approximations (ACAP) is an improvemem technique for any of the methods mentioned above;
in this paper, it is demonstrated in connection with SIP. ACAP is based on the idea that, in the case of very costly function
evaluations, time is well-spent on the optimizer if it reduces the total analysis time via an increased rate of convergence. Con-
sequendy, all available information should be retained in the algoridun and used if possible. The ACAP algorithm is based
on a usual function approximation, linear or any other, in the current design point, but function values of previous design
points are also included in the approximation in order to model the actual functions as precisely as possible with the available
information. The accuracy of the approximation improves steadily as the information from previous design points is accumu-
lated. Thus, ACAP is a very robust technique even though it can be based solely on first order information.

2. Traditional methods

In the scope of structural optimization, state functions, for instance displacement, strain and stress fields, depend on the so-
called design variables, x _ _' which typically describe geometry, material properties etc. The state functions can only be
found as the result of a costly numerical calculation and their explicit form is thus unknown. It is therefore a challenging task
to perform an optimization with the purpose of finding a set of design variables which minimizes some objective, f(x), eg.
weight or maximum stress, while fulfilling a number of constraints, f.(x):
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Minimize f(x)

Subject to g,(x) s G_ 0=l..m)

(1)

When solving this implicit problem by sequential linear programming, land g, are approximated by a succession of explicit
linear functions. Functions f and g, are evaluated at the current de.sign point, x °°, and a sensitivity analysis leading to
derivatives of f and g, w.r.t, each design variable is performed. Based on this information the following explicit problem is
generated:

Minimize f(x °_) + Vf'(x-x °')

Subjectto g,(xc'>)÷ V&.(x-x°°)s Gi (i=l..m)

(2)

Eq. (2) is a linear problem and can be solved by means of the SIMPLEX method. It is important to notice that (2) is a
mere approximation of the original nonlinear problem (1). Thus, (2) is only reliable in a small region surrounding x_, the so-
called trust region to which the solution is restricted. New approximations are successively generated and solved within new
trust regions until convergence is achieved. Usually, the functions f and gi are non-linear which means that a comparatively
high number of iterations are required to reach the optimum. Since each iteration can be very costly, the full solution of the
optimization problem is frequently a formidable task.

Sequential programming based on first order approximations is not the only way of solving structural optimization
problems. Various other possibilities are available:

- Sequential quadratic programming (SQP) is based on the assumption that a quadratic approximation of the objective
function will increase the convergence. In many cases of structural optimization, the objective function is in fact linear (for
instance weighO, in which case quadratic approximation is unlikely to help very much. Furthermore, SOP offers no solution
to the problem of inaccurate sensitivities.

- Various types of line-search algorithms have been imown to be very reliable. They rely on gradient evaluations to pick a

search direction, bat the line search itself can be based exclusively on function evaluations, ie., no sensitivity analysis is
required. However, function evaluations are, as previously explained, usually rather costly.

3. Accumulated approximation

The observations of the preceding section have lead to the idea of improving the linear approximation of the objective
function and constraints, ie. the n-dimensional surfaces created by the first order sensitivity analysis, by including the function
values of previous design points. The modification should have no influence when the process converges steadily, but in
regions of instable convergence, design points will accumulate and lead to improved accuracy of the approximation.

Let F(x) be the function to be approximated (F could be either the objective function or a constraint). The accumulated
approximation P(x) of F is based on a usual first order approximation, Lc')(x), generated by sensitivity analysis and originated
at the latest design point, xc°. In the forthcoming examples, a linear approximation is used, ie.,

= F(x%+ VF(x®)-(x-x*')

Furthermore, consider the functions
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Fig. 2. Influence function ¢_p.

n

d,(x)= _ (xj-x,_)):

j=l

(4)

where the design variables xj (j=l..n) are assumed to be of the same
dimension. The function dp(x) is thus the squared distance from xc*_to any
point x in n dimensions. We shall use d_ in the definition of the influence
function of the p'th design point:

d,(x)

5p

(5)

where % • 0. ¢_phas its maximum = 1 at x ffix_ and vanishes for dp(x) --.,,®. The exponent is rendered dimeusioniess by the
parameter s_ which could be considered as the square of a characteristic distance. The size of sp is thus a measure of the sphere
of influence of _p. We are now ready to define the k'th accumulated approximation P_ of the function F:

IX',(x)=

k-I k-I

Lc')(x)I'l[l-4_,(x)]+ [l-4_,(x)]_ _,(x)F(x_')

p=l p=l

k-1 k-I

I'I[1-_,(x)]+ [I--_k(X)]_ _,(X)

p=l p=l

(6)

Eq. (6) is constructed with the purpose of letting known functional values influence the approximation pc,_. In regions where
such values are not available, p0,_ takes the value of the first order approximation, L °°. The product of terms [1-_p(x)] tends
to 0 near previous design points and makes sure that L _ looses its influence. Similarly, the factor [1-_h(x)] causes previous
design points to loose their influence in the vicinity of the current point. This is the well known technique of Lagrangian
interpolation. The denominator is the sum of influence functions and has its primary effect in rendering the sum of influences
to unity in regions where P is influenced by several design points. Please notice that, for k=l, the convention

0

17[1-,l,,(x)l= I
p=l

(7)

rendersthefirstapproximationIxa)(x): L(_)(x).The gradientsof F in previouspointsaredisposedand not used in(6).This
means that,as more previouspointsbecome available,the influenceofpossiblyinaccuratesensitivitiesdecreases.

Inchoosing the characteristicdistancespwe noticethatusinga large.%willcausethe p'thdesignpointto influencea
relativelylargeregionand reducetheaccuracyofP(x_) (p=l..k-l)becauseinfluencesfrom otherfunctionalvaluesthanF(x_))

may become significant.On the otherhand,relativelysmall valuesofsptend togeneratelocalcxtrema of P ateach x_J

(p=1..k-1)iftheseare farapartcompared tos_.Thus,thefollowingrecalculationof alls_'s(p=1..k-1)foreach new itera-
tionk issuggested:

n

s,=a Z --
j=l

(s)
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where a is a dimensionless factor. This scheme has the effea of giving points far away from the current point, x°'_, a large
sphere of influence. Points close to xc')have very local influence and do not impede the local accuracy of I_). For the current
point xe'_, the parameter s_ is given by

s_ = a d,.,(x °°) (9)

It is the intention of the present work to replace the usual first order approximations of the objective function and constraints
by the accumulated approximation of eq. (6), thereby taking the maximum advantage of the available information.

4. Subproblem solution

Accumulated approximation of the objective function and the constraints leads to a non-linear explicit subproblem. Several
methods of solving this problem have been tested, and a simple sequential linear programming approach has proved to be the
more reliable. However, the implementation of a subproblem solver is slightly tricky. The initial accumulated approximations
of the problem are very inaccurate due to the lack of previous design points. This means that move-limits must be imposed
in order to prevent the algorithm from substantial oscillations. Furthermore, in order to obtain complete convergence for a
generally underconstrained non-linear subproblem using SLP, an intelligent move-limit strategy must be employed. It is
important to observe that the relative complexiW of the subproblem is a minor difficulW because aU functions are known
explicitly and therefore inexpensive to evaluate in the numerical solution procedure. For further information on the subproblem
solution, please refer to [5].

5. Numerical Example

In this section, the solution of a constrained non-linear proble: _esented. As indicated in the previous sections, The
ACA_ algorithm has two tuning parameters, the influence parame_ and a move limit, designated by T, which must be
assigned values prior to the call of ACAP. This feature is similar to most other optimization algorithms. However, one of the
philosophies of the accumulated approximation and the dimensionless formulation of the algorithm is to make it less sensitive
to the value of such parameters, ie. we expect to be able to find a set of parameters which creates good convergence for a very
wide range of problems. The ten bar wuss example to be presented here has been executed with the parameters a : 0.01 and
T = 0.15. For _ experiments have revealed that 10"= ._ ct ,, 0.10 is a reliable interval. The convergence criterion is a constraint
violation less than 0.1% and stationarity of the objective function within 0.1% in two consecutive iterations. No check of
necessary optimality conditions is performed.

A

Section A-A

Fig.2.Cantileverbeam with 5 sizingdeaignvariables.

4 ] , ,

We shall consider a cantilever

beam built up by 5 beam elements as
shown in fig. 2. This example was
originally presented by Svanberg [4]
who used it as a test of the MMA-

optimizer. Svanberg shows that the
CONLIN optimizer by Fleury [3] does
not converge at all for this problem.
The present definition of the problem
follows that of Svanberg in every
detail.

The problem is a challenging one
for a first order method because it
contains more variables than active

constraints at the optimum; usual SLP
is unlikely to converge in this case.

The design variables are the
heights of the different beam ele-
ments while the thickness t remains

fixed. We shall minimize the weight
with a constraint on the deflection of

the beam. For a specific thickness,
force and material charactez_.stics, the
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problem can be analytically formulated according to Svanberg:

Minimize
x

Subject tO

Weight = 0.0624(x, + xa + x3 + x, + xs)

61/x: 3 + 37/x: 3 + 19/xs 3 + 71x,,_ + Uxs _ "_ 1

It.n0. Weight Vi01ati0nI
I 1.560 0.0
2 1.425 13.2
3 1.359 I0.0

4 1.354 3.8
5 1.331 4.8
6 1.339 0.9
7 1.337 0.9
8 1.338 0.7
9 1.339 0.3
i0 1.340 0.0

Analytical solution of the problem reveals that the optimal value of the objective function is 1.34. We shall start the op-

timization at the feasible point x_°) = 5 0=1..5) which satisfies the constraint to equality. Tab. 1 shows the convergence of
the problem.

i I Nine iterations traversing the infeasible domain are required to reach the optimum.
In this respect, the result does not compare well with the MMA method which in the
best case produces convergence in just four iterations for this example. C_,areful tuning
of the ACAP algorithm for this particular problem will reduce the necessary number of
iterations to five, but that would not give a fair impression of the performance of the
algorithm in the general case. In any case, ACAP is a significant improvement of SLP
which does not converge at all for this problem. The competitiveness of the algorithm
is further emphasized by a number of other test examples. For a further description of
these, please refer to [5].

Tab. l.

Atteapt //u_r of iterations
1 11
2 10
3 11
4 11
5 12
6 9

7 12
8 12
9 9
I0 i0

I I I

Tab. 2.The number ofiterationsnec-

essarytoobtainconvergenceintenat-

temptson thecantileverbeam problem

with sensitivitiesrandomized by ± 20
%.

6. Influence of sensitivity accuracy

Barthe|emy & Haftka [6] and Pedersen el. al. [7] have shown that, for certain types
of structures, sensitivities based on finite difference may suffer from serious lack of
accuracy. The ACAP algorithm refines the approximation of the objective function and

constraints as the number of previous pointsincrease. This means that the influence of
the sensitivity analysis on the optimization decreases steadily and thus reduces the error
caused by lack of accuracy of the sensitivity analysis.

The influence of the sensitivity accuracy has been studied by means of the
cantilever beam example. The sensitivities of the objective function and constraints
are artificially disturbed by individually multiplying them by a random number in
the range [0.8 - 1.2], ie., a disturbance of ± 20%, before passing them on to the
ACAP optimizer. Tab. 2 shows the necessary number of iterations in ten attempts.
The cantilever beam problem was solved in 9 iterations with accurate sensitivities.
Experiments indicate that the convergence remains stable up to a disturbance of ±
_. Beyond this limit, the process may or may not converge.

10. Conclusion

The ACAP approximation generates a significant improvement of SLP and produces
convergence incaseswhere neither SLP nor CONLIN converge.

For the example presented here, the MMA-method has shown faster conver-
gence toward a feasible solution. This is most likely due to the fact that MMA as -
a generalization of convex linearization is a far better approximation of the true
structural problems than SLP is. Thus, MMA starts out with a good approxima-
tion whereas, in the case of ACAP, such an approximation has to be generated
along the way.

The ACAP approach is not limited to sequential linear approximation. Other
approximation types, MMA for instance, may be subjected to improvement by the
same simple strategy.

ACAP reduces the influence of possible inaccurate sensitivities. Stable convergence is observed for the cantilever beam
problem with random errors of up to ± 40% introduced in the sensitivity analysis. However, inaccurate sensitivities may

increase the necessary number of iterations in order to reach the optimum.
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The ACAP approximation (eq. 6) is a "first attempt" to include previous design points into the problem. Interpolation tech-
niques is a vivid area of research and better techniques may be available. The ACAP interpolation has several drawbacks of
which the worst is that it is practically impossible to differentiate it analytically.

The algorithm is devised to allow the basic linear approximation L°'_'(x) (eq. 3) to be replaced by any other first order
approximation type, eg. convex approximation. The possibly positive influence of such a replacement is yet to be investigated.
The flexible construction of the algorithm and the direct solution strategy furthermore enables the inclusion of equality
constraints because these are handled naturally by the SIMPLEX subproblem solver.

.

.

4.

.

.

.

References

B. Esping:
The OASIS Structural Optimization System

Computers and Structures, %Iol. _, No. 3, pp. 365-377 (1986).

J. Rasmussen:
The Structural Optimization System CAOS

To Appear, Structural Optimization, Vol. 2 (1990).

C. Fleury:
Structural Optimization: a New Dual Method Using Mixed Variables
Int. J. Num. Meth. Eng., %,'ol. "7.3,pp. 409--428 (1986).

K. Svanberg:
The Method of Moving Asymptotes - a new method for structural optimization

Int. J. Num. Meth. Eng., Vol. 24, pp. 359-373 (1987).

J. Rasmussen:

Structural Optimization by Accumulated Function Approximation
Report No. 20, Institute of Mechanical Engineering, Aalborg University, lune 1990. Submitted for publication in the
International Journal for Numerical Methods in Engineering.

B. Barthelemy & R.T. Haftka:
Accuracy Analysis of the Semi-analytical Method for Shape Sensitivity Calculation
Paper presented at the ALAA/ASME/ASCE 29th Structures, Structural Dynamics
Williamsburg, Virginia, April 1988.

and MateriaLs Conference,

P. Pedersen, G. Cheng & J. Rasmussen:
On Accuracy Problems for Semi-analytical Sensitivity Analyses
Mechanics of Structures and Machines, Vol. 17, No. 3, pp. 373-384 (1989).

258



N94- 71452

OPTIMAL GLASS-CERAMIC STRLICTURES

ComponentsofGiantMirrorTelescopes

Hans A. Eschenauer

Research Laboratory for Applied Structural Optimization
at the

Institute of Mechanics and Control Engineering

University of Siegen

Siegen, FR German)'

/
f'

7

7

Summary:

Detailed investigations are carried out on optimal glass-ceramic mirror structures of

terrestrial space technology (optical telescopes). In order to find an optimum design,

a nonlinear multicriteria optimization problem is formulated. "'Minimum deformation"

at "minimum weight'" are selected as contradictory objectives, and a set of ftlrther

constraints (quilting effect, optical faLIIts etc.) is defined and included. A special re-

sHIt of the investigations is ¢lescribed.

1. Introduction

Optical astronomy includes observations in the spectrum from near ultra violet via

the visible light to infrared. This wave-length range will remain important in future

as the physical nature of extremel._ distant space projects can often be observed

on[) within the range of the optical spectrum. At present, the efficiency of terrestrial

ast,'onom,v is determined by the 3 to ,S-m-telescopes. In recent years light detectors

used For evaluating the results have been improved so much {up to an efficiency" of

IOO'/.)that these instruments have reached their efficiency" limits. Thus. further dis-

coveries can only' be made by collecting more light. For this. large telescopes with

effective mirror-apertures of more than 8m _ are necessary'. That means, the

traditions in telescope design have to be replaced by new optical and technical

concepts [I]. All over the world various types of telescopes are in planning, under

development or a|ready under construction {the latter case applies to the IO-m-Keck-

Telescope of the University of California. Berkeley). Though. an important problem is

that the costs for constructing and erecting such giant telescopes will increase

astronomically. The following two fundamental demands have to be met:

- observance of an extraordinarily high precision of the mirror surface (<SO nm).

- minimization of the costs and thus giving the guarantee that such a project can be

financially supported.

When dealing with an optimization problem, one should principally proceed according

to the "'Three-Columns-Concept". The first step is the theoretical formulation of the

optimization problem regarding all relevant requirements on the structure. Then. the

sub-problems "'structural modelling" and "'optimization modelling" have to be solved.

After selecting an appropriate optimization algorithm, this algorithm is linked with

the structural model and the optimization model so that a closed optimization loop

is formed [2].
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2. Structural Modelllng and Structural Analysis

This paper deals with some problems of minimal mirror designs as eJements of an

entire mirro,'.The mirror elements are made of glass-ceramic materials (quartz glass.

zerodu,-) loaded by' pressure and temperature.

Fig. 1 illustrates the structure of a circular mirror plate with tile following design

parameters:

- mirror shape (circle, rectangle, hexagon).

- core cell structure (quadratic. triangular, hexagonal),

- cell size or rib distance.

- height of a cell structure.

- thickness of the layers.

- thickness of the boundary stiffening.

- arrangement of the supports.

)per surface layer

cell structure

boundary sdffenLng

lower surface layer
Fig. I:

support points
Design parameters

of a mirror plate

The following requirements on tile material have to be fulfilled for mirror structures:

- thermal expansion coefficient as small as possible.

- homogeneity of the themal expansion coefficient over the material volume.

- pore-free surface.

- corrosion-resistance.

- no h.sgroscopicitv.

- good mechanical workability for exact surfaces.

- chemical durability" in the case of separation and removal of the reflecting-layer,

- thermal stability of tile material structure up to the transformation temperature

(transition from a solid condition into tile viscous fusibility' range).

With the above-mentioned requirements we take a porous, but isotropic, linear-elastic

material as a basis for the structural analysis calculations. In addition to the Fl=-

method, two anal.vtical methods have been applied [3].
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a) Thin circular plate with variable thickness point-supported In the middle

i"o

- ' 1

Fig. 2: Circular plate with

variable thickness

The following approach for the wall thickness curve is chosen (Fig. 2):

Ej__- I-x/3
t(r) = t 0 ro

with x = thickness parameter.

ro-- outer radius of the plate.

to= plate thickness at the outer radius.

(I)

Thus. the differential equations of the plate read as follows:

K'(,-____L
_ 1 ] K"(,')'AAw _ 2w"" _ (_+_.1_ w" - ---r w' ÷

K (r) r r- K(r)_ [w".-- _ w'] =---P---r K(r)
(2)

where _ d and the variable plate stiffness K(r)- E--_-O ]-- K r -x
or o '

b) Thin point-supported c_cu_az plate on a concentric circle

K o = 12(1_.j2) •

Fig. 3 shows the arrangement of point-supports for a circular plate with constant

plate thickness

_...; I I I I I I I I I I I I ;

t f t

Fig. 3:

The differential equation of a point-supported plate is given by

k

AAw = F F _ S(r-b) (_((p- --_-_I
Kr_a 2 Kk -_ b _ /k

j=l

with ,5- DELTA-functions.

Point-supported circular

plate on a circular ring

(3)
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Development by Fourier-series
co

j=l m=l

with

k 27c )am = -'R" _ - cos km+d_p
j=t O

leads to

F F _(r-b) F S(r-b)
_Aw = _ K2_b KTc b

k
TC '

co

cos km cp.
m=l

(¢)

t

This solution .vie|ds with the separation approach
O0

wlr, _) = _' w m (r) cos k m _ :
m=t

(s)

l d { d_._. It d__ (d_'l_ F F g (r-b) (6a)m = O:
,-d--F r _- r dr )JJ = K_a 2 K2_b '

(d= , d k2m2) 2 Fm z I: _ + r dr r _ Wm = _ g (r-b) r = b, (6b)

0

+ w = 0 r _ b. (6c)
r dr 1-2 In

For a plate with r = ISO ram. the deflections and corresponding analysis methods are

compared in Fig. ¢.

di=placement

w [nrn]

2_

0

-+0

-75

- IO0

-P..5

-t_0
-ISi

I l l J i _...Lpomt supported

,,_ I r_f'_,] I ----- FE-rnethod

._/' \ "" x-3.0

_t I I 1 I',,
/ I I I t I',1

%

I I I t I "1"=-0
-I00 -$0 0 S0 100 IS0 r=dius Cmm]

Fig. 4: Comparison of the displacements of a circular plate

3. Optimization Modelling and Procedure

The present structural optimization task is considered as a Muhicriteria-Optimiza-

tion-Problem (MC-Problem). ]n this case. a design variable vector x is to be Found

which makes the m components of the objective function vector f as small as possible

while Fulfilling all constraints. A MC-Problem can mathematically be defined b.v the

Following model Formulations [2]:
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a) Model h Continuous. deterministic MC-Problem

"Min" {f(x) : h(x) = O. g(x) _ 0
x_IR n

with the following symbols

and

IRn

f

X_ IR n

g

h

set of real numbers.

vector of m objective functions (weight, surface quality),

vector of n design variables

vector of p inequality constraints tquilting effect, failure criteria, bounds).

vector of q equality' constraints ¢e.g. system equations for determining

stresses and deformations),

X: = {x _ tRn : htx) = O. gtx) s O}

"feasible" domain where _ is to be interpreted for each single component.

b) Model 2: Discrete. deterministic MC-Problem:

"Min" {f(x)}
xc Xd

with the discrete design space

X := {X _iR n ] x jc Xj : j = 1..... N : glx) -_ O.

and the N sets of discrete values

X.
J

with

h(x) = O}

= {x , x . x .....x }.X. c IR V j = I.....N
) J J J

n i number of discrete values of the j-th design variable.

c) Model 3: Stochastic MC-Problem

"Min" {f(})IP[f())] = rf. P[gly_< 0]= rg}
ycy

with Y

Y

PC]

r f. rg

vector of N random variables (loads. dimensions, characteristic

values of the materiall including design variables.

vector of the expected values of the N random variables.

probabilit}.

vectors of the m or q reliabilities concerning the objective

and inequality constraints.

For the optimal la)out it is especiall} important to apply the appropriate optimiza-

tion model. The optimization problem itself is defined by two main criteria (objective

functionsJ, namely the "weight of the mirror structure" and the "'surface accuracy".

The quilting-effect as a special manufacturing error is considered as an inequality

constraint. Here. the core cell of the mirror structure is slightly deformed b) the
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polishing load. This pillow-shaped deformation leads to a periodical deformation of

the total mirror surface [l]. Due to the probabi[istic material values (Weibull-distri-

bution of strength) and the numerous discrete design parameters (number of cells

and layers), the optimization models 2 and 3. respectively, have been established and

special optimization algorithms are applied in order to find the most appropriate

solutions.

4. Optimnl Designs of Mirror Plates

Optimization calculations were carried out for an orthotropic plate with a quadratic

cell structure under combined pressure and temperature loads. Some results of the

optimization process are shown in Figure 5 , whereas the Pareto-efficient curves for

a zerodur and a quartz glass mirror plate are compared. The curves of the

zerodur mirror plate and the quartz-glass mirror plate with the same weight and the

same loads show that the zerodur mirror plates provide a four times higher surface

accuracy [l].

x I • ]_1= _ • 135 _ =t " 1.1.5 x_ • 1._ =t " 3.tl s T • 1-51La • 10.1 ,6 . _ LI • 4A,6 Z,, • 31dl _ • LL)LI z 6 • ZlL.I

Z I '_ .

z:l
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I,M

r
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o
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I
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X! • 1..I.5 13 • I_O0
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ILl • IM 86 • _1_

I

Fig. 5: p-efficient solutions

of a mirror plate

Further investigations have been carried out with regard to the optimal ratio of sup-

port radii and the optimal number of support points as a function of the rms-value

of surface accuracy. The calculations resulted in an optimal ratio of support circle

of r /r = 2/3 and number of support points n = 3 for the chosen plate. The first
s opt

mentioned result approximateb agrees with the one of [3], that means that the addi-

tional temperature load in our calculations is of no great relevance for these values.
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Fig. O: Optimal ratio of support radii and optimal number of support points

5. Conclusion

The task of structural optimization is to support the engineer in searching for the

best possible design alternatives of specific structures. The "best possible" or "opti-

mal" structure is that which highly corresponds to the designer's desired concept and

his objectives while at the same time meeting the functional, manufacturing and appli-

cation demands. B) means of a special optimization procedure it is possible to estab-

lish more realistic and more reliable models to improve the computation of optimal

designs of a number of technicall> relevant structures. Results of computation are

shown for a special mirror component made of glass-ceramics as a part of a large

tTlirror.
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Employment of C.B. models for non-linear dynamic analysis

M.R.M. Klein * Ph. Deloo *** A.Fournier-Sicre **

The non-linear dynamic analysis of large structures is always very time, effort and CPU

consuming. Whenever possible the reduction of the size of the mathematical model in-

volved is of main importance to speed up the computational procedures. Such reduction

can be performed for the part of the structure which perform linearly. Most of the time,

the classical Guyan reduction process is used. For non-linear dynamic process where the

non-linearity is present at interfaces between different structures, Craig-Bampton mod-

els can provide a very rich information, and allow easy selection of the relevant modes

with respect to the phenomenon driving the non-linearity.

The paper presents the employment of Craig-Bampton models combined with Newmark

direct integration for solving non-linear friction problems appearing at the interface be-

tween the Hubble Space Telescope and its Solar Arrays during in-orbit manoeuvres.

Theory, implementation in the FEM code ASKA and practical results are shown.

1. Craig-Bampton models background

The general equation of motion of a structure can be written as

M q + C q + g q = F(t) (1)

Considering the interface of the structure with other structures, we can split the dof's in

internal dof's i and interface dof's j and write :

IMii Mij](qi_ FKii Kolfqi_ ( 0 )n,, + L,<.. - Fi(t) (2)

where without loss of generality we have assumed that only interface loads are applied

and neglected the damping matrix.

The Craig-Bampton approach consists of developing the displacements q on the basis

of the static interface modes a,s and the elastic modes _, of the structure clamped at

the interface j :

q = _,s qs + _0p_p = _x (3)
where

qJ) (4)tlJ=(+jcpp) and X= rb'

dpj= t lji ) where K dPj = O (5)
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rpp=l_P _ where (Kii - to2 Mii) q_@ = 0 (6)

X /

As a consequence of such transformation, the initial equations of motion get transformed

to

m,.j L° : <7)
is the stiffness matrix statically reduced to the j interface,

the mass matrix reduced at the interface according to the Guyan reduc-
concept,

and mpp the generalized stiffness and mass matrices,

= epr Mii rp@+ Mji tPip is the modal participation factor matrix.

where" K__
Mjj

tion

kpp

Mjp

It must be noticed that both the physical and CB representation of the structure are mathe-

matically equivalent, and both sets of matrices represent the free-free structure.

Modal selection can be performed based on the well known "Effective Modal Mass" con-
cept with respect to the j interface. However, modes with low interface force contribution

but describing internal spacecraft dynamics which is of interest have to be kept in addition

to the modes dominating the interface response. This selection reduces significantly the

size of the CB models, which is one of their advantages.

Furthermore, CB models avoid the usual stiffness and low frequency mass truncation

proble_ ms, since the interface stiffness is included in the K_i matrix and the total mass in

the Mjj matrix.

In the same way FEM models are assembled, Craig-Bampton models can also be as-

sembled, the connection always taking place using the physical dols. The reduced size of
all individual CB models reduces the size of the system CB model to a minimum set of

modes which produces the most efficient representation of the spacecraft. Currently 3000
to 10000 dof FEM models can be efficiently reduced to 30 to 1000 Craig-Bampton free-
doms.

The final assembled system model can if necessary be analyzed in free-free conditions.

In this case, to ensure simplest correct recovery of interface forces and of stresses, most
of the spacecraft free-free modes have to be used. Using Craig-Bampton models reduces

this set to the most significant modes for the problem,

Another advantage of those models is their relationship with the clamped modes identi-

fied during testing, which provides a good engineering approach.

2. Handling non-linearities

Craig-Bampton models intrinsically address linear phenomenon, since constant material

properties and usual FEM small deformation and displacement theory is used. However,
there is room for non-linearity at the interface freedoms. This can occur as variable stif-
fness, connected/disconnected status of some freedoms and variable loads function of

some interface freedom responses.

These limited cases are, however, representative of many practical interface effects, like

gapping, non-linear tension-compression contact, torque limiter effects, etc..

These processes introduce time dependent perturbations in the equations of motion, lim-
ited to the interface freedoms for the CB mass and stiffness matrices, which shall be ac-
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counted for in the time integration process. They lead to a modification of the clamped
condition of the interface freedoms as considered in the clamped modes. However, there

is no contradiction in releasing CB interface dof's since we have seen that the CB model

actually represents the complete free-free structure.

Since non-linearities are present in the behaviour of the final assembled system, standard

time integrations methods as modal superposition cannot be applied anymore. A direct

integration scheme has to be selected. This can be performed without problems since the

CB model is just another representation of the physical FEM model. Integrating equa-
tions in a modal space by direct integration, although being unusual, is not contradictory.

It must be noticed that the reduction of number of equations to integrate, usually resulting

from the modal superposition approach, has actually now been performed at the Craig-

Bampton model level. Thus this approach is not penalizing in terms of size reduction.

One of the most problematic aspects of usual direct integration approach (i.e. with physi-

cal dof matrices) is the damping aspect. Indeed, although modal damping values can be

infered from engineering experience or derived from testing, the implemenation of these
(in form of Raleigh series matrices) is quite cumbersome and seldom performed. Using

the CB approach on the other hand, these values appear naturally in the equations of mo-
tion.

Indeed, the physical damping matrix C transforms into the CB space as ...

c • = <.---/¢rc<z>icrc pj (s)

In case of static determinate interface, _j are the rigid body modes which are assumed

not damped, hence C_j - 0 and tlsrCtlS bolts down to

[0 0},vr c • = 0 [2m co (8)

where [2m¢_o] is a diagonal matrix and the _ are the percentages of critical viscous damp-

ing ratios of the clamped interface modes. Correcmess of this assumption can easily be
verified by considering the global CB system equations and clamping the system at the

interfaces. The modal response equations as derived directly from the physical matrices
are identical to those derived from the CB model equations.

In case of non static-determinate interfaces, the 3 other terms of the damping matrix can

be either ignored, or handled in the usual way, i.e. using proportional damping

C = a K + fl M, Raleigh series or discrete dampers. The direct integration algorithm

will have no problem handling damping-coupled equations.

3. Implementation in ASKA

The methodology described has been implemented in the general purpose FEM package
ASKA distributed by IKOSS. Considering the application planned (torque limitation and

slippage induced by a friction brake on a shaft) only static determinate interface was im-
plemented in a first step.

The standard Newmark integration scheme has been used. together with matrix manipula-

tion and partition/merge tools to handle the interface condition charges.
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The freedoms for which non-linarities will occur are attached to 2 nodes. These freedoms

are either disjoint but subject to self equilibrating loads simulating friction, or connected.

In this last case, the combined equation of motion are merged into one unique dof and

constrain relations are applied to the other dof, thus maintaining constant the dof pattern

of the dynamic system.

Equilibrium iterations are performed at each time step, and variable time step is used (bi-

section method) to ensure a proper convergence to the change of state of the non-linear

freedoms (i.e. slippage/no-slippage). This change of state is defined considering the sys-

tem state vector using user-written Fortran routines which can be naturally interfaced with

ASKA. The considered change conditions are :

No slippage - until maximal torque is reached in shaft;

Once slippage occured - constant maximal balanced torque applied to both

disconnected parts of the shaft;

- slippage until relative velocity of 2 shaft parts comes back

to zero.

4. Application to HST

The procedure including all features described above has been applied in the frame of

the Hubble Space Telescope project, where the European Space Agency (ESA) is respon-

sible for the Faint Object Camera and the Solar Arrays. Whatever sky region the HST

is looking at, the SA is designed to be oriented toward the sun to get the maximal power.

When the optimal position is obtained, a brake is released to prevent any modification

of the SA position.

The deployment of the SA in orbit occurs when the HST is held on the Space Shuttle re-

mote manipulator system (RMS). After deployment of the SA, the HST is still on the re-

mote manipulator system for a few hours before release. During that period the Shuttle

performs manoeuvres to hold attitude, firing thrusters. This induces loads on the SA. Since

the HST-SA interface is basically a 6 dof's joint, the interaction can be described by the

interface accelerations. A CB model of the SA has been developed by ESA to assess the

in orbit load level when subject to such manoeuvres

Figure 1 shows the complete 3000 dofs FEM model and some of the clamped interface

modes. The location of the brake between HST and SA is sketch-wise explained in Figure

la. The main modes of the SA in clamped interface conditions are identified in Table 1

in terms of modal masses (percentage of rigid body mass corresponding terms); those 21

modes were used to build the SA CB model. Figure 2 shows free-free modes computed

with this model. Notice that although blanket aspects are completely accounted for, only

boom motions are visualised since those are used later on to compute boom bending mo-

ments. These booms are indeed the most delicate mechanical parts of the deployed SA.

The brake slippage procedure as been tested using the angular acceleration around the

SAY axis shown in Figure 3 applied at the HST / SA interface. The torque actually seen

by the SA on the other side of the brake is shown in Figure 4, and the related SA angular

acceleration is in Figure 5. The inspection of the response of the system shows that the

change of configuration/loading procedure is working fine. The interacnve torque never

exceeds 0.5 Nm which is the specified maximum brake torque in this test. The change of

configuration/loading is smooth, however it is interesting to note that a shock is induced
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in the system (see Figure 5) when the brake starts slipping. The SA oscillates about its axis

at a frequency close to 1 Hz. The mode which is excited is equivalent to the free-free mode

13 of the SA model presented in Figure 6. It shows a large rotation of the drum while the
boom tip hardly moves.

Regarding in-orbit actual manoeuvres, classical rigidly connected linear CB analysis using

modal superposition method applied to the free-free modes has shown that for some types

of manoeuvres the interface torque overshoot largely the torque the brake could with-
stand without slippage. In addition loads in the SA booms were exceeding boom bending

moment allowables. Thus the analysis had to be refined. In order to account for this effect,

transient analyses have been performed using the procedure described above. This al-

lowed changes of the brake connection from rigid state to slippage state and vice-versa

as many times as requested during each computer simulation. A more realistic behaviour
could be simulated, slippage of the SA evaluated and subsequent reduction of loads in
the booms demonstrated.

Figure 6 shows results related to in-orbit event PO4 for the + V2 wing. As can be seen,

the interface torque does not overshoot the maximun brake-through torque (0.87 Nm)
and slippage occurs after this limit is reached. Table 2 shows a summary of 17 worst load

cases which were analysed. Substantial load reduction occurs for the solar array booms.
with relative low array rotation which does not affect significantly the SA power perform-

ances. The computing time per run was quite reasonable (20 minutes on VAX 8650 for

a response of 40 sec) considering the highly non-linear aspects of the brake conditions,

and allowed a satisfactory computation of all cases; it must be kept in mind that these re-
suits reflect the information related to a 3000 dofs model, which itself could never be used

for such complex analyses.

5. Conclusions

Craig-Bampton dynamic models enable a very rich information to be condensed in a very
compact format. In combination with direct integration they are able to handle non-linea-
rities related to interface freedoms. Moreover, they can use in a straightforward way the

usual modal damping.As such, they build a very efficient tool to analyse certain class of
non-linear problem with minimum computer resources.

The application to the HST deployment manoeuvre scenario was very successful; it
showed substantial SA boom load reduction and allowed to estimate the SA rotation.

This promising procedure is now in development for application to more general cases
involving non static-determinate interfaces.
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Figure 1: FEM model and some related main modes.
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£XG. PR£O.
0.005713
0.006614
0.22647G
0.315740
0.454871
0.541241
0._03183
0.763395
o.g4o169
0.983912
1.032549
1.050607
1.092661
2.644306
4.178203
4.194L05
4,299246
4.227032
5.306402
5.466541
5.867L_5

NO MX(_} HY(t) R;(%) IXt%) !¥|%) IZ(_
1 0.000000 0.000000 0.001612 0.001811 99.100212 0.000001
2 0,001069 0.000000 27.330700 31.494210 0._05601 0.00091?
3 0.00000_ 0.000000 0.0_9525 1.814X83 0.000000 0.000076

0,000281 0.000001 3.7!7133 3.941284 0.000141 0.000_15
13 25.?77051 0.000170 0.00000_ 0.01045_ 0,002_12 94.$430_1
16 0,000193 0.000004 2.564915 2.101618 0.000002 0.000630
27 _.463851 0.000001 0.000092 0.000041 0.000030 2.021_23
3_ d.000_63 0.000001 0.915543 2,022470 O.O000X7 0.0000_5
43 0.000359 _.000039 0.775949 2.121338 0.000086 0.0+0L25
45 G.001190 0.000132 2.521466 _.759158 0.000284 0.00037_
49 9.000291 0.000035 0.692529 1.210211 0.0000T4 0.000044
51 0.0004_I 0.000053 1.253723 1.005675 0,000107 0,000£24
53 0.014063 0.00£491 £5.65589_ 39.591000 0.003226 0.003325

156 ]9.644685 0.000099 0.003283 0,0013£1 0.G00182 3.694604
251 0.000007 0.000044 3.512241 1.212615 0.000041 0.000000
253 0.000006 0.000030 1.898331 0.69606! 0,000030 0.000000
255 0.000020 0.000041 2.742392 _.00S322 0.000050 0.000000
25? 0.000001 0.000039 2.LL!525 0.719823 0.000041 O.O000GO
320 0.000281 2¢.689480 0.000000 0.000000 0.000001 0.000000
32? 2.170730 0.004099 0.001671 0.00034! 0.003833 0.0610E6
349 0.000139 8.4+1351 0.000000 0.000000 0.000000 0.000022

Table 1 ' Main modes of the FEM model, in terms of rigid mass percentages.
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Figure 2: Free-free modes computed with the Craig-Bampton model.
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Figure 6:1 Free-free mode 13 of Craig-Bampton
reduced model

R

,__, ..,'--I_'-'-_- ._ o._N,,, -'-J

'--_ _I_ _

! - . :

,I p - \ ,

-- i Af : _'
_ima

..... !l!!ll!l!!i"
I

Figure 9: interface toraue about Y, SA side of brake
event P04 wing +V2

,"='_tt'_i_dSel?"_

_ k

, _
: mlDw_l /

'. r

.... _ _i_.---!
_!-2 E..-2 t

/
f

7

i

T

7

Ii!!!l!llll"I

I d 6 • d qJ

(] M_- ,,4 ,_ 29 °"'_

!

Figure 10: relative rotation around Y of both brake sides

274



Infinitely Rigid Brake

CASE Manoeuvre Bending Mo-
Type merits

(Nm)

Margin

AD11 RMS Run- 5.8 -0.10

+V2 away

R12 RMS Run- 7.5 -0.30

+V2 away

EP4 RMS Run- 6.8 -0.23

+V2 away

EP4 FIMS Run- 6.1 -0.14

-V2 away

EP6 RMS Run- 11.4 -0.54

+V2 away

EP6 RMS Run- 10.4 -0.50

-V2 away

PO2 PRCS Auto Low 5.8 -0.10
+V2 hold Z

PO3 PRCS Auto Low 6.1 -0.14
+V2 hold Z

PO4 PRCS Auto Low 8.3 -0.37
+V2 hold Z

PO4 PRCS Auto Low 7.5 -0.30
-V2 hold Z

EP1 PRCS Auto Norn 5.5 -0.05
+V2 hold Z

EP2 PRCS Auto Nora 5.7 -0.08
+V2 hold Z

Bending Mo-
ments

(Nm)

Brake allowing slippage
(Negative Margins in Bold)

i i

Max. Slip-
Margin page of Percent-

the array age of
• 8M re-

(deg) duction

4,9 0.07

5.9 -0.11

3.4 0.54

1 16

1 21

5 50

2.6 1.01 3 57

9.1 -0.42 2 20

8.0 -0.35 1 23

4.7 0.11 3 19

4.0 0.31 1 34

5.8 -0.10 2 30

5.2 0.01 2 31

3.5 0.49 2 36

4.6 0.14 3 19

EP4 PRCS Auto Norn 5.8 -0.10 5.4 -0.03
+V2 hold Z

EP4 PRCS Auto Nora 5.5 -0.05 5.0 0.05
-V2 hold Z

EP5 PRCS Auto Nora 6.8 -0.23 6.2 -0.16
+V2 hold Z

EP5 PRCS Auto Nora 5.9 -0,12 5.4 -0.03
-V2 hold Z

2 7

2 9

1 9

1 8

• Maximum angle obtained during simulation period, 60 seconds.

Table 2: Maximum bending moments in the Solar Array booms,

Note: An modal critical viscous damping ratio of 0.5%for all modes was user for the HST

analyses. This value derives from ground test data (ESA-BAe) and agrees with results

of in-flight experiment of large solar arrays (Nasa SAFE in-orbit experiment).
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Introduction

Various attempt has been made to construct a rigorous mathematical theory of
optimization for size, shape and topology ( i.e. layout ) of an elastic structure. If these are
represented by a finite number of parametric functions, as Armand[ 1,2] described, it is
possible to construct an existence theory of the optimum design using compactness
argument in a finite dimensional design space or a closed admissible set of a finite
dimensional design space, see Pironneau[3] and Buttazzo and Dal Maso[4]. However, if

the admissible design set is a subset of non-reflexive Banach space such as L**(fl),
construction of the existence theory of the optimum design becomes suddenly difficult and
requires to extend ( i.e. generalize ) the design problem to much more wider class of design
that is compatible to mechanics of structures in the sense of variational principle. Starting
from the study by Cheng and Olhoff[5], Lurie, Cherkaev, and Fedorov[6] introduced a
new concept of convergence of design variables in a generalized sense and construct the
"G-Closure" theory of an extended ( relaxed ) optimum design problem. Similar attempt,

but independent in large extent, can also be found in Kohn and Strang[7] in which the
shape and topology optimization problem is relaxed to allow to use of perforated
composites rather than restricting it to usual solid structures. Identical idea is also stated in
Murat and Tartar[8] using the notion of the homogenization theory. That is, introducing
possibility of microscale perforation together with the theory of homogenization, the
optimum design problem is relaxed to construct its mathematical theory. It is also noted
that this type of relaxed design problem is perfectly match to the variational principle in
structural mechanics.

Cheng and Olhoff ( 1980 - 1982 )
Optimum Design of the Plate Thickness

Lurie, Cherkaev, and Fedorov
G-Closure Theory, Optimum Composites

Kohn and Strang
Relaxed Design Problem for a Perforated Material

Murat and Tartar

Application of the Homogenization Theory to Optimum Design
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A Relaxed Design Problem

As briefly described in Introduction, construction of a mathematical theory of su'uctural
optimization for distributed parameters ( i.e. design variables ) requires to extend the design
to structures which are perforated by microscale voids. Introducing a perforation
characterized by the unit cell shown in the figure, the distributed design variables are

defined by the size { a(x), b(x) } of microscale voids and the orientation 0(x) at an

arbitrary point x of a structure. Since x is arbitrary point in the domain _ of the structure,

a, b, and 0 are functions in an infinite dimensional function space. That is, since this
relaxed design problem is not represented by a finite number of parameters, usual
compactness argument is not applicable, but the theory of homogenization is its alternate.
A typical optimum design problem is stated by

Minimize

subject to

ueV : a(u,v)=L(v), Y),_V 0

f(d,u)

as shown in Bendsee and Kikuchi[lO], where/is a cost function, d is the design
variables, u is the equilibrium displacement, a(u,v)=L(v) is equilibrium of a structure in
variational formulation, g are represenwtion of constraints.

l
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Example - Design of a "Beam" Structure

As simple examples of relaxed design problem, let us consider beam of uniform width
with both ends rigid support, and point load at the center. The length of beam is 20 and
hight of 1 was taken as design domain.The solution of this problem with thickness as
design variable and width fixed is known to be two hinges appear at 1/4 and 3/4 of length.

The objective function was taken as mean compliance of structure, i.e. load times
displacement at loading points. Using optimality criteria method in relaxed design problem
described before, and volume constraint 10, 15, 18 with total volume of design area 20,
following results are obtained. These results clearly show hinges at 1/4 and 3/4 of length
points in each case. Also it is noteworthy that when constraint on volume is small, the
beam becomes sandwich type beam, i.e. upper and lower surface and weak core inside.
Although this type of structures are known to be preferable when bending is applied,and
used often in aerospace industry, traditional method with thickness as design variable
cannot generate them unless this type of structure is assumed a priori.

1
m

Desi

Load

A Design Problem of a Beam Structure

Volume Constraint 10

Volume Constraint 15

Volume Constraint 18

Optimal Layout of a Beam like Structure
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Example - Design of a "Truss" Structure

Second example is bridge type structure. The structure is supported in both end, and
hight of bridge is limited to one half of the length of bridge. Point load is applied at the
middle points of two support points. Volume constraint is taken 25, 50, 75 respectively
while total volume of design area is 200. The results using relaxed design problem is
shown below. Each result consist from two types of structure, a bridge that connect both
supports and tension member that connect bridge and loading points. When constraint on
volume is small (25), the design clearly shows 9 bar truss like structure, although the
bridge part generate small holes inside since it is not totally free from bending effect.

1_. Oomain

e : ApClled Load

7

T
H

1

/
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Example - Optimum Reinforcement of a Plate

As a examples of application of relaxed design problem to plate, design of simply
supported square plate subject to point load at the center is considered. The thickness of
support layer and thickness of stiffener are fixed. Relaxed design problem of minimize
mean compliance subject to volume constraint is solved using optimality criteria method.

The results are shown below. In cases volume constraint is large, the final design
clearly shows four hinge lines of 45 degree inclined lines. It is reminded that two hinges
are generated for a beam case also. Thus, hinges in the optimal reinforcement is expected
one. It should be noted that this does not mean discontinuity of the transverse displacement
along these hinge lines. But only the slope is discontinuous, and it is still admissible in the
variational formulation of an elastic plate defined in the Sobolev space H2(t'l).

In cases volume constraint is relatively small, cross shape support with with diagonal
support is optimal. It is noteworthy that hinges also appear in diagonal supports, although
they are not so conspicuous as in large material case. That cross shape supports become
thinner as they approach edges can be explained that minimum plate will disperse the load
as you approaches the edges.

V

(a) volume 720/900 (b) volume 630/900

(c) volume 450/900 (d) volume 270/900

Optimal Layout of a Plate with Point Load
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Example - Optimum Reinforcement of a Shell

As a comparison to previous example, same type of design problem is employed, while
in previous case there was no curvature in shell and there is only bending effect, but in this
case there is curvature and coupling of bending and in-plane effect exists. The shape of
shell is Z=Zmax sin0rx/Xmax) sin(ny/Ymax) with Zmax/Xmax = Zmax/Xmax = 1/12. Again,
boundary condition is simply support and load is applied at the center of square.

The results shown below are quite different from previous design of plate. Surrounding
area is stiffened, and loading point and surrounding stiffener is connected by diagonal
support.

These quite different results from plate case is very natural consequence considering the
fact that in previous plate case, only bending moment is applied since bending and tension
are totally decoupled, while in this shell with curvature, since there is coupling between
bending and tension and rather tension is dominant, similar results to two dimensional
problem appears.

/
(a) volume 450/900 Co) volume 270/900

Shell with Point Load at the Center

\
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Example - A Three-Dimensional Structure

The relaxed design problem can be applicable to 3 dimensional solid. In this case,
design variables are 6, 3 for sizes of microscopic rectangle body holes and 3 for rotational
angles. Same type of formulation and numerical method as before, i.e. minimize mean
compliance with constraint on vulume, and discretized using finite element method and
optimized using optimality criteria method.

As a example, the cantilever rectangle plate subjected to shear force is solved. The size
of plate is 32x20 with thickness 4, and 4 elements were used in thickness direction. One
end is clamped and the other end is loaded at the center point of section. Volume constraint
was set 800, while volume of total design domain is 2560.

The result are shown below as each 4 layer in thickness direction, from top to bottom.

Top and bottom layer has triangular shape of full material area to support bending moment
and two layers in between have very thin rim to support interaction of top and bottom
layers. This types of structure is known as "Sandwitch structure", and supposed to be one
of the best structure for bending.

_mll . Ulllml__

1st Layer 2rid Layer

:::_gmtmm I

3rd Layer 4th Layer
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Convergence of Finite Element Methods

The natural question arises is whether the shape and topology, i.e., the configuration of
the structure obtained as the optimal design converges to the unique one as finite element
meshes are uniformly refined, while other conditions are fixed. For this purpose, the
relaxed design problem described below is solved with several different sizes of finite
element meshes, 32x20, 48x30, 64x40, 80x50, and rectangular design domain with
boundary condition left end fixed and load being applied on right side.

The results shown below clearly shows convergence to certain topology as mesh
becomes finer and finer. Therefore, it is natural to consider that as mesh size becomes

zero, the results converge to the final configuration that is design variable as continuous
function, and the topology of the design with continuous design variable is almost same as
that of finite mesh size.

D_lp _ls

Desi n Domain for Bending of a Short Cantilever

Convergence of the Optimal Configuration ( f2s = 60 )
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Structmaloptimizationprocedures usuallystartfrom a given designtopology and

vary itsproportionsor boundary shapes to achieve optimalityunder various

constraints.Two differentcategoriesof structuraloptimizationarcdistinguishedin

the literature, namely sizing and shape optimization. A major restriction in both
cases is that the design topology is considered fixed and given. Questions
concerning the general layout of a design (such as whether a truss or a solid
structure should be used) as well as more detailed topology features (e.g., the
number and connectivities of bars in a truss or the number of holes in a solid) have

to be resolved by design experience before formulating the structural optimization
model. Design quality of an optimized structure still depends strongly on
engineering intuition. This article presents a novel approach for initiating formal
structural optimization at an earlier stage, where the design topology is rigorously
generated in addition to selecting shape and size dimensions. A three-phase design
process is discussed: an optimal initial topology is created by a homogenization
method as a gray level image, which is then transformed to a realizable design using
computer vision techniques; this design is then parameterized and treated in detail
by sizing and shape optimization. A fully automated process is described for
trusses. Optimization of two-dimensional solid structures is also discussed. Several
application-oriented examples illustrate the usefulness of the proposed
methodology.
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Topology Optimization (Phase I)

Recently, Kikuchi and Bendscte [1] presented a homogenization method for solving

generalized structural layout problems. An initial domain, provided by the designer, is

discretized into finite elements. Boundary conditions are also supplied at this stage. The

density and stiffness properties of the elements are determined by applying homogenization

to the model of a unit cell with a rectangular hole; see Figure 1. Using the dimensions (a

and b) and orientation angle (0) of the holes as design variables, the method searches for

the minimum compliance or maximum stiffness of the structure subject to a volume

constraint. In other words, homogenization solves the problem formulated in Eq. 1. A

given amount of material is thus redistributed with mierostructure properties as variables.

The resulting material distribution corresponds to an optimum topology that can vary from

truss-like configurations to closed solid shapes. The method has been successfully

implemented to date for two-dimensional structural problems [1,2].

solid

0

1

void

,111, 1 i_.

Figure 1. Definition of a microscale hole, i.e., a finite element for homogenization method.

_[inirnize

subject to

Mean compliance of structure

Equilibriumequations

Amount of materialas a percentageof totaldomain volume

(1)
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Three-Phase Design Methodology (ISOS)

The integration of a topology-generation step into an overall design optimization process
can b¢ performed according to the following general scheme:

Phase I: Generate information about the optimum topology for the structure.
Phase II: Process and interpret the topology information.
Phase III: Create a parametric model for detailed shape and size optimization of the

derived topology and apply standard optimization techniques.
This scheme is the basis for an Integrated Structural Optimization System (ISOS),

outlined in Fig. 2, and described in general terms by Papalambros and Chirehdast in [3].

Volume Constraints Vllrbibie In/Ual Dormln

Olobld Specification e Boundary Conditions

L DETAILED DESIGN MODULE J

i

DETAILED DESIGN COMPUTATION

i I =t" _P

Figure 2. Basic flow chart for the three-phase structural optimization system [SOS.
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Example 1

The operations performed by ISOSin Fig. 2 are best illustrated through the simple example
shown in Fig. 3. Figure 3(a) is the starting point Figure 3('0) is the output of Phase I and
input to Phase II. Figure 3(c) is the output of Phase II, and is converted by the designer to
Fig. 3(d) as input to Phase m.

1.25

4

8
w

Deep demala

a)

b)

c)

I"-'1

Figure 3. Deign example 1: a) design domain and boundary conditions; b) density
distribution generated by homogenization; ¢) processed image; d) user
interpretation and detailed design model (design variable xl).
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Image Interpretation Module (Phase II)

The general image interpretation module (Phase 1]) is depicted in Fig. 4 in more detail. The
module is a representation manipulator, its basic purpose being extraction and processing
of higher level knowledge from the density arrays generated by homogenization using
image processing and computer vision techniques. Another purpose of Phase II is to
impose nonstructural requirements on topology, such as manufacturing constraints, which
is accomplished using domain-dependent rule-based systems. Currently, homogenization
can only handle two-dimensional problems and therefore three different types of two-
dimensional structures need to be treated by Phase 11; these are plane stress/plane strain
structures, trusses, and frames. In [3] and [4] techniques for dealing with plane
stress/plane strain structures and trusses are discussed respectively. The degree of
automation for treating trusses in Phase II is higher than that for solid structures.
Investigation of frames will be the focus of our research in the near future.

Geometric Interpretation
i

,Plane Stress/Strain

Edge Detection

Boundary Smoothln|

Truss
skeleton Extraction SkeletonExtraction
Model Converslon ModelConveraion

Prlmltlve Comblnatlor

NO
clear

Phase II

Yes

(IIM) Representation Conversion
User Interation

r

Structural

Optimization

to Phase III (DDM)

Figure 4. Phase II (Image Interpreter Module) in more d_',_iL
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Detailed Design Module (Phase III)

A detailed design model is set up in Phase IH to perform sizing and shape

optimization.The number of design variablcsand constraintsisusuallymoderate atthis

point,and generalmathematical programming algorithmscan bc used,allowingversatility
in objectiveand constraintfunction specifications.In ISOS, an evolved vcrsion of the

structuraloptimizationpackage SAPOP [5,6]isused;itconsistsof a finiteclcrncntprogram,

scvcral constraincd optimization algorithms and standard prc- and post-processors,

includingautomaticmesh generation.At thisstage,thedcsigncrcan once again check ff

the proposed design issadsfactory.Figure 5 depictsa schematicoverview of SAPOP and

Phase Ill.Two distinctmodels of the designarcrequiredby SAPOP, namely structuraland
optimizationmodcl. For furtherderailon thismodule rcfcrtoeitherSAPOP references[5,6]

or previouspublicationson ISOS [3,4].

Modify Interpretation
In Phase U

--I I

Boundary Data
Structural Members

Structural Model (FEM)

I Optimization Model

Design Variables

! ObjectivesConstraints

PRE-PROCESSING I

I OPTIMIZATION ALGORITHM I 1FINITE-ELEMENT MODEL !
rain f(x) s.t g(x) > 0 I I-- _ _ !

I POST-PROCESSING I I

L _1 Objectives,Constraints

_ _ u _ f(u), S(.) I ______ _

--I' 'P

Figure 5. Derailedflow chartof PhaseHI (DetailedDesignModule).
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Example 2 - Truss Optimization (Phase I)

A cantilever structure is to be designed for minimum weight supported and loaded as

shown in Fig. 6(a). Maximum allowable stress limit is set at 180 N/ram 2 and the
maximum displacementattheloadingpoint islimitedto I0 ram. The initialdesigndomain

isprescribedto bca rectangle,as shown in Fig.6(a).The homogenization procedure is

applied using the model of Eq. (I) and disregarding explicitstressand deflection

conswaints. The design domain isdiscretizedinto40 by 60 finiteelements.Since each

finiteclementrepresentsa unitcelland the shape ofeach unitcellisdefinedby thre_design

variables,the homogenization method has to solve an opdmization problem with 7200

designvariables.Figure6Co)shows the optimum materialdistributionforthisproblem for

a solid-to-voidratioof I/3.The solutionrequiresabout 7 hours of computational time on
an Apollo 4000 workstation.

Displacement

1000 constrained points

¢.

F=20kN

(a)

o)

Figure 6. (a) Design specifications and Co)Optimum material distribution for Example 2.
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Example 2 (Output of Phase II and Some Alternative Designs)

The final output of Phase II for this example is shown in Figure 7 which results
automatically by performing the steps explained in [4]. At this stage, we sea_h for the
minimum weight design that satisfies the above specified stress and displacement
constraints. Design variables are cross sections of truss members and the c_oordinates of the
unrestrained and unloaded nodes. To study the optimality of the proposed topology, it is
compared with some common truss topologies. Truss models of four different topologies
were chosen to conduct the study and are shown in Fig. 8, dotted lines indicating truss
elements removed by sizing optimization.

Sy

Figure 7. Output of Phase 1I for Example 2.

Five-Bar Topology Ten-Bar Topology

Homogenization Topology Fourteen-Bar Topology

Figure 8. Alternative engineering solutions for the bracket problem.
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Example 2 (Phase III and Final Results)

Table 1 shows the weights achieved by sizing optimization where design variables are only
cross-sectionsof the bars.In Table 2, the resultsfor a combined sizingand geometry

optimizationare given where additionallycoordinatesof unmsn'ained and unloaded nodes

areintroducedas designvariables.The topology proposed by Phase Iisclearlyleadingto
thelowestweight. Inthe caseof combined sizingand topology optimization,the positions

of thenodes of thehomogenization trussmove only slightly,inconwast tothenodes of the

other trussdesigns.The nodes of the homogenization truss arc nearlyoptimallylocated

even beforegcomeu'y optimizationisperformed inPhase I_

Table I.Comparisonof initial and optimal weights resulting fromsizingoptimization.

Model

Five-Bar Truss

Ten-Bar Truss
l

Homogenization Truss
l

Fourteen-Bar Truss

Weight [kg]
Initial Final

31.29

40.51

32.27
I

42.51

28.012

25.527
1

23.294

28.095

Table 2. Comparison of initial and optimal weights resulting from sizing and geometry optimization.

Model

I I

Five-B ar Truss
I

Ten-Bar Truss
l

Homogenization Truss
I

Fourteen-Bar Truss

Weight
Initial

31.29

40.51

32.27

42.51

[kg]
Final

28.012

23.714
l

22.848

23.540
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Example 3 - Solid Two-Dimensional Structure (Phase I)

A bracket is loaded by a single force and a moment, shown in Fig. 9. A minimum weight

design subject to stress and displacement conswaints is sought. The allowable equivalent
stress is 50 N/ram 2 and the allowable deflection at the loading point is 0.1 ram. The

homogenization output is shown in Fig. 10 where the imposed volume constraint is 50%.

'l'aickn_: 18ram
Squaxe Holes: lOmm x 10 mm
F - 1780N
M = 45.25 Nm

Figure 9. Boundary specifications and initial design domain for Example 3.

Figure 10. Optimum _ dislribution for Example 3 (solid/void ralioffil/1)
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Example 3 (Phases II and In)

The image of Fig. 1O is interpreted as a two-dimensional solid and subsequently
filtered and smoothed by the image processing tools described in [3]. Figure 1l(a) shows
the detected non-smooth edges. In Fig. 1l(b) the smoothed boundaries are depicted. Note
that linear functions as well as B-splines are used for smoothing the boundaries. Based on
these images, an initial design is constructed. To achieve structmal optimality while
accounting also for manufaclming cost, only straight lines and fillets are used for boundary
representation. The finite element model of the resulting design as an input for Phase HI is
shown in Fig. 1l(c). Note that the transition from the image shown in Fig. 11Co) to the
model of Fig. l 1(c) is performed manually. Automation of interface between Phases IT and
IT[ for plane stress/strain strucunes is under development. The detailed design model has
weight as the objective with stress and displavement constraints as defined above, and
allows variations in the positions of the fillets in the design. Representation of the fillets is
discussed in [4] in more detail This particular detailed design model is only one possibility
among many others, e.g., one could define nonlinear shape functions to represent the
boundaries, provided the manufacturing requirements would permit the designer to do so.
The detailed optimum design is presented in Fig. 11 (d), achieved after 12 optimization
iterations with a sequential quadratic programming method, and represents the final
minimum weight design satisfying both structural and manufacnmng constraints.

(a) to)

(c) (d)

Figure 11 (a)Non-smooth and (b) smooth boundaryrepresentationof image shown in Fig. 10; finite-
element modelsof (c) initialand (d)final bracket design.
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Conclusions

The integrated strucna'al optimization system (ISOS) described here offers an exciting new
capability for slructural design. The ability to generate topologies on a rigorous analytical
foundation opens the way for integrating several tools from different disciplines such as
structural mechanics, manufacturing, computer vision, expert systems, and mathematical

optimization. A unique attribute of this system is its capability to allow examination of
design constraints in many different domains. The integrated program ISOS is obviously in
an evolving state. Modules I and IT[ are sufficiently developed to operate in an automated
way. In Module ]I, the image processing capability is fairly well developed, but the image
interpretation module is not yet automated and will provide a continuing challenge. It
should be noted that progress offered by other researchers in feature-based design and
design for manufacturability can directly benefit automation efforts for this module.
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1 _GN

Any optimization of structures for maximum stability or for maximum

dynamic stiffness deals with an eigenvalue problem. The goal of this

optimization is to raise the lowest eigenvalue (or eigenvalues) of the

problem to its highest (optimal) level at a constant volume of the

structure. Likely the lowest eigenvalue may be either inherently

multimodal or it can become multimodal as a result of the optimization

process. The multimodness introduces some ambiguity to the eigenvalue

problem and make the optimization difficult to handle. Thus far, only

the simplest cases of multimodal structures have been effectively
optimized using rather elaborate analytical methods ([1-4]). Numerous

publications report design of a minimum volume structure with

different eigenvalues constraints, in which, however, the modality of

the problem is assumed a priori (see [5-7], for example). The method

presented here utilizes a multimodal optimality criteria and allows

for inclusion of an arbitrary number of buckling or vibrations modes

which might influence the optimization process. The real

multimodality of the problem, that is the number of modes

participating in the final optimal design is determined iteratively.

Because of a natural use of the FEM technique the method is easy to

program and might be helpful in design of large flexible space
structures.

2 TI_ OPTIMALITY CRITERIA

The buckling and the free vibrations problems are formulated and

solved using very similar numerical techniques. Consequently, the

optimality criteria for those two cases must be also very similar.

Here, due to space limitations, only the optimality criteria for the

highest frequency of free vibrations is briefly_m/tlined.

Using finite element formulation the free vibrations problem is
defined by:

(K - AiM)x i - 0 (i)

where K is the elastic stiffness matrix, M the mass matrix, x. is the

i-th vibrations mode and _ represents the square of the corresponding
frequency of free vibratzons. Multiplying Eqn.(1) by x_, the

eigenvalue Xi can be expressed in the form of the RayleigWquotient
as:
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1/2 x. Kx.
k. = i I (2)
i 1/2 x._x.

1 1

where the numerator represents the strain energy and the denominator

represents the kinetic energy of the vibrating structure.

Using a proper eigenvalue solver the solution to the problem (i) is

obtained in the form of the set of eigenvalues kl,k2,k_..., where

kl>,k2>,k3>,..., and the corresponding set of eigenmodes_x17x2,x 3 ....

The purpose of optimization discussed here is to maximize the first

eigenvalue X1 for a structure of prescribed weight. Clearly when

increasing X1 it may become equal to X9 then to X3 and so on...
Consequently the optimization finally m_y need to monitor N modes.
Note that the number of modes which must be considered to reach the

optimal design is unknown a priori and may be difficult to predict.

In order to derive an optimality criterion for the above problem

consider the following Lagrange functional:
N

F(x,h) - (1/2 XlKXl)/C 1 + Z yi[(i/2 xiKxi)/C i - (1/2 XlKXl)]
N i-2

+ r.hi (1/2 xiMx i - C i) + 8 (r- Wj - W o) (3)
i-I

where h is the design variables vector representing a property (area,

thickness, etc.) of each element to be optimized, C i is an arbitrary
constant to normalize the i-th vibrations mode, W. and W are the

weight of the j-th element and the total weight r@spectiv_ly, yi,ni

and 8 are the Lagrange multipliers.

The multipliers _ and 8 can be determined explicitly and the
necessary conditions for optimality of the functional (3), after some

algebra, are derived in the form:

N NSEI j N h (NSEij(i - r _i ) + r _i [ - i) + I] - p-i

i-2 i=2 X1

whe re:

7i(Xi - XI) - 0 i - 2 ... N

NSEij - (Wo/W j) (1/2 xijKijxij/XiC i)

_ij _ XiMj- pKj
and

(4a)

(4b)

NSEI_ is the normalized equivalent strain energy of the j-th element

due £o the i-th vibrations mode and x_ must satisfy Eqn. (1).eTheth
parameter p represents the relation betWeen the stiffness and mass
of each element which was assumed in the form:

(Mj)P/Kj = const.

F_/n. (4a) must be satisfied for each element of the structure, and the

switching conditions (4b) must be satisfied by every eigenvalue X..
As can be seen from F_qn. (4b) the number of nonzero Lagrange I
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multipliers, 7i, indicates the modality of the problem. For the
correct number of modes influencing the final optimal design the

equations (4a) and (4b) can be combined into one condition:
N N

(i - Z 7 i) NSEIj + Z 7i NSEij = p-I (5)
i=2 i=2

The conditions similar to that given by Eqn. (5) were discussed in

[5,6,7]. However, it should be emphasized that the modality of the

optimal design represented here by N is, in general, unknown and

therefore any iterative solution procedure must also simultaneously

consider Eqn. (4b). Unfortunately, Eqn. (5) can be satisfied by a set

of eigensolution which does not meet the conditions (4b). This

features makes the optimization procedure based only on Eqn. (5)
somewhat difficult to handle.

3 THE ITERATIVE PROCEDURE

The purpose of the iterative procedure is to meet the optimality

conditions by correcting the design variables vector, h. The

correction, _h. to the shape of the j-th element is calculated using

the following _teps:

a) For a given structure solve the eigenvalue problem to obtain the

solution with sufficient number of modes, N (we assumed N-9). :

b) Utilizing the results from step (a) determine the energies NSE_._.

c) Select a "proper" set of the multipliers 7_ (see comments belch)

d) Determine the local error (for the j-th el_ment) defined as:
N N

_j - (I - r. 7i ) NSEij +i E 7i NSEij - p + I (6)i-2 -2

e) Verify the optimality criteria against an assumed tolerance d (we

used _ - 0.0001) e.g.:

l_jl < a for all elements and ki/k I - 1 < A for i 2 ..< fori NRNR+I .. N (7)

Since for i > NR all 7i vanish, clearly, NR represents the modality
of the design.

f) If the optimality criteria are not met, correct the design

variables accordingly to the formula

6hj - c_jhj (8)

where c is a positive number and repeat steps (a-e).

Note that in steps (a) and (b) only the magnitudes of NSEt are

calculated, while the Lagrange multipliers 7_ are still indetehniD_te.

In fact, as long as A1 < k_ they may be chOsen somewhat arbitrarily
(see [i0]). However, a unique set of 7_ must be determined when a

design becomes the optimal one. The following two-phase procedure

provides a good selection of 7_ in every iteration step and secures

the convergence of the optimiza£ion process.
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First the magnzitudesof 7'_ are calculated minimizing the global error
defined as Z_4- The minin_ization, when using Eqn. (6), leads to the
set of linear Jalgebraic equations in the form

N

E aki Y'i = bk k - 2 ... N (9)
i=2

where aki and bk are known functions of NsEkj

The second phase implements corrections to 7' i with respect to the

difference between Ai and _ in the form:

7i - 7' (AI/Ai)i-I i - 2 N (i0)
i ...

The relation (10) is used to satisfy iteratively the switching

condition (4b) and plays a very important role in determination of the

modality of the problem. For i _< NR the difference between 7. and 7'
gradually disappears while for i > N= the values of 7_ _re i

consistently driven to zero the same eTiminating the cort_esponding

modes from optimization.

4 SOME RESULTS A_D DISCUSSION

The procedure discussed here has been used for optimal design of

columns, frames and plates. Some unimodal and bimodal cases of the

optimization for maximum stability were presented in [8-10]. The

optimization program interacts with ANSYS, the FEM software, which

performs the analysis required in step (a).

Fig. 1 shows the examples of bimodal and trimodal designs for maximum

stability. Fig. 2 presents the case of optimal design of the plate

for maximum frequency. In both cases the optimization was initiated

from the uniform shape and the increase in the buckling load or in the

frequency of free vibrations is also related to the corresponding

parameter for the uniform structure.

The numerical experimenting indicates that the method is globally

convergent, though the process requires a high accuracy in

calculations of eigenmodes in every iteration.
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ABSTRACT

Present interest in hypersonic

vehicles has resul_ed in a renewed

interest in thermal s_ress analysis of

airframe structures. While there are

numerous texts and papers on thermal

stress analysis, pracical examples and

experience on light gage aircraft

structures are fairly limited, A

research program has been undertaMen at

General Dynamics to demonstrate _he

present state of _he art, verify methods

of analysis, gain experience in their

use, and develop engineering Judgement in

thermal stress analysis. The approach

for this project has been to conduct a

series Of analyses of this sample problem

and compare analysis results with test

data. This comparison will give an idea

o£ how to use our present methods of

thermal stress analysis, and how accurate

we can expect them to be.

INTRODUCTION

Several strategies for thermal

stress analysis have been used in the

pest. Prior to the emergence of

computerized analysis, numerous texts

were written on closed form (or

"classical") methods (see Reference I).

When these have been used, such ms on the

X-15, X-20, and 8-58, several drawbacks

occurred= l]Length on time required to

perform calculation made it difficult to

converge on a design (Reference 2},

Z)Unknowns such as Joint flexibli_y and

slmp_ifylng assumptions often led to

overpredictlon of stresses (Reference 3)

or surprising failures (Reference _).

With the emergence of digital

computers, the finite element method came

into prominence for structural analysis.

For thermal analysis, the finite

difference _ethod has become the primary

computer method. This resulted in more

detailed analysis in both specie}item.

However, during the late 1880's and the

l@70's, there was little motivity in

thermally stressed airframe s_ructurss.

For example, the original design

philosophy Of the space shuttle was that

Copyright 1988 General Dynamics

Corporation. AIm Rights Reserved.

the TPS (Thermal Protection System) would

keep thermal stresses from developing in

the orbiter structure. This assumption

has proven to be false (References 5

through 7). Reference 5 brief|y

discusses some of the problems of thermal

stress enslysls ae done on the Space

Shuttle Orbiter. Thermal Analysis was

done on 118 local lumped parameter

(finite difference) models. Host

temperatures used in stress analysis were

obtained by interpolating between these

models. The potential for error at _his

point in the anslysls is high, especially

if thermal enalysls models are not in the

right place or if the distance between

them is too great. NASA hem concluded

that more detailed thermal mode_s ere

needed. This in turn requires= i)

automating methods of thernal model

generation (similar _o finite element

preprocessors), 2) faster solution

techniques, 8) automating the search for

critical conditions, 4) improved modeling

techniques to reduce mode] size, 5)

automating data transfer and/or

interpolation between thermal analysis

end structural analysis (similar to

finite element post processors), end 6]

more reliable and accurate oeculatlon of

aerodynaalc heating inputs.

To echleve these goals, NASA Langley

Research Center has begun developing a

fully integrated finite element method,

encompassing structural, thermal, and

aerodynamic analysis into a single

solution. The main reasons for this

strategy ere i) to solve the problem of

interfacing the different discipines by

eliminating the intorfece, and 2] taking

advantage of _he model gensrmting

cepeblitles of existing finite elesemnt

pre/post processors. While this work is

still in the developeent stagI, it shows

great proalse (see References 8 through

I0). The method his _entstlvely been

nimed LIFTS (Langley Integrated Fluid-

Theraal-Structural Anelysis).

Until LIFTS or other new Iethods are

fully operetionll, we IUSt WOrk with

existing me=hods. This means using

finite element methods such IS NASTRAN

for structural anIlysii, finite

difference me_hods (such IS SINDA) for

thermml analysis, and either

Ipproxlmation methods (such es AEROHEAT)

or CFD (computational fluid dynamics)

Iethods for aerodynamic heitlng analysis.

The problem then becoaes one of
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interf•clng and coordin•tlng the

different •n•lyses. Our first attempts

quickly showed th•t if each t•sk w•s done

independently, without coordln•tlon end

cooperation, results would be dismal. It

was therefore decided th•t all three

analyses must be worked on a common grid

layout, end th•t the interf•ce between

them would be automated by a computer

progr•m to generate a SINDA model from •

NASTRAN model, end to reform•t SINDA

output for use by NASTRAN. This computer

program, developed by Gener•l Dyn•mics

under discretionary funding, is celled

NAS$1NDA.

Once this procedure wme oper•tlonml,

it wms decided to exercise it on • test

problem. This was intended to

demonstrate our c•pablittes, to develop

experience end technique in this type of

• n•lysis, sad to find bugs in the code.

The test problem needed to be fmlrly

representative of •Irframe structure.

well documented, end well instrumented.

HWTS BACKGROUND

The problem chosen for •nmlysls wmi

the Hypersonic Wing Test Structure

(HWTS). HWTS is • metallic structure

simulating the wing of • hypersonic

alrcrmft (see Figure i]. The design of

the HWTS wms booed on the mission loads

mad temperatures cmlculmtsd for the wing

portion of the Hypersonic Resemrch

Airplmne (HRA), m study vehicle which WaS

never built.

A major design consideration wma the

pushover - puLLup lomds amneuver. This

maneuver is anita•ted •t Hath B st mn

altitude of 27.4 km, end consists of • -

0.5 G pushover, • +2.5 G pullup, and •

return to I nomin•L relemrch alaslon

descent profile. Prelomd end postlomd

maneuvers precede mad follow the actuml

loads mmneuver, providing trlnsltlons to

mad from the nomlnml flight path. The

entire loads mmneuver took 42 seconds,

with • mmximum dynamic pressure of 83.78

kn/•**2 obtained during this time.

TEST ARTICLE

The following description of the

HWTS test •rtlcLe is bmsed on Reference

11 sad engineering drmwlngs of the HWTS.

Figure 2 shows the generml

dimensions and shmpe of the HWTS with a

trmnsttion section. The wing is

cantilevered from W.S. (wing station) 42.

O0 (I . O@YM). The wing was tested

inverted, so the compressively loaded

surface of the •ctuml vehicle would be

the lower surfmce of the test structure.

Although not m part of the airplane

design, the trmniltlon section wme

included to provide s buffer between the

support structure and the test portion of

the wing. The five molt critically

compression-loaded panels are the lower

root panels,

Skin pmnels of the HWTS are the

primary load csrrying members. Them are

formed from • single sheet of Rene' 41

with seven alternating up end down

circul•r •rc be•de par•llel to the wing

spmrs. Doublers were spot-welded to the

ends of the panel to prevent local end

f•ilure and to reduce excessive

deform•teen c•ueed by sheer. Over•el

panel dimensions are 18.25 inches (48.8

cm) by 42.8 inches (109.0 cm). Be•do •re

.028 inches (, 088 ca) thick having m

radius of 1.045 inches (2.854 cm) wlth an

included angle of 155 degrees. The flat

sections between the beads are . 438

inches (1.113 ca) wide and .038 inches

(0.081 cm) thick. Four channel sections

are spot welded to the beaded p•nel to

provide attachment points for metallic

heat shields. The beaded pmnels are

mttsched to the cops of orthogon•l spars

end ribs by screws.

Figure 2 shows the HWTS mounted in m

support fixture. Z-sh•ped clips are used

to connect the heat shields to the

structure. The HWTS hm_ six spars

perpendiculmr to the mlrcrmft centerline,

producing five chordwise boys. Both the

spar and rib webs have sine wave

corrugations mllowing for thermal

expansion. The outboard portion of the

structure between the leading edge rib

and the 30X rib is covered by in

Insulation packet$ the insulmtlon is

intended to keep maximum structural

temperatures below I005 degrees K and to

keep spmnwise temperature gradients

constant.

The heat shlolds Ore slightly

corrugmted in the chordwiee direction.

In general, two heat shields cover each

full -SiZe beaded pmnel. Hemt shield

extensions were provided around the

boundaries of the test structure to

improve the heotlng simulation of the

outer spmrs mnd rib webs.

Figure 2 shows the attachment of the

wing to the support structure. Twelve

horizontml links provide spmnwtse

horizontal laid reaction end reaction for

bending momen_ mbout an axis pmrmLlel to

the •ircraft cent•flame. Each Link his m

spherical ball mt each end so that

thermal growth of the wing is not

restricted by the support structure.

Wmter-cooled fittings were placed between

the links and the wing to m•intsin the

support structure it room temperature
during tests. There iS also in

insulation pmcket that extends along the

wing root to prevent hemt losses.

Three lets of testing have been done

on the HWTS. Originally, it wla believed

that lateral pressure on the beaded skin

pmnele was on important consideration. A

"pressure pin" wss placed under eech of

the critical lower surface root panels,

end pressure wil applied to create m

loter•l mold on the panel. Thli iS the

series of tests described in Reference

12. Liter, these tests were repeated

with • set of panels of •lternste design.

Finally, •ttention shifted away from the

ponell mnd to the global thermal stress

enmlysli problem. The pressure pins
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block radiation coming off the backside

of the skin panels, so they were d_leted

from the third, or "Retest" series of

tests. This data has not been formally
reported by NASA, but was made available

for our use (Reference 13).

TEST INSTRUMENTATION

A total of 370 thermocouples, I02

strain gages, and 18 deflection pots were

installed on the HWTS for the "Retest"

series of tests. Some 78 of the strain

gages were conventional foil gages, which

ere limited to temperatures of 550

degrees or less. The remaining 24 strain

gages are weldable strain gages, which

are operational at higher temperatures.

This has an impact on the test conditions

which uill be discussed later.

Instrumentation is concentrated An

mnd around Bay "H" (Figure 3), which is

bounded by spars at P.S. 950 (24. 130M)

and P.S. 870 (24.$38M) and ribs at B.L.

54 ( i. 372M ) and B.L. 97. e35 (2. 479M ).

This bay Is one of the inboard bays, and

therefore heavily loaded [The wing root

is at B.L. 54.0]. It is also as far as

possible from the thermal boundaries,

making the thermal simulation in this

area as realistic as possible. Thus,

this area is the center of attention.

TEST PROCEDURE

The "retest" series of tests

consisted of three teat runs. First was

a check-out run to verify operation of

instruaontmtion, loading system, heating

system, and controls. Only room
_eaperature deflection data is available

from thle run (Condition 4. I. 3). The

second test was a combination of thermal

and mechanical loads, with the

temperatures limited to 550 degrees F

(Condition 550. 4). This insured that

temperature limits of strain gages were

not exceeded. The third test wee a
combination of mechanical loads and

thermal load, similar to the second test,

except that temperatures were limited to

ii00 degrees F (condition 1000.4). This

means thmt the foil strain gages were

destroyed sometime during the Cast, with

only the 24 weldable strain gages

operational throughout the test.

THERMAL STRESS ANALYSIS VERIFICATION

The object of the HWTS investigation

at General Dynamics was to exercise our

methods of thermal stress mnalysls, debug

them, and develop experience using them

in realistic airframe structure

applications. Our approach has been to

run a series of demonstration problems

based on data from the HWTS tests Just

described. Coaparislon of test end

enalytlcal results helps glve an

understanding of the accurmcy of our

calculations.

CHECK PROBLEM ONE - BAY H OF HWTS

Bay H, one of bays on the HWTS, was

chosen me the basis of our first checkout

problem for a variety of reasons. It le

one of the most inboard bays and

therefore most heavily loaded

mechanically. It am the bay farthest

from the boundaries and therefore most

realistic in its thermal simulation. It

is the most heavily instrumented area of.

the HWTS. It is else • small enough

problem to serve as a good checkout

before starting on analysis of the full

HWTS. In Reference 14, Laaeris used Bay

H _o check out problems in the COSMIC

NASTRAN thermal analyzer. A copy of that

NASTRAN deck was provided by NASA Dryden.

Our analysis was made using the same grid

layout.

NASSINDA does not recognize the

NASTRAN heat transfer (CHBDY) elements

used by Lameris. Be they were replaced by

dummy CQUAD4 and CTRIA3 elements which

represent the heat shield. The model is

illustrated in Figure 4.

The first run of the SINDA model was

incorrect due Co sn input data error.

The second run produced skin tempermtures

in good agreement with measured

temperatures in Reference 14, but

understructure (spar webs) temperatures

were too high. Since the spar webs are

corrugated in a sine wave pattern, they

have m higher conductance in the vertical

direction than the flat plate values used

in this run. Also, an emissivity value

of .8 was used, which was Judged to be
too high.

For the third run, the conduotances
of the spar webs was increased in the

vertical direction. This resulted in an

increase in cap temperatures and s

reduction of web tempertures. However,

the lower web temperatures were still too

high early in the trajectory. For _he
fourth run, emissivity wee changed from .

S to .85. Good agreement was achieved on

understructure and skin temperatures, ms

shown in Figure 5. This gave us enough

confidence to precede with en analyels of

the full HWTS.

CHECK PROBLEM TWO - PULL HWTS

Since the thermal analysis model of

Bay H was successful, the next test

problem was a full three dimensional

model of the NWTS. shown in Figure @. In
its |ayou_, it is similer to a typical

coarse grid internal losds finite element
model. Load carrying skins are modeled

as CQUADe elements, sper and rib vertical

webs are represnted by CSHEAR elements,

end CROD elements model spsr and rib

cape. The model was checked out by
coapsring its deflections under etatlc
load with those from test.

The General Dynamics MODGEN program

generated the basic connections of this

model. Additional work done by tex_

editing included:

Definition of element thicknesses

and areas - Data read from drlwlnge wad
used.

Definition of radiation enclosures -

Radiation view factor calculations need

information on which parts of the

structure "see" other parts. This data

is included in NASSINOA input data.

CQUAD4 elements 740 thru 780 were added
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to complete the enclosure between the

akin and the heat shield. ""

Definition of Boundary Condlticns -

The HWTS is "Mounted on a test fixture

made of structural steel. This was added

to the model, and tied to the w%ng box

with NASTRAN MPC's.

Leading Edge Insulation - The

insulation between the [eadlng edge heat

shield and skin was modeled using CHEXA

elements 780 thru 794.

Mechanical Load - Ecrce cards have

been added to simulate test load

conditions. Force set 41 is condition

5_0.4 (retest).

Thermal Load - After usln_ NASSINDA

to generate the SINDA model, thermal

loads were added by imposing a

temperature on the heat shield panels in

the SINDA data deck.

The first SINDA run had an error in

its input temperature load (a missing

decimal point] causing one input to be

read as zero and rendering the run

incorrect. The second SINDA run showed

unusual temperature contours around the

leading edge. The CHEXA elements used to

represent insulation were I. 5 inches

thick, but the real insulation blmnke_

wss only i/8 inch thick. Properties of

the insulation material were adjusted to

account for this.

SINDA calculated temperatures from

the third run show good agreement with

test data in most areas. Several

channels o£ thermoccuple data appear to

be in error. For example, the lower skin

panel in the outbcard forward corner

shows a test temperature o£ 23g.? degrees

F. This area is insulated, and should be

closer to i01 degrees F. Similarly, a

panel of the upper skin showing an 88.5

degrees F test temperature in an

uninsulated area should be closer to 240

degrees F. For comparislon purposes, an

"smsused true" temperature was used in

locations where test data was apparently

incorrect, or was not taken.

For most of the wing box, calculated

skln temperatures are I0 to 15 degrees F

higher than the test temperatures. The

errors for spar and rib Cap calculated

temperatures are 50 to 140 degrees P too

low. These errors give large fictitious

thermal stresses. The cause 0£ this

error is the large mesh size used. Heat

radiated from the heatshield to the skin

goes tc s thermal node in the middle of

that skin bay. Heat can then be

conducted to the spar caps, cr radiated

to the understructure webs. Since

radiation is, in fact distributed over

the panel, the conduction path between

the panel and the cap is too long. Also,

since the spar cap blocks backside

rsdlatlon for 8 inches (15Z) of the 20

inch wide bay, these modeling errors

combine to make radiation heat transfer

from the skins to webs too high and

conduction heat transfer from the skins

to caps too Icw.

There is also a radiation path to

and from the caps which is ignored.

Since the understructure webs are formed

as sinewaves, their true mass is greater

than the flat panel mass in the model.

Calculated temperatures in the

"transition bay" (BL 42.0 to 8L 54.0) are

higher than measured temperatures. This

may be because the root attachment

fittings were not modeled. These

fittings are a sizeable mass of stainless

steel, and they were water cooled.

As m first attempt to correct this,

ealsslvity was decreased from .65 to .68

on the next (fourth) run. Alsc. mass of

the understructure webs was corrected and

the water cooled root fittings were

simulated by hclding the nodes they

connect to at s constant 80 degrees F. A

ccmparision of calculated and measured

skin temperatures is shown in Figure 7

and temperatures for a spar are shown in

Figure B. These understructure

temperatures are still not as accurate as
desired.

To test the impact of internal

radiation on the cap temperatures, the

grid was modified in two bays ss shown in

figure 9. The small strips were added to

the edges of two panels of the upper

skin. These panels receive radiation

from the heat shield. They do not

radiate on the back side, since that area

is covered by the caps. Therefore, that

heat is conducted to the caps. The

temperature on the cap under the strips

did rise about 40 degrees F. This

indicates that thls is a source of error

in the cap temperatures.

Because cf the impact of mesh

refinement on the cap tompermtures, two

new grids were laid out, as shown in

Figure 12. This work should give us

enough data for a mesh convergence study,

and tell us what general level of

refinement is needed to get meaningful

results.

CONCLUSIONS TO DATE

First, thermal analysis and

structural analysis must be performed in

close coordination and cooperation. The

analysis grid must be chosen with

consideration for both heat flux and load

paths. Data transfer between the two

disciplines must be automated tc solve

problems of practical airframe size.

Secondly. rsdiaticn heat transfer is

a tricky, time consuming part of the

problem. Radiation view factor

calculatlon is a major part of the

problem.

Thermophysical material properties,

such as emissivity, conductance, end

capacitance, are not as easily available

aS mechanical properties. Often these

are temperature dependent, making an

exact solution nonlinear.

Finally, severml studies of

structure this size and numercus smaller

studies are needed before we can

reasonably expect to release hot airframe

structure for hypersonic flight.
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FIGURE 8 - LOCAL REFINEMENT OF ANALYSIS GRID
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WEIGHT MINIMIZATION OF A SUPPORT STRUCTU_

Donald J. Kluberdanz

Helaine J. Segalman

Naval Underwater Systems Center

New London Laboratory
New London, Connecticut 06320

ABSTRACT

This paper addresses the weight minimization of a circular plate-
like structure which resulted in a 26% weight reduction. The

optimization was performed numerically with the COPES/ADS program using
the modified method of feasible directions. Design parameters were the

inner thickness and outer thickness of the plate with constraints on

maximum yield stress and maximum transverse displacement. Also,

constraints were specified for the upper and lower bounds of the
fundamental frequency and plate thicknesses. The MSC/NASTRAN finite

element program was used for the evaluation of response variables.
Original and final designs of the plate were tested using an Instron

tension-compresslon machine to compare finite element results to
measured strain data. The difference between finite element strain

components and measured strain data was within engineering accuracy.

INTRODUCTION

Weight minimization of a 13.6 inch diameter aluminum plate-like

structure with 37 holes was performed resulting in a 26% weight

reduction. The original cross section had a uniform thickness of

approximately 2 inches. Boundary conditions consisted of the lower
outer edge being simply supported. The structure was subjected to a

uniform pressure over a portion of the surface totaling 23.0 kips (see

Figure i).

The purpose of this study was to numerically determine the minimum

weight structure which would satisfy constraints on the following

performance characteristics; fundamental frequency, maximum yield
stress, and maximum transverse displacement. This paper demonstrates

the application of numerical optimization using the COPES/ADS

optimization program in conjunction with the MSC/NASTRANfinite element

program.

PROBLEM FORMULATION

The objective was to minimize the weight of the structure. Overall

dimensions, loading, and boundary conditions are described in the

introduction and are shown in Figure i. The design variables were the
thickness at the center and thickness at the outer perimeter of the

plate with a linear variation in the radial direction. The thicknesses
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were bounded from 0.I to i0.0 inches to ensure that a physically

meaningful solution be obtained (i.e. the thickness at any point does

not take on a negative value). Constraints imposed on the design were

as follows; maximum Von Mises stress be below the 40.0 ksi yield stress

of aluminum, maximum transverse displacement be below 0.117 inches, and

the fundamental frequency be within 15% of a specified valve. All

constraints were normalized during the optimization for better numerical

conditioning.

The weight minimization was performed with the COPES/ADS

optimization program using the modified method of feasible directions.

Approximations were created for the objective and response variables

using Taylor series expansions. At least three designs were required to

generate a first order approximation. The original design was evaluated

and two other designs were obtained by perturbing the design variables

and analyzing them. This technique is not efficient for problems with

a large number of design variables, but works well here for this two

design variable problem.

FINITE ELEMENT MODEL AND TEST MODEL

The MSC/NASTRAN finite element program was used to evaluate the

response variables during optimization. The structure was discretized

into 532 twenty noded continuum elements, CHEXA elements in MSC/NASTRAN.

It wasn't possible to model the structure with plate elements because it

did not meet a ten to one length to thickness ratio typically used for

a thick shell. Due to existing symmetry in the geometry, boundary

conditions, and loading, only one-eighth of the structure was modeled

with the appropriate symmetry boundary conditions. The finite element

model was sufficiently refined to describe performance characteristics

needed for optimization. It was necessary to further refine the model

at the strain gage locations for a more detailed representation of the

strain at these points.

The original and final designs of the structure were tested using

an Instron tension-compression machine to compare finite element results

to measured strain data. Both the uniformly thick and tapered

structures were placed on a support ring to simulate the simply

supported boundary conditions. A thick piece of rubber was placed

between the structure and the load plate. The Instron load cell applied

a force to the load plate and strain data was recorded at gage
locations.

DISCUSSION OF RESULTS

Optimization of the plate-like structure reduced the weight from

13.5 ibs to 10.0 ibs, resulting in a 26% reduction. Both the initial

design and final tapered configuration satisfy all the governing

constraints or was said to be feasible. Figure 2 lists the geometry and

constraint information for all six designs (tl is the plate thickness at

the center and t2 is the outer thickness). Note that once the

optimization was initiated (designs 4-6) each iteration has some weight

reduction as well as satisfying the feasibility criteria.
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For the original configuration the maximum Von Mises stress of 33.9
ksi occurs around the center hole on the top and bottom surfaces. For
the final design the maximum yield stress of 37.6 ksi has been shifted
outwards due to the taper. The maximum transverse displacement for the
original and optimized designs are 0.025 inches and 0.034 inches,
respectively. The maximum transverse displacement for each design
occurs in the center and the displacement field is radially symmetric.
The fundamental frequency of the optimized model was within 15.3% of the
required value. Although this design constraint states that the
fundamental frequency be within 15.0% this was close enough to be
considered acceptable.

A comparison of finite element strain values and experimental
strain values for the original design and final design are shown in
Figure 3. The strain components are for a total load of 23.0 kips,
however the load was applied incrementally to the plates. The test
results were linear and repeatable for a second cycle. The difference
between finite element strain components and measured strain data was
within engineering accuracy.
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SUMMARY OF DESIGNS

Design tl t2 Max Von Mises
(in) (in) (ksi)

I

1 2.065 2.065 33.9

2 2.200 1.800 33.2

3 1.700 2.000 41.6

4 2.105 1.600 37.9

5 2.229 1.400 37.6

6 2.529 1.130 37.6

Freq.
*Hz /Hz %

1.1

4.0

7.9

10.6

13.5

15.3

Max Disp.
(in)

0.025

0.027

0.033

0.033

0.035

0.034

Weight
(lbs )

13.5

12.5

12.6

11.4

10.7

10.0

* % of Required Value

FIGURE 2
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COMPARISON OF RESULTS

Gage

1

2

3

4

5

ORIGINAL DESIGN

Test Strain

Ix in�in

1928

1754

1180

478

519

FEM Strain

g in�in

2147

1873

1390

462

541

Difference
%

11

7

18

3

4

Gage

1

2

3

4

5

OPTIMIZED DESIGN

Test Strain
IX in�in

2610

2660

2299

536

636

FEM Strain

IXin�in

1814

2050

1689

431

570

Difference
%

30

23

27

20

10

FIGURE 3
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Abstract

This paper presents the applicability of a biological model, based on genetic evolution, for

engineering design optimization. Algorithms embodying the ideas of reproduction, crossover

and mutation are developed and applied to solve different types of structural optimization

problems. Both continuous and discrete variable optimization problems are solved. A two-bay

truss for maximum fundamental frequency is considered to demonstrate the continuous variable
case. The selection of locations of actuators in an actively controlled structure, for minimum

energy dissipation, is considered to illustrate the discrete variable case.

Introduction

Over the years, numerous techniques have been developed for optimizing the design and

performance of engineering systems. Despite the wide variety of available techniques, no one

method has proved to be entirely satisfactory across the broad spectrum of problems

confronting a design engineer.

Physical and biological systems are well known for their robustness, a balance between

efficiency and efficacy necessary for survival under different environments. Features for self

guidance, repair and reproduction are the rule in such systems, whereas they barely exist in

most sophisticated artificial systems. Thus, where robust performance is required, nature does

is better; the secrets of adaption and survival are best learned from a careful study of molecular

evolution. The present work will investigate into the applicability of a biological model, based

on genetic evolution, for engineering design optimization [1].

If one compares the biological optimization process with a mathematical optimization

process, one can notice several similarities. The 8tness function and chromosomes (genes) in a

biological process are, respectively, similar to the objective function and design variables in a

mathematical optimization process. Upon a close examination of strategies both the processes

employ, one notices they have still more in common. The conventional strategy of

mathematical optimization, iterative improvement, is just like evolution; its two elements, a
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variation scheme and a decision rule are analogous to a crossover mechanism and a selection

principle. All of these suggest pursuing the analogy between genetic evolution and

mathematical optimization. It is expected that this will enable us to obtain a better algorithm

for mathematical optimization.

In this work, algorithms embodying the ideas of reproduction, crossover and mutation

have been developed and applied to solve different types of structural optimization problems.

Both continuous and discrete variable optimization problems have been solved to demonstrate

the efficiency of the algorithms.

Basic Procedure

A simple genetic algorithm involves copying strings and swapping partial strings between

two mating strings. Three basic but very important operators - reproduction, crossover and

mutation - are used to produce new generations over and over again. Reproduction is a

randomized selection process in which individual strings are copied according to their fitness (or

objective function) value. Similar to the natural selection process in which a Darwinian
survival of the fittest among string creatures, the string with a higher fitness value has a higher

probability to be reproduced. The probability of reproduction can be determined by dividing

the individual fitness by the sum of fignesses of the current generation. Crossover (or

recombination) is a primary operator in the mating process which generates the offsprings or

new generations. Two steps are involved in the crossover process. The first step is randomly

selecting the position to break (crossover) between two mating couple. The second step is

reunion of these two mating couple. In natural genetic theory, the recombination fraction

depends on the distance between the chromosomes of the mating couple. Mutation plays a

secondary role in the operation of genetic algorithms. Mutation, changing a particular bit of

coded string from 0 to 1 or vice versa, is a random walk through the string space.

Illustrative Examples

Deslgn of a Truss for Maximum Natural Frequency

The ten-member planar truss shown in Fig. l(a) is required to support the loads
indicated. The objective is to maximize the fundamental frequency of vibration with

constraints on member stresses. The design variables are the cross sectional areas of the

members (continuous) with upper and lower bounds. The data are: E = Young's modulus =
107 psi, p -- specific weight -- 0.1 lb/in 3, permissible stress -- 25000 psi, x_t') -- lower bound

on areas = 0.1 in _, x! u} = upper bound on areas -- 10.0 in 2, Pc = probability of crossover --

0.8, Pm -- probability of mutation -- 0.002, and population size = 50.

Figures l(b) and l(c} show the best-of-generation and average values of fitness indices for

three different runs of the genetic algorithm. The solid line corresponds to the optimum results

obtained using a gradient based search procedure. The three different runs gave values of

38.545 Hz, 39.459 Hz and 37.437 Hz for u_1 which correspond to approximately 60_

improvement over the value of 24.028 Hz given by a gradient based method. This large

improvement is due to the non-dependence of genetic algorithms on gradient information,

which in turn makes it less likely to get trapped in a local optimum.
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Seleetlon of Loeatlons of Actuators

The problem of determination of locations of actuators and sensors in actively controlled

structures is formulated as a zero - one programming problem. The equations of motion of a

flexible structure can be expressed as [2,3]:

M_; + C _- --I-K v ---D u (1)

where M,C,K and D are the mass, damping, stiffness and t)_e input matrices and v and u are

the displacement and the input vectors. Letting x T ----{v T v'), Eq. (1) can be rewritten as

=Ax +B u (2)

where

A 0 i]-M K -M -I c (3)

and

B = -1 D (4)

The optimal linear quadratic regulator method is applied to design the control gain of the

feedback controller for simplicity. Accordingly, the input vector u is given by

u_--R -1 B TPx (5)

where P satisfies the matrix Riccati equation:

ATp +P A--P B R -x B T P +Q --0 (8)

where Q is a positive semidefinite output weighting matrix and R is a positive definite input

weighting matrix. Since the input matrix B is a function of the locations of the actuators, the

system equations (I) and (2) will be changed if the locations of actuators are changed.

The inverse of the input weighting matrix R is assumed to be a diagonal matrix

containing ones and zeros only with l's corresponding to the locations with actuators and O's

corresponding to those without actuators.- Hence, the system equations will remain unchanged

during the optimization process. Similarly, the output weighting matrix Q can be modified

such that the system equations for the estimation part are unchanged during the optimization

process for sensor location selection. For simplicity, the estimation part is neglected, and only

the actuator location selection problem is considered in this work.

The objective function (criterion) proposed to be used in the actuator location selection

problem is the energy dissipated by the active controller which can be written as
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1 7 Dc dt
Ec= 0

where Cl is the velocity vector and Dc is the induced damping matrix by the active controller.

(7)

Let

R-1 = diag [_1 r_" • • Yn] (8)

denote the inverse weighting matrix, with _ indicating a binary variable denoting presence or

absence of an actuator at position i. Then the zero-one problem for the actuator location

selection problem can be stated as follows:

maximize Ec (9)

rl,r2, • . . ,rn

subject to

n

_=m
i-1

and_i=0orl ; i=l,2,...,n

For illustration, the six-bay truss shown in Fig. 3(a) is considered with 3 actuators. The

initial population size and the maximum number of generations are chosen as 20 and 40,

respectively. The results obtained with Pc = 0.8 and Pm= 0.001 are shown in Figs. 3(b) and

3(c). The global optimal solution with the actuators at positions (2,3,4) was found in less than
271 function evaluations.

Conclusion

Genetic algorithmic approaches are proposed for solving continuous and discrete variable

optimization problems. These algorithms, although simple guided random search procedures,

are found to be very effective in solving practical structural design problems. In most cases, the

global optimal solution is found in reasonable number of function evaluations. Since genetic

algorithms tend to find global optimal solutions, the results are often superior to those given by

the gradient based optimization procedures.
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Abstract

One wellknown deficiencyofLQG compensators isthat they do not guarantee any measure ofrobustness.

This deficiencyisespeciallyhighlightedwhen consMering controldesignforcomplex systems such asflexible

structures.There has thus been a need to generalizeLQG theory to incorporaterobusness constraints.Here

we describethe maximum entropy approach to robust controldesignforflexiblestructures,a general_ation

of LQG theory,pioneered by Hyland, which has proved usefulin practice.The designequations consistof

a setof coupled Riccatiand Lyapunov equations.A homotopy algorithm that isused to solvethese design

equations ispresented.

I. Introduction

The linear-quadratic-gaussian(LQG) compensator has been developed tofacilitatethe designofcontrol

laws forcomplex systems, i.e.,systems that have largeorder and/or are multi-inputmulti-output.An LQG

compensator minimises a quadraticperformance index and (under mild conditions)isguaranteed toyieldan

internallystableclosed-loopsystem. Unfortunately,however, standard LQG theory does not guarantee any

measure ofrobustness.This deficiencyisespeciallyhighlightedwhen consideringcontroldesismfor systems

with many lightly-damped modes such as flexiblestructuresand has necessitatedgeneralizationsof LQG

theory that incorporatepracticalrobustnessconstraintsfor thisclassofsystems.

In recent years there have been severalextensionsof LQG theory that have included some form of

robustness constraints(e.g.,[1-5D. Many of theseresultscan be shown to be equivalentto enforcingthe

requirements of the small gain theorem for some system transferfunction [6].It isnot difficultto show

that controllersdesigned with theseresultswillnot generallyyieldhigh performance,robust controllersfor

flexiblestructuressince they assume a very crude model of the uncertainty(i.e.,complex as opposed to

real parameter uncertainty)within the controllerbandwidth. However, one resultthat isfundamentally

dii_erentin nature isthe maximum entropy approach to controldesign forflexiblestructures[1-3]pioneered
by Hyland.

The maximum entropy approach isa generalisationofLQG theory that explicitlyallowsthe consider-

ation of a form of real-valuedparametric uncertainty.The name derivesfrom itsapparently coincidental

relationshipto certainstochasticmodels. Controllersdesigned using thismethod have severalusefulfea-

tures.Firstof all,for certainstructuralcontrolproblems the maximum entropy controllerswillbe positive

realin the controllerbandwidth. This isextremely important forflexiblestructuressincepositiverealcon-

trollersoften allowhigh performance controleven when thereissignificantsystem uncertainty.In addition,

the maximum entropy controllersare oftenreduced-order controllers.Thus in practicethe maximum en-

tropy robustness constraintaids inchoosing the order ofthe controllerand isa numerical aid in controller
reduction.

The maximum entropy designequationsconsistofa setoffour equations,two Riccatiequations coupled

to two Lyapunov equations. The coupling between the equations isa functionofthe assumed uncertainty.

Ifno uncertaintyisassumed the four equationsdecouple and the designequationsbecome the two standard

LQG Riccatiequations. To enable thistheory forengineeringpracticeitisofcourse important to develop
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robust amd efficient numerical algorithms for solving the design equations. This paper presents such an

algorithm.

The algorithm described here is a homotopy algorithm. The advantage of a homotopy algorithm is that

it is based on theory that is global in nature. In particular, the convergence of homotopy algorithms is

generally not dependent upon having initial conditions which are "close" to the actual solution.

The paper is orgainised am follows. Section 2 briefly describes the general construction of both discrete

and continuous homotopy algorithms. Section 3 presents the maximum entropy design equations amd de-

scribes their derivation. Section 4 presents a flowchart describing the homotopy algorithm while Section 5

illustraAes some features of maximum entropy controllers seen in control design for the ACES structure at

NASA Marshall Space Flight Center. Finally Section 6 offers some concluding remarks.

2. A Brief Description of Homotopy Algorithm Development

A "homotopy" is a continuous deformation of one function into another. Over the past several years,

homotopy or continuation methods (whose mathematical basis is algebraic topology and differential topology)

],ave received significant attention in the mathematics literature and have been applied successfully to several

important problems (e.g., [7-8 9 . Recently, the engineering literature has also begun to recognize the utility

of these ntethods for engineering applications (see e.g., [9-12]). The purpose of this section is to provide a

very brief description of homotopy methods for finding the solutions of nonlinear algebraic equations. The

reader is referred to {9] for additional details.

The basic problem is as follows. Given sets Dr and ]/contained in ]R n and a mapping it': Dr --, V, find
solutions to

= 0. (2.1)

Homotopy methods embed the problem (2.1) in & larger problem. In particular let H: Y × [0, 1] --_ IR" be

chosen so that (i) H(u, 1) = F(u), (_) there exists a known solution uo to H(-,O) = O, (fii)there exists a

continuous curve (u('y), _) in m n × IO, 1] such that I'ICu(_[), "l') --- 0 for "yE [0, 11 with (u(O), O) = (_, O) and

(iv) the curve (u('T),'T) is differenti_ble. A homotopy algorithm then constructs a procedure to compute the

actual curve (u('_), "T) such that the initial solution u(0) is transformed to a desired solution u(1) satisfying

0= I)=

There are two related methods of following the curve (u(-_),'y), namely, continuous methods and discrete

methods. Continuous methods work by differentiating H(u('y), "7) = 0 with respect to "y obtain Davidenko's

differential equation
aH du aH

au d7 + _ = O. (2.2)

Together with u(0) = uo, (2.2) defines an initial value problem which by numerical integration from 0 to 1

yields the desired solution u(1).

Discrete methods work by partitioning the interval [0,1] to obtain a finite chain of problems

H(u,-Ik) = 0, 0 = "Yo< "Y,< --" < "TN = I. (2.3)

Starting with a known solution u(O) = uo, u('Tk+x) is computed by a local interation scheme with u('yk) as

the starting point. Although this approach avoids direct integration of Davidenko's equation, it does follow

the homotopy path from u(0) to u(1).

The algorithm presented in Section 4 uses both discrete homotopy and continuous homotopy techniques.

Globally, the algorithm is a discrete homotopy algorithm. However, the local iteration scheme which advances

the discrete homotopy uses continuous homotopies to solve certain nonlinear algebraic equations which are

subsets of the maximum entropy design equations described below.
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3. The Maximum Entropy Design Equations

Consider the system

_(t) ffiA-(t) + s_(t) + _1(t), y(t) = c=(t) + _(t) (3.1=,b)

where = E IR"',u E 1Rn',y E 1R"',wx E IR _" is white disturbance noise with intensity V l > 0, and

u_ E IR"" is white observation noise with intensity V_ > 0.

In the standard LQG problem we desire to design an nth order compensator,

_=(t) = Acz=(t) + B,y(t), u(t) = -Cczc(t) (3.2a, b)

which minimizes the steady-state performance criterion

J(A°, B=,c.)-__n E[=T(t)R_=(t)+ =T(t)_=(t)] (3.3)
|-.o_

where==_ Ia_, R_ ffiR_ > 0 and P_ = P_ > 0.
Define A and ._ as

B=C A_- B_DC=J ' CTcR2Cc "
(3.4, 5)

and let _ be the closed-loop steady-state covarlance, i.e.,

0 = _ + <]_ + _. (3.6)

Then, the cost can be expressed as
_(A., B°,c=)= tr _k (3.7)

and the solution to the LQG problem can be obtained by using Lagrange multipliers to optimize (3.7) subject
to the constraint (3.6).

The standard LQG equations do not explicitly incorporate any robustness constraints. Thus, it is
important to find generalizations of these equations that allow the synthesis of robust controllers for flexible

structures. One such generalisation is the maximum entropy design equations, whole name derives from

their coincidental relationship to stochastic modeling.

We now assume that the A matrix of (3.1) is in the form

A = block-diag(A (x), A (a) } (3.8)

where A (z) represents the nominal dynamics of the uncertain modes and is in real normal form; for example,

A(') = bl°ck'diag{[ -v' _']-wl -vl ,--_, [-_v_ ¢_s]}.__s --v.j (3.9)

Also, assume th=t the only the modes with complex elgenva]ues (corresponding to the 2× 2 blocks[t_w;"-_a" -vjwY_])

are uncertain and that the uncertainty patterns A_ E/R n°x_" are of the form

A,:---block-diag{0,..., 0, [ O1 _] ,0,...,0}. (3.10)

Notice that for lightly damped modes Ai essentially corresponds to frequency uncertainty. However, in

practice this representation of uncertainty can also be used to account for uncertainties in the damping and

mode shapes.
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The ME equations are developed by modifying the constraint equation (3.6) as follows:

nm

i=l

(3.11)

where na is the number of uncertain modes,

_- = block-diag{A,, 0,,},
(=1

Optimisation, using the constraint equation (3.11) then yields the following set of design equations:

na

o= a.c)+ QaT +v_- Qc_v_'co+ _PA, OAI (3.14)

nm

O= AT, P + PA, + R h - PBP_-IPB" + _A, PA_ T (3.15)
i=l

o = Ap_ + CA_ + QCTVf_Cq (3.,8)

0 = A_J _ + PAQ + PBI_-*BTP (3.17)

lqba

(3.12, 13)

_" _ A2 (3.18)A,=A+/... 4 + +

where

is!

_e $,k¢.

= _,AiQA_, Rp R,+
i_l i=l

Ap = A. - BR.2-Z BT P, AQ = Ao - QcTv_'IC. (3.20)

The controller gains are given by

As = A - BP.,_-_'B'rp - QCTV_-IC, Be = QCTV2 "_L, Ce -- R._-tBTP. (3.21)

Notice that ifc_,_ 0 then (3.14)and (3.15)decouple from (3.16)and (3.17)and become the LQG Riccati

equations.

A Homotopy Algorithm for Solving the 1Ma._mum Entropy Design Equatlons

Let "7 E [0, 1] denote the homotopy parameter and consider the followingequations which are used to
define the homoto W algorithm:

no

~ _ "2*-n{_+*) AT (4.1)0 ----A,(_/)Q {_+1) + Q(*+*}A¢,("I) + V_;')("l) - Q(k+*)CTV2"ICQ {_+*) +. Z... -_. ""'_ ""
i=*

0= AC,('I)P(_+*)+ P{_+*)Ao('y)+ @_(p_}('f)- P(_+*)BCR_-*BP (_+'}+'I_<*?A?P(_+X)A, (4.2)

o= a_+'_(_1¢(_+')+ ¢(_+_(_+: (_)+_C_+'_C_V:_C_¢_+') (4.3)

0 ----A_+;)T ('/)/_{_+*)+/5{_+*)A_+X} ('7)+ V{k+*JBl_-tBP {_+*). (4.4)

rl. e

A.(_)= a + __,+,A? (4.S)

where
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A_I(_)= A.(_)-SR_-_STe( _, A_)(_I= _.(_)- O(_c_v_c.

Also, define

no

a_)(_) "=A.(_)Q(k)+ Q(_)A._(.7)+ v_)(_) - Q(_)cTw_cQ (') +._F_,,._,_Q("),,.,T (,.s)
Ill

a_)(.7) -'-_._(_)P'_)+ P(_)A.I.7)R_"I(_)-P[_)B'_-_BP(") +7 E °,_A,_P(_)m (4.9)
i=l

t_) (_,) a A(/I (..t)(_(_) + _(k¿A(/IT(.7) + Q(_lC'rWxcQ(k) (4.10)

Z_(h) (.y)_ A(_)T (./)p(k)+ p(a)A(_)(_1 + p(k)BR-XBTp(i,)" (4.11)

Equations (4.1)-(4.4) are identical in form to (3.14)-(3.17). In the homotopy algorithm the matrix

functions Z_)(*/), Z_)(*/), Z_a)(.f) and Z_) ('y) defined respectively by (4.81- (4.11 ! axe considered equation
errors.

The normalised norm of the equation errors are defined by

e_) --"IIA_)('_)IIMIIV_(.7)IIA. s_) ----"IIA_/)(.7)ll_,/lla_('_)ll,, (4.n)

where

IIMIIA m_ 1_:'[.

The maximum normalized error norm is denoted by e_)(_) and defined by

(4.14)

--'--

Figure 4.1 presents a general flowchart of the homotopy algorithm. The outer (j) loop corresponds to a

discrete homotopy. The discrete homotopy is advanced by the iteration scheme described by the inner (3_

loop. The inner loop requires the solution of (4.1) and (4.2) using continuous homotopies. The integration
schemes we have implemented to advance the continuous homotopy use Euler integration with a Newton
correction.

The algorithm assumes that for some positive integer N

0 = '70 < */1 < "'" < .TN-I < "/N = 1 (4.16)

The sequence {ea.}_=o of "small" positive numbers determines how closely the algorithm actually tracks the
homotopy curve.

5. Illustration of Maximum Entropy Controllers

This section illustrates some important features of maximum entropy (ME) controllers. The results

presented here were developed while designing decentralized control laws for the ACES structure located at

NASA Marshall Space Flight Center [13]. This testbed has been used to conduct experiments on structural
control and is especially suited for studying lfne-o_-sight (LOS) control issues.
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Figure 5.I shows one of the two major loops used to design vibrational control laws. The second loop (not

shown) has essentially the same features. Modek of these loops were developed by using the Eigensystem

Reaiisation Algorithm [14-15]. In this figure AGS-Y represents a torque actuator and BGYRO-Y represents

an angular rate gyro sensor which is approximately co]ocated with the torque actuator. In the control design

for each loop we penalised only the modes less than 3 Hz since these modes dominated the LOS performance.

Due to significant uncertainty in the design modek the ME robustification proved to be essential in designing

high performance control laws to a_hieve the LOS objectives.

Figures 5.2 thru 5.4 demonstrate some of the key features of the ME controllers. Figure 5.2 shows the

phase of the LQG and ME controllers in the controller bandwidth. While the LQG controllers phase varies

widely the ]ViE controllers became pooitive real in this region tending toward rate feedback as the uncertainty

was increased. Thus, the ME designs provided the necessary stability robustness in the controller bandwidth.

Figure 5.3 shows the magnitude of the LQG and ME controllers in the controller bandwidth. Notice

that the ME compensator magnitudes are much smoother than those of the LQG controllers, thus providing

performance robustness. Another important implication is that the ME designs yielded robust controllers

that are effectively reduced order controllers. In practice the full-order ME designs actually provide insight

into the choke of the order of the compensator and is a numerical aid in synthesising reduced order controllers.

The higher authority controllers notched the high frequency modes that had large peak magnitude fre-

quency responses. As illustrated by Figure 5.4, ME design was able to robustify the controller notches. That

is, the controller notches were increased in both width and depth, thus providing robust gain stabilisa/'ion.

6. Concluding Remarks

Thin paper has described the maximum entropy design equations for robust control of flex.lble structures

and has presented a homotopy algorithm to solve these equations. The iterative scheme used to advance

the discrete homotopy parameter "T uses continuous homotopy methods to solve a certain pair of modified

Riccati equations. The capahillties of the algor/thm and some important features of the max/mum entropy

designs were illustrated by studying control design for the ACES Structure at NASA Marshall Space Flight
Center.

329



References

I. D. C. Hyland, "Optimal Regulation of Structural Systems with Uncertain Parameters," MIT Lincoln

Laboratory, TR-551, 2 February 1981, DDC_ADA-999111/7.

2. D. C. Hyland, "Maximum Entropy Stochastic Approach to Controller Design for Uncertain Structural

Systema," Proceedinga o/the American Control Con/. pp. 680--699, Arlington, VA, June 1982.

3. D. S. Bernstein and D. C. Hyland, "The Optimal Projection/Maximum Entropy Approach to Designing

Low-Order, Robust ControLlers for Flexible Structures," Proceedings o/_he IEEE Con/erence on Decision

and Control, pp. 745--752, Fort Lauderdale, FL, December 1985.

4. S. S. L. Chang and T. K. C. Peng, "Adaptive Guaranteed Cost Control of Systems with Uncertain
Parameters," IEEE Trans. Autom. Contr., Vol. AC-17, pp. 474-483, 1972.

5. D. S. Bernstein and W. M. Haddad, "The Optimal Projection Equations with Petersen Hollot Bounds:
Robust Stability and Performance via Fixed Order Dynamic Compensation for Systems with Structured

Real Parameter Uncertainty," IEEE Yrana. on A_tom. Oontr., Vol. AC--33, pp. 578-582, 1988.

6. A. Packard and J. Doyle, _Qus_lratic Stability with Real and Complex Perturbatlons, m IEEE Y_as.
Aurora. Contr., Vol. 3, March 1990, to appear.

7. J. H. Avila, "The Feasibility of Continuation Methods for Nonlinear Equations," SIAM J. Numer. Anal.,

Vol. 11, pp. 102-122, 1974.

8. L. T. Watson, "Numerical Linear Algebra Aspects of Globally Convergent Homotopy Methods," SIAM
Rev., Vol. 28, pp. 529-545, 1986.

9. S. L. Richter and R. A. DeCarlo, "Continuation Methods: Theory and Application,," IEEE Trans. Circ.

Syst. Vol. CAS-30, pp. 347-352, 1983.

10. P. T. Kabamba, R. W. Longman and S. Jian-Guo, "A Homotopy Approach to the Feedback Stabilization

of Linear Systems," J. Guid. Control Dynamica, Vol. i0, pp. 422-432, 1987.

Ii. Y. S. Shin, R. T. Ha[tka, L. T. Watson and R. H. Plautt, "Tracking Structural Optima as a Function o[

Available Resources by a Homotopy Method," Computer Metlwd8 in Applied Mec)_anlcJ and Enoine_ring,
Vol. '70, pp. 151-164, 1988.

12. S. Richterand E. G. Collins,Jr.,"A Homotow Algorithm for Reduced-Order ControllerDesign Using

the Optimal ProjectionEquations,"Proc. IEEE Con/. Dec. Contr.,pp. 506-511, Tampa, FL, December
1989.

13. E. G. Collins, Jr., D. J. Phillips and D. C. Hyland, "Design and Implementation o_ Robust Decentralized

Control Laws for the ACES Structure at the Marshall Space Flight Center," Amer. Contr. Con/., pp.
1449-1454, San Diego, CA, May 1990.

14. J.N. Juang and R. S.Pappa, "An Eigensystem RealizationAlgorithm forModal Parameter Identification

and Model Reduction," J. G_.id.Contr. Dyn. Vol. 8,pp. 620--627,1985.

15. J. N. Juang and R. S. Pappa, "ERects of Noise on Modal Parameters Identifiedby the Eigensystem

RealizationAlgorithm," J. Guid. Contr. Dyn., Vol. 9,pp. 294-303, 1986.

330



hstialke j- 0, "1 "7o

Iaiti_li_ Q(o), p(o), _(o) _d p(o) by solviag

the I._G problem.

Use (4.8)-(4.15) to compute the maximum
norm.lis_l errornorm e(m'L(_).

no

Use & continuous homotopy to deform Q(k) and p(h)
into the solutions Q(h+s) and p(k+x) of (4.1) and (4.2).

Use I stand,_rd Lyapunov solver to find the solutionJ
¢(_+*) and P(_+*) of (4.3) and (4.4).

no

yes

Q = Q(_), P = p(_)

0 = _'¢_),P = P(")

,,I,

yes

Q(o) ._ Q('.), p(o) ._ _J,)

()(o)._ _(.), p(o) ._ p(.)

t
'7 ='1i I

Figure 4.1. Flowchart of the Homotopy Algorithm for Solving the Maximum Entropy Design Equations.
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Figure S.S. For the AGS to BGYRO loops Maximum Entropy design smoothed out the compensator

magnitudes in the performance reason, thus providing pel_ormance robustnus and _ indicating that the

robust controUers were e_ective]y reduced-order controllers.
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frequency rnodu by increasing their width and depth.
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Abstract

An algorithm for solving constrained optimization problems is presented. First, design of
experiment techniques are used to survey the design space. After evaluating the objective and
constraint functions, as specified by Taguchi orthogonal arrays, analytical models of these
functions are generated using a least-squares regression analysis. Next, a nonLinear programming
package is used to optimize the analytical model. Based on the optimization information, the
design space is reduced so as to close in around the minimum, and the entire procedure is repeated
until convergence. An important feature of the algorithm is that function gradients are not required,
therefore, for problems in which gradients would have to be estimated using f'mite-differences the
number of function evaluations required for the optimization is significantly reduced, when
compared with traditional nonlinear programming techniques. In addition, there is no requirement
that the gradients must be smooth and continuous.

Introduction

Nonlinear programming techniques provide the solution to the following optimization problem:

minimize F(X)
subject to XL _<X _; XU and CL _ C(X) < CU.

F(X)isthenonlinearobjectivefunction,X isthevectorof designvariables,and C(X)isthe vector

of nonlinearconstraintson X. The lower and upper bounds on X areXL and XU, respectively.

Likewise,the lower and upper bounds on C(X) arcCL and CU, respectively.F(X),C(X),and their
derivativesmust bc smooth and continuous.

NPSOL (Ref.1)and ADS (Ref.2)arctwo optimizationroutinesthathave successfullysolved
thestatedproblem, but thedependence of thesealgorithmson constraintand objectivefunction

gradientsreducestheefficiencyof thealgorithms.Objectiveand constraintfunctionsareoften

generatednurncricallyby computationallyintensiveanalysisprograms,resultingintheneed for
finite-differenceestimationsof thegradients.The use of finite-differencingincreasesthenumber
of functionevaluationsrequiredfortheoptimization,making some problcrnsprohibitively

expensive. The requirementof smooth and continuousderivativesisanotherlimitation.When

dataisloadedintocomputers intheform of tables,linearinterpolationbetween pointsinthetables
resultsinpiecewiselinearfunctions.Thisadverselyaffectstheconvergence of searchmethods

thatarcdependent on gradients.

Copyright @ 1990 by General Dynamics Corporation. All rights reserved.
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A scheme has been developed to address these limitations. StatisticaUy based, design of
experiment (DOE) techniques and response surface methodology (RSM) were combined to create
an interface between a nonlinear programming algorithm and the optimization problem. The
complete package of subroutines that was developed is designated CODES (Constrained
Optimization using Design of Experiment Surfaces). Commercial software is available that uses
DOE methods and RSM for optimization in an interactive environment (Ref 3). CODES differs
from the commercial software in that it allows the optimization process to be fully automated (i.e.
CODES can be linked directly to any analysis program). In addition, unlike the commercial
software, CODES' iterative methods attempt to yield a solution that has been verified as a local
optimum.

Experimental Design

CODES employs DOE methods to determine which points in the design space to use when
performing the regression. The goal is to use the smallest number of points that will produce the
best regression equation (indicated by the correlation coefficient). Experience has shown that D-
Optimal designs (reference 4) best satisfy these needs, but the inability to create D-Optimal designs
for large problems (greater than 8 variables) led to the use of Taguchi orthogonal arrays (Ref.5).

Resoonse Surface Methodology

The objective and constraint functions are modeled using nonlinear least-squares regression. The
regression equations are of the form,

X 2 2 2
F= J31+ _2X1 + {]3 1 + _4X2 + PsX1X2 + f]6X2 + J37X3+ _8X1X3 + _gX2X3 + _10X3 + "'" (1)

and are generated as follows:

Define,

p = the number of data points (function evaluations) specified by the experimental
design array

t = the number of terms in equation (1)

v = the number of design variables

Xij = the value of the ith variable for the jth data point (by definition Xoj = Xio = 1)

Yj = the value of the objective (constraint) function(s) for the jth data point.

The solution, {13}, of the linear system,

[L]{ J3}={R}

is the vector of coefficients from equation (1).
Matrix [k] is of size txt and vector {R} is of length t. They are generated as follows:

p P

Lqr = Lrq= XMqjM r j Rq=EMqjY i
j=_ j=1

(q=1,2 ..... t; r=1,2 ..... t)
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where [M] is a matrix of size txp and is given by,

M lj=XoiXoj,

M2I=XoIXlj ,

M4j=XojX2j,

,=e

M kj= XojXvj,

M3j=XljXlj,

M5j=XljX2j,

M k+l j'XljXvj,

M6j=X2jX2j, (2)

Mtj= XvjXvj (j=1,2 ..... p)

CODES was developed so that only the int, racfion tcrtm (such as J3sXI X2) that arc specified by

the user are included in the regression. For example, ff the team ]3sXlX 2 was excluded from

equation (I), MSj would assume the value of M6j (equations(2)), M6j becomes M?j, etc.

iZatimizati 

A collection of nonlinear programming subroutines is used to minimize and maximize the
analytical representation of the problem. The actual objective and constraint functions are then
evaluated at the optimum points of the regression equation. This is done in order to verify that the
minimum (maximum) oftheanalyticalmodel decreases(increases)theactualobjectivefunction
when compared tothepointsused intheregression.The vcrificadonisalsoused toensurethatthe

actualconstraintsarcsatisfied.If,duringthesearch,a feasiblepointhas not yetbe.onfound,the

pointthatminim_zz"csthelargestconstraintviolationisused asthecurrentestimateoftheminimum.

Reducing, the Design Space

The designspace isreduced by decreasingthesearchrange foreach variable.The goalisto

closein around theoptimum asquicklyaspossibleinordertospeed up convergence,although,
reducingthesearchrangestooquicklyincreasesthechancesof eliminatingthetrueminimum fi'om
thedesignspaceunder consideration.Thiseliminationcan occur because the analyticalmodel does

notexactlyrepresenttheactualproblem

The smatcgy depictedinFigure1 shows thedesignspacereductionprocess.It consistsof two
primary steps:

(1) Reduce the search range for each variable so that the current estimate of the

minimum is at the center of the new design space,
(2) If necessary, move the limits so they are within the previous search range.

The lower bounds on the variablesXI and x2 arc XLI(I)and XL2(1),respectively(Figurela).

Likewise, theupper bounds on thevariablesarc XU I(I)and XU2(1). The searchrange forXIis

changed by moving thelower limittoXLI(2)(Figurelb).XLI(2)isfound by bisectingXIFma x

and XlFmin and XU1(2)ischosen so thatXIFmin isatthemidpoint of thenew range. Inorderto

ensurethesearchrange isreduced,theupper limitof XI isreduced toXU 1(3),theinitialbound on

XI(FigureIc).The searchrange forX2 isreduced ina similarfashionexceptXU2(2)ischosen to

bisectX2Fmin and XU2(1).Thisparticulartechniquewas chosen aftertryingseveralschemes,

although itispossiblethcrcisa more efficientmethod.
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XL 2 (1

XL 1 (1) Xl Frnax Xl Fmin XU1 (1)

la

XU 2 (2) .

XL 2 (2).

XL 1 (2)

lb

0

I (2)

XU 2 (3) o

XL2 (3).

XL. (3)

lC
Figure 1 - Design space reduction process.

Q

I XU, (3)

The CODES Aleorithm

Figure 2 shows how all of the numerical procedures arc integrated to form the optimization
algorithm. If after two successive iterations the minimization of the analytical model yields the
same resuks, within a specified tolerance, convergence is assumed. Analysis of the f'mal search
range for each variable indicates the validity of the solution. If the value of a variable is driven to
the boundary of its' current search range, it is assumed that the minimum of the function was
eliminated from the design space.
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Set search ranges for each variable

Generate analytical functions from nonlinear least-squares regression

the analytical model of the problem using a nonlinear programming algorithm

I Evaluate the g_ functions specified by the

objective and const!a=nt as

experimental desi "(Taguchi arrays)

T
ical functions from nonlinear least-sqL

I Optimize 1odel of the problem using a nonline_u

Exit

I Reduce the design space I

Figure 2 - CODES flow chart.

The availability of analytical equations that represent the problem is another advantage of
CODES. Users of optimization software will (and should) always be suspicious of solutions
genccated by a computer. Analytical equations allow for greater visualization of the problem
through computer graphics. This builds the user's confidence in the solution. In addition, the
analytical models can be used for sensitivity studies at very Little cost in computer time. A measure
of the sensitivity of the objective and constraint functions is often just as important as the f'mal
solution.

Optimization
Technique

Objective
Function

i

Traditional
Mel_ods "- 32,834

CODES 32,752

Take-off
Gross Weight

(Ibs)
i

Engine
V_ng Scale
Area Factor

(It2)

379 1.16

385 1.15

Design Variables"

Leading
Aspect Wing Edge
Ratio Thickness Sweep

Chord) (deg)

2.80 3.5 42

2.79 3.5 41

Number of
F_

Evaluations

ii

* Subject to g performance consvmnts
"" Not directly aided by optimization software

Table I - A typical aircraft design synthesis parametric study.
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Table I shows the potential savings that can be realized by implementing automated optimization ,
techniques. Note that the same answer was found with both techniques, but the use of CODES
resulted in an excess of 80% time savings. A final advantage of the methods presented here is
CODES' potential to f'md global optima. This characteristic can best be understood by considering
how DOE techniques evaluate points throughout the design space. In addition, performing the
regression using a second order equation ensures that the mathematical model of the problem does
not have many local optima.

Camlmiam

Major savings can be realized when solving multidimensional optimization problems using the
procedures presented here. The savings stem from shorter computer run time along with reduced
manpower requirements to analyze and verify the results. The only significant limitation
encountered so far is the maximum number of variable that can be considered using these methods.
Preliminary indications place this limit in the range of 30 to 40 variables with the limiting factor
being the size of available experimental design arrays.
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Abstract: With structural design in mind, a new unified variational model has been

developed which represents the mechanics of deformation elasto-plasticity with uni-
lateral contact conditions. For a design problem formulated as maximization of the

load carrying capacity of a structure under certain constraints, the unified model

allows for a simultaneous analysis and design synthesis for a whole range of mechan-

ical behaviour.

I. INTRODUCTION. In order to express structural optimization, it is necessary to

have an appropriate expression in variational form for the related structural mechan-

ics analysis. With structural design in mind, a new unified variational model is

presented which represents the mechanics of deformation elasto-plastlclty with con-

tact boundary conditions. The basic formulation of such problems is most natural in
the form of a mixed variational model, with structural state expressed in terms of

(independent) stress and displacement fields. However, a pure stress (force) method
can also be obtained, and this constitutes the basis for the unified method developed

for the formulation of a load carrying capacity design problem.

This paper constitutes an extension of earlier work on a unified model of elasto-

plasticity that encompasses pure elasticity, elasto-plasticity, and limit load analy-

sis ([1], [2]). The general model provides a monotone relation between the evolution
of plastic deformation and contact and a global measure of system energy. For the

optimization problems the variational formulation is usually added as so-called state

equation constraints by including a set of necessary conditions for the variational

statement, using both stress, displacement, plastic multipliers and contact pressure

as state variables (see e.g. Refs. [3] - [6] for sensitivity analysis and design for
the case of contact, an_ Refs. [7] - [9] in the case of elasto-plastic behaviour).

The approach advocated in this paper, however, treats the analysis problem in its

original variational form. For certain design problems it is demonstrated that a more

direct approach can be taken which combines the analysis and design goals into one

broader variational statement. For a design problem formulated as maximization of the

load carrying capacity of a structure under certain constraints, the resulting opti-

mlzation problem becomes especially transparent and gives rise to very interesting

relations between so-called design constraints and unilateral constraints arising

from the plasticity and contact conditions.

It should be stressed that with a view to perform simultaneous analysis and design, a
mixed variational model is less attractive because it implies a max-min formulation.

Our goal has been to develop a pure max or pure mtn formulation such that state- and
design quanttttes can be treated as stmuttaneous uartabtes in the computational pro-
cedure. This is a potential advantage in terms of computational cost relative to.
e.g.. usual schemes where the equilibrium equations are solved "exactly" for each
step of redesign, although, at the intermediate steps of redesign, this is not neces-

sary because the design may be far from the optimal solution. Althou_ the method
proposed in this paper involves treatment of all the variables at the same time, the
computertime may be reduced due to-saving of a large number of iterations required
for sequences of "exact" solutions of the equilibrium equations for intermediate
designs.
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2. VARIATIONAL MODELS. For the sake of notational simplicity we consider truss

structures (FF__ discretlzed continuum structures). For the analysis problem, a mixe_

variational model in bar forces q and nodal displacements x can be expressed as

(cf. [I0]):

{ _ I q'rmaxmln TBq : Oq- (i)
q x

I T
where B denotes the compatibility matrix. O the compliance matrix (i.e. _ q Qq

is the complementary energy) and f the external nodal forces. This mixed formula-
tion can be extended to elasto-plastlcity with frlctlonless contact at nodal points

by adding yield constraints of the form

[qi/Ai ] (-_ ' i : I ..... NB (2)

where _ is a given yield stress. A i bar areas, and NB the number of bars. along

with conditions

xj _ _j . I = l..... NC (3)

for the unilateral contact constraints. In (3), xj are given initial gaps between

nodal points and potential contact surfaces, and NC is the number of contact condi-

tions. If no contact surfaces are specified the minimization over x in (I) implies
Bq = f . and we have the well-known case of holonomic elasto-plastic analysis ([11]):

{le I: - .....}min Qq Bq = f; i qi/Ai[ _ a i = : NB 4

q

(4)

In the analysis of elasto-plastlc structures, the limit load problem plays a key role

([II]] and is formulated as

a,q

(s)

A mixed form of this problem is

maxmin {xT Bq ] fTx : I; ]qi/Al] _ _ , i = I ..... NB} .
q x

(s)

The limit-load problem (5) and the elasto-plasticity problem (4) can be combined into

one unified maximization problem (cf. Refs. [I], [2]):

max a Bq = af; _ _ :2 [ qi/^i I _ o i = : 6

a,q
(7)

In this formulation the given constraint value _z for the complementary energy

controls the specific model problem that is handled by the variational statement.
w

For small _ , (7) is an elasticity problem, and for large e , where the constraint

I T _2
q Qq _ is inactive, we have the limit load problem, For intermediate values of
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. (7) is an elasto-plastlcity model, and we have a monotone relation between the

increase in the load carrying capacity a and the global measure _2 of system

ener_y.

If we now Include the contact, condition, the displacement variable x can be removed

from (I) by use of conjugate duality (A. Ben-Tal; private communication}. In the case

of symmetric bounds on × , i.e. Ixjl _ xj , j = 1 ..... NC , we get a formulation

{ 1T (_t _ _'; Iqi/Ail _ _ i : 1 NB} (8)- xj I(Bq - af)jl : ......
a,q

where we set xj = _ in the case of no contract condition. If the constraint on

complementary energy is not active we have defined a limit load problem for plasti-

city with possible contact.

3.FOR_JI.ATION OF UNIFIED ANALYSIS PROBLEM BY MEANS OF CASTIGLIANO'S 2ND THEOREM

The pure minimum and maximum character, respectively, of the variational formulations

of the analysis problems (4) and (7). may be preserved even if contact conditions are

considered, if we make use of Castigliano's 2nd theorem to express the displacement

conditions (3) in terms of forces. A similar advantage is achieved in the formulation

(B), but we now consider one-sided bounds {3) on xj , and entirely base our formula-

tion on principles of mechanics.

Let us denote by rj the possible external contact forces exhibited by frictionless

plane surfaces that may constrain nodal displacements of the truss. If contact oc-

curs. the equations of equilibrium changes to

Bq = f + ar (9)

where the matrix a projects the contact forces onto the directions of the external

nodal forces f The potential contact forces are orthogonal to the frictionless
contact surfaces and taken to be nonneKative.

rj _ 0 j = I ..... NC , (10)

when directed along the outward normal. Non-zero contact forces rj imply a change

1 T

in the complementary energy _ q Qq through (9). and according to Castigliano's 2nd

theorem the nodal point displacements xj in the directions of the external forces

rj are simply given by

xj = 8rj Oq , J = l ..... NC . (ll)
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Since rj and hence xj is directed away from the contact surface, the kinematic

contact condition (3), where the initial gap x. is given, is now expressed in terms
3

of forces.

J=l ..... NC. (12)

In addition to (I0) and (12), the unilateral contact problem is characterized by the

fact that rj > 0 and rj = 0 , respectively, depending on whether the condition

(12) is satisfied as an equality or an inequality. Thus, as an additional governing
condition for the contact problem, we have

Qq+ =0 , J=l ..... NC. (13)

The variational formulation of the elasto-plastic analysis problem (4) may now be

generalized as follows to allow for contact conditions,

lqT Irain _ Qq Bq = f + ar; lqi/Ai I _ _ , i = 1..... NB; r_ _ 0 0

q.r

- arj Qq _ xj rj aq T' " arj Qq + xj = 0 . J = I..... NC .
(14)

Similarly. we may extend the max formulation (7) to the followir_ model that unifies
the limit load problem with those of elasto-plasticity and unilateral contact.

[ 1 T -max a Bq = af + ar: _q Qq _ ca: lql/Ai I _
a.q,r

i=l ..... NB;

rj . ' arj Qq xj , rj v,j
_ - - • Qq + _j = 0 , j = 1..... N (15)

In the final statement of (14) and (15). the terms @q/@r should be elimlnated by

suitable rearreLr_ement of the equilibrium condition and separation of forces in non-

redundant and redundant forces (cf. [13]).

To illustrate a solution to the analysis problem (15), consider the plane flve-bar

truss in Fig. 1 with specific elastic bar stiffnesses EA . lengths

e. = (I, 4"2, I. J'2. 1)e , and large yield stress _ such that elasticity prevails.

The truss is subjected to a given vertical external load fl at the upper, right
hand nodal point, for which a vertical frictlonless contact surface is defined along

with the initial gap x . The essence of the solution to the elastic contact problem

is depicted in the figure through the dependence on the load parameter of the bar

forces ql ' i = 1..... 5 , and the horizontal displacement h and vertical dis-

placement v of the upper right hand nodal point.
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_11, Iq31, Iq 51 t
I

Iq21
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LOAD CARRYING

CAPACITY

NO CONTACT CONTACT

fig.1.

4. DESIGN FORMULATION.

The variational statements of maximization of the load carrylnE capacity constitutes

a natural basis for the formulation of a unified analysis and desiEn problem (see

Ref. [12]. Chapt. 10 for a discussion on the advantages of such a setting). Denoting

by Ai the cross-sectional areas of the bars in a truss, a combined problem formula-

tion. with AI . i = I..... NB . as design variables, takes the form:
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maximize a
a.q.r.A i

$0 :

Constraints of variational }problem

I Constralnts on design: 1

NB

i_l li Ai = _ ' A _ A i _ X

This problem maximizes the load carrying capacity of a given structure, for a giveen

compliance "and for a given volume. For a fixed volume, the compliance constraint

controls whether the structure is in the elastic, elasto-plastic or limit load range,

with or without contact, thus encompassir_ a broad class of model problems. Note that

the problem includes displacement as well as stress constraints, but as pare of the

analysis model. Unlike in traditional design formulations an active displacement

constraint gives rise to a contact force and an active stress constraint gives rise
to a plastic deformation. The problem thus finds the ultimate load carrNtng capacttN,

aLlowtng the structure to Nteld and to explore the posstbtlttN of advantageous con-
tact forces. If displacement and stress constraints are to be included as part of the
design model, minor modifications need to be included in the problem statement that
has the effect of nullifying contact forces and plastic deformation from such con-

straints (cf. [13]).

Fig. 2 shows results for a case where contact is not present and illustrates the

dependence of the optimal load carrying capacity a on the compliance constraint

value e and the volume constraint value V . respectively. Note that for an in-

crease in volume the structure moves from the limit load range through an elasto-

plastic ranse to the elastic range and through yet another elasto-plastlc range be-

fore settling in the elastic range. The intermediate step is caused by one of the

design constraints Ai _ A becoming active.

cL

_J

,=

_3
.C
o
,3

OPTINAL ELASTO-PLASTIC DESIGN

Limit load

astic design

{bar no. i yielded)

U

U
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INTRODUCTION

In this paper an optimal design procedure is introduced to improve the overall performance of nonlinear framed

structures. The design methodology presented here is a multiple-objective optimization procedure whose objective
functions involve the buckling eigenvalues and eigenvectors of the structure. A constant volume with bounds on the

design variables is used in conjunction with an optimality criterion approach. The method provides a general tool for

solving complex design problems and generally leads to structures with better limit strength and stability.

Many algorithms have been developed to improve the limit strength of structures. In most applications
geometrically linear analysis is employed with the consequence that overall strength of the design is overestimated.

Directly optimizing the limit load of the structure would require a full nonlinear analysis at each iteration which would

be prohibitively expensive. The objective of this paper is to develop an algorithm that can improve the limit-load of
geometrically nonlinear framed structures while avoiding the nonlinear analysis.

One of the novelties of the new design methodology is its ability to efficiently model and design structures under

multiple loading conditions. These loading conditions can be different factored loads or any kind of loads that can

be applied to the structure simultaneously or independently.

Attention is focused on optimal design of space framed structures. Three-dimensional design problems are more

complicated to carry out, but they yield insight into real behavior of the structure and can help avoiding some of the
problems that might appear in planar design procedure such as the need for out-of-plane buckling constraint.

Although researchers in the field of structural engineering generally agree that optimum design of three-dimension

building frames especially in the seismic regions would be beneficial, methods have been slow to emerge. Most of the
research in this area has dealt with the optimization of truss and plane frame structures.

FORMULATION AND DEVELOPMENT

To improve the limit load behavior anti stability characteristics of a 3-D framed structure under multiple loading

conditions, we need to consider several ingredients to generate an objective function. Based on observations made on

the limit and post-limit behavior of elasto-plastic frames, Hjelmstad and Pezeshk (1988) developed an approximate

model of nonlinear behavior of framed structures. From the model they observed that the overall stability and strength
of a structure can be improved by maximizing the linear buckling eigenvalues of the structure. This concept was

applied by Pezeshk and Hjelmstad (1989) to improve the performance of planar framed structures which worked

successfully. Thus, in order to improve the limit-load and post-limit behavior of framed structures we must include

the buckling eigenvaiues in the objective function. To handle multiple loading cases, we also purpose including the
loading conditions directly in the objective function. We further hypothesize that the loading conditions should

become important to the objective function if they cause displacements similar to a buckling eigenvector which is in

the design subspace. The proposed formulation then, seeks to maximize buckling eigenvalues of the structure using

the work of the various load cases going through modal displacements as weighing factors.

Natural way to consider all the ingredients discussed above in the framework of an objective function would be

to combine them in a quadratic form. The only shortcoming of using a quadratic form is that the number of the

buckling eigenpairs used in the objective function is not necessarily equal to the number of the loading conditions.
Therefore, it is best to consider a quasi-quadratic form such as

N /.

E_#,fl,'P'ni where tic- l_._,l (1)
i )

where N is the number eigenmodes considered, L is the number of loading conditions, and IIj is a vector containing
a set of index numbers with values in the range [1,N] with one-to-one correspondence with the buckling eigenvalues.

The dimension of the set is equal to the number of loading conditions (L). For example
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N

II-2,3 leads to --* _, I_i [Orr_b,)/J2 + (f2"_b/)/_3] (2)
i-I

Therefore, in order to improve the stability and strength characteristics of a framed structure we define the

following optimization problem:

N L

Maximize _, _. iz,(x)fl_(x)l_j(x) (3)
i.l j-t

M

Such That _Ai(xl) _ - F (4)
i°l

where pwith elastic critical buckling eigenvalue; l"=given weight of the structure; _=area of group i.

In this paper the members of the structures are assembled into M distinct groups. Each group is associated with

a set of design variables which describe the geometry of the cross section of that group. For example an I-beam can

be described by its depth h, flange width b, web thickness t, flange thickness tr Consequently, the I-beam has four

design variables (vffi4, where v is the total number of independent design variables). A rectangular cross section has
two design variables (v=2): the width b and the height h of the cross section. The vector of design variables will be

designated as x = {xl, x_, .... XM} and x_ is the design vector for group i where x_ = (x_, x_, .... x_,}. xij is the jib design

variable for ith group. To simplify notation, we designate the specific weight of the ruth group as the weight per unit
of cross sectional area of the entire group

pz, (6)

where the length of member i is Li, and its density is Pi. The sum is taken over all members associated with group m.

The optimization problem considered here is atypical of multi-objective optimization problems because all of the

objective functions have the same nature and yet are conflicting. For example, maximizing one buckling eigenvalue

might result in a decrease in another one. A good survey of different generating techniques can be found in Atrek,
et al. (1984) and Cohon (1975). Since all the objective functions are of the same nature, a weighing technique is best

method to generate the noninferior set or Pareto optimal set. One of the advantages of the formulation developed here

is that all the weighing factors are determined automatically, eliminating the principal difficulty inherent in a general

weighing solution technique.

Using Eq. (3) and Eq. (4) the Lagrangian functional can be cast as

L(x,O - - - (7)
i-I j-!

where _ is the Lagrang¢ multiplier. It should be pointed that the constraints on the size of elements given in Eq. (5)
are not included in deriving Eq. (7). Constraints on permissible sizes can be handled efficiently by treating them as

passive constraints in the sense that whenever an element violates the size constraints, the design variable associated
with that element adopts the minimum or the maximum permissible sizes and is placed in the passive set. Allwood
and Chung (1984) have suggested that if a design variable is moved to the passive set in two consecutive iterations,

it will probably will be passive at optimum. In principle, the method suggested by Allwood and Chung was followed

in the computation reported in this paper. However, it was found that in the early stages of optimization it is best

to keep all the design variables as active and follow Allwood and Chung procedure after few optimization cycles when
the algorithm settles down.

348



Differentiating Eq. (7) with respect to design variable x,, and setting the corresponding equation equal to zero

results in the optimality criteria which for simplicity of notation can be represented as

Q_

- 1 m-1 ..... M and n-1 ..... v (8)

In Eq. (8) there exit two sensitivity terms: sensitivity of 3,j and _ with respect to the design variables. The

sensitivity of,8_j is a function of sensitivity of eigenvectors. Thus, sensitivity of both eigenvalues and eigenvectors are
needed. Determination of these sensitivities are discussed in the following section.

EIGENVALUE AND EIGENVECTOR SENSITIVITY ANALYSIS

Evaluation of the optimality conditions require knowledge of the sensitivity, or rate of change, of the buckling

eigenvalues and eigenvectors with respect to the design variables. Procedures for computing these sensitivities have

been known for some time, but efficient methods of computation continue to be of interest to researchers. A complete

and detailed discussion of the problem has been given recently by Dailey (1989). Consider the following eigenvalue

problem

K_b - /_G_ (9)

where K is the (positive definite) elastic stiffness matrix, and G is the (possibly indefinite) geometric stiffness matrix.

Both of matrices are symmetric and depend on design variables x. By differentiating Eq. (10) with respect to the design

variables and some mathematical manipulations we can determine the eigenvalue and eigenvector sensitivities as

where a prime indicates differentiation with respect to the design parameter.

RECURRENCE RELATIONS

The optimality criteria are used to modify the design variables in each direction in terms of recurrence relations

similar to that proposed by Khot (1981):

x_., [ I(Q,,_ ] (11)1 ,- ;_T. - 1)

where _: denotes the iteration number and r is the step size parameter. The convergence behavior depends on

parameter r. Depending on the behavior of the constraint, it may be necessary to increase r in order to prevent

convergence. If the optimization problem is run in a non-iterative environment a large value of step length such as
r=8 or r=10 is recommended to ensure that there is no problem with divergence. Of course, this choice will result

in slower convergence.

EQUATION TO DETERMINE LAGRANGE MULTIPLIER

In order to be able to use the recurrence Eq. (11), the Lagrange multiplier _ has to be determined. The Lagrange

multiplier is determined by using the condition that after each iteration the design moves on the constraint surface

so that the constraint is satisfied. A set of equations to determine the Lagrange multiplier can be obtained by

linearizing the constraint equation about current iterate. Linearizing the volume constraint about the configuration
x_ one obtains

£_ ac(x
LIq..,,,- C(x')+ ,,..,..,_ - - x_)

(12)
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The Lagrange multiplier can be obtained by satisfying the linearized constraint equation at the new iterate x_÷_.

Substituting for the appropriate terms and simplifying, one gets

u _ 8A,.F, a.
m-I n°l C] mm

. (13)

+ a-rr

since the constant volume constraint is an equality, _ can be either positive or negative.

SCALING PROCEDURE

After each iteration to satisfy the constraint relationship, it is necessary to scale design variables to bring the

volume of the structure to the level of the assigned volume constraint F. Scaling is necessary to insure that the design

at each iteration is feasible. The following is a development of the scaling procedure for rectangular members. The

same procedure can be developed for I-beam cross sections.

The weight of the structure after each iteration can be divided to three groups depending on which design

variables are passive and which are active. Thus, the total weight is given by

F - _ + 14_ + 14_ (14)

where W's are various weights. A superscript "a" indicates an active design variable, superscript "p" indicated a passive

design variable, and there is one superscript for each design variable in the group. The weigh! of the structure is scaled

after each iteration by scaling only the active design variables. The scaling factor 77, such that x_j ,-x_jvl, is determined
by the equation:

The scaling equation for n design variables per group is an nth order polynomial. Higher order polynomials can

be easily solved by Newton's method.

In the following sections the optimization procedure is applied to an. irregular framed structure. The purpose

of the example problem is to demonstrate the performance of the optimization procedure.

SETBACK FRAME EXAMPLE

It is often difficult to identify the design changes necessary to improve the performance of a structure, especially

when the structure is irregular and the response is nonlinear. The frame considered here is a two-story setback frame

as shown in Fig. 1. The topology of the frame was picked from a report by Cheng and Truman (1985) and redesigned
to meet ATC-03-06 earthquake design recommendation (1978).

A preliminary design was performed using full dead and live load in all members, using approximate coefficients

to determine maximum moments in girder sections. Because setback is an irregular structure, a modal analysis

procedure was employed to determine earthquake loads. The following seismic coefficients in accordance with ATC-3-

06 were used: effective peak acceleration (A,=4); effective peak velocity-related acceleration (A,=0.4); soil profile
characteristics of site (Szffi 1.2); reduction factor to account for effects of inelastic behavior (R =4.5); seismic Category
C; and seismicity index of 4. The loads on the structure were: dead load: 80psi', and live load: 40psf. A set of eight

combination of load effects, as recommended by ATC-3-06, was considered. The critical load effect due to the

application of seismic forces on the building are determined as a combination of prescribed loads: 100% of the force

for one direction plus 30% of the forca for the perpendicular direction. The eight different loads were applied to the

building and the stresses and the displacements of each load combination were determined. Members of the building
were checked for the worst loading case and were redesigned if necessary. This procedure of analysis and redesign was

carried out for several iterations until all the requirements were satisfied. The member properties of the final design
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were checked against the AISC (1978) specification and all the requirements were satisfied. The properties of the
design are given in Table 1. Load cases I and II are shown in Fig. 2.

Single Loading. The setback frame was optimized under single loading condition I. The properties of optimized

design is summarized in Table 1. Both Initial design and optimized designs were analyzed and the their nonlinear

performances are given in Fig. 3. From this fgure one can observe that optimized design performed better than the

initial design with better load carrying capacity and improved post-limit behavior.

Multiple Loading. Most optimization procedures developed in recent years arc set to minimize the volume of

a structure under some displacement and stress constraints. Displacement constraint optimization methods have been

used to limit displacement of a design to minimize damage or perhaps to force a design to remain in the elastic range.

Unforlunately, such an approach does not assure overall structural stability. Under severe multiple loading conditions,
the displacement constrained optimal design may not have desirable global stability characteristics. To demonstrate

this point, the initial setback design was optimized with a single displacement constraint optimization procedure to

compare its performance with the optimized design based on stability.

The weight of the structure was minimized with a top displacement of 1.2 inches, under a combination of load

cases I and II, resulting in an optimized structure of the same weight as those optimized for stability. The properties
of the optimized design under displacement constraints along with the properties of the optimized design based on

stability are given in Table. 1. The nonlinear performance of both optimized designs are shown in Fig. 4. The

structure optimized for stability performed better under both loading condition better than lhe initial design with better
load carrying capacity and about the same post-limit behavior. On the other hand, the displacement constraint design

was stiffer and stronger than initial design under load case I but quite poor compared to the initial design under load
case II. Furthermore, the displacement constraint design demonstrated a more brittle behavior under load case I than

both the initial design and stability design. This example can serve to illustrates the strength of the stability design
procedure in improving global stability and strength of a structure under multiple loading cases.

CONCLUSION

An optimization-based design procedure is presented that can effectively and efficiently produce structural designs

with better overall strength and stability characteristics than alternative structures of thc same weight. The method

can improve the stability performance of framed structures under single and multiple loading conditions. The

optimization procedure is specially effective for tall buildings when geometry effect is important. The setback frame

optimized here is not a tall building, yet the optimization procedure improved the overall performance and the stability
characteristics of the building frame.
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The weight savings due to usage of composite materials in aircraft structural
applications is well known. Significant weight and cost benefits are achievable by
developing structurally tailored concepts and efficiently integrating them with suitable
material and manufacturing technologies. The proposed paper will describe such an
efficient concept for application to primary aircraft structures.

The structure selected for analysis is a 3-bay panel from a supersonic aircraft wing
shown in Figure 1. This 3-bay panel model is expected to provide a true
representation of the central bay behavior and is used to demonstrate buckling
resistant and postbuckling designs for tailored wing structures. The dimensions and
ply lay-ups of the panel are listed in Table 1 and were obtained from preliminary
sizing of this wing structure subjected to several flight load conditions. This
preliminary design was constrained by the aeroelastic and strength conditions only.
The predominant loading at the location of the panel (circled in figure 1) is inplane

compression (Nx) and shear (Nxy). Two wing-skin designs were studied - a uniform
skin design and a tailored skin design. The uniform skin has a constant thickness
18/36136110 (percentage of 0/45/-45/90 plies) ply lay-up. The tailored skin has a
0/45/45/10 ply lay-up with the 0° plies shifted to the spar cap region. Panel weight
and prebuckling stiffnesses were constant for the two designs.

The uniform and tailored skin panels were analyzed for buckling and postbuckling
responses using the finite element method. The panel designs utilized the
T800/5245C graphite-bismaleimide material system. Applied displacements were
used in the analysis to simulate a representative loading of Nx=1000 Ibs/in. and

Nxy=1000 lb./in. The three combinations of loading used were Nx (Nx=1000 Ibs/in.
and Nxy-0), Nx+0.5Nxy (Nx-1000 Ibs/in. and Nxy-500 Ibs/in.), and Nx+l.0 Nxy

(Nx=1000 Ibs/in. and Nxy=10001bs/in.). The buckling results summarized in Table 2
show that substantial gains are possible even for the Nx+0.5 Nxy and Nx+l.0 Nxy
loading conditions. The buckling factor presented is a ratio of the predicted buckling
load to the imposed load.
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The postbuckled results obtained from the analysis indicate that the tailored skin
panel stiffnesses are better retained into the postbuckled regime than the uniform

skin panel stiffnesses. For example, for the Nx+O.5Nxy loading condition, initial
postbuckling axial and shear stiffnesses are reduced by 50 and 20 percent,

respectively, compared to the prebuckling stiffnesses for the uniform skin panel. The
corresponding reductions for the tailored skin panel are 28 and 10 percent. The
postbuckling performance of the tailored skin panel suggests better suitability of this
concept for postbuckled applications. Also, for this load case, the tailored skin has 12
percent improvement in postbuckled strength compared to the uniform skin design.
This estimate is based on the application of the maximum strain criterion to the skin
first ply failure. The predominantly _+45° ply lay-up (soft skin) for the tailored skin
incorporates damage tolerant features into this design as an additional benefit.
These performance improvements of the tailored skin design indicate that stiffness
tailoring of this type may be very effective for optimizing structural designs.
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INTRODUCTION

The aerospace industry, like many other industries,

regularly applies optimization techniques to develop designs

which reduce cost, maximize performance, and minimize weight.

The desire to minimize weight is of particular importance in

space-related products since the costs of launch are directly

related to payload weight, and launch vehicle capabilities often

limit the allowable weight of a component or system.

With these concerns in mind, this paper presents the

optimization of a space-based power generation system for minimum

mass. The goal of this work is to demonstrate the use of

optimization techniques on a realistic and practical engineering

system. The power system shown schematically in Figure i uses

thermoelectric devices to convert heat into electricity. The

heat source for the system is a nuclear reactor. Waste heat is

rejected from the system to space by a radiator.

Over the past quarter century, thermoelectrics have been

successfully employed to provide electric power to spacecraft on

a variety of missions. To date, the primary use of

thermoelectrics in space applications has been in radioisotope

thermoelectric generators (RTG). RTGs operate by using

thermoelectrics to convert the decay heat of a radioisotope fuel

such as plutonium-238 into electricity. The Apollo lunar

missions employed RTGs, and more recently RTGs were used on the

Voyager missions which explored the planets of Jupiter and

Saturn. In all of these missions the system electrical power

requirements were in the 100W to 1000W range.

As satellites become larger and more sophisticated, the

required power levels increase. Future spacecraft in the 1990's

are expected to require 100kW to IMW of electrical power. The

use of RTGs to meet these power levels is no longer practical.

Alternative power systems such as the SP-100 system are being

considered for this task. The aim of the SP-100 project is to

design a highly reliable power generation module which will

produce approximately I00 kilowatts of electrical power. The

power system which is considered in this analysis is based on the
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overall characteristics of the SP-100 system.

To perform the minimum mass optimization, a mathematical

model of the power generation system is developed which evaluates

steady state performance and corresponding system mass. The

level of sophistication in the math model is representative of

the simplified system definition in the initial design phase.

SYSTEM DESCRIPTION

As indicated in Figure I, the system is divided into a

number of identical segments. Each segment receives a portion of

the thermal power output from the reactor and produces a portion

of the required electrical power. Realistic system designs have

been defined which show i0 and 12 segment configurations. The

function of each segment is identical, thus the operation of the

total system can be described by the performance of a single

segment.

Each segment of the thermoelectric power generation system

contains two pumped loops which share a common pump. The two

loops are referred to as the primary (hot) and secondary (cold)

loops. The primary loop is the high temperature heat supply

loop. The secondary loop is the low temperature heat rejection

loop. Both primary and secondary loops use a liquid metal as the

working fluid. The primary loop working fluid leaves the reactor

at its maximum temperature, flows through the pump, into the hot

side heat exchanger, and then returns to the reactor at its

minimum temperature. As the primary loop fluid flows through the

reactor, its temperature is increased as it absorbs the heat

output from the reactor. Heat is removed form the primary loop

as it flows through the pump and heat exchanger. A portion of

this heat is converted into electrical power by the

thermoelectric devices. The remaining unconverted portion of

this heat is dumped into the secondary loop. The secondary loop

working fluid exits the radiator at its minimum temperature and

flows into the pump. After exiting the pump, the secondary loop

flow is split into two paths through the cold side heat

exchangers. Heat is absorbed by the secondary loop (from the

primary loop) as it flows through the pump and heat exchangers.

The secondary loop is rejoined after flowing through the cold

side heat exchangers, and returns to the radiator at its maximum

temperature. The secondary loop fluid temperature decreases as

it flows through the radiator, since heat is removed from the

fluid and rejected to space by radiation.

Thermoelectric devices are sandwiched between the hot and

cold heat exchangers. As heat flows through the thermoelectrics

a temperature gradient is established across the thermoelectric

devices, and these devices convert a portion of this heat into

electrical power. Thermoelectric conversion efficiencies
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(electrical power output to heat input) typically range from 4% -

8%. An introductory description on the operation and

performance of thermoelectrics is provided in [I] and [2].

As the primary and secondary loop fluids flow through the

segment, frictional and momentum losses cause pressure drops in

each loop. The pump is employed to increase the pressure in each

loop, and thus maintain the proper flow rates.

SYSTEM MATHEMATICAL MODEL

To create the system mathematical model, several system

components or subsystems are identified, and a separate model is

created for each of these subsystems. The subsystems considered

in the present work are thermoelectrics, heat exchanger,

radiator, pump, reactor, and pipings. The complete system model

is formulated by linking all of these subsystem models together

through an overall system heat balance. The resulting system

model describes the performance and mass characteristics of the

entire system.

The total model of the system results in a set of non-linear

algebraic equations. Since the equation set is non-linear, the

solution of the system is not straightforward and numerical

algorithms are required to iteratively determine the system
solution.

System Heat Balance. A schematic of a power system segment is

shown in Figure l, including the identification of state points

along the primary and secondary loop flow paths. The reactor is

the heat source for the system, and it supplies heat to the

primary loop of each segment.

Equally dividing the total heat input into each segment, the

temperature increase of the primary loop fluid through the

reactor can be calculated. This temperature increase is given by

Q_cT.e_ns_ = mpcp[T n - Te3] (i)

where: Q_-m_ = available reactor heat input to the primary

loops

ns_ = the total number of power segments in the system

mp = the primary loop working fluid mass flow rate

Cp = specific heat of primary loop working fluid.

The working fluid temperatures at the indicated state points

PI..P3/SI..S3 are designated as Tpl..Tp3/Tsl..Ts3. The value of Tpl

is an input, and all other state point temperature values are
unknown.

In each segment, the primary loop working fluid flows
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directly out of the reactor into the pump. Within the pump, heat

is transferred from the primary loop into the secondary loop. A

portion of this heat is converted by the thermoelectrics in the

pump into electrical power. The difference between the heat lost

by the primary loop and the heat gained by the secondary loop is

the electrical power produced within the pump. An expression for

this power quantity is

mpcp[Trl - Tp2] = Pz_p_ + msc s[Ts_ - Tsl] (2)

where: PE-PUMP

m s ---

C s =

= electrical power produced within the pump

secondary loop mass flow rate

specific heat of secondary loop working fluid.

After exiting the pump, the primary loop working fluid

enters the hot side heat exchanger (HX). As it flows through the

hot HX, heat from the primary loop is transferred from the fluid,

through the thermoelectrics, and into the secondary loop fluid.

The heat flowing through the thermoelectrics creates a

temperature gradient across the thermoelectric devices. The

thermoelectrics convert a portion of the primary loop heat input

into electrical power. The remaining unconverted portion of heat

travels into the secondary loop. Within the HX package of each

segment, the difference between the heat removed from the primary

loop and the heat gained by the secondary loop is the electrical

power generated by a segment. The relationship for this value is

given by

mpcp[Tez - TF3] = Pz-Tz + mscs[Ts3 - Tsz] (3)

where Pz-T_ is the electrical power produced by a single segment.

The quantity of heat from the primary loop that passes into

the secondary loop must be rejected from the system as waste

heat. The amount of heat rejected per segment, Q_J-s_, is

determined by

Q_J-s_G = mscs[Ts3 - Tsl] (4)

To complete the system analysis, the temperatures at various

junctures and pressure drops throughout the system (especially in

heat exchangers, pipings, and radiator) as well as the heat

rejection capability of the radiator must be determined. Once

the total system pressure drop is determined, then the pump size

can be obtained to provide the required power to offset this

pressure drop. All of these are done by modelling individual

component using appropriate heat transfer equations and pressure

drop equations and linking them together. The details of this

phase are provided in [I].
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The resulting system model has a total of 190 parameters; 82

of these are unknowns and the remaining 107 parameters are system
input. In general the input parameters are:

i. Thermal/electrical performance requirements

2. Material properties of system components

3. Dimensional specifications of the system components.

The primary output of the mathematical model is the system total

mass. In addition, various temperatures, heat flux, and pressure

drops are also calculated.

OPTIMIZATION ANALYSES AND RESULTS

In the optimization phase, 13 parameters were selected as

design variables out of 107 system inputs. They are listed in

Table i and considered to have significant impact on total system

mass based on engineering judgments and intuitions. In addition

to the upper and lower bounds on these design variables, most of

which represent physical constraints due to assembly and

manufacturing, two additional constraints are imposed to avoid

the invalid system. The first constraint requires that the

efficiency of a thermoelectric device within the system does not

exceed the maximum theoretical efficiency of a thermoelectric

device [3]. The second constraint ensures that the working fluid

in the cold secondary loop remains liquid by restricting its

temperature to be greater than the melting point.

As a reference point for optimization studies, a baseline

design was established by making engineering judgments, which

produced a total system mass of 9,515 Kg as shown in Table 2.

Parametric Study. In these studies only the design variable

under consideration is varied, while all other design variables
remain fixed at their baseline values.

Since these parametric studies do not consider the

interdependencies between all of the design variables, they do

not produce true optimum designs. However they are still

worthwhile endeavors since they can provide some insights to the

problem and also the sensitivity of the system mass to variations

of the design variables. For example, the system mass is very

sensitive to the A M (HX face area) variation, as shown in Figure

2, but insensitive to changes in the value of A (thermocouple

area).

The optimum value of A M is determined when the increase of

the thermoelectric subsystem mass is balanced by the decrease in

radiator and pump masses. From Figure 2 it is seen that the mass

penalty associated with decreasing the heat exchanger area is

more severe than the penalty related to increasing the area.
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Multivariable 0ptimizatioD. A multivariable optimization program

based on Generalized Reduced Gradient Method was used to optimize

the system producing a design having total mass of 4,058 Kg. The

design variable values and component mass are shown in Tables 2

and 3 respectively. It. is noted that most of the mass reduction

occured in the pump and the thermoelectric power conversion

system while those of primary and secondary pipings were slightly

increased.

CONCLUSIONS

A mathematical model was created to simulate a space power

system, with 13 variables chosen as design variables,

traditional parametric study and multivariable optimization were

carried out. The results demonstrate the effectiveness of

optimization techniques on a realistic and practical energy

system. The parametric studies also provide valuable insights to

the problem and the sensitivities of the system to the variations

of design parameters. Further refinement of the mathematical

model combined with increased number of design variables is

suggested as future study.
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Table 2

Multivariable Optimization Results

Variable Baseline Value optimum Value

Table 1

Selected Design Varlables for Optimization

Variable Oesr.r Ipt Icm _ U_Ics

AI(x XX fmce •re• 0.1 1.0 a Z

dp Prlmsry Loop pipe dlst. 0.5 6.0 _"

d• Secor_i_ry Loop pipe dist. O.S 6.0 "*

dTc Depth of thermocoup_e 0.5 1.5 c_

t E RadlatoP i_tlOor•t_" te',llth 0.1 0.$ B

t C tadi•tor condenser |e_sth 2.0 5.0 •

IS Se_wcllry loop ms ftw rate .kp I._p _.S/s

• L_d raelstmr_• ratio 0.S 2.0

A Ar•s of • sing+.• theraocorJptl 10.0 ]0.0 m z

vx Hot MX p*ssage hel_t 0,1 5.0 cs

vC _Ld ILK pesa4ge height 0.1 5.0 _.

vt Radiator duct _ma Misl_t 0.1 5.0 an

" "lrheru_c_JpLe tq area ratio 0.5 . 2.0

Table 3

Component Mass Per Segment

A_ m2 0.4

dp c= 2.0

d, cm I.S

dt¢ cm 0.6

I_ m 0.2

i¢ m 4.0

ma kg/S 0 •79

m 1.0

A mmz 18.75

vm _ 0.2

v c cm O. 15

v t c= g.3

,_ 1.o

Total System
Mass 9515 Kg

0.253

3.65

3.25

1.5

0.424

5.0

0. 648

1.26

19 • 7

0.374

0.227

0.404

0.88

4058 Kq

Component Baseline Optimum
Case Design

Thermoelectric Power 62.7 29.5
Conversion Subsystem

Hot Heat Exchanger 6.9 4.7

Cold Heat Exchanger 13.4 8.7

Radiator 138.6 111.7

Pump 432.8 27.0

Primary Piping System 8.6 15.7

Secondary Piping System 9.9 20.9

Total Mass per Segment 672.9 Kg 218.2 Kg

Mass of 12 Segments

Mass of Reactor

8o75 _ 26_8 _g

144o xg 144o Kg

Total System Mass 9515 K_ 4058 Kg
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Abstract: The optimal topology of a two dimensional linear elastic body can be computed by

regarding the body as a domain of the plane with a high density of material. Such an optimal

topology can then be used u the basis for a shape optimization method that computes the optimal

form of the boundary curves of the body. This results in an efficient and reliable design tool, which

can be implemented via common FEM mesh generator and CAD type input-output facilities.

I. Introduction

Traditionally, in shape design of mechanical bodies, a shape is defined by the

orientated boundary curves of the body and in shape optimization the optimal form of

these boundary curves is computed. This approach is very well established (of. review

paper by Haftka, [1]) and commercial software using this method is available. The

boundary variations methods predicts the optimal form of boundaries of a fixed,

a priori chosen topology. However, it is well known that the topology is a very

important dement of the final performance of a mechanical body. As an alternative to

the boundary parametrization of shape, a mechanical body can be considered as a

domain in space with a high density of material, that is, the body is described by a

global density function that assigns material to points that are part of the body. By

introducing composites with microvoids, such shape design problems appear as sizing

problems for fixed reference domains, and a prediction of topology and boundary shape

is possible ([2]-[6]).

The material density approach should be seen as a preprocessor for boundary

optimization and by integrating the two methods a very efficient design tool can be

developed. In an integrated system, common CAD--style input-output facilities can be

used as well as a common mesh generator for the FEM analysis. Interfacing the two

methods by a CAD like (based) module added to the input facility for the boundary

variations method, allows the designer to actively control the information used and

such interactive possibilities have been found to be very important.
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2. Topology optimization

For the topology optimization we minimize compliance for a fixed, given volume of

material, and use a density of material as the design variable. The density of material

and the effective material properties related to the density is controlled via geometric

variables which govern the material with microstructure that is constructed in order to

relate correctly material density with effective material property.

The problem is thus formulated as

rain L(w)

so: aD(w ,v)=L(v) for all vEH (1)

Volume _<V

where

L(v)=f fvdfl+f tvdr
f_ r

(2)

aD(W ,v) -- ffl Eijkl(D ) Qj(w) _kl(V)dfl .
(3)

Here, f, t are the body load and surface traction, respectively, and eij denotes

linearized strains. H is the set of kinematically admissable deformations. The problem

is defined on a fixed reference domain fl and the rigidity Eijkl depend on the design

variables used. For a so-called second rank layering constructed as in Fig. 1, we have a

relation

Eijkl = Eijkl(/_, 7, 0) (4)

where /_, 7 denote the densities of the layering and 8 is the rotation angle of the

layering. The relation (4) can be computed analytically ([3]) and for the volume we

have

Volume = Jfft(P + 7-/_7)dfl (5)

The optimization problem can now be solved either by optimality criteria methods ([3])

or by duality methods, where advantages is taken of the fact that the problem has just

one constraint. The angle 8 of layer rotation is controlled via the results on optimal

rotation of orthotropic materials as presented in Ref. [7].

365



It turns out that this method allows for the prediction of the shape of the body and it is

possible to predict placement and shape of holes in the structure.

3. Integration

In order to finalize a design obtained by the material density approach, it is reuired to

optimize the final shape of the boundaries of the optimal topology. The choice of initial

proposed form for the boundary optimization methods is usually left entirely to the

designer but the material distribution optimization gives the designer a rational basis

for the choice of initial form.

Interfacing the topology optimization method with the boundary variations method is a

problem of generating outlines of objects from grey level pictures. A procedure for an

automatic computation of the proposed initial form for the boundary variations

technique could thus be based on ideas and techniques from image analysis and pattern

recognition. For the examples presented in this paper, the outlines for the initial

proposed form were generated manually thus mimicking a design situation where the

ingenuity of the designer is utilized to generate a 'good' initial form from the topology

optimization results. The term 'good' in this context covers considerations such as ease

of production, aesthetics etc. that may not have a quantified form. A reduction of the

number of holes proposed by the topology optimization by ignoring relatively small

holes exemplifies design decisions that could be taken before proceeding with the

boundary variations technique.

4. Boundary optimi_tion

Once the optimal topology and initial boundary shape is defined, the objective is to

refine this initial shape, such that the von-Mises equivalent stress in the body is

minimized, subject to a resource and compliance constraint:

SO:

min max

ft<D XEf/

Equilibrium

dfl<V

Compliance <

m

aeq

(6)
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Here D denotes the set of admissable boundary shapes, defined through local

geometric constraints.

This problem is solved with a gradient technique, with shape sensitivities obtained via

the speed method ([5]). For the sensitivity analysis, very precise estimates of stress is

required and for this reason, the equilibrium is defined via the stationarity condition

for the Hu-Washizu variational principle ([8]). Also, a boundary fitted elliptic mesh

generator is used to generate the FEM-mesh used for the numerical solving procedure

for the mixed analysis problem. This mesh generator is employed at each iteration step

of the boundary optimization, thus maintaining good mesh properties throughout the

shape modification process [5]. In order to cater for the non--simply connected domains

predicted by the topology optimization system, the mesh generator is based on a

subdivision of the domain by blocks. The remeshing is a crucial element in the

boundary optimization procedure and together with the use of a mixed FEM method,

allows for the boundary movements to be parametrized by movement of the FEM

nodes along the design boundaries ([8]).

5. Examples

Figures 2 and 3 show examples of 2--dimensional structures optimized through the

material distribution method followed by the boundary variations technique, as

described above.

As can be seen, the topology optimization results in very good initial forms obtained

for the boundary variations technique. Generally, only small and localized design

changes occur during the boundary optimization.

Typically, the minimization of the stress level during the boundary optimization also

results in some decrease in the compliance, but this is not unexpected as the drawing of

the initial form from the topology data constitutes a not insignificant pertubation of

the minimum compliance design.
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FIG.3. Optimal design of • fitter. A: The reference domain she•cling toads etc. and the reduced

design area. B: The optimaL topology. C Ind D: Initial design end opt•mr design NJth the
boundary vart•t|o¢_ method. Mesh generated wing three block•. E and F: Initial and ftrmt

optimal design using different mesh (t_x_ blocks). G: Optimal design _ith no hot( (minimum
comp( lance design}.

369



CRYOGENIC OPTICAL ASSEMBLY (COA) COOLDOWN ANILLYS I S

COSMIC BACKGROUND EXPLORER (COBE)

Robert J. Coladonato

Sandra M. Irish

Carol L. Mosier

NASA Goddard Space Flight Center

Greenbelt, MD 20771

FOR THE

N94-71467

XNTRODUCTZON

The Cosmic Background Explorer (COBE) Spacecraft, developed by Goddard Space Flight

Cenner (GSFC), was successfully launched on November 18, 1989 aboard a Delta

Expendable Launch Vehicle. Two of the three insurumenns for this mission were

mounted inside a liquid helium (LHe) dewar which operates at a temperature of 2

Kelvin (K). These two instruments are the Diffuse Infrared Background Experiment

(DIRBE), and the Far Infrared Absolute Spectrophotometer (FIRAS}. They are mounted

to a common Instrument Interface Structure (IIS) and the entiEe assembly is called

the Cryogenic Optical Assembly (COA). Figure 1 shows the dewar and COA arrangement.

\

Figure i. Dewa= and CO&

As part of the structural verification requirement, it was necessary to show that

the entire COA exhibited adequate strength and would be capable of withstanding the

launch environment. This requirement presented an unique challenge for COBE because
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the COA is built and assembled at room temperature (300 K), Cooled to 2 K, and ther

subjected to launch loads. However, strength testing of the entire COA at 2 K coul¢

not be done because of facility limitations. Therefore, it was decided to perfor_

the strength verification of the COA by analysis.

Structural loads at 2 K needed to be combined with the launch loads to arrive at the

total load. However, in order to find the loads at 2 K, possible loads from the
transient cooldown event had to be considered and evaluated. A combined

thermal/structural analysis was undertaken to examine the cooldown event. Transient

temperature distributions and resulting structural loads due to cooldown were of

concern at the three major structural interfaces: the IIS/Dewar interface, the

IIS/DIRBE interface, and the IIS/FIRAS interface. Each of these interfaces is a

bolted connection that relies on friction to keep the joint intact. In order for

analysis to be a viable approach for strength verification it was necessary that the

loads be predictable. The cooldown event had the potential for generating large

temperature gradients which could result in Joint slippage. Slippage at the

interfaces during cooldown would introduce an unknown load condition and invalidate

the analytical predictions as well as the approach for strength verification by

analysis. The cooldown analysis was undertaken primarily to provide assurance that

no slippage occurred_ therefore, no unpredictable loads would be generated.

The combined thermal/structural cooldown analysis was a complex task. The large

overall temperature range required the use of temperature dependent material

properties for both the thermal and structural portions of the analysis. The

temperature dependent material properties were obtained from References I through 7

as well as from specific in-house testing programs. The thermal analysis provided

transient temperature distributions throughout the COA while the structural analysis

incorporated the results from the thermal analysis and then determined interface
loads.

THERMAL _NALTSXS

Both a transient and steady-state thermal analysis were conducted. The transient

study determined the COA time-temperature profile during the groundhold cooldown

from room (300 K) to LHe (2 K] temperatures. The dewar boundary temperatures during

cooldown were provided by the Cryogenics and Propulsion Branch at the GSFC and were

based on flight dewar testing at Ball Aerospace Systems Division (BASD). The

steady-state temperature distribution within the COA at launch was also predicted.

THERMAL MODELS

The two types of thermal models employed in the analysis were a geometric math model

(GMM) and a thermal math model (TMM). In the GE4M a physical representation of the

geometry was created in order to obtain radiation view factors. These view factors

were included into the TPE_ and with conduction terms, nodal masses, dewar boundary

temperatures, and material properties determined the COA nodal temperatures.

While on-orbit the entire COA is nominally below 3 K and radiation exchange ks

negligibl_. However, radiation plays a major factor in the heat transfer network

for a temperature range of approximately 70 to 300 K. A geometric representation of

the COA had to be generated in order to accurately model the physical heat transfer

processes which occurred in this temperature range. The computer program used for

this purpose was the Simplified Space Payload Thermal Analyzer (SSPTA). SSPTA

(Reference 8} assumes that the radiation exchange is i00 percent diffuse. SSPTA

determines configuration factors based on the model geometry. The surface

properties are then introduced to obtain the radiation couplings.

The GMM contained all the major structuzal pieces of the IIS, DIRBE, and FIRAS and

several instzument component models. Since the IIS photon cover separates DIRBE

from FIRAS, the upper and lower portions of the COA could be modeled separately

thereby reducin_ the computer run time. The IIS, FIRAS, and DIRBE geometric models
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are shown in figure 2. Emissivity v_lues of 0.75 and 0.10 were assumed for all

black anodized and bare aluminum structure, respectively. Based on the results of

a preliminary cooldown analysis (December 1983) most of the primary structure was

black anodized to enhance radiation exchange and thereby reduce gradients.

Tr

I

°

IZ$ STRUCTURE Lrll_S STRUCTURE

Figure 2. TheEmal Geometric Models

The approximately 400 node TMM, which was used to predict temperatures, was

generated in the Systems Improved Numerical Differencing Analyzer (SINDA] format.

SINDA (Reference 9) is a finite differencing program which defines a thermal

network, manipulates solution arithmetics, and specifies output of results. The

program requires the user to specify a network of thermal modeling elements unique

to the physical problem. These lumped parameters include nodal thermal masses,

conductances, internal power generation values, radiation couplings, and boundary

temperatures. In cryogenic modeling the conductivity and specific heat of materials

are highly temperature dependent. Interface conductances are also functions of

temperature. Values, determined by testing, are stored in arrays which reference

them to the associated temperatures. The correct material properties are determined

during each iteration by linear interpolation of entries in the arrays.
Conductances of critical paths were verified during COA cryogenic testing.

The solution network routine specifies the type of finite differencing technique and

convergence criteria to be used. For the steady-state analysis "STDSTL" was chosen.

In this routine the finite difference equations are solved iteratively by the Gauss-

Seidel method. For the transient cooldown analysis "FWDBCK" was used. This routine

uses a forward-backward differencing technique with the general quartic formula.

Convergence for both of these routines was based on both a temperature relaxation

criteria and a desired energy balance with maximum values of 0.5 mK and 0.1 mW,

respectively.

THERMAL RESULTS

Results for the cooldown analysis were generated in the form of time-temperature

profiles of all SINDA nodes. Of particular interest was the gradients at the
IIS/Dewar, IZS/DIRBE, and IIS/FIRAS interfaces. Figure 3 shows the average

temperature gradients across these interfaces. The cooldown profiles, along with

steady-state prelaunch temperatures, were used as input for the NASA Structural

Analysis (NASTRAN) study.
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NASTRAN is a computer program which uses the finite element method to solve a wide

variety of engineering problems. In order to use this software, a finite element

model of the s_ructure in question is required. NASTRAN models of the COBE dewar

and COBE instrumenus were obtained to perform the structural portion of the cooldown

analysis. These models were acquired from the Cryogenics and Propulsion Branch and

the Electromechanical Branch at the GSFC. Figure 4 is a plot of the NASTRAN models

utilized in the analysis. Only the internal tank, suspension straps, and suppor_

brackets of the dewar model were needed for the analysis.

Since the models were developed from different organizations, _hey were formatted in

dissimilar versions of NASTRAN. The models had to be converted into the Universal

Analytics Incorporated [UAI) version of NASTRAN since a UAI/NASTRAN [Reference 10)

model coupling Uechnique was used in the analysis. This technique, known as

substruc_uring, allows for the coupling of many de_ailed models. It permits _he

analyst to work winh smaller, more manageable components rather than a very large

combined model. The models, if combined directly to form one NASTRAN model, would

have contained 40,000 degrees of freedom (DOF). By using this technique, the

results were obtained in less computer time than if one large NASTRAN model of the

COA s_ruc_ure had been analyzed.

Once each model was converted into UAI/NASTRAN, elements such as bar offsets or

rigid elements were removed since they do not allow proper thermal expansion. The

rigid elements were replaced by stiff, elastic bars that would expand freely under

thermal loading. Checks were made to assure matrix stiffness ra_ios were no_

exceeded. Also, thermal check runs were performed on each model to verify proper

thermal expansion, rigid body motion, stiffness equilibrium and adequate geometry of

elements. The final check was to verify that each model conuained the appropriate

grids for connection to the other models.
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APPLYZNG TEILtERJkTURE DATA

Time-temperature profiles from the thermal analysis were provided to the structures

group. These profiles were utilized to predict the appropriate time steps to

perform the structural analysis. For this analysis, the temperature distributions

at the time steps of 5.5 hours, 6.083 hours, 19.25 hours, 28.5 hours, 30.5 hours,

and 34.5 hours after star_ of cooldown were applied to the combined COA model.

These time steps were chosen by reviewing the temperature gradients across the

interfaces and taking into account the thermal expansion coefficients of each

material as it varies with temperature. In addition to the six time steps chosen,

one case was run which applied a temperature of 2 K on the entire structure. This

run was used to check the interface loads that remain after the completion of

¢ooldown.

To properly apply the predicted temperatures to the structural models, a direct

mapping of the SINDA thermal nodes to the NASTRAN structural grids was performed.

The geometric equivalent structural grid was assigned to each thermal node and then

the node's temperature was applied to that grid. The thermal and structure groups

worked together to select and assign the mapping equivalence.

A FORTRAN program was developed which simplified the procedure of reading the

temperature data, searching for the corresponding grid, applying the temperature

data to the grid, and formatting the information into TEMP cards which could be read

directly by the NASTRAN Thermal Analyzer (NTA). The NTA (Reference 11) was used to

interpolate between known temperatures and calculate the temperatures of all the

other grads in the structural model. Non-linear temperature interpolation was

374



chosen since the thermal conductivities of each material were input as a function of

temperature. The NTA produced a temperature distribution for each time step. Color

graphics plots were developed to Obtain a better understanding of the temperature

distributions applied to the models. These plots were created by using the PATRAN

pre- and post-processing software on a Silicon Graphics IRIS Workstation.

INTERFACE LOADS COMPUTATION

Once all the temperature distributions were known from the NTA, the models were

arranged into UAI/NASTRAN substructuring runs to obtain the loads at the IIS/Dewar,

IIS/DIRBE, and IIS/FIRAS interfaces. All bolted locations were represented by a

three translational DOF connection, except the dewar internal tank interface to the

dewar external tank which was fixed in all six DOF. Also, all material properties

used in the analysis were input as a function of temperature.

Table 1 lists the maximum interface loads obtained by NASTRAN during cooldown for

each interface. The maximum loads were computed as the root-sum-squared of the two
lateral loads for each bolt. Table i also indicates the time step during cooldown

that the maximum load occurred and the temperatures on either side of the interface.

The maximum loads for the ZIS/DIRBE and IIS/FIRAS interfaces are low whereas the

maximum load for the IIS/Dewar interface is substantially higher. This is primarily

due to a large temperature gradient being applied to an interface which has large

stiffness and contains slightly different materials. The dewar is Aluminum 5083 and

the IIS is Aluminum 6061. A plot of the maximum allowable interface loads versus

temperature for the ZZS/Dewar, IIS/DIRBE, and IIS/FIRAS interfaces is shown in

figure 5. With this figure and the loads presented in table I, it is clear that the

loads calculated from the analysis at the rIS/Dewar, IZS/DIRBE, and IIS/FIRAS

interfaces are within the allowable load. Table 1 also presents the maximum

interface loads for the case where the entire structure was held at 2 K equilibrium.

These loads were found to be quite low and they did not present a problem.

Table I. Maximum InteEface Loads

INTERFACE

iIS/Dewar

IIS/DIRBE

IIS/FIRAS

(Ib)

1236

i

300

483

LOW TIME AT MAX.

LOAD

i

6. 083 Hr

28.5 Hr

6. 083 Hr

TEMPER_TURE

(Kelvin)

IIS-24 i. 8

Dewar--225.4

IIS-77.9

DIRBE-90.9

IIS-244.3

FIRAS-255.2

2 KELVIN LOAD

(Ib)
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Figure 5. Allowable Interface Loads
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ZEST DISCUSSION

Several cooldowns of the COl were done, starting with the first in April 1985 and

culminating with the cooldown of the flight COl in the flight dewar in August 1989.

The first cooldown was done using a Thermal Structural Unit (TSU) of the COl in a

LHe Instrument Test Dewar (ITD). The IIS/Dewar interface was instrumented with

temperature sensors for all cooldowns and additionally, for the first cooldown, the

TSU/COA was instrumented with additional temperature sensors and strain gages. The

intent for this first test was to follow the nominal cooldown curve that had been

used in the analysis. However, the initial cooldown rate proceeded more rapidly

than anticipated. After about 16 hours the cooldown was stabilized for a long

period before continuing. Examination of the data at the IIS/Dewar interface showed

a maximum temperature gradient that would result in the predicted interface load

exceeding the allowable to prevent slippage by I0 percent. Locations that were

instrumented with strain gages showed stress levels around 2000 pounds per square

inch (psi) compared to the model predictions of approximately 3000 psi. Upon

removal of the COl from the ITD, a thorough visual examination showed no signs of

structural damage or evidence of slippage at the ZZS/Dewar interface. Based on the

operational experience learned from the first cooldown, enhanced procedures and

methods were adopted and all subsequent cooldowns in the ITD or flight dewar were

performed at rates _hat were less than the nominal rate used for the analysis.

Figure 6 shows the cooldown curves for the April 1985 ZTD cooldown, the analysis

oooldown, and _he August 1989 flight dewar cooldown. The plot on the left shows _he

firs_ I0 houEa and the plot on the right shows the total time. Data obtained from

the temperature sensors during the final August 1989 cooldown showed that the

_emperacure gradient at the IIS/Dewar interface was an order of magnitude below the

allowable gra_Lent which would cause slippage at the interface.
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CONCLUS ION

The cooldown analysis predicted and identified potential problem conditions and

areas related to the structural verification program for the COA. Based on the

results of the cooldown analysis, steps were taken to better control the cooldown

process which in turn minimized induced temperature gradients and interface loac_.

The very slow cooldown of the flight COl in the flight dewar provided assurance that

no unpredicted loads would be present during launch. Under this condition, strength

verification by analysis was considered to be an acceptable approach.
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BASD
COA
COBE
DIRBE
DOF
FIRAS
GMM
GSFC
IIS
ITD
K

LHe

LN2

NASA

NASTRAN

NTA

PSI

SSPTA

SINDA

TMM

TSU

UAI

LIST OF ACRONTMS

Ball Aerospace SystemsDivision

Cryogenic Optical Assembly

Cosmic Background Explorer

Diffuse Infrared Background Experiment

Degrees of Freedom

Far Infrared Absolute Spectrophotometer
Geometric Math Model

Goddard Space Flight Center

Instrument Interface Structure

Instrument Test Dewar

Kelvin

Liquid Helium

Liquid Nitrogen

National Aeronautics and Space Administration

NASA Structural Analysis

NASTRAN Thermal Analyzer

Pounds Per Square Inch

Simplified Space Payload Thermal Analyzer

Systems Improved Numerical Differencing Analyzer
Thermal Math Model

Thermal Structural Unit

Universal Analytics Incorporated
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N94. 71468

DESIGN OPTIMIZATION AND PROBABILISTIC ANALYSIS OF A HYDRODYNAIVIIC

:_ JOURNAL BEARING
. ALEXANDER G. LINIECK[

MECHANICAL ENGINEERING DEPARTMENT

SAN JOSE STATE UNIVERSITY

Abstract

A nonlinear constrained optimization of a hydrodynamic bearing was performed yielding three main
variables: radial clearance, bearing length to diameter ratio and lubricating oil viscosity. As an objective
function a combined model of temperature rise and off supply has been adopted. The optimized model of
the bearing has been simulated for population of 1000 cases using Monte Carlo statistical method. It
appeared that the so called "optimal solution" generated more than 50% of failed bearings, because their
minimum oil film thickness violated stipulated minimum constraint value. As a remedy change of oil
viscosity is suggested after several sensitivities of variables have been investigated.
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There were many papers devoted to journal bearing optimization. Authors like: Seireg, Ezzat, Barrel,"
Marks and others [ 1, 3, 6] developed various numerical techniques in order to minimize some objective
function involving heat generation, bearing size, temperature rise, etc.

Bearing design problem is the representative of a large class of engineering design problems and includes
many behavior and design variables related through highly nonlinear and complex relationships. The
performance of modem high speed rotating machinery depends to a large extent on properly designed
journal bearings. Each one of them presents a complex thermo-mechanical system in which there exist
many competing objectives. Using computer aided automated search methods we encounter many
engineering constraints which should not be violated. One of the very well known techniques is the
numerical optimization based on equations developed by curve fitting the numerical solutions of various
parameters from Raimondi and Boyd's numerical solution of the famous Reynold's equation of
hydrodynamic bearing.This numericalsolutionbased on non-dimensionalvariablesestablisheda

universalmodel servingthesolutionofthousandsof differentconfigurationsofjournalbearings.The
automated searchforoptimaldesignusedmainly deterministicmodels and appliednonlinearprogramming

techniqueswith variouscomplex nonlinearconstraints.However, the stochasticbehaviorof theoptimized

bearingmodel has bccn unknown.

This paper represents an attempt to confront the numerically optimized journal bearing model with its
stochastic behavior. It shows the futility of the so called "optimal design" if the probabilistic variability of
the main parameters is ignored. As an example, a journal bearing has been selected with a fixed constant
load W = 3000 lbs., nominal diameter D = 4 in. and rotational speed at N = 80 rev/sec.
Three design independent variables were defined:

o

2.

3.

X l = L/D - length to diameter ratio

X 2 = C r - radial clearance

X 3 = l.t - absolute viscosity of lubricating oil

There are several objectives which can be pursued in bearing design:

.

2.
3.
4.

Minimum oil temperature rise in the bearing,
Minimum oil flow rate required for adequate lubrication,
Minimum power loss in the bearing,
Maximum of the minimum oil film thickness.

In this case the criterion for optimum design has been selected as a combination of two competing
objectives 1 and 2.

The objective function model F = AT + 8Q includes minimum oil temperature rise AT in "F due to viscous

friction and minimum quantity of oil Q in3/sec supplied to bearing due to hydrodynamic leakage with a

weighting factor of 8.

The objective function presents a tradeoff between conflicting tendencies of oil flow and temperature
growth. The following engineering constraints have been selected:

1. ho > .00035 in where: h o is the minimum oil film thickness,

2. T <_200" F where: T is the highest temperature of the lubricating oil in the bearing,

3. Cr_ .002 in. where:

Cr = Ds-Ds

2

D B - bearing diameter

D s - shaft diameter
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, .25< L/D < .50 where:

L -bearinglength

D -bearingnominal diameter

.

6.

7.

8.

form:

Pmax < 4000 psiwhere: Pmax isthehighestoilpressuredeveloped inthelubricatingoilfilm,

IX> .5E-6reyns where: IXisthe absoluteviscosityof thelubricatingoilfilm

ho < .I5 C rforadequateloadingofthebearing

.15> S > .01where: S isthe Sommcrfeld number, a nondimcnsional referencevariableinthe

:r/kV
where thenew parameterP istheloadper unitofprojectedbearingarea:

p = W (psi)
DL

There are6 otherconstraintsof minor importance.

Seircgand Ezzat [I]presenteda seriesof curvefitsforthefull360" bearingas :

.0922

.913 .655(L/D)

ho - 1.585Cr (L/D) (S) (inch)

for minimum oilfilm thickness,

.374 .695/(L/D)

AT = .51(L,/D) (P)(S)

.139

('F)

for temperature rise in the oil film,

.62 .2A

Pmax = P/.76 (IJD) (S) (psi)

for maximum pressure in the oil film,

.47

.048 .1(L/D)

Q = DNCrL/.256 (L/D) (S) in3/sec

for the quantity of oil fed to bearing.

These equations arc valid for the range of Sommerfeld Nr in the range:
0 S S < .15

The objective function and all constraints arc extremely nonlinear. The optimization process was
performed using numerical code based on the Hooke-Jeeves pattern search method. This method which

includes step size acceleration-deceleration and flexible penalty functions has been developed by C. W.
Radcliffe at U. C. Berkeley.

The initial guesses of independent variables were:
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with objective function evaluated as:

Here temperature rise was:

X 1 = L/D = .300

X 2 = Cr = .002 in.

X 3 = _ = 1.E-6 reyns

and oil supply:

F=AT+8Q= 119.13

AT = 90.55"F

Q = 3.64 in3/sec

After 629 function evaluations the converged solution reduced the initial value of F and established
independent variables as:

F = 92.66
L/D = .3694

C r = .002836 in.

= .7997E-6 reyns

The oil temperature rise has been reduced to:

AT= 40_38" F

but the oil flow has been increased to:

Q = 6.535 in3/sec

None of the 14 constraints has been violated.

The most sensitive parameter in bearing design is its minimum oil film thickness h o. If it is too small a

high risk of bearing failure exists. For optimal design the value of h o came out as:

ho = .00035 in. with eccentricity ratio:

I_ - .8766

The optimization process using deterministic single valued approach has been formally concluded. Now
the second important procedure has been applied, namely: the optimized bearing was tested for its
stochastic behavior assuming a large series of bearings in the production plan.

For the population of 1000 bearings a computer aided Monte Carlo simulation has been performed in order
to obtain the variability distribution within the set of accepted tolerances.

A Gaussian (Normal) distribution of the variables has been assumed for the optimal design case. The

following tolerances have been established:
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1.219- _t,'D + 5% = I.tt_ + 3GI.¢D

C r - ],l.Cr + 10% - l.lCr + 3GCr

I"t = gmean :t: 10% --" }.trnean +_ 3C_t

Each tolerance field encompassed 6 standard deviations which translated into numbers gave the following
normally distributed set of independent variables at optimal solution:

X 1 = L/D = N(_tt,v; OLD) = N(.3694; .006156)

X 2 = C r = N(I, tcr; Oct ) = N(.00283; 9.453E-5)

X 3 = I.t = N(I.trnean; Gi.t) = N(.799655E-6; .26655E-7)

At the same time minimum oil film thickness h o became a stochastic function of above mentioned

variables: X 1, X 2, X 3.
.0922

.913 .655X t

h o = 1.585X2X 1 (S) where:

)
For each variable two independent random numbers Ri(D,

O< RiO) < 1

O < Ria) < 1

Rif2) were generated 10190 rimes in the ranges:

and then used in each variable X i normally distributed. From Gaussian probability density function for

variable Xi:

the inverse transformation for X i has been used as:

2

(xi- _1

2_ a

X i --" Ili + q -21u Ri(1)Jcos(2_ Ri(2)) Oi where:

I.ti - mean value for i-th variable.

A histogram ofh o was generated from the population of 1000 cases of produced bearings ( figure I).
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From this histogram the range for h o is:

3.0939E-4 _<h o < 3.8426E-4 inch

from which it is obvious that more than 50% of the produced bearings will have to be rejected because the
most important constraint:

ho > .00035 has been violated that many times.

That would produce an economic disaster for the bearing manufacturer. The improvement of the h o

distribution has been achieved by modification of one of three independent variables: X I, X 2, X 3 for

which the sensitivity of ho was the highest.

At the optimum point for objective function:

Frnin = AT + 8Q

sensitivities were numerically determined as:

3h
o_

B(I_/D)
= 1.4710E-04
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Oh
0

O(Cr)

Oho

- -2.2914E-02

- 327.8

It became obvious that the selected oil viscosity affects mostly the of ho population of 1000 bearings.

Requir_ correction of the oil viscosity can be found from the simple relationship obtained from the f'trst
term of Taylor expansion:

Aho= Oho AIL so that

Here the value of correction Ah o is found from the difference:

Ah o = 3.5000E-4 - ho(low)

selecting new low value for h o as:

ho(low) - 3.2000E-4 the oil film thickness correction is:

Ah o - 3.5000E-4-3.2000E-4=.3000E-4 inch

and correction in viscosity of oil:

AI.t = .3000E-4 = 9.1463E-8 reyns
327.8

The new mean oil viscosity became:

P't_w = gold + A/.t = 7.9970E-7 + .9146E-7 - 8.9116E-7 reyns

with the standard deviation:

og = .29705E-7 reyns
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Once again performed Monte Carlo sh-nulation revealed shifting of the range for dis_bution of h o

significantly to the fight (figure 2) so that:

with mean value:

3.36690E-4 _<ho < 4.09534E-4 inches

ho = 3.73740E-4 inches

The new modified temperature rise is:

AT = 39.83 "F

and required oil supply

Q = 6.494 in3/sec.

F
r

e

q
U

e

n
c:

Y

f(ho)
H I S TOGRAM

TOTAL POPULATION ACCEPTABLE
D

h oClass Interval

Bounds on X figure 2
Lowex- = ;B. :B_S94E-IB4
Upper -- 4. O_5_SE-04

Press

...J

Results of numerical optimization and stochastic simulation are displayed on Table #1:
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TABLE #1

Initial mean Optimized mean Stochastic Improved
Par values vifl¢¢s mean values

I./D .3000 .3694 .3694

C r .00200 in .00284 in .00284 in

I.t 1.E-06 reyns .7997E-06 reyns .8911E-06 reyns

AT 90.55"F 40.38"F 39.83"F

Q 3.57 in3/sec. 6.53 in3/sec. 6.50 in3/sec

h o 3.20E-04 in 3.50E-04 in 3.74E-04 in

S 1.280E-01 7.058E-02 6.268E-02

e .84 .88 .87

£..9.nzlazlaa 

1. The optimization of a system based on a single case of deterministic mean values of its parameters is
meaningless for a population of these systems.
2. Broad Monte Carlo stochastic simulation reveals the necessity of changing of some result parameters
of optimal design for improved performance of the population.
3. Using modern computing power in two areas: optimal design and stochastic simulation, delineates a
powerful new research area in design. The whole process can be fully automated.
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Abstract

The method of recursive quadratic programming has been used to generate approximate minimum-time tip

trajectories for two-rink semi-rigid and flexible manipulator movements in the horisontal plane. The manipulator is

modeled with an efficient finite-element scheme for an n-link, m-joint system with bending only in the horisontal-

plane. Constraints on the trajectory include boundary conditions on position and energy for a rest-to-rest maneuver,

straight-line tracking between boundary positions, and motor torque limits. Trajectory comparisons utilise a change
in the link stiffness to compare a semi-rigid configuration to a flexible one. The level of bending flexibility necessary
to excite significant modal behavior is demonstrated. Applied torques for minimum-time maneuvers are shown to be

very similiar between configurations and retain much of the qualitative character of rigid-body slewing motion.

Introduction

A variety of approaches has been advanced for rigid manipulator control, taking advantage of the fact that all

or some of the controls take the form of switching functions between actuator bounds [1][2][3][4]. Pure switching

functions do not lend themselves to maintaining tip accuracy for non-rigid structures. One would hope that the
applied controls do take advantage of the bounds to maximise performance, but a clear analytical directive for this

does not exist at the present time.
In filling this void, parameter optimisation techniques can provide approximate optimal performance solutions

for systems driven by complex, highly nonlinear dynamic models with arbitrary equality or inequality constraints. Of

these solution techniques, the Recursive Quadratic Programming algorithm [5], embodied in the code VF02AD, has

proven to be a robust tool for a variety of acrospace applications [6][7][8], and will be used in this study. The primary

drawback to this or other numerical optimization methods is the dependancy on accurate gradient approximations
of the performance index and constraints with respect to the parameters.

The ensuing discussion initially describes the structural dynamics model of the manipulator, followed by the
optimal control problem and parameterization of the controls. It concludes with the results of a computational

experiment.

The manipulator structure modeled in this study has been fabricated as a two-link, cantilever arrangement

constrained to slew in the horizontal plane. Tall, thin links are used to minimise vertical plane droop. The hub or
joint-I actuator slews both links, an interlink motor, and tip payload. The interlink or joint-2 actuator located at

the end of Iink-I slews the second link and the tip payload. The joint-l/joint-2 actuator torque ratio used in this

study is 4/1. The complete manipulator is about 0.5 meters (m) tall and 1.2m long (Fig.l).

The Structured Model

There is extensive literature discussing the difficulties of simulating the vibrations of rotating structures[9] [10]

{11]. The problem arises from kinematics that are of second order importance in nonrotating problems, but become
of first order importance in the presence of rotational accelerations. Additonally, there are constraints inherent to

the flexible link problem which must be satisfied: motions occur entirely in a horisontal plane; one end of the chain

of links is attached to a stationary hub; and each flexible link is inextensible.

The full kinematics are retained by expressing the configuration as functions of convected coordinates (i.e.,

coordinates attached to the arm) and measuring distance from the hub. This is a traditional approach in nonlinear
elasticitity [12]. Further, the kinematic variables are selected so that all geometric constraints (fixed hub, planar

motion, and non-extension) are automatically satisfied.
Since motions are assumed to occur entirely in a plane, it is also assumed that the elastic lines of the links as well

as the mass centers of the cross sections all lie in the same plane. Each cross section is identified by its arc-length

tThis work performed at Sandla National L-boratories. was, gupported by the U.S. Department of Energy under contract number
DE-AC04-76DP00789.
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distance from the hub, so that the orientation of the center of the cross section a at time t is

0 = t))i'+ 0)3'

The vector/_(a, t) is the unit tangent along the arm at s, and the basis vectors i"and ff are fixed in space.
The location of the center of cross section s (relative to a space fixed frame) at time t is obtained by integration

of the above unit tangent vector:

_(", 0 -" --./o'_(_' t)d_

Similarly, the velocity at the cross section s at time t is obtained by integration of the time derivative of _(s, t):

i'_(,, t) = 0(i, t)5(i, *)di where q(,, t) = -,in(O(,, t))i+ co, tO(,, t))]

The above description of configuration - entirely in terms of e(s, t) - causes all of the geometrical constraints to

be satisfied automatically. Additionally, the above description expresses the configuration in terms of one unknown

field (O), instead of the more conventional two or three fields (z, y, & 0).
The governing dynamics equations are derived using these kinematics and Hamilton's principle. A finite element

discretization is used to cast the resulting integro-differentisl equations for 0(s, t) and its first and second derivatives

into n system of fully-coupled, nonlinear algebraic equations. Since all spatial integrals are with respect to the

convected coordinate, s, those integrals are configuration-independent and need be done only once. A new nonlinear
system must be solved at each time step, but the quadrature process can be done in advance of the dynamics
simulation.

The governing equations of motion of the are obtained from the variation of Hamilton's integrand:

6KE(t) - 6aUtO + 6WE(t) = 0 (1)

for all tl < t < t2, where KE is kinetic energy, SE is strain energy, WE is external work.

The kinetic energy is that of the flexible links plus that of all concentrated masses and concentrated moments of
inertia:

tttde#_# d_ePtidl#

1 /l; 1 1
XE(t)= 2Jo P(') _(°'0"_(''0 _'+_ _ M_(o_,O-_(_.,O+_ _ Z_9(o.O.O(.,,t),

k=l t=t

where p(s) is the ma_ per unit length measured along the length of the arm; Mj, is the magnitude of the kth point
mass; sh is the convected coordinate of the kth point mass; It is the lth point moment of inertia; and st is the
convected coordinate of the lth point moment of inertia.

The strain energy is that of the flexible links:

f0 t) "I ,,(z,t) ox3(s,t)ds
SE(t) = -_ a, " O,

where K(s. t) is the curvature at cross section s at time L

The virtual work due to externally imposed torques is:

I'6wE(t)= e(,,t). 0 × (2)

where ¥(e, t) is the imposed torque.

Discretization along the rod of the above energy terms is obtained by discretizing the tangent vector/_ as:

n,ode j

=
n=|

where the shape functions, p,, are nonzero over intervals that are small relative to the anticipated radii of curvature.
The shape functions used were the traditional tent-shaped basis functions, and assure compliance with the condition

of nonextension. Since these functions are bases for/_ the resulting elements take on piece-wise circular shape, with

continuous slope between the elements. Joints are defined by co-locating two nodes so that the tangent vector/_ may
be discontinuous there.
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The resulting energies are:

node# nod_a nodcJ nodea .
i 1

KE(L) = _ E E 0_(_)0.,(f)_.,(f)"_'n(t)Mra,,_ , SE($) = -_ E E _m(t)'/3,,($)K.,,. (3)
m.=l n.-----I m=l _t----.l

and

where

node.

6WE(O = __, _,,,(_).g60,,, (g = _× j), (4)
re.=1

L ¢n,_#jf j
M,,,,,,= p(s)q,,,(°)q,,(o)do+

k=l

q.(,)= p.(_)d_,

{ne_ti¢*#

Mhq,.(sh)q,,(sh)+ E Itp._(S,)p.(st),
I=I

I*K,,,,. = ,_(s)p-(s)p'(s)do.

nodes is the number of nodes, 6x is the Kronecker delta function, i is a dummy variable, p_ and p_ are derivatives

with respect to s ofp., and p,,, and f,,, is the net torque applied at node m. Then the time-independent matrices,

M,_,. and K,,_.,, are the topological mass and stiffness matrices, respectively.
After appropriate integration by parts, the integrand of equation I becomes:

E 68_(-'_,_(t). _.(L)Mm,. - _m(_)" _,_ (f)K,.,,_ +/_. ¢.(t)6_(m, r,) ) = 0 (5)

-=.

for all nodes m. In the above equation, 7". is the external torq.e applied at node r_. After _.(t) is expanded and
Equation 5 is invoked for all 60m, a complete set of Ttode, second order equations in the _odes unknowns, 0,,, results
in:

,_ od,.

_._(o= _ [S_C0"_(0_.COM_,.-_C0"ACOC0_(0)'M_,.+S_(0"_.Ct)K_,_] (6)
n----I

The above problem formulation lends itself to rapid numerical calculation. It involves only one unknown field,

automatically satisfies all constraints, and requires only one evaluation of element mass and stiffness matrices Ref.

[13].

Optima] Trajectory Shaping

The prlacipal goal in this study is to combine the structural response with optimization techniques to generate

actuator torque histories for accomplishing a task with minimal degradation in performance. A secondary objective
is to minimize the work of a feedback controller, which will be needed to compensate for modeling errors.

A minimum-time tip trajectory was chosen for investigation. Constraints on such a trajectory include:

completing a rest-to-rest maneuver, tracking a specified path (z(L),y(t)),p, slewing between specified endpoints

[(Z(to), y(to)), (z(t/), y(gy))]lip, and not exceeding actuator torque limits ¢1,2.,...

The configuration initially starts at rest. Driving a flexible structure to rest at the final time, t!, necessitates

end constraints on both kinetic and potential or strain energies (KE(t!), SE(tl) ). The chosen path is a straight llne
and actuator torque limits are constants. Torque limits can be integrated naturally into the controls as

r,,,(1)= Iv,,,...Isina,,,(L)

where e(t) is a free variable. This form assumes that the two-sided limits on n,2(t) are of the same magnitude. Final
accelerations are also to be zeroed. The problem can be restated as

minintize: J = t!

- finite element model

subject to: - input actuator torques, re,2(/)
- known initial conditions

constrainedby:
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c (tl) = o

j=1,7

) - =.,..,I,.,(tl )
y,,(t:) -

J'o' - dt
KE(tl)

 (tl)

Note that the equality tracking constraint, C3 is formulated as an integral. In addition, equality constraints on energy
are point constraints. Both of these items will have profound effects on the example trajectories to be generated.

Parameterisation of the Controls

To approximate optimum system performance from the aforementioned structural model, a suitable parameter-

isation of the controls, _'1,=(t) via ct, is necessary. For this study, the simplest case was chosen. Tabular values of c_,

at equal-spaced fixed times, el, for both joints were chosen as parameters, or

o20,), os ,s I.

which results in 2n control parameters.
However, since the final time is changing due to minimization, the loss of control history definition would result

if the times at which the control parameters are defined remain fixed in an absolute sense. To correct this, c,t,2 were

specified at equally-spaced, nondimensional node points, _i = tjtl, where

at(_i), o:t(_i), i---- 1,n 0__i __ 1,

This allows the torque histories to "stretch" naturally over the trajectory length. Using this modification, it is

necessary to add t! as a parameter also, resulting in 2n + I control parameters to be found. Linear interpolation was

used to compute ct(() between the node values.
Numerical derivatives of the performance index, el, and the constraints, Cj(t!), provided to VF02AD are central

finite-difference approximations. In computing these approximations, complete trajectories (or integrations of Eq.6)

are computed using the current nominal t! to produce perturbed Cj(t]) values. Since derivatives are computed over
the current Ji=ed ¢!, the derivatives, 8t!/8(c_i,=)_ = 0, and only the derivatives, OCj(t!)/a(c_1,3)_ _ 0. Obviously,

both t/, Cj(t/) gradients with respect to t!, evaluated over the current nominal torque histories, are nonzero.

Results

The following finite-element structural model for the manipulator was used to produce the sample trajectories.

ITEM

joint-I bracket
link-1

Ist joint-2 bracket +

joint-2

2nd joint-2 bracket
link 2

Totals:

LENGTH MASS EI

(m) (kg) (newton-m')
.0635 .545 10 s

.6040 .640 10=,10 z
.I070 5.415 10 s

.1040 .830 10s

.4890 .313 102,103
1.2675 7.743

Brackets were modeled with I element and considered rigid (El -- 10s), and links were modeled with 3 elements
for a total of 9 elan,ants. The two values of stiffness, El, for links 1,2 represent the trajectory comparison ['or this

study. Point moments of inertia were used to define mass distribution for the brackets. No payload was used in this
comparison. The joi,ts were assumed to have no compliance or damping.

The two trajectories, computed on a CRAY-XMP, were integrated for 100 time steps, where At - .01t1. Tra-

jectory evaluations for gradient computations executed in 0.75 secs. The a(_) histories for each joint were composed
of 21 tabular values, where A_ = .05. Torque bounds were chosen as 4-16, 4-4 newton-m (n-m) for joints 1 and 2.

The path to be tracked for this study was the line connecting (=, y) pairs, (0.0,1.13) and (1.13,0.0).

Fig.2 shows the rl profiles. These retain much of the bo,nded appearance of switching functions for purely rigid

configurations, llowever, they begin and end near sero instead of the bounds (:t:16 n-m). These torque profiles exhibit
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very similiar behavior, except at the intermediate switch point. Other than the slight ripples for the EIunh, = 100
case, this region is the major difference between the configurations. Note the abruptness of the controls near the

end in an attempt to quiet the structure. Also note the very slight change in t/ for the "softer" structure. The
torques showed minimal activity for most of the trajectory, except close to the end in order to accomplish the rest

state. Again , very little "torquing" difference was noted for the order of magnitude change in link stiffness between
configurations.

The straight-line tracking error in millimeters (into) is shown in Fig.& Both torque histories appear to limit

the error to less than +0.5 mm except near the end where the error momentarily "escapes" to about 2 mm. One

drawback to the integral formulation is that it can relax tracking performance in isolated parts of the trajectory, yet

yield a reasonably low residual (_ 0) for Ca(t!). It may be necessary to add interior point constraints to decrease
this error.

Strain energy is shown in Fig.4 and graphically depicts the difference between the semi-rigid and flexible links.

The semi-rigid structure produces relatively little strain (however does contain a high frequency ripple), while the

flexible-link configuration contains a 17 Hz mode with a sizable increase in energy magnitude. Note the abrupt

changes in both cases, mirroring the sharp n changes in Fig.2. Also, note the enforcement of the SE(t!) - 0 point
constraint at the end.

Conclusions

A robust, parameter optimisation tool has been successfully employed to generate actuator torque histories for

approximate, minimum-time slewing maneuvers containing continuous and point constraints for a 2-1ink flexible

manipulator. The parameters, or actuator torques, for each link were tabular values at fixed node points during

the maneuver. Perturbations were made to each parameter to approximate final time and constraint gradients. The
efficient formulation of the finite-element model made the numerical optimization procedure a realistic endeavor.

The accuracy of the straight-line tip tracking was excellent. For the trajectory used in this study, joint-1
applied most of the input in a manner resembling rigid-link torquing. Torque histories were very similiar between

configurations even though link stiffness varied by an order of magnitude, and the i/performance index was virtually
the same. Energy and acceleration constraints were effective in bringing the structure nearly to rest at at. It was

also demonstrated that final energy constraints do not preclude vibrations during the slew. The intended production
use of the manipulator will dictate whether or not this is a hindrance.
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Figure 1: Sandia two-link manipulator
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Improved Approximations of Displacements for Structural Optimization

Uri Kirsch .S_":)_- _ _'......Department of Civil Engineering, Technion, Haifa 32000, Israel -.D/

I.INTRODUCTION _
i

In most structural optimization problems the implicit behaviour constraints arc evaluated for successive
modifications in the design. For each trial design the analysis equations must be solved and the multiple
repeated analyses usually involve extensive computational effort. This difficulty motivated several studies
on explicit approximations of the structural behaviour in terms of the design variables[I-8]. The latter
approach can considerably reduce the amount of computations, but the quality of the approximations might
not be sufficient. Many of the approximate behaviour models proposed in the past arc valid only for
relatively small changes in the design variables. The aacuracy of the results is often insufficient for large
changes in the design.

The object of this study is to present efficient and high quality approximations of the smactural behaviour.

It will be shown that the quality of the approximations can greatly be improved by combining scaling of
the initial design, using intervening variables and scaling of a set of fictitious loads. Integrating these

means, a powerful solutionprocedure can be introduced.In addition,the errorsin satisfyingthe analysis

equationscan readilybe evaluated. A numerical example illustramsthe solutionmethodology and the

effectivenessof theproposed approach.

2.PROBLEM FORMULATION

The problcm under considerationcan be statedasfollows.Given an initialdesign X *, thecorresponding

stiffnessmatrix K* and thedisplacementsr*,comput#_dby theequilibriumequations
K* r* = R (I)

where R isthe loadvector,whose elements are assumed tobc consmnL Assume a change AX inthe

designvariablesso thatthemodified designis

X = X*+ AX (2)
and thecorrespondingstiffnessmatrixis

K - K*+AK (3)

where AK isthechange inthe stiffnessmatrixdue tothe change AX. The objectisto fredefficientand

high qualityapproximations of the modified displacements r due to various changes in the design

variablesX, withoutsolvingthemodified equations
(K* +AK) r = R (4)

The scaline oneration will be used in thisstudy to improve the quality of the approximate

displacements]Two typesof scalingwillbe considered:

a)Scalingof theinitialstiffnessmatrixK* by
K = _tK* (5)

where _t is a positive scalar multiplier. From Eqs. (1) through (5) it is clear that the precise
displacementsafterscaling can bc calculateddirectlyby

r = _t"1 r*

b) Scaling of a ficticious load vector. Denoting any approximation of r by

fictitiousloadvector R a can readilybc calculatedby Eq. (4)

R a= (K*+AK) ra

Itcan be noted that ra arcprecisedisplacementsforthestiffnessmatxix K=K*+AK

loadvectorR a .Scalingof theloads R a by

R s = f_ R a

(6)
ra , a corresponding

(7)

and the fictitious

(8)

will give the precise displacements rs due to R s for the given stiffness mawix K, where

rs: _r a (9)

Taylor series exvansion is one of the most commonly used approximations in structural optimization.
The first order approximations of r about X* are given by

ra = r*+ rx* (X-X*) (I0)

where both r* and rx* arccomputed at X*. The matrixof firstderivativesrx* can bc computed by

severalmethods. A major problem in using Eq. (10)is the accuracy of the results.The discrepancyin

satisfyingtheequilibriumequations(4)due totheapproximatedisplacements isgiven by (F.q.('7))
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AR = R a- R = (K*+AK) r a- R (11)

Evidently, AR = 0 for the precise displacements. Thus, AR can be used to evaluate the quality of the
approximations.This criterion,combined with thetwo typesof scalingdiscussedearlierwillbe used now
to introduceimproved approximations.

3.1MPROVED APPROXIMATIONS BY SCALING

Scaling of the initialstiffnessmatrix may improve the qualityof the approximations,ifthe known

modified displacements(Eq. (6))providebetterinitialdatathentheoriginaldisplacetmnts.The approach
proposed here is suitablefor various types of design variables(such as geometricalvariables).For

iUustradvepurposes itisassumed thatthedisplacementarehomogeneous functionsof X.
Homogeneous functions ofdegree n inthedesignvariablesaredefinedby

r(p.X*) = p.n r(X*) (12)

where l.tisapositivescalar.Euler'stheorem on homogeneous functionsstatesthat

r*x X * = n r* (13)

The dervadves of homogeneous functionsofdegreen arc givenby

rx(gx ,)= gn- Irx(X. ) (14)

These propertiesof homogeneous functions can be used to obtain simplifiedapproximations [2].

SubstitutingEq. (13)intoEq. (10)yields

ra = (1-n)r* + rx* X (15)

Assume apoint X alongthescalingline

X = BX* (16)

Expanding Eq. (15) about gX*, we have by substituting Eqs. (12) and (14),

r a = (l-n) p.n r* + gn-1 rx, X (17)

It can be noted that precise solutions are obtained by Eq. (17) along the scaling line (16).The multiplier g
can be selected such that the approximations are improved. Further improvements could be achieved by
assuming intervening variables.
Intervening variables. Assume intervening variables of the form

Yi-- xim (18)

The displacements r in this case are homogeneous functions of degree N in Y, where N=n/m.
Therefore, the first order Taylor series expansion (F.q. (15)) is

r a = (1- n/m) r*+ ry* Y (19)

This equation can be expressed in terms of X. Substituting F_.q.(18) and

ry* = m "1 X *l-m rx* (20)

into Eq. (19) yields

r a = (1- n/m) r* + m "1 rx* X *l'm X m (21)

Expanding the series about laX*, this expression becomes (see Eqs. (12) and (14))

ra= gn(1- n/m)r* + p n-1 m-lrx, x.l-m X m (22)

Snecial cases. For any given n, the values of I.t and m can be chosen to improve the
approximations. The following special cases of Eq. (22) might be considered:
-No sealing or intervening variables lz=m=l (Eq. (15).
-No intervening variables, only scaling m=l (Eq. (17)).
-No sealing, only intervening variables #=1 (Eq. (21).
-The usual cross.sectional variables, only scaling m=],n=-I

ra= 2 I.t-lr • + I.t"2 rx* X (23)

-The inverse variables with scaling ra=n--1

ra= - I_"2 rx* X .2 X'I= g'2ry* Y (24)

-The inverse variables, no scaling m=n=-l, bt=l

ra=ry* Y (25)

Since ry(I.tY*)= ry* (Eq. (14)), the approximations (25) are precise along the scaling line Y-It Y*.

This illustrates the advantage of using the inverse variables for approximations near this line in truss
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structures with cross-sectional areas as variables.

Design urocedure. The multiplier _ can initially be selected based on geometrical considerations.
Assuming for example the criterion

g= (YXi2 / _,X,i2 )0.5 (26)

then the distance between X and the origin of the design space and the distance between _X * and that

origin will be identical. A major drawback of this approach is that the nature of the structural behaviour is
not taken into consideration. Another criterion, proposed here, is to minimize the errors in the approximate
displacements. Evaluating r a by Eq. (22), the resulting R a can readily be calculated by (7). The latter

fictitious loads can then be scaled by Eq. (8) such that the final displacements f_ra (Eq. (9)) are
improved. The discrepancy in satisfying the equilibrium conditions is given by (F.q. (11))

AR(I'_) - D.Ra-R (27)

Defining the common measure of smallness of AR(l'2) by the quadratic form

Q(fl) = (D.Ra-R)T (DR a- R) (28)

value is selected such that Q(_) is minimized. Differentiation of Q with respect tothe optimal
and setting the result equal to zero yields

_2- (R T R)/(R T R a) (29)

Based on these considerations, the following solution procedure is proposed:
a) Initial values for _t (Eq. (26)) and m are assumed.
b) The approximate displacements ra are evaluated (Eq. (22)).

c) The values of R a (Eq. (7)) f_ (F_.q.(29)) and Q (Eq. (28)) are calculated.

d) The value of Q is checked for optimality; g and m are then modified and steps b,c are repeated

as necessary.
e) The final approximate displacements are evaluated by Eq. (9).

The solution methodology and the effectiveness of the proposed procedure are illustrated by the numerical
example.

4.NUMERICAL EXAMPLE

Consider the truss shown in Fig. 1 with four cross-sectional area design variables Xi (i--1...4). Assume

the initial design X=I.0 with the given displacements r'T={1.818,1.604,1.107} (the modulus of

elasticity is 30,000).
The effectiveness of the inverse variables formulation (Eq. (2.5)) is demonstrated in Table 1 for various

changes in the design near the initial scaling line. It can be noted that excellent results have been obtained
for changes in the variables up to +900% (cases a-d) and -91% (cases e-h).

To illustrate the effect of m and g on the results, assume now the modified design xT={5.0, 10.0,

10.0, 10.0}, where the change in the design variables is up to 900%. That is, the magnitude of AX is
relatively large. The precise solution and results obtained by Taylor series (Eq. (15)), Initial scaled design
(Eqs. (23) and (26)), and Inverse variables formulation (Eq. (2.5)) are summaeized in Table 2. The first
order Taylor series expansion provides meaningless results. Better, yet insufficient results are obtained by
the initial scaled design and the inverse variables formulation.

The effectiveness of the proposed solution procedure is illustrated for two cases:
a) Optimization of _ with no intervening variables ( Eq. (23), see Table 3).
b) Optimization of m with no scaling of the initial design ( Eq. (21), see Table 4).

Precise results have been obtained in both cases for the optimal g and m values. However, the results
are sensitive to changes in these parameters near the optimum.

5. CONCLUSIONS

Approximations of the structural behaviour in terms of the design variables are essential in optimization
of large structures, where the time consuming analysis must be repeated many times. A major problem is
that the quality of the commonly used approximations might not be sufficient, particularly for large
changes in the design.

A general solution procedure to obtain effective approximations is proposed in this study. Scaling of the
initial stiffness matrix, intervening variables and scaling of ficticious loads are combined to achieve
efficient and high quality approximations. Using the proposed approach, the errors in satisfying the
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equilibrium equations due to the approximate displacements can readily be evaluated without performing
an exact analysis. A simple example illustrates the solution methodology and the effectiveness of the
presented procedure. It is shown that very good results have been obtained for large changes in the design
variables. The solution procedure is suitable for various types of design variables. For illustrative
purposes, homogeneous displacement functions have been assumed. The following observations have
been made:

-The type of intervening variables can be selected for homogeneous functions. Two disjoint (positive
and negative) feasible regions might be obtained for m (m_0). The approximations might be sensitive to
changes in m; that is, the optimal m can significantly improve the results.

-Scaling of the initial stiffness matrix is most effective in improving the quality of the approximations.
Very good results have been obtained with a relatively small computational effort. The results might be
sensitive to changes in the value of the scaling multiplier and it is therefore advantageous to optimize g.

-The results can further be improved by scaling of the fictitious loads. It has been shown that significant
improvements have been achieved even in cases where sealing of the initial stiffness matrix provided poor
results. This type of scaling can be applied such that the errors in satisfying certain equilibrium equations
will be reduced.

In summary, the proposed solution procedure is a powerful tool to achieve efficient and high quality
approximations, it also provides insight and better understanding of structural behaviour models.
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Fieure 1: Seven-bar truss

100 100 100

Table l: Results, seven-bar truss, Ea. (25_

Case X T 30 ra

a 9.09 10.0 10.0 10.0 5.58 4.99 3.63
b 10.0 9.09 10.0 10.0 5.48 4.78 3.32

c 10.0 10.0 9.09 10.0 5.51 4.64 3.31
d 10.0 10.0 10.0 9.09 5.79 5.06 3.37
e 0.09 10.0 10.0 10.0 558 499 363
f 10.0 0.09 10.0 10.0 548 478 332

g 10.0 10.0 0.09 10.0 551 464 331
h 10.0 10.0 10.0 0.09 579 506 337

RT
100.00 0.00 100.20
100.03 0.00 100.00

100.00 0.00 99.96
100.26 0.00 100.00
100.00 0.00 100.20
100.03 0.00 100.00
100.00 0.00 99.96
100.26 0.00 100.00

Table 2: Results. seven-bar truss X T-- {5, 10, 10, 10}

Method raT R T

Precise 0.221 0.217 0.206 100.00 0.00

Eq. (15) -12.5 -9.9 -3.8
Eq. (23) 0.224 0.221 0.212 100.00 0.00
Eq. (25) 0.206 0.196 0.172 98.80 0.00

Table 3: Seven-bar truss, effect of tt and [2, Eo. (231

7.5 88.880.009_.90_.I00 97.800.00I02.20
7.7 91._00.009_.I01.098i00.000.00_00.00
8.0 93.74 0.00 88.63 1.097 102.80 0.00 97.20

100.00

104.52
80.95

Table 4". Seven-bar truss, effect of m and fL Eq. (21)

m R: a nR T

-_.00 100.000.0010_.52 0.978 97.800.00_02.20
-1.01 106.50 0.00 106.50 0.939 100.0 0.00 100.00
-1.02 113.22 0.00 108.18 0.903 102.30 0.00 97.70
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ABSTRACT

The real benefit of structural optimization techniques is in the application of these techniques to
large structures such as full vehicle or full aircraft. For these structures, however, the sequential computer's
time and memory requirements prohibits the solutions. With the recent existence and rapid development of
parallel computers, parallel processing of of large scale structural optimization problems is achievable. In
this paper we discuss the parallel processing of structural optimization problems with parallel structural
analysis. Two different types of interface between the optimization and Analysis routines are developed and
tested.

1. INTRODUCTION
For the large-scale structural design problems, repeated finite element calculations consume a lot of CPU

time and makes the optimum design procedure slow and intractable. Because of this, various structural reanalysis
techniques have been developed. State-of-the-art reviews of reanalysis techniques can be found in [ 1-3].

The fifth generation computers, which were introduced in the 80s, have several advantages over the fourth
generation machines: higher speed of computation, bigger central memory, and a multi-processor structure. All of
these advantages allow the _hers to move further in the structural optimization area. Venkayya [4],vectorized
some finite element programs and utilized the vector processor and huge memory of the Cray-1 to get an
improvement in computational efficiency of almost two orders of magnitude. In addition, various parallel finite
element methods have been developed; however, none were applied to the structural optimization area.

Since all optimization methods require design sensitivity analysis, it plays an important role in
optimization procedures. Due to the repeated finite element analysis, the design sensitivity analysis becomes one of
the most time-consuming parts of smactural optimization. Although there are many papers addressing design
sensitivity [5,6], articles describing design sensitivity analysis using parallel computers could not be found.

Since the amount of time spent in evaluating the gradient of the constraints in the optimization problem is
computation,ally expensive and the computation of the gradient at each iteration involves a number of uncoupled
calculations, Sikiotis and Saouma [7] spread the job of constraint gradient calculation to four Apollo workstations to
reduce the calculation burden of one machine. This resuited in a relatively low overhead with an achieved speedup
dependent on the size and nature of the problem, and the system configuration. The speedup increased with the
problem size.

The optimum design of modern structures usually involves a large number of variables and constraints.
While mathematical programming techniques provide the designers with the tools for optimization, these techniques
can not handle large design problems. To overcome this weakness, the decomposition method was introduced [8,9].
The method depends on decomposing the original problem into a number of smaller subproblems and solving each
subproblem separately. Since the subproblems after decomposition are coupled, iterative calculations become
unavoidable [10,11].

Some of the most applied decomposition methods are the multi-level optimization approaches. In a
multilevel optimiTation approach, the original design problem is decomposed into a top level design problem and
some uncoupled subproblems in the other levels. The top level is concerned with the overall optimization problem
while the detail design problems arc handled by the lower levels. The optimization results are obtained by iterating
between the different levels.

Different approaches have been proposed for multilevel optimization. For example, based on the state space
formulation of the optimum conlrol technique, Govil et al. presented an algorithm for structural optimization by
substructuring [12-14]. Kitsch used the model and goal coordination methods [15] in the multilevel structural
optimization [16-19]. Sobieszczanski-Sobieski et al. [20] proposed a general multilevel optimization method which
notonlyconsidersthestructuraldesignbutalsotakesintoaccountotherdifferentdisciplines,such asaerodynamics.

Recently,otherstructuraloptimizationmethodsby multileveldecompositionhave been alsoproposed[21-23].In
[22], a three-level structural optimization procedure is illustrated by a portal frame. The portal frame is decomposed
into several beams, and each beam is decomposed into plates, The bottom level in the multi-level optimization
handles the plates, the intermediate level handles the beams and the top level handles the assembled structure.

This work represents a study for the use of parallel structural analysis method in solving structural
optimization problems with two different types of interface betw_n the optimization and Analysis routines.
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2. FORMULATION

For structural optimization problems, the structural analysis is recognized as one of the most time-
consuming pans. In the following, the structural analysis using a parallel structural analysis in the structural
optimization problems is discussed.

A general optimum sa'nctural design problem may be deemed as follows: find a design variable vector X
subjected to constraints relaWxl to the design and the behavior of the structure thatminimize an objective
function F(X). The mathematical form could be expressed as:

Minimize:

Subject to:

Where

F(X);X=[Xl,X 2......xN]T X¢ R N

A_X<B

ek(X)>0 k=l,2.....K

_Fl (X) = 0 l=l,2,...,L

F00:
X:

N:

Ok(X) :

_'l(X):
A:

B:

The objective function, usually the weight of the structure.
The design variable vector.
Totalnumber ofdesignvariables.

K inequalityconstraintsfunction.

L equalityconstraintsfunction.

The vector of lower bound on design variables.
The vectorofupperbound on designvariables.

The constraints might be placed on the stxess or displacement under the design loads. These constraints may
not be expressed explicitly, but can be numerically evaluated using finite clement analysis.

Intheoptimizationcalculations,repeatedfiniteelementanalyseshave tobe performedinordertoevaluate

behaviorofthestructure.To reducethecomputationalCPU timeofthestructuraloptimizationprocess,the

parallelf'miteelementcomputationtechniquewithseparatesubsmJcmresdevelopedin[24]isadaptedwitha minor

modification.

The main characteristicoftheparallelf'mitcelementanalysistechniquedevelopedin[24]isthatthef'mite

elementanalysisofeachsubstructurecanbe processedindependentlywithlimitedcommunications.The basicideaof

thestructuraloptimizationalgorithmdevelopedhereisthatwhenever itisnecessarytousethefiniteclement

analysis,thecalculationloadswillbespreadtoeveryassignedprocessor.Each processor,includingthemain

processorand associateprocessors,willhandlethestructuralanalysiscalculationofitsown assignedsubstructure.

3. ALGORITHM

In this approach, one processor, called main processor, is chosen to execute the optimization calculations

and the finite clement analysis of one substructure. The other associate processors are used to analyze the assigned

substructures. The major steps for the main processor are:

Step I:Shafttheoptimizationcalculations.When thereisa nced todo thestructuralanalysis,themain

processor will start the parallel finite element analysis software. The related design variables will be sent to the

corresponding associate processors.

Step2:Performthefiniteclementanalysisoftheassignedsubstructureand assemblethestiffnessand force

contributionmatricesfrom theotherprocessors.

Step3:Solvethedisplacementsatthesharedboundarynodesand sendthesedam tothecorre.sponding

associateprocessors.

Step 4: Continue the calculation of constraint-related data of the assigned subsmicture, such as stress and

displacement, and receive the constraint-related dam from the associateprocessors.
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Step 5: After the constraint.related data of the complete structure are collected, check the convergence. If

convergence is obtained then stop, otherwise go to Step 1.

The major steps for the associate processors are:

Step 1 : Receive the corresponding design variables from the main processor, start the finite element

computations on the subslructure assigned, then send the contributed stiffness and force data on the common

boundary back to the main processor.

Step 2 : Receive the boundary displacements from the main processor, continue the finite element

computations to solve the domain displacement and stress and send the constraint-related data back to the main

processor.

At the end of Step 2, the associate processors are kept idle until the next finite element computation,

4. INTERFACING METHODS BETWEEN ANALYSIS AND OPTIMIZATION ROUTINES

The previous algorithm offers a slraightforward method to distribute the finite element computational loads
in the structural optimization process. Two different kinds of interface between optimization software and finite
element software can be developed.

Design software is a combination of optimization software and analysis software, as shown in Figure 1.
They are usually independent of each other. In the optimum structural design area, reliable and powerful analysis
software such as NASTRAN and ANSYS are often complicated. The interface problem between optimization

software and analysis software, therefore, becomes important [25]. In this work. two different kinds of interface
between optimization software and finite element software have been developed and tested.

The first Method is a multi-reading interface. In this method, the optimization software and the finite
element analysis software communicate via the named pipes of NP-routine [26] and the data Fde. Instead of creating
an input f'fle for finite element analysis software repeatedly, the optimization software transfers the new design
variables to the finite element software directly. The rest of the data needed for the finite element analysis software
were read from the original data file. The output data fzom the f'mite element analysis software is also wansferred to
the optimization software via the named pipes.

The second method is a single-reading interface. In this method, the communication between the
optimization software and the finite element software remain the same as the multi-reading interface. Instead of
reading the data from the original data fde repeatedly, however, work has been done to exwact the input data and store
them in core memory after the fwst time reading. Therefore, the finite element software will read the input data file
just one time.

5. TEST CASES
The test cases were performed on the Cray X-MP four-processor supercomputer. The results obtained are

compared with the sequential version of the code on the same machine. The input data and conditions on both
parallel and sequential version of the code were the same,

Figure 1 shows the 200-member u'uss structure. In these test cases, the structure is divided into two, three
and four subslzucmres.

Two Substructures Case:

The truss is divided into two substructures by I_rtitioning it at joints 34 to 42 and 57 to 61. Members I to
105, 123 to 127, 140 to 143, 152 and 153 are in substructure 1. The rest of the members are in substructure 2.

Three Substructures Case:

The truss is divided into three substructures by partitioning it at joints 34 to 36, 20 to 28, 50 to 59, and
42 to 44. members ! to 50, 59 to 63, and 81 to 83 are in substructure 1. Members 140 to 200 and 123 to 127 are in
substructth_ 3. The rest of the members are in substructure 2.

Four Substructures Case:

The truss is divided into four substructures by partitioning it in the xl direction at joints 3, 5, 7, 9. After
the partitioning the structure has five levels. The bottom level belongs to substructure 4. The second level and the
fourth level belong to substructure 1. The third level belongs to substructure 3. The top level belongs to
substructure 1.
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The objective function is the total weight of the structure. The design variables axe the cross-sectional areas
of the truss and can be reduced using simple design variable linking. In the f'n-sttest case, the members 1 to 105 and
members 106 to 200 are linked to design variable number 1 and number 2, respectively. S_ress conswaints were
placed on every member of the truss. The design data for this slructure is given in Table 1.

Table 2 contains the computational time and spc_up values for the 200-member problem using mulri-
reading interface with two processors. Table 3 represems the computational time and speedup values for the same
problem using single-reading interface with two processors.

Additional test cases wexe pcxfonned using single reading interface. In these test cases the smacture was
divided into 20 sub-groups by partitioning it in the xl.direction at joints 3, 5, 7, 9 and in the x2-direction at joints
28, 44, 61. The members of each substructure were then linked as a design variable. The computational time and
speedup values, for these test cases with different number of processors, are given in Table 4.

Table 1 The design dam for 200-member truss structure.

Modulus of elasticity

Density of material
Member-size conswaints:

Stress constraints:

Loading condition:

3.0x 104 ksi

0.283 Ib/in3

0.1< X i i=1,200
-30.0 ksi < ff < 30.0 ksi

one kip acting in the positive xl
direction at nodal points 1 to 1 [,

Table 2 Performance of 200-membex truss structure

Two substructures. 2 design variables
[}y multi-reading interface

C'PUtime(see.) Speedup
Sequentialcalculation 6.239
Parallel calculation 4.116 | ,52

Table 3 Performance of 200-member _russ structure

Two substructures, 2 design variables
By single-reading interface

CPU time (see.) Speedup
Sequentialcalculation 3.319
Parallel calculation 2.965 1.13

Table 4 Performance of 200-membex miss structure

Two, three and four substructures, 20 design variables

Sequential calculafon
Parallel calculation

2 processors
3 processors
4 processors

I)Y single-reading int_'face

CPU time (sex.) Speedup
13.518

11.964 1.13
11.286 1.20
10.585 1.28
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6. DISCUSSION AND CONCLUSION

A sU'uctural optimization method with parallel structural analysis has been developed. In this method, a
parallel finite element computation technique with separate substructures is adapted and the original su'ucture was
decomposed into several substructures. One processor on the Cray X-MP system was chosen to execute the
optimization calculation and the finite element analysis of one substructure. The other processors then perform the
structural analysis on the assigned substructures.

Two methods are also tested for interfacing the finite element analysis software with the optimization
software. The test cases performed show that the speedup values increase as the number of processors increase. The
single-rezding interface method shows an advantage over the multi-reading interface method in the CPU time needed
for calculation. Even though the speedup values of the multi-reading interface case are higher than the speedup values
of the single-reading interface case, the saving in CPU time shows that the single reading interface is recommended.
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INTRODUCTION

The task of modern aircraft design has always been complicated due to the number of intertwined

technical factors from the various engineering disciplines. Furthermore, this complexity has been rapidly

increasing by the development of such technologies as aeroelasticity tailored materials and structures,

active control systems, integrated propulsion/airframe controls, thrust vectoring, and so on. Successful

designs that achieve maximum advantage from these new technologies require a thorough understanding

of the physical phenomena and the interactions among these phenomena. A study commissioned by the

Aeronautical Sciences and Evaluation Board of the National Research Council has gone so far as to

identify technology integration as a new discipline from which many future aeronautical advancements

will arise (reference 1). Regardless of whether one considers integration as a new discipline or not, it is

clear to all engineers involved in aircraft design and analysis that better methods are required. In the past,

designers conducted parametric studies in which a relatively small number of principal characteristics

were varied to determine the effect on design requirements which were themselves often diverse and

contradictory. Once a design was chosen, it then passed through the various engineers' disciplines whose

principal task was to make the chosen design workable. Working in a limited design space, the discipline

expert sometimes improved the concept, but more often than not, the result was in the form of a penalty

to make the original concept workable. If an insurmountable problem was encountered, the process

began over. Most design systems that attempt to account for disciplinary interactions have large

empirical elements and reliance on past experience is a poor guide in obtaining maximum utilizations of

new technologies. Further compounding the ditticulty of design is that as the aeronautical sciences have

matured, the discipline specialist's area of research has generally narrowed as more sophisticated

methods are developed in the specialist's area of expertise. The results have been a decrease in the

awareness of the impact of his decisions on other disciplines.

On the other hand, advances in computer technology have greatly increased the capability to solve

complex problems, display and manipulate data in more suitable engineering formats, and computers

have become much more user friendly and easier to interact with. The modem workstation in particular

enables the engineer to run several computer programs simultaneously, conveniently display results,

interactively modify data, and, in general, etticiently proceed through a series of calculations.

Workstations provide a dramatic increase in the capability of an airplane designer to generate and modify

numerical models of the vehicle--a capability necessary for advanced aircraft design.

After assessing the environment just described, NASA Langley Research Center made a commitment

to improved multidisciplinary research at the Center. A high-level Multidisciplinary Research Advisory

Committee was formed and subsequently the High-Speed Airframe Integration Research (HiSAIR)

project was initiated. HiSAIR focuses on the High-Speed Civil Transport (I-ISCT) design activity as a

case to foster the development of methodology to improve multidisciplinary analysis, design, and

optimization of aircraft systems and to develop a computational environment favorable to such an

activity. This paper will outline the progress and problems encountered in the analysis, design,

optimization sensitivity analysis, mathematical modeling, and configurations control and the means by
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which they are being solved. The breadth versus depth dilemma in analysis and design and the means for

coping with that dilemma will be discussed. Finally, the all-important human aspects and the need for a

new "culture" for doing business in an integrated, multidisciplinary design environment are discussed.

ORGANIZATION AND STRATEGY

NASA's Langley Research Center is an institution in which research and technology development in

discipline research is the principal product on the aeronautical side of the Center. The Center is organized

along discipline lines in order the successfully accomplish this objective. Langley does not manufacture

aircraft so the role of multidisciplinary research is somewhat different than that in much of the remainder

of the aeronautical community. The major benefits of vehicle integration studies in a research institution

are technology evaluation and identification of high-payoff technologies which serves to help advocate

for programs and allocate resources. An equally important role is to identify the probable application of

a technology when its interaction with other disciplines are considered. The second role aids in

developing the proper data bases to expedite the utilization of technologies by industry. The I-IiSA1R -

project was organized to strengthen Langley's ability to conduct such multidisciplinary vehicle design,

analysis, and optimization studies.

The organization of HiSAIR is shown in figure 1. The project has no formal line management

authority, and is conducted on somewhat of an ad hoe basis at the working level. The Advanced Vehicles

Division and the Interdisciplinary Research Office share the responsibility for pulling the activity

together. These two organizations have functional responsibilities to conduct vehicle systems studies and

improved multidisciplinary optimization methods, but are located in different discipline areas--

aerodynamics and structures. A steerirtg committee of division chiefs oversees the direction and

scheduling of the research. There is a loose tie with the High-Speed Research (I-/SR) Program to provide

a vehicle focus for the research. The HSR Program coordinates research on the High-Speed Civil

Transport. The vehicle focus for HiSAIR is considered necessary so that methods are developed to solve

actual vehicle design problems. Experience tends to indicate that multidisciplinary design systems are

best developed to solve real problems, then generalized to encompass other vehicle types. There is also

art informal tie to Lewis Research Center as a source of propulsion system data. This informal

management works because of the commitment of Langley's senior management to improving

multidisciplinary design and optimization.

The strategy for HiSAIR is shown in figure 2. Because the discipline research emphasis is at Langley,

the interfaces between disciplines tends to lag advancements in analytical methods and computer

equipment. The first step is to strengthen these interfaces, especially in geometry methods and data

transfer to form a rapid high fidelity analysis system. The second step is to conduct a high fidelity (higher

order methods) limited optimization using sensitivity analysis methods that are the subject of papers in

this symposium (references 4 and 5). The longer term goal is to develop a full system optimization

capability with optimization methods that incorporate full multidisciplinary coupling/optimization. The

approximate schedule for the 3 steps is to accomplish the goals in 1, 2, and

5 years, respectively. Steps 1 and 2 are rather straightforward and involve developing interfaces and data

management methods to utilize methods already in existence. The biggest obstacle is numerical

modeling methods that permit rapid turnaround time. Step 3 is the tough one. Here is where the breadth

versus depth dilemma is fully encountered or the "Brick Wall" as it was described by Sliwa and Abel in

the 1988 Multidiseiplinary Analysis and Optimization Symposium (reference 2). This dilemma is the

subject of later discussion.

PROGRESS AND PROBLEMS

The first obstacle encountered by the HiSAIR team in attempting to perform as higher order analysis

of a conceptual design was the time required to construct a refined numerical model from the coarse
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surfacedgridstraditionallyused inconceptualdesign. This situationisno surprisetothosefamiliarwith

the designprocess.The timerequiredand the toolsused inthefirstpassthroughareshown in figure3.

Twelve weeks were requiredand a geometry enrichment system (ANVIL 5000) was used. Twelve weeks

fornumericalmodeling isofcourseunacceptablefora designsystem. The AeronauticalSurface

Typology Analysis Routines (ASTAR) box shown inthe figurerepresentsa collectionof programs that

allow a usertoassemble a CFD surfacegrid.Functionssuch assplinefitting,surfaceintersections,and

surfacegridpointspacingcontrolareincludedinASTAR. Inresponse tothissituation,aswell asother

userneeds,Langley has createda geometry laboratory(GEOLAB). The GEOLAB and HiSAIR team

have identifiedthemethods and hardware to accomplish thesituationshown infigure4. The geometry

enrichment willbe accomplished in Iday usingan interactiveversionof ASTAR. The interactive

ASTAR willalsouse elements ANVIL 5000 and SMART (SolidModeling Aerospace Research Tool)to

help achieverapidturnaroundtime. SMART isa preliminarydesignsurfacegeometry softwarepackage

thathas some very sophisticateduserinterfacesand was developed by the Space Systems Divisionat

Langley. Both ASTAR and SMART softwareareinthepublicdomain.

The successor lackof successof any multidisciplinaryanalysis,design,and optimizationsystem,

such asHiSAIR, depends on thedatamanagement system. In theHiSAIR team'sapproach todata

management was an acuteawareness,based on previousexperience,thatany system which placedan

undue burden on thedisciplineresearcherorrequiredsignificantchanges inhismethods ofdatainterface,

was likelytomeet with lessthancomplete success.The datamanagement ofI-IiSAIRisbeing

constructedaround softwaredeveloped by Langley referredto asEASIE (Environment forApplication

Software Integrationand Execution)and commercial database systems. EASIE providesan executive

controllerand a high-leveldatabase manager. The EASIE executivefunctionprovidesconfiguration

management and an operatingsystem freeenvironment fordatareview/modificationand program

execution.These datamanagement toolsareintendedtoprovidetheframework fora designand analysis

system thatisflexibleand inwhich thedatamanagement functionsareas transparentas possibletothe

researchengineer.

Understanding thedataexchange isalsocriticaltodatamanagement. HiSAIR initiatedthisprocess

by surveyingthedataneeds and availabilityforeach disciplineinvolvedand compilinga catalogof

availablecomputer codes. The desiretoincorporatehigherorderanalysiscodes more appropriateto

today'smore complex aircraftgready increasedthedataneeds and exchange. In additiontotheform and

format of thedata,themost efficientflow of thedatabetween each userisbeing examine& A dataflow

modeling toolreferredtoas DeMAID (Design Managers Aid forIntelligentDecomposition) isbeing

used. DcMAID isaknowledge-based toolformultileveldecomposition ofcomplex designproblems and

isreportedinreference3. The method notonly determinesthehiexarchialstructureof theinformation

exchange, but helpspreventimportantinteractionsfrom being overlooked and performs a scheduling

functionthatexploitsparallelprocessingof modules or groupsof modules tosave time.

A resultof arathersimpledemonstrationofDcMAID isshown infigures5 and 6. DoMAID was

used tostudy thedataexchange between 19 computer programs used inthedesignof a supersonic

airplaneconcept by the VehicleIntegrationBranch atLangley. Although thedataflow was well

understood,priorknowledge was deliberatelyignoredtotestDoMAID. The programs (ormodules) were

randomly assignednumbers and were orderedintoan NxN matrixformatas shown infigure5. Data

outputisrepresentedas a horizontallineand inputisrepresentedas a verticalline.The soliddots

representdatathatarc outputfrom one program and inputtoanother,an interface.Any lineleavinga

program on theleftorenteringfrom below representsa feedback thatimpliesan iteration.Programs with

no inputrequirementsareinitializationprograms whose inputsam satisfiedfrom an outsidesource--

example mission requirements.The DcMAID triestominimize thenumber of fe_Ibacks.The resultsof

the DeMAID reorderingisshown on thefightsideof figure6. The feedback loops were eliminatedand

the unidirectional data flow established. Note that eliminating all feedback loops is not typical and this

witl certainly not occur in a more sophisticated multidisciplinary design process, but DeMAID will

i¸
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minimize thefeedback loops by itsgrouping of the modules intocircuits(seereference3). The leftside

of figure6 more clearlyindicatesthe significanceof thereorderingof theprograms. Program 14 and 7

initiatetheprocess,thenprograms 11,18, 10,8,and 13 can be run simultaneously,and soon until ,

program 16 completes thedesign. The 19 programs arcgrouped in 8 steps.Even forthissimple

example, theinsightgainedisvaluable.Imagine,ifyou will,thelargermuch more complex

multidisciplinarydesignproblem facedby theHiSAIR team and thevalueof a toolsuch as DeMAID is

obvious.

An interestingimpediment to theHiSAIR goal ofincreasingmulfidisciplinaryinteractionwas

observed shortlyintotheproject.Due toLangley'sorganizationalong disciplineand even subdiscipline

researchlines,each organizationhad become independentinitsgeneraldam needs.For instance,the

varioussn'ucturesgroups exercisedaerodynamic codes togeneratetheirown loaddistributions.There is

nothingwrong withthis,especiallyintheresearchmode, but itdoes failtotakeadvantageof thesuperior

load definitionand controlsurfaceeffectivenesscalculationsaffordedby advanced aerodynamic codes.

Ifnothingelse,HiSAIR has alreadysucceeded increatingan increasedawareness atLangley thata

multidisciplinaryunderstandingwillhelpimprove themethods employed withinthedisciplines.

Concurrentwith establishinga multidisciplinaryanalysisprocesswith unprecedentedlevelsof

disciplineinteractionand turnaroundtime,theHiSAIR team isresearchingthe more difficultproblem of

multidisciplinaryoptimization.An integrateddesignexerciseisbeing conducted utilizinga design

processcenteredon nonhierarchialdecomposition with optimizationguided by system response

derivatives.These methods were discussedby Sobieskiinthe 1988 MultidisciplinaryAnalysis and

OptimizationSymposium (reference6) and more recentlyinreference7. The integrateddesignexercise

iscurrentlyfocusingon HSCT wing designtodevelop mathematicalmethods fortheinmgrateddesignof

aircraftconfigurations.The integrateddesignexerciseismore fullyreportedby inreference4 which isa

paper deliveredelsewhereinthissymposium.

PLANS

To achievean advanced system designand analysiscapabilitythatcan generatenonderivativeaircraft

conceptsrequiresthatthebreadthversusdepth dilemma be solved.Rigorous fullsystem optimization

methods requirea well-definedcontinuousmodel. Engineeringsolutionstoproblems encounteredarc

rarelycontinuous.For instance,thebestsolutiontoa stabilityand controlproblem may be to switch

from a horizontaltailtoa canardratherthantocontinueoptimizingthehorizontaltail.System

optimizationmethods can findthebestsolutionfora given setof technologies,but arcnot suitedto

establishingthe technologyset.The involvementof disciplineexpertsinconceptualand advanced

system designinrealtime isrequiredtosolvethisdilemma. The exactform fora conceptualdesign

system with globaloptimizationcapabilityhas not been established,but severalideashave emerged.

A system such as thatillustratedinfigure7 shows much promise. The figureillustratesa discipline

expertinaerodynamics working to whatever levelof detailthatisappropriateto apply hisfull

capabilitiesand insight.The expertisprovided with multidisciplinaryguidance and assistanceby

utilizingroutinesthatprovideinformationabout theimpact of theaerodynamic configurationon other

disciplines.These multidisciplinaryguidance and assistanceroutinescould be knowledge based or

expertsystems incorporatingartificialintelligencefeaturesasappropriate.They could alsobe simple

extrapolationformulas based on thesystem response derivativescomputed forthebaseline.The

guidance and assistanceroutineswould be simplerthanthemethods normally employed by theexpertsin

therespectivedisciplines.These simplermethods arcmost likelyrequiredtoke_ thesystem from

bogging down due toeitherthelevelof detailrequi1"edforfullmultidisciplinarycouplingor lackof

computer speed and storage.Experts_om each of theinvolveddisciplinescan work realtime in

coordinationwith each othertoevolve a setofconfigurationswithina setof previouslyagreed

guidelines.In additiontotheconfigurationset,system sensitivityderivativeswould be generated.The
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output would be a configuration set and sensitivity derivatives that would form the input for the rigorous

optimization methods previously discussed. This approach has the very attractive feature that allows

equal discipline participation in the design process. The traditional sequence in which the discipline

expert fixes problems generated by someone else no longer applies. Many details would have to be

solved to make such a system practical but it appears feasible within the 5 year goal of HiSAIR.

BENEFITS

The HiSAIR project has the overall objective of being able to determine the best technical solution

when integrating increasingly complex and intertwined technologies. Further, the philosophy is to

develop a system that allows the discipline expert to use his physical insight and methods to solve system

problems. This philosophy is reflected in the proposed methods of multidisciplinary coupling and in the

optimization methods employed. The result will be not only better aircraft designs that achieve

maximum advantage from new technologies, but the development of analytical methods and data bases

that find more ready applications in the aeronautical community. Equally important is the developing

multidisciplinary cultural awareness. This new culture for doing business in an integrated

multidisciplinary design environment is already stimulating new ideas and research. As the HiSAIR

projectproceeds pastthefirststagetothe tougherproblems of multidisciplinaryoptimization,the

interactionsand thenew researchstimulatedwillincrease.

CONCLUDING REMARKS

NASA Langley Research Center has embarked on an organized program (HISAIR) to strengthen

multidisciplinaryaircraftanalysis,design,and optimization.The projectcutsacrosstheorganizational
discipline lines of the Center and uses the High-Speed Civil Transport as a research focus. The project

has met with an enthusiastic response from most of the discipline organizations. The discipline specialist

perceives HiSAIR as a means to broaden his or her knowledge of and influence on the _ design

process, as well as stimulate new research with increased relevance to the aeronautical community

beyond their specialist area. The long-term strategy for HiSAIR is to proceed through three steps. Step 1

is to establish a high-fidelity rapid multidisciplinary analysis process; step 2 is to develop a local

optimization design process using iterative and system sensitivity derivatives methods; and step 3 is to

develop a global optimization system with full multidisciplinary coupling/optimization.

HISAIR is approximately half way to the accomplishment of step 1. The major obstacles encountered

in establishing a high-fidelity rapid multidisciplinary analysis system were not unexpected. Geometry or

numericalmodeling and datamanagement were thetwo principalconcerns. A number of existing

computer programs asdiscussedinthetextarebeing assembled and modifiedforthemodern workstation

environment tohandletheseconcerns.Data flow modeling toolsthatuse artificialintelligencetechniques

todecompose complex systemsare being employed tounderstandthenatureand most e_cient

processing of the data, These decomposition tools along with system sensitivity analysis methods are

being researched as tools for the optimization steps of HiSAIR. Methods of coping with the breadth

versus width are evolving and are under study and must be developed to accomplish the global

multidisciplinary coupling/optimization goal. Equally importantis thatan atmosphere is developing in

which the discipline specialist has an awareness and better appreciation for impact of their decisions on

the overall aircraft system. The major benefit to the Langley Research Center as a research organization

is the stimulation of new research ideas within the disciplines that lead to methods and technology more

applicable to our rapidly increasingly complex world of airumft design.
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MULTIDISCIPLINARY HYPERSONIC
CONFIGURATION OPTIMIZATION
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ABSTRACT

Hype_onic vehicle design involves several ¢omplax,
highly coupled disciplines. The need to use muitidiscil_i-
nary optimization techniques to determine the optimal
configuration is rather a_OaranL This paper presents a
multidi_:iplinary configuration optimization technique which
directly applies to the very difficultchallenge of hypemonic
vehicle design.

INTRODUCTION

The developments incomputational fluid dynamics
(CFO) techniques in recent years are significant. Although
CFD analysis can require significant time to be performed
due to flow complexity and grid issues, the aocuracy with

respect tOhigh speed vehicle performance is very reliable.
Concurrently, various types of optimization methods based
on CFD and CSM (computational structural mechanics)
analyses are recieving more attention, references 1-4.

In the case of hypersonic vehicles, the use of multidis-
ciplinary optimization techniques is very important for
proper sizing of the vehicle. The key disciplines are
aerodynamics, inlet performance, propulsion, end struc-
ture& One of the serious concerns in the preliminary design
=tags is the vehicle performance based on an assumed
takeoff gross weight. Particulary, effective specific impulse
is an important parameter in the attainment of a desired
vehicle trajectory. Since the specific impulse is a direct
function of the vehicle thrust and drags, minimizing the drag
forces is essential On the other hand. the same thing can
be achieved by maximizing thrust through the imDrovement
of the inlet perfomance and the fuel volumetric efficiency,

The vaditional sizing method attains closure on a
vehicle design by photographically scaling the baseline to
achieve the required fuel fraction. This occurs at the inter-

section of the fuel required and the fuel available curves.as
shown in figure 1. It is possible to attain closure by
bringing the fuel required curve down and/or by bringing the
fuel available curve up. As a flint step, the fuel available
will be held constant in the alX_oech in this paper. Hence,
the approach in this pal_r willconcentrate on bringing the
fuel required curve down. For simplicity, this will be
accomplished by maximizing the specific impulse (lsp) at a

critical point in the trajectory by modifying the baseline
configuration geometry.

In this paper, a specie apt_oech to sensiti_y calcula-
tion, the determination of independent design parametem,
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the formation of a global sensitivity matrix, the optimization
process, and some results will be shown.

PROBLEM STATEMENT

In order to excorcise CFD and other derived sensi-

tivities in an optimization problem, a vehicle specification
and a Key point in the trajectory are defined. The hyper-
sonic vehicle baseline configuration used in this study is
shown in figure 2, including the design variables chosen.
Presently, we are deating only with the forebody ot the
vehicle foe simplicity. Therefore, the effect of the forabody
on the aftbody aerodynamics is neglected at this time. The
altbody (is.. nozzle, bodyflap, eleven, ate.) effects are
included in the propulsion contributing analysis (CA) and
the trim contraint.

The flight condP.icn at which the vehicle will be
optimized is as follows; Mach, 16, q ,, 1500 paf, and ct-
0.0 degrees. F'mally,the objective function for this optimi-
zation is defined as follows.

Objective: maximize Isp

.Isp = T - D
mf

(1)

T= thrust
D= drag

mf = fuel.flow rate

Do = ro_l un.rimm_ drag

D.,. = rm drag
I_ = forebody pressure drag

Dvi,= = forebody viscous drag

Dtft = aftbcxiy drag (held constant)

De = devon drag

= bodyflapdrag

D={D0=]::).=+D,, I (2a)

where,
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Figure 1. The sizing process
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Figure 2. Baseline configuration

OVERALL OPTIMIZATION PROCEDURE

A muJtidiscil_inary decomposition/optimization
technique is used to develope the global sensitivities

needed by the optimizer in an africa,ant manner. This
technique involves four stepa as shown in figure 3. (l_Oe-

termine the most effioent decomposition of the design

process, by identifying the individual contributing analyses

(CA's) that makeup the design process using an N-

squared diagram. (_ Define the linkages between CA's b_
adding to the N-squared diagram devek:c>ed in step 1 . _3/

Calculate the sensitiv_y derivatives for each CA independ-
ently. (_ Combine the sensitivities in the global sensitivity

equations (GSE) to determine the global sensitivity deriva-

tives (GSD) which are then used by the ol:Ximizer to

determine an optimum configuration. Further background
and examples of applications o1 the mathodokxJy can be

found in references 5-6. The following sections describe

each step in more detail.

1. DECOMPOSE DESIGN PROCESS

The N-squared diagram, shown in figure 4, is a handy

tool for presenting the functional decomposition and the

linkages between CA's, which are discussed in this and the

next section, respectively. It shows some of the discO)lines

included in the design process.

Each box is a contributing analysis card which

contains information about CA. It identifies figures of merit,
constraints, and control variables. II also defines the

pro<jrams to be used to generate the sensitivity data and

the person(s) responsible for running them.For the present
work, the maximum amount of disciplines USed in the

results are those shown in figure 5. Results are also
presented for optimizations where some of these CA's are
not included.

2. DEFINE LINKAGES

Each oval in figure 4 identifies a connection between

disciplines. By following the lines away from the oval and
towards the CA boxes, the two disciplines invoived in the

linkage can be identified. Each oval is a data card which

identilies the information passed from one CA to another

CA. It also defines the person(s) responsible for generating

the data and the person(s) that would recieve the data

during a traditional design cycle. The linkages that occur in

the present work appear as dots in figure 5.

3. CALCULATE LOCAL SENSITIVITY DATA

Each discipline independently calculates the sensitivity

derivatives which are defined dunng step 2. The sensitivity

I-- ] I°" " I"I--'-=!

I - Decomp4_e des_'l_

STEP 2 - Oel|ne Ilnklgel ( ind 14nllUvny derivlUve4)
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Figure 4. N-squared diagram example

data is calculated using a finite difference approach. Three
different ways of determining the sensitivity data and the
change in the sensitivity data away from the baseline are
presented in figure 6.

The fimt-order one-sided difference (FO-OSD)

approach has the key advantage of requiring only the
baseline and one additional run to calculate the first- order

sensitivity data. However, the accuracy in the direcSion
opposite to the perturbation can be very poor if the curve is
not close to be linear.

The first-order central dil/emnce (FO-CD) requires the
baseline plus two runs to calculate the sensitivity data. It
produces bettor accuracy than FO-OSD in one direction,
but gives up some accuracy in the other direction which
makes this approach not worth the extra cost of the
additional run.

However, without making any additional runs, than the
FO-CD approach, the second-order (SO) approach can be
used. The advantage to the SO approach is the ability to
model the nonlinearity in the sensitivity data. The FO-OSD
approach arid the SO app_ach each have their advan-
ragas and disadvantages, which one is best to use
depends on the nonlinearity of the problem.

Figure 5. Sial: 2 for present work

The use of pre/postprocessors in order to speed up
the preparation of input data for the aerodynamic and
structural flexibilty analysis was very important in generat-
ing the local sensitivity data in a timely fashion. The
diagram in figure 7 illustrates and describes those used in
the present work.

4. SOLVE GLOBAL SENSITIVITY EQUATIONS
AND PERORM OPTIMIZATION

The N-squared diagram, in figure 5, translates into the
set of global sensitivity equations presented in figure 8.
Any of the disciplines shown can be neglected by removing
the proper rows and columns from the matrix equation. For
example, inorder to remove the effect of the 2-O Navier-
Stokes CA from the o_imizatlon, the first row and first
column would be deleted.

The right-hand side (RHS) of the equation deals with
the local sensitivity of the outputs from each CA with
respect to a single design variable. If the design variable is
not a direct input to a particular CA, then all the local
sensitivities in the RHS are zero with respec_to that
variable for that CA as shown in figure 8 for the propulsion
CA.

The left-hand side (LHS) includes the cross-coupling
(or linkage) sensitivity matrix and the solution vector. The

_ h, lm=W0m;

._1 BASELINE GEOMETRY

:1 -- =<,,><-/," q "=° I

l i ;--'--'= I 1F':'c l L
, 1

IpR ool-- 1 -l,,'w,Em'l-----

F'Jgure8. Sensitivity c:_dculion F'_jura7. Pre/postprocassors
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Figure 8. GlobaJ sensitivity equations

solution vector contains the global sensitivity of the outputs

from each CA with respect to a single design variable.
There will be one RHS and one solution vector for each

design variable. It is important to note that although the
local sensitivities on the RHS are zero for a particular CA

with respect tO a particular design variable the global sensi-
tivities need not be zero.

The resulting global sensitivity data is then used to

update the vehicle performance during the oplimization

run. This is accomplished using a Taylor series expansion

for each of the outputs from each of the CA's. The objac-

tire function and the constraints are then updated and
passed to the optimizer.

The optimizer used in the present work is the ADS

(Automated Design Synthesis) program, reference 7, with
ISTRAT.0, IOPT.4, and IONED-7. ISTRAT=0 indicates

that no initial stratagey is used. The use of the Method of
Feasible Directions (MFD) for constrained minimization,

references 8-9, is indicated by IOPT,.4. The one-dimen-
sional search, _NED.7, finds the minimum of an con-

strained function by first finding bounds and then using
polynomial interpolation.

_asellne snaoe
positive =erturbatl0n
nega¢lve oer_ur0atlon

u_fw _,r_e _ UlleWm m Itllm

Figure 9. Design variables

CONRGURATION DECOMPOSITION

The configuration is decomposed into independent

design variables which are used by the o_imizer to

improve the vehicle perfomlance. The design vlriables
which will be used in the hypersonic forebody optim,zation

example in this paper are shown in figure 9. The main

concern when decomposing a configuration is to make the

design parameters ass independent as possible. The more
independent they are the larger the allowable move limit in

the ootimization run, which can possibly reduce the

number of optimization cycles. At the beginning of each

cycle, the final shape from the previous cycle is analyzed

and new global sensitivities are generated. By reducing the
number of optimization cycles, a substantial amount of

compuitationai cost and time can be saved.

RESULTS AND DISCUSSION

In this paper, four optimization cases am examined.

The objective function for the first two cases uses equation

2a in conjunction with equation 1. These equations
produce an untrimmed specific impulse (Isp). Cases 3 and

4 use equation 2b instead of 2a to produce a trimmed Isp

for the o_active function. All four cases have a forebody

tank volume constraint for simplicity and to concentrate on

one aspect of the present approach's capability. The

design variables are limited to a maximum of 10% change,

plus or minus, from the baseline vaJues. Each case adds
either another CA or an additional constraint to the

optimization process. More details and results of each case

are discussed in the following paragraphs.

_e initial optimization case shown in this paper

contains the CA's, 3-O Euler and propulsion. As a first step,

the objective is to maximize an untrimmed lap, neglecting
viscous effects on inlet performance, trim effects, and

flexibility effects. These additional effects will be added one

at a time into the cases to follow. The only constraint for

this case is the forebody tank volume constraint, which is
defined as follows:

•¢ < (present tank volume • baseline tank volume) < ¢ (3)

¢ = 0.1% of the baseline tank volume

The results of case 1 are shown in r|gura 10. The most

significant design variable change occurs to the geometric
Van_ion length (OV-4). The increase in this design

variable decreases the tank volume slightly, but it signil'_

cantly decreases the forebody drag which is a key f_r in

maximizing the lap. The loss in volume is compensated by
the other varaibles. The foreOody length (OV-1) increases

while the cone angle (OV-2) decreases to produce a more
slender forebody which hel_ maintain the tank volume

while reducing the drag. The upper surface height (DV-3)

parameter is relatively ineffective, although it increases

slighty to hell) maintain the tank volume. The optimizer
predicts apt_oximataly a 17% increase in the untrimmed
effective lap.
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F_gure 10. Case 1 results - initial optimization

case2
The second optimization case is the same as case 1

with the addition of the 2-0 Navier-Stokss CA. This CA

contributes the viscous effects on inlet pedormance to the
opt/m(zation process.

The results for case 2 show that the changes in the
design variables =re qualitatively similar to case 1, as
shown in figures 10-11. DV-3 and DV-4 have almost
identical changes in magnitude in cases 1 and 2, which is
due to the fact that these two variables have an insignifi-
cant effect on inlet performance. However, the magnitude
of the changes in DV-1 and DV-2 are smaller for case 2.
This indicates that the benefits of making the forMx)dy
mort slender reaches a max/mum closer to the baseline

shape when the viscous effects on the inlet pedormance
are included in the process. Even with these differences in
magnitude, the objective function value is almost identical
in the two cases. This is due to a positive viscous effect on
the inlet pedormace due to the change in 0V-1 and -2.
which counter-balances the increase in drag for the lees
slender fombody'.

CASE3
The third optimization case uses equations I and 2b to

produce a trimmed isp for the objective function. It includes
the same CA'$ as case 2 with an added constraint. The

constraint added is for maintaining trim given a trimmed

I elm,=,= _,,=_ j

i
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Figure 11. Case 2 results • addition of 2-0 Navier-Stokss
contributing analysis to case 1

baseline vehicle, and it is defined as follows:

-¢ < (summation of changes in moments) < _ (4)

¢ - 1% of the baseline summation of moments

In order to trim the vehicle, the elevon deflection (OV-5)

and the bodyflap d_lection (DV-6) must be included as de-
sign variables. For this paper, these control surfaces
produce only a moment and a drag. For simplicity, the
effect of the bodyflap on the propulsion is neglected. The
moments are used to satisfy equadon 4. and the drags,
which appear in equation 2b, are the performance penalty
for trimming the vehk_e, in order to start the op(imizaticn, a
bese_e condition for the control surfaces ie required. The

baseline condition for thi= paper is a 5.0 degrees deflection
for tx)th surfaces. These deflections add drag to the
I_uloline, which creates a lower baselina isp than the
untrimmed cases.

The changes in DV-f through -4 are similar to case 2,
as shown in figure 12. it is important to note that the 20 %
inaoaso in the objective function iS with respect to a
trimmed baseline hip. The percent changes in the previous
cases are with respect tOan untrimmed baseline Isp, which
is targer than the trimmed value due to not including the
drag from the control sudacas. Therafore, tha actual value
of the objective may be larger for case 2 than it is for case
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F_ure 12. Case 3 results - addition of trim
constraint to case 2
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F'_gure13. Case 4 results - addition of
flexibility to case 3



3. Of the two additional variables only the bodyflap seems

to be effective. The optimized shape actually requires less

body/l_o deflscti('n than the baseline which reduces the

drag due to this control surface. This accounts for most of

the ino'ease in the percentage change in the objective.

CASE4
The fourth optimization case is the same as case 3

with the addition of the structures CA. This CA contributes

the forebody flexibility elfect to the optimization process.

For simplicity, the structural flexibility CA is only linked to
the 3-0 F:uler CA, and it is not presently linked to the 2-O

Navler-Stokes CA,as seen in figure 5. Hence, the effect of
flexibility on the viscous part of the inlet flow is neglected.

The procedure for adding structural flexibility to the

optimization process is descnbed in more detail in
reference 6.

In the previous cases, the optimizer produced a
longer and more slender forebody. By adding the flexibility

effect into the optimization process, the same type of

shape oocured, except that the design variables remained

closer to the baseline vaJues, as seen in figure 13. This

indicates that the benefits of making the forabody longer
and more slender reaches a maximum closer to the

baseline shape when the flexibility effects on the forebody

aerodynamics and the inviscid inlet performance are

included in the process. For a rigid vehicle when the
optimizer incteasas the forebody length and dea'eases the

cone angle, the forebody drag is reduced. However, for a

flexible vehicle these changes also generate larger

deflections due to the air loads, which produces more drag

compared to treating the vehicle as rigid. Eventually, the
optimizer reaches a point where an additional increase in

DV-I and a decrease in DV-2 creates more additional drag

due to flexibility than the decrease in drag due to the

design variable changes. This explains why the change in

the design variables and the improvement in the trimmed

specific impulse is much smaller in case 4 than it is in case
3.

CONCLUDING REMARKS

A muitidisciplinary configuration optimization technique

which directly applies to the very difficult challenge of

hypersonic vehicle design is presented and demonstrated.
A simple hypersonic forebo4y design problem is used as

an apiDiication of the technique. The basic result o( the four

optimizations is that a longer and more slender forebody

produced a higher specific impulse. It is interesting to note

that qualitatively the changes in the forebody design para-
meters are similar for all four cases.

By adding the 2-D Navier-Stokes CA to the initial
optimization case, it is discovered that the inlet perform-

ance increased from viscous effects due to the design

variable changes. However, this positive effect dropped otf

as the design vara_bles got farther away from the baseline.
which is evident from the case 2 results.

The most interesting result of adding the trim con-
straint is that the forebody shape changes (DV-t through -
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4) are almost identicaJ to the previous case. In addition, the

shape changes actually required trim moment from the

control surfaces, which also reduced the trim drag. For the
problem presented, only the body/lap was effective in
maintaining the trim constraint.

The result of adding the flexibiity is the same as result

in reference 6. The addition of the other disciplines had no

qualitative effect on the structural effect on the optimization
results.

Future work will investigate optimizing for multiple

design points. This can be acoomplished by adding the

trajectory contributing analysis. In addition, the optimization

of the rest of the vehicle's shade tie., aftbody, wing, inlet,
etc.) needs to be included in the process.
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Introduction

The adoption of robust numerical optimization tech-

niques in trajectory simulation programs has resulted

in powerful design and analysis tools. These trajectory
simulation/optimization programs are widely used, and

a representative list includes the GTS system (gel.

[1]), the POST program (Re['. [2]), and newer collo-

cation methods such as OTIS (Ref. [3]) and FON-
PAC (R.ef. [4]) . All of these programs rely on op-

timization algorithms which require objective function

and constraint gradient data during the iteration pro-
cess. However, most trajectory optimization problems
lack simple analytical expressions for these derivatives.
In the general case a function evaluation involves in-

tegrating aerodynamic, propulsive and gravity forces
over multiple trajectory phases with complex control
models. With the newer collocation methods, the in-

tegration is replaced by defect constraints and cubic

approximations for the state. While analytic gradi-
ent expressions can sometimes be derived for trajectory
optimization problems, the derivation is cumbersome,

time consuming and prone to mistakes. Fortunately,
an alternate method exists for the gradient evaluation,

namely finite difference approximations. In this paper
some finite difference gradient techniques developed for

use with the GTS system are presented. These tech-

niques include methods for computing first and second

partial derivatives of single and multiple sets of func-
tions. A key feature of these methods is an error control

mechanism which automatically adjusts the perturba-
tion size to obtain accurate derivative values.

Numerical derivative methods for optimization ap-

plications have been studied elsewhere. In Ref. [5]
a method for approximating Jacobian matrices based

on balancing the truncation and rounding errors is

presented. An error control method is proposed for

forward difference gradient approximations of a single
function in R.eft [6]. The methods developed in this

paper share many ideas with these studies. A key dif-

ference is the technique developed for approximating
the truncation errors during reperturbations.

The first derivative techniques considered below all

use a central difference approximation requiring two ad-
ditional function evaluations for each variable. While

one sided differences can sometimes be used, it is dif-

ficult to choose an appropriate perturbation size with-
out additional function information. In order to ob-

tain this information, extra function evaluations are

required which negates any computational savings of

using a one sided partial. Also, in cases where sev-

eral nonlinear functions are simultaneously differenti-

ated using a common perturbation, the choice of the
perturbation size is less critical with the more accu-

rate two sided differences. The increased accuracy af-
forded with central differences is especially important

during the final optimization algorithm iterations to
obtain convergence.

Error Sources in Numerical

Derivative Calculations

The special case for a single function f dependent on

a single variable z is considered first. Tile function
f along with its higher derivatives are assumed to be

smooth. It is important to distinguish between the
function f, and an approximation f which is computed

by a numerical procedure. The mathematically defined
function f is free of any error sources, and can be eval-

uated precisely. When a numerical scheme is used to
approximate f, error sources which are inherent in the

numerical computation arise. It is emphasized that the

purpose of the numerical differentiation is to approxi-
mate the function f'. The function ]', defined in the

mathematical sense as a limit, is usually zero.

A constant el, called the function accuracy tolerance,
is assumed to exist such that

I/(_)- f(_)l S el

for allx of interest.The valueof el depends on the

computational technique and the number of digits, N,
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retained in the computation. For simple analytic func-

tions a good approximation is

es = I](=)le-_

where e,,_ is the machine precision (e,n _ 10(I-N)).
The central difference formula for the derivative of f

is given by

f'(z) = f(z + h) - f(z - h) + T(z,h)
2h

where T(z, h) is the truncation error. This error term

depends on the the third derivative of f and is equal to

T(=,h) = --_ f_s)(_)

for some point _ in the interval [z - h,z + hi. When
numerically evaluated values of f are substituted, the
result is

/,(_) = ](x + h) - ](_ - h)
2h + R(z,h)+T(z,h) (1)

The term R(z, h), called the roundoff error, combines
the function accuracy errors at the two points and is
bounded as

{R(z,h)[ < el/h (2)

In practice the unknown error terms in Eq. (i) are

dropped, and the derivative is approximated as the cen-
tral difference using the ] values.

Numerical Derivative Calcula-

tions With Error Control

To determine if the derivative approximation is suit-

able, a method for measuring and controlling the error
terms is required. A performance index is defined as the

sum of the errors, and the value of h is sought which
satisfies

min{T(z, h) + R(z, h)} (3)

The error control mechanism is simply a means of ad-

justing the perturbation size h to approximately solve

this problem. This technique is derived assuming an
initial perturbation size h is given. The steps to ap-

proximate the errors and derive a new pertu:bation size
h" are outlined.

Error Estimates With Three Function

Values

The bound from Eq. (2) is used to approximate

R(z, h). The truncation error term involving the third

derivative of f can not be accurately approximated

with only three function values. Special assumptions
must be made in this case to obtain estimates for this

term. Following Ref. [5] if f"(z) _ 0 and h is suffi-

ciently small, it can be shown that

6 I f(z+h)+f(x-h) I[fCs)(_)l < _-_ f(z)- 2 (4)

Substituting ] values, the truncation error is bounded
as

< ](x + h) - 2](=) + ](_ - h) lh2 = kh2IT(=,h)l
2h 3 I

(5)

Reperturbation Computations

Adding the two bounds, the sum of the truncation and
roundoff errors is estimated as

_s(h) = _j/h + kh2 (6)

where k is obtained from Eq. (5). The value h ° which
minimizes eB is given by

= (3_I _ ,/3h" (211/s = (z)

With the new value h" computed, a test is applied

to determine if reperturbations are actually required.

In a neighborhood of the solution to (3) it is expected
that the total error is insensitive to small changes in h.
In addition since the error bounds are approximations,

only a rough solution to (3) can be found in practice.

The acceptance test requires a user supplied tolerance,

p > 1, on the accuracy desired in the perturbation size.
If

h"
P-_ < T -<p (8)

then the central difference gradient approximation for

f'(=) with perturbation size h is accepted. Otherwise,
h" is the new value and additional function values are

requested.

Refined Truncation Error Estimates

With Four Function Values "

The function is first evaluated at the point x+h °. Using

this new piece of information a better estimate for the
truncation error can be obtained as follows. Define the

quantities
A 1 =f(=+h)-f(z)

A_ = f(z - h) --f(x)
A 3 = f(x + h °) - f(:c) (9)

a = h'/h
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After manipulating Taylor series expansions, the third

derivative of f can be shown to satisfy

-_i -A2 A3

hSf(a)(x)/6 - 2(a - 1) + 2(a + 1) + a(a _ - 1) 4- Er

(10)
The error term Er depends on fourth derivatives of f
times the term h4. The third derivative estimate from

Eq. (i0) is used to approximate T(z,h), and a new
perturbation size hz is obtained from Eq. (7). The

new perturbation ratio, hJh, is then tested in Eq. (8).

If this test is satisfied, then the perturbation size h is

in fact acceptable, and reperturbations are not neces-

sary. This check is performed to avoid cases where the

truncation error estimates from Eq. (5) are erroneous
because only three data points were used.

Refined Truncation Error Estimates

With Five Function Values

When the ratio test fails, the function is evaluated at

z - h ° and an improved truncation error estimate is
obtained using five function values. Following Eq. (9),
define

A,I = f(x -- h') -- f(x)

From Taylorseriesexpansions,itfollowsthat

haf(a)(=)/6 = a (-A_ + A2 + a-'(Aa -- A,)) + Era

h4f(4)(=)/24 = tr (--A 1 -- As + a-2(As + A4)) + Er4

o"= l[(2(a 2 - 1))

(11)
The error terms Era and Er4 are proportional to h5

times quantities involving fifth derivatives of f. Drop-
ping the Era term, a refined second order approxima-
tion to f(a) is found which in turn is used to estimate

the truncation error T(z, h'). A new perturbation size

h "° is then computed via Eq. (7) with the new error
estimates. Once again the perturbation ratio test, Eq.
(8), is performed, and if the test fails then the whole

procedure is repeated with h'" as the new estimate. A

maximum of five reperturbations are allowed.

The method outlined above always computes the
derivative value with only two function values. It is pos-

sible during reperturbations to estimate the first deriva-

tive using the four function values available with a for-

mula similar to Eq. (11). These higher order approx-
imations are not utilized for the first derivative value

since they have larger rounding errors and unknown
truncation errors. In practice it has been observed that

for a suitable value ofh, the two point central difference
formula usually yields acceptable derivative estimates

for optimization applications.

Generalizations To Multiple

Functions and Variables

The extension of the method to multiple variables is
straightforward where the process is repeated for each

independent variable. The case of multiple functions

depending on a single variable is treated next. Assume
that the n functions of a single variable x are given as

fl(x),..., f,(_)

Inmost trajectoryoptimizationproblems the functions

are evaluatedsimultaneously.Thus, forcomputational

efficiencyitisrequiredto use a common perturbation

sizeh forthe n individualfinitedifferencegradientap-

proximations.

Ideally,function accuracy terms el(1).....el(n)

would be specified,and the rounding errorsineach cen-

traldifferencederivativewould be approximated as

e_(x, h) _. _I(i)/h

A simpler method uses a common unit accuracy term

eu for all functions where the errors are approximated
as

P_(x, h ) _. c,,Ifii/h

The truncation error estimates Ti(x,h) are approxi-
mated for each function as above.

The individual error terms are combined into a com-

posite performance index utilizing weighting terms.

Define the geometric average of the function deriva-
tives, computed with central differences, as

f'= _fmax{ If'l} v/max{ min {If'l}, ,,, }

The weighting term for each function is given by

1 if ]f[l < ._to, - 1/If'l if If;I >__]'

A performance index which measures the total

weighted errors is

_B(h) = _ wiR.i(z, h) + wiTi(x, h) = g/h + kh 2
i----I i----1

where the _ and k terms are weighted sums of func-

tion accuracy errors and third derivative approxima-
tions similar to Eq. (6). The remaining computations

follow the single function case. The parameter p is used

to determine if reperturbations are necessary, and the
truncation error estimates are refined using additional
data when it is available.
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Second Derivative Computations

The discussion so far was restricted to the computa-

tion of first derivatives. In postoptimality analysis ap-

plications, Ref. [7], it is necessary to compute numeri-

cal second derivatives of a function f dependent on an
n-vector x. An error control technique for this prob-
lem is addressed next.

Once again the single variable case is treated first.

It is assumed that a suitable perturbation size hi is

available for the central difference first derivative of ].
In postoptimality analysis this value is obtained from

the just completed optimization problem. The central

difference second derivative expression for f(z) is

:(=+hl - 2:/:) + :(=- h) h2f"(x) = n- + ]._ f(4)(¢)
(12)

where f(4) is the fourth derivative of f evaluated at a

point q: in the interval [z - h, z + h].

The roundoff error incurred when the numerically
evaluated function values ] are substituted is bounded

as

R(z, h) < 4el/h _

Following the same derivation for the central difference

first derivative, the optimum perturbation size that
minimizes the sum of the truncation and roundoff er-

rors in Eq. (12) is

( 3, I _,,2s,
h2 = 2 (Z3)

By combining Eqs. (7) and (13) and eliminating el, it
follows that

h2 = 2 \]'(a)/ (hl)(Ts) (14)

To obtain an initial perturbation size for the sec-

ond derivative calculation, the higher derivatives in Eq.

(14) must be eliminated. If the third and fourth deriva-

tives of f are assumed to be the same order of magni-
tude, then the optimal perturbation size for the second
derivative calculation is

h2 ,_- 2(hi) (Ts)

The second derivative computation begins by eval-
uating f at the points z 4-h2 and forming the cen-

tral difference approximation from Eq. (12). If no er-

ror control is desired, then the calculation is complete.

Otherwise two additional function evaluations are per-

formed at the points z ± 2h_. Using the five function

values now available, the fourth derivative of f can be

estimated using Eq. (11). A new perturbation size,
h_, is then obtained which minimizes the truncation

and roundoff errors from Eq. (13). The perturbation
ratio h_/h_, is tested as in Eq. (8). If the ratio test

fails, then h i is the new perturbation size and two more

function values are requested. The fourth derivative of

f is then estimated using function values at the five

points : x, x 4- h2, z 4- h_. This completes one cycle of
the method. A maximum of five reperturbations are
allowed.

The generalization to n variables first repeats the
above sequence for each variable. From this data the

diagonal elements of the Hessian with respect to x caa

be computed. The offdiagonal Hessian matrix elements

are obtained using a standard mixed derivative formula
utilizing two additional function evaluations for each

element. No error control is employed for the off diag-
onal elements due to the large computational expense

that would be required. For most practical case if er-

ror control is used for the diagonal elements, the off

diagonal Hessian elements computed with these same
perturbation sizes are usually accurate.

Implementation Details

The numerical derivative methods outlined above have

been implemented with the GTS system and also as
stand alone FORTRAN. The interface is consistent

with the reverse communication procedure described

in Ref. [8]. Some implementation details are discussed
below.

As noted in Ref. [5], the bound for T(x,h) from Eq.
(4) may be completely dominated by roundoff errors it-
self when h is too small. The truncation error estimate

is totally unreliable in this ease, and the perturbation
size must be increased. The refined truncation error es-

timates using additional function values are also prone
to catastrophic rounding errors if the perturbation sizes

are too small, or if the ratio a is too small or large.

In these cases, the perturbation size must be adjusted

based on rounding errors only. In the second derivative
calculations, the perturbation size is allowed to change

by at most a factor of ten (0.1 < a _< 10.) during a
reperturbation. This results in more stable truncation
error estimates.

Numerical first derivative computations are repeat-

edly performed during the optimization algorithm it-
eration. The finite difference perturbation sizes com-

puted at one point are retained for the next derivative
evaluation. In many problems it is sufficient to utilize

the error control at the initial point only, and leave h

fixed for all subsequent gradient evaluations. Options
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arealsoavailableto compute the gradientswith error

controleach time,or skip the errorcontrolprocedure

entirely.Recommended valuesfor the reperturbation

ratiofactorp range from 3 to 10.Smaller valuesresult

inmore reperturbations,and more accuratederivatives.

Finally,caremust be taken insettingthe functionac-

curacy parameters el(i). Ifthey are chosen too large,

then largerperturbationsizesresultwhich can lead to
inaccuratederivativesdue to increasedtruncationer-

ror. Ifthe function accuracy isunderestimated,then

rounding errorswilldominate. One usefultechniqueto

approximate these parameters isto examine the opti-

mizationoutput from a similarproblem ifitisavailable.

At the convergedpoint,the activeconstrainterrorsgive

a rough estimateof the constraintfunctionaccuracies,

(assuming tightconvergence was obtained.)With fea-

siblepoint methods, Refs. [8]and [12],intermediate

pointson the constraintsurfaceare generated,and the

functionaccuracy can be estimatedas the smallestin-

dividualconstrainterrorsobserved.

Example : Optimal Control

Space Shuttle Reentry

A shuttle reentry problem is used to illustratethe

derivativetechniques.This problem was originallyan-

alyzed in Ref. [I01,and more recentlyinvestigatedin

Ref. [ll]. The solutiontechnique requiressolvinga

two pointboundary valueproblem utilizingthe adjoint

equations.An initialstatevectorat the reentrypoint

with time to = 0 is given as

Altitude = 260000 ft

Longitude = 0 deg

Latitude = 0 deg

Velocity = 25600 fps

FlightPath Angle = -I.0deg

Azimuth = 90 deg

The desired conditions at the final free time t! are spec-
ified as

Altitude = 80000 ft

Velocity = 2500 fps

Flight Path Angle = -5.0 deg

Assuming a spherical earth model and simplified

aerodynamics, it is desired to find the optimal con-
trol profile which maximizes the downrange (final longi-

tude). The control profile is specified in terms of the an-
gle of attack a with the bank angle/3 held equal to zero.

The problem is formulated and solved using backward

trajectory propagation where the vehicle is initialized

at time t/ with the terminal constraints satisfied. The

eleven differential equations describing the state and

adjoints are integrated backwards to time to = 0, and

the altitude, longitude, velocity, and flight path angle

conditions specified above are imposed as constraints.

An additional optimality condition on the final value of
the Hamiltonian is imposed as the fifth constraint. The

latitude and azimuth are held constant throughout the

trajectory and eliminated from the problem.

The initial variable values and perturbation sizes

chosen are listed in Table 1. The perturbation sizes
were arbitrarily chosen as 10 -3 to 10 -s times the ini-

tial variable values. The maximum downrange reentry

problem was solved using fixed perturbation sizes and
with two different derivative error control schemes. The
first error control scheme used the method described in

Ref [5] with the unit roundoff error estimated as 10 -t2
. The other case used the method described in this pa-

per with a reperturbation ratio parameter p = 5. The

function accuracy errors, el(i) and constraint feasibil-

ity tolerances were chosen as

Constraint _ Tolerance

cl : Altitude at to I0 -s 10 -4

c2 : Longitude at to 10 -11 10 -s

c3 : Velocity at t0 10 -s 10 -s
c4 : Flight Path Angle at to 10 -12 10 -7

cs : Hamiltonian at t! = 0 10 -a3 10 -5

The optimizationoperator NLP3, Ref. [12],was used

to solvethe fiveequations in fiveunknowns. A stan-

dard Guass-Newton techniqueisemployed. The results

are summarized inTable 2 showing the totalnumber of

functionevaluations(FE's),number of FE's forgradi-

ents,number oftimes reperturbationswere performed,

finalrootsum square ofthe constrainterror,and the fi-

nal perturbationsizes.The case utilizingthe new error

controlmethod required reperturbationsfor the first

four variablesat the initialpoint. After thisno addi-

tionalreperturbationswere performed. The case with

the Ref [5]errorcontrolmethod required73 function
evaluations.The case without errorcontrolwas ter-

minated afterfivehundred functionevaluations.None

of the constraintswere satisfiedto within tolerance.

The high degree of constraintnonlinearityand poor

scalingcan be seen by examining some derivativeval-

ues.The constraintJacobian.matrix elements with re-

spect to the firstthree variablesranged from 0.720 to

.416x i0II. The third partialderivativesof the con-

straintswith respectto the firstthreevariablesranged
from -2.14 x 103 to -3.10 x 1024.

The perturbationsequence for variable I and the

resultingpartialsfor constraint2 are summarized in

Table 3. At the initialpoint the truncationerrorfor

constraint2 was dominant. The perturbationsizewas
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Table1 : Initial Variable Values and Perturbation Sizes

Variable

zt : Adjoint Altitudeat t;

z2 : Adjoint Velocityatt/

z3 : Adjoint FlightPath Angle at t!

z4 : FinalTime (t/)

zs : Final Longitude

|nitialValue Perturbation Size
-0.0110026242 10 -s

-0.682174037 lO -5

-0.906370867 10 -s
3633.710745265 sec 10 -a

187.508990542 deg 10 -1

Table 2 : Comparison Results With and Without Error Control

New Error Control Ref [5]Error Control _[9_F.a:.r_:o_gJ

Total Number of FE's 63 73 > 500

Number of FE's 5 5 > 47

Number of Perturbation FE's 58 68 > 460

Number of Reperturbations 4 9 0

FinalRSS ConstraintError .47× 10-29 .23x 10-16 .42x 10-3

Final Pert Sizeforzl .25x 10-9 .I0× I0-r 10-6

Final Pert Size forz._ .90x 10-8 .40× 10-7 10-s

FinalPert Size forz3 .21x 10-7 .79x 10-r 10-5

Final Pert Size for z4 .51 x 10 -1 .29 x I0 -s 10 -1
Final Pert Size for z5 .15 x 10 -t .014 10 -t

Point

Table 3 : Perturbation Sequence For Variable 1

AXl C9C2/C9Zl T_(z,h) R2(z,h) Total Rel Error (_B(h))

I .100 x 10 -5 -102358. 45705. 0.00001 575558.

.213 x 10 -9 -97078. 0.00024 0.0470 0.0712

2 .237 x 10 -9 -98063. 0.0028 0.0423 0.068
3 .245 x 10 -9 -96755. 0.0032 0.0409 0.068

4 .246 x 10 -9 -96750. 0.0029 0.0406 0.067

reduced once where the final derivative value was dom-

inated by roundoff. Note that the initial truncation er-

ror estimate from Eq. (5) was 45704, while the actual
change in the first derivative value, which also measures

the truncation error in this case, was only 5280. The

total relative weighted errors in the last column show
stable behavior after the initial point.

Tile case with fixed perturbation sizes failed due to
the inappropriate values chosen. This problem demon-

strates the importance of carefully choosing these pa-
rameters for trajectory optimization applications if no

error control is used. In practice the user should not be
burdened with this choice. As the above results show

the error control mechanism can automatically adjust

these parameters and make a dramatic difference in the

optimization algorithm performance.

To illustrate the second derivative techniques, a full
second order sensitivity analysis was performed. A sin-

gle perturbation parameter p was chosen as the ref-

erence surface area of the shuttle with nominal value

Sre! = 2690 ft 2. The GTS postoptimality analysis op-

erator, Ref. [7], was executed at the converged point.
The Hessian of the Lagrangian function was computed

with respect to the variables x and the parameter p.
The function accuracy and reperturbation parameters

were set equal to eI = 10-l°, and p = 5. In this case
all perturbations were performed with respect to the

scaled variables, and the techniques described in R.ef.

[7] were used to obtain the final unscaled sensitivity
data.

The Lagrangian Hessian diagonal elements required

11 sets of reperturbations. The fourth derivative esti-
mates obtained from Eq. (11) ranged from .97 x 10-6 to
.20 x l0 s. The sensitivity derivative of the optimal final

longitude, f', with respect to perturbations in S_e!, p,

423



wascomputedas

0f___"= -0.1556 x 10 -2 deg/ft 2
op

This value was verified by solving perturbed optimiza-

tion problems and found to be accurate to four signifi-

cant figures.

Future Work

The finite difference methods considered in this report

have been tailored for trajectory optimization applica-
tions where several nonlinear functions must be simul-

taneously differentiated using a common perturbation

size. Experience has shown that to obtain consistently
accurate derivatives and monitor the errors, two sided

differences are required. There are instances, however,
where one sided finite differences would suffice. At

points far from the solution, optimization algorithms

can make progress with one sided partials. If loose con-
vergence tolerances are employed, then "convergence"
can sometimes be obtained depending on the problem.

However, if tightly converged answers are sought, then
the gradient data must be computed more accurately

as the solution is approached which requires central dif-

ferences. A topic for future work is to extend the error
control techniques to compute both one and two sided
perturbation sizes. This could be done at the initial

point, and the optimization algorithm could proceed

with one sided partials until the errors become exces-
sive. The more expensive two sided central differences

could then be used to obtain final convergence.

Another topic of interest is to implement a method

to estimate the function accuracy error terms _j(i) at
the first point. Since the perfect mathematical prob-
lem model can not be evaluated in practice, this tech-

nique could only be approximate. However, based on
the numerical model it should be possible to determine
the noise level in f. Finally, the use of variable scal-

ing in conjunction with numerical differentiation is dis-

cussed in Ref. [6]. The second derivative techniques
developed in Ref. [7] perform all gradient calculations
with respect to scaled variables and functions. Utiliz-

ing scaling for first derivative computations is planned

and should result in improved methods.
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Introduction

The objective of this stndy is to illustrate an in-

tegrated, parallel design proced.re for optimal struc-
t.ral, aerodynamic, and aileron synthesis of an aircraft,

wing. Tile effects of combining weight minimization

with str.ctural tailoring (ply orientation and thickness)
of a lifting surface, together with the wing geometry

(sweep angle and taper ratio), and the aileron geometry
(spanwise location and chordwi_ size) .pen the lateral

control effectiveness are disc.s.a.d. Several optimization

st.dies for the minimization of aileron hinge moment

and wing weight, subject to a specified constant aircraft
roll rate at a design airspeed(roll _ffectiveness} are per-
formed.

Among the first historical aeroelastic stability and
control problems encountered were those that dealt with

the influence of wing flexibility on the roll response to
asymmetrical aileron deflection. Wing twist due to the

aileron deflection decreases the available aerodynamic
rolling moment which, in turn, may cause aileron rever-

s_[(definedas the airspeedat which no rollingmoment

due to the ailerondeflectionisgenerated}. Aileronre-

versalbecame a crucialdesignproblem for World War

lI fighters for which high roll rates at high speeds were

a prime combat mane.wr. In general, the sol.tion to
aeroela.stic difl]c.lties was to increa._ the torsional stiff-

nesq or bending stiffness, a sohltion that led to weight

increases rlint diminished performance in other areas[l].

The development of advanced composite materials

provides a new dimension to aircraft design but also cre-
ates the need for extensive computer analysis. Advanced

composites are advantageous not only because of their
high strength-to-weight characteristics, but also because.

they allow tile designer to alter and control aeroelas-

tic deformation in a beneficial way[i ]. Composites also
have made previonsly impractical design options(s.ch a.s

forward swept wings) feasible. In addition, automatic

control systems and their increased reliability provide
a new way of achieving gust load alleviation, maneuver

load control, ride control, and active flatter suppression.

Integrated. simultaneo.s design of an aircraft com-

I ('_.rl_'itla, te Stltdent. School of Aeronautics gg Astronatttit_.

_Prnfi,_.,mr. School of Aerona, tic, k Astrona, tica.

posite material wing structure incorporating active con-
trol technology and structural optimization techniques
requires a multidisciplinary perspective, To overcome

the complexity of the design problem and expensive

computation cost,procedures such as _ multilew=l de-

composition technique and analytic sensitivity compu-

tation have been suggested by Sobieski[2]. Recently'. the
study of aeroservoelastic tailoring to exploit, the inter-
action of aerodynamics, elastic struct.res, and controls

was reported by Zieler and Wei_haar[3], Wei._haar and

Nam[4], and T,ivne[5].

The present study is an extension of Reference [4].

Aileron hinge moment is the objective function to be

minimized. The decrease in the aileron hinge moment

can be converted into the wing weight red.ction, be-
cause the size of the hydraulic actuator to deflect the

aileron can be decreased. The ELAPS code[6, 7], a
general equivalent plate analysis program developed by

Giles is used for structural analysis. A constant load

panel method is incorporated to calc.late the aerody-
namic forces of the wing and hinge moment required

for aileron deflection. The wing planform is divided

into I00 panel ,segments as shown Figure 1. [n addition

to determining the "best" configuration for roll reqnire-
menta, the best spanwise location of the aileron for fl.t-

ter suppression is found by .sing Nissim's aerodynamic

energy concept[8]to determine wheti_erthe hest span-

wise aileron position for roll control is also acceptable

for flutter suppression.

Aeroelastic Analysis

The roll pffectivenes_ can be expre_.a-d in fnnetionai
form(in terms of steady-state roll rate, p. and d,_ign

airspeed. V) as follows{9]:

(_TV) ,_'fa Rollin.a pmue./60 = _ = Dampinq - in - roll (1)

where b is wing span and the rolling power is:

,vR = (Me,. + _rr,.)/_0 (2)

).fa,o and .tf_, ° are. the rigid rolling moment on the
undeformed wing structure due to the aileron d_-flecrion
60 and the correction of the rolling moment d.e to wing
flexibility, respectively. F.rther details about the roll

effectivene._s expression are contained in Rofi-rence [9].
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This roll effectiveness expression is an equality con-
straint for the design proced,re. The requirement.

(pb/gV)o "- constnnl, provides the required aileron de-
flection angle (60),,q from Equation I and determines
the required aileron hinge moment.

The aileron hinge moment. [f'ro,,,l is calculated us-

ing an aerodynamic panelling method and is the ob-
jective function for optimization. This hinile moment,

H.rot.,h required for the roll mane.ver is compo_d of

two r.erms[g]:

H'ro,,i = H,i_a + Hrl,r (3)

HR/f,_ is the hinge moment required for the

rigid(undeformed)wing structureand Hrre= isthe cor-

rectionto the hinge moment due to deformation.These

terms are functionsof the ply angle,skinthickness,and

wing and ailerongeometry. The expressionsforthe roll

effectiveness,hinge moment were programmed and at-

tached to the ELAPS code[g].
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Figure 1: Wing planform geometry.

Optimization Examples and Results

The generaloptimizationformulationiswrittenas
follows:

Minimize R(xi)

sllbje_t to I/ < _S(Xl) _< ilS, j = 1.2..... ,n

where x I is a design variable vector and lj, uj are
lower, and tipper limits of constraints(such as r_

q.irements tilat winlc tip twist does not ,.xceed some

value). To solve the optimization problem, Roaenbrock's

procedure[lO 1 was used. For this procedure, the deriva-
tives of the objective function with respect to design
variables are not needed, l|owewr, this algorithm may

be slow to converge.

Constraints are

1. (pb/2V) = 0.08, p= OO*/sec.

2. IWing Tip Twist I _<2.0"

3. 15% _< N= _< 85% of the semi-span

4. 0.2 <_ _re <_ 0.4

5. -30* _<A _<30"

6. 0.25 <_.A <_.0.75

The wing planform analyzed is shown in Fig.re I.

The design airspeed is 400 miles per ho,r at _s-

levet(q=_.84 psi), wing area and semi-span are 6050 in 2

and 110 inches. The wing skin consists of a symmetrical
composite laminate, modelled as a plate with six sym-

metrical layers. [8/+ 45°/- 45°],. The thickness of the
each layer is constant and is not. subject to change.

Aerodynamics

• sweep angle,A.

• taper ratio.A.
• flap-to-chord ratio,Ere.

• spanwise control surface
position.V4.

I Strncture Ii ply anlle,O,

H MINIMIZE
INGE MOMENT )

Control
• constant roll rate.

I * flap-to-chord ratio._T£.

I. spanwise control s.rface

I poeition.N=.

Figure 2: Wing design synthesis(first example).

Five design variables(listed in Figure 2) are .sed
in this optimization example. The integrated optimal

design system(shown in Figure 2) consists of Ibree sub-

systen_s(aerodynamics, structure, and control sizing and
placement), which are the f.nctions of the design vari-

ables. For the overall optimal design, three s.b-systems

must he accessed simultanemlsly. Although geometry

1
i
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such as wing sweep and taper will change during opti-
mization, wing area and span are fixed during the opti-

mization procedure to keep the _pect ratio of the wing
constant. Spanwi_ extent oflhe aileron is_t to he .30%

of the semi-span, hut the chord dimension can change.

Figure 4 summarizes the changes in wing planform

geometry and ply orientation during the optimal design

process. The initial ply orientation 0(shown in Figure l)

is 5° while the wing quarter-chord sweep angle is 1.5°.
These design variables converge to 32* and 25.5 °, respec-

tively. The optimal aileron position and flap-to-chord

ratio are 84% of tile semi-span and 0.2 which is the con-
straint boundary. Wing tip twist approaches the upper

limitof the constraint as shown Figure 5. Tileoptimal

hinge moment is 8841b-in.

In this optimization example, the aileron spanwise

po._ition was determined subject to the minimization

of hinge moment only. The aileron also can be used

for flutter suppression. Nissim's aerodynamic energy

concept[8] was used to determine the most effective
aileron spanwise location for fiu|.ter suppression. This

result is compared with that. for roll control.

Figure 6 shows the variation of "energy ratio" with

the aileron spanwise Iocarion when the ply orientation
is .t5 ° and the quarter-chord swap angle is 20 °. The

fl,tter speed V! is required to he X88 feet per second

when the control is active. A location corresponding to

the larger negative vMue of energy ratio represents the
more effectiveaileronspanwise locationtosuppressflut-

ter.The energy ratioiscomputed when V = l.IVl.Fig-

ure 6 slmws that the aileronshould be placedat about

70% of the semi-span in Ihis case. The best pceition of
the aileron for roll control is also good for flutter sup-

pre_ion inthisc_se.which istypicalofothersexamined.

For the previous optimization example, wing weight

was fixed. As the second optimization example, wing

weight is inc].ded as a part of the objective fi,nction and
the thickness coefficients of a skin layer are included as

design variables.

The skin layer thickness distribution _i(_c, _/) is ex-

pressed a.s a powsr series:

l'm t,D

f.,,,,CIi'/l (4)
m_l} n----I)

where _c,t7 are the nondimensionalized coordinates such

that _ refers to the chord and rl refers to the span, as

shown in Figure 1. Nine thicknes,s coefficients 1,-n of the
0 layer are included as design variahl_s. The thickness

distribntion of the n,ler layer is written as follows:

2

= (.+)
m----t1 n=O

The thickness distributions of Ihe other two +,15". --45"

layers are prescribed as follows:

t_ = ta = 0,025-0.015r/ inches (6)

The wing weight portion of the objective fnnction is

computed as follows:

W = e,_lf / pti(E,,rt)dE,drl= (7)

where p is the mass density of the material and the num-

ber of material layers is 6.

A total of 12 design variahles were used in the sec-

ond example. These are shown in Figure 3.

Aerodynamics

• flawto-chord ratio2TE.

• spanwise control surface
pcaition.Nd.

Strllcture
• ply angle.0.
• g thickness

coefficients.t,,n.

"x /

GE MOMENT _,J
ING WEIGHT_/

f
Control

• constant roll rate.
s flap-to-chord ratio.&rB.

• spanwi_ control s, rface
poaition,Na.

Figure 3: Wing design synthesis(second example).

Constraints for this optimization study are a,q fol-

lows:

t. (#12v) = o._2

2. Iwing tip twist} _ 3•

3. 15% <_ N4 <_ 85% of the _mi-span

4. 0.2 <__re _<0.4

5. Minimum thickness constraint (The layer thickne_

should be greater than zero.); The laver thickness
is checked at 6 different locations (the leading and

trailing edges of the wing root, mid-span, and tip),

The objective fimction J for the simultaneous min-
imization of the wing weight and aileron hinge moment

is expressed as a linear combinalion of the wing weight
and control surface hinge moment. This objective func-
tion is shown as follows:

W H

J = + :s o° (s)
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where 3 is the weighting; factor. This Factor will de-

pend upon the rHative weighting plated upon structural

weight and act.uai'or weight. _V and H are lhe wing
weight and aileron hinge moment. _f_ and [[0 are the [2]

wing weight and aileron hinge moment, for the initial ,_t

of the design variahlr._. Tile aileron hinge moment H" is
a function ot"the thickness coefTicienrs, ply orientation.

and aileron spanwise location and chordwise dimension.

Figure 7 shows the optimized wing thickness distri- [3]

hntion when the weighting factor/3 is 1.0. The thick-

ness of the iaminat.e is the largest at the leading edge

near tile wing root and the thickness constraint at the [4]
trailing edge of wing tip becomes active as the opti-

mization progresses. The initial wing weight is 64.?Ibs.
The final wing weight and hinge moment are 50.2tbs and

1.639.7 lb-in. The optimal ply orientation is 25° and the
aileron mid-span location is about 75% of the semi-span. [5]

Other examples from Reference [9] show that tile
optimizar.ion result is ._nsitive ¢o the initial design vari-

ables. [f the design proc_.s is started using a wash-in
laminate design(O = < /_ < 90'), the optimal ply ori-
entation remains in the wsmil-in region and the wing
sweepn aft to compensate for the effectsof the wash- C6]

in laminate. The converse,is true for the wash-out

laminate(-90° < 9 < 0°). To determine whether or not

the minimized hinge moment is global, the optimization [7]
analysis must be conducted using other initial values of

the design variables.

Conclusion [8]

Frown ther,e ]trotted examples, we have .,_-en that

_ileron si_,e and location, structural arrangement and

aerodynamic planform are highly interdependent. As a [9]
result, a p_rallel synlh_,_is procedure is invaluable.

The aileron hinge moment can be minimized by re-
designing the wing geometry and aileron flap-to-chord

ratio and spanwi_ location, and reorienting composite [10]

ply angles. The hinge moment and wing weight can be
minimized simultaneously. For the wing planform ge-

ometry u._d in this study, the final wing thickness dis-
tribntion shows that rhe leading edge area of wing root

is the thickest. The wing thickness decreases gradually

in the direction of the trailing edge of wing tip.

Althongh no attempt was made to include flutter

swzppresqionor o_.her maneuver criteria simultaneously,
there wa.q little difference between the best aileron loca-

tion for roll control and that for flutter suppression.
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Abstract

The influences of structural and aerodynamic modeling on multidisciplinary optimization in an

aeroelastie environment are not yet well understood. Therefore, optimizations with flutter and frequency

constraints were performed to investigate the effects these modeling factors have on various representative

wings. To this end, the Automated STRuctural Optimization System (ASTROS) was used as a tool to

minimize the weight of various fully built-up finite element wing models in subsonic and supersonic flow

under given flutter and frequency constraints. First, the performance of the optimization module was tested

against results from other codes on a straight and uniform wing widely used for optimization with flutter

constraints. Then, fuLly built-up finite element models of various wings with different aspect ratios were

investigated for the influence on the structural optimization for minimum weight of such modeling factors

as finite element selection, structural grid refinement; number of selected modes, retention of breathing

modes; selection of reduced frequencies to be used in flutter analysis; aerodynamic panel size and

placement; splining of the aerodynamic grid to the structural grid, selection of eztra poi,*.s c._f :_.-

structural wing box for splining; number of constraints to be relahned; etc. Knowledge of _._e. im:i::c:-ces

as well as of the program behavior is hnportant, since optimization can be made more efficient by d-,e

selection of reasonable initial models. Also, it was shown previously that modeling has an impact on the

results of modal and aeroelastic analyses. Thus, if modeling errors can negatively affect the analyses, a

minimum weight optimization can be jeopardized and result in an optimal design that is rather unreliable.

In the following, selected results are presented and the influences of some modeling parameters on

optimization are pointed out.

1. Introduction

In recent years, structural optimization as required and applied by the aerospace industry has

expanded in scope to include such additional disciplines as static and dynamic aeroelastieity, composite

materials, aeroelastie tailoring, etc. One of the more promising multidiseiplinary codes presently under

development is the Automated STRuctural Optimization System (ASTROS) [I-3]. In this computer code,

smile, dynamic, and frequency response finite element structural modules, subsonic and supersonic steady

and unsteady aerodynamic modules, and an optimization module are combined and allow for either analysis

or optimized design of given aircraft configurations. Interfering surface aerodynamics are incorporated to

handle the aerodynamic modeling of combinations of wings, tails, canards, fuselages, and stores.

Structures are represented by finite element models, constructed from rod, membrane, shear, plate, and

other elements. Static and dynamic aeroelastic capabilities include trim, lift effectiveness, aileron effec-

tiveness, gust response, and flutter analysis.

In the present paper, as part of an ongoing effort to gain a better understanding of the optimization

process with aeroelastic constraints, the optimization portion of ASTROS was used together with the

normal modes and flutter module for various investigations of fully built-up finite element wing models

in subsonic and supersonic flow to determine the influences of structural and aerodynamic modeling as

well as splining on optimization with flutter constraints and, thus, to investigate the behavior of the flutter

and optimization modules of the code. This knowledge is incidental to the understanding of the dynamic
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behavior of wings during the optimization process. It is also expected to result in better initial models and,

thus, a more efficient optimization cycle.

First, the performance of the optimization module was evaluated against results reported in the

literature on the straight untapered wing used by RudisiU and Bhatia [4], McIntosh and Ashley [5],

Segenreich and Mclntosh [6], and others for structural optimization with flutter constraints. This wing was

chosen since it represents one of the very few models where all structural, material, and environmental data

are given for aeroelastic analysis and optimization with flutter constraints. Then, a set of test cases was

selected consisting of a high aspect ratio swept and tapered wing, a medium aspect ratio straight wing with

a tapered section toward the wing tip, and a low aspect ratio swept and tapered fighter-type wing (Fig. I).

The straight wing and the high aspect ratio wing were evaluated at subsonic Mach numbers while the

fighter wing was investigated for flutter at subsonic and supersonic speeds. These latter three wings were

modified derivatives of the wings used in the investigation of the influence of modeling on normal modes

and flutter analysis by Striz and Venkayya [7].

High Aspect RJ_fio Wing Medium Aspect Ratio Wing Low Aspect Ratio Wing

Figure I. Wing Models Used in the Optimization Test Cases

2. Background

The importance of this investigation can be seen from the following example: It is generally

understood that membrane elements when used for spars and ribs overpredict the stiffness of a wing. Thus,

when the wing used by Rudisill and Bhatia was modeled by the present authors by replacing the front and

rear spar membrane elements with shear elements, the natural _equencies of the first three bending modes

dropped from 10.5, 55.9, and 125.8 Hz to 6.3, 37.6, and 110.3 Hz, respectively. This kind of change in

wing bending frequencies can have a considerable impact on control surface performance and flutter.

However, this example represents only a structural modeling change. In flutter analysis and optimization

with aeroelastic constraints, the aerodynamic modeling also affects the results: the number, size, and

distribution of the aerodynamic panels and the splining between the aerodynamic points and the structural

grid. Since optimization is only as good as the associated analyses, it can, in some cases, compound and

exaggerate errors arising from these. Thus, if modeling errors can have a considerable impact on the

quality of the results of the associated analyses [7], optimization can be seriously jeopardized to the point

where the resulting optimal design can be very unreliable. In the cited example, use of the stiffer

membrane elements resulted in a 10% lower minimum weight design (38 lbs) as compared to the more
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realistic,leasstiffshearelements (42 Ibs).Ifflutteristhe drivingconstraint,thiscould leadto the design

of a su'ucturcthatispotentiallytoo weak. Itis,therefore,essentialthatthe initialdesignsused in optimi-

zationarefeasibleand modeled correctlyespeciallywhen buih-upfiniteelement structuralmodels areused

rather than the previously more common beam models.

Thus, fully built-up finite element structural models for the four wings were evaluated for their

behavior in optimization and the influence of such modeling factors as finite element selection, structural

grid refinement; selection of upper frequency bounds; aerodynamic panel size and placement; splining of

the aerodynamic grid to the structural grid; the selection of extra points off the su'ucturaJ wing box (MPCs)

for better mass distribution and aerodynamic splining; solution procedures such as reduction schemes; etc.,

and selected results axe presented.

3. The Rudisill and Bhafia Wing Model

As mentioned in Reference 7, one of the drawbacks of this model lies in the fact that no non-

structural mass was included in the model. Thus, the mass center of the wing coincides with the elastic

axis, resulting in a close proximity of flutter speed and divergence speed. Here, for the base model with

skins, ribs, and webs all modeled by membrane elements, the flutter speed for an input Mach number of

M - 0.5566 and an altitude of h - 10,000 ft was calculated by ASTROS and MSC/NASTRAN as 10,881

in/seeand 10,500 in/see,respectively,with divergence speeds of 11,900 in/seeand 11,500 in/see,

respectively.The flutterspeed shown in Fig. 3 of Reference 4 for the initialconfigurationwas about

10,800in/see.When theoptimizedversionsof the model asobtainedinReferences5 and 6 were analyzed

forflutter,theywere found toallencountera divergencespeed much lower thanthe speed used as a flutter

constraint.Itseems thatnone oftheseoptimizationsincludedthepossibilityof divergenceas a flutterroot

with zero frequency.Thus, theseoptimizedresultsseem to have been limitedto flutterconstraintsonly

and would have resultedin designed wing models thatconsiderablyexceeded theirdivergence speeds.

First, in order to test the influence of the finite element selection on the optimization, the spar webs

as well as the ribs were alternately modeled as shear elements and as membrane dements. The rest of the

model was kept as in Reference 4. All inplane displacements were removed from the analysis set by Guyan

reduction. Optimization results are presented in Table 1.

It can be seen that changing the ribs from membrane elements to shear elements did not influence

the optimized weight at all. However, when the spar webs were changed from membranes to the more

realistic shear elements, there was a significant increase in the optimized weight due to the fact that the

natural frequencies, especially for the bending modes, as well as the divergence and flutter speeds all

dropped significantly, showing the all-membrane model to be non-conservative. When non-structural

masses were added to the all-shear model, the minimum weight stayed essentially the same, but now

Table 1. Varying Element Types on Wing of Reference 4 (9 Design Variables)

Rib Elements:

Spar Elements:

Membrane Shear Membrane Shear

Membrane Membrane Shear Shear

Shear/Mass

Shear/Mass

Initial StructuralWeight:

Optimum StructuralWeight:
Aeroelastic Mode:

195.92 195.92 195.92 196.04 196.04

37.69 37.69 41.76 41.79 41.68

Divergence Divergence Divergence Divergence Divergence
No Flutter No Flutter Flut. Close Flut. Close Flutter
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the divergence and flutter speeds almost coincided for the optimized structure.

To examine the influence of the number of aerodynamic boxes on the wing, various paneling

schemes were chosen for the model with shear elements for spar webs: 6 spanwise boxes x 4 chordwise

boxes, 6 x 9, 24 x 4, and 24 x 9, respectively. The results suggest that a reasonably coarse mesh, especially

in chordwise direction, can be used to save computer time for preliminary optimization and design, since

it seems to result in a conservative approximation to the minimum weight.

4. Three Wing Models with Different Aspect Ratios

The three wing models represent, in that order, a swept and tapered transport/bomber type wing

of high aspect ratio, a straight and partially tapered light transport/combat aircraft type wing of medium

aspect ratio, and a swept and tapered fighter type wing of low aspect ratio. AU necessary dimensions and

parameters are available in Reference 8. Some selected structural and environmental data for these wings

are given in Table 2.

The structural models for the three wings were bnilt from rod, membrane, and shear elements to

Table 2. Environmental, Initial Geometrical, and Material Property Model Data
, : . ,,,, , _

HIGH ASPECT RATIO WING: (Transport/Bomber, M = 0.87, h = 30,000 ft)

Variation:

Thick-

nesses:

Areas:

Seven ribs, fourteen ribs, twenty-one ribs

Shear panels: 0.145" to 0.1" in ribs (for 14-rib); 0.2" to 0.1" in spars
Membranes: 0.3" to 0.1" in skins

Spar stiffeners: 0.15 in2 (for 14-rib) Spar caps: 3.6 to 3.0 in2

MEDIUM ASPECT RATIO WING: (Light Transport/Combat Aircraft, M = 0.58, h - 5,000 ft)

Variations:

Thicknesses:

Areas:

No MPCs, aerodynamic MPCs, mass MPCs; aerodynamic mesh variations

Shear panels: 0.08" in spars/ribs Membranes: 0.06" in skins, 0.08" in ribs

Spar stiffeners: 0.2 in 2 Spar Caps: 1.0 in2

LOW ASPECT RATIO WING: (Fighter, M = 0.85, h = 5,000 ft; M = 1.5, h = 30,000 ft)

Variation: Five spars, ten spars

Thick-

nesses:

Areas:

Shear panels:

Membranes:

Spar caps:

Spar stiffeners:

0.08"{I} / 0.12"{II} in ribs; 0.15 to 0.06" in spars (5-spar)

0.135 to 0.05" le/te, 0.075 to 0.03" int., in spars (10-spar)
0.25 to 0.04" in skins

2.0 to 1.0in2 {I}/ 1.0to 0.5 in2 {Ill(5-spar)

1.75 to 0.88 in2le/te,1.0 to 0.5 in2int.(lO-spar)

0.05 in2

Material for all wings is Aluminum: E = 10,000,000 Ib/in 2, v = 033, 0 = 0.1 Ib/in 3.

ALl values decreasing from root to tip.
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Table3. Spanwise Structural Variation, High Aspect Ratio W'mg (7 X 5 Aero Mesh)

# of Ribs: Seven Fourteen Twenty-One •

# of Design Variables: 13 26 13 26 13 26

Initial Structural Weight: 10205.6

Optimum Structural Weight: 6408.8

10205.6 10205.4 10205.4 10205.2 10205.2

6341.3 6498.3 6447.8 6371.9 6352.4

represent the wing boxes with spars, spar caps, spar stiffeners, ribs, and skins. Here, the rods corresponded

to spar caps and spar stiffeners, the membranes were used for the skins, and the shear elements for the spar

webs and the ribs of the wings.

a) High Aspect Ratio Win_: For the high aspect ratio wing, the su'uctural weight was assumed to be about

30% of the overall weight of the wing, with the other 70% distributed as non-structural masses at all nodal

points. In the optimization process, Guyan reduction was applied to retain out-of-plane displacements only.

A flutter constraint of 14,000 irdsec was chosen together with a lower bound of 1 Hz on the lowest natural

frequency. For this wing, the influence of structural complexity in spanwise direction was evaluated by

varying the number of bays in the wing from seven to fourteen to twenty-one while keeping the total

weight constant. This increase accounts for a more uniform distribution of mass and stiffness without

changing their overall values. Reasonable element aspect ratios were exceeded to determine how forgiving

the structural modeling process is (Table 3).

From these results, it seems that the most reasonable fourteen bay wing showed the most

conservative results while the other two wings yielded lower minimum weights. This could be due to the

stiffness distributions in the respective models, especially in the root area, or due to the somewhat

excessive aspect ratios. In all cases, an increase in the number of design variables resulted in a lower

weight as expected since a finer discrete distribution of masses is possible.

b) Medium Aspect Ratio Wing: For aLlmodels of the medium aspect ratio wing, the structural weight was

assumed to constitute about 30% of the overall weight of the wing, with the other 70% distributed as non-

structural masses at all structural nodal points and MPCs. The flutter constraint chosen was 14,000 in/sec.

Here, the influence of the aerodynamic wing model complexity was evaluated. The number of aerodynamic

boxes on the wing was increased from an initially very coarse grid (5 spanwise boxes by 5 chordwise

boxes) by increasing the number of spanwise and chordwise subdivisions. The reasonable aspect ratio of

the aerodynamic boxes was exceeded to determine how forgiving the aerodynan_c modeling process is.

The results for some of these cases are presented in Table 4.

Here, the models with less spanwise boxes showed slightly higher minimum weights with virtually

no variation due to a change in the number of chordwise boxes. This seems to indicate that a coarse

aerodynamic mesh can be used for preliminary design and will result in a conservative design.

Table 4. Aerodynamic Mesh Variation, Medium Aspect Ratio Wing (31 Design Variables)

Panel Mesh: 5x5 5xlO 11x5 llxlO 22x5 22x10

Initial Structural Weight:

Optimum Structural Weight: 177.7

576.8

177.3 170.6 168.6 167.5 166.5
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Table 5.Use of MPCs, Medium Aspect Ratio Wing, I:EPS=-0.02; If:EPS=-0.03; HI: EPS--0.05

(5 x 5 Aero Mesh, 31 Design Variables)

'3

MPCs: None Aero Mass Aero+Mass

Upper Frequency Bound: 50 Hz 100 Hz 50 Hz 100 Hz 50 Hz 100 Hz 50 Hz 100 Hz

Init. Struct. Weight:

Opt. Struct. Weight:

576.8

I 170.3 184.2 157.4 157.1 229.9 477.0 175.6 180.0

II 179.1 184.2 157.4 157.1 229.9 477.0 175.3 175.6

lII 179.1 186.4 157.4 157.1 229.9 477.0 175.6 206.4

Finally, the use of multi-point constraints (MPCs) was evaluated. These MPCs add non-structural

points rigidly splined to existing structural points for two purposes: to attach non-structural masses for

better overall mass distribution and to add points to which the aerodynamic loads can be splined for better

aerodynamic load distribution.They had been used in allof the above mentioned computations for the

medium aspectratiowing along with Guyan reductiontoonly out-of-planedisplacements.Three different

valuesof the constraintretentionparameter EPS were applied:-0.02,-0.03,and -0.05,as well as two

values for the upper frequencybound on the modal flutteranalyses:50 I-Izand 100 Hz. For thisstudy

only,theverticalsparstiffenerswere eliminatedand the ribsconvertedfrom shearto membrane elements

to eliminatebreathingmodes.

It seems (Table 5) that, for a given combination of upper frequency limit and constraint retention

parameter EPS, the use of MPCs for better distribution of the non-structural mass away from just the

structural wing box has the effect of increasing the optimized weight coupled with a lowering of the flutter

speed found in the accompanying analysis. This may be caused by the larger rotational moments produced

by these offsets. The use of MPCs for splining the aerodynamic forces to a larger area than just the

structural wing box had the opposite effect, i.e. the optimized weight was even lower than for the case with

no MPCs. This was consistent with a considerable increase in the flutter speed from the accompanying

analysis. When the two sets of MPCs were combined, however, the minimum weight of the structure was

comparable to that for the case of no MPCs. Thus, mass MPCs seem to be a necessity for obtaining a

conservative weight in optimization, even though the lack of aerodynamic MPCs may result in too high

a minimum weight. Also, an increase in the upper frequency limit, i.e. in the number of modes retained

in the flutter analyses, resulted in an increase in the minimum weight for all but the aerodynamic splinlng

results while the effect of a change in the consta'aint retention parameter had, for most cases, little

influence. However, both of these parameters have to be chosen with care.

c) Low Aspect Ratio Wing: For the low aspect ratio wing, non-structural mass in the amount of 2400 lbs

was distributed over all nodal points and a mass of 200 lbs for a tip store with launcher over the wing tip

points. No MPCs were used, since the wing box covers a large part of the projected wing area. Aero-

dynamic meshes of 5 x 5 and 15 x 15 boxes were chosen. A flutter constraint of 25,000/n/see was

applied. For this wing, the influence of structural complexity in chordwise direction was evaluated. Starting

with a reasonable model for the wing box using five internal spars, the wing was subdivided by adding

five more spars while keeping the total weight constant. The influence of a more evenly distributed

stiffiaess and mass arrangement was thus evaluated. Both, subsonic and supersonic analyses were

performed. Results for the subsonic case only (M = 0.85) are presented in Table 6 for aerodynamic meshes
of 5 x 5 and 15 x 15 boxes.

The results suggest that distributing mass and stiffness more evenly in chordwise direction allows
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Table 6. Varying Spar Number on Low Aspect Ratio Wing, Aero Mesh a) 5 x 5 b) 15 x 15

# of Internal Spars:

# of Design Variables:

Five Ten

6 18 6 26

Initial Structural Weight:

Optimum Structural Weight:

I

II

Ia

Ib

Ha

Hb

497.8 497.7

402.7

330.3 228.0 Ia 303.6 202.8

352.6 237.0 Ib 328.5 208.6

322.6 218.6

362.4 228.4

the optimization to optimize more members and thus leads to lower final weights. The same is, of course,

true when the number of design variables is increased. It should be noted that the five spar wing with 18

design variables resulted in a lower weight than the ten spar wing with six design variables suggesting that

it might be advantageous for the preliminary sizing of wings with flutter constraints to use a relatively

simple model with a reasonably large number of design variables rather than go through the effort of

creating a more complex model. Since the initial structure {I} of the five spar wing had somewhat

oversized spar caps but undersized shear webs, both sets of values were adjusted in structure {II } to result

in a 19.1% lighter wing with a more balanced size and mass distribution. However, this only resulted in

a slightly lower overall weight in the optimization (less than 5% for the structural weight and less than

0.5% for the total weight of the wing). When the fine aerodynamic mesh was chosen (15 x 15) rather than

the coarse (5 x 5), the resulting minimum weights were somewhat higher (generally less than 12% for the

structural weight and less than 1.5% for the total weight of the wing). However, for preliminary sizing,

the coarser mesh resulted in much shorter CPU times (for ten spar wing with 26 design variables, the CPU
times were 0:12:06 for the 5 x 5 mesh and 1:28:55 for the 15 x 15 mesh on the WRDC/FDL VAX8650).

5. Discussions and Recommendations

The influences of structural and aerodynamic modeling on optimization and the minimum weight

design of built-up finite element wing models were investigated using the optimization module of the

Automated STRuctural Optimization System (ASTROS). This was done to gain a better understanding of

the optimization process with dynamic aeroelastic, i.e. flutter, constraints. Several wends could be observed

during the course of the modeling and the optimization even though it is understood that, until many more

cases have been evaluated, any set of analyses has to be regarded as more or less wing type and model

specific.

A quick initial evaluation of a preliminary design with a reasonably coarse model for both the

structure and the aerodynamics will result in an optimum weight that is close to that for a more detailed

model though not always conservative. Here, a finer chordwise structural distribution seems to yield a

better pay-off in terms of a lo_;er minimum weight while, for the aerodynamic modeling, a finer spanwise

distribution seems preferable.

The selection of the correct finite elements for modeling the structure is rather critical since, e.g.,

choosing membrane instead of shear elements for spars can result in non-conservative minimum weights

in optimization. Further, care has to be taken when selecting the modes included in the optimization. In-

plane modes as well as extensional modes of the vertical spar connecting rods can cause convergence

problems and should be eliminated. For wings where chordwise bending modes are not expected, it is
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suggested to increase the frequency of the extensional modes by eliminating the connecting rods and

converting the shear elements generally used for ribs to membrane elements. For fighter type wings with

possible chordwise bending modes, the upper and lower wing surfaces can be connected by MPCs instead.

Finally, the number of modes retained for modal flutter analysis during the course of an optimization can

affect the computed optimum weights as can the selection of the constraint retention parameter. Thus, these

two parameters have to be carefully chosen.

The use of mass MPCs is advised for a more realistic mass distribution and seems to yield rather

conservative results, while the use of aerodynamic MPCs for a better aerodynamic force distribution seems

to lower the minimum weights in a non-conservative fashion. Depending on the model, the omission of

aU MPCs can lead to lower weights and, thus, be non-conservative as well.

Future work will include investigations into the influence of how the aerodynamic forces are

splined to the structure, into the effect of input Mach number on optimized weight, and into the use of

move limits in optimization. Optimization with strength and static aeroelastic constraints is being

performed at present. Eventually, these constraints will be combined with the flutter constraint to evaluate

the behavior of representative wings in a true multi-disciplinary optimization environment and to allow for

a more general understanding of the modeling influences on such optimization.
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Preliminary Design Optimization of Jolned-Wing Alrcratt

John W. Gallman,* Ilan M. Kroo,t and Stephen C. Smith °

Introduction

"1

The joined wing is an innovative aircraft configuration that has a its tail connected to the

wing forming a diamond shape in both top and plan view. 1 This geometric arrangement utilizes

the tail for both pitch control and as a structural support for the wing. Several researchers

have studied this configuration and predicted significant reductions in trimmed drag or struc-
tural weight when compared with a conventional T-tall configuration. _'3 Kroo et al.4 compared

the cruise drag of joined wings with conventional designs of the same lifting-surface area and

structural weight. This study showed an 11% reduction in cruise drag for the lifting system of

a joined wing. Although this reduction in cruise drag is significant, a complete design study
is needed before any economic savings can be claimed for a joined-wing transport. Mission

constraints, such as runway length, could increase the wing area and eliminate potential drag

savings.

Since other design codes do not accurately represent the interaction between structures and
aerodynamics for joined wings, we developed a new design code for this study. The aerodynam-

ics and structures analyses in this study axe significantly more sophisticated than those used

in most conventional design codes. This sophistication was needed to predict the aerodynamic

interference between the wing and tail and the stresses in the truss-llke structure. This paper
describes these analysis methods, discusses some problems encountered when applying the nu-

merical optimizer NPSOL, s and compares optimum joined wings with conventional aircraft on

the basis of cruise drag, lifting surface weight, and direct operating cost (DOC).
Analysis Methods

The analysis methods required to estimate transport aircraft performance throughout all

phases of a medium range mission were developed for the design code. However, the most

interesting optimization problems were associated with the aerodynamic and structural analyses.
Since these analyses axe also the most important for the estimation of joined-wing performance,

they are described below. Methods used to calculate mission constraints such as range and
runway field length are described in ref. 6 along with the objective function, DOC.

The aerodynaraic analysis is performed by a subroutine version of the LinAir _' program.
This program solves the Prantl-Glauert equation with a vortex-lattice model and calculates

induced drag using Trefftz-plane integration. Figure 1 shows llft distributions for both the wing

and tail of a typical joined wing and a top view of the vortex-lattice model. The aerodyaa_c

modeling is sophisticated enough to represent changes in the wing's lift distribution due to flap
deflection and changes in the tail's lift distribution due to elevator deflection. Fuselage and
engine nacelle models were needed to accurately calculate the downwash on the tail and hence

the tail's contribution to pitching moment and static stability.

Both the wing and tail structures are modeled with variable cross section skin-stringer
beams (see Fig. 2). These beams utilize an asymmetric material distribution to support a

bending moment which tends to be oriented diagonally across the structural box, as described

in ref. 1. Joining the wing and tail structures with a rigid joint causes reaction forces that relieve

wing bending moments inboard of the joint. Since a solution of beam deflections is required

to calculate the magnitude of these joint reaction forces, the stress distribution depends on the

stiffness of the structure. This dependency of stress on stiffness forces our design algorithm for
this structure to be iterative.

A fully-stressed design method sized the structure with a closed-form solution for material

thickness in terms of structural loads and the allowable stress. Multiple load cases including

positive gusts, negative gusts, and maneuver loads axe considered. The method analyzes the

* Aerospace Engineer, NASA Ames Research Center, Moffett Field, California

t Assistant Professor, Stanford University, Stanford, California
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structure with an initial material distribution for each load case, calculates the thicknesses such

that the maximum stress in all members is equal to the allowable stress and determines the

structural weight of the wing and tail. These structural weights are compared with the weights
associated with the initial material distribution. If the new and old weights differ by more that

10 -5, the method updates the initial distribution and repeats the analysis. A more detailed

description of this method is given in ref. 6. Solving for member thicknesses with this method
reduced the number of design variables for the optimization problem by 160, and hence the

computer time required for an optimum solution.
Optimization

Two interesting problems were encountered during application of numerical optimization to
the design problem. The first problem was associated with an error in the calculation of induced

drag which was caused by a discontinuity in the panel width of the vortex-Iattice model. This
error mused the numerical optimizer to suggest that unrealistic wing twists were optimum.

Figure 3 shows lift distributions calculated using a wing-fuselage model with constant panel
widths and a model with a discontinuity in panel width at the wing-fuselage joint. Although

the panel discontinuity is exaggerated in Fig. 3, a difference of 10% in panel width produced

significant errors in the twist distributions of optimum solutions. Since a constant panel width
was needed to obtain realistic solutions, wing and tail span had to be input parameters rather

than continuous design variables. The second problem was function noise which was caused
by the convergence criteria used in the structural design algorithm. This problem was solved

by exercising the input option for NPSOL that accepts a user specified function precision.

Using this option allowed an update of the initial material distribution without introducing a
discontinuity in problem functions and saved 33% in overall computational time.

The optimization problem consisted of 11 design variables and 9 constraints. Fig. 4 shows
the design variables, the constraints, and a flowchart of the design code. Explicit nonlinear

constraints simplified the design code by eliminating the iteration loops found in other design
codes, s NPSOL, a gradlent-based optimizer, used a sequential quadratic programming algorithm

to solve the design problem. This algorithm solves a quadratic subproblem to determine the

appropriate search direction in design space and performs a line search in this direction which

minimizes an augmented Lagrangian merit function. Figure 5 shows the iteration history of the
objective function, and the norm of the constraint function violations for a typical 11 variable 9

constraint problem. This figure shows convergence to the Khun-Tucker conditions for optimallity
in two hours and twenty minutes of computational time on a VAX 3200 workstation. Increasing
the feasibility tolerance for the constraint violations from 10 -s to 10 -s could save much of this

computational time during conceptual design.
Results

All joined-wing design results are compared with similarly designed conventional T-tail

aircraft on the basis of drag, weight, and DOC. The values calculated for drag, weight, and

DOC are all normalized with respect to values calculated for a reference airplane that is very
similar to a MacDonnell Douglas DC-9-30 transport. Since the Pratt and Whitney JT8D-9

low by-pass ratio engine was used on the DC-9-30, a variable-size version of this engine is used
throughout this design study. The mission considered is to transport 115 coach passengers 900

nautical miles at a cruise Mach number of 0.78. All designs have a stick-fixed static margin of
0.359 based on a reference chord of 13.69 ft. A balanced runway length of 6500 ft at sea level
is used for the take-off and landing field length constraints. Other constraints include a second

segment climb gradient greater that 2.4%, a cruise thrust greater than cruise drag, and cruise

trim at cruise lift coefllcient. Sui_cient pitching moment for take-off rotation is also required.

Parametric studies of both wing and tail span were performed for joined-wing transports.

These studies indicated that the optimum tail-to-wing span ratio was approximately 0.7, as

suggested in ref. 4 for a single cruise design point. Also in agreement with ref. 4 is the trade-off

between drag and lifting surface weight shown in Fig. 6 for joined wings with a tail-to-wing
span ratio approximately equal to 0.7. Figure 6 shows joined wings with a span of 110 ft having

approximately 11% less cruise drag than the reference airplane. The 99 ft span joined wing
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indicates a savings of 8% in cruise drag and 10% in lifting surface weight. Reference 4 assumed

that the joined wing would have a lifting surface weight equal to a conventional design to resolve
the trade-off between drag and weight. This study indicates that the design with the lowest

DOC (9% drag savings) has a relative weight of 0.95 instead of 1.0. A compromise between

maintenance costs which increase with span (weight) and fuel costs which decrease with span

(drag) produces this savings in DOC. Our studies have shown that considering a complete

mission reduces the potential savings in DOC from 3.2% to the 2% shown in Fig. 6 for a joined
wing with a span of 104.5 ft. The primary reason for this is that a larger wing was required to
meet the take-off and climb constraints. This increase in surface area increases the skin friction

drag which in turn increases the DOC. Extra wing area was needed for these joined-wing designs
because of the larger tail downloads required to trim at the high wing lift coefficients used in

second segment climb. Therefore, maximum lift capability seems to be a crucial design issue
for joined wings.

A study of the sensitivity of these "optimum" designs with respect to the take-off, climb,
and static stability constraints is needed before choosing the best joined-wing or conventional

configuration. NPSOL chose a wing area of 825 .ft 2 for the optimum conventional T-tail design

which was 175 ft 2 less than the reference airplane. This could be caused by a difference in fuel

costs or runway length constraints used to design the reference airplane. The optimum wing
area for the joined wing was 925 ft_. The large taildownloads that cause thisincrease in wing

area also increase the induced drag of joined wings during cruise. Since reducing the required

staticmargin willdecrease the trim loads,further improvement can expected for joined wings

with reduced stability.Conventional designs require very littletailload to trim indicating less

potentialfor improvement with reduced stability.
Conclusions

The resultspresented demonstrate the usefulnessof numerical optimization in preliminary

aircraft design and indicate that joined wings are promising alternatives for medium range

transports. A 9% savings in drag with a corresponding savings of 2% in DOC was shown for a

joined-wing transport with a span of 104.5 ft and a tail-to-spanratioof approximately 0.7. A

sensitivitystudy with respect to staticstability,climb gradient, and runway length would also

help identify the best joined-wing transport. Optimum solutions were determined efficiently

and accurately by using constant panel widths in the aerodynamics model, decomposing the

structuraldesign from the optimization problem, and developing analysismethods for the design

code that do not use iterationloops. Future applicationof these ideas should help optimization

become a more useful design tool.
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LARGE SCALE NONLINEAR NUMERICAL OPTIMAL CONTROL

FOR FINITE ELEMENT MODELS OF FLEXIBLE STRUCTURES/
/

Christine A. Shoemaker and Li-zhi Liao
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Abstract

This paper discusses the development of large scale numerical optimal control algorithms for nonlinear

systems and their application to finite element models of structures. This work is based on our expansion of

the optimal control algorithm (DDP) in the following steps: a) improvement of convergence for initialpolicies in

nonconvex regions; b) development of a numerically accurate penalty function method approach for constrained

DDP problems; and c) parallel processing on supercomputers. The expanded constrained DDP algorithm was

applied to the control of a four-bay, two dimensional truss with 12 soft members, which generates geometric

nonlinearities. Using an explicit finiteelement model to describe the structural system requires 32 state variables

and 10,000 time steps. Our numerical results indicate that for constrained or unconstrained structural problems

with nonlinear dynamics, the results obtained by our expanded constrained DDP are significantly better than

those obtained using linear-quadratic feedback control.

I. Introduction

The discrete-time optimal control problem studied in this paper has the following format:

N

rain _ g(=,,u,,t) (i.i)
(UlV",UN)

t=l

where zt+l =/(zt,ut, t) t = 1,...,iV- 1, (1.2)

xl --- _1 given and fixed

where zt E R" and ut E R" are state and control variables; the function g : R '_+"+1 _ R 1 is the

objective function (or performance index); and the function f : R "+m+l _ R" is the transition

function. In some cases, there are constraints on state and/or control variables of the form

h(zt,ut, t)<O t=l,...,N, f0rh:R "+m+l_Rp. (1.3)

In the following analysis, all of the functions g, f and h may be nonlinear. The differential

dynamic programming (DDP) algorithm first suggested by Mayne [6] and expanded by 3acobson

and Mayne [Z]addressed unconstrained problems of the form (i.1)-(1.-9). Ohno [S] and Yakowitz
[11] introduced methods for constrained differential dynamic progrartmaing (CDDP) problems.

Yakowitz's theoretical development is limited to linear constraints and has been implemented

on sizable problems with linear constraints (Jones et al [2]). Ohno's method has not been

numerically implemented on large scale problems.

Liao and Shoemaker [5] recently proposed a new algorithm, which is called Constrained

Differential Dynamic Programming (CDDP), for solving general nonlinear constrained problems.

This algorithm is based on penalty function method, QR factorization and matrix partition

techniques, and the unconstrained DDP algorithm. Numerical results of the CDDP algorithm
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on some test problems with hundreds of state variables and nonlinear constraints on both state

and control variables were also presented in [5]. Liao [3] has proved that 1) when the penalty

parameter approaches its limit, the CDDP algorithm is globally convergent and converges to

a local minimum; and 2) the CDDP algorithm does not suffer from the numerical problems

associated with the traditional penalty function method. The leading terms in the computational

complexity for the worst case of the CDDP algorithm per iteration are the following:

n(n 16 s 1 1+ m)2+ -g-m + + m)2+ - + + (m - + 2(m- ,),' (1.4)

where s is an integer between 0 and rn, and the forward simulation is not counted here (for

details, see Liao [3]). Shoemaker et al [10] have reported numerical results on parallel process-

ing for the Liao and Shoemaker [5] constrained differential dynamic programming algorithm.

Computational time was reduced by a factor of about two thirds with the use of six parallel

processors on the Cornel] Supercomputer, an IBM 3090-600E. Vetorization was very effective in

reducing computation time.

II. A Nonlinear Structural Control Application

2.1 Description of a general structural control problem

There has been little literature on the optimal control of nonlinear structures, and to our

knowledge, no previous research on the coupling of nonlinear optimization to nonlinear finite

element structural models. There have been many applications of optimal control techniques to

flexible structures but most of them use LQ (Linear system dynamics, Quadratic performance

function) techniques that assume the system's dynamics are linear. The major advantage of LQ

is that feedback control can be rapidly computed. Previous workers have used LQ control policies

computed on the basis of a linear approximation of nonlinear dynamics hoping this control would

work reasonably well on nonlinear systems.

The results presented here indicate that nonlinear DDP optimal control policies based on the

nonlinear dynamics of a structure perform significantly better for nonlinear structures than do

the conventional LQ control policies. Both the DDP and CDDP algorithms provide time-varying
feedback control laws.

Following the description in Shoemaker et al [9], the dynamics of the structure are described

by:

M . dt + c . d, + K(d,) . d, = p, + B(d,) . u, (2.1)

where dt is the vector of nodal displacements at time t, dt 6 R"; dt is the vector of nodal velocities

at time ¢, dt 6 Rn; dt is the vector of nodal accelerations at time t, dt 6 R"; K(dt) is the stiffness

matrix, K(dt) 6 Rn×n; M is diagonal mass matrix, M 6 R"×"; C is mass proportional viscous

damping matrix, C 6 R"×"; B(dt) is control influence matrix, B(dt) 6 R"×m; pt is external load

history vector, Pt E Rn; and ut is control forces vector, ut 6 R m.

The criterion used to select the optimal policy is the discretization of the Objective function

suggested by Miller et al [7]:

N

E (OK, tdTKdt + OM,tdTMdt + 8B,,uTB TKo I But)
t=l

(2.2)

F
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where the 0% are weighting parameters, K0 = K(0) and dTKd, , _Z[Mclt, uTBTKo 1But are

measures of strain energy, kinetic energy and potential energy, respectively.

The terms K and B introduce geometric nonlinearities into the system because they are

functions of d. In addition, it is necessary in some situations to put constraints on the control

vector ut of the form

u_ i" _< ut _< u_ "_ (2.3)

where u_ _" and u_ _z are given parameters that reflect the range of force of the controller.

2.2 Formulation of the transition equation

Since the DDP and CDDP algorithms solve the discrete-time optimal control problem, we

need to discretize the differential equation (2.1). After introducing difference equations in

equation (2.1), we have

_t+l

where

A1 = (I,
h2M-iK

_hM-1K\

P' ) (2.4)+ B1 B-ut

hI, - h2M-1C _ ( h2M -1 h2M -1)in _ hM_iC ], BI "- hM_ 1 hM_ 1 , (2.5)

and h is the time difference used in the difference equations.

The stiffness matrix K is a quadratic function of dr, and can be expressed as

1 1 g (2.6)
K = Ko + _ KI + -_ 2

where K0 is a constant matrix, K1 is a matrix only having linear terms in dr, K2 is a matrix

only having quadratic terms in dr. Now, we define our state variable as

z,- hdt e for t =I,-..,N (2.7)

and keep the control variable unchanged for the DDP and CDDP algorithms. Then, our final

transition equation is

( P' ) ,-1,...,N-1 (2.8)z,+l = A4 • zt + B4 B • ut

where .44 and B4 are derived from terms in (2.4) - (2.6) as described in Liao [3]. The matrices

A4 and B are functions of z, and hence (2.8) is nonlinear.

2.3 A four-bay nonlinear structural control problem

In this section, we will apply the theory discussed in previous sections to the optimal control

of a four-bay, two dimensional truss with 12 soft members that generate geometric nonlinearities.

There are two actuators that act parallel to the length of the structure; see Figure 1.
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Fig. 1 A two dimensional four-bay truss.

Some Speciflcatlons of the Problem

1) The damping matrix C is assumed to be zero.

2) The

3) The

4) The

5) The

control influence matrix B is constant.

dimension of the nodal displacement vector n = 16, i.e. dt E R 16, then zt E R s2.

dimension of the control force vector m = 2, i.e. ut E R 2.

external load vector

Pt "- (0_'. "_ 0,--0.07, 0, 0) T E R 16 I < t < 757, Pt = 0 E R 16 l[ > 758. (2.9)
14

6) The time interval in the explicit time-marching scheme h = 0.0003299998 sec.

7) The total time steps N = 10,000.

8) The weighting parameters 0/_,t = 1, OM,t = 1 and OB,t = 2.

9) The units used in this truss are dt (inch), dt (inch/sec.), pt (kip), ut (kip), h (sec.), energy

(inch.kip).

10) In the constrained case, the constraint function is -0.05 < (ut)i <0.18, i = 1, 2, t = I,..., N.

The dynamics for the nonlinear system in Table I axe generated by the dynamics of equation

(2.8) with the actual stiffness matrix K, which is represented by equation (2.6). For the linearized

system, however, the dynamics are simulated with equation (2.8) and the assumption that K is

constant, i.e. K = K0. The objective function (2.2) is the sum of strain, kinetic and potential

energies. Our goal is to minimize this function which, since K is a second order function of zt,

results in a fourth order polynomial function of the state vector. The initial value of the DDP

algorithm in Table 1 is the nonlinear system closed-loop linear feedback. The adaptive shift

procedure (see Liao and Shoemaker [4]) was used. It took 44 iterations of the DDP algorithm to

reach the optimal solution. Table 1 gives the values of objective function for the unconstrained

system. We see that the total value of the objective function is reduced by 27% when the

linearized feedback control is replaced by the optimal DDP solution although our experiments

showed that the nonlinear system is not very nonlinear, i.e. uncontrolled trajectory does not

differ very much between the nonlinear and linear systems.

Table 2 considers the case in which the control forces are constrained to be in the range

from u_ i" = -0.05 to u[ha= = 0.18 kip. There is no linear theory for the constrained problem

so the most direct way to use linear feedback is to apply the control force

u, = Min(u'_"=,Ma=(uyi",A, + Btz,)), (2.1o)
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x,+1 = T(x,,..,,,0 (2.11)

where At and Bt define the linear feedback control law for minimizing (2.2) given (2.7) assuming

for both cases that KI and K2 -- 0 (i.e. K =/t0).

Table 1 Unconstrained Case: Table entries are values of the objective

function (inch.kip) and their percentage contributions to the total.

No Control

Linear System

Strain

8639.54

(51.2%)

Kinetic

8222.65

(48.8%)

Potential

No Control 7964.70 7832.03 0.0

Nonlinear System (50.4%) (49.6%) (0.%)

Linear System with 772.45 494.93 1536.82

Linear Feedback (27.5%) (17.6%) (54.8%)

NonLinear System with 618.79 364.86 1376.30

Closed-loop Linear Feedback (26.2%) (15.5%) (58.3%)

379.03

(21.9%)

Optimal Solution

from DDP

668.93

(38.6%)

684.61

(39.5%)

Total Energy

16862.2

(100.%)

15796.7

(100.%)
2804.19

(100.%)

2359.94

(100.%)

1732.57

(100.%)

Table 2 Constrained Case: Table entries are values of the objective

function (inch.kip) and their percentage contributions to the total.

Strain Kinetic Potential

Truncated Closed-loop 989.54 797.19 984.46

Linear Feedback (35.7%) (28.8%) (35.5%)

Truncated Unconstrained 863.81 634.04 593.36

Optimal DDP Solution (41.3%) (30.3%) (28.4%)

Optimal Solution from 722.28 432.26 639.68

Constrained DDP (38.6%) (21.9%) (39.5%)

Total Energy

2771.19

(100.%)

2091.20

(loo.%)
1794.22

(lOO.%)

Equations (2.10) and (2.11) define the truncated closed-loop linear feedback policy in

Table 2. The truncated optimal DDP policy is ut = Min(u'_"_,Maz(u'_in,u;(z)) where

u_(z) is the optimal DDP solution to the corresponding unconstrained problem. The results

of these policies are compared to the solution obtained using the constrained version of DDP.

The initial value of the CDDP algorithm in Table 2 is the truncated unconstrained optimal DDP

solution. The adaptive shift procedure (see Liao and Shoemaker [4]) was used. It took 45

iterations of the CDDP algorithm to reach the optimal solution. The results in Table 2 indicate

that the policy computed by the constrained DDP algorithm is much better than the truncated

linear policy since the objective function value is 35% lower for the optimal constrained DDP

algorithm than for the truncated linear policy.

These results support the use of the DDP algorithm, especially in its constrained version, for

active control of flexible structures since obviously better control is obtained. The advantages
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of using nonlinear optimization techniques as opposed to a linear feedback would be expected to

be even larger for a more nonlinear structure. The advantages of our algorithm are significantly

enhanced when there are constraints on the controls since linear feedback theory assumes the
controls are unconstrained.

III. Conclusions

Our numerical results indicate that substantial improvement in performance can be gained

by using a nonlinear optimal control algorithm rather than by applying LQR theory to a lin-

earized approximation of the nonlinear system. However, the computational requirements will

be significantly larger for DDP than for LQR and hence increases in performance will require

increases in computational resources.
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HYPERSONIC VEHICLE DESIGN
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Sunnyvale, California

ABSTRACT

The Payload Conceptual Sizing Code (PAYCOS), a new multidisciplinary computer

program for use in the conceptual development phase of hypersonic lifting vehicles (HVs), is

described. The program, written at Lockheed Missiles and Space Company in Sunnyvale,

California, allows engineers to rapidly determine the feasibility of an HV concept and then
improve upon the concept by means of optimization theory.

The code contains analysis modules for aerodynamics, thermodynamics, mass properties,

flight stability, controls, loads, structures, and packaging. Motivation for the code lies with the
increased complexity of HVs over their body-of-revolution ballistic predecessors. With these new

shapes, the need to rapidly screen out poor concepts and actively develop new and better concepts

is an even more crucial pan of the early design process.

Preliminary results are given which demonstrate the optimization capabilities of the code.

INTRODUCTION

The detailed design of hypersonic lifting vehicles (HVs), such as a Maneuvering Reentry

Body (MaRB), is a complex and time consuming task, involving many people and years of effort.

Such a design effort consists of concept development, preliminary design, detailed design and
finally the fabrication of a prototype or flight test vehicle.

In the early design phases, beginning with concept development and continuing into

preliminary design, the emphasis is on evaluating the capabilities of many competing designs. To
accomplish this requires a synthesis of aerodynamics, thermodynamics, mass properties, flight

stability, controls, loads, structures, and packaging (i.e. a multidisciplinary approach).

Recently, effort has been directed into developing multidisciplinary analysis programs for

use during the preliminary design phase of aerospace structures 1.2. When coupled with

optimization theory, these tools are a powerful means of obtaining better designs. Unfortunately,

preliminary design tools arc generally not well suited for concept development. This is due in part
to the differences between concept development and preliminary design.

At the concept development phase, the emphasis is on obtaining an HV external shape that

satisfies various performance requirements. The vehicle can't be too long, too short, too heavy,

too stable, too unstable, etc. Each of the flight disciplines has to be considered in a global manner

(that is, how one discipline effects, either positively or negatively, the others). Once suitable

shapes have been found, the preliminary design phase begins.
In preliminary design, it is structural optimization which becomes important. The analysis

becomes more focused; constraints are tightened, subsystems are defined and analyzed, and
complex phenomena such as buckling and flutter are studied, all of which lead to a general increase

in pre-processing, run, and post-processing time. Thus, preliminary design demands a greater

degree of detail than is required for concept development and takes far longer than a small analysis
team has in the short amount of time allocated for HV concept development.
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The purpose of the Payload Conceptual Sizing Code (PAYCOS) is to bring

multidisciplinary analysis and optimization directly to the concept development level and give

engineers the ability to screen out poor designs and actively pursue promising designs prior to the

preliminary design effort.

OVERVIEW

From the beginning, it was realized that PAYCOS had to be: a) rapid, b) modular, c)

accurate, and d) portable. PAYCOS had to rapidly perform the data synthesis, and hence the sizing

process, to allow a great many configurations to be analyzed in a short amount of time. PAYCOS
had to be modular so that the code can be easily modified and enhanced. PAYCOS had to have

sufficient accuracy so that the zero and ftrst order concept level results would carry through to

detail design. Finally, PAYCOS had to be able to run on a wide variety of computer platforms

with little or no changes to the code.
PAYCOS is capable of sizing a wide range of hypersonic vehicles from body-of-revolution

derivatives (Figure la) to complex glide vehicles (Figure Ib).

(a) Body-of-Revolution Derivative (b) Glide Vehicle

Figure 1: Common Hypersonic Lifting Vehicles

The code consists of modules for each of the major flight disciplines. A brief description of
each Module is as follows:

Startup Module - To provide the estimates required to "kickstart" the analysis modules.

Geometry Generation Module - To provide a geometric exterior shape through a discrete number

of input variables.
Panel Generation Module - To mesh the external geometry with flat four noded panels.

Aerodynamic Module. To calculate aerodynamic coefficients for each geometric panel.
Static Swvey Module - To determine the flight stability of the vehicle.

Controls Module - To determine control system requirements.

Mass Properties Module - To provide mass and mass moment of inertia distributions.

Packaging Module - To provide payload and subsystem packaging requirements.

Loads Module - To provide external pressures and axial, shear and moment distributions.

Structures Module - To provide skin and internal structure weight and volume.

Optimization Module - To improve the original design.
Post Processing Module - To provide sorting, plotting and comparison capabilities.
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The PAYCOS modules are based as much as possible on known analysis techniques and
tools. As an example, the Aerodynamics Module uses SIMP, a specially modified version of

SHAB 3 (the Supersonic-Hypersonic Arbitrary Body Program, developed at McDonnell-Douglas).

Whenever new coding is required, as was the case for the Mass Properties, Packaging and

Structures Modules, a thorough technical validation is performed.
The coding of each module follows a set of common software standards. The modules are

connected through software framework that is monolithic (see Figure 2) for fast execution time, yet

supports a command language and database management system compatible with existing software

at Lockheed Missiles and Space Company 4. All computer coding is done in ANSI standard Fortran
77.

Figure 2: The PAYCOS Hypersonic Vehicle Analysis Program

To date PAYCOS has been successfully run on VAX, IRIS and CONVEX computers.
Execution time is well within acceptable limits for rapid concept evaluation. A single analysis takes

approximately sixty seconds on a VAX 780, twenty seconds on a Personal IRIS Workstation, and

four seconds on a CONVEX C220. Very few problems were encountered during the porting

process.

Optimization Capabilities

PAYCOS is used in two capacities: a) to rapidly analyze a given concept, and b) to improve

upon that concept through optimization theory. The heart of the Optimization Module is ADS 5, the

Automated Design Synthesis program which has been used successfully throughout the Aerospace

Industry. Commands are available which give the user complete control over the optimization

process including save, continue and restart capabilities. Additional capabilities, like looping and

conditional checks, are made available through a Fortran-like language 6 that can be executed from
inside the data deck.
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Thc optimization problem solved in PAYCOS is expressed as

f(X)Minimize

Subject to:

g/x) < o;j = 1,m

Xti < X i _. X"i; i = I,n

Where X is a set of bounded input variables (design variables), fiX) is a single function (objective

function) being minimized (or maximized), and g/X) are the inequality constraints.

PAYCOS allows for a good deal of flexibility when it comes to the optimization problem

statement. The Optimization Module contains a library of candidate objective and constraint
functions. A partial list of available objective and constraint functions is given in Table 1.

Table 1

Available constraint/objective functions

1 Total weight 6 Roll stability
2 LifVdrag 7 Internal volume
3 Yaw stability 8 CG = Cp + offset
4 Roll efficiency 9 Flap loads
5 Ballistic coefficient 1 0 Trim

Design variable definition is completely up to the user. Typically, the PAYCOS design

variables are the inputs to the Geometry Generation Module and the optimization process is one of

aeroshaping. The Geometry Generation Module consists of a number of design specific geometry

generators. This means that a body-of-revolution derivative has a different geometry generator than

a delta wing "glider", which has a different geometry generator than a dart shaped "evader". This is
in lieu of much more difficult task of developing a single universal generator that lends itself to

efficient aeroshape optimization. A single flag is used to tell the Geometry Generation Module

which generator to use.

Preliminary Optimization Results

The Optimization Module containing ADS has been successfully linked with PAYCOS and

a variety of optimization problems have been successfully run. In Figure 3, the iteration histories
of two functions are given for one such test case. Quanitity values have been intentionally deleted.

In Figure 3a, yaw stability (the objective function) is shown. In Figure 3b, lifVdrag (one of the

constraints) is shown. Note that although the test vehicle was made more yaw stable, as was the

goal, it was done so at the cost of lffVdrag.
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Of course, obtaining better designs is not the only value of using optimization. In concept

development, a "best" design can be considered secondary to understanding how a change in one

function affects another. The large amount of data generated during the optimization run can be
used to generate the desired sensitivity plots. Consider Figure 4a, where ballistic coefficient is

plotted against yaw stability, and Figure 4b, where roll efficiency is plotted versus vehicle weight

for the optimization problem of Figure 3. The trends are obvious: As yaw stability increases,

ballistic coefficient decreases, and as weight increases, roll efficiency remains fairly fiat.
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Part of the validation process involves tailoring ADS to the types of optimization problems

PAYCOS is used to solve. From the start, the preferred optimization method was the modified

method of feasible directions 7 with polynomial interpolation used for the one dimensional search

(ISTRAT= 0, 1OFT= 5, INOED= 7) because of its robusmess in handling initially infeasible

designs. The relative convergence criteria has been relaxed to a 5% change in objective function
(WK(12) = .05) with the absolute convergence criteria (WK(8)) set according to the chosen
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objective function. To avoid having to create a Sensitivity Module, the internal ADS f'mite

difference routine is used to calculate the function gradients. A f'mite difference step size of 5%

(WK(21) = .05) is used in most cases.

_ ,_i_

,t

Conclusion

PAYCOS brings optimization directly to the concept level in a multidisciplinary hypersonic

vehicle analysis code designed from the start to be used very early on in the design process.

PAYCOS greatly increases the ability to rapidly generate feasible and improved hypersonic lifting

body designs by providing not only designs themselves but also the means of understanding

sensitivity of competing design requirements.
Version 1.0 of PAYCOS is scheduled for completion in Fall 1990.
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Introduction

The design of complex engineering systems such as aircraft, automobiles and computers is primarily a cooperative

multidisciplinary design process involving interactions between several design agents. The common thread

underlying this multidisciplinary design activity is the information exchange between the various groups and

disciplines. The integrating component in such environments is the common data and the dependencies that exist
between such data.

This may be contrasted to classical multidisciplinary analyses problems where there is coupling between distinct

design parameters. For example, they may be expressed as mathematically coupled relationships between

aerodynamic and structural interactions in aircraft structures; between thermal and structural interactions in

nuclear plants, and between control considerations and structural interactions in flexible robots. These

relationships provide analytical based frameworks leading to optimization problem formulations.

However, in multidisciplinary design problems, information based interactions become more critical. Many times,

the relationships between different design parameters are not amenable to analytical characterization. Under such

circumstances, information based interactions will provide the best integration paradigm, i.e. : there is a need to

model the data entities and their dependencies between design parameters originating from different design agents.

The modeling of such data interactions and dependencies forms the basis for integrating the various design agents.

Disparate CAD/CAM systems and Data Management Problems

There is a large body of information and expertise that must be harnessed and made available both during, and

subsequent to the design stages. The information that is to be made available to aid a particular designer is very

difficult to handle - it is widespread, diffuse and unorganized [ALEX64], and originates from different sources

and is conveyed in different mediums. This information is usually not accessible in a manner that permits the

designers to best utilize it.

Progress in the development of computer aided design and computer aided manufacturing (CAD/CAM) systems

has largely been driven by specific task automation needs. Drafting, conceptual solid modeling, finite element

analysis, tolerance analysis, simulation of motion, tool path simulation, numeric control, automated process

planning systems are among several tasks that have been significantly computerized. In such CAD/CAM

environments, the designer's principal directive is to generate a geometric model of the product. This model

serves as the primary input to several of these analyses, simulation and validation systems. Current CAD�CAM

environments are largely driven by this master geometry model. However, the issue of allowing these CAD

systems to interact with data generated by the engineering design process has not been investigated from the

standpoint of provMing collaborative capabilities within these CAD systems. This paper will attempt to study this

interaction in more detail. Within this context, we shall introduce the notion of the design action:

* curmndy with Structural Dynamics Research Corporation, Milford, OH- 45151

457



the design action is the designer's point of influence on the product, It is introduced here as a means of referring

to the interaction between the designer and the computer tool (in this case the CAD system) as it relates to the

prevailing design process.

In order to externalize the designer's information burden in such environments, our objectives are :

• To study the engineering design process from the standpoint of information flows

between interacting design agents

Define a framework to integrate the design process with the design action -

specifically:

• Provide conceptual centralization of design life cycle data

• Define a design environment to facilitate interaction with related design agents

• Ensure data consistency between the design environment and the centralized

life cycle databases

Scope of this Initiative

We shall investigate these _sues from the standpoint of the CAD system as the o_esign action. A similar set of

capabilities may be applied to a design action such as an FEM program. The key paradigm is to integrate the

design action with the prevailing design process and to externalize the information management capabilities

relative to the multidisciplinary data interactions. The following methodology was used to address these issues:

• Identification of a thin slice of the problem domain for detailed study

• Data Collection using protocol studies

• Data Analysis and data modeling

• Prototype Development research issues

• Prototype Implementation

The design and manufacturing activities at a major computer manufacturing plant provided the thin slice for the

case study. The multidisciplinary design considerations were investigated by studying the interactions between

designgroupssuchas mechanicaldesign(sheetmetalhousingdesign),hardwareboard design( VLSI boards)

and components engineering(variouscomponent specificationssuchas diskdrives,switches,fans,linefilters,

power supplies,etc.).Afteridentifyingthe significantdataentitiesand theirdependencies,entityrelationship

models [TEOR86] and constraintnetworks[SRIR89] were definedtocapturetheinterdependencies.The entity

relationship model identifies cardlnality and entity-attribute relationships between data entities or objects. The

conswaint network models the various compatibility relationships between d_esedata entities. These relationships
may be formula basedor heuristic based. These models are adapted to the geome_c objects represented in CAD

systems by allowing textual attributes to be attached to the geometric objects. This enhanced representation

permits linkages to be established between different geometric entities, This is the basis for the collaborative

interaction between the CAD system design action and the data entities generated by the prevailing design

process.

The Design Model: Data and Constraints

Designorganizationsconsolidateseveralactivedesignagentsthatmay work ina concurrentor serial mode and

may ormay notbe independent.Pahland Beitz[PAHI..84]stressthattheneed forinterdisciplinarycollaboration

isimperativetodesigninlargescaleorganizations.Further,theynotethatthereadyavailabilityof a wide range

of comprehensive and problem-orientedinformationisof utmost importancein the design process. The

integrationproblem is todevelopstrategiesto supportthe collaborationof designagentsin solvingcomplex
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tasks. Here we assume that design agents are assigned to subtasks decomposed along discipline and functional

boundaries and may require different problem solving skills, and methodologies. The purpose of this
collaboration is to reduce the uncertainty and the resulting contingencies associated with the subtasks.

Let us consider a design agent, A. The input data is represented by Ai and is made available to A by the various

upstream functions, U. The design agent acts on this information and zransforms this data based on the operator

characteristics (_i) into output data (Ao) that is communicated to the downstream functions, D. In order to ensure

that the operator's (Oi) characteristics are consistent with both the upstream and the downstream functions, it is

necessary to impose a consczint function _i that incorporates the data interdependencies that exist between the

upsueam functions, U, the current function, .4, and the downstream functions, D. Figure 1 shows a simple model

describing this requirement. Ai, Ao are the dam inputs and ou_uts with respect to _.

!
Figure 1 : Design. Data Input I Output Model

In the present case, the operator (Oi), represents the designer and the design action. The design action must

therefore be capable of sharing data with the serial/parallel functions. In order to provide such extenmlization

capabilities at the design action, the design action must allow the designer to interact with the design process in in

effortless manner. Figure 2 illustrates the nature of such an environment.

:{t_',ll'_l ll:lll I _ ;
[

I CONDITIONS 1 SERIAL /

PARALLEL
FUNCTIONS

{USE" 1 LOCALIZED DATASETS

Figure 2 : Integration of Design Action

with Environment

Figure3 :Manual InteractionBetween Deligner

and CAD/CAM Environment

The user interacts with a CAD system, which in turn is intimately integrated with both the geometric database as
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well as a blackboard. The life cycle data is maintained by several interacting disciplines and is indicative of the

current state of the design and may be viewed as an information blackboard. Such a configuration ensures that the

design action has access to up-to-date design data originating from different participants or teams in a distributed

design environment. It must also be possible to manipulate these databases from the design action.

The compatibility requirement between the life cycle data and the geometric database dictates that changes in one

system trigger changes in the other system as appropriate. This configuration significantly externalizes the data

communication and consistency requirement that is required of design processes involved in mukidisciplinary

design by teams. This contrasts to the manual interaction mode illustrated in figure 3 which introduces

inefficiency in the design process.

Proposed Architecture

Given the scope of this paper, this section describes an architecture to provide such externalizing capabilities at

the CAD system ( the design action).

¥!

I __-- _ * l"Trt'trrt /

INIgOItMATION BASED
BLACKBOARD SY_IT.M

Figure4 :IntegratedFramework

The integratedframework supportsan inferenceengine,a grammar module,a geometrydatabase,a blackboard

DBMS, a feamrizerand a geometry engine. The geometry enginemanipulatesthe geometry database( only

geometry)directly,whereas thefeaturizermanipulatesthegeometrydatabaseas wellas theattributesasper the

grammar modules' or inferenceenginesdirectives.The grammar module retrievesdatafrom the geometry /

attribute database as well as the blackboard database and manipulates the blackboard data and the

geometry/attr/bute directly through the featurizer. The inference engine defines rule activations using facts

derived from the geometry/atlribute database and/or the blackboard data and may change the blackboard data

directly and may also manipulate the geometry/attribute database via the featurizer. The components of the

integrated framework are listed below:
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Geometry / Attribute Database: The geometric entity is an aggregation of attribute values and a geometric

object. In figure 5, the aggregation refers to the collection of primitive geometric elements which are combined in

a specific manner to def'me the geometric entity. The description is a collection of attributes that describe the

geometry. Furthermore, relationships between the attributes and the geometric object must be made available as

atvropriate. The entity is identified by pointer and type identifications. The attributes may provide information

about positional and dimensional aspects (location, length) or about the linkages between different geometric

entities ( adjacency, connections) as well as descriptive data ( voltage, power, part#).

G_aqr Ob_

lqgure 5: Geometry + Description Schema

Information Based Blackboard System: A blackboard database is essentially a shared database that def'mes the

state of the product design to an expandable community of design agents. This state is an aggregation of the

contributions from several design agents. The blackboard therefore provides a forum for tracking the status of the

design at any point in time. In addition the blackboard provides control strategies to ensure consistency for data

originating from several design agents. This conceptually centralized database stores data from previous designs,

change re.quests, notes and related product information. Figure 6 illustrates the blackboard model.

Figure 6: Blackboard Data Schema

In the current implementation a relational DBMS is used. The representation follows the entity relationship model

and supports generalization and subset hierarchies (standard parts, tools and components) and a dynamic BOM

hierarchy. The BOM structure permits data from different design agents to be represented in a manner consistent

with the needs of the current design action. This has been implemented using the ORACLE DBMS [ORAC87]

and is explained in [RANG89].

Grammar Module: The grammar module ensures consistency between the attributes defined in the geometric

entity and the data in the blackboard structure. It also ensures consistency between the relationships defined in the

ER attributes and facilitates automatic updates and constraint propagation effects relative to data defined in the

standards databases and the attribute geometry database. 461



Thegrammarmoduleis so calledbecauseit usestheshapegrammar formalism [STIN80] to manipulate the

geometry and the attributes. For example, in Figure 7, the square object with attributes A, B is replaced with three

other objects with attributes : C, D, E, F, G. This transformation is brought about by rules which will depend on

the square, A, B and the current state ( defined by the contents of the centralized database) of the design process.

Thus, the gr'anumr module interacts with both the databases and provides a uniform mechanism for ensuring

consistency between the design action and the blackboard structure.

A

B

Transform

f

i I

_:

" 2)"

Figure 7: Example Grammar Operation

Featurizer. The featurizer transforms parametrized blackboard data (e.g. attributes of standard components) into

geometric entities. In other words, it converts the geometric / attribute data into equivalent blackboard structures
and vice versa.

Rule based Inference Engine: The CLIPS expert system shell was used to implement the rule base. This system

is coded in C and was interfaced to the CAD system and the DBMS. A detailed account of the CLIPS

implementation is discussed in [RANG 190].

Geometry Engine / User Interface: In the prototype implementation, the AUTOCAD [AUTO89] system was

used to simulate the CAD system. The customization features in Autocad were used extensively to augment the

geometry based capabilities.

Capabilities of Implemented Prototype

The software prototype implementation is discussed in [RANG90]. Some of the key functionalities of the

CAD system me enumerated below

. Attachment of textual attributes to geometric entities: Encapsulation ofform and function.

Query facUlty for geometric entities : e.g.: select all holes > 03"

Blackboard interaction with CAD system:

Automated information transfer between serial and parallel groups :

insert geometric entity from standards DBMS

insert geometrical entity from product specific Data

(automated UPDATES, DELETIONS, INSERTS of dependent data entities)

Direct query link between CAD system geometric definition and DBM$ attributes

Maintenance of geometric associations and consistency

Automated form feature generation

- Design for ManufacturabUity considerations: Feedback on Assembly/Text time

Manipulation of design features

inferencing using the CLIPS expert system shell
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This systemwas implementedatthecasestudysiteand was acknowledged to be essentialto enhance the

collaborativeaspectsofthedesignprocess.

Conclusions

This paper has stressed the need to augment the capabilities of computer based design aides to provide information

based capabilities that allow them to integrate with the design processes. This is particularly significant in

multidisciplinary design enviromr_nts where the common thread linking various design entities is the common

information generated by the different design agents. There is a need to provide information management

capabilities at the source of the design action to externalize the information burden associated with such design

activities. This paper has proposed a framework to integrate geometry based design systems with a centralized

blackboard database model. Some of the essential components of this framework are briefly discussed and a brief

outline of the capabilities of the prototype system is given. This system was implemented at the sponsor's

design/manufacturing facility and was well received by the staff.
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Introduction

This paper describes a new program architecture for complex engineering design and illustrates its applica-

tion to aircraft design optimization. This quasi-procedural method selects and executes the analysis sub-

routines for the calculation of objective function and constraints. Furthermore, it decides which variables

need to be recomputed in response to the change of a design variable, permitting the objective and con-

straints to be recalculated efficiently. A rule-based expert system is also used to identify active constraints

and suggest solutions to make the design feasible. The integrated optimizer, quasi-procedural program,

and expert system are applied to the aerodynamic optimization of a swept wing and to the complete synthe-

sis of a medium range commercial aircraft. The performance of the system is compared with that of con-

venfional programs.

Quasi-Procedural Method

The quasi-procedural method (Ref. 1) is a form of nonprocedural program, consisting of a set of small

compiled subroutines and an executive routine that keeps track of the subroutine and variable dependen-

cies. In response to a request for the value of a certain variable, the executive program calls the relevant

routines in the appropriate order. In the example shown in figure 1, the system traces the variable depen-

dencies, through intermediate results of many subroutines, from the desired output to the input variables

shown at the top of the figure. This real-time arrangement of the computational path offers improved flexi-

bility and extensibility compared with conventional procedural methods. In addition, because the structure

of the computations is known, the system performs consistency maintenance, recognizing, for example,

that changes in the variable B have no effect on the desired output and therefore do not require recomputa-

tion. This improves the system efficiency and is particularly significant when the quasi-procedural analy-

sis is combined with numerical optimization.

Figure 1. Quasi-Procedural Method and Consistency Maintenance
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Numerical Optimization Using Quasi-Procedural Programming

Numerical optimization involves repeated evaluation of an objective function and constraints. At each ,

evaluation, modification of some design variable (e.g., wing area) may require re-execution of a large

number of analysis modules. On the other hand, changes in other variables, such as takeoff flap deflec-

tion, may invalidate only a few analyses. The quasi-procedural method recognizes the difference and re-

configures the computational path, allowing the optimizer to avoid the redundant calculations made by con-

ventional methods with rigid program structures. This improved efficiency may be utilized in several

ways. The following sections describe three methods by which the quasi-procedural method may be used

to improve the performance of conventional numerical optimization methods.

Gradient C.al¢olation

Time savings are especially large when the gradient of the objective function must be computed by finite

differences. In this case, each component of the gradient is constructed by evaluating the change in objec-

tive function due to a change in the corresponding design variable. Since this process involves changing

only a single design variable at a time, much of the computational path is unaffected and so the number of

required computations is reduced. Furthermore, if the calculation of one gradient component requires a

time T, which is substantially longer than the times required to compute the other components in a N-

dimensional optimization, a fixed program structure evaluates the gradient in a time N'T, while the quasi-

procedural method demands only a bit longer than T.

Constrained Optimization

Constrained optimization problems provide additional opportunities for reduction in computation time.

Figure 2 shows a feasible region bounded by five constraints. The gradients of the objective and con-

straint functions are evaluated at the end of each line search. The size of a finite difference interval for gra-

dient calculation must be small enough to approximate the derivatives accurately. This means that if a con-

straint is inactive at a point, that constraint is not violated during the gradient calculation at that point. The

quasi-procedural method makes it easy to remove inactive constraints from gradient calculations. The re-

suiting computational time savings is large when expensive constraints are inactive during much of the

search. Further savings are achieved because not all design variables affect all constraints. Since chang-

ing take-off flap deflection affects climb and take-off field length, but not range or landing field length, no

additional time is spent computing range when take-off flap is varied. This makes it possible to achieve

the efficiency available with a reduced design variable set without actually changing design variables.

Start

Figure 2. Constrained Optimization and Activation of Constriants
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Use of the Chain Rule

The availability of subroutine dependency information, provided by the quasi-procedural method, enables

the use of the chain rule, which may reduce the cost of derivative calculations (Ref. 2). Consider the anal-

ysis procedure shown in Figure 3. If the entire calculation were treated as a black box the time required

for computation of the gradient of q with respect to the seven design variables would be:

7*(A+B+C+D+E+F+G+H+I) where A, B, C, etc. represent the time required for the corresponding

routine (or twice this value if central-differencing is used.) However, given the dependency information,

the derivative of q with respect to a may be written:

ag/3a

= aqlao,(o3olal, a/laa + ao/o3m*o3.nlaa + ao/o_n,_tlaa)
= o3qlc2o,Caolal,allah,egh/o3a+ aolcgm*_,'n/_*_/cga)

a b c d e f

This evaluation is performed in the time: I+H+E+A+H+F.

The entire gradient requires a time of:
(I+H+E+A+H+F) + A + (B+G+H) + B + (C+G) + (D+I) + F

= 2A+2B+C+D+E+2F+2G+3H+2I

Thus the evaluation time is reduced from 63 to 16 (in subrou-

tine units). The savings become more significant when one of
the subroutines which is called only once (i.e., C, D, or E) is

very time-consuming. For example, if the routine E requires

10 times the computational effort as the other routines, the cal-

culation time is reduced by 80%.

q

Figure 3. Gradient Calculation by Chain
Rule and Intermediate Sensitivities

Expert System

Domain-specific knowledge can be especially useful in the early stages of aircraft design. Rather than start

the optimization at an arbitrary point, an expert system is used to improve the initial design. This rule-

based system was combined with the quasi-procedural program to warn the user of active constraints or
other design problems, and to offer intelligent advice on how the problem might be corrected (Ref. 3).

The warning rules examine the current database, identify active design constraints, and report them to the

user. A typical warning rule may compare the current value of a variable with its required value, and issue

a warning string in case of constraint violation.

Solution rules analyze the causes of a constraint violation and generate solutions using design knowledge.

A solution rule ftrst looks at the warnings posted by the warning rules, and tries to identify a specific prob-

lem for which the solution rule is responsible. The rule may then look at the database to collect more in-

formation pertinent to the current problem and prescribe a solution best-suited for the current case. For ex-

ample, a set of solution rules for the takeoff distance problem might be:

IF (TOFieldLength is too long) and not(ClimbGrad is too small)

and (*< TOFlapDefl 20.) THEN (Increase TOFlapDefl)

IF (TOFieldLength is too long) and (*/ TotalSLST MaxTOW SToverW)

and (*< SToverW 0.2) THEN (Increase SLSThrust)

A rule-base with approximately 100 rules was used to resolve fundamental problems with the initial design

so that the numerical optimization could be started in a feasible region.
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Applications

The quasi-procedural analysis method was combined with a variable-meu-ic optimizer to illustrate the effi-

ciency of the system in realistic design applications. In this section, two example problems are discussed:

the design of a swept wing using linear potential theory, and an aircraft synthesis and sizing problem in

which direct operating cost is minimized.

Wing Design

In this example, the linearity of an aerodynamic analysis routine is exploited by the quasi-procedural meth-

od and nonlinear optimizer. The wing twist disuibution is to be designed so that the induced drag is kept

low, the lift coefficient distribution is relatively uniform, and the desired wing lift is achieved. The design

variables include the wing taper ratio, the twist angle of each of the twenty panels, and the angle of attack.

A quasi-Newton optimizer (Ref. 4) was used to minimize the objective function with a central differencing

scheme for gradient calculation.

Figure 4 shows the geometry and vortex arrangement of the swept wing.

The spanwise lift distribution and induced drag are computed based on a

Weissinger method, using a discrete vortex representation of the wake and

a concentrated bound vortex. The wailing vortices are evenly spaced along

the span, and the discrete bound vortices are placed at the quarter chord.

Using the Biot-Savart law, an aerodynamic influence coefficient (AIC)

matrix is computed which relates the strengths of the discrete vortices Fto

the downwash w at the control points located at the three quarter chord of

the spanwise panels: AIC(ij) = wi due to unit vortex strength atj

The strengths of the bound vortices, and eventually the spanwise lift and

Cl distributions, are then found by solving the linear equation:

[A/C] {/7 = U,,,{ 0} where U** is the freestream velocity.

Figure 5 shows the program structure for the wing design problem. The

subroutine AIC constructs the elements of the AIC matrix. Decomp per-

forms LU decomposition of the AIC matrix, and Solve performs back-

substitution. The AIC matrix has to be recomputed when taper ratio is

modified, but need not be recalculated if only the twist angles and angle

of attack are changed. The number shown to the right of each subroutine

box in figure 5 is the execution time of the subroutine as a fraction of the

total execution time. Solve is much faster than aIC, accounting for

only 16% of the total computational time. This computational structure

permits the quasi-procedural method to efficiently compute the gradient

components with respect to the 20 twist angles and angle of attack. Fig-

ure 6 shows the optimal Ca and lift distributions. Note that the optimal

C1 distribution is nearly constant as desired, and the lift distribution is

nearly elliptic as reflected in the span efficiency of 0.98.

_'mi_ v_

Figure 4. Wing Vortex Model

TItp¢_

+
& 84.02%

Decomp

1

1
IAIt, Q

Figure 5. Structure of the
Analysis Routines

Because a central differencing scheme is used, every gradient calculation requires evaluation of the AIC

matrix twice each change in taper ratio, and solution of the linear system 42 times (2 times for taper ratio,

and 40 times for twists). Therefore, the computational time for one gradient evaluation is:

2 * 5.33 see + 42 * 1.01 see - 53.2 see. This figure may be compared with the time needed by conven-

tional methods which do not recognize the structure of the program: 42 * (5.33 see + 1.01 sec) = 266.3

sec. The ratio of these two values indicates a 80% saving by the quasi-procedural method.
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Figure 7 compares the total optimization times between the quasi-procedural and conventional methods.

The figure shows the significant time saving obtained in the AIC calculation. The total computational sav-

ing is 73%, which is only 7% less than the maximum 80% gain available in the gradient calculation.

Complete Aircraft $_thesi.q

To illustrate the application of the method in a more complex problem, a set of aircraft analysis routines

were written and used in the optimization of a medium range commercial aircraft. Ten design variables,

shown in figure 8, were used to minimize the direct operating cost subject to constraints on range, landing

and take-off field lengths, engine-out climb gradient, and cruise thrust. Figure 9 illustrates the major sub-

routines required for the calculation and their relationships with the objective and constraint routines.

The analysis routines include geometric, aerodynamic, structural, and economic computations based on

preliminary design methods of Douglas Aircraft Company fRef. 5) which were modified for this applica-
tion.

The expert system was first employed to generate a reasonable starting point for the numerical optimiza-

tion. In this case, the system was able to suggest solutions to provide a feasible starting point. The varia-

ble metric optimizer was then used to minimize direct operating cost. Figure 8 shows the converged solu-

tion which satisfies the five constraints and reduces DOC by 4% compared with the initial design.
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,.1M-row _r_ l_ 2"/1 R_e 1500n.III!
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Figure 8. Optimal Geometry and Design Variables
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Figure10showstheamountof timespent
in eachof thesubroutinesfor threeoptim-
izationcases.In thefirst case,thesub-
routineswerearrangedin asuitableorder
andthequasi-proceduralsystemwasnot
employed.In thesecondcase,thesystem
withconsistencymaintenancewasused.
Finally,inactiveconstraintswerere-
movedfrom gradientcalculationsasde-
scribedpreviously.Theresultis anover-
all reductionin computationtimeof 22%
for thequasi-proceduralmethod,increas-
ing to39%wheninactiveconstraintsare
removed.Thefigure showsthatroutines
suchasfuselagegeometry(FUSEGM)
arenotaffectedbytheselecteddesign
variablesandsoneedtobeexecutedonly
once.

30[l-s Conventional method 25.1 "

/g QPM with nil constraints 23.1

,.-,_II QPM with onlyactiveconstraints _s.] I
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Figure 10. Distribution of Computation
Times Among Analysis Routines

Conclusions and Continuing Work

The quasi-procedural method can significantly improve the performance of conventional numerical optimi-

zation. This is achieved primarily by the automatic simplification of the computational path during gradient

calculations. In certain cases, savings of up to 80% in computation time are realized. Little improvement

is seen during the line search portion of the optimization, however, since all variables are changed simulta-

neously at each step. Current work includes the investigation of non-gradient based methods (e.g. genetic

algorithms) that may also be well-suited for use with quasi-procedural analysis.
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An Application of Compound Scaling to Wind Tunnel Model Design

Mark French and Raymond M. Kolonay

Wright Research and Development Center

Wright-Patterson AFB. OH

Abstract

An approach has been developed for the stiffness design of aeroelastically ._alcd wind tunnel models.
The object of designing such models is to make a structure whose stiffness matches a desired stiffness

distribution. This design problem is cast as a formal constrained optimization problem and worked with

two different optimization methods. A previous effort used the modified method of feasible directions
(MFD) as implemented in a general purpose finite element based optimiTation code. In this effort, a

special purpose t'mite element based optimization program was written and run using both MFD and

compound scaling optimization methods. Results are presented comparing the final designs obtained

using MFD and compound ,_aling.

[ntrod uction

One of the most important tasks in the design of an aeroelastically scaled wind tunnel model wing is

making sure the stiffness characteristics are c_rrect. The engineer must design a model structure whose
stiffness characteristics match known values. These known values are derived by scaling the stiffness

characteristics of the full-size structure that the model represents.

It is assumed that a target flexibility matrix is known for the scaled model. A column of a flexibility

matrix represents the displacements at all the grid points on the wing due to a unit load at one grid

point. If the desired flexibility matrix is known for the model, a displacement constraint can be written
for the deflection at each grid point in the structure due to a unit load placed at some grid point. If a

structure can be designed so that all the constraints are active, it will have the desired response to the

unit load placed on it. That is, if all the constraints written for a unit load corresponding to the n*

degree of freedom are active, the n'h column of the c,-dculated model flexibility matrix will match the

n* column of the desired flexibility matrix.

If this optimization approach works, there is no need to know any more about the desired structure than
the flexibility matrix and the basic geometry of the structure. The model's structure need not bear any

resemblance to that of the original structure as long as the overall stiffness characteristics match the

scaled stiffness of the full-size structure. The possibility then exists of modelling an anisotropic structure

with an isotropic one.

It has been shown that a general purpose structural optimization code can be used to simplify the wind

tunnel model design process considerably (Ref 1). The previous approach was more cumbersome than
desirable since the program involved (Ref 2) was applied to a problem for which it was not well suited.

To improve the design procedure, a new finite element based optimization program was written and the

problem described in Reference I was reworked.

Analysis

Before a model could be designed, a wing had to be selected for which stiffness characteristics were

well known. To allow easy compari_n of the results between the current research and that cited in

Reference 1, the same 1/9 scale fighter wing was selected. The wing was constructed largely of
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composite materials and was built to demonstrate the feasibility of using aeroelastic tailoring on fighter
wings (See Figure 1). The structure involved in this effort represents only the structural box of the

original wing. The model structure described here is the ,same size iis the 1t9 scale wing.

Reference 3 presents a flexibility matrix generated from a finite element model of the 1/9 scale wing.

Flexibility coefficients are given at 28 points on the surface of the wing. The location of these points
is presented in Figure 2. This flexibility matrix was used as the basis for the design of the test structure.

A set of displacement constraints for the optimization problem can be written using a column of the

flexibility matrix; a load is placed at some point on the wing and the terms from the column of the

flexibility matrix are input as displacement constraints. Each column of the flexibility matrix is

considered as a separate load case. In vector form, a normalized set of constraints can be written as

xu..-_a
g,(x)-- <0, ./---I,. (I)

6u.

where x_l is the calculated dis'placement at the j,h grid point due to a unit load at the i'h grid point and

_ti is the desired displacement at the j,h grid point due to a unit load at the i 'hgrid point.

Previously, structural mass was used as the objective function since it is assumed in the code used. This

choice is reasonable since one would expect a minimum weight structure to be a relatively flexible one
and thus one for which many of the constraints are active or nearly so. However, since the goal of the

design procedure is to minimize the difference between the desired and actual deformation at the grid

points, the problem was reformulated to use a squared error function as the objective function.

/ 8_ -x, )2= (2)

The design variables for the problem are the widths and heights of the beam elements. The values do

not show up explicity in the objective function; however, the calculated deformations which are used

in forming the objective function are in turn functions of the element sizes. The formal optimization
problem can be stated as

Minimize: F( x(h,b))
m

Subject to: g, < g,

,.in hmaxb_ _ b i ___

h_ <h,_h_

(3)

The I/9 scale wing model chosen was originally intended for transonic testing and is extremely stiff.

To make stiffness testing of the new model easier, the terms of the flexibility matrix were multiplied

by 10. This was considered reasonable since the purpose of this experiment is to show that an arbitrary

stiffness distribution can be modelled with a simple isotropic structnre, rather than model a specific
wing. The result was a structure flexible enough to give easily measurable displacements under a
modest load.
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In order to exactly match the scaled stiffness properties of the 1/9 .scale model, a complete set of

displacement constraints would need to be applied for every column of the flexibility matrix. However,

this approach would result in an unreasonably large problem. Another approach is to appeal to intuition
and assume that if columns of the flexibility matrix are correct for a small number of unit loads applied

at widely separated grid points, the remaining columns are correct or nearly so.

A second assumption can be made to further simplify the optimization process. The deformations at the

inboard grid points are often very small but can have undesireably large influence on the design

problem; very small absolute differences between the desired and calculated displacements can still
result in very large normalized constraint values. Ignoring constraints at the inboard grid points when

calculating the objective function helps ensure that the optimization algorithm does not get bogged down

trying to cope with highly violated constraints which have little effect on the results. All constraints,
including those omitted from the objective function calculation were used to define the boundary of the

feasible region.

Previously, a structure composed of beam and plate bending elements was used to represent the structure
of the aeroela.stically scaled model. The results were good, but the existence of the plate elements

caused problems in fabricating a test specimen. To address this problem, only beam elements were used
in this effort. The structure is a lattice of beam elements connecting the points at which flexibility

coefficients were given.

A FORTRAN program was written to model the wing structure using bar finite elements and generate
function values and gradients for passing to an optimization program. The program uses 12 DOF beam
elements to model the bars. The finite element model is presented in Figure 2. Two different

optimization methods were used for different versions of the program; ADS (Ref 4) and compound

scaling as implemented in FUNOPT (FUNctional OPTimization. Refs 5 and 6). The Modified Method
of Feasible Directions (MFD) was used in ADS.

A number of different constraint sets was specified during the course of the design process. Initial runs

were made using a single set of constraints and the number was graduMly increa_sed. It was found that

four displacement vectors were sufficient to design the wing. The four columns of the flexibility matrix

correspond to unit loads placed at the leading edge of the tip, wailing edge of the tip. leading edge of
the mid span and trailing edge of the mid span. These correspond to points 13, 16, 25 and 28 on Figure

2. The resulting design problem had 106 design variables (width and height for each of 53 beam

elements) and 112 constraints (4 load cams and 28 constraints per load case).

Results

Both methods produced acceptable f'mal designs. The ADS design had 28 constraints within 5% of the

boundary of the feasible region, but most of these were concentrated in the last load case. For the
second load case. there were no constraints within 5% of the boundary. The FUNOPT design was the

better of the two since approximately 60 constraints were within 5% of the boundary of the feasible

region. This indicates that FUNOPT was able to find an approximate intersection of 60 constraints.
The caveat should be made that both methods used here have parameters which can be varied to improve

performance. ADS may have produced a better design if the optimzation parameters had been set

differently.

It is difficult to compacdy present results from the analyses dc_ribed here, but some feel for the quality

of the results can be obtained by examining the deflections along the leading lind trailing edges of the
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structure due to a unit load at a tip grid point. Figure 3 compares the displacements along the leading
edges of the ADS and FUNOPT designs due to a unit load at grid point 28 to the desired displacements.

Figure 4 compares the displacements at the trailing edge of the two designs with the desired

displacements due to the same load.

The biggest problem encountered in the optimization process was getting the optimization routines to

converge on an answer. ADS in particular was very scnsitive to the initial design chosen. If the initial

design was infeasible, ADS often could not find a feasible solution. The strategy which seemed to work

the best with ADS was to vary the initial design by hand until the none of the constraints were violated.

There was very little trouble getting FUNOPT to converge to a good answer; however, there is no good

exit criteria yet. The result is that it will often run longer than desired.

Conclusions

It is difficult to determine how much deviation between actual and desired stiffness properties is

allowable in aeroelasticity models. (Ideally there is none, but this is almost never the case.) The

allowable deviation depends on such factors as wing geometry and the flight regime. The results

presented above indicate that using structural optimization to design wind tunnel models can result in

a procedure which matches desired stiffnesses well enough to be very useful in sizing the structures of
aeroelasdc models.

The design procedure presented here demonstrates that optimization can be useful in designing

aeroelasticaUy scaled wind tunnel models. The resulting structure effectively models an aeroelasticaUy

tailored composite wing with a simple aluminum beam structure. This structure should be inexpensive
to manufacture compared to a composite one. Furthermore, it should be easier to manufacture than the

structure designed in the previous effort (Ref I).
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ABSTRACT

A computer code, HITCAN (High lemperature _omposite ANalyzer) has been

developed to analyze/deslgn metal matrix composite structures. HITCAN is based

on composite mechanics theories and computer codes developed at the National

Aeronautics and Space Administration (NASA), Lewis Research Center, overt he last

two decades. HITCAN is a general purpose code for predicting the global

structural and local stress-strain response of multilayered (arbitrarily

oriented) metal matrix structures both at the constituent (fiber, matrix, and

interphase) and the structure level and including the fabrication process

effects. The thermo-mechanlcal properties of the constituents are considered

to be nonlinearly dependent on several parameters including temperature, stress,

and stress rate. The computational procedure employs an incremental iterative

nonlinear approach utilizing a multifactor-lnteraction material behavior model.

HITCAN features and analysis capabilities (static, load stepping, modal, and

buckling) are demonstrated through typical example problems.

BACKGROUND

High temperature metal matrix composites (HTMMC) have shown potential as

structural materials for 21st century propulsion systems. The nonlinear

dependence of the thermo-mechanical properties of HTMMCs on parameters such as

temperature, stress, and stress rate, may alter the structural response

significantly. Experimental investigations being high in cost, computational

models including nonlinear material behavior simulating the real-life response

of components made from HTMMC materials are required.

The need for developing multilevel analysis models for multilayered fibrous

composites was recognized almost 2 decades ago (Ref. I) and a multilevel analysis

computer code was developed subsequently (Ref. 2). Research related to various

aspects of HTMMC materials and structures has been conducted at the Lewis

Research Center of the National Aeronautics and Space Administration (NASA) for

several years. Building upon parts of this research effort, a high temperature

composites analyzer code HITCAN, has been developed.

The objective of this paper is to summarize HITCAN's capabilities with

illustrative examples which demonstrate its application versatility.

HITCAN: A BRIEF DESCRIPTION

HITCAN presents a self-contained (independent of commercial codes)

synergistic combination of NASA developed codes, MHOST and METCAN which are

finite element structural analysis, and multilevel nonlinear material behavior

476

4

i
L



codes, respectively. User-frlendllness was kept in mind during the development

of HITCAN code. For instance, it includes a material property database for

commonly used aerospace fiber and matrix materials. Properties from this data

base can be input to HITCAN automatically.

Figure 1 shows the approach used by HITCAN for analyzing composite

structures. The left part of Figure 1 depicts the determination of laminate

properties based on known constituent properties. The top part depicts the

finite element analysis which provides the structural response at the laminate

level. And, the right part shows the determination of the structural response

at the constituent level. Finally, the bottom left part shows the updating of

constituent material properties based on input parameters and calculated

constituent stress response. Figure 2 shows various regions in which the

constituent material properties are updated.

FEATURES

HITCAN is capable of predicting global structural and local stress-straln

response of multilayered high temperature metal matrix composite structures both

at the constituent (fiber, matrix, and interphase) and the structure level.

HITCAN's analysis capabilities include static, load stepping, modal and buckling

response. HITCAN treats thermo-mechanlcal properties at the constituent level

as nonlinear multlfactor-interactlon functions of temperature, stress, and stress

rate, as shown below (Ref. 3).

w Id Ir O0

Where P and Po denote current and reference condition material properties; TM,

T, and To denote melting, current, and reference temperature; SF, G, and a o

denote fracture at T o , current, and reference stress; SF, G, and °o denote

appropriately selected, current, and reference stress rate, respectively. The

exponents n, m, and 1 are empirical constants.

HITCAN includes the dependence of the behavior of the metal matrix

composites on fabrication process variables and properties of an interphase

between the fiber and matrix.

Table I lists HITCAN features. The features that have been demonstrated

through example problems (Ref. 4) are marked 'tested' in Table I. Although the

enhancement of the code continues, in its current form, it is applicable to a

wide variety of composite structural analysis problems.

DEMONSTRATION PROBLEMS

The static, load stepping, modal, and buckling analysis capabilities of

HITCAN are demonstrated for a simply supported plate (Figure 3) made of Si C/Ti-

15-3-3-3. For all demonstration problems discussed in this paper, the laminate

consists of 4 layers with a top-to-bottom ply lay-up of (0/±45/90), a fiber

9
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volume ratio of 0.4, and a reference temperature of 70 °F. Also, demonstrated
is the sensitivity of structural response with respect to various forms of
multlfactor-interaction constitutive models, various ply orientations, fiber

degradation, and fabrication-induced stresses.

Since, the purpose of the present report is to demonstrate the capabilities

of HITCAN rather than to provide benchmark results, a detailed discussion of the

results is not included. Also, due to the unavailability of results in open

literature for the complex problems modeled by HITCAN, it has not been possible

to provide comparisons. However, the code has been verified for some classical

problems.

STATIC ANALYSIS: The static analysis was conducted for a combined thermal and

mechanical load similar to that in Figure 3, but applied in one step. The

results for static analysis, being similar to the constant material property case

of the load stepping analysis which follows, are not included here.

LOAD STEPPING ANALYSIS: The load stepping analysis is essentially a piecewise

linear analysis where the load is applied incrementally in several steps with

material properties updated at the end of each load step. The analysis was first

performed for the base case with no fiber degradation, no fabrication, (0/±45/90)

ply lay-up, and the most general form of the constitutive model described above

in the 'FEATURES' section. The geometry, loading, and boundary conditions are

shown in Figure 3. The base case results including displacements and constituent

and ply level stresses are also shown in Figure 3. The displacements are in the

global structural coordinate system and the stresses in the local materials

coordinate system. Both of these coordinate systems are shown in Figure I.

Letters A, B, and C, used in Figure 3 are for various regions of constituent

material nonuniformity, defined in Figure 2.

The load stepping analysis was repeated by varying one parameter at a time,

for (1) four cases of constitutive models, namely, the constant material property

case, material properties dependent on temperature only, material properties

dependent on stress only, and material properties dependent on stress rate only,

(ii) two cases of ply orientations, namely, the symmetric orientation of (0/45)s,

and balanced orientation of (0/90),, (ill) one case of fiber degradation by a

factor of one-tenth of its original diameter, creating an interphase between the

fiber and matrix with properties of the interphase taken as an average of the

fiber and matrix properties, and (iv) one case of fabrication thermal loading

(Figure 4) applied before the combined thermal and mechanical loading. The

corresponding displacement and ply stress results for all these cases are

tabulated in Figure 4. For the sake of brevity, the sensitivity analysis

response is compared with the base case at the end of the third load step only.

The effect of stress rate was found negligible in all cases, due to the very

nature of the problems chosen. This effect will show up in the transient

analysis.

The effect of using different forms of constitutive models was analyzed

further, as shown in Figure 4. This Figure shows the importance of using

material behavior models which are dependent on applied temperature and

calculated stress response. Notice that the vertical axis of Figure 4 shows

percentage increase in the displacement due to a change in the form of the
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constitutive model, i.e. the increase in the displacement caused by the

degradation of material properties according to the multi-factor interaction

model. The increase in the displacement is measured from the case when material

properties are considered constant. In Figure 4, the label 'Temperature Effect'

refers to percentage increase in the displacement when the material properties

are made temperature dependent only. Similarly, the label 'Stress Effect' refers

to percentage increase in the displacement when the material properties are made

stress dependent only. And, the label 'Combined Effect' refers to percentage

increase in the displacement when the material properties are made dependent on

temperature and stress simultaneously.

MODAL ANALYSIS: The modal analysis was performed for the same combined thermal

and mechanical load (Figure 3) as that used in the 'Load Stepping Analysis'.

Four modes were calculated (the code is capable of calculating as many modes as

desired). The results for natural frequencies are shown in Figure 5.

BUCKLING ANALYSIS: The buckling analysis was first conducted for mechanical

loading only. The first buckling mode was calculated (the code is capable of

calculating as many modes as desired). The analysis was _hen repeated for two

cases; for mechanical loading including fiber degradation and for combined

thermo-mechanlcal loading without fiber degradation. For the first case, the

fiber was degraded by a factor of one-tenth of its original diameter. The

loadings, boundary conditions, and results are shown in Figure 6.

CONCLUSIONS

Several features and analysis capabilities of the high temperature

composite analyzer code, HITCAN, have been demonstrated through example problems.

These features make HITCAN a powerful, cost-effective tool for

analyzing/deslgnlng metal matrix composite structures and components. Because

of the multilevel analysis approach, HITCAN has the utility for studying the

influence of individual constituent in-situ behavior on global structural

response. HITCANwill help in material selection for specific applications, in

analyzing sensitivity of structural response to various system parameters, and

in providing structural response at all levels of material constituents.

l,

,

,
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Abstract

The subject of this paper is the buckling of laminated plates, with a pre-existing delamination,
subjected to inplane loading. Each laminate is modelled as an orthotropic Mindlin plate. The analysis is
carried out by a combination of the finite element and asymptotic expansion methods. By applying the
finite element method, plates with general delarnination regions can be studied. The asymptotic
expansion method reduces the number of unknown variables of the eigenvalue equation to that of the
equation for a single Kirchhoffplate. Numerical results are presented for several examples. The effects
of the shape, size and position of the delamination, on the buckling load, are studied through these
examples.

1 Introduction

A separated region might exist between the layers of a laminated plate or shell [1.2.31. Such a

region is called a delamination. When a plate with delamination buckles, the critical load is lower than

that for the plate without delamination. The separated portion will usually open when delamination

buckling occurs and the delamination may grow due to the buckling [4,51.
Reference [1] is one of the earlier papers on delamination buckling. The delamination buckling of

beams and the growth of delaminations have been studied by using the classical beam theory.
Axisymmetric delamination buckling has been studied in reference [6]. The buckling of a plate with a
rectangular delamination has been solved in reference [7]. However, in both xeference [6] and reference
[7], the buckling load is assumed to be equal to the value for the delarninated part, which is considered to
be a clamped plate. Obviously, the solution can only be applied in some special cases.

In this paper, the delamination buckling of laminated plates is studied by applying the finite element

method, so that we can study plates with general delamination regions. Each layer is modelled as an

orthotropic Mindlin plate [s]. This model describes the mechanical behavior of composite plates in an

accurate manner. The shearing strains in each layer are chosen as independent variables. In this way,

the locking problem can be avoided I9]. Also, this approach enables us to apply the asymptotic expansion

method, which reduces the number of unknown variables of the eigenvalue equation to that of the
equation for a single Kirchhoff plate.

Buckling loads are calculated numerically for several example problems. The effects of the size,

shape and position of the delamination on the in-plane bcckling load for a laminated plate are studied in

the paper. Also, the results show that, as expected, the effect of the material properties on the buckling
load is significant.

2 The Goveming Equations

Consider a N-layer laminated plate with a delamination, shown in Figure 1. Take the plane with the

delamination as the x-y plane. There are N U layers with z>0 and N L layers with z<0, which are called
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the upper part and the lower part of the plate, respectively.

The linear discrete layer model is used, i.e., each layer is considered as a Mindiin plate. For the ith

layer (i=1,2 ..... N U, 1,2, .... NL), the displacements arc:

ui(x,y,z) = Ui.l(x,y) + 0i(x,y) (zi + lt_

i

=  o(X,y)+ w,,+ (Vx 'wx) (1)
m=l

vi(×,y,z) = Vi.l(x,y) + _i(x,y) (z i + ½ t_

i

= v0(x,y) +
',_ nl = I

t:Ty m - h iWy + z i(Tyi-Wy) (2)

i
w (x,y,z) = w(x,y)

where It i I is the thickness of the ith laminate, and

t m m<i £ .
t'm= hi = tm

--t m ITI _i m=l

(3)

Here, Ui_l, vi. 1 are the in-plane displacements of the lower surface when the ith layer belongs to the

upper part, and the in-plane displacements of the upper surface when the i th layer belongs to the lower

part. The displacements u 0 and v 0 are the in-plane displacements of the x-y plane.Yxi and 'Yyi are the

shearing strains "/xz and Yyz of the i th layer.

Each layer is an orthortmpic plate. The angle between the major principal material axis and the x-axis

is a i for the ith layer. The equations relating stresses and strains are

'CxY i Txy) i

The potential energies of the upper part and lower part of the laminated plate are
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O = ,),T ! T
(_8_i [De]i(_}i + lY}i[Ds]i{Y}i )dx dy dz

-p _- ({w 'IT[N]i {w '1) dx dy - T {il
i=l

(4)

where

[D,],¢ = _- ((e}i [De]` (e}i + dx dy
i=l

i=l

Nx Nx Yl[Nli= Nxy NyJi

(5)

p is the scaling parameter of the load and [N]i is the matrix of resultant forces. Because of the

delamination, the upper and the lower plates are only partially joined. T {i} is the work done by the
internal force between the upper and lower parts, on the upper plate.

Applying the principle of minimum potential energy to the upper plate and the lower plate,

respectively, we obtain

8o u = o (6)

8¢_L = 0 (7)

%
:v

3 The FEM and The Asymptotic Method

The analysis is carried out by a combination of the finite element and asymptotic expansion methods.
For details, please see References [10] and [11].

4 Results and Discussion

In this section, we study the effects of the shape, position and size of a delamination on the buckling

load of a laminated plate. Hereafter, the symbol "//" is used to show the location of the delamination.

For example, (00//900/45 o) means a (00/900/45 o) plate with a delamination between the 0O-layer and

the 90O-layer, (00//004) means an isotropic plate with a delamination at a distance of H/5 below its top
surface. Two different materials of laminates, one isotropic, the other orthortropic, are considered. The

material properties are

M-1 El/E2 = 1 GI2 = G13 = G2.3 = E2/2(l+v) v12 = 0.3

M-2 EI/E2 = 25 G12 = Gl3 ---0.25 E2 G2..3= 0.2E2 w2 = 0.25

In all cases, a square plate with L*L dimension is considered. A compressive load p, in the x

direction, is applied along the edges x= + L/2 of the plate. 8 = H/L = 0.005.
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Table 1 Buckling Load _.-- p/E E2 (s.s.)

Mode No. Square Circle Ellipse

1 6.7893 7.0528 6.9149
M-1 2 11.480 11,447 12.442

(0o//0 °) 3 12.748" 11.530" 15.908"

1 27.028 27.426 28.482
M-2 2 47.195 41.093" 48.451"

(450//45 °) 3 48.147" 50.510 58.931

Table 2 Buckling Load k= p/E E2

delamination Square Circle Ellipse
shape

s.s. 3.5152 3.4848 3.4928
M- 1 c. 6.2256 6.2160 6.7328

s.s. 19.472 19.529 19.689
M-2 c. 30.446 31.770 41.278

Three different delamination

shapes, a square, a circle, and a

ellipse, of equal area (xL2/16)
are considered here. In each case,
the center of the delarnination is

coincident with that of the plate.

For the case of symmetric
delamination (i.e. where the full

plate is symmetric about the
delamination), the first buckling

mode does not open, while for a
plate with an unsymmetric delami-
nation, the flu'st buckling mode

opens up, but both the upper and
lower parts of the plate deflect in
the same direction. For the sym-
metric case, the opening buckling
mode, shown in Figure 2, may
occur in the second or third mode.
In Table I, the numbers with *'s
are the critical loads for the modes

which open up, for a symmetric
case. Figure 3 shows the flu'st

buckling mode for a (non- symmetric) M-2 material plate (0o/90o//00/900/0 °) with a square

delamination in the center. The delaminated area is again r_L2/16. Here, as mentioned above, the

deflections of the upper and lower parts of the plate are in the same direction. We found this general
nature of buckling modes to be true in all our examples.

Table 2 shows the effect of the shape of the delamination on the buckling load. For M- 1, the plate is

(002//003). For M-2, the plate is (00/900//00/900/00). From Table 2 we can see that whether the

delamination shape significantly affects the buckling load depends on the boundary conditions and the
material property. For a square plate, when it is simply supported, the shape of the delamination has

negligible effect on the buckling load. However, for a clamped square orthortropic plate, the
delamination shape does affect the critical load. As expected, the material has a dramatic effect on the

buckling load.

Figure 4 shows the effect of the plate thickness on the dimensionless buckling load k. e vanishes for
a Kirchhoff plate theory. Thus, figure 4 also demonstrates the importance of retaining the shearing
swains for moderately thick plates.

In Figure 5, we show the effect of the size of the delamination on the buckling load. In this case, the
material is isotropic, i.e. M-1, the delamination shape is square with its center coincident with that of the

plate. The plates are (0o//0o4). As expected, the buckling load decreases monotonically with the size of
the delamination. Small delaminations have very little effect on the buckling load.

The effect of the delamination position on the buckling load is shown in Figure 6. A (0o//004)
simply supported square plate with a square delamination is considered here.The area of the delamination

is L2/4. From Figure 6, we can see that the position only moderately affects the buckling load.
The mathematical model used here may be developed further for the study of buckling of laminated

plates with more than one delamination region. It also can be used for nonlinear analyses of laminated
plates with delaminations.
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ABSTRACT

Finite element algorithms have been developed to analyse linear anisotropic viscoelastic plates, with or without

holes, subjected to mechanical (bending, tension), temperature and hygrothermal loadings. The analysis is based

on Laplace transforms rather than direct time integrations in order to improve the accuracy of results and save

extensive computational time and storage. The time dependent displacement fields in the transverse direction for

the cross ply and angle ply laminates are calculated and the stacking sequence effects of the laminates are discussed

in detail. Creep responses for the plates with or without a circular hole are also studied. The numerical results

compare favorably with analytical solutions, i.e. within 1.8_ for bending and 10-s% for tension. The tension

results of the present method are compared with those using the direct time integration scheme.

1. INTRODUCTION

Advanced composite laminates are used in atmospheric and space flight vehicles in order to improve perfor-

mance by substantial structural weight savings. The polymer matrix exhibits degradation of material mechanical

properties when exposed to hygrothermal environment and the hygrothermal expansion induces residual stresses

in a composite laminate which may result in delamination and subsequent structural failures [1, 2]. Therefore,

time dependent analyses of polymer composite structures are required to predict structural lifetimes under short

and long term loading, mandating anisotropic viscoelastic analyses. The linear thermo-viscoelastic theory for

anisotropic nonhomogeneons materials whose stress-strain relations are expressed by hereditary integrals has been

formulated by Hilton and Dong [3]. Finite element methods (FEM) are the most powerful tool for the analysis

of complicated systems. However solving time dependent problems using FEM is difllcult and requires enormous

computational time and memory storage, since the constitutive law for linear viscoelastic materials is described

by hereditary integrals or fractional differential operators as developed by Rogers [4]. Numerical procedures for

the analysis of viscoelastic boundary value problems have been proposed [5-8]. Taylor e¢ a[. [6] developed a finite

element procedure to analyse isotropic linear viscoelastic solids undergoing mechanical and thermal deformations.

The integration of the governing equations is performed step by step using a finite difference recurrence relationship

for approximate calculations of displacement derivatives. This method requires storage of only the previous time

solution instead of all the solutions throughout the loading time history. Srinatha eta/. [7] suggested a similar nu-

merical procedure for an isotropic material and applied it to solve plane problems using the trapesoidal integration

method previously developed by Zak [5] to evaluate integral equations. However, the accuracy of the direct integra-

tion scheme primarily depends upon the size of the time step At. Moreover since the solutions of rate dependent

problems at the present time are affected by the previous solutions, numerical errors may be accumulated through-

out the time history and such error accumulations are described in [6,8]. If the value of time step is decreased in

order to obtain better approximations, the number of iterations will be augmented and the computational time

will be significantly increased. Use of the direct integration method for long-te_ predictions of time dependent

dimensional changes and stresses in composite structures may require huge amounts of computational time.

In the present study, a numerical algorithm is developed for the efficient analysis of time dependent deforma-

tions and stresses in linear viscoelastic composite materials which are subjected to mechanical, temperature and

hygrothermal loadings. For time dependent temperatures and/or moisture contents, the hereditary time integrals

are not convolution ones and approximate elastic-viscoelastic analogies [9,10] have been developed allowing the use

of Laplace or Fourier transforms. In the present analysis the FEM equations are formulated in real time and then

converted to reduced times, thereby not requiring the above appro_drnate formulations. The Laplace transform

technique is adopted to improve the accuracy of solutions, to save expensive computational time and to reduce the

tedious formulation of numerical procedures.
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2. ANALYTICALFORMULATION

£.I GoverningEfuatioa: /or Linear Thermo- ViscoelasticComposite Platen

In the principal material coordinates zl, the constitutive relationship for anisotropic linear viscoelastic mate-"

rials can be described by the following hereditary integrals [3]

=,i(T, M, x, t}= C,j_,(T,M, t, r} [_k,(x,r}-eh(x,r}] dr (11

where a_j arestresscomponents attime tand _kland _z aretotalstrainsand freehygrothermal strainsrespectively.

The coe_cients of hygrothermaJ expansions axe assumed to be independent of time, temperature and moisture.

The freehygrothermal strainse_j.may then be expressedas

e_.i = aliAT + ,8_.fAM (2)

where a¢:. and _i:" are respectively thermal and hygroscopic expansion coefficients and AT{x, t) and AM(x, t} are

the temperature and moisture changes relatedto an unstressedreferencestate. For therrnorheologicallysimple

materials[3,12],the relaxationmoduli can be representedin the form

C,;k,(T,M, t)=C,;k,[T,,M,, _;k,(x,t)] (_)

where the subscriptr denotes referenceconditionsand the _ipa are reduced times,which are relatedto the shift

functionsin the followingmanner

_,;_(_, _1= _,_._,(T(_,_1,M(_,r))_ (4)

The introductionof thesereduced times changes Eqs. {1) to convolutionones in the f planep however ¢

derivativesinthe fieldequationstake on new definitions,i.e.

t ¢ J z

While the _ derivatives can be computed, their accuracy is low since the shift functions in Eq. (4) are experimentally

determined. The present method avoids such pitfalls by determining all derivatives in the x plane and then at later

stages transforming the equations into the f plane. Composite viscoelastic material properties can be characterized

by master relaxation curves determined from tensile relaxation experiments {13-16]. The modulus Clnl is assumed

time independent since the zl-direction is dominated by the fibers. All f_:'k_ in Eq. (4) are assumed identical and

equal to f. This allows one to express the relaxation modull in terms of Prony series [11] such that

N

p=l

where the constantsAp are relaxationtimes,N isthe number ofterms forthe seriesexpansion and C_/_.laand C_.ja

must be time independent and symmetric. The stress-strainrelation{1)now reduces to [12]

_',i{X,¢) = bii,a[ rr, Mr, S'- S" 1 [_Ja{X, S")- _(X,s")] d¢ {7}
_o

with X are the laminate coordinates and _o'_ are the modull in X - f plane.

£._. A VariationalForm_latior_/or Thermo- ViscoelasticProblems

The variational functional for linear thermo-viscoelastic problems has been given by Gurtin [17] and in the
absence of body forces, its first variation is

£/.'='/i:':' o{.,;(x,_ = e,#_(T, M, t, s, _)_
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ose x,,) av - n,(t - ,) asT = 0 (s)
as _. =-oo as

where V is the volume of viscoelastic solid, ST is the surface on which tractions fll are applied and u_ are the dis-

placements. This relation forms the basis of finite element linear viscoelastic boundary value problem formulations.

£.8 Finite Element Formulation UsinO Integral Trano/orms

Using the aforementioned variation principles, the finite element equilibrium equations for linear viscoelastic

solids are obtained in the real time domain. Then substitution of Eq. (4) and (6) into those equilibrium equations

and taking the Laplace transform result in a system of algebraic equations

[ K°.,. + K'.,.,/(,) lO.(s) = F,.(,) +/'2(') (0)

In the above, K°mn and Ktm,, are the global stiffness matrices, Un is the global vector of nodal displacements, Frn

and _ are L.T. of global nodal force vectors clue to applied tractions and hygrothermal graxlients respectively

and /(s) is the L.T. of the exponential functions in Eq. (6). It should be noted that Eq. (9) is identical to the

equivalent elastic problem except for the equivalent viscoelastic moduli [12]. One approach to solving the above

system is to carry out an orthogonal transformation which simultaneously diagonalises the two real symmetric

matrices: K°mn and /t_,,m. Once the nodal displacements are determined from (10) in the Laplace space, they

can be transformed back into real time at selected nodes where critical conditions of interest occur thus saving

additional computational time. If the loading functions are provided in analytic forms, the partial-fraction method

produces excellent results. Even if those forces are given numerically, diverse Laplace transform and numerical

L.T. inversion techniques are available [18-21]. In RSf. 21, eight numerical algorithms of the Laplace transform

inversion methods are compared against each other. The study shows that Schapery's collocation method [18] and

Becker's multidata method [19] provide good results for non-oscillatory functions of time with less computer time

and that Durbin's inversionmethod [20]based on fastFouriersine-cosinetransformationsyieldsaccurateresults

forthe oscillatorytime functions,but at the expense ofmuch computing time.

3. NUMERICAL RESULTS

3.1 Aniaotropic Plate Bending Studies

Consider a thin composite laminate with symmetry in both geometry and material properties about the

middle plane and subjected to bending moments and lateral loading and assume the Kirchhoff hypotheses. Two

studies were conducted to verify the viscoelastic finite element program VBEND [10] which are developed to analyze

viscoelastic bending responses of composite plates. The first study concentrates on elastic results and the second

focuses on time dependent solutions. The dimensions of the composite laminate are 100 in x 100 in and the

thickness of the plate is 1 in. A total of 128 elements and 243 degrees of freedom are used for these studies. At

time t--0, the viscoelastic finite element solutions are compared with the corresponding elastic results presented

in Ref. 22 for composite laminates with fully clamped edges. The elastic orthotropic material properties of the

composite lamina are E_I -- 107 psi, E2_ = 10e psi, _'x_ - 0.3, and G12 = 0.25 x 10e psi [22]. The laminate is

subjected to uniformly distributed loading p = 0.02 psi. The maximum deflections at the center of the laminates

axe compared with those of [22] for various orientation of the principal orthotropic material axes with respect

to the laminate axes. As shown in Fig. I, at time t--0, the viscoelastic finite element solutions agree very well

within 3_ with the elastic solutions of [22]. In the second study, viscoelastic finite element solutions calculated by

VBEND [10] are compared with analytic results evaluated by the viscoelastic-elastic analogy [3]. Time dependent

deflections for a simply-supported composite plate subjected to the same load as the first example are considered.

The elasticanisotropicbending stiffnessesof the laminate are D2222/Dxxxx = 1,(Dxx22 + 2Dx_x2)/Dxxxx = 1.5,

and Dxx12/DllXl = D22t2/DIt11 = -.5. Using the viscoelastic-elasticanalogy,the maximum time dependent

deflectionsfor the anisotropicplatewith the above flexuralstiffnesses,simply supported along allthe edges and

subjectedto a uniformly distributedloadingp(t)can be expressed inthe Laplace domain as[3,20]

#.,-0) = o.o04s2a' (10)
bm (o)

where ,_ denote the Laplace transform. Temperature shift factor is equal to one and the time function for all the

flexural sti[[nesses Di.cta is taken as

/(t) = 6.698 x 10 -2 + 0.93302. ezp(-t/lO00) (11)
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Maximum dellections computed by VBEND [10] and the analytic ones calculated by Eq.(U) are plotted in

Fig. 2. Excellent agreement between the two solutions is obtained within a 1.8_ maximum error.

Consider next simply supported square comlxasite plates which are subjected to a uniformly distributed time-

independent loading p---0.03 psi. The time dependent displacement fielck in the transverse direction for various

symmetric oes and angleplylaminates.nchas (odood., 40/90)s.,(4ss/- 'as)., (45/- 45)s., 4305/- 305).,
and (30/- 30)5, are calculated. In these studies, the elastic orthotropic material properties and the dimensions of

the lamina are also the same as those used for the fast veriScation study. The thickness of a lamina is 0.05 in and

20 plies were used. The time varying function for the relaxation moduli is defined by Eq.(11) and C111x is surnamed

as time independent since E11 and u1_ are not sensitive to time as stated earlier. The maximum deflection, are

observed at the center of plates for all the cases. The maximum displacements for the (05/905), and (0/90)5,

laminates are displayed in Fig. 3 as functions of time. At time t=0, the maximum deflection "calculated for both

the (05/905), and (0/90)5, laminates is 0.04546 in. The maximum deflections for those laminates increase about

23_ after 2 × I04 second, while the relaxation moduli such as C112_4t), C?_a_(t), and C'x_1_(t) degrade 93.3% for

the same time period. The numerical results show that the maximum deflections for symmetric cross ply laminates

under the lateral uniform loading are not affected by the stacking sequence. However, the stacking sequence of the

laminate ha_ significant influence on the solutions obtained for the symmetric angle ply laminates. Comparisons

of viscoelastic maximum deflections of the (455/- 45s), laminate with the (45/- 45)s, laminate indicate that the

maximum transverse displacements of the (455/- 455), laminate are larger than those of the 445/- 45)s,, shown

in Fig. 4. At time t=0, the values calculated for the maximum displacements in X3 direction of the (45s/- 45,.),

and (45/- 45)s, laminates are 0.03212 in and 0.02778 in, respectively. These results can be readily explained if

we note that the tlexural stiffneeses Dills and D2_12 for the 445s/- 45s), laminate are smaller than those for the

(45/- 45)s, laminate and the exact elastic maximum deflections obtained from Reference 20 including the/_1z2

and Dxx12 terms are larger than specially orthotropic solution calculated by ignoring those twist coupling terms.

The maximum deflection of the (45s/- 455), laminates increases 24_ for the 2 × 104 second period while that

of the (45/- 45)5, laminate increases only 11%. The solutions for the (30s/- 305), and (30/- 30)s, IaminLtes

are depicted in Fig. 5 which shows that the rates of change of the maximum deflections of the (30s/- 30,.), and

(30/- 30)s, laminates increase by 26% and 15_ respectively.

8._ Plane Stress An_sotrop_¢ Plate St_,d_sL

In these studies, creeps of unnotched graphite/epoxy composite plates are calculated. The relaxation moduli

and shift factors are the same as those used in Ref. 8. The solutions evaluated by Ref. $ using the direct integration

method and the present results are compared with the analytic ones obtained from the viscoelastic-elasti< analogy

for the classical lamination theory. At the 75 ° F reference temperature, a time independent stress of 1,728 psi

is applied at t = 0 and is unloaded instantaneously after 24 hours. Creep and creep recovery responses in the

(45/- 45). laminate are given in Table 1. At t=0, the three results are identical. However, after 24 hours, the

error between analytic and Ref. 8 results is 5_. Another comparison study between the transformation method

and the direct integration method is conducted using the various time-step sizes (At -- 200 and 1000 see.). The

results for these cases and those calculated by the present transformation method and by the elastic-viscoelastic

analogy are depicted in Fig. 6. Excellent agreement is obtained between creep results evaluated using the present

method and the analytic one.

Table I. Comparison for Creep Strains

Time (hrs) Ref. $ Present Analytic Solution
0 0,564x10 -s 0.564x10 -:) 0.564x10 -_

24 0.625x10 -s 0.605x10 -s 0.605x10 -3

48 0.607xi0- s 0.636xi0- 4 0.636x I0- s

Creep responses in laminates subjected to quasi-static sinusoidal loadings are also studied. The maxlmum

amplitude of loading is 10 -5 psi and the operating temperature is taken as 122 ° F and 160 ° F. The maximum

strain amplitudes in the 445/- 45). laminates arc given in Fig. 7 with respect to the driving frequencies. At the

same frequency, the maximum strain amplitudes at T - 1600 F are larger than those at T - 1220 F and reach

equilibrium at about ca = 10-Is. Temperature ud frequency shift behaviors in the viscoelastic composites ca.u
aho be observed in these resluts.

491



Creep responses for composite plates with a circular hole are evaluated for viscoelastic GY70/339 composite

mater_al properties given in {15] and for laminations of (0/90). and (45/- 45),. The dimensions of a plate is 2 in

x 4 in and the diameter of the hole is .25 in. 650 degrees of freedom were used. The finite element mesh pattern is

depicted in Fig. 8 and for operating temperatures are 75 ° F and 122 ° F, a uniaxial tensile stress of _8 = 5 psi was

uniformly applied along the edge of the plate. The circumferentml creep strains around the hole in (0/90), and

(45/- 45), laminates are plotted in Fig. 9 and Fig. 10. Maximum circumferential creep strains occur at the 90 °

angular position in both plates. At t = 0, the strains at _o = 90 ° are 1.725 × 10 -6 for (0/90), and 4.034 × 10-6 for

(45/-- 45),. Creep strains for (0/90), laminate increase about 10.6 % at 75 ° F and 19.7_ at 122 ° F for the I year

period, while those in (45/- 45), plate increase 22.8_ at 75 ° F and 44.2_ at 122 ° F for the same time period. At

io = 42 ° the strains in (45/- 45), laminate and at _o = 0° for the (0/90), laminate remain time independent.

4. CONCLUSIONS

Viscoelastic bending and stretching responses of polymer matrix composites have been evaluated using the

finite element method and Laplace transform technique. Verification studies show that the L.T. results agree

well with the analytical ones. Plate bending time dependent displacement fields in the transverse direction for

simply supported square composite laminates have been computed. It is observed that the stacking sequence of the

laminates significantly affects the time dependent displacement field for symmetric angle ply laminates. Maximum

strains are obtained at _o = 90 ° for both GY70/339 (0/90)° and (45/- 45), laminates. The rate of change of creep

in (0/90), laminate is sma_er than that in (45/-45), laminate for tensile loads. The present method can be readily

applied to any viscoelastic boundary value problems with complex geometries. The advantages of this algorithm

as compared with the direct integration method is accuracy, saving of large amounts of computational time for the

analysis of long time behavior and the significant reduction of labor for numerical procedures and programming.
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Abstract

The structure-control system optimization problem is formulated with constraints on the
closed-loop eigenvalues and the efficiency of the reduced order system. The feasibililty of the
approach is illustrated by designing the ACOSS-FOUR structure with a reduced order system
and improving the effÉciency characteristics of the structures-control system.

1. Introduction

The efficiency of a structure-control system is a nondimensional parameter which indicates the
fraction of the total control power expended usefully in controlling a finite-dimensional system.
The balance of control power is wasted on the truncated dynamics serving no useful purpose
towards the control objectives. In References 1 and 2 it has been demonstrated that the concept of
efficiency can be used to address a number of control issues encountered in the control of dynamic
systems such as the spillover effects, selection of a good controller configuration and obtaining
reduced order control models. An important aspect of the efficiency approach to structure-control
system is that the behavior of the full-order system can be ascertained based on the reduced-order
design model without any knowledge of the truncated system dynamics. The efficiency compares
the control power lost to the truncated dynamics thereby not serving the purpose of control, to
the total control power expended via the reduced-order control design model on the full-order
physical system.

The subject of structure-control system optimization is inherently multidisciplinary (Refs. 3
and 4). A variety of objectives and constraints can be proposed both at the system-level and

subsystem-levels (structure or control subsystems) to bring about an interdisciplinary study of
the problem. For obvious reasons, an ultimate objective for space-structures is to have a minimum
mass structure subject to structural and/or control system constraints.

A key feature in controlling a reduced-order model of a high dimensional structural system
must be to achieve high power efficiency of the control system while satisfying the control ob-
jectives and constraints. As a further enhancement of the optimization formulation presented in
reference 4. this paper brings on the power efficiency of the system into the picture.

2. Efficiency Modes of a Structure-Control System

Consider an .yth order FEM evaluation model of the structural system

M_ + E q + Kq = Dr(t) (1)

where M. K and D are the mass, stiffness and input influence matrices, q(t) is the vector of

nodal displacements. To control the structure described by (1), reduced-order modal state-space
equation-. are considered

_z= Ax + BJ'{t)

= = ]r (2)
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where 7?c are the n < N structural modes controlled. Hence, considering the structural model
problem associated with (1) and denoting the orthonormalized modal matrix _I, of the full order
evaluation model we have

q=_=[¢c eR] [ _c I (3)
- fir

where R denotes truncated structural modes. The modal-state space system of (2) is the reduced

2n th order control design model. The A and B matrices have the form

B = (s)

where w 2 = diag [wl .... w,] with Wr a natural frequency and I is the nth order identity matrix.

Due to any arbitrm7 input ]'(t) the control power associated with the input on the actual

full-order evaluation system (1) is given by the integral

S "e = / .]'TDrM-1Didt (6a)

The portion of this total expended power on the actual physical system that is projected onto
reduced-order dynamic system represented by (2) is

S_ = / f rBTBfdt (6b)

We refer to S R as the real (total) control power expended and ScM as the modal control power

expended on the modal control design model. One has (Ref. 1)

s R> ScM (7)

and the control power wasted to the truncated dynamics is

S_"= sR- sP

The model input power efficiency is defined as

(8)

e% = _-_ x 100

with a maximum possible efficiency of 100%.

Associated with e, a power quotient can be defined as

s_
sq% = x 1oo= (I-e)x 1oo

(9)

(lo)

We note that while S M is indicative of a quantity for the reduced control design model through

the appearance of the B matrix. S R is a quantity for the evaluation model through the appearance
of the mass matrix M. This observation establishes that the model efficiency relates the power
performance of the full-order evaluation model of the actual physical system. Most importantly
the definition of model efficiency is valid regardless of the specific functional dependence of the

input field ]'(t) which is the physical input to the real system. For example, it does not matter

from the point of definition whether f(t) is a control input or not.
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Specifically, however, if the input f(t) on the physical system has the functional form of the

state-feedback of the reduced-control clesign model (2) as:

: = (:1)

where G is a stabilizing constant control feedback gain matrix of dimension rn × 2n, then it can
be shown that M S RSc , become:

S R = z.ToPRz.o, Scm = z.ToP'J'Zo, z o = Z(to) (12)

pR and pM are symmetric positive definite matrices referred to as real and modal control power
matrices, respectively. They are the solutions of the Lyapunov equations associated with the
closed-loop control system

ATp R + pRAcl + GDTM-1DG = 0 (13)

r

ActPc + P_Act + GBTBG = 0 (14)

Act = A + BG (15)

Both power matrices are 2n th order, they are computed based on the reduced control design

model. However, note that the real power matrix pR still inherently involves the evaluation

model. It follows that, for a stable structure-control system the model efficiency becomes

T m

.ZoPc _o
= :pR=o (16)

Hence, the efficiency of the system in general depends on the initial disturbance state and
the structure and control system parameters carried onto the power matrices via the Lyapunov
Equations (13, 14). As simple as definition (16) of efficiency of the system appears, it does hold
a host of internal information about the working of the structure and control system thereby
characterizing the control/structure interactions uniquely as we outline below.

/

Since the c_ ntrol power matrices are Hennition matrices, the efficiency quotient (16) essentially
represents a Rayleigh's quotient. Consider the eigenvahe problem associated with the power
matrices (Ref. 2)

Pcmtt.= A_pRti i = 1, 2,..., 2n (17)

where A_ and t, are defined as the :h characteristic efficiency and the :h controller efficiency
mode, respectively. The eigenvector tt is also referred to as the principal controller direction.
Introducing the efficiency modal matrix T:

T-[tl t 2 ... t2n] (18)

the following orthonormality relations can be stated

TTpRT = I2.x2., TTpTT = Ae (IO)

where

Ae =diag[A_ A_ ... A_,.,]. AT < ... _< A_,, _< 1 (20)

From the properties of a Rayleigh:s quotient, for an}" arbitrary vector (initial disturbance state)
Xo. the value of the quotient (16) is bracketed by

< e < < 1 (21)
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where the upper bound 1 follows from the property (7). We shall refer to A_ as the fundamental
efficiency. It is the minimum efficiency achievable by the structure-control system regardless of
the initial state Xo.

3. Optimization Problem Formulation

In the design of structural-control systems it is natural to strive for a high modal efficiency
e regardless of initial state disturbance. The consequence is that a high efficiency of any given
reduced-order control design model will imply that there is low control power spillover to the
truncated dynamics and hence minimized residual interaction with the design model. We can
then pose a structure-control optimization problem which incorporates the system efficiency. The
objective of the optimization problem is to minimize the total structural mass m subject to the
constraints:

> (23)

<,

h-

e% _ e'_ (24)

where wi is the closed-loop frequency and e% is the efficiency. An * denotes minimum desirable
constraint values. From the definition of efficiency (16) it appears that the solution of the problem
will also be sensitive to the initial modal state disturbance which is affected by the structural
design variables. To circumvent this dependence of the problem solution on xo we invoke a
feature noted in Section 2 that the minimum efficiency achievable is the fundamental efficiency

biz a constraint on the fundamental efficiency

where sensitivity of A_ depends only on the system matrices via the efficiency eigenvalue problem
(17). Hence, we solve the optimization problem subject to the constraints (22) and (23).

Sensitivities

The .-ensit,vity expressions for the objective function and the frequencies wi are exactly the
same as given in Ref. (4) where it is assumed that the control gain matrix G is the steady-state

solution of the 2n th order matrix Riccati equation associated with the minimization of the Control
Design Performance Index (CDPI}

CDPI-" / (xTQx ÷ frRf)dt (26)
0

The only new sensitivity that is required here is the sensitivity expression of the fundamental

efficiency A_. From the controller efficiency eigenvalue problem (17), noting that pM and pR are
symmetric positive definite, efficiency A_ sensitivities are

= pro_ _ ,t)t, i=1,2,...,2nA,j t_ ( cJ MPRh (27)

where I denotes partial derivative with respect to the I th design variable.

The sensitivities of the control power matrices are obtained from the Lyapunov equations
{13, 14). Similar to the results of Ref. (4, 5). one obtains the following Lyapunov sensitivity
equations:

ATp,I -+-P,tAct = -Q.l P = pR or PP (28)

where

Q,t = Q,t + PAcl.t * A_.IP (29)
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Q,= forP= C30/

Q,z = (GBTBC),, for P = Pr (31)

for which the required sensitivities Adj, G, l, @, l etc.., are again given in Ref. (4). The sensitivity
of M -1 is obtained from

M -z,_ = -M-IMjM -z (32)

4. Illustrative Example:

The ACOSS-FOUR structureshown in Fig. 1 was used to design a minimum weight structure

with constraintson the closed-loopeigenvaluesand the efficiencyparameters. This structure has

twelve degrees of freedom and four masses of two units each attached at nodes 1 through 4. The
dimensions and the elasticproperties of the structure are specifiedin consistent nondimensional

units {Ref 4). Six colocated actuators and sensors are in sixbipods. The controls approach used

islinearquadratic regulator with constraintgain feedback. The weighting matrices for the state

and control variableswere assumed to be equal to identitymatrices.

The nominal design isdenoted by Design A with cross-sectionalareas of the members equal

to those given in Table i. This nominal design weighs 43.69 units . This structure was initially
analyzed with the firsteight structuralmodes controlled.

The firsttwo closed-loopfrequencies coi and w2 were found to be equal to 1.296 and 1.597,

respectively. The efficiencyparameter A_ associated with the nominal design was found to be
0.407. The constraintsimposed on the optimum design were as follows:

Wl _> 0.9069

w2 _ 1.117

AT _> 0.549

The constraintsspecifiedon the closed-loopfrequenciesare 0.7 times those of the nominal design

and the efficiency1.35times that of Design A. A constraintonly on the efficiencywould drive the
lower frequenciesto nearly zero during the optimization. Hence, they were constrained to 70°_ of

the initialdesign. The initialdesign for optimization was Design A. The NEWSUMT-A software,

based on extended interiorpenalty function method with Newton's method of unconstrained

minimization was used to obtain an optimum design. After eightiterationsthe originalstructural
weight of43.69 units was reduced to 15.83 units.The optimum design was designated as Design B.

The cross-sectionalareas of the members, square of the structuralfrequenciesand the closed-loop
damping associated with two designs are given in Table 1-3.

5. Concluding Remarks

The concept of the efficiency of the structure-control system is used to design an optimum
structure. The structural weight is assumed to be the objective function and the constraints are
imposed on the closed-loop frequencies and the efficiency parameter. The illustrative example
indicated that the structure-control efficiency of the reduced order system can be improved by
using optimization techniques.
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Table 1. Cross-Sectional Areas

o£ the Meters

Element No. Design A Design B

a

6 7
5

FIGURE 1: ACOSS-FOUR structure

I I000.0 678.62

2 I000.0 211.77

3 i00.0 48.83

4 100.0 59.64

5 1000.0 70.13

6 1000.0 357.89

7 100.0 79.99

8 100.0 118.58

9 100.0 142.32

10 100.0 32.87

11 100.0 136.85

12 I00.0 43.18

Weight 43.69 15.83

e% 40.7 54.9

Table 2. Structural Frequencies ( w ) Table 3. Closed Loop Damping

Mode Design A Design B

1 1.68 0.819

2 2.55 1.25

3 7.31 2.94

4 7.52 4.87

5 9.98 8.39

6 16.06 9.72

7 20.01 12.66

8 20.17 19.61

9 66.24 24.21

i0 77.46 29.78

ii 97.42 43.51

12 151.30 75.12

5OO

Mode Design A Design B

1 0.0563 0.0634

2 0.0674 0.1147

3 0.0739 0.9297

4 0.0805 0.0791

5 0.0848 0.1052

6 0.0866 0.0939

7 0.0762 0.0899

8 0.0718 0.0715
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A fundamental problem facing controls-structures analysts is a means of determining the traxle-offs

between structural design parameters aa_d control design parameter_ in meeting some particular performance

criteria. Developing a general optimization-b_ed design methodology iittegrating the disciplines of structural

dynamics and controls is a logical approach. The objective of this study is to develop such a method. Cl,'msical

design methodology involves three phases. The first is structural optimization, wherein structural ntember

sizes are varied to minimize structural titass, subject to open-loop frequeiicy constraints. The next phase

integrates control and structure design with control gains as additional design variables. The final phase is

analysis of the "optimal" integrated design phase cotisidering "real" actuators arid "standard" member sizes.

The control gains could be further optimized for fixed structure, and actuator saturation constraitlts could

be imposed, llowever, such an approacl, does not take full adv;mtage of opportunities to tailor the structure

slid control system design as oile system.

The integrated optiniization scheme used in this study is depicted lit figure 1.. An iniler loop contains cotitrol

analysis and structural analysis. The structural analysis produces mode slopes, frequencies, and the system

inertia matrix. These are used by the control analysis to produce a value for tl,e actuator mass blined on

required torque. This actuator mass value is tl,eit used in the structural analysis to regenerate the mode

slopes, frequencies, and inertia matrix. These iterations continue until the mass of the actuator cottw.rges

on a value relative to its prior value. Once a convtrrg,:d value for actuator lna.ss is generated, structural and

control gradie,its are estimated am uncoupled partial derivatives. The Gclteralized Sensitivity Equations use

the uncoupled partial derivatives to approximate the appropriate coupled partial derivatives. These coupled

partial derivatives are used by an optimizer to develop an optimal solution based on design objectives and

constraints. Move limits are iniposcd so that the Ill,ear approxitnatioits to the controLs-structures analysis

remain v',did. The outer loop is repeated until the contrai,its and objectives are ,net or until :t predesignated

number of cycles .are completed.

A derivative of the Earth Observing System (I']OS) is used for optiniization studies. The reference model
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is illustrated in figure 2. This model is an adequate represent_tion of a "real world " application tlmt can

benefit from CSI-motivated tradc-olf. There are three structural design variables aml twelve control design

variables. Tile radius of the truss members, tt_e radius of the a,Ltem_a support trusses, _tnd the radius of the

antenna ribs are the structural design variables. Six position gains and six rate gains are used as the control

design variables. The design objective is to minimize the total spacecraft ma_s (structure and actuator)

while constraining vibration decay rate, that is:

+ ,...,,,-,.,,,] S

where _,'s are the system closed-loop eigcavMues. The performance question to be al_were(l i_ whether

structural m_s can be traded for actuator razes.

Although with modern launch vehicles tile total mass of a spacecraft similar to tire one umler consideration

would not constitute a critical design driver, the actuator ma.ss does play a key role in the entire system

behavior. Tile actuator mass is the only design variable which is explicitly both a structural variable and a

control variable. Because the actuator mass is non-negligible, it couples the open-loop fhfite element model

with the control anMysis, thereby requiring an iterative solution. The iterative process of computing actu-

ator mass requires system mass matrix updating and recalculation of the eigensolution until the calculated

actuator mass converges. The iteration is an "inner loop " within the optimization "outer loop."

The spacecraft's rigid-body motion and elastic behavior are used ia the control and structural analysis. The

analysis of the _pacecraft's dynamics considers having the vehicle rotated from its initial attitude to a new

attitude. After the rotation it is desired that any vibration that has occurred because of the maneuver be

suppressed. The knowledge of the dynamics is used to size the controllers which are used to rotate the

spacecraft and suppress its vibration.

Torque wheels with banff-bang control slew the spacecraft during attitude maneuvers and, consequently,

excite the structure. The model is slewed through some finite rotation. The maneuver is considered to be

linear (i.e., small angular displacement over a long duration). In addition to the torque wheels used for the

attitude maneuver, two collocated elastic controllers are located in the bays below the antenna supports.

The modal representation of the elastic response, q, of the spacecraft due to the bang-bang maneuver and

the collocated elastic controllers is governed by the following equation of motion:

(t + Dq + Aq = --,frGp,_q - o_'_'Gr*i 1 + r'rM

Modal damping and stiffness are D and A, respectively. The first two tertns on the right side of the equation

above are the collocated elastic controller torques. Thee torques are proportional to the position gain, G/p,

and the rate gain, G'r, and to the diil'ereuce of mode slopes, 9, at the two elastic controller locatio,s. The

last term oa the right-hand side of the equation above is due to the bruit-bang control maneuver. This

torque is proportional to the mode slope, r, at the point where the bang-bang torque is being applied and to

the magnitude of the acceleration, M, produced by the torque. A state space representation of the system

can be given as:

z = (qT",qT)

J: = A:r. + B M

( 0 ' !A = [-A- I-D- ,r6y,]

%
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B-[0 rr] r

where A and D are the system plant matrix and control input matrix, respectively. The elastic response

cau be calculated _:

_c(t) -" A -1 [e at - I ]27M 0 < t < t_/2

z(t) = A-ire A: - 2eA(t-t'P') + I ]BM t_/2 < t <re

z(t) = A-ire At - 2e A(t-t'/_') + eA(t-t')]D_l t > If

Each of the two actuators produces the same torque output which is prescribed to be tile product of gains,

dilferenti',d mode slope, and time response during the history of the spacecraft's motion. The torque output,

u, for each actuator is resolved to three orthogonal directions according to the following relation:

= -[C.,r

Total mass, rr_,, for both actuators is proportional to the ma.xintutn torque magnitude along e;tch direction

('ul max,'ue,,_x, uamax) such that:

m_ -- "27rlt('UlnuLx + "u2nmx + _/3n_x)

where rrtt is a scaling factor for mass per unit torque.

Figure 3 illustrates the history of the elastic response norm, Hell. The attitude maneuver is a 10 second

slew through 20 degrees. The peak elastic response occurs shortly after the switching time at 5 seconds.

llowever, unless one would prefer to "rigidize " the spacecraft structure during the bang-bang maneuver,

using a time re_ponse history after the end of the maneuver is sufficient. It is important to note that the

peak response comes not at the end of the maneuver but shortly thereafter. Similarly, during the maneuver

the peak response does not come at the ._witchiug time but shortly afterwards.

Because the actuator mass calculation depends upou the number of modes selected it is necessary to know

which Itlodes sigttilicatLtly cotttribute to the tra_tsfer functiou. If some of the major colLtributors are truncated

or iguored, then the derived value of the actuator tn.'ms will be lower than necessary to control the Ilexible

modes. As depicted in figure 4 the highest contribution to the transfer function occurs with the first '2.5

modes. Figures 5 and 6 show the torque needed in the x direction when 20 and 40 modes are used in the

model, respectively. By omitting mode 23, the uecessary control torque in the x direction was only half of

what it should be.

Figures 7 and 8 show aggregate results of the overall optimization attalysis. The design objective of

minimizing total mass is illustrated in figure 7. "lbtal mass converges at the twelfth cycle. The constraint

on the design is that the real part of all closed loop eigenvalues be less than 6 = -.014. As depicted in

figure 8, this constraint is satisfied after cycle 3 of the outer loop.

A method has been presented that combines structural analysis and control attalysis integrated an a single

optimization problem. This technique takes advantage of trade oils between control variables and structural

variables to ttteet a performance objective, ht the method illustrated the actuator mass value was prescribed

to depend on the modal representatiott of the spacecraft motion. Mod',d selection ha.s been shown to be a

very important factor in deternfining the actuator mass. Knowing the elastic response was also a key factor.

Aggregate results of the entire optintizatiou loop have illustrated the eifectivenes.s of using an integrated

appro_Lch to sleet perfort,iuice objectives, lutegrating the methods of control analysis attd structural analysis

for optimal performance will be a viable tool for the future design of flexible spacecraft.
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AN EFFICIENT DESIGN SENSITIVITY ANALYSIS _ _/

OF EIGENVECTORS u

T. TING

Department of Mechanical Engineering, University of Bridgeport, Bridgeport, Connecticut,
U.S.A.

INTRODUCTION

Subspace iteration has been a major advance in solving large eigen problems when only a
subset of eigen-pairs is required. The essence of this method is a transformation from
displacement coordinates of an n-th order eigensystem to generalized coordinates of a
smaller q-th order. The eigenvalue problem is then solved in the reduced space. The
method was fin'st developed by Clint and Jennings I for real symmetric systems and was
then called "simultaneous iteration." The success of the method prompted further research

along this line and there have been many improved algorithms developed 2,3. This

approach has been widely used by structural engineers for extracting the most useful
natural frequencies and mode shapes of large-scale dynamic systems.

Recently, the increasing importance of automated modification for dynamic system
has brought on the interest in developing efficient method for computing the design
sensitivities of large scale dynamic system's ¢igen-parameters. The method for
determination of eigenvalue derivatives is almost conclusive and is very simple and
straightforward. The real problem arises in calculating eigenvector derivatives which is

found to be much more complicated. Fox and Kapoor's pioneering work 4 in 1968 has
laid down two primary directions for developing computational methods to calculate
eigenvector derivatives of discrete systems. Their first approach was derived based on the
first-order variation of a single eigenvalue equilibrium equation and its eigenvector mass
normalization equation. Thus, this requires only the specific eigenvalue and eigenvector

and can be termed the direct approach. Nelson 5 presented a method in 1976 which
simplified calculation along this line and the method is well received as one of the best
methods available for the purpose. However, since Nelson's method still requires to solve
a n × n set of equations for each eigenvector, it becomes a costly process when the
derivatives of a large number of eigenvectors, provided n is large, are demanded. Fox and
Kapoor's second approach employed modal space expansion concept where the
eigenvector derivative spans the entire modal space for the exact solution. They also
proposed an approximated solution by spanning a subset of the modal space. The former
requires the complete set of eigen-pairs which is prohibitively expensive for large systems.
Although the later only requires a relatively smaller set of eigen-pairs, the inaccuracy of the
approximation may present a problem and there is still no clear guideline on how a subset
of eigen-pairs can be selected to approximate the exact with an acceptable tolerance.
However, if the derivatives of a large number of eigenvector is required, this approach may
become a preferred method owing to its simplicity in computation.

This paper exploits into a new direction which is in the form of iterativ¢ process for
simultaneously calculating eigenvector derivatives of many eigenvectors with respect to
multi-variables. The method fully use all the available information from preceding
eigenvalue solution and, thus, effectively economizes computational efforts. It iterates
through two equations derived from the f'trst variation of the two fundamental equations
used in subspace iteration method. There is no expensive large matrix decomposition
required and the process converges to acceptable solution in a finite number of iterations.
Therefore, the procedure increases its efficiency superiority over the others as the system
size or the number of interested eigenvectors become larger and larger.
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SUBSPACE ITERATION FOR EIGEN-PROBLEMS

Suppose we are interested in extracting the lowest p, p<n, eigenvalues and
corresponding eigenvectors of a n-th order system, the solution to the reduced problem can
be written in matrix form

K_ = M_A (1)

where • is the modal matrix of n xp containing the required eigenvectors and A is a

diagonal matrix of order p with the eigenvalues on its diagonal. Let us now consider the
shifted subspace iteration described by

(K + o'M)'U --(t+l) = MU (t) (2)

where o" is a well chosen shift value and k -- 1,2 ..... is the iteration counter. U(k) is a n ×q

(p<q<n) matrix and, provided, whose columns are M-orthonormal. Solving Eq.(2) yields

U(t+I) . The next step is using U¢k+l) as projection vectors to project K and M into
matrices of q xq and forms the reduced eigenvalue problem

where

K(k+I)Q (t+l) = M(k+I)Q (k+l)A (t+l)

K(k+l) = {_-_k+l)yKU(t+ 1)

M('+I) = (_-_t+I)_MU( '+I )

(3)

(4)

(5)
are q xq real symmetric matrices. The solution of the reduced eigen-problem of Eq.(3)

yields A(k+j) and Q(,+I). Then, for the next iteration, we shall use

U(t+I) = "_'(k+l)Q(k+l) (6)

To summarize and for simplification reasons, let

P = A + o2 (7)
and

w = OP -t (8)
The two fundamental equations for the shifted subspace iteration at convergence can be
written as

where

and

(K + crM)W = MO (9)

KP = MPA (10)

_, = WrKW (11)

= WrMW (12)
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SUBSPACE ITERATION FOR EIGENVECTOR DERIVATIVES

Assuming eigenvectors • are available and form an M-orthonormal basis of p-dimensional

subspace of the operators K and M, we want to determine the first derivatives of • with

respect to design variables x = {x_,x2 ..... xrn}. It is also provided that all the eigenvectors

in • are associated with simple eigenvalues so that • is continuous and differentiable with

respect to x. Since all the eigenvalues are simple and distinct, their first derivatives with
respect to x can be uniquely determined.

Now, taking the partial derivative of both sides of Eqs.(9) and (I0) with respect to
design variable xj and rearranging yields

(K+cr - +

bxj _xy _xj bxj 3xj
(13)

K3---P-P- M3-_PA = 3MpA + _p.3A _K,p

Oxj Oxj _xj Oxj Oxj
(14)

where

--=0K 0WTK w + wTC_Kw + WTKOW

0M bWrMw+WrbMW+WrMbW

(15)

(16)

OW 00
The relation between _ and -- can also be derived form Eq.(8) that

Oxj Oxj

c)* ... 0W.p + w0P

_xj Oxj Oxj

Altogether, Eqs.(13) - (17) can be used to construct recurrence relations for an iterative
process of computing eigenvector derivatives.

The following algorithm is an subspace iteration scheme for calculating eigenvector

derivatives. The algorithm begins with a set of trial vectors for O_/_)xj and updates the trial

vectors based on the recurrence relations to improved the approximation.

Let W(1) be the set of initial trial vectors. For k=l,2 ..... the recurrence relations

ale

(17)

where

(K + o" M)V (k+l) = F" + M_F (k)

_-=_ (0K+ _cr_M)w

Oxj Oxj Oxj

(18)

(19)
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is constant throughout the iterations. Solve for V(k+t) in Eq.(18) and employ Eqs.(15) and

(16) to compute

/9_fk+1)

= WT_gKw + WTKV(k+I) + (WTKV(k+I))T (20)

3xj

wTaMw + WTMV (k+l) + (WTMV(k+I)) T

_xj

Next, consider the following relation

(21)

KD (t+D .MD(t+I)A = _pO_A_+_b_l(k+1) b_(t+1)
PA --- P (22)

_xj _xj _xj

and solve for D(k+O using a Nelson-like method. Then, for the next iteration, we shall use
the updated trial vectors

_F(k+1)= V(k+1)p + WD (k+1) (23)

The iteration process converges, so that

DO

3xy
as k --->** (24)

CONVERGENCE RATE AND ITERATION VECTORS

The ultimate rate of convergence of iteration vectors to the derivatives of the i-th
/_ t

eigenvector, O¢",/OxL is $i//%q +1, where q is the number of the lowest eigenvectors used in

the iteration process. A large q, q>p, is normally required in order to achieve a good
convergence rate. But this also increases the computational effort within each iteration for
carrying the iteration vectors associated with the extra eigenvectors. However, it can be
shown that if the lowest p eigenvectors were computed accurately enough, Eq.(23) for
updating the iteration vectors becomes uncoupled for those associated with the lowest p
eigenvectors at the second iteration. This implies that

D(2) = [ Dpp Dpq] (2) (25)Dqp Dqq

and [Dpp] is a diagonal matrix of order pxm. This means that extra iteration vectors are
only necessary at the first iteration to speed up the convergence and they need not be
included in the subsequent iterations.

It is also interesting to note that, usually, the method does not require good starting
trial vectors for improving the overall rate of convergence. In fact, most of generated initial
trial vectors, including the truncated modal approximation, will result in the same trial
vectors after the first iteration. Therefore, for convenience, it may be adequate to assign the

initial trial vectors the null vectors, i.e., _F(I) = O.
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AN OVERRELAXED SCHEME

It is a demonstrated fact that overrelaxation can significantly improve the
convergence characteristics of the subspace iteration method for eigenvalue analysis. The
overrelaxation for the subspace iterations of eigenvalue keeps all equations the same as its

basic version except to update the new iteration vectors U(k+I) by

U(k+l)- u(k)+(_(k+l )Q(k+l )_u(k))(Z

where t_ is a diagonal matrix with its diagonal terms equal to individual vector

overrelaxation factors oti, i = 1.... ,q. Referring to Bathe's analysis 6, we have

(26)

letting

txi = l

1-(_.i+ cr}/(_+l+_) (27)

Similarly, the subspace iterations for eigenvector derivatives can be overrelaxed by

where o_ is the overelaxation factor matrix with diagonal elements ai, j = 1..... pxm. Since

the left hand side matrix of Eq.(18) is the same as that of its original equation for
eigenvalue problems, Eq.(9), the eigen-properties associated with the solution of this
equation remain the same. Therefore, if the j-th iteration vector is a trial vector for one of
the derivative vectors of eigenvector ¢i, we have

oej = oti (29)

The overrelaxation should be employed after the iteration vectors have settled
down. Normally, applying overrelaxation once every three iterations should be effective.

The overrelaxation on the solution of Eq.(18) can reduce the number of iterations
required to obtain an acceptable result. On the other hand, the elimination of the need to

solve for D(t+l) in Eq.(22) can drastically reduce the computing cost within each iteration.
Theoretically, the iteration process converges when k+l approaches ** and

(3O)

However, this can be achieved in two iterations with the provision that the given lowest p
eigenvectors are exact. In the case of using inaccurate eigenvectors in the subspace

iterations, the matrix D(k+l) will never be diagonal even after many iterations. However,

for adequately accurate eigenvectors, the matrix D (k+l) become near-diagonal after two
iterations where the diagonal teams almost equal to their theoretical values and the off-
diagonal terms are, relatively, much smaller. Hence, it seems to be reasonable to

approximate D(k+l) by Eq.(30) after the first iteration. It should also be award that when
the quality of the eigenvectors is poor this approximation may lead to a divergence. The

remedy to the problem is to compute the true D(k+l) once every several, say three,
iterations.
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EXAg_LE PROBLEM

The FE model of a power turbine blade subject to fixed end condition is used to
demonstrate the effectiveness of the subspace iterations for eigenvector derivatives. The
model consists of 200 flat plate elements comprising 231 grid points as shown in Fig.1.
The elements are divided into 20 rows, from the root to the tip, of 10 elements each.

A single design variable is def'med as a scale factor for all the element thicknesses in

the fifth row from the root. The efficiency of the subspace iterations for computing the
eigenvector derivatives with respect to the design variable has been compared against that
of Nelson's method. Both Nelson's and subspace iteration methods have been

implemented in MSC/NASTRAN's DMAP 7 and some modification to the previous DMAP

version of Nelson's method 8 has been done to improve its machine-dependent efficiency.

Tables 1 and 2 summarize the comparison over CPU time for calculating derivatives
of six and twelve eigenvectors, respectively. This example was run on DEC VAX, t785-11
and the CPU seconds shown in the Tables are the standard VAX CPU seconds.

The convergence criterion for terminating the subspace iterations is based on the
error norms defined by

(*+n (*

where I,I denotes the vector norm of any kind. In this example, the Euclidean vector norm

is used and the tolerance for ei is set to be 5.xlO "4 (i.e., ei <-5.x10 "4 V i = 1,...p_an).

L_

Fig. 1. Power turbine blade FE model
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Table 1 Efficiency comparison for 6 modes

BASIC SUBSPACE ITERATIONS RELAXED NELSON'S

p*/q** 6/6 6/12 12/12
No. of Iterations 12 5 5
CPU seconds 539.7 307.3 494.

* Number of iteration vectors after the first iteration.
** Number of iteration vectors at the first iteration.

6/12
4

244.5 667.5

Table 2. Efficiency comparison for 12 modes

i

BASIC SUBSPACE ITERATIONS RELAXED NELSON'S

p*/q** 12/12 12/20 20/20 12/20 -
No. of Iterations 16 7 7 6 -
CPU seconds 1181.7 622.1 1004. 492.9 1293.6

* Number of iteration vectors after the first iteration.
** Number of iteration vectors at the f'a'st iteration.

CONCLUSIONS

This paper has presented the basic and an overrelaxed subspace iteration methods
for calculating eigenvector derivatives of general real eigen-systems. The solution
algorithms have been implemented, and the results of a sample problem are reported. The
basic formulation is directly derived from the equations of the basic subspace iterations for
solving eigenvalue problems. The overrelaxation of the subspace iterations shares the
result of Bathe's analysis for eigenvalue problem. This is due to the fact that the eigen-
properties of the solution equations are the same for both purposes. In fact, since the
placements of eigenvalues are known a priori, Bathe's overrelaxation formula can be easily
employed without having the difficulty of estimating eigenvalues for the evaluation of the
overrelaxation factors.

The subspace iterations for eigenvector derivatives does not require the
decomposition of a system-size matrix. Thus, this approach is desirable for very large
systems where decomposition of the system matrix may cause spilling operation to occur
which results in prohibitively high costs. Even for a moderately large system, as shown in
example, the basic algorithm can achieve 20-50% reduction in CPU and the overrelaxation
algorithm gains more than 60% of saving in CPU. Nevertheless, since Nelson's method
does not require much computational effort for additional design variables, the subspace
iterations may loss its superiority over Nelson's method for sufficiently large number of
design variables.

In the normal circumstances, the convergence rate of this approach does not seem to
be affected by the selection of initial trial vectors. The quality of the given eigenvectors
may influence the convergence rate. However, it is worthy of mentioning that the coupled
basic subspace iterations converge to the true eigenvector derivatives regardless of the
quality of the eigenvectors provided. On the other hand, the accuracy of Nelson's results is
directly determined by the quality of the eigenvectors used in calculation.
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Abstract

This paper discusses the framework of a Knowledge Based Expert System (KBES) en-
vironment to design aerospace structures under structural and aerodynamic constraints us-
ing ASTROS (Automated Structural Optimization program). ASTROS is a synthesis tool
built around the NASTRAN fiuite element program. The knowledge base capabilities are
discussed for synthesizing in statics, normal mode, steady and unsteady aerodynamic disci-
plines. A description of the two ASTROS advisor modules the Editor/Bulk Data generator
and Post-processor is included. Experiences and issues involved in hierarchical representa-

tion of knowledge as menu options at different levels of abstraction are presented. A brief
overview of Knowledge Based Systems and the shell CLIPS (C Language Integrated Pro-
duction System) used to develop the ASTROS Advisor are discussed. Illustrative examples
of the advisor in designing airframe structures are also included.

Introductlon

Today engineers make extensive use of computers in engineering synthesis. The iterative
processes involved in design and analysis have been implemented as well-defined algorithmic
procedures. As numerical procedures and szsociated computer codes become more and
more complex, engineers are starting to use Knowledge Based Systems to simplify the task
of implementing these sophisticated numerical tools. By applying the technology of Expert
Systems, engineers are able to communicate parts of the ill-structured design knowledge
through a computer medium. Some examples of ill-structured knowledge in multidisciplinary
optimization deal with the establishment of the initial parameters, selection of important
constraints, identification of design objectives, and selection of design methodologies.

In the past, several prototype knowledge based systems have been developed for various
aerospace and civil engineering structures.

SACON [1] (Structural Analysis Consultant) is one of the earliest expert systems devel-
oped for structural analysis. It recommends the type of analysis strategy required for MARC
which is a large general purpose finite element analysis program. Rivlin, et al [2] developed
a similar consultant for MARC that creates the input file to run an elastic, elasto-plastic,
creep, dynamic or large displacement analysis using beam, quadrilateral or brick elements.
Buckling Expert [3] integrates an expert system shell with three external algorithmic pro-
grams (an optimization code, an analysis code and a relational data base manager) using
generic interface routines to design stiffened cylindrical composite panels and shells. Hajela
[4] developed an expert system framework to aid the users of the finite element analysis
program EAL (Engineering Analysis Language) in nodes selection, mesh generation, and
element selection. STRUTEX [5] which interfaces algorithmic procedure for structural anal-
ysis and design with expert systems developed on two different expert system shells aids a
structural engineer to initially configure a structure to support point loads. In the field of
numerical structural optimization, EXADS [6] aids a novice user to select an appropriate
optimization strategy from ADS (Automated Design System). IDESIGN [7] used heuris-
tical knowledge to identify active constraint sets, feasible and infeasible designs, choice of
algorithm based on convergence criteria, classification of problems as linear, nonlinear etc.

The impact of Knowledge Based Systems on multidisciplinary aerospace structural design
is studied herein by discussing the framework and implementation of a prototype Knowl-
edge Based System developed for ASTROS, a Finite element based synthesis program which
includes both structural and aerodynamic constraints. The multidlsciplinary knowledge in-
volved in structural analysis, aerodynamic analysis and numerical optimization are discussed.
Experiences and issues in the development of an intelligent environment utilizing a menu
type editor module (Advisor) and a post-processor consultant module are presented. Inte-
gration of these independent modules is done within the framework of CLIPS (C Language
Integrated Production System) [8], a computer language/Expert System shell developed by
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the Artificial Intelligence Section (AIS / at NASA/Johnson Space Center. Knowledge is rep-
resented as facts and production rules m CLIPS which employs a forward chaining inference
engine. CLIPS provides high portability, low cost and easy integration with external systems.
An independent bulk-data sub-module within the advisor module generates analysis and de-
sign models for both steady and unsteady aerodynamics disciplines in the format required
by ASTROS. The generated aerodynamic bulk data model is appended to the existing finite
element models. The advisor has features to automatically check the syntax and hierarchical
data structure. It also has provisions to modify the model at different abstraction levels.
The Advisor is available in IBM PCs, Macintosh, VAX and Sun Workstation versions.

ASTBLOS ADVISOR

Knowledge acquisition, evaluation and validation are critical elements in the develop-
ment of expert systems. These are intensive procedures involving both people and time.
The development of an expert system for a multidisciplinary design and analysis code like
ASTROS, expertise from diverse subsets of knowledge domains is required. Fig. i shows
the unique approach adopted in this Expert system development. In this approach a third
entity, a user specialist is added. The user specialists are multiple experts in the field of finite
elements, optimization, aerodynamics, and an experienced ASTROS user with background
knowledge of AI. The user specialists use knowledge presented in the ASTROS manuals,
heuristical experiences gained from running several problems on ASTROS, and expertise in
a particular discipline to evaluate the prototype system at each stage. The prototype expert
system is evaluated for knowledge representation and user acceptance issues. Based on the
feedback from user specialist and evaluations from the domain expert, the prototype expert
system is continously refined by the knowledge engineer.

System Architecture

The ASTROS Advisory System contains two independent knowledge based systems,
an ASTROS Advisor and a Post-processor Consultant, integrated within the same CLIPS
architecture. A high level command language program directs the user to either of these
modules. The Advisor comprises of two independent sub-modules, an intelligent Editor and
a Bulk Data Generator (BDG). They can be selected independently or sequentially one after
another. They can be used to either create or modify ASTROS input files. For existing
ASCII ASTROS input files the keywords are scanned and the data is converted to CLIPS
facts. The Advisor is structured as directed menus with relevant options and advice on how
to select these options. The menu interface also allows access to any element of the ASTROS
input file. This is handled in CLIPS by asserting a fact to trigger the rule that handles the
display of the menu.

The ASTROS Advisor Editor has a main menu which provides the user with an option
to either create or modify the Executive Control and the Solution Control sections. The
Optimize and Analyze subsections of the Solution Control are made up of menus to define
Boundaries, Disciplines and Discipline-Options in a descending order. To execute the Bulk
Data Generator (BDG) module, an existing solution contro_ file with either the Steady
Aero or Flutter discipline is required. The BDG module is made up of four modules: (i)
aerodynamic model panel and configuration generator, (ii) a boundary parameter generator,
(iii) an unsteady parameter generator and (iv) a steady parameter generator. The user can
select either the default values provided in the panel data menu or input his/her choice of
values. All input values are checked for modelling accuracy by heuristics, and a corrective
action is initiated by the system for any needed modifications. By default, the paneling data
generated by the BDG module is shared by both the steady and unsteady aerodynamic model
wing panels if they coexist. However, independent panel data can be generated by using the
toggle options in the wing panel menu. The Unsteady and Steady Aero menus contain default
values based on standard reference data used in aerodynamics or data based on heuristical
experience. These include standard air density reference value, flight symmetry conditions
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for steady aerodynamic discipline and an ideal number of reduced frequencies for the flutter
discipline. User input in terms of simple flight conditions like altitude, Mach number, etc..
are requested by the BDG for any missing fields to generate the appropriate performance
bulk data cards. Options are available to use conversion factors to maintain consistency of
input units. The aerodynamic bulk data file created is appended to the solution control file.
As shown in Fig. 2, the BDG creates the aerodynamic model and links it to an existing
finite element model at user defined grid points. The finite element structural model is later
appended as an external file by the user.

The Post-processor has been developed as a traditional Production rule system. A set
of allowable default boolean values make up the intial fact base. The system is modular
with additional knowledge entered in the form of questions, identified problems and corre-
sponding solutions. A simple question and answer session with the consultant establishes a
possible error in the design problem, and correspondingly the advisor provides a solution.
The remember and recall features of the Post-processor consultant allows a user to interrupt
an interaction with the system, terminates the session, and saves as a restart file. The knowl-
edge is abstracted hierarchically down with additional facts solicited only after evaluating
user response. The system provides explanation features for its reasoning thereby making
the knowledge transparent. Help capabil/ties are provided by informing the user where to
look for additional assistance in answering a particular query. The Post-processor provides
recommendations which are useful in formulating and successfully running the future design
models.

Illustrative Examples

The multidisclplinary swept wing model [9] is selected to demonstrate the modelling
capabilities of the ASTROS Advisor. Creation of the wing model for steady aerodynamics
and flutter disciplines under two different boundary conditions are demonstrated in this
illustration. The first boundary condition idealizes the wing supported for plunge modes at
center root of the structural box only and the second boundary condition idealizes the wing
cantilevered at the root. Pig. 3 shows a typical menu display for Executive and Solution
Control Editor. The editor also checks and updates the input model completeness and
syntax of the executive and solution control decks before the user can exit from the module.
Fig. 4 shows a typical menu display in the Bulk Data Generator modules. The wing panel
geometry is shared by both the Steady and Unsteady Aerodynamics disciplines. However,
the distribution pattern of the aerodynamic boxes is different for the two disciplines which
is achieved by changing the toggle setting in the Specific Wing Panel to single for just that
menu value (distribution for chordwise boxes). The menu options required to generate data
for the wing configuration (airfoil data) are displayed only for the steady aero model. User
input of roach number, altitude, flutter velocity limit, reduced frequencies and default values
for symmetry present in the Unsteady Aero Menu are used to generate data specifying the
flutter conditions for the wing. Density ratios are generated by the system based on input
altitude and default reference density. The range of velocities to be included for the analysis
are generated by the system based on flutter velocity limit and heuristical empirical formulas.
User input of roach number, velocity, altitude, load factor and default value for symmetry
present in the Steady Aero Menu are used to generate data specifying the symmetric trim
conditions for the wing. The dynamic pressure is calculated by the system based on air
density, altitude and flight velocity. The trim type 1 is inferred by the system based on its
knowledge of symmetric condition (if symxz-1, then trmty -1).The pitch rate is calculated
from user input of load factor and velocity. Fig. 5 shows the input file created by the advisor
based on the information provided in the editor and bulk data generator modules. Only a
portion of the bulk data cards generated for this example problem are shown for clarity.
This input file generated by the Advisor has comment cards in the bulk data.

Fig. 6 lists an interactive session with the Postprocessor consultant which provides advice
for a non-converged optimization run. The help features present in the Postprocessor are
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also illustrated. Help is requested for understanding the queries about approximate problem

convergence and constraint violations. A separate ADVICE file is also generated containing
the Post-processor Advice.

Conclusions

The framework of a knowledge based expert system environment (ASTROS Advisory
System) to design aerospace structures under structural and aerodynamic constraints was
demonstrated. Experiences and issues in the development of an intelligent environment con-
sisting of a menu type editor and a post-processor consultant were presented. An independent
bulk-data sub-module within the editor module generated analysis models for both steady
and unsteady aerodynamics disciplines in the format required by ASTROS. CLIPS proved
to be a viable tool for expert system development with minor modification. The ASTROS
Advisory System is available on IBM compatible PC's, Macintosh and VAX computers.
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ABSTRACT

The finite element modeling of an airframe structure requires

knowledge of general purpose programs such as NASTRAN as well as

a detailed understanding of the airframe structure. Due to the

sophistication of general purpose programs such as NASTRAN, a

substantial investment in time and effort is required to gain

expertise in using them effectively. This paper describes the

development of an expert system used in the validation of NASTRAN
based finite element models.

Experts in the NASTRAN based finite element modeling of airframe

structures were interviewed to document, understand and represent

their knowledge and reasoning in the expert system. Finite element

stress analysis and internal loads reports generated by the experts

were reviewed to determine expert resolution of problem areas. As

a result, areas requiring expert assistance in the modeling of the
airframe structures were identified.

The finite element input data is represented as a set of 'facts'.

A rule based representation is used to code the expert knowledge.

A hierarchical set of rules are applied. The expert system first

acts as an intelligent front end to insure that all the pre-

requisites needed to perform the analysis are present. This

includes material properties, boundary conditions and connectivity

information. The next step examines if incompatible sets of

elements are connected. The succeeding step examines if the

specific airframe component is modeled by the appropriate set of

elements. The next and final step examines if the airframe members

used are adequate to represent the anticipated state of stress.

The expert system is designed to inform the user the severity of

the error, the likely consequence and possible remedial action.

The shell used in the development of the expert system is CLIPS.

CLIPS contains a forward chaining inference engine based on the

Rete algorithm. CLIPS may be implemented on most personal computers

as well as mini computers and mainframes. The approach taken,

however is general and can be implemented using commercially

available expert system shells.

523

I I I



Introduction

NASTRAN is a general purpose analysis code that brings together the

state of the art analysis capabilities into a single program for

the analysis of complex structures. The usefulness of NASTRAN and

other similar codes in predicting the structural response depends

on a large part on a proper idealization and discretization of the

structure. The process of structural idealization and

discretization is referred to as the generation of a finite element

model. The finite element model, for a given structure is not

unique. Several finite element models, each yielding acceptable

solution accuracy may be constructed for the same structure. This

paper will focus on the use of a Knowledge Based System (KBS) in

aiding the user to validate finite element models constructed for

airframe analysis. Finite element model validation is achieved by

insuring that airframe-specific modeling guidelines, coded into

rules have been satisfactorily met.

Figure i shows the taxonomy for combining the KBS with NASTRAN.

The KBS sits between the analysis package and the user. The KBS

uses as input a user generated NASTRAN bulk data file. The KBS

interprets the input file, interactively asks the user additional

information, applies airframe specific modeling rules and generates

an output file. This file records any violation in the modeling of

airframe structures and reports it to the user before commitment

to a potentially expensive analysis.

In the capacity mentioned above, the KBS serves as an Intelligent

Front End (IFE). The IFE serves to validate the analysis by

checking the input finite element analysis input data using

airframe specific modeling guidelines and general finite element

analysis modeling guidelines. Anomalies, if any are reported to the

user prior to commitment to a potentially expensive analysis. The

major steps in the development of the KBS along with an application

example are described next.

NASTRAN

INPUT DATA

I

IKNOWLEDGE

BASED

SYSTEM

I

I USER

Figure I: Interaction Between User, NASTRAN and

Knowledge Based System
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Knowledge Acquisition

The knowledge acquisition consisted of obtaining procedures and

methods used in the NASTRAN modeling of aircraft structures. Three

principal sources of knowledge were : (i) Structural analysis

guidelines (ii) Stress analysis reports and (iii) Interviews with

engineers experienced in the modeling of airframe structures using
NASTRAN.

The structural analysis guidelines provide analysis procedures for

some of the more complicated problems encountered in vehicle

structural analysis. Information obtained from the guidelines

allowed for the selection of an appropriate class of problems that

are amenable to solution using knowledge based methods.

The stress analysis reports provide detailed information about the

airframe finite element models. General modeling principles common

to airframe components were identified. Also, the modeling

approaches used to meet specific analysis objectives were examined.

Generalizations obtained from examination of the stress analysis

reports were later included in the knowledge base.

Engineers experienced in the NASTRAN modeling of airframe

structures were interviewed. As a result, areas where engineering

judgement was consistently used to either develop or interpret the

airframe model were identified. Also identified were areas where

inexperienced NASTRAN users may most likely make errors in the

modeling of airframe structures. An important feature that could

be readily accommodated using knowledge based techniques was the

need for the ready identification of the airframe finite element

model in terms of airframe members (For instance: Element No. 60042

BAR STRINGER). In meetings with experienced engineers it was
decided that the KBS will be best suited for use with internal load

models.

Development Tool

For the internal load models considered, a rule based network can

be used to effectively represent the expert knowledge. New data

can then be introduced as a set of 'facts'. These facts typically

act on the IF portion of the rules and result in some specific

actions. The actions may be the generation of additional _acts.

These facts can then fire other rules. This process continues until

all rules whose LHS match with available facts have been fired.

Other necessary requirements are (i) forward chaining inference

mechanism and (ii) the ability to interface with FORTRAN analysis
routines.
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The C Language Integrated Production System, CLIPS was selected as
the tool to develop this expert system. CLIPS is a rule-based
forward chaining tool. CLIPS has the required software hooks to
interface with both the operating system and other application
programs. The software hooks are in the form of C Language
interfaces. The availability of the CLIPS source code allows CLIPS

to be compiled and implemented in most installations that support

the C Language.

Description of Knowledqe-Based-Svstem

The components of the KBS consist of a Data-Base Management System

(DBMS), analysis routines and the rules used by the inference

engine. The DBMS facility is needed to reduce the user supplied

analysis data to manageable records of similar entities. The

FORTRAN analysis routines use the user supplied input data to

calculate additional entities that aid in the classification of the

airframe components. The rules are applied to the input data and

additional related data generated by the analysis routines to

complete the classification task and validate the finite element

model. The three components are described next.

NASTRAN allows an arbitrary input sequence. For efficient data

manipulation similar entities need to be grouped and identified.

This grouping allows the KBS to access needed data on demand. To

achieve this, a DBMS capable of reading the NASTRAN bulk data and

storing the input data by NASTRAN card identification symbols is

required. For instance, entities such as grid identification

numbers and coordinates, element type and connectivity information

need to be stored in a form where selective and easy retrieval is

possible. CADDB, the database management facility linked to ASTROS

was used. Any, similar facility may be used to organize the NASTRAN

input data.

The analysis routines compute parameters that aid in the

classification of structural components. These routines use the

NASTRAN input data stored in text files by the DBMS. The routines,

also query the user interactively for additional information. The

user is prompted to enter information relating to the orientation

of airframe skins, spars and webs. The FORTRAN routines are used

to compute the direction cosines of the surface elements. The

direction cosines of these elements are checked against the

orientations of the airframe structural components input by the

user. This is used to classify the surface elements. The

classification for each surface element used is skin, spar or rib.

Elements that do not satisfy the criteria for any of the airframe

members are stored in a special file for later retrieval by the

user.
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Rules are then applied that identify other airframe components.

STRINGERS are identified next. These are structural members modeled

by either BAR or ROD elements, having a cross-sectional area

greater than 0.001 square inches and connected to a SKIN airframe

member identified earlier. A SPAR CAP is a STRINGER having nodes

in common with a SPAR element. Similarly, a RIB CAP is a STRINGER

having nodes in common with a RIB. This completes the

identification of airframe members for wing-type structures. The
list of elements not identified are stored in a file for later

retrieval.

The second task of the KBS is to examine the airframe model and

determine if suitable elements have been selected to model the

airframe. Rules for the modeling of airframe components are

invoked. Two factors are generally considered in deciding the

suitability of modeling a specific airframe member (i) if the

element selected can represent the stresses adequately and (ii) if

displacement compatibility is maintained at the element common

nodal points• Elements not meeting either of the two criteria will

be reported to the user. Appropriate element types to model the

airframe component will be suggested to the user. This final task

is of assistance mainly to engineers inexperienced in the modeling

of airframe structures, and may be omitted by the more experienced

engineers.

An example of the application of the KBS to an aircraft wing is

shown on page 6. First, the classification task is performed and

second, the modeling of the airframe members is examined to

determine if the appropriate finite elements have been used.

Airframe members modeled incorrectly are reported to the user.

Cost Savinqs

For experienced engineers the classification task of the KBS will

be of assistance in quickly identifying airframe members. This

classification task, particularly the identification of non-

structural members can result in substantial time savings in

interpreting models that are not used frequently. Since the KBS

is to be implemented in a production environment a direct

comparison of the time savings due to the classification capability

of the KBS could not be determined. Estimates of time savings in

interpreting the finite element model in terms of airframe

structural components range from 60 to 70 percent.

Engineers inexperienced in airframe analysis will benefit from the

modeling critique provided by the KBS. This may be used as a

training tool for inexperienced engineers. It has the potential of

reducing the learning time by allowing the engineers to learn from

production type models as opposed to text-book or artificially
contrived models.
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NASTRAN

BULK DATA

1
DBMS

FORTRAN ANALYSIS

ROUTINES

DIR'N COSI[NES:

SKIN, SPARS

RIBS

Ii USER INPUT
I

CLIPS

CLASSIFICATION RULES

I
CA P S

I

SKIN SPAR RIB

CLIPS: AIRFRAME MODELING RULES

Typical Output:
*** WARNING ****

AF: STRINGER

AF: SKIN

IG3:342624

-_ OUTPUT

MODELED BY: CBAR 54006

MODELED BY: CSHEAR 32642

IG4:342628
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Abstract

Element-by-element preconditioned conjugate gradient (EBE-PCG) algorithms

have been advocated for use in parallel/vector processing environments as being

superior to the conventional LDL T decomposition algorithm for single load cases.

Although there may be some advantages in using such algorithms for a single load case,

when it comes to situations involving multiple load cases, the LDL T decomposition

algorithm would appear to be decidely more cost-effective. The authors have outlined

an EBE-PCG algorithm suitable for multiple load cases and compared its effectiveness to

the highly efficient LDL T decomposition scheme. The proposed algorithm offers almost

no advantages over the LDL T algorithm for the linear problems investigated on the

Alliant FX/8. However, there may be some merit in the algorithm in solving nonlinear

problems with load incrementation, but that remains to be investigated.

Introduction

A conjugate gradient algorithm for solving a linear system of equations, or

equivalently for minimizing a function of several variables, is often encountered in

structural optimization and analysis problems. Using a finite element discretization

scheme, problems of solid mechanics may be reduced to a set of linear equations or

equivalently to minimizing the potential energy expressed as a function (quadratic for

linear problems) of the nodal displacement degrees of freedom. The need to solve finite

element models with large numbers of degrees of freedom has created the need for

highly efficient algorithms for solution.

Modern single-processing computers are limited to an estimated maximum

performance of 3 billion floating point operations per second (3 gigaflops). However,

recent advances in computer architectures provide the means to achieve higher

performance ratings through the use of parallel and/or vector processing. Multiple

instruction, multiple data (MIMD)computers, which allow several processors to operate

independently on different sets of data, are considered to have the greatest potential for

increased performance ratings.

In a sequential computing environment, the system of linear equations are often

solved using the very well known LDL T decomposition of the associated stiffness matrix

followed by simple forward and backward substitutions. However, this technique

involves inherently sequential operations and thus its potential on a multiprocessor is
limited.
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The conjugate gradient algorithm is an iterative method which involves

developing a set of mutually conjugate directions and performing successive 1-"

dimensional minimizations in each of these directions. It has been proven 1 that, using

exact arithmetic, the conjugate gradient algorithm will converge to the minimizer of a

quadratic in no more than n iterations for an n d.o.f system. This feature makes the

conjugate gradient algorithm attractive among iterative procedures. Additionally, the

conjugate gradient algorithm, especially as proposed by Law 2, appears to be nicely suited

to a parallel/vector computing environment.

Conjugate Gradient Algorithm

The formulation of the total potential energy function, H, for a structural system

typically results in an expression of the form:

= _ {q}T[K]{q} - {q}T{F} + {b} (1)H
h

where:

{q}
[K]

{F}
{b}

is the vector of unknown nodal displacements

is the symmetric, positive definite structure stiffness
matrix

is the vector of externally applied nodal forces

is an arbitrary constant vector

The conjugate gradient algorithm for determining the minimizer for expression

(1) is given below in Figure 1.
Select {q}o

{r}o- {F} -[K] {q}o

_o={doT(,)o

{p}o={do

Begin Loop: i=l

{"}i--[z]{p}i-i
_-I

_° {p}T{,,},

{q}i = {q}i-I + °i {P}i-I

{'}_={'}i-,"_i{.}_

7i.1

{P}i = {r}i+ I_i {P}i-1

i-> i+l:RepeatLoop

Figure I. The conjugate gradient algorithm for the

minimization of a quadratic function.
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The residual vectors, {r}i, are the negative of the gradient of the total potential

energy function at each {q}i. The vectors, {P}i, are the [K]--conjugate search directions.

The algorithm terminates after the m th iteration when the magnitude of the Tesidual,

{r}m, is small compared to the magnitude of the applied load vector, {F} (i.e. Ym
{F}T{F} <

Tolerance ).

The most expensive computation in the conjugate gradient algorithm is the

calculation of the matrix-vector product, [K] {P}i = {u}i. This calculation is well suited to a

parallel computing environment in that it can be accomplished at the element level.

Thus, an element-by-element conjugate gradient algorithm allows _ach processor to

perform the independent calculation, [K]e {p}e = {u}e, where [K]e is the element stiffness

matrix and {p}e is the element search direction. Then, the vector {u}i is computed by an

assemblage of the {u}e. The remaining computations are all well suited to vector

processing.

A diagonal preconditioning matrix, [T], can be applied to the original system to

improve the condition number of the stiffness matrix 3. By introducing [k] = [T]T[K] [T],

{y} =[T]'l{q}, {f} = [TIT{F}, and applying the conjugate gradient method to the function,

= _{y}T[k]{y } . {y}T{f} + {B}, the solution may be determined in fewer iterations. Once the

minimizing vector, {y}', of the new function, g, is determined, the minimizing vector,

{cO*, of the original function, I'I, can be calculated from the transformation, {CO= IT] {y}.

More complicated preconditioning matrices have been proposed. An example is

the element-by-element preconditioning scheme by Hughes et al. 4. However, for this

problem, it is believed that the additional computational effort required in the

implementation of these preconditioners is likely to outweigh any potential advantage

resulting from the reduction of iterations. Thus, only the diagonal preconditioner has

been investigated.

Single Load Case

The element-by-element conjugate gradient algorithm was implemented on an

Alliant FX/8 parallel/vector supercomputer. Limited success in performance increases

over the solution subroutine COLSOL 5 has been achieved. COLSOL uses the LDL T

decomposition of the stiffness matrix to solve the linear system of equations [K]{CO= {F}.

The test problem used was generated from a finite element approximation to a fiat

plate subjected to transverse concentrated loads using thin plate elements (See Figure 2.).

By adjusting the mesh size, problems with different numbers of unknowns were

generated. Additionally, adjusting the node numbering sequence allowed different
bandwidths of the stiffness matrix, [K] (See Table I.).

532

I



Simply Supported . All Sides

Figure 2. Test problem model

Table I. Statistics for Finite Element Models.

Mesh

10 x 10

20 x 20

30 x 30

Number of

Unknowns
i

279

1159

2639

Half-Bandwidth

Numbering Scheme 1

35

65

95

Half-Bandwidth

Numbering Scheme 2

271

1141

2611

Hgui'e 3. shows the time required for the element-by-element conjugate gradient

method (EBE-PCG) and COLSOL for solving the various problems. Note that the

performance of the EBE-PCG is independent of the bandwidth of the of the stiffness

matrix because it operates at the element level. It is evident that the EBE-PCG is

advantageous only for large, high bandwidth problems. Even for these problems,

though, the effectiveness of the conjugate gradient algorithm for multiple load cases
must be examined.

0I160 COLSOL-High
140

120

100
Time
(sec) 8 0

20 Bandwidth

0

0 500 1000 1500 2000 2500 3000

Number of Unknowns

Figure 3. Solution time required for a single load case (20x20 mesh).
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Multiple Load Cases

Often, one needs to analyze a system's response to more than one set of loads. For

these types of problems, the LDL T factorization scheme seems to be advantageous,

because the factorization of the stiffness matrix only has to be done once.

The iterative process of the conjugate gradient algorithm generates information

about the system (namely the [K]--conjugate directions, {P}i )" It would appear that this

information can be saved and used during subsequent load cases to reduce the number of

iterations required. (See Figure 4.)

I First load case I

I Conjugate Gradient Algorithm

Form matrix [P] = [{P}I '{P}2 .....{P} m I

Let [D] be the diagonal matrix [P]T[K][P] J

Save direction vectors {P}i

I Subsequent load cases ]

I Use {q} - [P][Dtl[p]T{F} as a good first guess I

Figure 4. Scheme to improve convergence for multiple load cases.

Given the n x m matrix [P], whose columns are the conjugate directions, {P}i, then

[P]T[K][P] = [D] (a diagonal matrix). Note that for all of the conjugate directions (i.e. m = n),

[P][D]'I[P] T = [K] "1. Thus, a good initial guess, {q}o is [P][D]'I[p]T{F}.

It has been found that the success of using this scheme for multiple load cases is
strongly dependent on the the similarity of the load cases. That is, if two load cases both

are symmetric with respect to problem geometry, then there is great improvement.

However, with two general load cases, only a modest improvement can be expected (See
Table II.). This would seem to suggest that in solving nonlinear problems with a

modified Newton-Raphson technique with load incrementation, the proposed EBE-PCG

may be cost effective,but that remains to be established pending further investigation.
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Table II. Results of Multiple Load Case Tests

Load Case

(20x20 mesh)

Single midpoint load

Single mid-quarter point
load

Two opposite mid-quarter

point loads

Single load 1 node from

midpoint

Number of iterations

(as the only load case)

102

174

102

220

Number of iterations

(as the second load case

using output from the

single midpoint load)
11

123

51

179

Figure 5. shows the solution times required for both the EBE-PCG and for COLSOL

to solve two successive identical load cases for the same models described previously.

Note that this represents the ideal multiple load case problem to the conjugate gradient

algorithm. The trend appears very similar to that observed for the single load case.

However, as Figure 6. shows, even for a low bandwidth problem, the additional time

required for the EBE-PCG to solve a general second load case is always greater than that

required by COLSOL. These results indicate that the effectiveness of the conjugate

gradient algorithm will be severely limited for large numbers of load cases in linear

analysis.

Figure 5.

Time
(sec)

180

160

140

120

100

80

60

40

20

0

I COLSOL-High Ban_

dwidth

0 500 1000 1500 2000 2500 3000

Number of Unknowns

Solution time required for two identical load cases (20x20 mesh).
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ABSTRACT

A procedure is presented to obtain optimal designs of axial

compressor blades with structural design constraints.

Coefficients of the polynomials defining the circumferential

tilting angles and the axial leaning distances of the airfoil
cross sections from the initial design geometry are used as

design variables. The compressor blades are modeled by 20-node

solid elements. An efficient finite element method is developed

for modal analysis and sensitivity analysis with respect to the

design variables. Based on this information, a sequential linear

programming method is applied to calculate the required change of

geometry for the desired structural design constraints.

I. INTRODUCTION

In order for a gas turbine engine to achieve its designed

performance, the compressor rotors of the engine must be designed

to deliver the air at a compression ratio above a certain

specified minimum level. However, the compressor blades designed

to achieve the required aerodynamic performance often cannot meet

the structural design criteria, e.g. stress level and natural

frequency distribution. Under this condition, blades have to be

designed iteratively to satisfy both aerodynamic and structural

design specification, [1-7]. In order to obtain an optimal blade

design with minimum expenditure of design effort, appropriate

design parameters and guide lines must be established for this

iterative procedure.

A blade design usually begins with an aerodynamically optimized

shape, [8,9]. Since the blade height, chord length and each

cross sectional airfoil shape and its orientation with respect to

the axis of rotation have primary influence on the aerodynamic

performance of the blade, it is not appropriate to change these

geometric characteristics of a blade having an aerodynamically

optimized shape. Therefore, the design parameters permitted to

vary are the circumferential tilting angles and the axial leaning

distances of the airfoil cross sections with respect to their

locations in the initial design. Definitions of these geometry

parameters are shown in Figure i.

Because moderate alterations of the airfoil cross sectional

tilting angles and leaning distances have only secondary effect

on the blade aerodynamic performance. Design iterations between

aerodynamics and structural constraints can be easier achieved

using these parameters as design variables of the blade design

optimization.

Since the circumferential tilting and axial leaning of the

airfoil cross sections from their initial design locations modify

the way these cross sections are stacked to form a blade, this

method is called blade stacking optimization.
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Figure 1. Definitions of Blade Airfoil Cross Sectional Design Variables
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Figure 2. Overview of Blade Design Optimization
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In this paper a procedure of blade stacking optimization is

presented. An overview of the procedure is shown in Figure 2.

2. FORMULATIONS

Using cubic polynomials to fit the curve passing through the

stacking points of a blade, the circumferential tilting angle and

the axial leaning distance of the airfoil cross sections can be

expressed as functions of radial distances of the stacking points
from the axis of rotation

8- a_ + azr + a3r 2 + a4r 3

X- a 5+ a6r + a7 r2 + asr 3

The problem can be stated as to minimize the global change of the

polynomial coefficients

NV

F- _ (am-a _)2

m-I

subject to the frequency constraints on the jth mode

f/_fj<f; j-I ..... NM

or their corresponding eigenvalue constraints

j-I ..... NM

with side constraints on the polynomial coefficients.

1
a_ _am_a _ m-I ..... NV

where NM is the total number of natural frequency constraints and

NV is the number of design variables.

Using the first order Taylor series expansion F and A of the

current design can be approximated as
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NV

8F (am_amo)
F'Fo÷ aa=

m-I

NV

l'j'_'jo+ _ _ (a m- )
m-I aa= am°

The derivatives of the objective function can be easily found as

a__FV-2a 
8a=

whereas much more computation efforts are required to find the

derivatives of the eigenvalues.

The stiffness and mass matrices of the 3-dimensional solid

elements in the global Cartesian coordinates are

K- ff f B rDBdxdydz

M- f//pNrNdxdydz

or in the element natural coordinates as

K-f f f B dn

M- fff pN TNIJId_ d11d(

where N is the shape function, B is the displacement differential
operator, D is the elastic material matrix, 0 is mass density and

jjJ is the determinant of the Jacobian transformation matrix, J,

between the Cartesian and natural coordinate systems.

The free vibration equation for the finite element model is
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with the eigenvectors, _j , normalized to satisfy the following '
conditions

Taking the derivatives of the stiffness and mass matrices as

aK--@am "fff ( DBIJ[+BTD-_m@B IjI+BrDB__m)@IJI d_dl Id_

aM rN 81JI d_ d_ d(a_ "fff pN -_

and using the normalized eigenvectors, the derivatives of the

eigenvalues can be calculated from

-4,3 ( ax- _.j a,_
aa,. aa,. -_ ) 4_j

as shown in Ref [i0].

With these derivatives, the objective function and constraints

can be linearized to form a linear programming problem, [11,12].

After the blade geometry is modified for the current iteration,

the new geometry becomes the initial design for the next

iteration step. The computation procedure is repeated until the

desired structural design constraints are satisfied.
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ABSTRACT

The high cost of delivering payloads to orbit demands that
launch vehicles be flown in an optimal and reliable manner.
Thus, computersimulated trajectoriesareoptimizedtoobtain
maximum vehicle payload capability or a maximum amount of
reserve fuel, subject to desil_n constraints.

The Generalized Trajectory Simulation (GTS) system
developed at The Aerospace Corporation is capable of simulating
and Opfim/_ng trajectoriesfor s wide variety of boost and reentry
problems. Optimization is an integral part of the GTS system.
This has resulted in progressive use of optimization.
Additionally,the flexibility of the GTS systemallows op_mum
trade studies to be conducted and complicated missions to be
designed.

This paper describes the integrated and flexible nature of the
optimization softwarein theGTS system. Special featuresof the
NLP2 and NLP3 optimization codes are described. Post
optimality, parameter sensitivity analysis and the automatic
scaling capability in the GTS system are also described.

INTRODUCTION

The high cost of vehicle simulation and modular design of the
GTS system has led to the development of two powerful
optimization codes, NIJ_[ 31(A Generafized ProjectedGradient
(GPG) code)and NIJ_[20I(A GeneralizedReducedGradient
(GRG) cede).Finitedifferenceapproximationsateneededto
calculate the gradients of the f_ncdons. GTS conudns algoridam
that automa_ally choose the _ penurbatm sizes for the partial
derivatives. Additionally, POSTOp(15], a post optimality /
parameter sensitivity analysis[ 18] / automatic scalingfl6.17]
capability has been developed u pan of GTS.

This paper beginswith a definition of the standard form of
the nonlinear programming problem. Next, trajectory
opdm/zadon in the GTS system is described. A sample problem
is provided to describe the simulation of the vehicle and
opumization problem set up. The next section describes and
compares the optimization algorithms. The final section
de,scribesthe post opHn_llty analysis capability.

STANDARD FORM

The standard form of the nonlinear programming problem
(NLP) is

Minimize: fix,p) (I)
Subject m: ci(x,p) = 0 i=lJ_ (2)

ci(x,p) :>0 i=NE+I_ (3)
x = (Xl,X2..... xa) (4)
P = (Pt,P2 ..... PI_ (5)

Where f represents the objective function, c represents the
constraints,NE isthenumberofequalityconsu'aints,m isthe
tom/numberof constraints(m=NE+ND, and NI isthenumber of
inequali W constraints. The design variables, x, are chosen by the
optimization operator. The design parameters, p, are nominally
considered constant but may vary due to uncertainties in
modeling or user re-specification.

The tint order Kuhn-Tucker conditions (132.31are checked to
verify opdmat/ty.

VzL=O

Xici(x,p) = 0 i=l,m "_

ci(x,p) = 0 i,,I,NE _, (6)Ci(X,p) 2 0 i=NE+l,m

Zi > 0 i=NE+ l,m

_th the Lagnmgmn fu_
fit

L(x,p) ffifix,p) + _ _.iCi(X,p) (7)
i..l

where Zi are the Lagrange multipliers. The second order Kuhn-
Tucker optimality conditions are

yTV_ L y > 0 (8)

for any y such that
yT Vx CA = O. (9)

where the active set of constraints e,4 contains all equality
cop.sralnts and any inequaU_ consits satisfied at _ bounds.
The number of constraints m the active set (mA) is less than or
equal to the number of variables.

The number of degrees of freedom in the optimization
problem is equal m the number of design variables minus the
number of constraints in the active set. Problems with few
degrees of freedom are generally easier to solve than problems
with many degrees of beedoax

GENERALIZED TRAJECTORY SYSTEM

GTS[5,6# and 22] was designed to simulate and optimize
trajectories, and has undergone continuous development for the
past 25 years. GTS allows for wajectory slmulauon of a wide
varietyofboosters,upperstages,satellites,and reentryvehicles.
The trajectoryisbrokenintoeventsand phasesoverwhich the
equationsof motion are integrated.Typicalevents can
correspondtovehicleeventssuchasliftoff,staging,maximum
dynamic pressure, etc.

Any simulation input can be treated as an optimization
variable, and any output can be constrained or used as the
objective function. Typical objective functions are payload,
reserve fuel, reentry cross range, or delta V. Equality
consmdntsareoften usedto restrict the finalsiamvectortobein
the mission orbit, or at the desired location. Inequality
consualnts may be placed on vehicle attitude, velocity, or heating
at staging,or dynamic pressure. Designvariables can be pitch
ratesfor the stages,burn times, coast dines, dine of payload
fairing jettison, payload weight, etc. The design parameters are
wpically the fuel loaded, inert weight of the stages,or launch
conditions(e.g., temperature or winds).

TrajectoryoptimizationproblemsinGTS normallyhave
fewer than 25 design variables, with Itol0degrees of fxeedom.
The problems are poorly scaled and have very nonlinear
consuaints. Trajectories are usually simulated by numerically
integrating the equations of moron. The simulationsarenoisy,
making them di/f_t to

The vehicles can be simulated in three degr_ of freedom
(3 DOF) or 6 DOF. Optimization is generally only applied to
the 3 DOF urajectcrysimulations.
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The basic equations of modon are integrated

_F =m a

The forces can _ gravhy, aerodynamic, solar radiation pressure,
and thrust. There is also mass flow i.e., ablation, propellent, or

inert weight flow. The forces are genera/ly functions of time and
inidal conditions. The equations of motion are numerically
integrated to obtain a 3 DOF apln_ximadon of the trajectory.
Several integration methods [5l (Runge Kutta, Adams, etc.) arc
available. The user can specify the step size and order used by
the integration. The integration is restarted at each event, because
events such as staging cause discontinuities m the equations of
motion.

Vehicle definitions are created by combining engine, weight

flow, propulsion, control, aerodynamic, gravity, etc., models
into a sequence of events. The equations ot motion arc mtegratea
over phases between the events. The user can specify auxiliary
functions det-med in FORTRAN that perform computations not
built into GTS. Data can be input in a convenient tabular format,
or through user defined subroutines.

Several operators (e.g., TRAJCEM, DERSYS, OPTSYS,

SIZE[6]. MCARLO [22]and PSTUDY) are available in GTS.
TKAJCEM. DERSYS. and OPTSYS arcdescribedinthispaper.

which focuses on the OFTSYS operator.
The TRAJCEM operatorexecutes a series of commands that

simulates a single trajectory. Auxiliary computations can be
performed at any event or every integration point.

The DERSYS operator is used to evaluate derivatives of any

output quantity with respect m any input quantity. DERS¥S can
use TRAJCEH as a function generator. Forward or central

difference approximations can be used. Techniques have been
developed for choosing appropriate values of the perturbation

sizes for calculating the partiais[19].
The OPTSYS operator executes the specified optimization

algorithm for a problem definition. OPTSYS can use TRAJCEM
as a function generator. The OPT S X S operator can also be used
for constraint solving problems, i.e. the user desires a feasible

trajectory. When an optimization _.godthm requests a .$_lient
vector,finite difference approximations are calculm_ using the

same techniques as DERSYS, Error control for gradient
approximations can he executed once or every time a gradient
evaluation is requested by the optimization algorithm.

GTS uses Gcnera/ized Trajectory Language (GTL) to define

problems. A sample GTL input description for a two-stag.e
booster (Figure 1) is provided. Some of the GTL input ts
omitted for brevity. Figure 2, a schematic of the event sequence,
illustrates thepitch rates duringthetrajectory.

_ / Paylotd Fairing

_" Paylmd

-- Sta_2
Ea

-- SUrgeI

r'_
Figure 1: Generic Two-Stage Vehicle

The vehicle is initialized at event Pooo. Ignition occurs at event
pooz, 3 seconds after ignidon (event eoos) the trust inertial pitch
rate oRz begins, and it is held for 5 seconds. At event _oos a
gravity turn is flown for 60 seconds until event eozo. Some time
between events Poos and Poto the maximum dynamic pressure
(event Poomut) occurs. The second pitch rate, _, is used from
eventeozo to eozp. Event eoz9 occtws when the propellenttankof

the f_rst stage is empty, at this point stage one is jettisoned, and
stage two ignition occurs 2 seconds later at event s,oa0. The third
pitch rate, or3, is used from event Po2o to Po2s. The fourth pitch
rate, Qs_4,is used from event Po2s to Po40. The payload fairing is

jettisoned at event Po3o. where the value of the free molecular
heating (rm0 is saved into a variable rm_Lra. Final/y, at event
Po4o the state vector is saved.

P_ch
[ P_ck Rate i,_

_i - X_rc _q3 L_ '-_ "

0

Q,

Figure 2: Event Sequence for a Two-Stage Vehicle
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GTS can exploit the problem structure to reduce the time
required for evaluation of partial derivatives by using a
mechanism called partial trajectories. In the example problem,
_4 does not affect the trajectory until event Pozs. Thus, when

_f f(QR4+AQR4) - f(QR4)

o_it4 = AOR4

is evaluated, the equations of motion are integrated from event
Po:s to eo_o (initialized using the state vector at event eo:_) to
obtain f(oe,+Aoe,). The user specifies the event where the
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variable begins to affect the wajectory, so the system knows
where to save the state vectors and where to begin integration of
the equations of motion when partial derivatives are evaluate&
This reduces the cost of gradient evaluation by reducing the cost
of evaluatingpam_be_l trajectories.

Ol_fimizafion ProblemInput

An input file for GTS consists of a trajectory definition, input
data tables (describing atmosphere, propulsion, etc.), FORTRAN
subroutines (used for auxiliary computations), OPTSYS or
DERSY$ problem definitions, and input data. A sample
optimization problem definition for the generic two stage vehicle
is:

BOO_I'ER OPTgMIZ&TION

OFT_._ NLP2

PROB- :I_X s

:a/_rl _hm patrollers

/THE I_NCrIOW _D_ATOR IS _

OSJFTN _ (PAIq, OAD )
OB35KL- I.Z-3

OBJTOL - 1 .E-4

PGDTOL - I.E-4

COgSTR

_Q COm_
CO_RV CO_Ng CO_GAM_

I_VAR VARM1

VPZTCRI _ITCR2 V_TCR3 VPZTCH4

VTPLrJ VPAYLOAD

OPTAON CPTON1

(HFT.AT. PO30)

aoos_z_ defines and names the problem, and 0PTaZa is used to
select the optimization algorithm and specify the algorithm
parameters. If the algorithm parameters are not provided, default
values are used. The OS_rT., cot_s'r_ zaDv_, andOI,TP,Oa inputS
are explained in the following paragraphs.

The objective function is specified under oswra, cu.Ts_ is the
scale factor for the objective function, os_rrot, and _ODTO_.are
convergence parameters for the objective function and projected
gradient.

Constraint selection is made under COaSTR.Constraints are
defined as

co_K_xo mo_ .m. pooaax s Qmx)
CORTOL - l.g-6

CONSKL - I.E+2

INBESIS - :_.,S:

"/'hisconstraint is usedto keep the maximum dynamic pressure,
(Qo_nPat event p_._x), less than or equal to the limit area. The
tolerance for each constraint is specified as coa¢oL. The
constraint scaling is specified as co,sKT. The zsaas:s option is
used to identify an inequality constraint as a potentially active
constraint for the optimization.

The variable names are entered under ,abyss. A variable (or
parameter) definition is

VP_4 WAR - {QR4}

YJtl_qO - -0. I

0_RB[qO - 0.1

STM_g_T- [PO2S]

- P_'YPE - :2-SIIXD:

EELVAR - I.E-4

VARSI_ - l.g+2

ABSTOL - l.g-5

CSOLVE - :YES:

Here wr_:a4 is a pitch rate (_a4) input to the trajectory.There are
lower and upper bounds assigned. The bounds define
computal:filityregions. If the optimization attempts to evaluate the
trajectory outside of these boundsa function error is returned.
sra_¢x_ is used by the partial trajectories option to set an
integration restart point at event _o2s. The partialderivative type
(p0¢¢t,g) specification of :_-s_og_: is for central difference

approximation for partial derivatives, where Dr2.v_ is the initial
perturbation size to be used when evaluating the partials, vans_
is the scale factor for the variable. The _oz, parameter is used
to specify the convergence tolerance for the variable. The csot.v¢
option can be used to specify the constraint solving variables for
the _ code.

OPTAOMis used tO specify quantities that are includedin the
iteration output during the opmnization. These are items that the
user may want to monitor, such as the altitude at payload fairing
jettison.

GTS has a restart capability that is useful for solving
optimization problems requiring a large amount of CPU time.
When the run is close to the time limit, GTS saves the
information required for a restart into a file. The f'de is used as
input for the next run and the opdmization algorithm is restarted
as if there wereno interruption. Any Hessian approximation or
other information that the code'had created is available for the
subsequent run.

OPTIMIZATION ALGORITHMS

NLP2 and NLP3 are optimization programs developed at The
Aerospace Corporation to solve the nonlinear programming
problems generated in GTS. Some common features of the
codes are described first, followed by a discussion of the
algorithms, the nonlinear least squares capability, and a
comparison of the algorithms.

Common Features

Both codes an: feasible point methods, thus they produce a
series of feasible points approaching the solution. If the starting
point is infeasible, the codes use built in searches to locate the
constraint surface.A secantmethod with Broydenupdates to the
consu',fint ]acobian that is usedduring the line search. The secant
update improves the performance of the constraint solving
algorkhra and reduces the number of function evaluations(due to
constraint solving) required to solve the problem.

The codes use an active set method to solve a series of
equality constrained subproblems until the solution is reached.
Each subproblem is terminated when either a local minimum is
reachedoran inequality constraint must be added to the active
set. When the subproblem is solved, a check of the Lagrange
multipliers for the inequality constraints is made to verify that the
correct active set of inequality constraintshasbeen obtained.
Some implementations of the GRG method have used slack
variables m deal with inequality constraints{11.12,23]. Using the
active set method for the inequality constraints reduces the size of
the matrices that must be manipulated, although the complexity of
the code is increased due to the additional code required to
determine the active set.

A BFS/SRI variable metric updateis usedto approximatethe
restricted Hessian (HR) and accelerate the search for the
minimum. The restricted Hessian is defined as the projected
Hessian (for NLP2 a GPG code) or reducedHessian (for NLP3
a GRG code). The search direction is calculated using

df_x
s = Ha d dx (tO)

Where dfg/dx is the restricted gradient. The BFS[ 13] update is
used as the primary update to construct the approx/mation of the
Hessian, if

AxT A _x< 0 (1 I)

a switch is made to the Symmetric Rank One (SRI)II3] update,
because Eq. (11) violates the convexity assumption used by the
BFS update. The SR1 update is then useduntil the problem is
solved or there is a change in the active set. The initial Hessian
approximation is taken as the identity matrix. The Hessian
approximationis reset when thereisa changeintheactiveset.

The Lagrange multipliers are calculated from the least squares
estimate
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rain II _-- I ).T d-_T.-X " dx ,,z (12)

using a QR factor_don of the active ¢xmseraints.
Several different convergence criteria tests are used to

determine optimality. Single tests are easily fooled by the
complicated and poorly scaled characteristics of trajectory

optimization problems. The codes check for convergence of _e
constraints w within their tolerances, the correct set of inequality
constraints has been obtained, and either the objective function
has converged or the projected/reduced gradient is within the
specified tolerance. Additionally there are checks on small
changes in the desisn variable_

Problem scaling is important for successful solution of

problemsll.13A6.23]. The codes solve scaled optimization
problems, however unsealed results are reported to the users.
The scaling mmsformations are

fs= a f (13)

Cs = E ¢ (14)
Xs = D x (15)

Ps = B p (16)

where ct is a scalar and E, D, and B scaling matrices are of the
form

E = Diag(el,e2 ..... era)
D = Diag(dl,d2.....dn)
B = Diag(b],b2.....bk)

The scalinga'ansformsthefunctiongradients,

Vx,f$ = ct D -I Vxf (17)

Vx.cs = E Vxc D-I (18)

and the Hessian of the Lagrangian,

V 2 Ls = a D "t V 2 L D -I (19)
Xt

The Lagrange multipliers for the unsealed problem are calculated
from

_.= a'l E _ (20)

The codes requirethe inputof thescalefactors.
If the functions cannot be evaluated at a point requested by

the algorithm, a function error flag is returned. The algorithms
can recover from function errors when the initial point is
computable. Function errors can occur in GTS when the
trajectory cannot be propagated to completion. When a large
perturbation of the variables occmm in the line search it can cause

a function error and the step length is reduced until a new
computable point is found. After several iterations the procedure
to select the initial step length in the line search and the
convergence of the Hessian approximation lead to smaller
changes in the design variables and no longer produce function
errors. Users specify a limit on the number of successive
function errors allowed before the algorithm quits.

The codes can be run in a stand alone manner and they
assume the objective function and constraints are evaluated as a
set, i.e., from some auxiliary black box function generator. A
reversecommunication architectureisused intheinterface.

NLP2: A Generalized Pro iecmd Gradient Algorithm

The NLP2[3I code has been developed over the past I0 years.
NLP2 is a generalized projected gradient (GPG) algorithm.
NLP2 has over 20 input parameters which allows a great deal of
conu'olover the inner workings of the code. Experienced users
can tune NLP2's parameters for rapid solution for particular
formulations.

NLP2 uses a QR orthogonal factorization of the active
constrd.int set

dcA = QR (21)
dx

Q is orthogonai, and R is upper triangular. The Q and R
manices are partitioned as

Q: Q,,Q 1""['H

when: the columns of QI form a bash of the constraint lacobian

QI T _ = RI (22)

and the columns of Q2 form a basis for the null space of the
consn-aim J'acobian

q2T-_x = 0 (23)

i

The mauix Q can be used to u'ansform the coordinate axes x
toy,

y = QT x (24)

o"immizationvariables are 0. thus

ddy--_o= [Q2T + _yo Q IT] ddC'_x= 0 (28)

which _m be solved for

This is substituted into equation 27 to obtain

using the definition in equation (23), yields

c(x ,p)C._

Figure 3: Transformed _ate Axes

NLP2 solves the problem as a generalized reduced gradient
problem in the y variables. The y variables are divided into
optimization (3'0 in Figure 3) and constraint solving (3'¢ in Figure
3)variables

Y = {Y¢,Yo] (25)
The optimization variables (Yo) are locally tangent to the
constraint surface and the constraint solving variables (Yc) are
locally normal to the constraint surface. The reduced gradient in
the y variables is defined by differentiating the objective function
with respect to Yo with the Yc variables adjusted to maintain
constraint feasibilitytoobtain

df af + _oyc _f
= (2o

In terms of the x variables this equation is

_- (27)

the derivatives of the active constraints with respect to the

df =Q2Td_ (31)

The search direction for variable, in the y space is

r,,4.F,o l
= -1 df

sY LSyoj kHp _ J

02)

where Hp is an approximation of the projected Hessian (initially
taken as identity matrix), ayc./ayo is equal to zero when

Q2 dcA/dx ffi 0. thus

[°a]E ° Jsy = Hp. 1 = Hp -I Q2 T Vx (33)

The search direction is mmsformed into the x variables using
x = Q y (34)

Thus the searchdirectioninthex variablesis

ss = Q sy = Q -_[Hp. l Q2T0 Vxf]_ (35)

which is equivalent to the projected gradient in the x variables.
The search direction obtained from the traditional projected
gradient
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VPf=xt" dx tdx dx J dx d'z (36)

is numcrica_y un.stable[14},thus equa_on (35) is rccornrncndczL
The Lagrangian funcdon [cq. ('7)] is used as a merit function

in the line snatch. Using this merit function removes some of the
sensitivity to sadsfying the constraintsexacdy. The Lagrange
multiplier estimates arc calculated at the inidal point in the line
search using a least squares esdmate ['Eq. (I 2)].

The searchfor the opdmum in NLP2 is accelerated using the
BFS/SRI update to create an approximation of the projected
Hessian using &Yo and Adf/dYo. The search direction for the
constraintsolvingvariablesiscalculatedfrom equadon (32).

NLP2 has an option that calculates the projected gradient by

perturbing the optimization variables (3'0), and adjusting the
constnint solving variables to return to the conswalm surface.

df f¢0'+AY°'P)" f(Y'P) (37)
= Ayo

where fc is a feasible poim. (This technique has been used for
calculation of reduced gndienm[23]). NLP2 also has an option to
numerically calculate the projected Hessian and then solve the
problem using second order information. These techniques are
efficient in some applications where there arc few degrees of
freedom.

The projected Hessian can be discontinuous as the solution is
approacheddue m discontinuities in the Q mauixl4]. This can
lead to slow convergence for the GPG method; however, in our
experience this has not been observed to cause any problems.
NLP2 hasanoption that allows the mmformation rnau_,xto be
fixed on the first iteration and not recalculated on subsequent
iterations, thus Q2T dCA/dx _e0. When this option is used,
equations (29), (30) and (32) are used to calculate rite projected
gradient and search direction, and the restricted Hessian is well
behaved approaching the solution.

When the transformation matrix is held constant NLP2 is well
behaved when started close to the solution because Q2 T dcx/(ix
remains small. For nonlinear problems that are started far from
the solution a new transformation matrix is often required for
good performance of the algorithm. NLP2 has built in options
for determining when it needs to calculate a new u_nsformadon
mawix.

NLP3:A Genc-ralLa_ Reduced Gradient Aleorhhm

The NLP3[20I code has evolved over 20 years and is an
implementation of the GRG method[23]. The GRG method
divides the design variables into optimization variables xo and
constraintsolving variables xc

x ffi (Xo,Xc) (38)
The constraint solving variables are used to maintain

constraintfeasibility. The reduced gradient is defined by
applying theimpficitfunctiontheoremto the constraintsand
examining a perturbation about x yielding

deAr
dx &x= CAxo+JAxc=0 (39)

where

de_ T dc_. T
Cfdxo : J=d_

The J matrix is square, and when _ are chosen such that J is
non-singular

Axe = -j-tC axe (4O)
This cambe used to obtain the reduced gradient

c3t" , _,. af (41)

This is the par_ of the objective function with respect to the
opdm/zation variables with the constraintsolving variabies
adjustedto maintainconstraintfeasibility. When the constraint
solvingvariables are suitably chosen,thereducedgradient iszero
at the solutionof theproblem.

The search direction for the GRG method is composed of a
search direction for the optimization variables and a search

direction for the constraint solving variables. The search
direction is

,:r,,ol:P Hr" _o I (42;

LSxcJ L'J'lC SsoJ
where Hr is an approximation of the reduced Hessian. The
searchfor the minimum is acceleratedusingthe BFS/$R! update
to approximate the reducedHessian using _ and ,_lf/dxo as
inputs.

NLP3 allows users to spccLfyvariables asconstraintsolving
or op_don variables. This is important for problemswhere
the objective function is to minimize or maximize one of the
variables. In this _ the gradient of the objective funcdonis

df
d"_= (i,0,0,...,0)

Ifxl isan optimizationvariablethereducedgradientwillnot
converge.The leducedgradientforthisproblemis

_f Of
= (i,0,0.....0) : =.(0,0.....o)

df
dx-_ = (1,0,0,...,0) - j-lc (0,0 ..... 0)
a

(i,0,0.....0)
which will not go to zero, thus x! must be a constraintsolving
variable.

NLP3 uses a special technique for choosing the constra/nt
solving variables. The method minimizes the 1t norm estimate of
the Lagr_ge multipLiers

dfT kT dd._xT Ill (43)minll _- -

to obtain a set of constraintsolving variables. Using standard
techniqu_ an cqnivaientlinear programming problem is solved,
which is used to define a partition as in equation (38). A
complete discussion of this method is available in the NLP3
documentation[20]. This method finds a factorization with a non-
singular J unless the problem is singular, and allows for a
completely new set of optimization variables to be used when the
activeset changes.

NLP3 doesnotexplicidycalculateJ'!butcalculatesa QR
factorizafion of J. The QR factorization provides an esfimam of
the conditionnumberof the active oonswaintJacobian.

The user canspecifya Newton method be usedinstead of the
secant method to return to the consw_intsurface in the line
search.

Nonlinear I..east Squares Capability

Problems in trajectory reconstruction, curve fitting[21],
constraint solving or targeting can be formulated as nonlinear
least squares problems.

NLP2 and NLP3 have a built-in capability to solve
constrained nonlinear least squares problems where the objective
functionisofthe form

Ha,p) = r(x,p) T r(x,p) (44)
where r(x,p) is a vector of residuals. The gradient and Hcssian
of fara

Vxf(x,p) ffi2 Vxr(x,p)Tr(z,p) (45)

V2xf(X,p) = V 4-U (46)

V = 2 Vxr(x,p)TVxr(x,p) (47)

= 2 _ ri(x,p) V2ri(x,p) (48)U

Unconstrained nonlinear least squares problems can by
solved using Gauss' method which calculates a search direcdon
from

S ffiV "l Vxf (49)
2

If the residuals go to zero or Vtri(x.p) = 0 the method
converges quadratically, otherwise it converges linearly. Gauss'
method can be improved by approximating the residual Hessian

549

L I III



Or./)using variable metric ulx/ates, anO then calculating the search
dkectkm from

s = (V÷U) "l Vxf (50)
A discussion of nonlinear least squares problem can be found in
references 3,7,13,20.

NLP2 and NLP3 use a robust least squares method to
calculatethe search directionas in eq. (50), where a conswained
restricted Hessian is approximated. The calculation of the
conswainednonlinear least squaressearch direction NLP2 and
NLP3 are described in references 3 and 20. Testing on analytic
problems has found that when the least squares options are used,
problems are solved in I/3 fewer function evaluations than
standard versions.

The GTL inputforaleastsquaresobjectivefunctionissimilar
tOthat for a standard problem. A sample input for a 10-residual
problem is

oeo-_'rs ce,rrm2 (xr_(n _ro _r_<zo)j
0BJS1U, - 1.E-3

OBJ'rOL- I.E-4
PGDTOL - 1 .E-4

Where on.n'_z is theobjective function model for leastsquares
problems. _s_) _o _s_1o_ defines the residualsfor the
problem.

A Comoarium of The GRG and UP(] Methods

A discussion of some of the fimilarides for GRG and GPG
methods[ 23.24] concludes the methods are first orderroot
equivalent. This sccdon points out some differences in rcsnicted
Hessian, search direction, and conslraint solving that affect the
performance ofGRG andGPG methods.

The convergenceoftheGRG andGPG methods,aredriven
by the convergence of the reswicted Hessian approximation when
variable mcuic updates arc used. In the GRG method, the
reduced Hessian is

Hr = [J'IC] H [ [J'IC] T I] (51)

IntheGPG algorithmtheprojectedHessianis

WhHve_H [Q2]T H [Q2] (52)is the Hessian of the Lagrangian.
Good performance is expected fimm variable metricupdates

when the Hessian they are approximating is well condiuoned.
Additionally for well conditioned Hessians, variable memc

arc less sensitive to exact line searches. Studies at The
flonAerospace have shown that the condition number of

the projected Hessian is generally lower than the condition
number of the reduced Hessian. Thus the GPG method has the
advantage of approximating a restricted Hessian with a better
condition number than the GRG method. The condifiouing of the
reduced Hessian and search direction for the GRG method are
affected by the set ofconstraintsolving variables.

The GRG and GPG methods use different methods for
returning to the constraint s_'ftee in the line search. Figure 4
illustratesthe direction used to return to the con_raints for a two
variable problem with one nonlinear equality coustraint. For the
given searchdirecdou p, theGRG method searches along SI
when xt is theconstraint solving variable and along $2 when x2
is the conswaint solving variable. Searching ou SI may be more
efficient than searching on $2, depending oa the constraints,
thus the GRG method can be influenced by the choice of
consmtintsolving variables. The search direction $3 is normal
to the con_tint surface at the start of the line searchand is used
by the GPG-type code. $3 represents the steepest descent
direction for returning to the conswaint surface. When secant
updates are applied to the search to returnto the constnint surface
the search directionsaremodified.

I I _ Sl

2. .p

S3 _'_--$2 xt

i " "I " "2' " ",
Figure 4: Search_ons for ConslraintSolving,

The choice between a GI_ and GRG code is based on
scaring, constraint nonlinearity, starting point location, and size
of the problem. For small dense problems with very nonlinear
constraints the GPG method is generally prefered, however on
some poorly scaled problems the GRG method may perform
better than the GPG method. In ou_experience the GRG method
is somcl_nes superior to the GPG method when the startingpoint
is far from the optimum. For large sparse problems the GRG
method is prefered because it can be programmed to exploit the
sparsity, whereastheGPG method generaUy cannot

POST OPTIMALITY ANALYSIS

This secfioudescribesthe_.st optimality capability in GTS.
An optimization is not considered complete until some post
optimality analysis is performed. The POSTOP operator contains
modules for solution examination, parameter sensitivity analysis,
and automatic scaring. Several levelsof post optimality analysis
arc available. A more detailed discussion of POSTOP and its
applicationscanhe found in references2 and 18.

The POSTOP operatoris usedto verify thatthe problem has
been solved, and checks if the second order Kuhn-Tucker
conditions are satisfied. Several levels of analysis are available.

The first level of POSTOP uses first order gradient
information andprints the scaled and unsealedactive constraint
Jacobian,their singularvalues, andanestimate of theircondition
numbers. First level analysis doesnotrequireany extra function
evaluations, it uses gradients obtained from the optimization
algorithm.

First level analysis calculates the Lagnmge mulfiplie_ using
scaled and unsealed gradients. The Lagrangc multipfier estimates
calculated with the scaled gradients are transformed into unsealed
muitipfier estimates equation (20), are closer to the role values of
the Lagrange multipliers when problems did not converge with
VxL • 0 and proper scale weights have been specified. If the
problem has been solved tightly, the Lagrange multipliers
calculated using unsealed gradients and using scaled gradients
and then lransformedby equation (20) match to several decimal
places[181.

The second level of POSTOP calculates the projected
Hessian, its eigenv_dues and condition number to verify that the
point returned by the opMnizadon algorithm is a local minimum.
The analysis is calculated in both scaled and unsealed units. The
projected Hessian is a (n-mA) by (n-mA) malrix which is usually
small for trajectory optimization problemsbecause there are
normally only a few degreesof freedom at the solution. Thus
only a few extra function evaluations are required by the second
level of post optimality analysis. The usercanspecify that error
control algorithn_{19] he used to calculate the projected Hessian.
When the scaled projected Hessian is ill-conditioned (e.g., has
very small eigen values), the solution can be imprecise.

When the projected Hessian is calculated, the constrained
Newton correcfiou is calculated[lOl. When the Kuhn-Tucker
conditions are satisfied, the correction is small. The objective
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function and conm_inm areevaluated using this correction. This
locates a slightly more accurate solution than that obtained by the
optimization operator for problems that have loosely converged.

Parameter Sensidvip/,Analysis

Parameter sensitivity analysis is an important area of
optimizadon that has often been overlooked by designers.
Parameter sensitivity analysis can assess the effect of variation in
input parameters on the optimal solution[8l. An example is to
calculate df*/dpi the partial of the optimum objective function
(note the * is used to indicate optimality) with respect to
variations in input parame_'rs.

m

dP"-_=_ _ J _Pi (53)
j=l

This requi_s the partials of the objective function and constraints
with respect to Pi. This means extra trajectories must be
simulated. It also requires the Lagrange multipliers, which can
be obtained using first level post optimality analysis.

Figure 4 illuswates the payload capability versus altitude of
the orbit for a given mission. This curve can be generated using
parameter sensitivity analysis. Mission planners can use the
information on payload capability for a vehicle to determine the
range of mission orbits attainable for a given payload weight.
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Figure 4: Payload Versus Alutude for generic Two Stage Booster

Parameter sensitivity dca'ivatives can be used to efficiently
conduct parametric performance studies, or assess the effect of
changes in the weight manifest on vehicle performance.

If the partial of the solution x* with respect to a parameter is
required, then the Hessian of the Lagrangian must be
approximated. The third level of POSTOP calculates the Hessian
of the Lagrangian.

Poor scaling is a major cause of poor performance from NIP
algorithms. In trajectory optimization there are no fool proof
rules for choosing a good set of scale factors a priori; however,
once a good set of scale factors is identified for a particular
optimization problem, the scale facton improve the performance
on similar problems (e.g., new performance estimate is required
for an updated weight manifest).

Automatic scaling routines have been proposed[l]. These
algorithms were based on obtaining a set of scale factors that
yields a well conditioned constraint Jacobian. Hallman[ 171
developed an algorithm to automatically scale the constraint
]acobian for trajectory optimizan'on problems, this routineyielded
mixed results. On some problems it improved the performance
and on others it impeded the convergence of the codes. Tiffs
occurred when the constraint Jacobian was scaled without regard
to the restricted Hessian. It can cause the restricted Hessian to
become poorly scaled and ill-conditioned.

This presents a situation where the optimal scaling cannot be
determined until the rem-ica_ Hessian is known and the resuicted

Hessian is not know until the solution is found. At this point the
optimal scaling does not help solve the problem. The optimal
scalingcan be usedwhen similarproblems are solved.

POSTOP contains algorithms which attempt to scale the
problem so the scaled projected Hessian resembles the identity
matrix, and the active constraint Jacobianis well conditionedlt6).
TI_s scalingcanyield a dramaticimprovementin the performance
of a GPG code when used to solve similar problems. The
scaling obtained from POSTOP may or may not improve the
pedormance of a GRG code,depending on the basis that is used
andthe condition numberofthereducedHessian.

SUMMARY

The effort put into development of robust optimization
software in the GTS system has led to efficient codes that require
a minimum number of simulated trajectories be flown. The
poorly scaled nature of trajectory optimization problems has
requiredthatscalingand accurate linearalgebrabeused for good
algorithmpcrform_cc.

The developmentofoptimizationalgorithmshasreducedthe
cost of estimating performance of boosters, upper stages, and
reentry vehicles, and allowed many trade studied to be
conducted.

The POSTOP capability (solution verification / parameter
sensitivity analysis / and automatic scaling algorithms) are new
features that have begun to reduce the time required to solve
problems. The automatic scaring can drastically reduce the effort
required to solve problems.

Optimization is an integral pan of the analysis software in
GTS. The flexibility of GTS has led to the solution of
complicated trajectory optimization problems, and has allowe.d
new combinations of variables to be studied to compare alternate
schemes for trajectory / vehicle design.
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INTRODUCTION

The application of composite materials to aircraft construction has provided the designer with
increasedflexibility.The orientationofpliescan be tailoredtoprovideadditionalaeroclasticperformance

unobtainable with an isotropic material. A tailored laminate is made up of plies of _evcral orientations,
usually 0°, 45 °, -45 °, and 90 °. The direction of the 0 ° plies, does not need to be oriented with the leading
edge, but can be varied to obtain a wide variety of structural properties. Also, the number of plies of each
orientation varies from one zone to another on the planform. Thus, a thick laminate with mainly 0 ° plies
may form the root zone, and a thinner laminate with mainly +45* plies may form the the leading edge zone.
Examples of tailored aircraft structures can be found in the publications of Rogers, Braymen, and Shirk
[1], Schmit and Fleury [2] and Johnson and Neill [3]. Tailored laminates were designed using
complicated optimization programs. Unfortunately, many tailored designs must be modified before they
are manufacmrexl. The modification adds weight and decreases performance. One type of modification is
ply interleaving, an overlap of plies between zones on the laminate. These interleaves are added to ensure
that zones with varying ply percentages can be connected without loss of strength.

In this paper, the constraints needed to eliminate interleaves in the laminate optimization process
will be described and implemented in a structural optimization problem. The method used has the potential
to prevent changes to composite laminates late in the design cycle.

Examples of tailored laminates that require interleaving arc not difficult to fred. Schmit and Fleury
[2] published a delta wing design shown in Figure 1. The planform of the wing is shown as it would be
seen from above. The numbers listed for each zone arc tidcknesses of 0% +45% and 90 ° plies. An
interleave for a zone is required whenever an adjacent zone has more plies of one orientation and fewer of
another. Thus Section A-A of Figure 1 (not drawn to scale) would have a 90 ° ply in Zone 1 that would
have to be interleaved into Zone 2. Other pairs of zones require interleaving, such as 3-6, 6-9, 9-11, 7-10;
10-12, and 12-14. The extra weight and the change in stiffness caused by interleaving may adversely
affect this design.

Another example ofa tailoredlaminateistheIntermediateComplexity Wing describedinthe

ASTROS (Automated StructuralOptimization)ApplicationsManual [3].The top view of thiswing is

shown inFigure2. The numbers indicatedarcthenumbers of0°,90°,+45, -45 pliesinthe laminateat

each zone. Figure2 alsoshows SectionA-A of thelaminate.Again,an intcrleavcmust bc added to

preventthethicknessfrom dropping tofivepliesfrom six.In summary, neitherof thealgorithmsused in
Reference[2]and [3]attemptedtoeliminatethepossibilityofinterleaves,and laminateswithinterleaves

arc a common consequence.
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Figure 1. The delta wing designed by Schmit and Fleury required interleaves at several locations,
including Section A-A.
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Figure 2. The Intermediate Complexity Wing was designed using ASTROS, but interleaves were required
in several locations, including Section A-A.

A way to avoid the interleaving problem is to impose constraints on the thicknesses in the design
problem so that all plies in a thin zone are continuous into a zone that is thicker. This method is simple in
concept because the constraint is linear function of the design variables. It requires, however, that the
design variables be a constant thickness for a zone on the laminate. It precludes the use of an optimization
scheme in which the thicknesses are described by a continuous shape function. This method requires
multiple optimization runs, and often requires a larger number of design variables than a continuous shape
function optimization scheme.

Recently, the Air Force has sponsored the development of ASTROS. This multidisciplinary
program can tailor composite structures for a variety of constraints. It uses the finite element method for
structural response, providing potentially greater accuracy than the simplified plate analysis used in
Reference [1]. ASTROS was used in this study because of its modularity. It allows new subroutines to
be added without modifying the existing ASTROS code. A subroutine was written to apply direct
constraints on the design variables, and it was used to apply interleaving constraints.
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MATHEMATICAL DESCRIFFION OF INTERL,EAVING CONSTRAINTS

To eliminate interleaves, the individual orientation thicknesses must increase ff the total thickness increases

at a zone boundary. In the following equations, tl and t2 are the total thicknesses of two adjacent zones,

and (tn)O o are the hhicknesses of ply orientation O.

if t I < t2 then

ifq _ t2 then

(tOoo < (t2)o*
(t0450 < (t2)45o
(t0.450 < (t2).4so
(tO90* -< (t2)90.

(tl)0* > (t2)O*
(tl)4S* > (t2)45"
(tl)-45" > (t2)-45"
(tl)900 _ (t2)90"

(1)

The difficulty with this type of constraint is that it is conditional. Each condition, if feasible, will give a
unique optimum weight. The condition that will give the lowest optimum is not known before the
optimization runs begin. With a multiple zone composite laminate, the number of combinations of
constraint conditions can be large. Consider a four zone laminate with two zones along the span and two
zones along the chord. The sixteen possible constraint combinations are as follows.

1: tl > t2 tl > t3 t3 > hi t2 > hi
2: tl > t2 tl > t3 t3 > t4 t2 < t4
3: tl > t2 tl > t3 t3 g t4 t2 _ t4
4: tl>t2 tl>t3 t3gt4 t2<hi
5: tl > t2 tl < t3 t3 > hi t2 _ hi
6: tl > t2 tl < t3 t3 > hi t2 < hi
7:" tl>t2 tl<t3 t3<hi t2>t4
8: tl > t2 tl < t3 t3 -< t4 t2 < t4
9: tl<t2 tl>t3 t3_t4 t2>hi
10: tl < t2 tl > t3 t3 > hi t2 < hi
11: tl<t2 tl_>t3 t3_t4 t2>hi
12: tl g t2 tl _ t3 t3 -<t4 t2 < t4
13: tl<t2 tl<t3 t3>t4 t2>t4
14: tl < t2 tl K t3 t3 > t4 t2 < hi
15: tl < t2 tl < t3 t3 _ t4 t2 > t4
16: tl<t2 tl_t 3 t3<hi t2_hi

(2)

For a twenty zone laminate with five zones along the span and four zones along the chord, over 2 billion
constraint combinations are required. One way to solve this problem is to find the optimum solution for
all constraint combinations. The best of these solutions would be the true conslrained optimum. It can be
proven, however, that a limited subset of the sixteen combinations can be solved, while still providing the
true constrained optimum. This method is called the branch and bound method. It was originally
developed by Balinski [4] in 1965 to solve linear programming problems with integer design variables.
Balinski's method starts with a continuous variable optimization, and constraints similar to Equation 2 are
added to close in on an integer solution. Branch and Bound was subsequently modified and used for Civil
engineering optimization problems, which often require the use of standard cross-sections for beams or an
integer number of reinforcing rods for concrete [5].

For the laminate optimization problem the top of the Branch and Bound tree is the unconstrained
optimum, as shown in Figure 3. The term unconstrained refers to the constraints of expression (1). The
tree branches to the constraint tl < t2, and to the constraint tl > t2. Additional branches are added so that

the bottom of the branches correspond to the constraint combinations of Equation (2). A single constraint
combination is solved, and a temporary optimum solution with weight f* is found. Now the other
branches of the tree are explored, starting with nodes near the top. If any of these nodes near the top have
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f*.anoptimumThismethodweightfn > f* thenmostallofOfthethetreenOdesifthat are positioned beneath it have an optimum weight fn >
eliminates a good guess at the best constraint combination can befound.

Figure 3. The branch and bound method reduces the number of constraint combinations that must be
analyzed.
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ASTROS MODEL OF THE SIMPLE WING STRUCTURE

The ASTROS Simple Wing Structure (SWS) was chosen to evaluate the branch and bound
method. The SWS, shown in Figure 4, has four zones of unique thickness on the wing skin. Each zone
has four design variables, corresponding to the thicknesses of 00, 45*, -45 °, and 90 ° plies. The top and
bottom of the wing are symmetric. A simulated aerodynamic load was applied to the model, and the
resulting optimum design was constrained to have a tip displacement less than 10 inches, and a wash-out
tip twist of greater than 5% of the chord. Tsai-Wu stress constraints were also applied to the composite
skins. The thickness of the aluminum understructure was not allowed to vary.

TOP VEiN

AERODYNAMIC _ 60

SIDE VIEW
DIMENSIONS IN INCHES _ 1

Figure 4. The Simple Wing Structure (SWS) was used to test the branch and bound method because it has
only eight membrane elements modeling the skins, and requires only sixteen design variables.

RESULTS

Each circle shown on the branch and bound tree is called a node. The fhst optimization run is
Node 0. This run has act,elastic and stress constraints, but no constraints on the thicknesses. Node 27
has four thickness constraints, and is the node most likely to be optimum, because the total thicknesses of
Node 0 satisfy the Node 27 constraint combination. For this reason, Node 27 is run to obtain a starting
constrained optimum weight, as shown in Figure 5. The weights of the two designs are show below.

f0 = 9.36 lbs
f27 = 9.77 lbs

This indicates that a 4.4% weight penalty is associated with constraint combination of Node 27. The
resulting ply thicknesses, shown in Figure 6, reveal the design changes required to satisfy the constraint.
The -45 ° plies in Zone 2 and Zone 3 arc extended into Zone 1, and some 0* plies arc removed from Zone 1
and Zone 4 to minimize weight and satisfy the aeroclastic constraints.

5
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Figure 5. The lust step in the Branch and Bound method is to calculate the most likely feasible solution.
(f*=9.77)

3O

NODE 0 Unconstrained

ZONE 1

(27/1/1/i)

ZONE 3

(2/1/4/1) 12

ZONE 2

(2/1/4/1)

ZONE 4

(3/[/6/2)

TOTAL PLIES (00/45o/-45°/90 *)

ZONE 132 (26/1/4/I)

ZONE 3

8 (2/1/4/1)

TOTAL PLIES

NODE 27 - tl>t2 tl>t3 t2<t4 t3<tq

ZONE 2

8 (2/1/4/1)

ZONE 4

ii (2/I/6/2)

( 0*/45*/- 450/90")

.45 o

0 °

45 °

g0*

Figure 6. Ply thicknesses of Node 0 and Node 27 show how the thicknesses change to satisfy
interleaving constraints.

The next step in the analysis is to check all the other branches of the tree to find out if a better
constrained optimum exists. Figure 7 shows the results of the optimization runs corresponding to the
other branches. Node 1 converged to an optimum weight of 19.15 lbs. This weight was greater than f*,
and additional constraints on this problem would only increase weight. Thus all branches of the tree
extending from Node 1 were disregarded. Next, the optimization run of Node 5 was performed, and it
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converged to an optimum weight of 19.25 lbs. Since the optimum weight of NOde 5 was greater than f*,
all branches extending from Node 5 were disregarded. Next, the optimization run of Node 14 was
performed, and it converged to an optimum value of I0.I0 Ibs. Since the optimum weight of Node 14
was greater than t'*, all branches extending from Node 14 were disregarded. Next, the optimization run of
Node 28 was perforn_, and it converged to an optimum weight of 10.09 lbs..When Node 28 was
completed the entire tree had been spanned, and lowest constrained optimum was obtained with Node 27.
Node 27 is the true optimum solution.

9.36

9.77 10.09

10.10

, ,,
: .°

®®

Figure 7. Checking all the branches required only six optimization runs, because most nodes cannot

satisfy all the design constraints without a significant increase in weight.
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CONCLUSIONS

The branch and bound method of optim zafion is time-consuming, but it rigorously finds the u'ue
optimum solution. The major benefit is that it reveals a more practical method of reaching a feasible
solution that may be very close to the optimum. The practical method uses a combination of thickness

constraints that corresponds to the total thicknesses of the unconstrained solution. This simplified way of
obtaining a manufacturable design may be appropriate for large opfmization problems.

The resulting design using ASTROS with interleaving constraints is slightly different from the
design that would be obtained by a heuristic method. For both methods, interleaved plies are extended
into thicker zones to satisfy interleaving constraints. ASTROS then takes other plies out of the laminate
that are not needed because of the presence of the extended plies.

Optimization runs converged in five to eleven iterations. Convergence was more difficult for runs
that started in an infeasible domain.

Modifications to ASTROS were straight-forward due to the flexibility of the code and the
comprehensive documentation.
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ASS'_RACT

Control system design for general nonlinear flight dynamic models is considered

through numerical simulation. The design is accomplished through a numerical opti_

mizer coupled with analysis of flight dynamic equations. In the analysis, the

general nonlinear flight dynamic equations with nonlinear aerodynamics are numeri-

cally integrated; and the dynamic characteristics needed in the optimization process

are then identified from the dynamic response. To assure a reasonable solution, the

initial input values of the design variables are estimated through a sensitivity

analysis. To demonstrate the method, the pitch departure prevention for an F-16

configuration is demonstrated.

INTRODUCTIOe_

At high angles of attack, the aerodynamic forces and moments are, in general,

tlme-dependent and nonlinear functions of motion variables. In addition, the

aerodynamic, kinematic, and inertial coupling phenomena are important to the high

angle-of-attack flight dynamics of modern aircraft. One feature of a hlgh-alpha

control system is the simultaneous utilization of several control surfaces or

devices. Based on these considerations, a number of high angle-of-attack control

concepts have emerged (refs. I-4). However, to perform the detailed control system

design, a suitable method must be capable of Incorporating these coupling phenomena

with considerations of time-dependent, nonlinear aerodynamic forces and moments. In

addition, the method must be capable of handling multiple Input and output. A

current approach to solve this problem is by extensive piloted simulation (ref. 5).

Methods in optimal control theory represent possible approaches to solving

these problems under consideration. However, computational methods in existence

require local llnearlzation of dynamic equations and aerodynamics. Another alter-

native is to apply numerical optimization techniques without llnearlzatlon as they

are frequently used In structural and aerodynamic designs of large systems. A

similar approach has also been used in other control applications in ref. 6.

In the present method, a numerical optimization technique based on conjugate

gradients and feasible directions (ref. 7) is coupled with an analysis method which

is to obtain the numerical solutions of the nonlinear six-degree-of-freedom dynamic

equations. This analysis method is to provide information needed in the design

process. Since the analysis method can deal with nonlinearities in the dynamics and

the aerodynamics and with any general constraints on the control system configu-

ration, the control system designed with a numerical optimization technique can be

very realistic and effective.

To demonstrate the present method, design of control systems to prevent flight

departure at high angles of attack in a maneuver will be considered. Since results

of optimizing a nonlinear system tend Co depend on the initial data to start the

design process, how appropriate initial values of design variables can be chosen
will be illustrated in this paper. Some results of the present method, without

considering the effect of initial values of design variables, have been presented In
ref. 8.

DESIGN METHODOLOGY

At high angles of attack, the main flight dynamic problems are pitch departure

and lateral-directional Instabilities. These problems are aggravated by the reduced
control effectiveness. From a mathematical point of view, the problem involves

nonlinear 6-DOF fllght dynamic equations with nonlinear aerodynamic £orces and

moments. The present method is baaed on numerical integration of the following

nonlinear dynamic equations:
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re(u- vr +wq) -mg x + FA + F_
x x

m<v + ur - wp) - mgy + FA + FT
Y Y

m(w - uq + vp) - mg z + FA + FT
z z

ixxb- x=;- x=m + (Xzz- Xyy)rq- nA +

2)
lyyq + (Ixx - Izz)Pr + Ixz(p2 _ r - MA +

Izzr - Ixz p + (lyy - Ixx)pq + lxzqr -N A + NT

= p + q sin_ tan8 + r cos_ tan8

= q cos_ - r sin_

= (q sln_ + r cos¢)sec8

-i
a = tan (W/U)

(la)

(Ib)

(Ic)

(Id)

(le)

(if)

(Ig)

(lh)

(Ii)

(lj)

8 = sin-l(v//u 2 + v 2 + w 2) (Ik)

where(u, v, w) are the three linear velocity components of the aircraft; (p, q, r)

are the angular velocity components; and (_, 0, _ are the Euler angles in roll,

pitch, and yaw, respectively, g is the gravitational acceleration, and F's are the

external forces, while (L, M, N) are the moments about the (x-, y-, z-) axes. In

addition, m is the mass and I x' Ixz' etc., are the moments of inertia. The sub-X

scripts A, T denote the aerodynamic and thrust forces and moments, respectively.

The aerodynamic forces and moments (F , L , M , N ), including the control effectsA A A A
are represented in dimensionless coefficients in a tabulated form as functions of

motion variables in this study. The motion variables are (u, v, w, p, q, r). The

results of the integrated motion variables are then used by the optimizer (ref. 7)

to determine the best strategy of control.

To be more specific, it is desirable to minimize the sideslip (8) in a maneu-

ver. At the same time, to have good tracking ability, the maximum transient a

response (emax) and maximum change in yaw angle ($mav) should be minimized. To

prevent spin entry, the maximum yaw rate (r_ax) should also be as small as

possible. Therefore, a possible objective _n a roll maneuver is to minimize the

following objective function:

C3 C4 C5

oBJ=-ClPmaX -C2_trlm- l%axI + _ I%Xl + _ l_axI+ _

C6 C 7 C 8

Irmaxl+ _- l_axI+ _- l%rillml + ¢

(2)

subject to various constraints depending on applications• atri_, may be used to
define the limiting angle of attack to be discussed later for application to an F-

16. The constants, C - C8, are weighting factors to b_ chosen so that all terms
have the same order o_ magnltude, e is taken to be I0-'. The control system

"4bT.
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structure must be assumed,with the possible design variables to be determined by
the optimizer, being

aileron-rudder interconnect gain (KARI),

side acceleration feedback gain (Kay),

yaw damper gain (Kr), roll damper gain (Kp),

pitch damper gain (Kq), angle of attack feedback gain (Ks),

normal acceleration feedback gain (Kaz) ,

roll control deflection feedback gain (K_), etc.

where K_ is defined in

= _ - K_p (3)a a
max

Various constraints can be imposed in the calculation. In general, any con-

straints which affect the results and can be identified from dynamic analysis can be

imposed.

NUMERICAL RESULTS

The aerodynamic data for an F-16 configuration are obtained from ref. 9. Since

the F-16 is unstable in pitch, design of a pitch control system is of major con-

cern. The control system includes an angle-of-attack/normal-acceleration limiting

system. In the a-limltlng system, the pitch control deflection (_e) due to the a-
feedback is defined as

6 (a-feedback) - K a - K (4)
e _ c

The maximum thrust is assumed to be 8100 ibs at 30,000 ft altitude. The assumed

control system structure is illustrated in Fig. I.

A proper choice of the initial values of design variables used in the present

method is obtained through a quick sensitivity analysis in the code. That is, the

design variables are systematically varied in large increments and their effect on

the objective function is then used to determine the proper ranges of values of the

design variables for the optimization process. For the F-16 configuration, the

results of sensitivity analysis for the design variables KARI, K , and K a are pre-
sented in Fig. 2. The pivotal values around which these parameters are varied are
assumed as follows:

KARI = 1.05, Kay - 16., Kr = 0.6,

Kq - 3.6, Kaz - 0.3, K a- 3.,

K c - 5., Kp - 0.2, K_ - 0.2

Based on these results, the starting values of the design variables are then chosen
as follows:

KARI = 0.9, Kay - 18., Kr " 0.4,

Kq - 3.8, Kaz = 0.5, K a= 2.9,

Kc = I0., Kp " 0.06, K 6 " 0.2

Note that the objective function defined in Eq. (2) has a sharp minimum in the space

of design variables. Taking fl " 0.008, C2 - 0.05, 3 _ 1.0, C4 = 24.0, C5 [sO.01,
C 6 - 0.008, C 7 - 0.7, and C8 1.0, the variation of CLhc objective function

illustrated in Fig. 3.
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As an application of the aforementioned procedures, an optimal set of system

gains to prevent pitch departure in a roll maneuver for an F-16 configuration will

be determined. Note that due to inertial coupling, the presence of roll rate will

induce additional pltch-up to make the problem worse. Note that _trlm in Eq. (2) is
defined as the average angle of attack over the whole time period. It is to be

maximized while maintaining stability of the airplane. The roll control is applied

between t - 22 and 34 sec. Results shown in Fig. 4 show that no departure has

occurred and the final angle of attack is _rim = 24.5 deg. In this case,

Pmax = 62.0 deE/set.

The calculation converges after 50 iterations. It is noted that If there is no cr-

limiting system (K = O, K = 0), the airplane will trim at an angle of attack equal

to about 66 ° and y_w divergence will occur.

To check the convergence, the initial starting values for the design variable

are slightly changed. However, the final converged results are still the same,

showing that the solution is the best possible one.

(XMCLUSIO_S

A numerical optimizer was coupled with a nonlinear flight dynamic analysis code

to form a control system design method. For departure prevention, the design objec-

tive was described in terms of minimizing the transient angle of attack, the side-

sllp, the yaw angle, and the yaw rate, in a roll maneuver. To make sure the

converged solutions were the desirable ones, the starting values of the system gains

were obtained through a sensitivity analysis. The design method was demonstrated

for an F-16 configuration to prevent pitch departure.
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ACTIVE FLUTTER AND GUST RESPONSE CONT Dn)
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/

After a short recall concerning the aeroelastic

equations, active control law based on optimal

stochastic control theory is synthesized for

a wing flutter and gust response. Robustness of

of the control system due to structured and un-
structured uncertainities is considered. Robust-

ness recovery technique is applied to improve

the stability margin.

INTRODUCTION

In the last three decades enormous progress has been made in the

field of structural analysis and numerical aerodynamics. This

has allowed to build yet lighter and more flexible aircrafts,

but the flutter phenomenon continues to be one of the decisive

aircraft performance limiting factors. The concern of this

paper is to study the control of flutter and turbelence response

to enhance the performance limitations.

A sustained oscillation of the wing in motion involving its

vibrational deformation due to the positive work done per cycle

of oscillation by the aerodynamic force leads to the flutter

phenomenon. To make sure that the phenomenon occurs out of the

flight envelope, active control system is being used. The

physical purpose of the control system is to generate

aerodynamic forces using of control surfaces to compensate the

adverse acting aerodynamic forces on the wing to keep the

aircraft stable and reduce load. In establishing the control

system stochastic optimal control design process is used. The

task of the control system is to find the control variables that

would drive the system from a state-space point in a Euclidean

space at the initial time to a point at the final time along an

optimal path.

The design model used to derive the control strategy, which is a

simplified version of the actual model, is obtained by

neglecting some of the modes and fixing some of the parameters

at nominal values. Robustness of the control system due to low

and high order uncertainities will be determined and a recovery

technique will be applied.

AEROELASTIC EQUATIONS OF MOTION

The elastic wing is considered to be linear which can be

discretised as n points material; so can its equations of motion

be formulated using Lagrange's equation of motion. The deformed

shape of the wing is represented by a set of discrete
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displacements at selected nodes which is approximated by a
linear combination of the natural modes of vibration.

_ = _ q (I)

where q is the generalized displacement vector, _ is the modal

shape matrix and q is the modal coordinates vector.

M'_ + D _ + K q = F (2)

The modal shape , mass and stiffness matrices #, M and K

respectively are generated using the finit element method. The

nonconservative generalized force matrix F consists of unsteady

aerodynamic forces due to motion Qm' control Qcand atmospheric

turbelence Qt" The Laplace transform of the aeroelast_c system

equations of motion (2) is

, 2 , , v2_ w_ (3)
( M s z + D s + K ) q = _ p v Qmq + _ p v2Qc_ + _ p Ut- _

where _ is the control surface coordinates vector and wt is the

atmospheric turbelence vertical speed.

The unsteady aerodynamic generalized forces are detemined using
the subsonic doublet lattice method as follows. The lifting

pressure - downwash integral equation (4):

1 II AP (x,y) K (x,x,;y,y,) ds (4)w(x,y) = _ s

derived from the hyperbolic acceleration potential equation of a

subsonic flow for a thin finite wing is discretized into linear

algebraic equations

w = D AP (5)

where D is the influence coefficient matrix representing the

downwash at a point (x,y) due to a unit pressure difference _P

at (xl,y,). The downwash distribution is related to the wing

modal coordinate vector and the pressure coefficients are

evaluated using the corresponding modal deflections. The

generalized unsteady aerodynamic forces associated with each

generalized coordinate is

(v)

Q,j(ik) =- (_2) f£ qi(x,y)_pj(x,y)dx dy

where s=ik ; k is the reduced frequency.

To cast equation (3) into the state space form , convenient for

the control design, the unsteady aerodynamic force matrix

obtaine_ in the frequency domain is approximated by a rational

matrix polynomial [7]

Q (s)= A. + A ,( _ ) + A2 ( _ )2 + X Am+2 s (8)

m=, s + 2v/c _.

The coefficient matrices AI are determined using the least

squares technique.

CONTROLLER DESIGN

A state space equation has been constructed including flexible

modes , aerodynamic lag modes , dynamic gust represented by the

second order Dryden model and actuator dynamics.

X = A X + B U + G W (9)

z = c x (I0)
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w_ere X E R n is a state vector, U E R_m is a control vector, W
R is a turbelence vector and Y E is a measuremert vector.

The optimal control that minimizes a qudratic performance index

(I I ) [_ (ii)J --E XTQX+UTRU)dt
J"

subject to (9) is obtained using the linear _adratic Ga_ian
(LQG) technique. The weighting matrices Q _ R and R c _ are

so chosen to influence the required output performance and

control cost respectively. The required outputs in-here are the

flutter speed and the turbelence response.

To make the controller of less complexity a controller order

reduction technique is to be applied. The modal cost

method [3] is used in here for this purpose. It is used to make

a modal ranking based upon relative contributions to a

stochastic functional (ii). The reduction is made after applying

the optimal control technique. The system is assumed to be

observable so as to assure the stability of the controller.

MODEL UNCERTAINITIES AND ROBUSTNESS

One of the principal objectives of using feedback control is to

compensate for model uncertainities . Model uncertainities

stem either from neglected dynamics or parameter uncertainities.

To find the robustness of a control system with respect to

unstructured uncertainities additive or multiplicative

perturbations are introduced at different loop breaking points,

since a robustness at a point in a multi-input multi-output

(MIMO) system does not necessarily result at other points.

Unstructured uncertainities in here are due to ignored higher

wing structural modes, unsteady aerodynamics approximations and
reduced order controller, whereas structured uncertainities are

principally due to the natural frequecies and dynamic pressure.

In terms of the loop transfer function the uncertainities are
given as follows

G(s) = Gn(S ) + A G(s) (12)

G(s,p) = Gn(S,p ) + G(s,Ap) (13)

where G n is nominal loop gain, p is a vecteur of uncertain

parameters.

Robustness of a MIMO system with respect to unstructured

uncertainities is evaluated in terms of the minimum singular

value of the system's return difference matrix , which can be
interprated as the distance between the return difference matrix

and the nearest singular matrix or physically as the largest

perturbation which can be tolerated at a point in a loop. The

stability of a perturbed system is guaranteed [6] if

( I + T ) > _ ( L -I - I ) V_ >0 (14)

where T is the nominal loop gain and L is the perturbation

matrix to account for the uncertainity in the open loop system.

As the perturbation matrices cannot be exactly determined the

perturbation norm bounds are used for the analysis. The bound on

the perturbation matrix assumes a single worst uncertainity

magnitude applicable to all channels.
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ROBUSTNESS RECOVERY TECHNIQUE

Assuming that all state variables are accesible, linear

quadratic regulators have impressive robustness properties [8 ],

ie. phase margin of z60" and gain margin = I/2 ,® with a 50%
reduction tolerance. The introduction of observers (filters) to

estimate the unaccessible state variables deteriorates the

robustness of the control system. Minimum phase plant's
robustness which is not the case here ,with respect to model

uncertainity can be asymptotically recovered at different points
of the loop using the LQG/LTR [8] technique. Yedavali & Skelton

using the trajectory sensitivity approach and Hyland & Bernstein

using the entropy method have treated robustness with respect to

parameter variation. The internal feedback loop technique of

Tahk & Speyer is here used for this purpose. The parameter

variation matrix AA is decomposed in to input, output and

fictious feedback loop. An explicit relationship between the LQG

weighting matrices and the the structure of the parameter

variation is established. The regulator or the filter part of

the LQG controller is asymptotically robustified with respect to

the parameter variations udjusting the weighting matrices.

Fig. 1 Representation of the perturbation system

A A(p) = -M L(p) N (15)
where p is the vecteur of uncertain parameters, M _ R "xp,

N E R _" - The covariance of the process noise v = T_R RT is
I

chosen so that M is column similar to R ie. span ( M ) c span(N}
and (A,R,C) is minimum phase. As ¥ 4 ® the stability robustness

is determined through the regulator gain. The asymptotic

procedure can be applied to both the regulator and the filter by
a simultaneous proper choice of the covariance matrix and the

weighting matrix in terms of the input/output perturbation

matrices M & N respectively.

EXAMPLE AND DISCUSSION

The finit element wing structural model consists of rod and beam

elements. It is known that the flutter phenomenon dominantly
involves the lower modes, so are only three lower modes retained

for the control analysis and synthesis. The aerodynamic model

(fig. 2) consists of 140 boxes. Unsteady aerodynamic
_alculations are made at a flight condition of 0.7 mach

#

altitude of 10 km and 6 reduced frequencies. The aerodynamic

force rational polynomial fits are given on fig. 3. The initial

weighting matrices are determined using the inverse square of

the maximum allowable states and control variables. The system
has been simulated for different values of the weighting matrice

coefficients . Displacement, velocity and acceleration sensors

are used to measure the outputs. The open loop flutter speed of

the system (vr=260m/sec) is sensibly increased (20%) when the

control system is activated. Open and closed loop power spectral
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density speed response to the atmospheric turbelence of scale,

L=200m and gust speed intensity, vb=3.6m/sec, is given fig.4. One

can conclude that the active flutter suppression and gust

response control systems are related to one another
concerning the flexible modes.

The minimum singular value curve of the return difference matrix

at the input is used to determine the minimum acceptable

perturbation matrix bound (worst case in all the channels) up to

which stability is guaranteed (14). The guaranteed stability
margins; PM = ±5" and GM = -i,i db are determined from the

multiloop gain and phase margins [6].

The principal necessary condition to apply Tahk's method is the

minimum phasedness of (A,M,C), which is found to be varying with

sensor location. When the uncertain parameters belong either to

the control matrix B, or the measurement matrix C, the

efficiency of this method gets reduced since it leads to a
controller order augumentation, particularly for a system of

higher inputs and outputs.
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An Application of Object-Oriented Knowledge
Representation to Engineering Expert Systems j
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Santa Clara, CA

Abstract

The paper describes an object-oriented knowledge representation and its application to

engineering expert systems. The object-oriented approach promotes efficient handling

of the problem data by allowing knowledge to be encapsulated in objects and

organized by defining relationships between the objects. An Object Representation

Language (ORL) was implemented as a tool for building and manipulating the object

base. Rule-based knowledge representation is then used to simulate engineering design

reasoning. Using a common object base, very large expert systems can be developed,

comprised of small, individually processed, rule sets. The integration of these two

schemes makes it easier to develop practical engineering expert systems. The general
approach to applying this technology to the domain of the finite element analysis,

design and optimization of aerospace structures is discussed.

Introduction

An object-oriented approach is being applied to the development of an integrated

Expert Engineering Software Package for structural analysis and design optimization

of aerospace structures. The expert software package brings together several

technologies, namely, expert systems, data base resources and procedural programs, to

work together in an integrated environment as shown in Figure 1. Significant decision

support is being built into the package which can be invoked by the user at various
stages of the design process. Such an integration of the design process with embedded

"intelligence" will improve the efficiency of the design process, help save significant

man-hours and costs, and help produce reliable and economical designs.

The main goals of the research work presented herein were to:

13Develop a practical and efficient environment for the development of large

expert systems, primarily for engineering applications, and

D Apply this environment to the aerospace design process involving the iterative

steps of the f'mite dement analysis, design and optimization.
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After a preliminary review of the data and knowledge usually required for structural
design, it was realized that the following two main capabilities were required:

D An efficient data representation and storage scheme, and

0 The ability to process large numbers of rules necessary to simulate reasoning
associated with the various steps of the design process.

It became clear that the object-oriented paradigm best provides a framework for
defining the static problem data. An Object Representation Language (ORL) was
therefore implemented in C++ as a tool for building, maintaining, and querying an
object base. O1LL commands, currently implemented, include those for creating,
editing, and displaying classes and objects; querying, asserting, and reseting property
values; and saving and loading objects. A main goal in the development was to keep
the use of the ORL as simple as possible so that engineers or experts in other domains,
without extensive computer programming experience, could develop knowledge bases
and, furthermore, that non-experts could easily utilize the resulting expert systems.

Once the objects (data) involved and the relationships between the objects have been
deffmed for a specific problem, the rules to reason with the object base can be
developed. The CLIPS rule-based system was linked to the ORL to serve as the
inference engine. Together, the object-oriented and rule-based schemes complement
each other in that the object-oriented approach efficiently handles problem data while
the rule-based knowledge is used to simulate the reasoning process. Alone, the object
based knowledge is little more than an object-oriented data storage scheme; however,
the CLIPS inference engine adds the mechanism to directly and automatically reason
with that knowledge. In this hybrid scheme, the expert system dynamically queries
for data and can modify the object base with complete access to a11the functionality of
the ORL from rules.

-. -

Object-Oriented Knowledge Representation

Object-oriented knowledge representation provides a natural means of representing
problem data as a coUection of related objects. Classes and objects are comprised of
descriptive properties and relationships. A Property is a slot for holding values of
type string, word, integer, or float. A Metaslot can be attached to a property to put
constraints on the values the property can hold; to define initial or default values, and

to define the prompt displayed to the user when queried. A powerful feature of a
Metaslot is the "order of sources" which is a list defining the search path to be
followed when the object property is queried. Currently, the User is the default
source for information; however, "intelligent" interfaces to Data Base Management
Systems (DBMS's) and Procedural Programs are being developed.
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Relationships allow properties to be inherited by related classes and objects. Types of
relationships include instance and instance-of relationships between a class and' its

instance, is-a and subclass relationships between classes (e.g., Jet is-m Airplane,
Airplane has subclass Jet) and part.of and subobject relationships between objects
(e.g., wing-x is part-of airplane-y, airplane-y has subobject wing-x). The
relationships come into play when the classes and objects are queried. If a class is
queried for a property value, it will automatically pass the query on to its instances.
Similarly, if an object is queried for a property value which it doesn't have, it may
pass the query on to related objects according to the current inheritance protocol. The
relationship capability promotes efficient handling of data by eliminating unnecessary
redundancy.

As illustrated in Figure 2, a powerful advantage of using an object-oriented knowledge
representation scheme, independent of the rule-based representation and inference
engine, is the ability to build a large expert system out of small rule sets that carry out
specific tasks. Also, previously autonomous expert systems can share data and
communicate through a common object base. A very large network of rule sets can be
developed giving the illusion of a large expert system when, in fact, only a small set of
rules are being processed at any one time. This capability becomes especially
important on a personal or desktop computer platform. Developing, modifying,
updating and verifying knowledge bases for large applications is a less formidable task
when small rule sets can be edited and tested independent of the entire application.

Application to Aerospace Structural Design

A major objective of this effort has been to develop a knowledge base that mimics an
expert in making key technical and conceptual decisions in the field of structural
analysis and design optimization, thus improving the productivity with modem
structural analysis/design optimization tools. The following advisory rule sets are
operational and others are under development:

Analysis Planning

Substructuring

Mesh Refinement

Element Selection

Dynamic Modeling

Optimization Problem Formulation

Optimization Problem Simplification

Optimization Algorithm Selection

Interactive Design Optimization
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A simplified version of the Analysis Planning Advisor will be used to illustrate the

application of the object-oriented knowledge representation scheme to develop expert
systems. The first step in developing the expert system is to define the objects and
properties that influence the decision of what type of analysis to perform on the
model. For the sake of this discussion, assume that the decision is solely based on the
current goal of the design project and the loadings imposed on the structure. Objects
for the expert system could be defined as follows:

OBJECT goal

PROPERTY type TEXT
METASLOT

Allow (

i. "Initial Design"
2. "Final Design" )

Prompt "What is the current goal of the Project?

OBJECT structure

PROPERTY loading TEXT
METASLOT

Allow (
i. "Pressure _
2. "Thermal"

3. "Aeroelastic"

4. "Aerodynamic"

5. "Impactive" )

Prompt "What loadings
structure? _

are imposed on the

OBJECT analysis
PROPERTY type TEXT
METASLOT

Allow (
i. "Static"

2. "Dynamic - Time History"

3. "Dynamic - Modal" )

Rules are then defined to reason with the objects. Rules query the objects for property
values, automatically querying the user if their values are unknown. Other rules are
required to display results or recommendations. Most importantly, rules must be
established to mimic the experts reasoning. In this simple analysis advisor, a rule,
shown in the CLIPS syntax, might look like:

(defrule rule-name

(goal type "Final Design')

(structure loading Aerodynamic)
=>

(ORL assert analysis type "Dynamic - Time History') )

This simple, illustrative rule states that if the project is in the Final Design stage and
the structure has an Aerodynamic loading then a Time History analysis should be
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performed. The actual Analysis Planning Advisor has several more objects involved

with many more possible values.

Conclusions

The paper described development of an object-oriented knowledge representation

which was linked to the CLIPS rule-based system and is being applied to the aerospace

structural design process. Expert systems of unlimited size can be developed by

allowing managable sized rule sets to be chained together via a common object base.

Because the object base is independent of the rule sets, the objects (data) can be shared

among the rule sets. User responses and inferences of a rule set are stored for later

use in other rule sets, completely transparent to the user. A simplified version of the

Analysis Planning Advisor was used to illustrate how this knowledge representation

scheme is being used to develop an =intelligent" software package for the design of

aerospace structures.
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Figure 1. Integrated Architecture for Expert Design Software
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Abstract

The subject of this paper is the efficient and accurate determination of second-order design
sensitivities in elastic bodies. The approach being carried out here is the direct differentiation of the
governing derivative boundary element method (DBEM) formulation of the problem. Second-order
sensitivities of boundary stresses are obtained here in an elegant manner. A numerical implementation
of the method is carried out with isoparametric quadratic boundary elements and numerical results are
presented for several sample problems. Considerable savings in computational effort for an
optimization procedure is possible through the use of efficiently determined accurate second-order
design sensitivities.

1. Introduction

In almost all shape optimization processes, design sensitivity coefficients(DSCs), which are the
rates of mechanical quantities with respect to a design variable, are essential for the determination of
the optimum shape of a body. A design variable being considered here is a shape parameter that
controls the shape of part or whole of the boundary of a body. Approaches for calculating first-order
DSCs have been developed quite well by many researchers. Second-order DSCs, however, are hardly
used, mainly because they are very expensive to compute. In many nonlinear programming algorithms
for optimization, second-order information such as the inverse of the Hessian matrix of the objective
function and second-order derivatives of constraints, which provide sufficient conditions for the
minimum (optimum) design, are generated approximately from first-order derivatives [1]. The
quasi-Newton algorithm is popular for this purpose. However, another side of the issue is: if
second-order DSCs can be determined accurately with reasonable computing cost, great increase of
the rate of convergence of some optimization algorithms is possible [2]. This can lead to great savings
in overall computing costs. "--

Several researchers have alreadly shown interest in this area. An adjoint variable method was used
to derive first-order and second-order derivatives of measures of dynamic response with respect to
design variables by Hang and Ehle [3]. Dems used the mixed approach to obtain second-order DSCs
for conduction systems [4, 5]. Haftka compared two commonly used first-order approximations of the
constraints to the corresponding second-order approximations of the constraints. In this paper [6] truss
and laminated plate problems were used to compare the accuracy of the approximation and its effect on
computational efficiency. Besides, Haug et.al [7] described the general approaches by using finite
element methods (FEM). Direct differentiation of the reduced global stiffness matrix, the adjoint
variable approach with the reduced global stiffness matrix, and a combination of direct differentiation
and adjoint methods, have been used to formulate second-order design sensitivities [7]. None of the
above authors, however, have attempted to determine second order DSCs for general elastic
continuua.

The approach being used here is the direct analytical differentiations (DDA) of the governing
boundary element method (BEM) formulation of the problem. The exact differentiations eliminate
errors that might occur from finite difference methods and lead to ck.sed form integral equations for
the desired second-order derivatives. These equations are then solved by numerical discretization. This
approach is accurate and efficient.[8,9].

2. Integral equations for two-dimensional problems
2.1 The DBEM formulation

A derivative boundary element method(DBEM) formulation for (two-dimensiona/) linear elasticity,
in which the tractions and tangential derivatives of displacements are the primary variables on the
boundary of a body, has been proposed by Ghosh et al [10]. An analogous formulation has been
presented also by Okada, Rajiyah and Atluri [11].

The DBEM equations for two-dimensional linear elasticity for a simply connected region B can be
written as [10]:
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I [Uij(P,Q) x i (Q)- wijCP,Q) AiCQ)] dsCQ) = 0 (1)

_B

where the kernel Uij is available in many references eg.[12] and Wij is available in [10]. Here x i and

A i are the components of the traction and tangential derivative of the displacement, (Ai=3u/3s)

respectively, on _B. It is very important to note that Wij has only a logarithmic singularity (same as

Uij ) as r goes to zero. A constraint equation

f_i = ui(2) " ui( )ds 1

as1

(where _)B1 is a suitable part of 0B with ui(1) and ui(2) the values of u i at the beginning and at the end

of/)B 1) must be included for certain problems.

As can be seen from equation (1), the traction and tangential displacement derivative vectors are the
primary unknowns on OB in this formulation. It has been shown that the stress components at a

regular point on OB can be written in terms of the components ofx and A as [13]:

O'ij= AijkT,k + Bijk A k (2)

where Aij.k and Bi.ikare coefficientswhich can be determined from the geometry and material

properties[13].Thus, since'_and A axe primitivevariableson OB in thisDBEM formulation,these

quantities,as wellas cYij,can be obtainedon OB with very high accuracy.

2.2 First-order sensitivity formulation
The corresponding DBEM equation for the sensitivities are obtained by differentiating equation (1)

with respect to a shape design variable b [8]:

I iii •[Uij(b'P'Q) '_ i (b,Q) - Wij(b,P,Q) A i (b,Q)] ds(b,Q)

+ f[l_ ij (b2,Q) _(b,Q) -W ij(b,P,Q) Ai(b,Q)] ds(b,Q)

aB

+ [Uij (bY,Q) '[i (b,Q) - Wij (b,P,Q) A i (b,Q)] d s (b,Q) = 0 (3)
aB

where a superscribed * denotes a first-order derivative with respect to a typical component of b. It has
been shown [14] that

• III 41

U ij(b,P,Q) = Uij.k(b,P, Q) [ x k(Q) - x k(P)] (4)

where, by virtureof thefactthat

• •

x k(Q) -X k(P)~ O(r)

Uijiscompletelyregular!A similarargument isused toshow thatWij isalsoregular.The formulafor

d's isgiven in [8,9].
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2.3 Second-order sensitivity formulation
The corresponding DBEM equation for the second-order sensitivities is developed by extending

the above idea. Differentiating equation (3) with respect to a shape design variable b, one can obtain:

I [Uij(b,P,Q) _ i(b,Q) - Wij(b,P,Q) _ i(b,Q)] ds(b,Q)

aB

+
• • •

[U ij(b,P,Q) _ i(b,Q) - W ij(b,P,Q) A i(b,Q)] ds(b,Q)

+

+

* st

[Uij(b,P,Q) _ i(b,Q) - Wij(b,P,Q) A i(b,Q)] d S (b,Q)

• B st

[U ijCb,P,Q) _i(b,Q) - W ij(b,P,Q) AiCb,Q)] d sCb,Q)

[U ij(b,_P,Q) _i(b,Q) - W ij(b,P,Q) Ai(b,Q)] ds(b,Q)

I [Uij(b,P,Q) _i(b,Q) - Wij(b,P,Q) Ai(b,Q)] = (5)d_s(b,Q) 0

aB

where a superscribed/' denotes a second-order derivative with respect to a typical component of b.

/i st

U r is regular since U is already regular. A similar argument is used to show that '_¢ is also
regul_[r, ij ij

The first lines of equations (3) and (5) are identical to that of equation (1) with either the first or the
second-order sensitivities replacing the tractions and displacement derivatives. Half of sensitivities on
_B must be prescribed and the rest can then be determined from equations (3) and (5). The known

right hand side (when solving equation (3), xi and/t i on the 3B are known and when solving equation

(5) xi' Ai' 't'i and A* i on _B are known) involves the evaluation of regular integrals which is very easy

to perform accurately.
The fhst and second order sensitivity equations for boundary stresses, obtained by differentiating

equation(2) with respect to b, are given in [91.
Careful attention is paid in this work to the matter of modelling of corners(on 3B) with conforming

elements. Corners usually have jumps in x and A. The stress o may or may not be continuous at a

corner. In the example presented in this work, the stress components are continuous at corners. A
detailed discussion of this issure, including extra equations at comers, is available in[8,91.

3. Numerical implementation
3.1 Discretization of equations

The BEM equations (1) (for tractions and tangential displacement derivatives), equation (3) (for
their fh'st-order sensitivities) and equation (7) (for their second-order sensitivities) are discretized in the
usual way. The boundary _B is subdivided into piecewise quadratic, conforming boundary elements.

The variables _i and A i are assumed to be piecewise quadratic on these boundary elements. The

logarithmically singular kernels are integrated by using log-weighted Gaussian integration.
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3.2. Numerical Results

Two sample problems am solved by the current method. These examples are chosen with a view
of comparing DBEM numerical results with analytical solutions. All the numerical results discussed

below are with Poisson's ratio u = 0.3. The mechanical quantities %, A and ¢_and their first- and

second-order sensitivities are determined for each problem. Results for only the second-order
sensitivities arc presented in the currant paper. The first is plane stress problem. The second one is
plane strain. Figures 1-4 and Table 1 m taken from [9].

Example 1. The problem of a disk with external pressure (plane stress) is considered in this

example. Only a quarter of the disk needs to be modelled because of symmetry (figure 1). Here, a=4,
b=10, p = 1.0. The comers here arise due to the use of symmetry of the problem.They are comers
where the stresses are continuous. The inner radius a is the design variable in this problem. The well
known analytical solution for stress components in polar coordinates are given in [15]:

The analytical expression for second-order sensitivities of the stress components are not listed here
since they are very long.

A comparisons of analytical and numerical results for second-order stress sensitivities (on the line
DC in figure 1) is shown in figur, 2 The sensitivities arc in consistent units. A total of 44 quadratic
elements (11 elements are equally spaced on each segrnen0 arc used to obtain the numerical results. In
this figure, the smooth curve is the analytical solution. The numerical result, except for some small
oscillations in some cases, agrees well with the analytical solution over the entire region.

A convergence study for this problem, with different meshes, has been carded out. Table 1 shows

the results for Oall at point C + (figure 1) from different meshes. The number of quadratic elements n

in the table arc for the whole boundary (a quarter of the disk). Each of the four segments has n/4
elements. On a given segment, the elements are equally spaced. It should be noted that while the
results from the finer meshes are very good, convergence is not monotonic in this problem.

Example 2. The classical problem of a body with an elliptical hole is considered in this example.
Only a quarter of the ellipse needs to be modelled because of symmetry (figure 3). Here, a=2, b=l,

L=30, ¢t = 1.0. As in the previous example, this problem also has comers where the stress arc

continuous. The semi-major axis a is the design variable in this problem. The analytical solution for
the tangential stress on the ellipse (for an ellitical hole in an iniVmite plate) is [14]:

1 + 2q - q2 + 2cos(2¢)

1 + q2 + 2qcos(2¢)

where ¢ is the eccentric angle and q=(b-a)/(b+a). The angle ¢--0 at the point A in figure 3. Again, the

analytical expression for second-order sensitivity of the tangential stress is not listed here since it is
very long.

The mesh is exactly the same as that used in ref.[8]. A total of 54 quadratic elements (20 elements
are spaced at equal increments of the eccentric angle on the quarter ellipse, 12 elements are used on
AB, 14 on DE, 4 on BC and 4 on CD, respectively) arc used for the numerical results. The density of
elements on AB and ED is nonuniform, with small elements being placed near the points A and E,
respectively. A comparison of analytical and numerical results for the second sensitivity of the
tangential stress along the quarter ellipse is shown in figure 4. It is important to note that most authors
typically only present results at the stress concentration point A [14] while the global picture is
presented here. Also, it is important to bear in mind that these are second sensitivities which am
generally acknowledged to he difficult to obtain accurately in an efficient manner.
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A A

Mesh Analytical ¢_ 11 Numerical a it Error (%)

24 elements -0.09342267 -0.09988122 6.46

i

28 elements -0.09458990 -0.09988122 5.29

36 elements -0.09816499 -0.09988122 1.72

40 elements -0.1017195 -0.09988122 - 1.84

44 elements -0.1001325 -0.09988122 -0.25

Table 1. o'all at point C+ (in figure 1) from different meshes (example 1).
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ABSTRACT

The paper presents the theoretical bases and implementation techniques of
sensitivity analyses for efficient structural optimization of large structures,

based on finite element static and dynamic analysis methods. The

sensitivity analyses have been implemented in conjunction with two

methods for optimization, namely, the Mathematical Programming and

Optimality Criteria methods. The paper discusses the implementation of

the sensitivity analysis method into our in-house software package,

AutoDesign TM.

INTRODUCTION

The design process for aerospace structures involves many _malysis/design

iterations, exchanges of a large amount of data and multiple interactions on

decisions among a variety of technical disciplines. Typically, the design
process goes through several stages, ranging from early conceptual and

preliminary designs, through f'mite dement structural analyses, to final
design and optimization. For each stage and cycle of the analysis and

design, a large number of parameters are investigated and a large amount

of data is utilized. The design process can readily be formulated as a

problem of optimization, where either cost (weight) or a measure of

performance can be optimized while satisfying the specified constraints.

The objective of our efforts have been to try to use optimization
approaches for design of large, practical structures, based on the use of

f'mite element techniques for modeling the structures. Large, practical

structural optimization problems have hundreds or thousands of design
variables, hundreds or thousands of highly nonlinear constraints and

multiple local minima. For structural optimization, two different types of
methods have been proposed, viz, Mathematical Programming (MP)

methods (Ref. 2), and Optimality Criteria (OC) algorithms (Refs. 3,4).

Both MP and OC methods are iterative in nature and generate a sequence
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of design points in the space of the design variables converging to the
optimum solution.

Both of these methods involve gradients of objective and constraint
functions with respect to design variables. These gradients are called
sensitivity coefficients. For regular optimization problems, these
sensitivity coefficients can be evaluated directly since objective and
constraint functions are explicit functions of design variables. Once these
coefficients are known, they are used for determining the direction and size
of the next iterative step towards optimum design. For structural

optimization problems, the objective and constraint functions are implicit
functions of the design variables. This makes the evaluation of their
gradients significantly more difficult. The process of evaluating gradients
of objective and constraint functions is called sensitivity analysis---which
provides a bridge between optimization algorithms and finite element
analysis solutions. This paper discusses the various approaches for
sensitivity analyses and their implementation to large, practical structures.

SENSITIVITY ANALYSIS APPROACHES

There are three main approaches for sensitivity analyses l :

Virtual Load Approach
State Space Approach

Design Space Approach

These methods are briefly discussed below:

Virtual Load Approach

This approach was first used by Barnett and Hermann (Ref. 5) for statically
determinate trusses with a single displacement constraint. The approach
was later extended to statically indeterminate structures with multiple
deflection constraints, and has been extensively used with Optimality
Criteria methods (Refs. 3,4).

Since this approach is somewhat restricted in the sense that constraints must

be expressed in a specific form, it has been superseded by the more general

IThe finitedifferenceapproach isnot consideredherein,becauseofit'spotentialaccuracy

and reliabilityproblems.
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State Space and Design Space approaches, discussed below, from which the

virtual load approach can be derived.

State Space Approach

In this approach, the state variable vector is first treated as an independent

variable. An adjoint relationship is then introduced to express the effect of
a variation in the state variable vector in terms of the variation in the

design variable vector. In contrast to the virtual load approach, no special

functional form of constraints is assumed and a variational approach is

followed in deriving the design derivative vector.

Design Space Approach

This approach was first suggested by Fox (Ref. 6), and has been used by

several researchers. In this approach, the state variable is not assumed to

be independent, i.e., it is assumed to be a function of the design variable.

This makes the equations more difficult to solve because of additional

terms on the right hand side of the equations. The State Space approach is

more efficient than the Design Space approach, especially for large,

practical structures where the number of design variables is very large

compared to the number of constraints.

Thus, it was decided to use the State Space approach for this research and

development effort because of its generality and efficiency for large,

practical structures.

IMPLEMENTATION OF SENSITIVITY ANALYSIS APPROACH

The State Space sensitivity analysis approach was implemented in our finite

element analysis and design optimization software, AutoDesign TM (Ref. 1).

This approach was implemented for both the MP and OC methods, for the
truss, beam, membrane and plate/shell finite elements, for the
displacement, stress and frequency constraints. Implementation for the 3-D
solid (brick) elements and buckling constraints is in progress now. The
implementation for the MP and OC methods is discussed below:

Both optimization approaches, namely MP and OC approaches, require the
information on gradients of objective and constraint functions in addition
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to information on functions themselves. As mentioned earlier, the

constraint functions for structural design problems are usually functions of

displacements, stresses, and frequencies, which are implicit functions of

design variables. The gradients of constraint functions and objective
function (generally weight or cost of the structure to be designed) are
evaluated.

The objective function is usually given as:

n

W = E wiAibi
i=1

where wi is the specific weight or cost

Ai is the cross-sectional area of 1-D elements

such as truss, beam, etc., or planar area of
2-D elements,

bi is the third dimension, namely, the length
for 1-D elements or the thickness for 2-D

elements,

and n is the number of elements in the rmite

element model of the given structure.

For 1-D elements, Ai's are used as the design variables, where as for 2-D
elements, bi's are used as the design variables. Thus, gradients of the

objective function may be explicitly written as:

gWi ffiwibi

wiAi

for 1-D elements

for 2-D elements

The computation of the gradients of constraint functions requires the
evaluation of:

partial differential coefficients of constraint functions with respect to

design variables, say A

partial differential coefficients of load vectors with respect to design

variables, say B
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partial differential coefficients of stiffness matrix with respect to
design variables, say C

partial differential coefficients of constraint functions with respect to
displacements, sayD

a solution vector, 2., from K(b)2. =D. where K(b) is the stiffness
matrix

partial differential coefficients of eigenvalues with respect to the
design variables, say E, (used for frequency and buckling constraints
only)

For displacement constraints, A=0, E=0.

For stress constraints, E=0

For frequency and buckling constraints, A-- 0, 3,-- 0.

In general, evaluation of A, _ _ andE is straight forward since it can

easily be performed at element level. The evaluation of _requires special
attention to make the sensitivity analysis efficient, since all the optimization
algorithms require the information on constraints before they require the
information on the gradients of the constraint functions. The evaluation of

constraint functions requires the analysis of the finite element model of the
given structural problem.

Now, if D is introduced as a set of dummy loads for each constraint, then __
can be obtained as a set of resulting dummy displacements from the
analysis. Thus, for the optimization problem, the total number of load

cases are considered to be the actual number of load cases plus the number
of constraints in the design problem. Using this approach for multiple load
cases, the stiffness matrix, K(b), is required to be decomposed only once,
resulting in very efficient computation of t_.

This approach was very successful in improving the efficiency of the
sensitivity analyses implemented in our software AutoDesign TM, especially
for large, practical structures.
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CONCLUSIONS

The sensitivity analysis approaches for structural optimization utilizing
Mathematical Programming and Optimality Criteria methods were
discussed. The implementation of sensitivity analysis into AutoDesign TM,

our in-house f'mite element analysis and design optimization software, was

presented, especially considering application to large, practical structures.
The State Space sensitivity analysis approach was utilized, with certain
modifications, since it was found that this was the most suitable approach
for large, practical applications considering its generality and efficiency.
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Design Sensitivity Derivatives for lsoparametric Elements
by Analytical and Semi.analytical Approaches ...... ,., .-

Kenneth W. Zumwalt and Mohamed E. M. EI-Sayed

Abstract

This paper presents an analytical approach for incorporating design sensitivity calculations direcdy into the finite element
analysis. The formulation depends on the implicit differentiation approach and requires few additional calculations to obtain
the design sensitivity derivatives. In order to evaluate this approach, it is compared with the semi-analytical approach which is
based on commonly used finite difference formulations. Both approaches are implemented to calculate the design sensitivities
for continuum and structural isoparametric elements. To demonstrate the accuracy and robusmess of the developed analytical
approach compared to the semi-analytical approach some test cases using different structural and continuum element types are

1 Introduction

A popular method for caiculating sensitivity derivatives is the semi-analytical method which is based on the finite
difference evaluation of the derivatives of the finite element stiffness matrix. Using either a forward or backward difference
method to calculate the sensitivities of a structure for m design variables requires the evaluation of m+l sdffness matrices. In
addition to the time consideration, these methods are also sensitive to changes in step size,.

One alternative approach that is generating much interest is to calculate the derivatives analytically using the implicit
differentiation techniques from which the semi-analytical approach is obtained. The issue of which approach of obtaining
sensitivity data is best is a much debated subject. References [1-5] present comparisons of the various methods and their
relative merits. The early work done by Zienkiewicz and Campbell [6] and Ramakrislman and Francavilla [7] has been ref'med
and exmnded over the last one and a balf decades. More recent work by Wang, Sun, and Gallagher [8] in 1985 has provided
formulations employing an implicit differentiation approach for sensitivity analysis of 2-D and 3-D isoparamelric continuum
elements. Other work by Brocknum and Lung [9], 1988, presents an approach for the sensitivity analysis of Mindlin plate and
shell elements. The formulations presented by-pass the direct calculation of the stiffness matrix derivatives and thus yields a
significant improvement in efficiency.

The purpose of this papor is to present an efficient approach to obtain the sensitivity of isoparametric continuum and
structural elements to geometric properties and to compare it with the semi.analytical approach. The analytical formulation is
presented in a general manner and is applicable to any isoparametric dement type. Particular attention has been paid to the
reduction of the number of calculations requited and to the ease of implementation of the method into a general purpose finite
element code.

2 Formulation of Displacement Derivatives

Consider the general formulation of a linear static finite element problem whose equations are of the form

K u = v (1)
where K is the reduced global stiffness matrix for the structure, U is the vector of nodal displacements to be computed, and F
is the vector of applied nodal forces.

The derivative of equation (1) with respect to any design variable am is given by

rearranging yields

aK aU aF

aU aF _K
--= U O)

K _am _)a= _)a=

31C aS" aF
The unknown terms of equation (3) are --_ and___'. The derivative, _--_, represents the sensitivity of the applied forces to

the design variables. In many cases the applied forces ate independent of the design variables and this term is zero. This

will be made for the remainder of the development. (A treatment for the formulation of __ in non-zero casesassumption

such as the sensitivity of prcsstur¢ loading to shape variables is given in detail by Wang, Sun, and Gallagher in [8].) Thus
equationO) becomes
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au aK

K a_ a-_ U (4)

Notice that the left-hand side of equation (4) has the same coefficient matrix as equation (1). Since the decomposed form of
aU

this matrix is normally stored for the calculation of multiple load cases, it may be reused to obtain _ in an analogous

manner from the equation

aU =K"I- aK U Ia, (5)

i.e. treating the vector { - _ U } as a pseudo-load.

2.1 Displacement Derivative for Continuum Elements

Consider the formulation of the 2-D and 3-D isoparametric continuum elements. The stiffness matrix of the element is
given by

I'

K e = J_B T C B IJI d_ (6)

where _ is the domain of the element, B is the element strain-displacement matrix, C is the material properties matrix, and
IJl is the determinate of the Jacobian matrix. J, which represents the mapping of the global coordinates X.Y. and Z into the
element natural coordinates r, $, and t. For the continuum element, C is a function of the material properties only, i.e.
Young's modulus and Poisson's ratio. Therefore the derivatives of C with respect to the shape and sizing parameters are zero
and

L 11_K" rc)B T BT _llJld_}÷ BTc B d.
_"_"_= La-_:= c8+ Co,mJ a-.'-_ ('8

Multiplying both sides of equation (7) by the local displacement vector, u, as in [7,9], remits in the following

BIJI
--u C B u + B T C --uL B T

= JId_+ C B u _'_- df_a_ a.. J
(S)

but the su'ess vector, o, is given by

o=CBu (9)

substituting (9) into (8) and rearranging

_u= BT O_+O*lJI dtl
_am " o " aam

(lo)

whe_

Finally, by factoring IJl

when_

o_B
O* = C _ u (II)

,lam

_3Ke LL _-]''O*}" _To] 'Jldf}_u = BT{_ IJl' " (12)

tJl"• atj_l

aid IJl"

In order to evaluate equation (12) only two new quantities need be obtained, _ and -_-. As will be shown later,

• tjl'
significant savings are gained in the direct calculation of the quant,ty]_-. Since these derivatives are also required for the

structural elements, formulations for these terms will be given following their development. The remaining values will have
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been evaluated in the generation of the stiffness matrix. Also, the form of equation (10) is the same as the expression for the
stress vector. This will allow o_ to be evaluated by re-using the same stressrecovery routines.

2.2 Displacement Derivative for Structural Elements

The displacement derivatives for the shell and beam elements are derived in the same manner. The element stiffness
matrix for an isoparametric beam or shell following the formulation in Bathe [10] has the form

Ke = ;flBTQT Ca Q B IJldQ (13)

where Q is the matrix which transforms the element aligned material properties matrix C a into the global coordinate system.

Taking the derivative with respect to am

,J
+

'0BTQT B TQT O_lUidf2C a Q B + C a

1BT_QTc QB+BTQTCa_Q B IJId_
aa m a _a m

BTQTCaQ B _a_ dt'1

(14)

Using the same procedure as before we post multiply by u and simplify to obtain

where

and

_-U= BT[ ¢r UI _" _ O' IJId_

C=QTCaQ

 =2 sS u

(15)

(16)

(17)

2.3 Formulation of Component Derivatives

Recall from the general t'mite element formulation that the strain-displacement matrix, B, is constructed by rearranging
and adding the derivatives of the element interpolation functions N K with respect to the global coordinates X, Y, and Z in
accordance with the kinematic equations of the element formulation. For example, the three dimensional elasticity strain-
displacement matrix is defined as

Nit.x 0 0

0 Nk. v 0

0 0 Nk.Z (19)Bf[b i b 2 b n ] (18) b k=
"'" Nk, Y Nk. x 0

0 Nk.z Nk, Y

Nk2 " 0 Nk. x

where n is the number of element nodes.

With the isoparametric formulation, the interpolation functions N are expressed in terms of the element natural
coordinates r,s, and L Thus, the derivatives with respect to the global coordinates are evaluated by

NkZJ [
(20)
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where J -1 is the inverse Jacobian. Taking the derivative with respect to the design variable am yields

_--_N,.__=_ i N,, +j-' a N,..p (2D

!

Since j-I is not obtained in explicit form, an expression for-_-_ cannot be obtained directly. By using the identity

the expression for--_ is found to be

Thus equation (21) becomes

_J + J-la_-_ = o f22)

_j-1_ _£I fl-_-.-j-I

N,..,l f_,.,l
Nk.v = _j-I _ °am ) J

_am Nk,Z L Nk, ' [Nk. ' J

(23)

(24)

Substituting equation (20) into (24)

aa. l Nk_- = -Ft [ Nk_ Nk,_

Equation(25)containstwo dexivativcsthatmust beevaluamd.Firstconsider_--_'.TheJacoblanisobtainedfrom thematrix

multiplication

,,)
Applying the chain rule, the derivative is

fNk"}
8a= [ Ni._

rN,,}
_,,z,}+_N,]ix,_:,z,)

OaI [ Nk_

Substitutingequation(27)into(25)

r Nt.ffi II't,+. "} IN.. {X, Y, Z,

N|.¢

Nt•

Ni

(2S)

In equation (28), if the element interpolation functions are dependant on the geomeu'ic parameters as is the case for the
structural elements presented, then all terms must be evaluated. However, if the element interpolation functions are not
dependant on the geometric properties, then equation (28) simplifies to a form equivalent to that p_ted in [9].

f't- f +t-- ,., _--{, v, z,} N,+,a..I _=-N_" a x
LN_.zJ N_.z N,._

(29)
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Thescalar,_t_ be generateddirectlywithoutevaluating_ explicitly.The derivativeof the determinateof the
fJI CSI"I e31m

Jacobian may be writtenas

0u__L0J k
_am- aJjk Sam (30)

where the repeated indices follow the conventional summation rule. By performing a term by team expansion of_ it can be

demonswated that

Substituting(31)intoequation (30)

Rearranging yields

_IJl j-I
kjm (32)

u,"Jjk 03)

This result is significant since this product is evaluated as a part of equations (28) or (29) and thus equation (33) is evaluated
with only the two or three additions necessary to compute the trace.

3 Numerical Considerations for Analytical and Semi-Analytical Approaches

Additions

Multiplications

0 I00000 200000

Figure l--Comparison of Number of Operations Performed for 20-noded Solid Element.

From an implementation standpoint, the preceding approach for obtaining sensitivity derivatives is considerably more
complex than the more conventional semi.analytical approach currently in wide use. As a result of this complexity, the
analytical approach is more element dependant and requires the addition of more program statements to the basic finite
element code. The increased efficiency and accuracy, however, more than offset the added programing effort.

Consider the calculation of the pseudo-load vector for a single 3-D solid elemenL The approach presented evaluates the
pseudo-load vector with (216n + 486) multiplications and (216n + 414) additions, where n is the number of degrees of
freedom in the elemenL Using the conventional semi.analytical method, where the stiffness matrix derivative in equation (5)
is calculated directly by either a forward or backward difference method, assembled and then post-multiplied by the global

displacement vector, requires (55n 2 + 324n + 351) multiplications and (55n 2 + 324n + 321) additions. This can be improved
considerably by using equation (10) where the derivatives of the strain-displacement and Jacobian matrices are calculated via
finite difference. This reduces the number of operations to (270n + 811) multiplications and (270n + 513) additions. This
approach will be referred to as the modified semi-analytical approach to differentiate it from the more conventional approach.
Figure 1 shows the total number of calculations involved for a 20-noded solid element for each of these approaches.

4 Implementation and Test Cases

To study the accuracy and efficiency of the analytical approach compared with the semi-analytical approach, the
algorithms were implemented and several test problems analyzed. Test cases were chosen with several goals in mind. The
main criteria was that the structures had easily verifiable sensitivity data. A second criteria for the test cases was that the
structures could reasonably be modeled with several different types of elements.
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4.1 Test Problem 1: Cantilever Beam

A simple cantilever beam is considered as an
example to compare the accuracy of the two
approaches for obtaining design sensitivities. The
geometry, loading and material propertiesof the
beam modeledare shown in figure 2. The 100 lb.
lind is applied peraboliea/]y to the right _ of the
beam. The design variable, a, is chosen to be the
height of the beam. It is desired to calculate the
sensitivity of the vertical displacement, v, of the
beam at point A.

E=I.OxlO psi
v =0.3

100 lb.

m ,1"1

Figure 2--Cantilever Beam.

The cantilever beam is amdeled by cubic beam, parabolic plane stress, parabolic shell and parabolic solid isoparametric
elements. Pignre 3 shows the displacement results graphically. Table I summarizes the sensitivity results obtained with the
analytical approach for various elements and with the semi-analytical approach for the plane stress model. The last two
columns of the table show the values obtained using different incrcmenm for the forward difference. This demonsuates the
major drawback of using t'mitedifference based derivatives -- choosing the proper step size. If the step size is too large or too
small, then e_Torsw/ll result. The range of acceptable step sizes varies form problem to problem, so that there will always be
some doubt about the accuracy of these derivatives. In this example, semi-analytical approach converged to the value obtained
by the analyl/cal approach for the smaller step size, but there is considerable error with the larger step size. As can be seen in
figure 4 the values for the sensitively of the vertical displacement at point A converge rapidly as the mesh density increases
and are very close for all of the element formulations with the exception of the semi-analytical approach using A=.O01.

x 10 .2 x 10 .2

a -1.2 .. 3.8

-1.4 _ 3.6
$"_ 3.4

-1.6 - 13 Shell x S.A. A=.001a
-x.s _ 3a A Solid + SA.A=.O000X

_" -2.0 3.0 , ,-- ,

Ix2 I15 Ixl0 I12 I15 IxI0
Mesh Size Mesh Size

Figure 3---Accuracy of Displacement forBeam. Figure 4--Accuracy of Sensitivity for Beam

 aesh

I12
115
Ixl0
theory

Beam ' Shill' Sofid ' Plane Stress
' 'Analytical

3.766 3A56 3.531 3.456
3.654 3.685 3.654
3.716 3.723 3.716

3.735

Table 1--Accuracy of Displacement Sensitivity for Cantilever Beam.

$.A. A=.001 S.A. ,_=.0000!
3A53 3.456
3.649 3.653
3.640 3.716

4.2 Test Problem 2: Two Dimensional Plate

A simple two-dimensional plate is considered as an example to
compare the relative efficiency of the analytical approach and the semi-
analytical approach. The geometry of the plate, loading and material
properties are shown in Figure 5. The external loading of 100 lb. is
applied parabolieally to the right side. The design variable, a, was chosen
in this case to be the vertical dimension of the plate. The vertical
displacement and sensitivity at point A are calculated using parabolic
isoImrmnetric plane stress, shell and solid elements.

Numer/ea/results for the displacement and sensitivity at point A/n
the vertical direction for six mesh densities are given in Table 2. Columns
2 through 4 represent the displacement at A for the different finite element
models used. Columns 5 through 8 show the sensitivity of the vertical
displacement at point A calcula_/by the different finite element models
and approaches.Figure6 showsthedisplacementresults.Figure7 shows

1_011

Vm*qq

P

A m r
It i •

Figure S--Plate.

'.,'
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the sensitivity results of Table 2. Again, the results obtained by the analytical approach converged well. Also, notice that ir
this ease the step size A=.001 was sufficient to provide acceptable results.

The test cases were run on a Macintosh II personal computer. Figure 8 shows the execution times of each approach for
plane stress analysis of the plate. As expected the best performance was obtained in all cases using the analytical approach
The modified semi-analytical approach was a close second, but always slightly slower.

Mesh Shell

1 x 1 -2.496
2 x 2 -2.761
3 x 3 -2.825
4 x 4 -2.837
5 x 5 -2.849
6 x 6 -2.856

Solid Plane Stress Shell Solid Plane Stress'

-2.496 -2.408
-2.761 -2.697
-2.825 -2.773
-2.837 -2.879
-2.849 -2.816
-2.856 -2.828

Anal_,tical S.A. A=.001
4.669 '4.433 4.669 4.845
5.380 5.178 5.380 5.173
5.487 5.339 5.487 5.381
5.490 5.608 5.490 5.409
5.494 5.400 5.494 5.436
5.495 5.318 5.495 5.456

Table 2--Accuracy ofDisplacement Sensitivity for Thin Plate.

x 10 "5 x 10 "6

_ x $.A.A=.001-3.0 , , , , , , 4.0
lxl 2x2 3x3 4x4 5x5 6x6 lxl 2x2 3x3 4x4 5x5 6x6

Mesh Size Mesh Size

Figure 6--Accuracy of Displacement for Plate. Figure 7--Accuracy of Sensitivity for Plate

3x3
4x4

• _,_
[] Modified _i-Anaa_e_
[] S,_-An,a#_

6x6

0 5 10 15 20 25 30 35 40 45 50 55
Execution Time (see)

Figure 8----Execution Time for Plate Sensitivity Analysis

5 Conclusions

An analytical method was developed to incorporate design sensitivity derivatives into the finite element analysis. The
sensitivity derivatives are obtained by implicit differentiation for the isoparametric element family of structural and continuum
elements. The formulation allows for the calculation of any geometric sensitivity parameters of the element and can be
implemented with relative ease since most of the required information is obtained in the course of the finite element solution.

In order to evaluate the merits of this approach, a comparison was made to the semi-analytical approach. The numerical
test cases conducted show that the analytical approach is the more desirable approach for two reasons. It does not require the
user to provide a proper step size as does the finite difference based semi-analytical approach and it is more efficient with
respect to time.
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Introduction

To optimize the performance of any system, the sensitivity derivatives of
the system's output variables with respect to its input variables must be readily
available. It is also desirable that these derivatives be inexpensive to calculate
as the optimization process requires many evaluations of the output variables
and their derivatives. Optimization methods that have been developed for use
in automated structural design programs may not be extended for use in
integrated multidisciplinary design programs until adequate means of
calculating accurate sensitivity derivatives of complex, internally coupled
systems have been developed. Until the development of the Global Sensitivity
Equations (GSE) (Ref. 1), the only method of determining the sensitivity
derivatives of coupled systems has been by using finite differences. Analytical
or semi-analytical derivatives do not exist as there is no analytical solution to
the coupled problem. Also, difficulties arise because the finite difference
method is expensive as the system has to iterate to a converged solution for
each incremental input variable. The method may not be accurate, and the
choice of the input variable increment may cause the difference in the output
variable to be insignificant compared to computer numerical error if the choice
is too small, or the process may not predict the true value of the output variable
if the increment is too large.

The GSE allow the system's sensitivity derivatives to be calculated as
functions of the component subsystem's (local) sensitivity derivatives. These
local sensitivity derivatives are calculated from specifically decoupled
subsystems, whereas the GSE account for total system coupling. Since the
subsystems are decoupled, it may be possible for the local derivatives to be
calculated by analytical or semi-analytical methods, which generally reduce
cost and improve accuracy. Several academic problems have been solved
using GSE and have demonstrated encouraging results (Refs. 2, 3).

Approach

The formulation of the GSE (Ref. 1) is from a mathematical prospective.
This paper will use an alternative formulation from an engineering prospective
to develop the equations. This formulation will proceed in three steps: (1) Exact
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problem definition; (2) Determination of required available information; and (3)
Problem solution. Experience has demonstrated that once the problem is
adequately defined and the known information is reduced to only that which is
required, the solution is typically simplified. This simplification does exist for the
development of the GSE.

GSE Formulation

Ste0 1 ; Problem Statement. In structural optimization approximate linear
analyses using first order Taylor Series expansions to predict new behavior
responses have been used successfully in various complex developments
(Refs. 4, 5). It is assumed that this method can be extended for use in predicting
the responses of a complex, internally coupled system in the region about a
converged solution.

Figure 1 depicts the typical internal behavior of a system composed of

three subsystems. The local inputs, Yi, of a subsystem are subsets of and may

be any, all, or none of the system inputs, X. During the convergence process,

the subsystems use the current values of the other subsystem responses, Y'i,as

inputs. When the process has converged, the system output responses, Y, are

a union of subsets of the subsystem responses, Yi.

New values of system behavior responses are predicted by

(1)

The information required to predict the new values of the responses is the total
differentials of the coupled system (Fig. 1),

°_Yi X.
dYi = j_ _-_j cl , (2)

As the input differentials, dXj, are chosen by some method, i.e., formal
optimization, etc., the unknowns are the system derivatives, o_Yi_Xj. The stated
problem is to determine the system derivatives, c3Yi/c3Xj.

The problem statement places two stringent assumptions on the solution.
The first is that the system and its derivatives, and therefore, the subsystems,
are linear. The second is that the solution process must start from a converged
solution.

Steo 2: Known Information. Figure 2 represents the decoupled system at a
converged solution. The system may be decoupled since all of the inputs and
outputs are known at the converged point. The total differentials of each
subsystem, ui, may be written as
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aUl

a_l aY2 ay-'3

.au2 au2d_3d_2=au2d_2 _1 *

au3_3 au..__sd_l +au3d_2

(3)

The differentials of the local input variables, cl'}j, and the local derivatives, aujaE i

and auVo_k, are known. The local input differentials correspond to the chosen
system input differentials while the local derivatives are calculated. The local
derivatives may be calculated by analytical, semi-analytical, or finite difference
methods using the analysis capabilities of the decoupled subsystems. The

unknowns are the total differentials of the output responses, dY'i.

SteD 3: Problem Solution. The set of equations (3) are the Global Sensitivity
Equations. Rearranging and writing in convenient matrix notation gives the
form presented in Reference 1, which is

I _2aUl _3aUl dyl aUla___l.0 0 ( d_l

P

au3 au3

_, _ _ _ o o au_ _a_3

(4)

As each entry in the local input vector, Ej, corresponds to an entry in the system

input vector, X, equation (4) may be rewritten as

aul au__.L
' _ ay-_

au2 au2

c)U3 aU3

d_ =

d_

au_ aul aul

NN...
ohU2 au2 o_u2

au_ au3 au_

dXl

dX_

dXn

(s)
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By inverting equation (5), the coefficients for the system input differentials, dX,
are determined. The solution is completed by choosing the desired responses

for d'_ from the vectors of subsystem outputs, d_i.

Comments on the GSE

Generally, the right hand side matrix will not be fully populated as each
system input variable will not be a local input variable for all subsystems.

The left hand side matrix is always a square matrix and invertible.
Numerical problems may exist, however. III conditioning may exist if the values
of the local derivatives differ by several orders of magnitude. III conditioning
problems may be alleviated by scaling the derivatives to values close to unity
before inverting and unscaling afterwards.

Examples

The full paper will contain several example problems. These problems
will demonstrate several types of internal coupling and the resulting forms of the
GSE.
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Abstract - Recent results from sensitivity analysis for strain energy with anisotropic elasticity are applied to

thickness and orientational design of laminated membranes. Primarily the first order gradients of the total

elastic energy are used in an optimality criteria based method. This traditional method is shown to give slow

convergence with respect to design parameters, although the convergence of strain energy is very good. To

get a deeper insight into this rather general characteristic, second order derivatives are included and it is

shown how they can be obtained by first order sensitivity analysis. Examples of only thickness design, only

orientational design and combined thickness--orientational design will be presented.

I.INTRODUCTION

Design with advanced materials,such as anisotropiclaminates,is a challengingarea for optimization. We

shall here restrictourselves to plane problems, as in the early work of BANICHUK [1] (which includes

further early references).Recent work by the author [2],[3]was conducted independently and the

formulationsare ratherparallel.Similar researchiscarriedout by SACCHI LANDRIANI & ROVATI [4].In

the presentpaper we combine theseorientationaloptimizationswith thicknessoptimization.The furthergoal

isto get a deeper insightinto the redesignprocedures based on optimalitycriteria.

The sensitivity analysis that proves local gradient determination relative to a fixed strain field is presented.

The physical understanding of these results have many aspects outside the scope of the present paper. The

early paper by MASUR [5] includes valuable information about this sensitivity analysis.

For orthotropic materials, a single optimization parameter controls the orientational design. This parameter

includes information about material as well as about the state of strain. It is used as an optimization
criterion and in principle, the optimization procedure is a non-gradient technique. In this way local extrema
are avoided.

When the principal axes of an orthotropic material are equal to, say, the principal strain axes, it follows
directly that principal stress axes also equal those of material and strain. However, optimal orientations exist

for which the principal axes of material differ from those of the principal strains. Even for this case it is

proved in [3] that the principal axes of stress equal those of the principal strains.

The sensitivity analysis for thickness change is extended to include the mutual sensitivities, i.e. change in

energy density with respect thickness changes not at the same point. A symmetry relation is proven.

A number of actual examples will be shown and discussed, but are not included in this short pre--C, onference

paper.

2.SENSITIVITY ANALYSIS FOR ENERGY IN NON--LINEAR ELASTICITY

Let us startwith the work equation

W + W C = U + UC (2.1)

Pre--Conference paper for the Symposium: On Recent Advances in

Optimization, San Francisco, California, 24.--26.9.1990.
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where W,W C are physical and complimentary work of the external forces, and U,U C are physical and

complementary elastic energy, also named strain and stress energy, respectively.

The work equation (2.1) holds for any design h and therefore for the total differential quotient wrt. h

dW dW C dU dU C
d--F+ d--F - _-_ + d-F- (2.2)

Now in the same way as h represents the design field generally, e represent_ the strain field and ¢

represents the stress field. Remembering that as a function of h,e we have W,U , while the complementary
quantities WC,U C are functions of h,G. Then we get (2.2) more detailed by

8W 8W 8_ _vC 8W c8¢ 8U 8U 8_ 8Uc 8U c 8¢
a-F+FF_+a-'K-+a, ah=FK +_'F_+a-_--+a, ah

The principles of virtual work which hold for solids/structures in equilibrium are

(2.3)

8U
= (2.4)O_ O_

for the physical quantities with strain variation and for the complimentary quantities with stress variation
we have

8wC 8uC
8= = _r (2.5)

Inserting (2.4) and (2.5) in (2.3) we get

FK-- a--K- = - (2.6)

and for design independent loads

fixed fixed
stresses strains

(2.7)

as stated by MASUR [5]. Note that the only a_sumption behind this is the design independent loads
_V / ah = o, 8WC/ Sh= o.

To get further into a physical interpretation of (SU/Sh)fixed strains (and by (2.7) of
(aUC/Sh)fixed stresses) we need the relation between external work W and strain energy U . Let us
assume that this relation is given by the constant e

W -'cU

For linear elasticity and de_i loads we have e = 2 and in general we will have c > 1 .

(2.8)

Parallel to the analysis from (2.1) to (2.3) we based on (2.8) get

+ _-_-_= c_+ c_-_

thatfordesignindependentloa_k o_N/Yn ---0 with virtualwork (2.4)gives

(2.9)

and thereby

8W#e 8U'Se c
e _h - _" _ = I-< @h (2.10)

dU 8(/ 8U #e 1 rSU1

d-'h"= _ + _" _ = _ {_"h'Jfixed
strains

Note, in this important result that with c > I we have dLq'erent signs for dU/dh
(aU/o_)fixed strains •
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Forthe case of linear elasticity and dead loads we have with c = 2 sad adding (2.7)

_'-- -- fixed - fixed
strains stresses

For the case of non--line&r elasticity by

and still dead loads (W C = 0) we get

_- E_n

c -- l+n and thereby

(2.12)

(2.z3)

dU IfOU] 11_gU 1
_" - - nL_'h'J fixed - nL_'h'J fixed

strains stresses
(2.14)

3. OPTIMALITY CRITERIA

We want to minimize the elastic strain energy U

Minimize U = E U (3.1)
e=l

which is obtained as the sum of the element energies Ue for e-1,2 .... ,N. Two groups of design
parameters are considered. The material orientations 0e for e- 1,2,...,N assumed constant in each

element, and the element thicknesses te for e - 1,2,...,N , also constant in each element. The constraint of

our optimization problem is a given volume V , i.e., by summation over element volumes Ve for e -

1,2 .... ,N
N

V--V= E Ve-V=O (3.2)
e'-I

The gradientsof volume are easilyobtained for thicknesses

_te _te te
(3.3)

and volume do not depend on material orientation

o_

eta = 0 (3.4)

The gradients of elastic strain energy is simplified by the results of section two and thereby localized

OU _0____ fO(u¢ V_)]
Oh'-"e= -- LOheJfixed strains = -- L Ohe J fixed strains

(3.S)

valid for he = #e as well as for he = te • The strain energy density Ue is introduced by Ue = Ue Ve =
Ue ae te with ae for element area.

With fLxed strains, the thickness has no influence on the strain energy density Ue and thus with (3.3) and

(3.5), we directly get
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OU =
Ote te te

(3.e)

With respect to material orientation the gradient is more complicated, because even with fixed strains will

the energy densit_ Ue depen_ on 0e • A rather simple formula is derived in [2], in terms of principal
strains q, ell t_l(iI > I¢Iii) --angle tp from direction of eI to principal material direction --and
material parameters C2 and C3

_ea_U = V(e[ -- ql) 2 sin2¢ C2 El -- ell •
(3.T)

With the gradients determined by (3.3), (3.4), (3.6) and (3.7) we can now formulate optimality criteria. For

the thickness opt'mdsstion the well-known criterion of proportional gradients gives --ueVe/te ~ Ve/te

which means constant energy density, equal to the mean strain energy density

See also the early paper by MASUR [5] for this optimality criterion.

For the _ orientstkm opt_n we have an unconstrained problem, and thus from (3.7) the

optimality criterion

sin2_b[C2 q "I" q1+4C3cos2¢] --0 forall •¢I -- ¢II •
(3.0)

How is a thickness distribution that fulfdl (3.8) obtained? We shall discuss a practical procedure, cf.
ROZVANY [6], which is based on a number of approximations. Firstly, we neglect the mutual influences
from dement to element, i.e. each element is redesigned independently (but simultaneously)

(te)next = t e + (Ate) (3.10)

Secondly, the optimal mean energy density _ is taken as the present mean energy density u . Thirdly, the

element energy Ue is assumed constant through the change Ate and then from (3.8) we get

U¢
Ve(1 -i- Atejte) --- _ ' i.e.

(3.zz)

At e -- te(u e -- U)/U, Or (te)next ----te Ue/U

It is natural to ask, why the gradient of element energy is not taken into account

(Ue)aext "- Ue -l- o_e Ate (3.12)
0re

hut this is explained by the fact that although 0U/St e is known by (3.6) the gradient of the local energy

(the element strain energy)

I ] 1"SUe1 a¢ (3.13)au,_ aue + j8te-- Ore fixed strain

is more difficult to determine. The two terms in (3.13) have different sQpm, sad also the other neglected

terms 8Uef_i for • _, i may be of the same order. Although the procedure (3.11) mostly work rather
s,_tisfactory, we shall extend our analysis to the coupled problem.
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4. MUTUAL SENSITIVITIES

The redesign procedure by (3.11) neglect the mutual sensitivities, i.e. the change in element energy due to

change in the thickness of the other elements. These sensitivities can be calculated by classical sensitivity
analysis. Assume the analysis is related to a finite element model

[Sl{D} = {A} (4.1)

where {A} are the given nodal actions, {D} the resulting nodal displacements and iS] = _ [Se] the

system stiffness matrix accumulated over the element stiffness matrices [Se] for • = 1,2,...,N .

Let he be an element design parameter without influence on {A} , then we get

iS] a{D} 0__ (D} = {Pc}
_e =--0he

(4.2)

where the right---hand side {Pe} is a pseudo load, equivalent to design change. Knowing 0{D}/0he it k

straight forward to calculate _Ui/cghe. Generally the computational efforts correspond to one additional

load for each design parameter.

Then with all the gradients a_Ue/_i available we can formulate a procedure for simultaneously redesign of
all element thicknesses

{t)next -- {t) + {At} (4.3)

that takes the mutual sensitivities into account. In agreement with the optimality criteria (3.8) we change

towards equal energy density u in all elements. Formulated in terms of strain energy per area we want

or in matrix notation

with solution

N

uete + Y.
i=1

_(uete) Ati = u(te + Ate)
0ti

<,,,,=[cv<.,,l-

(4.4)

(4.5)

(4.8)

The gradient matrix [V(ut)] consists of the quantities _uete)/_i •

Note that with the assumption of fixed strain field, the strain energy per area is unchanged, i.e. rV(ue)] -

[0] and we get the simple redesign formula (3.11). This procedure can therefore be evaluated by comparing

the numerical values in the gradient matrix [V(ut)] with _, especially the off-diagonal values.

An alternative formulation would be Newton--Raphson iterations directly on energy densities

or in matrix notation

N

(ue-_) + _ u_Ati_0
i-1 _i

(4.7)

= - {u) (4.8)

Here, the gradient matrix [Vu] constitutes

multiply every row • with area ae and get

OqUe/_i . An interesting formulation is obtained, when we
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[V(ua)]{at} =

The present matrix is now symmetric, which to the knowledge of the

Remembering that Ueae = Ue/te we prove this directly from (3.6)

= _ a(ue/t,)
ateati ati

a(ui/ti)
#ti09te =-- ate

Therefore, as _U/(ate_ti) = _2U/(ati_te) we have

[V(ua)]T= [V(ua)]

author is

(4.9)

not well--known.

(4.10)

(4.I1)

5. CONCLUSION

Optimization problems with a single active constraint (thickness design with given volume) or without

constraints (orientational design) can be solved by simple iterative redesigns based on derived optimality
criteria.

For the thickness design this redesign procedure is studied by deriving higher order sensitivities. Second

order sensitivities of total strain energy are evaluated as first order sensitivities of local (element) specific
strain energy.

For the orientational design a normal gradient technique will generally not work, because many local optima
exist. Therefore, design changes in each redesign must be based on a criterion that identifies the orientation

which gives global minimum of strain energy.

For optimal material orientation we get coinciding principal stresses and strain directions. This is used as a
"test optimality criterion", and can also be utilized during iteration.

Optimization of thickness distribution for anisotropic materials (and even a class of non-linearity too) is no

more complicated than with simple linear isotropic materials. The criterion of uniform energy density still
holds.
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Absfract: Linearly elastic fiber reinforced composite discs and laminates in plane stress with variable local orientation and

concentration of one or two fiber fields embedded ia the matrix material, are considered. The thickness and the domain of
the discs or laminates are assumed to be given, together with prescribed boundary conditions and in-plane loading along
the edge.

The problem under study consists in determining throughout the structural domain the optimum orientations and
concentrations of the fiber fields in such a way as to maximize the integral stiffness of the composite disc or laminate under
the given loading. MinimLzati_n of the integral stiffness con also be carried out. The optimizatLon is performed subject to a
prescribed bound on the total cost or weight of the composite that for given unit cost factors or specific weights determines
the amounts of liber and matrix materials in the structure. Examples are presented by the end of the paper.

1. Introduction

This paper gives a brief account of recent research reported by the first author in [1] on optimization of fiber orientation and
concentration in composite discs and laminates. The research is inspired by the initial work in the field by Rasmussen [2]
(reported in Danish, account in English available in Niordson and Olhoff [3]) and by important recent developments of
Pedersen [4-8]. Problems concerning optimization of fiber orientation have earlier been considered by Banichuk [9], and we
refer to Sacchi Landriani and Rovati [10] for other current research activities in the area.

The motivation for the work described in this paper is that fiber reinforced composite materials are ideal for structural
applications, where high stiffness and strength are requked at low weight. Aircraft and spacecraft are typicaL weight sensitive
structures, in which composite materials are cost effective. To obtain the full advantage of the fiber reinforcement, fibers must
be distributed and oriented optimally with respect to the actual strain field. Hence, transfer of fiber material from initially lowly
stressed parts of the body in order to strengthen the parts and directions that are subjected to large internal forces is the general
idea of optimization of composite structures.

Thus, relative to refs. [4-10], we in this paper both use fiber orientations and -concentrations as design variables, Based
on the strain field determined by finite element analysis we construct an iterative two-level optimization procedure that
consists of an optimality criterion approach as described by Pedersen [4,5,8], and a mathematical programming technique.
Here,

in the first level, the local fiber orientations corresponding to a global optimum are determined using an optimality
criterion for these design variables, and

in the second level, the lOCaL]distribution of the amounts of fiber and matrix materials available within a bound on totaL
cost or weight, are determined on the basis of analytically derived design sensitivities. [n this level, the optimization
is can'ied out by means of a dual mathematical programming technique as implemented in the optimizer CONI.JN by
Heury and Braibant [I1].

2. Objective function

The integral stiffness of the composite structure will be selected as the objective function for optimization, and we will be
primarily interested in maximization. The structure of maximum integral stiffness will be defined as the smacmm that has
minimum total elastic strain energy subject to a given loading.

We shall assume that our composite disc or laminate can be locally considered as a macroscopically homogeneous,
orthotropic materiaL. The strain energy density u will then be given by the following formula for an orthorropic Laminate, see
e.g. Jones [12_,
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where (_} = (_.;:=;2t.} is the mmn vector, and [A] the _ffnm marx.
We nowusewe.-known formulasto expressth©strain compon_t in (1) by the principal strains,e, and%, and the angle
from the directioncorrespondingto thenumericallylargestprincipalstrain z, ( l z,[ ), l _al ) to the directionassociatedwith

the largest sti_ess A. (A,iu_, scc Fig. 1.

\\ / """'"" ,,

Fig. I. Definition of the angles _p, 6 and 11for mutual rotations of the finite element coordinate system Xt, X_, the principal
strain coord/nate system x,, x, and the material coordinate system YI,Y2

Since in the finite element analysis the structure is discretized into n elements with individual constant laminate stiffness
matrices (A], the total elastic slrain energy U for the structure is then given by

a z I .(Iz)cos21_j

where S, is the area of the i-th finite element.

3. Design model and cost function

The fiber orientation and concentration within each element of the discretized structure are adopted as design variables.
Our design model is nmdo up of elements that consist of 3 fiber plies with the fiber orientations O, 0+90" and O, and the

volumetric fiber concenlrations Va, Vm and Va , see Fig. 2.

05h va,o

0.s v., e

Fil. 2. Design variables of an element consisting of 3 orthogonal plies

Introducing the variable ratio 8 between the thickness of fiber ply 2 (in the middle) and the tow thickness h of the element,
we get the symmetric and onhotrupic laminate shown in Fig. 2, which can have both unidirectional (8=0 v 8=1) and cross ply
(0<8<1) character.

We have now defined 4 design variables for each element: Vs. Va, Oand a. For these design var/ables, we prescribe lowe_
and upper constraint values as follows:
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Os(Vtz)l-<_Tt , Os(Vtzz)_Tt , O_a_180 ° , 0_$L_I

(3)
I-i .....n

Here the given upper constraint value V, for the fiber concentrations depends on how densely the fibers can be packed in
the matrix material in view of their cro_s-sectional shape.

We finally formulate a constraint that enforces the total cost or weight C of the structure to be less than or equal to a given
upper hound R if stil_ne_ maximization is co_idered,

rl

(4)

Here c, and c,, are given so-called "unit cost factors". They denote the cost per unit volume of the fiber and matrix materials,
respectively, for a cost constrained problem, whereas c, and c, denote the specific weights of the fiber and matrix materials,
respectively, if the total weight is constrained.

4. Stiffness matrix in terms of design variables

The fiber and matrix materials will be assumed to be linearly elastic with given Young's moduli E, and E, and Poisson's ratios
v, and v.. We now adopt the "rule of matures', see e.g. Jones [I2], for determining the components of the tensor of elasticity
for a lamina in our design model

EE
It a

E. t- (1-Vt_)E + Vit Eit , E j- (1-VIt_)E + VtjEa

j-z, zz (5)
GG

m It

vt__ - (l-Vitj)vs+ V v , G -t,j e LTJ (I-Vzj)Gf+ VItjG a

Here indexes L and T refer to the longitudinal and transverse directions of the fibers, respectively, and the index j will here
and in the following take on the "values" I and II that refer to the fiber layers 1 and 2, respectively.

For a composite element as shown in Fig. 2 that consists of 3 lamina with the thicknesses 0.5h13, h(l-B) and 0.5b_ and the
fiber orientations 8, 0+90 ° and 8, we can easily obtain the laminate stiffness matrix [A] by means of a formula given in Tsai
& Pagano [13]. We gel

[A] - 8.o! [ s 8 +oat s -cos2Q-1;stn20/21.1/2 J

cos4#- i ; - s in++#/+- 0
+%E -cos_#-z/2J ,t s -z/2 (6)

EL:th(l'f)

8a
ozz 8 0

8
S !] [oo,:,.,:o:,,n2+21+% z t -cos2_- 1 ; s t n2_t/21

. t/2 j

+ [olol]"3zz L s cosa_-i : -stn_,_/+o _ 0-cosa÷-x/2J , z t s - 1/2

where e denotes the angle defining the fiber orientation, see Fig. 1, and the angle _--8+90" defines the orthogonal di_ction.

The parameters c_,,a_,...,ct,, in (6) can all be expressed explicitly in terms of the fiber concentrations Vq, j = 1,1I, and the
given elastic conslants of the fiber and matrix materials, i.e.,

o=j - ==j(Vtz,Vtzt,Eit,E ,v_,v ) m - 0,2,3,_ J - I,II
('D
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For reasons of brevity, the reader is referred to [I] for the specific expressions.

5. Optimization technique

The optimization problem is solved iterativcly via a two-level procedure of redesign. The stress/strain field is initially
dezenninad by finite element analysis using MODULEP [14] in each loop of redesign, and improved orientations of the fibers
arc subsequently determined by means of an optimality criterion in the first level of redesign. In the second level of redesign
the distributions of fibem are improved via a method of sensitivity analysis and mathematical programming.

A notable [_ture of the present problem is that a usual gradient method may fail in determining the optimal orientation of
the fibers, because local optima normaUy exist, see e.g. Fig. 5.2 in [8]. To circumvent this inherent difficulty in the first level
of redesign we follow Pedersen [4,8] and perform an analytical investigation of the first and second derivative in order to
determine the giobel optimum of thc total strain energy with respect to fiber orientation. From (2) and (6) we get the following
expression for Cust order sensitivities, cL Pedersen [4,8],

--dU . --dU " L Jr4Aa3((z-, )Zsin2_(-_+cos2_)s] l , _-1,...,
n

d# x d_t (8)

where A is a constant, and the pararaete_ y, is defined by

°_z l+exx/Cxl
, f-z ..... n (9)

The material parameters oh and _ are those appearing in (6). The results of a complete investigation of the extrema of U with
respect to the key parameters _p, as and y are summarized in a table in re_. [I],[4] and [8].

As described in [I],[4] and [8], the fiber orientation 0, for each element can be determined by means of this table and the
formula

#_ " ¢L + o_ , I-I ..... n (10)

where q, is the angle of rotation of the principal strain or stress direction of the i-th element relative to the XI axis of the
finite element coordinate system, sec Fig. 1.

The second stage in the loop of redesign consists in determining an improved distribution of the amount of fiber material,
i.e., to obtain improved values of the design variables lip ('Ve)_ and (Vm) ,, (i=l,...,n). This is done by a dual method of
mathematical programming using mixed variables as developed by Fleury and Braibant [14] and impiememcd in the computer
code CONLIN. To this end we need the seusitivides of the objective function and constraints with respect to the
aforementioned design variables.

Now, it is shown by Pedersen in [4,8] that by means of Clayperon's thenrem and the principle of virtual displacements for
structures with design independent loads, the gradient of the total strain energy can be determined fzom the gradient of the
strain encrgy density u, for a given element, whose stain field is considered to be fixed,

au

d..V_U. , t-Z, ., n (zZ)da " d"_" SL ' "'
l L

Here as denotes any of the &sign variables 8j, (V,)_ or (Vm) _ i=l,..._q.
The sensitivities of the total strain energy U with respect to 8_ (V,), and 0r'm), can thus be determined by (2) and (11),

assuming the strain field to be fixed, and restricting variation to the laminate stiffness matrix [A]. For the i-th element of the
discretized geometry we then obtain the following expression for sensitivities w.r.t, the design variables a,

z I z

i- 1...... n (12)

where A_ is a shorthand notation for the derivatives d_/da, era componcm A, of the stiffness matrix [A]. These sensitivities
are derived analytically in [I], and the results arc available therein. The seusitivitiesof the cost f_nction (4) arc readily derived
analytically, and we thus have all the nccessazy sensitivity information that is required for the optimization in the second level
of redesign.
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6. Examples

We now consider two example problems of optimization of the rectangular composite disc shown in Fig,. 3. The disc has one
of its sides fixed against d/splacemonts in the X and Y directions, while the opposite side is subjected to a parabolicaUy
distributed shear Loading.

Y

1

iI) at_ 3Yll-Y}

- _ =_X
2

Fig. 3. Example problem for optimization

The upper constraint value _/f for fiber concentration in (3) is taken to be Vt =80 pct, and we only consider cases of c,=O
and cf=l, which means that the fibers are dominatin_g in the cost or weight function C in (4).

In the _ we consider maximization of the stiffness of the disc under the condition that only one fiber field is
allowed in each element. This corresponds to the special case of 13=0 v 13=1, see Chapter 3. The structure is discretized into
20*40 4-node elements (type QUAD 2Q1D, see [14]). The result of the optimization is shown in Fig. 4, where the direction
and density of the hatching within each elements illustrate the fiber orientation and concentration, respectively.

Fig. 4. Optimal distribution and orientation of fibers in first example: One fiber field, n=800, maxim/zation of stiffness

We see that the lowly stressed elements do not contain any fibers. [t is also noteworthy that the design contains "holes" in
the fiber reinforcement in the mid part of the structure, where shear forces are dominating.

No doubt this is due to the fact that only one fiber field is allowed to exist in each element. This is not favourable in shear
dominated areas with almost equal principal stresses, and the pattern obtained in the mid par* may be conceived as the best
possible attempt of the structure to increase its "shear force stiffness" under the given design conditions. The design shown
in Fig. 4 is associated with a reduction of the total elastic energy U by 51°£ relative to the initial design, where all the fibers
were uniformly distributed and g/yen the orientation 0_=0.

However, the convergence is very slow, and different designs may be obtained as a resuh of the optimization. In pa_icular,
the designs depend on the size of the applied FE-mesh, and it is not possible to obtain a limiting, numerical/y stable design
by consecutively decreasing the mesh size. _ features, along with the generation of "holes" in the design, ind/cate the
necessity of a regularization of the formu/ation of the optimization problem (see, e.8., the survey by Olhoff and Taylor [15]).

This leads to our _.go_L.gxa_: Regu/arization of the formu/ation of the type of problem just considered is simply
obtained by extending the design space such as to allow for formation of two orthogonal fiber fields everywhere in the disc
(which is actually covered in the preceding chapters). Introducing two fiber fields, the design in Fig. 4 is replaced by the
solution shown in Fig. 5, where the "shear force reinforcement" appears along the horizontal center line in agreement with
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the boundary and symmetry conditions. Optimizing the structure, U is reduced by 55%. Now the convergence is rapid and
the design is found to be independent of the discretization, which confums that regularization has been achieved.

Fig. 5. Optimal distribmion and orientation of fibers in second example: Two fiber fields, n=800, maximization of stiffness
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