NASA-~CR-193465

77¢ o
TELEROBOTIC CONTROL O MABILE COORDINATED ;e
ROBOTIC SERVER ?/

NAG-1-1283-2
ANNUAL TECHNICAL REPORT
Executive Summary

This annual report is comprised primarily of results from the Master's Degree Thesis of
Mr. Darrell Gerber, a graduate student supervised by the principal investigator on this project. The
goal of this effort is to develop advanced control methods for flexible space manipulator systems.
As such, an adaptive fuzzy logic controller has been developed in which model structure as well as
parameter constraints are not required for compensation. The work builds upon previous work on
fuzzy logic controllers. Fuzzy logic controllers have been growing in importance in the field of
automatic feedback control. Hardware controllers usin g fuzzy logic have become available as an
alternative to the traditional PID controllers. Software has also been introduced to aid in the
development of fuzzy logic rule-bases. The advantages of using fuzzy logic controllers include the
ability to merge the experience and intuition of expert operators into the rule-base and that a model
of the system is not required to construct the controller. A drawback of the classical fuzzy logic
controller, however, is the many parameters need to be tuned off-line prior to application in the
closed-loop. In this report, an adaptive fuzzy logic controller is developed requiring no system
model or model structure. The rule-base is defined to approximate a state-feedback controller
while a second fuzzy logic algorithm varies, on-line, parameters of the defining controller. Results
indicate the approach is viable for on-line adaptive control of systems when the model is too
complex or uncertain for application of other more classical control techniques.

L -10345
(NASA-CR-193465) TELEROBOTIC N94
CONTROL OF A MQOBILE COORQINA:EDua‘
ROBOTIC SERVER M.S. Thesis nn Unclas

Technical Report (North Carolina

State Univ.) 75 p
G3/63 0177411

v

TABLE OF CONTENTS

LIST OF FIGURES........cciiotiiiteinieneieitceente et eosasstenssatensesessesstes e seansassansestassessasssensesnses v
LIST OF SYMBOLS ...ttt rteetee e etesres e seesesacese s eseesae st enee st suee s enteseemesssessnaes vi
LIST OF ABBREVIATIONS ...t iiieteneenteeneseee et srtraesis s sesnvesaeeseceessenaaseneesones viii
CHAPTER I: INTRODUCTIONioiiirimntiiicenenicneiennsertis s ssesssasassssessssssesssssasessens 1
CHAPTER II: NON-ADAPTIVE FUZZY LOGIC CONTROLLERccccocoeinuiininnnnne. 3
A The rule-Dasec..ouieireriiiiiiieeciie ettt sttt s s s s 3

B: DefUZZIIETooeciveeieeieieieceeeerseesreetesaeeeneeeeeennesacestaeesasessnsesaeesnasenessossassanessen 10

C: Input and output SCALINEc.cccevieriiiviiiniiire it 11
CHAPTER III: TUNING A FUZZY LOGIC CONTROLLER.......ccccccoonneerimnniiniinnnens 13
A: Choosing the Tule-DaSe........c.cevvrueererverriemiericiiiitiit e s 14

B: Adaptation TOUHNEccceotiiueiiiiniiinicienicceet et seve e eas s s 17

C: Performance CharaCteriStiCs.cuereerrerrerieeriinciteteetesceseecneseeesaeseesaecnneosnes 20
CHAPTER IV: SIMULATION RESULTS ..ottt sasssnesnnesnns 22
CHAPTER V: CONCLUSION AND SUGGESTIONS FOR FUTURE WORK 29
CHAPTER VI: LITERATURE CITATIONS ..ot sissiesssssens 31
APPENDICESooootirtieereeetieireereentsaesstsestessesensesseesstsasassessasss sassonsesssasssssnssssssnssesssnssnsens 33
APPENDIX A: EXPLANATION OF PROGRAM........ccccccvmiviiininninniiinnnne 35

Main PTOZTAIML....ccceeeeerueancreenreeesresicisee it srae s erae st s e esanas s er e s eens 35

Fuzzy 10giC CONTOl TOUINEcc.ooviiuiimiiiiiiicciiii ettt sae s 36

Steady-state €rTor estimation TOULINEccccivvireieeeiieimnecrieseesreeeeeenns 37

Fuzzy logic adaptation TOULINEcccoviviiiiiiniiiiniiriecceenne e 37

APPENDIX B: FLOW CHARTScctiiiiriecrcrinrientisss e s enas 38

Main program blocKcoveviviiiiiniiiiii e 38

Fuzzy logic CONTOl TOULINEcooviiriiiiieiiirimnece et srne s aee 39

Steady-state eSHMAtiON TOULINEcooveeiiniinenicniirnienecereieeseeseesseesresees 40

Fuzzy logic adaptation TOULINEcccoveriinmiiriniineiiiinnc et een e nnaans 41

APPENDIX C: PROGRAM LISTINGc.ccciiiiiiininiiicntitennce et 42

CHAPTER I
1. Non-adaptive fuzzy logic controller block diagramccccceceivevrecrnrecnnenen. 3
2. Common membership fUnCONSc..cccevviriiiniiscinirntneetce e 5
3. Example finding membership value of the membership function TALL......... 6
4. SamPIE TUIE-DASEccccuerierreerrrereerererisarireeee e seeste et cesaeasssressssassssessssnessnsensens 7
5. Graphical representation of the sample rule-basecccceveevevinncieninncnneen 8
6. LOZIC AND ...ttt sttt ettt st se e sa e srt e st et se e enes 9
7. Evaluation of an example antecedent blockc.occccrviiinniinninnniinincin e 9
CHAPTER III
8. PD cONtrol SUTTACE.......ceeniierrieiiiieeiiccetestee ittt sr e snr e e sa e sean s 15
9. Control surface of a fuzzy logic controller approximatingccccceeeeuveeane 16
a PD controller
10. Variables defining the control surface orientationc.cccceeeveceeivncnraesvnennnes 17
11. Vertical pendulumi.........cccooiiiiiiiiieiiiie ittt et eee et e e eaees 18
12. The effects on the vertical pendulum of varyingd, 0, and ¢ccocceeeeee. 19
CHAPTER 1V
13. Adaptive fuzzy logic controller block diagram.........c..ccoeoveeeiiiiiiiniinninnnnn. 22
14. Response of the vertical pendulum using the........ccccoovveieiinniincnnnnininienene 22
adaptive fuzzy logic controller
15. Responses of the vertical pendulum for various A and Y........coecceeevrureeneneennnes 23
16. DRIOO TODOL ..o irierieiiereeireetncetreeerenresetee s e ate e s e snae e saesesaese s vasessnne 24
17. Response of the DR106 robot using the adaptive fuzzy logic controller........ 26
18. Responses of systems having time varying inertias.........cccceeeeveeceeserreereeseense 27

19. Vertical pendulum having time delays........ccccceeeieiiniiniiaiiiecceceeeeneeeae 28

vi

change in error

C eiettee ettt e st s et s et e st sh e e es e seeben s seeb e st enee e neenaeean
O ittt bt se et ae st e e s s e st rae e besan et b anrenees change in error in position
CELK) vttt sttt r et e s er e current change in error in position

.. displacement of the control plane along the e-axis
Do e e e ene derivative parameter
€ eoererreneeeenens e eeeeaeeeeeerenre et e e s a e eb bt e e ne e e e AR e e e e bashaeeh st enneeteeseensenesene error
€ ettt ettt e be et et et e e s st ea e e e s e e st es st e et eesensaassaesbeensseeneeas error in position
B K ettt ettt et e nat e sane st e e e st aeea san current error in position
B 1) ettt e se e e e aaan previous error in position
€ rircerreneeenes ettt bt e bt st e e e e s te e s esbananas time rate of change of error in position
E e weighted running sum of the error in position
E) correee ettt sttt E from previous time step
B ettt ca ettt st st a e besreesranns acceleration due to gravity (9.81 m/s2)
K et es et e e st s s current time step
L ettt er e length of the vertical pendulum arm
ML ettt sttt e e st e e eas e eaee st et ennesaeas mass matrix for DR106
Tttt ettt st et e sn s e e e st e en s e e taes st et aensbaaraesnbaensesrns number of time steps taken
O(K) ottt ettt et e st st as e sssb s s e se bt e s b et et srae s output to the system
P ottt e sa e s b e b e et proportional parameter
QE(K) ettt ettt steet e eae e e v s es et sttt enbenean quantized error in position
QECAK) ettt sttt ease e re e ere s s aenn quantized change in error angle
QO ettt sttt ettt sanna et ernera et quantized output
QOUK) ..ottt ettt et s st ste e e e e sr s et ens e ssen s ns current quantized output
TUK) e eeeete ettt ettt ee e es et cas e saae e saat s s et e st s st e e e te e e aean current reference input
R oot s et vector of non-linear terms for DR106
SS€ cvvrruerurarrareesseneassaesisete e et ee st eeesessaeeaes s eseeneeaeete e nees approximate steady-state error
T ettt et e er e et et sasre e e st n e s etee torque vector for DR106
U ettt et et e e e b s e e e et e s a e st e e et eeeb bt e ebae e ba e nsanaaann PD controller output
Wttt st et e ns e st e e e ea e st e sa e e e teesas results from the antecedent blocks
U vt ereeeeeeeten e esea st se s et e ee e seenem e s et et eteme e e aeeeeeseeseens result from the ith antecedent block
Uit center values of the consequence block membership functions
|6 R center value of the membership function of the ith consequence block
(Vz) .. weighted running sum of the square of the error in velocity
(V7)o semessssessesssssssmessssssssnse s s (V?) from the previous time step

[+]

T ittt sttt ettt et st e e er e er e ea bt e e e s et e e eene system response
A et st ae e a e b e s ea et ettt sratsane sbeeseenesnen change ind
Qe inclination of the control plane from the e-¢é plane
Y et e sttt tsae s s e e e e e s te e s eane e sasaessaeeansaaeesaeerareeennn velocity penalty factor
ettt et ettt b et bt eh et et et e ettt et se e e e forgetting factor
)ttt ettt ere et e teesr e e s b ae s seesseaaesnns membership value to fuzzy set (_)
.t rotation of the control plane about the u-axis

0. et angular position of the vertical pendulum

vii

position vector for DR106

D et ettt a e e r e e st sa s enenan
B < venree ettt ettt ettt et eae b et b en e ae s e eaeasenerennes angle of joint n of DR106
LSOO control forces to the vertical pendulum

torque applied to joint n of DR106

viii

LIST OF ABBREVIATIONS

MRAC ... ettt s e s e s b s sr e as Model Reference Adaptive Control
Proportional-Derivative
Proportional-Integral-Derivative

CHAPTER [: INTRODUCTION

Many of the current and future control applications are too complex for traditional
controllers due to the presence of non-linearities, varying or uncertain parameters, and/or
time delays. These applications require the use of a robust adaptive controller. Many
adaptive controllers (MRAC, Self-Tuning Adaptive Controllers, joint space control [1],
and global linearization [2], for example) have been offered; however, developing a
model of sufficient accuracy may be impossible or too difficult to be practical.

Fuzzy logic controllers have been shown to be an acceptable alternative to model
based controllers [3,4]. Fuzzy PID control has been applied to several process control
and automotive systems [5-7] in which the time constants were somewhat large. The use
of fuzzy logic to control robotic systems has yielded some success [8-11] although issues
such as time delays and initial conditions sometimes limit the application of these
algorithms.

The rule-base of a standard fuzzy logic controller is developed from linguistic
rules stating the reaction of an experienced operator to various situations. An alternate
approach is to choose the rule-base to approximate the behavior of another controller.
The advantage of this is that the versatility of the fuzzy logic controller and the known
characteristics of the approximated controller are both retained.

The flexibility of the fuzzy logic controller is counteracted, however, by the
increased number of parameters that need to be tuned. Various adaptive fuzzy logic
controllers have been offered as a solution to this problem. Many of them, however,
circumvent the advantages of a fuzzy logic controller by requiring that a model of the
system be known. This thesis develops an adaptive fuzzy logic controller that is able to
handle the uncertainties in complex systems without requiring a system model.

As an extension of previous work [12], the approach uses a PD structure to form

the rule-base. The parameters of the rule-base are varied on-line by an adaptation routine

2
utilizing another fuzzy logic controller. The method is applied to a vertical pendulum as
well as a robotic system to illustrate its applicability.

Chapter I gives a brief overview of fuzzy logic controllers, while Chapter III
develops the tuning algorithm. In Chapter IV the adaptive fuzzy logic controller is
applied to several complex systems. Results indicate the technique is a robust alternative
to traditional solutions. Finally, Chapter IV provides some concluding remarks as well as

areas of potential future work.

Before an adaptive fuzzy logic controller is attempted, one should have a basic
understanding of how a non-adaptive fuzzy logic controller works. The structure of a

fuzzy logic controller can be represented as in Figure 1.

¥

le(k-l) .
ek y ce(k) QCEA(kL P — X OUTPUT

- B—" INPUT *| quies| s | L9099 , |peruzirER 225 LR rRanr),
SC ALING [0):(13 8 . AND | .

Figure 1: Non-adaptive fuzzy logic controller block diagram

From this figure, the important parts of a fuzzy logic controller can be seen; these are the
A. Rule-base
B. Defuzzifier, and
C. Input and Output Scaling

Each of these components will now be dealt with.

A: THE RULE-BASE

The rule-base is the heart of every fuzzy logic controller. As can be inferred, the
fuzzy logic controller uses a number of rules to define the relationship between the input
and the output of the controller. What differentiates a fuzzy logic controller from other

rule-based controllers is that it uses methods of fuzzy implication and compositional rules

of inference.

4

The rules in the fuzzy logic controller are based on linguistic rules of the form
IF one condition AND another condition THEN do something

At the start these rules vary greatly depending on the application and the individual
interpretation of the situation being described by the rule. For instance, if describing the

manual control of the temperature in a room, one rule could be

IF the temperature is much too hot AND the temperature is dropping fairly fast
THEN turn the furnace up a little bit

Of course this is only one way of stating this particular situation and action. To eliminate
the inconsistency that is inherent with this type of formulation a standard vocabulary is
adopted. This new vocabulary consists of words such as LARGE, MEDIUM, SMALL
and POSITIVE, NEGATIVE, ZERO. Stating the previous example using this new

vocabulary changes it to

IF error in temperature is large positive AND change of error in temperature is

medium negative THEN change furnace small positive

Even though this is a more general and tractable statement it is still no more
or concrete. Error in temperature, change of error in temperature, and change
' €xact measurements but what are large positive, medium negative, and small
“w are they all related?
‘c is uniquely appropriate here because people do not usually think of

“large” or “not large” but rather think “how large is it?” This

5
illustrates the difference between what is usually thought of as logic (Boolean logic) and
fuzzy logic. Boolean logic deals with whether something is or is not a member while
fuzzy logic deals with varying degrees of membership. It should also be mentioned that,
contrary to what is often thought, fuzzy logic has nothing to do with probability. Fuzzy
logic does not consider the probability of membership — only the degree of membership.

The degree of membership is determined by a membership function. This is the
connection between the “fuzziness” of the real world and the exactness of mathematics.
Membership functions can be of any shape but they must only have values between 0 and
1; that is, between no membership and complete membership. Most membership
functions are symmetric and simple. Several common shapes are shown in Figure 2.
Notice that Boolean logic can be considered a subset of fuzzy logic as the last

membership function shows.

SN/ NN N

Bell Shaped Trapezoidal Triangular Sinusoidal Rectangular
(Boolean)

Figure 2: Common membership functions

The shape of the membership function has been shown to be nearly arbitrary [11].
Therefore, the choice can be based on such things as ease of calculation, appropriateness
to the application, and personal preference. The fuzzy logic controllers developed here
use a sinusoidal membership function. This is because it is smooth, symmetrical, and

based on a simple mathematical function.

6
The application of the membership function requires the introduction of the term
universe of discourse. The universe of discourse is the minimum region over which the
variable of interest is expected to exist. The membership function will be defined within
this same region. To get a better understanding, let us look at a simple example.
Consider a universe of discourse of the possible heights of full grown males. Upon this,
define a triangular membership function TALL centered on 62" and intersecting the axis

at 5'11" and 6'6". This is shown graphically in Figure 3.

33

l — I
5'7 5'11"' 6'2" 6'5" 6'10"
6'0"

Figure 3: Example finding membership value of the membership
function TALL

On the basis of on this we want to determine how TALL a guy 6'0" is. It is easy to see

that he is .33 (or 33%) TALL.

Now that the rule-base, membership function and universe of discourse have been
introduced their relationship needs to be determined. To facilitate a more organized

discussion, the structure of the rules needs to be better defined. Therefore, consider rules

of the form

IF antecedent block THEN consequence block

IF error is LN AND change in error s LN THEN LP

IF error is LN AND change in error s MN THEN

IF error is LN AND change in error s SN THEN MP
[J [] ®
® ® []
® o []

IF error is LP AND change in error is LP THEN IN

Figure 4: Sample rule-base

It should be obvious that the largest possible numbser of distinct rules for this rule-
base is 49 [(7 membership functions)(2 inp ms)]. When the maximum number of rules js

defined the rule-base is fully populateq. A fully Populated rule-bage 1s usually used; but

it could happen that some of the situations can never possibly occur. In such cases the
corresponding rules may be left undefined. An example of this situation is when a
robotic arm is prevented from moving above a certain velocity near a delicate instrument.
Figure 5 shows another way of representing the rule-base in which the
membership functions are represented graphically. From this it can be seen that more
than one rule may apply at any moment. However, it has been shown [15] that for this

particular layout of rules no more than four rules will be in effect at any one moment.

eror change in error output
S N R W R :
£0 40-20 00 20 40 60 60 40 .20 00 20 40 6.0 £0 -40 20 00 20 40 60

Y
D

T T T ™ ND T T T T L HEN=<TT T T T 71
60 4020 00 20 40 60 A .4 40 60 T N 60 40 20 0.0 20 40 60

> AND=— /\] —~ THEN-—

|/

-—Tr T L SN NS S N T T
60 4020 00 20 40 60 60 40 20 00 20 40 60 60 40 20 00 20 40 60
™ ° °
° ° ®
° Y P
IF =<1 Irl I/I—ANDfIl 1| T l/l*THEN T lIl T
40 40 -20 00 20 40 6.0 60 40 20 0.0 2.0 40 6.0 60 40 20 00 20 40 6.0
antecedent blocks consequence blocks

Figure 5: Graphical representation of the sample rule-base

The first step in determining the output is the resolution of the antecedent block

using the Logic AND operator. There are various possible definitions of Logic AND

[14], a few of which are

i) AND(U(A),j(B)) = min(u(A),u(B))

i) AND(W(A),u(B)) = max(0,(A) + p(B) - 1)
iii) AND(L(A),u(B)) = max(1— p(A),u(B))

iv) AND(u(A),i(B)) = min(1,1 - u(A) + W(B))

The result of each of these is shown in Figure 6 for a given (A) and a varying p(B).

--. JB)
— AND(u(A).i(B)
1.0 - e =
KA /" “\ 'I’ /-\“'. 7/\‘? /' “\
d 3 ! \ ; EN—
) (i) (iii) (iv)

Figure 6: Logic AND

Definition (i) will be used throughout this paper. To illustrate how this is
evaluated, consider the rule-base in Figure 5 and a situation where error is -6.0 and the
change in error is -5.3. Figure 7 shows the evaluation of the antecedent blocks for these

inputs.

IF

IF

IF

IF

error h in err
- ll\ r - AND :!l\l T I T T T :—> u1=mm(1.0,0.9)=0.9
r.o 40 -20 00 20 4.0 60 —éf 40 20 00 20 40 60

|
oL o b L AN L LT L & — 12 mind009=0

|
| f a
\l —t—T1 71 AND—7+—T1T"T""T""7T"T1T" —> U3=miﬂ(1-0,0.0)=0.0
ko 40 20 00 20 40 60 b 40 20 00 20 40 so
| [} I [] ®
I ° I . °
[] [J ®
| r / I 1
flr ™1 T—T 1T AND = llL T 1T T 1T /> U449~ min(0.0,0.0)=Q0
f.o 40 20 00 20 40 60 -6f 40 -20 00 20 40 60
[1
e=-6.0 ce=-53

Figure 7: Evaluation of an example antecedent block

B: DEFUZZIFIER

Now that the result of the antecedent blocks has been found, the output from the

controller needs to be calculated. Various methods have been proposed [17]. One of

these is the maximum of grade of membership. In this method

Q0 = max{u}

10

Unfortunately, from nonlinear control system theory, we know this method suffers from

poor precision (from dead zone) or unavoidable oscillation (from lack of a dead zone)

[18].

11

Another defuzzifier is the center of graviry method given by

O_J'uUdU
o= [udu

This method gives a better control performance, but the calculation can become quite
burdensome due to the iterative algorithms often needed to evaluate the integrals. This

leads to the approximate center of gravity method.

N

Z(“a xU,)

00 =

N

- -

i=1

Due to ease of calculation and superior performance, the approximate center of gravity

defuzzifier will be used from here on.

As can be seen it is unnecessary to define the membership functions for the
consequence blocks since only the position of the center is needed. This is because the
membership functions are necessary only to “fuzzify” a value. Since the results of the

antecedent blocks are already fuzzy all that needs to be done is to defuzzify them.

C: INPUT AND OUTPUT SCALING

The universe of discourses used for all the antecedent and consequence blocks
shown in Figure 5 range from +6 to -6. It should be obvious that this may not be the most
appropriate choice for all possible inputs and outputs. However, to improve the

portability of the rule-base it is desirable not to change the universe of discourse for each

12
new system. A compromise is found by applying a scaling factor to each element
depending on the maximum expected values and the size of the generalized universe of
discourse.

In applications where the inputs are read through transducers and the outputs go
through actuators the scaling factors are dependent on the physical limitations of the
components. Another case when the maximum expected value is easily determined is
when the inputs and outputs must pass through an analog/digital interface. In this
instance the range is dependent on the voltage range used and the number of digital bits
used.

Usually the scaling factors are linear relationships; but, this is not necessary. A
situation in which a non-linear relationship may be desirable is when the expected values
approach teo. This often happens when, as is the case here, the change in error is
calculated rather than read from a sensor. A unique solution to this problem was offered
by Stanley [12]. He transformed the range of values from teo to +90 by taking the arc

tangent of the change in error. The scaling factors to be used in the fuzzy logic controller

presented in this thesis are

R

maximum error

6 . tan_l(changca in error)
maximum change in error angle T

acea [

0= (maximu;n torque) «(QO)

13

CHAPTER III: TUNING A FUZZY LOGIC CONTROLLER

Controllers of all varieties need to be tuned in some manner. Fuzzy logic
controllers are no different. Unfortunately, the flexibility that is gained by using a fuzzy
logic controller is accompanied by an increased number of parameters that need to be
tuned. The scaling factors for each input and output can be varied, the shape of the
membership functions can be changed, and the rule-base itself may be altered.

There are two ways the scaling factors can be tuned. The first is to change the
function itself. A variety of linear or non-linear functions can be used. The other way of
tuning the scaling factors is to change the limiting values. This is the most common
scheme for auto-tuning and adaptive fuzzy logic controllers [14] since there are fewer
possible variations and the effects are more obvious — a small range will give a quicker
controller while a larger range gives a more sluggish yet robust controller. The scaling
factors are usually tuned off-line depending on the particular system. However, if the
plant undergoes known, predictable variations the scaling factors may also be tuned on-
line using a gain scheduling routine.

Varying the shape of the membership function, as already mentioned, has little
effect on the performance of the controller. However, if one is concerned with the shape
of the control surface this is an important factor.

The tuning method used by the adaptation routine developed in this thesis is to
vary the rule-base. One reason for this choice is the flexibility in the possible types of
variations. Another reason is that while the scaling factors define the fuzzy logic
controller’s interaction with the rest of the system the rule-base defines the character of
the controller. Varying the rule-base is particularly suited to on-line adaptation routines
because the performance characteristics of the system are directly related to the rule-base.

This will become more evident as the adaptation routine is developed.

14

A: CHOOSING THE RULE-BASE

When the basic fuzzy logic controller was developed it was stated that the fuzzy
rules were based upon linguistic rules derived from human responses to particular
situations. There is another possible method for choosing the rule-base. The rule-base
can be chosen such that the fuzzy logic controller approximates the performance of
another type of controller. The advantage of this method is that controllers whose
characteristics can be found analytically (optimal controllers and pole-placement
controllers, for example) can then be approximated by the flexible and versatile fuzzy
logic controller.

An easy way to visualize this method of choosing a rule-base is with a control
surface. The control surface of any controller is found by plotting the outputs versus the
inputs. Since a two input/one output configuration has a three-dimensional control
surface (which can be easily drawn) this structure will be considered from this point on.

One of the simplest controllers fitting this constraint is the PD controller.
Consider the PD controller defined by Eq. (1) and the resulting control surface shown in

Figure 8. As can be seen the control surface is simply a plane.

15

u = Pe+De Eq. (1)

Figure 8: PD control surface

Chen and Jang [15] developed an algorithm to imitate a state feedback controller
by correctly choosing the rules in a fuzzy logic rule-base. What their method effectively
does is to discretize the input ranges of the state-feedback controller and then define the
rules of the fuzzy logic controller to exactly match the value of the state-feedback control
surface at these points. The values in between are approximated by the fuzzy logic AND
and the approximate center of gravity methods already discussed.

When this technique is used for the PD controller in Eq. (1) we get the fuzzy logic
controller having the control surface shown in Figure 9. Two things should be mentioned
before continuing. The first is that this controller corresponds to a state-space controller
having a 2x1 input vector and a scalar output. The controller also has a planar
relationship between input and output. Both of these characteristics were chosen for
simplicity of design not because of any restrictions inherent in the methodology. Another

important observation is that as more rules are used the fuzzy logic controller will more

16
closely approximate the state feedback controller. The importance of this depends on the

particular application.

Figure 9: Control surface of a fuzzy logic controller approximating
a PD controller

The algorithm developed by Chen and Jang [15] selects the rule-base external to the
actual use of the controller. However, there is no reason that a similar function can not be
performed while the controller is in operation. This is an important step to the research

presented here because it allows the rule-base to be adapted by varying the state-feedback

controller that it approximates.

17

The rule-base is defined by first choosing the desired state-feedback controller.
The position of each rule is given by coordinates in the phase plane. The equation
defining the state-feedback controller and the coordinates for each rule are then used to
define the consequence block of that rule.

As already mentioned, the state feedback controller used is of the same
dimensions as Eq. (1). However, rather that define the controller using the P and D
variables, it is defined by the rotation (6) and the inclination (¢) of the control surface.
(Eq. (2),Figure 10) Another degree of freedom is added by allowing the surface to be
displaced along the error axis (d). The importance of this becomes evident later.
Selection of these control parameters transforms the controller definition from a

mathematical equation into a more visualizable, graphical definition.

u=—29 _ ange+di2n?)

tan® tan O

Figure 10: Variables defining the control plane orientation

18

B: ADAPTATION ROUTINE

Since the rule-base has been defined based on a state feedback controller it should
be obvious that the adaptation methods used for state-space controllers can also be used
for the fuzzy logic controller. This is what has been done several times in the literature
[16-18]. However, direct application of this philosophy seems to defeat one of the
primary reasons for using a fuzzy logic controller. One of the driving advantages of the
fuzzy logic controller is that it requires no prior knowledge of the plant; but, the
adaptation routines proposed for a fuzzy logic controller thus far require that a model of
the plant be known. Incidentally, the initial conditions of the adaptive fuzzy logic
controller could be found using various techniques (Ziegler-Nichols and Kalman, for
example). This may not be necessary, though, because the effects of mistuning can be
compensated for both on- and off-line.

One obvious alternative to this philosophy is to use another fuzzy logic controller
in the adaptation routine. Hence, the output will be checked using another rule-base to
determine the necessary variation in the main controller rule-base. To develop the
adaptation rule-base, though, one must understand the effects of varying the different
parameters in Eq. (2).

A simple vertical pendulum, shown in Figure 11, is used to better understand the
effects of varying the parameters in Eq. (2). The system consists of a point mass at the
end of a massless rod. They are attached to a stationary, frictionless, pinned joint.
However, to demonstrate the flexibility of the fuzzy logic controller, the usual small

angle assumption will not be made.

19
%

Gravity 0

Figure 11: Vertical Pendulum

The dynamics associated with this systems are

é+§sin6=‘c
L

The desired trajectory is a step response of 1.0rad. To make the response a little more
interesting, atypical initial conditions are used: 8(0)=2.0_,,8(0)=-1. 0paa/s-

From the responses shown in Figure 12 we see the primary effects of varying each
of the parameters in Eq. (2): d changes the steady-state error, 0 changes the damping rate,
and ¢ changes the frequency. This is only the most significant variant of each
performance characteristic, though. This can be seen from Eq. (2) where the third term is

a function of d, 0 and ¢, for example.

20

gf‘ d-:,;g
] Qm
24)
2 - ¢ 45°
0 1 2 3 4 5 6 7 &8 8 10
TIME (seconds)
2
1
d= 4.0 §0 d= 40
24
-2 -
2
1 l‘ N
0= 0.3"1 % .(1) 0= O.WM
-2
2
A DAlAalAalalal o
W1
-1 U ‘ Lf
-2
0 1 2 3 4 5 8 7 8 % 10 0 1 2 3 4 5 6 7 8 9% 10
TIME (seconds) TIME (saconds)

Figure 12: The effects on the vertical pendulum of varying d, 6, and ¢

It was promised that the importance of adding the d parameter would become
evident — this is the time to illustrate this. All that is done by adding the third parameter,
d, is to give the controller a constant bias (evident in the changing steady-state error).
However, if this parameter is varied adaptively, the effect is the same as having an
integrator. In effect, we have designed a pseudo-fuzzy PID controller. For the remainder
of this thesis, only the variation of d will be investigated. The adaptation of the other two

parameters is the subject of on-going research.

21

C: PERFORMANCE CHARACTERISTICS

It is now necessary to develop a method to estimate the steady-state error. It
should be mentioned that it is not necessary to actually find the steady-state error. All
that is needed is some bounded function that varies with the steady-state error.

When developing a method to estimate the steady-state error there are some
characteristics which are desirable. One is that the estimate should remain small while
the transients still exist. This is wanted because, since the estimate will be used to vary
the rule-base, the estimate should remain small while it is most uncertain (i.e. — while the
system is not in steady-state). Another desired characteristic is that past information
should be used without using an array to store it. The reason for this is to make the
system less sensitive to sudden variations in the response without requiring large amounts
of computer memory.

The equation to be used is

3)

where E=e+A-E

From Eq. (3), it can be seen that as y-(Vz) — 0, sse > E. Alsoas n — o and e =sse

(actual steady-state error), E — sse. Let us see how Eq. (3) has the desired

characteristics. The y-(V?) term in the denominator keeps sse small while (V?) is still

large. The term, 7, allows the strength of the effect to be adjusted. The definitions for E

and (Vz) fulfill the other requirement that past values of the error in position and the

22
error in velocity be used. This is done by using a weighted running sum of the values
instead of just the present value. The variable, A, is the forgetting factor (weighting
variable) which, if between 0 and +1, gives less weight to the past values than the present
value.

Stochastic formulations similar to Eq. (3) have been used in the past based on the
average error and the standard deviation of the error. Unfortunately, this requires a
statistical analysis at each time step. This could become computationally burdensome
and require the use of large arrays. Eq. (3) uses the same principle but effectively

circumvents these problems.

23

Using sse as the input and Ad (change in d) as the output a simple fuzzy logic

controller can be developed for the adaptation routine. The structure of the adaptive

fuzzy logic controller is shown in Figure 13.

CALQULATE [Ad| ADAPTIVE | 88 | cppcyrate

NEW CONTROL l@— RZZY |(€— -
SURFACE RULE BASE s
I e |
INPUT Q (k)' _' LOGIKC _' QUK ouTtrut | 0K ﬁb
SCALING [—opas RILES | 3 | \np | ; | DEFUZHFER | scama
$ -

Figure 13: Adaptive fuzzy logic controller block diagram

The results of using this controller on the vertical pendulum already presented is

shown in Figure 14.

ANGLE (radians)

-2
4 5 6 7 8 9 10
TIME (seconds)

Figure 14: Response of the vertical pendulum using the adaptive fuzzy logic controller

24

The steady-state error due to the gravitational bias has been eliminated very effectively

but it would be interesting to know the effects of varying the A and y. These are shown in

Figure 15.

y=50 2 y=10
A=00 g M A=05

2
v=50 ; E v=100.0
A=05 % A=05

2
Y=50 f = Y= 1000.0
A=0.85 § _2 A= 05

2

1234587!910012345878910
TIME (seconds) TIME (secands)

. O

Figure 15: Responses of the vertical pendulum for various A and y

The left column of Figure 15 shows a varying A increasing from top to bottom
while the right column shows the same for Y. The results are what should be expected.
Since A is the forgetting factor, increasing it will include more of the past information.
This would make the response quicker but less robust. In this example, the system is
unstable for A > 0.85. Varying vy has a similar affect on the response. Since Yis the
weight for the velocity penalty, large values will cause the adaptation routine to wait until
more of the transients die out to vary the parameter. Thus, the system will be slower but
less likely to be affected by poor estimates. The system in Figure 15 is unstable for y <
1.0. From these findings it should be evident that the controller is made more robust for

small A and large y. This is important for systems that are complex or have varying

parameters.

25
As an example of a more complex system consider the robot shown in Figure
16(a). This is a drawing of the three degree-of-freedom revolute manipulator currently

being designed at the Mars Mission Research Center at North Carolina State University.

(@) ®)

Figure 16: DR106 robot

26

Figure 16(b) shows how the coordinate system has been defined. The dynamics are as

presented in Stanley [12] and can be represented as

6=M'R+M'T
where
26 + 8C§3 + 29C§ +24C,C, 0 0
M= 0 43+24C, 8+12C,
0 8+12C, 8

(16C1S,, +24C,S,,)8, (6, + ;) +(245,C, +585,C,)86,
R ={—(8C,S,, +12S,Cy, +298,C,)67 +24S,6,6, + 128,62 —20gC, — 6gC,,
—(8C,,S,, +128,C,,)87 —128,8; —6gC,,

-t
]
Ry

[«»]]
I
(»]
™

C,, =cos(0, +6,)
S, =sin(6, +8,)
C, =cos(8,)
C, = cos(6;)
S, =sin(6,)
S, =sin(8;)

27

Using these dynamics the adaptive fuzzy logic controller is applied to each joint
separately. The coupling is treated as an external disturbance. If each joint starts at Orad
and the desired trajectory is a positive unit step for joints one and two and a negative unit

step for joint three a time response like that in Figure 17 occurs. Notice that Y needed to

be increased to achieve a good response.

A=05
— JOINT 2

)
b
- N

=)
n
[~

v=80.0

o)
o

=== JOINT 3

ANGLE (radians
o

1
-

L
¢)

0 1 2 3 4 5 & 7 8 9 10
TIME (seconds)

Figure 17: Response of the DR106 using the adaptive fuzzy logic controller

Figure 18 shows three cases where the inertia of the vertical pendulum is not
constant. The top graph shows the response for when the inertia changes from 2.0 to 0.5
at 3.0s. This would be similar to robotics applications in which different tools are

handled. The middle graph shows the response when the inertia is oscillating between

2.0 and 0.2 at 1Hz. This is the only case where ¥ had to be varied to get a better response.
The last case shown is when the inertia is highly dependent on the angular position. This

type of situation could occur in non-symmetrical mechanisms.

28

INERTIA CHANGE
Y= 5.0 2
. 1
75% step dec 3.08
Am 0.5 g -¢1) op rease at
2
v= 1000.0 2
- 8 1 e—
3 0 81% change at 1Hr
A=05 g -1
2 -
2
b A 5.0 5 1
[V position dependent
A= 05 E -1
-2

1 2 3 4 5§ 8 7 8 8 10
TIME (seconde)

o

Figure 18: Responses of systems having time varying inertias

One last example of a system having complex characteristics is the vertical
pendulum already mentioned but having a time lag between reading the system states and
the application of the control force. Since a similar system was tested by Stanley [12]
using a non-adaptive fuzzy logic controller, it would be interesting to see if an adaptive
fuzzy logic controller is any better. Figure 19 shows the response for several different

time lags measured by the number of time steps the application of the control force is

delayed.

29

2
1
go delay = 0
-1
2
0 1 2 3 4 5 8 7 8 9 10
TIME (seconds)
2
1
delay = 1 go"‘ deley = 2
-1
-2
2
1
dolay = 3 g? delay = 4
-2
mf | 1ala A
delay = § g? A \"l t\‘\v I\r'\ull\v dolay = 10
-2

1234507801001234587!910
TIME (seconds) TIME (seconds)

Figure 19: Vertical pendulum having time delays

As can be seen, the system remains stable, although very slowly convergent, until a delay
of about ten time steps. When Stanley [12] did a similar test on a horizontal pendulum
the system became wildly oscillatory after a delay of three time steps. Therefore, the

adaptive fuzzy logic controller does behave better with a system having time delays than

a non-adaptive fuzzy logic controller.

30
CHAPTER V: CONCLUSION AND SUGGESTIONS FOR

FUTURE WORK

An adaptive fuzzy logic control algorithm in which the orientation of the defining
PD plane is varied on-line by a second fuzzy logic controller has been presented. The
adaptation routine used an estimate of the steady-state error havin g a forgetting factor and
a velocity penalty to alter the displacement of the PD plane. The technique was
demonstrated on a simple vertical pendulum and gave good results for wide variations in

A and y. The controller was also demonstrated on more complex systems such as a 3DOF

robotic manipulator, various time varying systems and systems with time delays.

The most obvious area in which future research could be done is to develop
algorithms which vary the other two parameters defining the PD plane. This would allow
the damping rate and frequency to be varied instead of just the steady-state error. The
most obvious changes in behavior should occur with systems having time varying

parameters and systems having time delays.

Another area open for consideration is using a different type of control surface to
define the rule-base. A PD plane was used because it is well known and simple. A
higher-order, linear surface could be used giving similar results for more inputs and/or
outputs. Another variation would be to use a non-planar surface. An example would be
using a surface whose cross-section is like a third-order polynomial to give a sort of dead-
zone. Another more complex configuration is a controller having multiple outputs which
are coupled. This could be used to either compensate for coupling in the inputs or to

introduce coupling into the overall system.

31
One final suggestion is that different variation methods be investigated. There
may very well be a better way to estimate the steady-state error. In fact, the steady-state
error may not be the best performance characteristic to measure. A more generalizing
change would be to vary the rule-base by making either linear or non-linear coordinate
transformations instead of varying the parameters of the control surface. This would

allow changes in the shape of the control surface to be made on-line.

The basic concept being investigate in this thesis is the use of a simple
mathematical relationship based on a graphical representation to define the rule-base.
Thus, parameters in the function defining the rule-base can be varied adaptively which, in
turn, changes the entire rule-base in a simple step. The methodology developed in this
thesis was done so as to facilitate the presentation of this underlying idea. It should be

kept in mind when considering any variations that no attempt was made at optimizing any

factors.

32

CHAPTER VI: LITERATURE CITATIONS

1. Slotine, S. J. and Li, W, "On the Adaptive Control of Robotic Manipulators", Inr. J.
of Robotics Research, Vol. 6, No. 3, pp. 49-59, 1987.

2. Craig, J. J., Hsu, P., and Sastry, S., "Adaptive Control of Mechanical Manipulators",
Proc. of the IEEE Intl Conf. on Robotics and Automation, San Francisco, 1986.

3. Zadeh, L. A., "Outline of a New Approach to the Analysis of Complex Systems and
Decision Processes", IEEE Trans. on Systems, Man and Cybemetics, Vol. SMC-3,

pp. 28-44, 1975.

4. Chang, C. H., "Tuning fuzzy logic controllers via Input and Output Mapping
Factors", M.S. Thesis, University of Oklahoma, 1989.

5. King, P. J. and Mamdani, E. H., "The Application of Fuzzy Control Systems to
Industrial Processes," Automatica, Vol. 13, pp. 235-242, 1977.

6. Murakami, S. and Maeda, M., "Automobile Speed Control System Using a fuzzy
logic controller", Industrial Applications of Fuzzy Control (M. Sugeno, Ed.), pp.
105-123, North Holland, 1985.

7. Mamdani, E.H. and Assilian, S., "An Experiment in Linguistic Synthesis with a
fuzzy logic controller”, Int. J. Man-Machine Studies, Vol. 7, pp. 1-13, 1975.

8. Scharf, E. M., Mandic, N. J., and Mamdani, E. H., "A Self-organizing Algorithm for
the Control of a Robot Arm", ISMM Conf. on Mini and Microcomputers and Their
Applications, San Antonio, 1983.

9. "Fuzzy Controller Robots and Its Practical Applications (Special Session)",
IEEE/RSJ Int'l Conf. on Intelligent Robots and Systems, Raleigh, 1992.

10. Noh, H., Kim, H., Kim, S., Park, M., “Cooperative Mobile Robots Using Fuzzy
Algorithm”, Proc. of the 1992 IEEE/RS]J International Conf. on Intelligent Robots
and Systems, Raleigh, pp. 796-802, 1992,

11. Liu, M.H., “Robotic Deburring Based on Fuzzy Force Control”, Proc. of the 1992
IEEE/RS]J Int. Conf. on Intelligent Robots and Systems, Raleigh, pp. 782-789, 1992.

12. Stanley, R., Gerber, D., Windsor, J »and Lee, G. K. F., "A Fuzzy Controller for
Space Manipulator Systems"”, Conf. on Intelligent Robotic Systems for Space

Exploration", Troy, N. Y., 1992.

13. Kouathi, I. and Jones, B., "An Improved Design Procedure for Fuzzy Control
Systems", International Journal of Machine Tools and Manufacture: Design,
Research and Application, Vol. 31, No. 1, 1991, pp. 107-122.

14. Jager, R., Verbuiggen, H. B., Bruyn, P. M., Krygsman, A. I., "Real-Time Fuzzy
Expert Control", IEEE, Vol. 2, No. 332, 1991, pp. 966-970.

15.

16.

17.

18.

19.

20.

33

Chen, Y. Y. and Jang, J. S., "Imitation of State Feedback Controllers by Fuzzy
Linguistic Control Rules", Proc. of the 29th Conf. on Decision and Control,

Honolulu, 1990.

Tzafestas, S. and Paparrikolopoulos, N. P., "Incremental Fuzzy Expert PID Control",
IEEE Trans. on Industrial Electronics, Vol. 37, No. 5, Oct. 1990, pp. 365-371.

Smith, S. M. and Corner, D. J., "Automated Calibration of a fuzzy logic controller
Using a Cell State Space Algorithm", IEEE Control Systems, August 1991, pp. 18-

28.

Acosta, G. G., Mayosky, M. A, Catalfo, J. M., "Fuzzy Logic and Pattern
Recognition in Self-Tuning Controller”, IEEE/RSJ Int"l Conf. on Intelligent Robots

and Systems, Raleigh, 1992.

Zhang, B.S., Edmunds, J.M., “On Fuzzy Logic Controllers”, IEE Control ‘91, No.
332, Vol. 2, pp. 961-965, 1991.

Kickert, W.J.M., and Mamdami, E.H., Fuzzy Sets Systems, Vol. 1, pp. 29-44, 1978.

APPENDICES

35

An important part of performing good research is ensuring that future researchers
can, if so desired, reproduce your results. Towards this end, the three appendices are
given. The results presented in this thesis came from many runs of various computer
programs. Although they varied in the system model, non-linearities introduced, and the
desired results, they have the same basic structure. Because of this a detailed description
of one of the programs can serve as a description of all the programs. The program
simulating the application of the adaptive fuzzy logic controller to a simple three-link,
revolute joint robot, Figure 16, will be the illustrative example. Appendix A gives a
detailed progression through the program while Appendix B gives the flow chart for the
$ame program. The actual C code used is listed in Appendix C.

All of the programming was done using Borland C/C-++ version 3.1. Since an
effort was made to use only conventional commands, the code should work with other C
compilers with little or no modification. The structure and methodology were kept very
simple so the program should be €asy to translate to a different programming language.

In fact, several sections were originally programmed in FORTRAN by Stanley [12).

36

APPENDIX A: EXPLANATION OF PROGRAM
=== TATLANALION OF PROGRAM

MAIN PROGRAM

I-lT In these blocks the output files are opened, the state variables are set to their
starting values and other operating variables are set to their initial values.

m The initial values of the adaptation variables are written to an output file. This is
done so that the time response of the variables can be plotted later.

v The FUZZY LOGIC CONTROL routine is called to determine the control force
given the initial conditions and the initial control surface orientation. This is done

for each link separately.

\% The initial positions and the control force calculated in IV are written to an output
file. This is to facilitate a plotting of their time responses.

A" The RUNGA-KUTTA routine is called to determine the new state variables
given the old states and control forces.

VII The STEADY-STATE ERROR APPROXIMATION routine is called to
estimate the steady-state error based on the past response and given the new errors
in position and velocity. This is done for each link separately.

VIII The ADAPTATION FUZZY LOGIC routine is called to determine the
necessary variation in the control surface orientation given the estimated steady-
state error. This is done to each link separately.

IX-X Calculate the new adaptation values and write them to an output file.

XI The FUZZY LOGIC CONTROL routine is called to determine the control force
given the new states and new control surface orientation. This is done for each

link separately.

XII Write the new positions and control forces to an output file. Loop back to VI and
repeat for NSTEP times.

XIII Upon completing the simulation close all output files.

37

FUZZY LOGIC CONTROL ROUTINE

I-II Given the link being operated, set E to the appropriate state variable. Using the
last value of E and the first two equation on page 12 determine QE and QCEA.

MI-IV Determine which membership functions of QE and QCEA will be effective.
Since, as mentioned on page 8, no more than four membership functions, for each,
will have non-zero values this can greatly reduce the number of rules evaluated
and thus speed-up the operation of the routine.

v Set arrays used for holding the membership function values and the consequence
block values to zero. These are used so that when LV is performed the correct
values will be multiplied.

VI-LIV

Each rule is successively checked for the correct combination of effective
membership functions. If the correct combination exists the following blocks are

performed:

(a) Each rule corresponds to a unique point in the quantized phase plane
determined by the center values of its combination of membership

functions.

(b) Determine the degree of membership of QE and QCEA to the fuzzy sets
given in the rule. The membership functions used here are a half-cycle of
a sine wave. This is the same operation discussed on page 5.

(© To determine the result of the antecedent block using the logic AND
operation given by definition (i), page 8 is performed.

(d) Given the coordinates of the rule from (a), the adaptation variables, and
the defining equation of the control surface in Eq. (2) determine the value
of the control surface at the position of the rule.

LV Determine the quantized control effort using the approximate center of gravity
method introduced on page 10. This is simply a quotient in which the numerator
is the sum of the products of the result of the logic AND and the value of the
control surface for each rule. The denominator is the sum of the results of the
logic AND’s. Those rules not evaluated in VI-LIV give no contribution due to V.

LVI Write QE and QCEA to an output file so that a phase plot may be drawn.
LVI Scale the result of LV using the method given by the last equation on page 12.

38

STEADY-STATE ERROR ESTIMATION ROUTINE

I-1 The weighted running sums of the position and velocity are updated after
determining for which link the routine was called. LAMBDA is also set
depending on the link to facilitate varying it independently if necessary.

I Calculate the approximate steady-state error using Eq. (3).

FUZZY LOGIC ADAPTATION ROUTINE

I Set the Max/Min values of the input and output.
II Quantize the incoming approximate steady-state error given the limit from L

I Determine the membership functions with non-zero values. Unlike the FUZZY
LOGIC CONTROL routine, which has two inputs, there is a maximum of two
rules which will influence the output.

v Zero the holding arrays as in the FUZZY LOGIC CONTROL routine.

V_XI Each rule is successively checked to determine if it is valid. Those that are will be
evaluated much the same way as in the FUZZY LOGIC CONTROL routine.

The major differences, though, are that since there is only one ipput the logic
AND is not used and that the rule-base is fixed.

XII- XTI
These blocks are comparable to those in the FUZZY LOGIC CONTROL

routine.

APPENDIX B: FLOW CHARTS
MAIN PROGRAM BLOCK

I Open Files
[]
Set Initial
Conditions
Y
I Write Adaptation
Values
Y
Call FUZZY LOGIC
v CONTROL routine
for each link
[]

v Write positions and
resulting torques

VI Call 40 order RUNGA-
KUTTA routine

y

Call STEADY-STATE
viI ERROR ESTIMATION
routine for each link

Y

Call ADAPTATION
VIII FUZZY LOGIC routine
for each link
[]
Calculate and limit

IX new adaptation
values

[]

Write new adaptation
values

y
Call FUZZY LOGIC
XI CONTROL routine

for each link
y

Write positions and
resulting torques | por = 1 to NSTEP

XII

A 4
Close all
X111 files

&

FUZZY LOGIC CONTROL ROUTINE

Determine E and CEA
I from system state variables
depending on link
being operated

I | Quantize E and CEA |

Determine which membership
I functions will be used for
QE (quantized error)

Y

Determine which membership
I\ functions will be used for

QECA (quantized change in
error angle)

Y

v Zero fuzzy variables

Determine . Calculate
VI c S‘;’éir:k:e membership Iﬁg —] consequence
oordinates values block result
RULE 49
$ YES
ELN true Determine . Calculate
LIV and CELP true Se(lj_rulﬁc —*1 membership |~ I;&%g —=1 consequence
coordinates values block result
?
LV Approximate Center
of Gravity Method
LVI Write QE and QECA
for phase plot

Y

LVII Scale quantized torque

Y
RETURN

STEADY-STATE ERROR ESTIMATION ROUTINE

Determine Position and
Velocity errors from state
variables depending on
the link being operated

'

Calculate weighted
running sums

!

Calculate approximate
steady-state error

!

RETURN

41

FUZZY LOGIC ADAPTATION ROUTINE

Set input and
output limits

v

steady-state error

Quantize the approximate

y

Determine which
membership functions
will be used

Y

Zero fuzzy variables

RULE 1
YES | Determine membership {__ | Set consequence
value block value
RULE 7
IS YES
SSLN true Determine membership {__ | Set consequence
value block value
?
Approximate Center
of Gravity Method

Y

Scale quantized variation
in adaptation variable

1
RETURN

APPENDIX C: PROGRAM LISTING

/*

*/

PURPOSE: To apply an adaptive Fuzzy-Logic controller to a three-link

microbot. (Highly Non-linear Coupled Second Order
Differential Equations). The control plane is defined by

the displacement along the QE-axis (D), the rotation in the
QE-QCEA plane (THETA), and its inclination from the QE-
QCEA plane (PHI). D is varied adaptively based upon an
approximation of the steady-state error.

AUTHOR: Darrell L. Gerber

DATE:

4/21/93

VARIABLES: COUNT: Holds the value of the present Runga-Kutta

#define NEQ 9

#define DT 0.01
#define NSTEP 1000
#define Td1 1.0
#define Td2 1.0

#define Td3 -1.0

iteration.
T#: The input to link #
Td#: The desired position (Theta desired)for joint #
TRIG: Zero on the first pass and One afterwards
NEQ: Number of state equations
NSTEP: Number of times Runga-Kutta subroutine is called
DT: Time interval delta T
TIME: Independent variable
X[_]: Dependent state variables
MAX#: Maximum input allowed in link #
Dit: D for link #
THETA#: THETA for link #
PHI#: PHI for link #
LASTE#: Error for link # durin g the previous iteration
ERROR_SUM#: Weighted running sum of the error for link #
VELSQ_ERROR_SUM#: Weighted running sum of the velocity
error squared for link #
dD: Change in D as determined by the adaptation routine
SSE#: Approximate Steady-State Error for link #
L#: Link #

/* Define Desired Positions */

#define PI 3.141592654

#include <stdio.h>
#include <math.h>
#include <mem.h>
#include <stdlib.h>

double LASTE1 =0.0,LASTE2 = 0.0,LASTE3 = 0.0;

45

double ERROR_SUM1 = 0.0,ERROR_SUM?2 = 0.0,ERROR_SUM3 = 0.0;
double VELSQ_ERROR_SUM1 = 0.0,VELSQ_ERROR_SUM2 =
0.0,VELSQ _ERROR_SUM3 =0.0;

int TRIG = 0;

void Right(double [NEQ+1],double * double *,double *,double *,double *,double
* double *,double *,double *,double *,double *);

void State(double [NEQ+1],double [NEQ+1],double *,double * double *);

void Runga(double [NEQ+1],double *,double * double *,double *);

void Steady_State_Error(double [NEQ+1],int *,double *);

void Adaptation(double *,double*);

void Fuzzy_Logic(double [NEQ+1],double *,double *,int * double *,double *,double
* FILE * FILE *FILE *);

main()

double X[NEQ+1],TIME,T1,T2,T3, MAX1 MAX2,MAX3;

double D1,D2,D3, THETA1,THETA2,THETA3,PHI1,PHI2,PHI3,SSE1,SSE2,
SSE3,dD;

int COUNT,L1=1,L2=2,L.3=3;

FILE *file1,*file2,*file3,*file4, *file5;

if ((ﬁle1=fo'Pen("C:/GERBER/data/fROB1.dat","w"))-—==NULL) printf("Error opening

if ((ﬁfliggi\t';gén("C:/GERBER/data/fROB 11.dat","w"))==NULL) printf("Error opening

if ((ﬁtliégi\t'rtl)'}'))én("C:/GERBER/datanROB 12.dat","w"))==NULL) printf("Error opening

if ((ﬁt;lgzi\t'rcla';én("C:/GERBER/data/fROB 13.dat","w"))==NULL) printf("Error opening

if ((ﬁgg%\f;)één("C:/GERBER/dara/fROB 1d.dat","w"))==NULL) printf("Error opening
ile ;

TIME = 0.0;

X[1]=0.0; /* Initial Conditions */
X[2]=-1.0;

X[3]1=0.0;

X[4] =0.0;

X[5]1=-1.0;

X[6] =0.0;

X[7]1=0.0;

X[8]=1.0;

X[9] =0.0;

MAX1 = 500.0; /* Set Input Limits */
MAX2 = 500.0;
MAX3 = 150.0;

D1=D2=D3=0.; /* Initial Conditions of the control planes */
THETA1 = THETA2 = THETA3 = P1/4;
PHI1 = PHI2 = PHI3 = P1/4;

fprintf(file5,"%f %f %f\n",D1,D2,D3);

/* Determine Control Efforts */

Fuzzy_Logic(X,&T1,&MAX1,&L1,&D1,&THETA1,&PHI1 file2 file3 filed);
Fuzzy_Logic(X,&T2,&MAX2,&L2,&D2,&THETA2,&PHI2 file2 file3 file4);
Fuzzy_Logic(X,&T3,&MAX3,&L3,&D3,&THETA3,&PHI3 file2 file3 file4);
TRIG=1;

fprintf(file1,"%f %f %f\n",X[2]+Td1,X[5]+Td2,X[8]+Td3);

for(COUNT=1;COUNT<=NSTEP;COUNT++)
{
Runga(X,&TIME,&T1,&T2,&T3), /* Calculate New States */
Steady_State_Error(X,&L1,&SSE1); /* Approximate SSE's */
Steady_State_Error(X,&L2,&SSE2);

Steady_State_Error(X,&L3,&SSE3);

Adaptation(&SSE1,&dD); /* Calculate Variations in D's */
Adaptation(&SSE2,&dD);

Adaptation(&SSE3,&dD);

D1 =D1 +dD; /* Calculate new D's */

D2 =D2 +dD;

D3 =D3 +dD;

if(D1>=20.0) D1 = 20.0; /¥ Limit D's */

if(D1<=-20.0) D1 = -20.0; .
if(D2>=20.0) D2 = 20.0;

if(D2<=-20.0) D2 = -20.0;

if(D3>=20.0) D3 = 20.0;

if(D3<=-20.0) D3 =-20.0;

fprintf(file5," %f %f %f\n",D1,D2,D3);

/* Determine Control Efforts */
Fuzzy_Logic(X,&Tl,&MAXI,&LI,&D1,&THETAI,&PHIl,ﬁle3,ﬁle4,ﬁle5);
Fuzzy_Logic(X,&T2,&MAX2,&L2,&D2,&THETA2,&PHI2,ﬁle3,ﬁle4,filc5);
Fuzzy_Logic(X,&T3,&MAX3,&L3,&D3,&THETA3,&PHI3,ﬁlc3,ﬂle4,ﬁlc5);

fprintf(file1,"%f %f %f\n",X[2]+Td1,X[5]+Td2,X[8]+Td3);
}

fcloseall();

return O;

46

47

/*
PURPOSE: To calculate the mass matrix entries and the
nonlinear contributions.
AUTHOR: RobertJ. Stanley II
DATE: 8/5/92
TRANSLATION: Darrell L. Gerber
DATE:; 1/13/93
VARIABLES: R#: The nonlinear terms of link #
G: Gravity
DET: The determinant of the mass matrix divided by M11
*/

void Right(double X[NEQ+1],double *R1,double *R2,double *R3,double *M]1 1,double
*M22.double *M33,double *M23, double *DET,double *T1,double *T2,double *T3)

double G,C23,523,C2,C3,52;
double §3,C23823,C2523,52C23,52C2:

G =9.81;
C23=cos(X[5]+Td2+X[8]+Td3);
S23=sin(X[5]+Td2+X[8]+Td3);
C2=cos(X[5]+Td2);
C3=cos(X[8]+Td3);
S2=sin(X[5]+Td2);
S3=sin(X[8]+Td3);
C23823=C23*823;
C2823=C2*823;
S2C23=82*C23;

S2C2=82*C2;

*M1 1=26.0+8.0*C23*C23+29.0*C2*C2+24.0*C2*C23;
*M22=43.0+24.0*C3;

M23=8.0+12.0%C3;

*M33=8.0;

*DET=*M22*(*M33)-*M23*(*M23);

*R1=(16.0*C23S23+24.0*C2823)*X[3]*(X[6]+X[9])+(24.0*82C23+58.0*SZC2)*X[3]*
X[6]+*T1;
*R2=-(8.0*C23523+ 12.0*82C23+12.0*C2SZ3+29.0*82C2)*X[3] *X[3]+24.0*S3
*X[6] *X[9]+12.0*S3*X[9]*X[9]-20.0*G*C2-6.0*G*C23+*T2;
*R3=-(8.0*C23823+12.0*C2823)*X[3]*X[3]-12.0*S3*X[6]*X[6]-6.0*G*C23+*T3;

}

/*

*/

48

PURPOSE: To compute the present state of the dynamic system.
AUTHOR: RobertJ. Stanley II

DATE: 8/5/92

TRANSLATION: Darrell L. Gerber

DATE: 1/13/93

VARIABLES:Y: System states
F: States in Runga-Kutta format

void State (double FINEQ+1],double Y[NEQ+1],double *T1,double *T2,double *T3)

{

F[1]=Y[2];
F[2)=Y[3];
F[3]=R1/M11;
F[4]=Y[5];
F[5]=YI6];
Fi6]=(R2*M33/DET)-(R3*M23/DET);
F[7]=Y[8];

F[8]=Y[9];
F[9]=-(R2*M23/DET)+(R3*M22/DET);

double R1,R2,R3,M11,M22 M33,M23,DET,
Right(Y,&R1,&R2,&R3,&M11,&M22,&M33,&M23,&DET,T1 ,12,T3);

/* Define state variables */

49

%
PURPOSE: Use a Fourth-Order Runga-Kutta routine to calculate
the next state vector.
AUTHOR: Robert J. Stanley II
DATE: 8/5/92
TRANSLATION: Darrell L. Gerber
DATE: 1/13/93
VARIABLES:G#: Variable Gains
*/

void Runga(double X[NEQ+1],double *TIME,double *T1,double *T2,double *T3)

double Y[NEQ+1],FINEQ+1],G1[NEQ+1],G2[NEQ+1],G3[NEQ+1],G4[NEQ+1];
intI;

for(I=1;I<=NEQ;1++) Y[I] = X[I];

State(F,Y,T1,T2,T3);

for(I=1;I<=NEQ;I++) G1[I]=DT*F[I];
*TIME=*TIME+DT/2.0;
for(I=1;I<=NEQ;I++) Y[I]=X[1]+G1[I}/2.0;
State(F,Y,T1,T2,T3);

for(I=1;I<=NEQ;I++)

G2[I=DT*F[I];
Y([I=X[1]+G2(1)/2.0;

)
State(F,Y,T1,T2,T3);
for(I=1;I<=NEQ;I++)

G3(I]=DT*FI],
Y[[=X[1]+G3{1]};

)

*TIME=*TIME+DT/2.0;

State(F,Y,T1,T2,T3);

for(I=1;I<=NEQ;I++) G4[I]=DT*F[I];

for(I=1;I<=NEQ;I++) X[I]=X[I] +(G1[I]+2.0*(G2[I}]+G3[1])+G4[I])/6.0;

/*

*/

PURPOSE:

AUTHOR:
DATE:

50

Given a position calculate the torque required to

drive the error to zero using a Fuzzy-Logic Control
surface approximating a PD-plane as defined by the
displacement along the QE-axis (D), the rotation in the
QE-QCEA plane (THETA), and the inclination from the
QE-QCEA plane (PHI).

Darrell L. Gerber
4/21/93

VARIABLES:E: Error

CEA: Change in error angle

LASTE#: The last error in link #

PIL 3.14159

QE: Quantized value of the error

QECA: Quantized value of the error change

u: Membership function value

UU: Universe of discourse value

NUM: Numerator of the input value

DEN: Denominator of the input value

Ye: Temp variable for the error membership function

Yec: Temp variable for the change in error
membership function

INPUT: The quantized input to the plant

TORQUE: The actual input to the plant

N: The number of rules

I: Count variable

ELP: Linguistic value Error Large Positive

EMP: Linguistic value Error Medium Positive

ESP: Linguistic value Error Small Positive

EZE: Linguistic value Error Zero

ESN: Linguistic value Error Small Negative

EMN: Linguistic value Error Medium Negative

ELN: Linguistic value Error Large Negative

CELP: Linguistic value Change in Error Large Positive

CEMP: Linguistic value Change in Error Medium Positive

CESP: Linguistic value Change in Error Small Positive

CEZE: Linguistic value Change in Error Zero

CESN: Linguistic value Change in Error Small Negative

CEMN:Linguistic value Change in Error Medium Negative

CELN: Linguistic value Change in Error Large Negative

X: Position of the rule along the QE-axis

Y: Position of the rule along the QECA-axis

XX: System States

TOR_MAX: Max/Min allowed torque

LINK: Link being maneuvered

51

void Fuzzy_Logic(double XX[NEQ+1],double *TORQUE,double *TOR_MAX,int
*LINK,double *D,double *THETA ,double *PHLFILE *file3,FILE *file4,FILE *file5)

{

double X,Y.E,QE,u[50],UU[50], NUM=0.0,DEN=0.0;

double Ye,Yec, INPUT,CEA,QECA;

int N,I;

int ELP=0,EMP=0,ESP=0,EZE=0,ESN=0,EMN=0,ELN=0;

int CELP=0,CEMP=0,CESP=0,CEZE=0,CESN=0,CEMN=0,CELN=0;

N=49;
switch(*LINK)
{

case 1: /* E and CEA if link 1 */
E=XX[2];
if (' TRIG) CEA=0.0;
else CEA=atan2(E-LASTE1,0.01);
LASTEI1=E;
break;

case 2: /* Eand CEA if link 2 */
E=XX[5];
if('TRIG) CEA=0.0;
else CEA=atan2(E-LASTE2,0.01);
LASTE2=E;
break;

case 3: /* E and CEA if link 3 */
E=XX[8];
if (' TRIG) CEA=0.0;
else CEA=atan2(E-LASTE3,0.01);
LASTE3=E,
break;

default:
prind("Error In LINK \n");

QE=E*(6/(P1/3)), /* Quantize E and CEA */
QECA = CEA*(6/(P1/2.0));
if(QE>=6.0) /* Determine which linguistic values */
/* are applicable for quantized error */
QE = 6.0;
ELP=1;

}

if((QE>=4.0)&&(QE<6.0)) ELP=EMP=1,
if((QE>=2.0)&&(QE<4.0)) EMP=ESP=1;
if((QE>=0.0)&&(QE<2.0)) ESP=EZE=1,

if((QE>=-2.0)&&(QE<0.0)) EZE=ESN=1;
if((QE>=-4.0)&&(QE<-2.0)) ESN=EMN=1;
if((QE>-6.0)&&(QE<-4.0)) EMN=ELN=1;

if(QE<=-6.0)
QE =-6.0;
ELN = 1;
}
if(QECA>=6.0) /* Determine which linguistic values */
/* are applicable for quantized change */
QECA =6.0; /* in error angle *
CELP =1,

)

if((QECA>=4.0)&&(QECA<6.0)) CELP=CEMP=1;
if((QECA>=2.0)& &(QECA<4.0)) CEMP=CESP=1;
if((QECA>=0.0)&&(QECA<2.0)) CESP=CEZE=1;
if((QECA>=-2.0)&&(QECA<0.0)) CEZE=CESN=1;
if((QECA>=-4.0)&&(QECA<-2.0)) CESN=CEMN=1;
if((QECA>-6.0)&&(QECA<-4.0)) CEMN=CELN=1;
if(QECA<=-6.0)

{

QECA =-6.0;
CELN =1,
}
for(I=0;I<=N;I++) u[I]=UU[1]=0.0; /* Initialize membership function */
/* value and universe of discourse */
/* value */

/*** Rules for D=0.0, THETA=PHI=P1/4.0 ***/

If(ELP&&CELN) /* Rule 1: If ELP and CELN then */
/* contribution is ZE */
X =6.0;
Y =-6.0;

Ye = sin(PI/4*(QE-4.0));
Yec = sin(PI/4*(QECA+8.0));
u[1] = min(Ye,Yec);

52

UU[1] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +*D*tan(*PHI)/tan(*THETA);

if(UU[1]>6.0) UU[1] = 6.0;
} if(UU[1]<-6.0) UU[1] =-6.0;

if(ELP&&CEMN) /* Rule 2: If ELP and CEMN then */
/¥ contribution is SN */
X=6.0;

53

Y =-4.0;
Ye = sin(PI/4*(QE-4.0));
Yec = sin(PI/4*(QECA+6.0));
u[2] = min(Ye,Yec);
UU[2] = -tan(*PHI)*X/tan(*THETA) - tan(*PHD*Y + D*tan(*PHD)/tan(*THETA);
if(UU[2]>6.0) UU[2] = 6.0;
if(UU[2]<-6.0) UU[2] =-6.0;
}

if(ELP&&CESN) /* Rule 3: If ELP and CESN then */
/* contribution is MN */
X =6.0;
Y =-2.0;

Ye = sin(PI/4*(QE-4.0));
Yec = sin(Pl/4*(QECA+4.0));
u[3] = min(Ye,Yec);
UU[3] = -tan(*PHD)*X/tan(*THETA) - tan(*PHI)*Y +*D*tan(*PHI)/tan(*THETA);
if(UU[3]>6.0) UU[3] = 6.0;
if(UU[3]<-6.0) UU[3] = -6.0;
)

if(ELP&&CEZE) /* Rule 4: If ELP and CEZE then */
/* contribution is LN *f

X =6.0;

Y =0.0;

Ye = sin(PI/4*(QE-4.0));
Yec = sin(Pl/4*(QECA+2.0));
u[4] = min(Ye,Yec);
UU[4] = -tan(*PHI)*X/tan(*THETA) - tan(*PHD*Y +*D*tan(*PHI)/tan(*THETA);
if(UU[4]>6.0) UU[4] = 6.0;
if(UU[4]<-6.0) UU[4] = -6.0;
}

if(ELP& & CESP) /* Rule 5: If ELP and CESP then */
/* contribution is LN */

X =6.0;

Y =2.0;

Ye = sin(P1/4*(QE-4.0));
Yec = sin(PI/4¥(QECA-0.0));
u[5] = min(Ye,Yec);
UU[5] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +*D*tan(*PHI)/tan(*THETA);
if(UU[5]1>6.0) UU[5] = 6.0;
if(UU[5]<-6.0) UU[5] = -6.0;
)

if(ELP& & CEMP) /* Rule 6: If ELP and CEMP then */
{ /* contribution is LN */
X=6.0;
Y =4.0;

Ye = sin(Pl/4*(QE-4.0));
Yec = sin(PI/4*(QECA-2.0));
u[6] = min(Ye,Yec);

54

UU[6] = -tan(*PHD)*X/tan(*THETA) - tan(*PHI)*Y +*D*tan(*PHI)/tan(*THETA);
if(UU[6]>6.0) UU[6] = 6.0,
if(UU[6]<-6.0) UU[6] = -6.0;

}

if(ELP&&CELP) /* Rule 7: If ELP and CELP then */
{ /* contribution is LN */
X =6.0;
Y =6.0;

Ye = sin(Pl/4*(QE-4.0));
Yec = sin(PI/4*(QECA-4.0));
u[7] = min(Ye,Yec);
UU[7] = -tan(*PHD)*X/tan(*THETA) - tan(*PH)*Y +*D*tan(*PHI)/tan(*THETA);
if(UU[7]>6.0) UU[7] = 6.0;
if(UU[7]<-6.0) UU[7] = -6.0;
}

if(EMP&&CELN) /* Rule 8; If EMP and CELN then */
/¥ contribution is SP */
X =4.0;
Y =-6.0;

Ye = sin(PI/4*(QE-2.0));
Yec = sin(P1/4*(QECA+8.0));
u[8] = min(Ye,Yec);
UU[8] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +*D*tan(*PHI)/tan(*THETA);
if(UU[8]>6.0) UU[8] = 6.0;
if(UU[8]<-6.0) UU[8] = -6.0;
}

if(EMP&&CEMN) /* Rule 9: If EMP and CEMN then */
/* contribution is ZE *
X =4.0;
Y =-4.0;

Ye = sin(PI/4*(QE-2.0));
Yec = sin(PI/4*(QECA+6.0));
u[9] = min(Ye,Yec);
UU[9] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +*D*tan(*PHI)/tan(*THETA);
if(UU[9]>6.0) UU([9] = 6.0;
if(UU[9]<-6.0) UU[9] = -6.0;
1

if(EMP&&CESN) /* Rule 10: If EMP and CESN then */
{ /* contribution is SN */
X =4.0;
Y =-2.0;

Ye = sin(PI/4*(QE-2.0));

Yec = sin(PI/4*(QECA+4.0));

u[10] = min(Ye,Yec);

UU[10] = -tan(*PHI)*X/tan(*THETA) - tan(*PH)*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[10]>6.0) UU[10] = 6.0;

if(UU[10]<-6.0) UU[10] = -6.0;

}

if(EMP&&CEZE) /* Rule 11: If EMP and CEZE then */
/* contribution is MN */
X=4.0;
Y =0.0;

Ye = sin(PI/4*(QE-2.0));
Yec = sin(Pl/4*(QECA+2.0));
u[11] = min(Ye, Yec);
UU[11] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[11]>6.0) UU[11] = 6.0;
} if(UU[11]<-6.0) UU[11] =-6.0;

if(EMP&&CESP) /* Rule 12: If EMP and CESP then */
/* contribution is LN */
X =4.0;
Y =2.0;

Ye = sin(PI/4*(QE-2.0));
Yec = sin(PI/4*(QECA+0.0));
u[12] = min(Ye,Yec);
UU[12] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[12]>6.0) UU[12] = 6.0;
if(UU[12]<-6.0) UU[12] = -6.0;
}

if(EMP& & CEMP) /* Rule 13: If EMP and CEMP then */
/* contribution is LN */

X =4.0;

Y =4.0;

Ye = sin(PI/4*(QE-2.0));
Yec = sin(PI/4*(QECA-2.0));
u[13] = min(Ye,Yec);
UU[13] = -tan(*PHI)*X/tan(*THETA) - tan(*PHD*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[13]>6.0) UU[13] =6.0;
if(UU[13]<-6.0) UU[13] =-6.0;
}

if(EMP&&CELP) /* Rule 14: If EMP and CELP then */
/* contribution is LN *f
X =4.0;
Y =6.0;

Ye = sin(Pl/4*(QE-2.0));

Yec = sin(PI/4*(QECA-4.0));

u[14] = min(Ye,Yec);

UU[14] = -tan(*PHI)*X/tan(*THETA) - tan(*PHD*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[14]>6.0) UU[14] = 6.0;

if(UU[14]<-6.0) UU[14] =-6.0;

55

}

if(ESP&&CELN) /* Rule 15: If ESP and CELN then */
/* contribution is MP */
X=20;
Y =-6.0;

Ye = sin(PI/4*(QE-0.0));
Yec = sin(PI/4*(QECA+8.0));
u[15] = min(Ye,Yec);
UU[15] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[15]>6.0) UU[15] = 6.0;
\ if(UU[15]<-6.0) UU[15] = -6.0;

if(ESP&&CEMN) /* Rule 16: If ESP and CEMN then */
{ /* contribution is SP */
X=2.0;
Y =-4.0;

Ye = sin(PI/4*(QE-0.0));
Yec = sin(Pl/4*(QECA+6.0));
u[16] = min(Ye,Yec);
UU[16] = -tan(*PHI)*X/tan(*THETA) - tan(*PHD*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[16]>6.0) UU[16] = 6.0;
if(UU[16]<-6.0) UU[16] = -6.0;
}

if(ESP&&CESN) /* Rule 17: If ESP and CESN then */
/* contribution is ZE */
X=2.0;
Y =-2.0;

Ye = sin(P1/4*(QE-0.0));
Yec = sin(PI/4*(QECA+4.0));
u[17] = min(Ye,Yec);
UU[17] = -tan(*PHD*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[17]>6.0) UU[17] = 6.0;
if(UU[17])<-6.0) UU[17] = -6.0;
}

if(ESP&&CEZE) /* Rule 18: If ESP and CEZE then */
/¥ contribution is SN */

X=20;

Y =0.0;

Ye = sin(PI/4*(QE-0.0));

Yec = sin(PI/4*(QECA+2.0));

u[18] = min(Ye,Yec);

UU[18] = -tan(*PHD)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[18]>6.0) UU[18] = 6.0;

if(UU[18]<-6.0) UU[18] = -6.0;

56

}

if(ESP&&CESP) /* Rule 19: If ESP and CESP then */
/* contribution is MN */
X =2.0;
Y =2.0;

Ye = sin(PI/4*(QE-0.0));

Yec = sin(Pl/4*(QECA+0.0));

u[19] = min(Ye,Yec);

UU[19] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[19]>6.0) UU[19] = 6.0;

if(UU[19]<-6.0) UU[19] = -6.0;

if(ESP& & CEMP) /* Rule 20: If ESP and CEMP then */
/* contribution is LN */

X =2.0;

Y =4.0;

Ye = sin(Pl/4*(QE-0.0));

Yec = sin(PI/4*(QECA-2.0));

u[20] = min(Ye,Yec);

UU[20] = -tan(*PHI)*X/tan(*THETA) - tan(*PHD*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[20]>6.0) UU[20] = 6.0;

if(UU[20]<-6.0) UU[20] = -6.0;

if(ESP&&CELP) /* Rule 21; If ESP and CELP then */
/* contribution is LN */

X =20

Y =6.0;

Ye = sin(PI/4*(QE-0.0));
Yec = sin(PI/4*(QECA-4.0));
u[21] = min(Ye,Yec);
UU[21] = -tan(*PHD*X/tan(*THETA) - tan(*PHD)*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[211>6.0) UU[21] =6.0;
if(UU[21]<-6.0) UU[21] = -6.0;
}

if(EZE&&CELN) /* Rule 22: If EZE and CELN then */
/* contribution is LP */
X =0.0;
Y =-6.0;

Ye = sin(PI/4*(QE+2.0));

Yec = sin(PI/4*(QECA+8.0));

u[22] = min(Ye,Yec);

UU[22] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

57

if(UU[22]>6.0) UU[22] = 6.0;
} if(UU[22]<-6.0) UU[22] = -6.0;

if(EZE&&CEMN) /* Rule 23: If EZE and CEMN then */
{ /* contribution is MP */
X =0.0;
Y =-4.0;

Ye = sin(PI/4*(QE+2.0));
Yec = sin(PI/4*(QECA+6.0));
u{23] =min(Ye,Yec);
UU[23] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[23]>6.0) UU[23] = 6.0;
} if(UU[23]<-6.0) UU[23] = -6.0;

if(EZE&&CESN) /* Rule 24: If EZE and CESN then */
/* contribution is SP */
X =0.0;
Y =-2.0;

Ye = sin(PI/4*(QE+2.0));
Yec = sin(PI/4*(QECA+4.0));
u[24] = min(Ye,Yec);
UU[24] = -tan(*PHI)*X/tan(*THETA) - tan(*PHD*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[24]>6.0) UU[24] = 6.0;
| if(UU[24]<-6.0) UU[24] = -6.0;

if(EZE& & CEZE) /* Rule 25: If EZE and CEZE then */
/* contribution is ZE */
X=0.0;
Y =0.0;

Ye = sin(PI/4*(QE+2.0));
Yec = sin(PI/4*(QECA+2.0));
u[25] = min(Ye,Yec);
UU[25] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[25]>6.0) UU[25] = 6.0;
if(UU[25]<-6.0) UU[25] = -6.0;
)

if(EZE& & CESP) /* Rule 26: If EZE and CESP then */
[* contribution is SN */
X =0.0;
Y =20

Ye = sin(PI/4*(QE+2.0));

Yec = sin(PI/4*(QECA+0.0));

u[26] = min(Ye,Yec);

UU[26] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

58

if(UU[26]>6.0) UU[26] = 6.0;
} if(UU[26]<-6.0) UU[26] = -6.0;

if(EZE&&CEMP) /* Rule 27: If EZE and CEMN then */
{ /* contribution is MN */
X =0.0;
Y =4.0;

Ye = sin(PI/4*(QE+2.0));
Yec = sin(PI/4*(QECA-2.0));
u{27] = min(Ye,Yec),
UU[27] = -tan(*PHD)*X/tan(*THETA) - tan(*PHD*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[27]>6.0) UU[27] = 6.0;
| if(UU[27]<-6.0) UU[27] = -6.0;

if(EZE& & CELP) /* Rule 28: If EZE and CELP then */
/* contribution is LN */

X =0.0;

Y =6.0;

Ye = sin(PI/4*(QE+2.0));
Yec = sin(Pl/4*(QECA-4.0));
u[28] = min(Ye,Yec);
UU[28] = -tan(*PHD)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[28]>6.0) UU[28] = 6.0;
if(UU[28]<-6.0) UU[28] = -6.0;
}

if(ESN&&CELN) /* Rule 29: If ESN and CELN then */
/* contribution is LP */

X=-2.0;

Y =-6.0;

Ye = sin(PI/4*(QE+4.0));
Yec = sin(PI/4*(QECA+8.0));
u[29] = min(Ye,Yec);
UU[29] = -tan(*PHI)*X/tan(*THETA) - tan(*PHD)*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[29]1>6.0) UU[29] = 6.0;
if(UU[29]<-6.0) UU[29] = -6.0;
}

if(ESN&&CEMN) /* Rule 30: If ESN and CEMN then */
/* contribution is LP */

X=-20;

Y =-4.0;

Ye = sin(PI/4*(QE+4.0));

Yec = sin(PI/4*(QECA+6.0));

u[30] = min(Ye,Yec);

UU[30] = -tan(*PHD*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[30]>6.0) UU[30] = 6.0;
if(UU[30]<-6.0) UU[30] = -6.0;

if(ESN&&CESN) /* Rule 31: If ESN and CESN then */
{ /* contribution is MP */
X=-20
Y =-20;

Ye = sin(Pl/4*(QE+4.0));
Yec = sin(PI/4*(QECA+4.0));
u[31] = min(Ye,Yec);
UU[31] = -tan(*PH)*X/tan(*THETA) - tan(*PHD*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[31]>6.0) UU[31] =6.0;
if(UU[31]<-6.0) UU[31] =-6.0;
}

if(ESN&&CEZE) /* Rule 32: If ESN and CEZE then */
/* contribution is SP */

X=-20;

Y =0.0;

Ye = sin(Pl/4*(QE+4.0));
Yec = sin(PI/4*(QECA+2.0));
u[32] =min(Ye,Yec);
UU[32] = -tan(*PHI)*X/tan(*THETA) - tan(*PHD*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[32]>6.0) UU[32] = 6.0;
| if(UU[32]<-6.0) UU[32] = -6.0;

if(ESN&&CESP) /* Rule 33: If ESN and CESP then */
J* contribution is ZE */

X=-20;

Y =20

Ye = sin(PI/4*(QE+4.0));
Yec = sin(PI/4*(QECA+0.0));
u[33] =min(Ye,Yec);
UU[33] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[33]>6.0) UU[33] = 6.0;
| if(UU[33]<-6.0) UU[33] = -6.0;

if(ESN&&CEMP) /* Rule 34: If ESN and CEMP then */
{ /* contribution is SN */
X =-20;
Y =4.0;

Ye = sin(Pl/4*(QE+4.0));

Yec = sin(PI/4*(QECA-2.0));

u[34] = min(Ye,Yec);

UU[34] = -tan(*PHI)*X/tan(*THETA) - tan(*PHD*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[34]>6.0) UU[34] = 6.0;
if(UU[34]<-6.0) UU[34] = -6.0;

iIf(ESN&&CELP) /* Rule 35: If ESN and CELP then */
/* contribution is MN */
X=-2.0;
Y =6.0;

Ye = sin(PI/4*(QE+4.0));
Yec = sin(PI/4*(QECA-4.0));
u[35] = min(Ye,Yec);
UU[35] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[35]>6.0) UU[35] = 6.0;
} if(UU[35]<-6.0) UU[35] =-6.0;

iIf(EMN&&CELN) /* Rule 36: If EMN and CELN then */
/¥ contribution is LP */
X =-4.0;
Y =-6.0;

Ye = sin(PI/4*(QE+6.0));
Yec = sin(Pl/4*(QECA+8.0));
u[36] = min(Ye,Yec);
UU[36] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[36]>6.0) UU[36] = 6.0;
} if(UU[36]<-6.0) UU[36] = -6.0;

if(EMN&&CEMN) /* Rule 37: If EMN and CEMN then*/
{ /* contribution is LP */
X =-40;
Y =-40;

Ye = sin(PI/4*(QE+6.0));
Yec = sin(PI/4*(QECA+6.0));
u[37] = min(Ye,Yec);
UU[37] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[37]>6.0) UU[37] = 6.0;
| if(UU[37]<-6.0) UU[37] = -6.0;

If(EMN&&CESN) /* Rule 38: If EMN and CESN then */
/* contribution is LP */
X=-4.0;
Y =-2.0;

Ye = sin(PI/4*(QE+6.0));

Yec = sin(PI/4*(QECA+4.0));

u[38] = min(Ye,Yec);

UU[38] = -tan(*PHI)*X/tan(*THETA) - tan(*PHD*Y +
*D*tan(*PHI)/tan(*THETA);

61

62

if(UU[38]>6.0) UU[38] = 6.0;
if(UU[38]<-6.0) UU[38] = -6.0;

If(EMN&&CEZE) /* Rule 39: If EMN and CEZE then */
{ /* contribution is MP */

X =-40;

Y =0.0;

Ye = sin(PI/4*(QE+6.0));
Yec = sin(PI/4*(QECA+2.0));
u[39] = min(Ye,Yec);
UU[39] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[39]>6.0) UU[39] = 6.0;
] if(UU[39]<-6.0) UU[39] = -6.0:

if(EMN&&CESP) /* Rule 40: If EMN and CESP then */
/* contribution is SP */
X =-4.0;
Y =2.0;

Ye = sin(PI/4*(QE+6.0));
Yec = sin(PI/4*(QECA+0.0));
u{40] = min(Ye,Yec);
UU[40] = -tan(*PHI)*X/tan(*THETA) - tan(*PHD*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[40]>6.0) UU[40] = 6.0;
} if(UU[40]<-6.0) UU[40] = -6.0;

if(EMN&&CEMP) /* Rule 41: If EMN and CEMP then*/
* contribution is ZE */
X=-4.0;
Y =4.0;

Ye = sin(PI/4*(QE+6.0));
Yec = sin(PI/4*(QECA-2.0));
u[41] = min(Ye,Yec);
UU[41] = -tan(*PHI)*X/tan(*THETA) - tan(*PHD*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[41]>6.0) UU[41] = 6.0;
if(UU[41]<-6.0) UU[41] = -6.0;
}

if(EMN&&CELP) /* Rule 42: If EMN and CELP then */
/* contribution is SN */
X =-40;
Y =6.0;

Ye = sin(PI/4*(QE+6.0));

Yec = sin(Pl/4*(QECA-4.0));

u[42] = min(Ye,Yec);

UU[42] = -tan(*PHI*X/tan(*THETA) - tan(*PHD*Y +
*D*tan(*PHI)/tan(*THETA);

63

if(UU[42]>6.0) UU[42] = 6.0;
} if(UU[42]<-6.0) UU[42] = -6.0;

if(ELN&&CELN) /* Rule 43: If ELN and CELN then */
/¥ contribution is LP */
X =-6.0;
Y =-6.0;

Ye =sin(Pl/4*(QE+8.0));
Yec = sin(PI/4*(QECA+8.0));
u[43] = min(Ye,Yec);
UU[43] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[43]>6.0) UU[43] = 6.0;
} if(UU[43]<-6.0) UU[43] =-6.0;

if(ELN&&CEMN) /* Rule 44: If ELN and CEMN then */
/* contribution is LP */
X =-6.0;
Y =-4.0;

Ye = sin(PI/4*(QE+8.0));
Yec = sin(PI/4*(QECA+6.0));
u[44] = min(Ye,Yec);
UU[44] = -tan(*PHI)*X/tan(*THETA) - tan(*PHD*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[44]>6.0) UU[44] = 6.0;
if(UU[44]<-6.0) UU[44] = -6.0;
}

if(ELN&&CESN) /* Rule 45: If ELN and CESN then */
/* contribution is LP */
X =-6.0;
Y =-2.0;

Ye = sin(P1/4*(QE+8.0));
Yec = sin(PI/4*(QECA+4.0));
u[45] = min(Ye,Yec);
UU[45] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[45]>6.0) UU[45] = 6.0;
if(UU[45]<-6.0) UU[45] = -6.0;
}

if(ELN& & CEZE) /* Rule 46: If ELN and CEZE then */
/* contribution is LP */
X =-6.0;
Y =0.0;

Ye = sin(PI/4*(QE+8.0));

Yec = sin(PI/4*(QECA+2.0));

u[46] = min(Ye,Yec);

UU[46] = -tan(*PHI)*X/tan(*THETA) - tan(*PHD*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[46]>6.0) UU[46] = 6.0;
if(UU[46]<-6.0) UU[46] = -6.0;

If(ELN&&CESP) /* Rule 47: If ELN and CESP then */
/¥ contribution is MP */

X =-6.0;

Y =2.0;

Ye = sin(PI/4*(QE+8.0));
Yec = sin(PI/4*(QECA-0.0));
u[47] = min(Ye,Yec);
UU[47] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[47]>6.0) UU[47] = 6.0,
} if(UU[47]<-6.0) UU[47] = -6.0;

if(ELN& & CEMP) /* Rule 48: If ELN and CEMP then */
{ /* contribution is SP */
X =-6.0;
Y =4.0;

Ye = sin(PI/4*(QE+8.0));
Yec = sin(PI/4*(QECA-2.0));
u[48] = min(Ye,Yec);
UU[48] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[48]>6.0) UU[48] = 6.0;
if(UU[48]<-6.0) UU[48] = -6.0;
}

if(ELN&&CELP) /* Rule 49: If ELN and CELP then */
{ /* contribution is ZE */
X=-6.0;
Y =6.0;

Ye = sin(PI/4*(QE+8.0));
Yec = sin(Pl/4*(QECA-4.0));
u[49] = min(Ye,Yec);
UU[49] = -tan(*PHI*X/tan(*THETA) - tan(*PHD*Y +
*D*tan(*PHI)/tan(*THETA);
if(UU[49]>6.0) UU[49] = 6.0;
if(UU[49]<-6.0) UU[49] =-6.0;
}

for(I=1;I<=N;I++) /* Quantized input using approximate = */
{ /* center of gravity method */
NUM = NUM+u[I]*UU[I];
DEN = DEN+u[I];
}

if(DEN<=0.0001)&&(DEN>=0.0)) DEN = 0.0001; /* Division by zero protection */
if((DEN>=-0.0001)&&(DEN<0.0)) DEN = -0.0001;

INPUT = NUM/DEN; /* Scaled input */

if(*LINK==1) fprintf(file3,"%f %f\n",QE,QECA);
if*LINK==2) fprintf(file4,"%f %f\n",QE,QECA);
if(*LINK==3) fprintf(file5,"%f %f\n",QE,QECA);

TORQUE = INPUT(*TOR_MAX/6.0); /* Actual input */

/*

PURPOSE: To approximate the steady-state error of the system by
EBARA3/(VSQBAR + EBARA2)

EBAR =E + ESUM*LAMBDA

VSQBAR = VA2 + VELSQSUM*LAMBDA
LAMBDA = forgetting factor

ESUM = previous EBAR

VSQSUM = previous VSQBAR

E =error

V = velocity error

where

AUTHOR: Darrell L. Gerber
DATE: 4/21/93

VARIABLES: X: System states
LINK: Link being estimated
SSE: Steady-state error estimate for LINK
ERROR: Current error in position
VEL_ERROR: Current error in velocity
ERROR_BAR: EBAR
VEL_ERROR_BAR: VSQBAR

*/
void Steady_State_Error(double X[NEQ+1],int *LINK,double *SSE)
double ERROR,VEL_ERROR,LAMBDA,ERROR_BAR,VEL_ERROR_BAR:
switch(*LINK)
{ case 1:
ERROR = X[2];

VEL_ERROR = X[3];
LAMBDA =0.5;

65

ERROR_SUM1 = LAMBDA*ERROR_SUM1 + ERROR;

VELSQ_ERROR_SUMI1 = LAMBDA*VELSQ_ERROR_SUMI1 +
VEL_ERROR*VEL_ERROR;

ERROR_BAR = ERROR_SUMI;

VEL_ERROR_BAR = VELSQ_ERROR_SUMI;

break;

case 2:
ERROR = X][5};
VEL_ERROR = X[6];
LAMBDA =0.5;
ERROR_SUM2 = LAMBDA*ERROR_SUM?2 + ERROR;
VELSQ_ERROR_SUM2 = LAMBDA*VELSQ_ERROR_SUM2 +
VEL_ERROR*VEL_ERROR;
ERROR_BAR = ERROR_SUM2;
VEL_ERROR_BAR = VELSQ_ERROR_SUM2;
break;

case 3:
ERROR = X[8];
VEL_ERROR = X[9];
LAMBDA = 5;
ERROR_SUM3 = LAMBDA*ERROR_SUM3 + ERROR;
VELSQ_ERROR_SUM3 = LAMBDA*VELSQ_ERROR_SUMS3 +
VEL_ERROR*VEL_ERROR;
ERROR_BAR = ERROR_SUM3;
VEL_ERROR_BAR = VELSQ _ERROR_SUMS3;
break;

default:
printf("Error In LINK \n");

}

*SSE = ERROR_BAR*ERROR_BAR*ERROR_BAR/(50.0*VEL_ERROR_BAR +
ERROR_BAR*ERROR_BAR);

PURPOSE: To use a SISO Fuzzy-Logic controller to determine
the necssary change in D based on the approximated
steady_state error.

AUTHOR: Darrell L. Gerber

DATE: 4/21/93

VARIABLES: SSE_RANGE: Maximum expected steady-state error

MAX_dD: Maximum allowed change in D
QSSE: Quantized steady-state error

SSLP: Steady-state error Large Positive
SSMP: Steady-state error Medium Positive
SSSP: Steady-state error Small Positive
SSZE: Steady-state error Zero

SSSN: Steady-state error Small Negative
SSMN: Steady-state error Medium Negative
SSLN: Steady-state error Large Negative

u: Membership function value

Uu: Universe of discourse value

NUM: Numerator of the input value

DEN: Denominator of the input value

Ye: Temp variable for the error membership
function

Yec: Temp variable for the change in error

membership function
INPUT: The quantized change in D

*/

void Adaptation(double *SSE,double *dD)

{
double SSE_RANGE,QSSE,u[S],UU[8],NUM=0.0,DEN=0.0,INPUT,MAX_dD;
int I, SSLP=0,SSMP=0,5SSP=0,SSZE=0,SSSN=0,SSMN=0,SSLN=0;

SSE_RANGE = 5.0, /* Set input/output ranges */
MAX_dD = 1.0;

QSSE = *SSE*6/SSE_RANGE; /* Quantize approximate steady-state error */
if(QSSE>=6.0) /* Determine applicable membership functions */

QSSE =6.0;
SSLP=1;

)

if((QSSE>=4.0)&&(QSSE<6.0)) SSLP=SSMP=1;
if((QSSE>=2.0)&&(QSSE<4.0)) SSMP=SSSP=1;
if((QSSE>=0.0)&&(QSSE<2.0)) SSSP=SSZE=1;
if((QSSE>=-2.0)&&(QSSE<0.0)) SSZE=SSSN=1;
if((QSSE>=-4.0)&&(QSSE<-2.0)) SSSN=SSMN=1;
if((QSSE>=-6.0)&&(QSSE<-4.0)) SSMN=SSLN=1;
if(QSSE<-6.0)

{
QSSE=-6.0;
SSLN=I;

)

67

for(I=1;1<=7;I++) u[I]=UU[I]=0.0;

if(SSLP)

{
u[1] = sin(PV/4.0%(QSSE-4.0));
) UU[1] = -6.0;

if(SSMP) /*

u[2] = sin(P1/4.0*(QSSE-2.0));
| UuU[2] = -4.0;

if(SSSP) /*

u[3] = sin(P1/4.0*(QSSE-0.0));
| UU(3] =-2.0;

if(SSZE) /*

u[4] = sin(P1/4.0*(QSSE+2.0));
} UuU[4] = 0.0;

if(SSSN) /*

u[5] = sin(PI/4.0%(QSSE+4.0));
UU[5] = 2.0;

if(SSMN) /*

{
u[6] = sin(P1/4.0*(QSSE+6.0));
| Uu[e6] = 4.0,

if(SSLN) /*

{
u[7] = sin(P/4.0%(QSSE+8.0));
} UU[7] = 6.0;

for(I=1;I<=7;I++) /*
{
NUM = NUM + u[T]*UULI};

DEN = DEN + u[I];
}

68

/* Initialize membership funtction value */

/* and Universe of Discourse value

/* Rule 1: If QSSE is LP then LN */

Rule 2: If QSSE is MP then MN */

Rule 3: If QSSE is SP then SN */

Rule 4: If QSSE is ZE then ZE */

Rule 5: If QSSE is SN then SP */

Rule 6: If QSSE is MN then MP */

Rule 7: If QSSE is LN then LP */

Approximate Center of Gravity Method */

*/

69

if(DEN<=0.0001)&&(DEN>=0.0)) DEN = 0.0001; /* Division by zero protection */
if(DEN>=-0.0001)&&(DEN<0.0)) DEN = -0.0001;

INPUT = NUM/DEN,; /* Quantized change in D */
*dD = INPUT*MAX_dD/6.0; /* Actual variation in D */

