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ABSTRACT

Permanent magnet excited linear alternators rated tens of kW and coupled to
free-piston Stirling engines are presently viewed as promising candidates for
long term generation of electric power in both space and terrestrial
applications. Series capacitive cancellation of the internal inductive reactance
of such alternators has been considered a viable way to both increase power
extraction and to suppress unstable modes of the thermodynamic oscillation.
Idealized toroidal and cylindrical alternator geometries are used here for a
comparative study of the issues of specific mass and capacitive tuning, subject
to stability criteria. The analysis shows that the stator mass of an alternator
designed to be capacitively tuned is always greater than the minimum achievable
stator mass of an alternator designed with no capacitors, assuming equal
utilization of materials ratings and the same frequency and power to a resistive
load. This conclusion is not substantially altered when the usually lesser
masses of the magnets and of any capacitors are added. Within the reported
stability requirements and under circumstances of normal materials ratings, this
study finds no clear advantage to capacitive tuning. Comparative plots of the
various constituent masses are presented versus the internal power factor taken

as a design degree of freedom. The explicit formulas developed for stator core,
coil, capacitor and magnet masses and for the degree of magnet utilization
provide useful estimates of scaling effects.





Lightweight Linear Alternators With and Without

Capacitive Tuning

Introduction

The steadystate power output of any practical alternator is limited by the

removal of heat due to electrical losses and by internal inductive reactance,

even if more shaft power were available and other limits were not approached.

In rotary machines ranging from laboratory size to large turbo and hydro
alternators this so-called synchronous reactance may be about 0.5 to over I per

unit.[1] Indeed, such a fractionally high reactive voltage drop is deemed not

entirely bad because it can reduce risk of damage to the alternator in case of

load fault currents.

However, in space power applications the need to reduce generating system mass,

and perhaps also volume, without sacrifice of efficiency is an important
consideration. Likewise important is the need to suppress alternator inductance

dependent unstable modes of oscillation in the free-piston Stirling engines

(FPSE) that are now serving as drivers for permanent magnet excited linear
alternators. Hence, series capacitive cancellation of the inductive reactance

of such thermodynamic oscillator driven alternators is thought to be a viable

way to increase the specific power (ref. [9], p. 8-18) and also to control
unstable modes (ref. [5], p. 79). Indeed, this approach has been implemented in

recently tested FPSE-driven linear alternator-resistive load configurations.
Alternator inductance thus becomes a sensitive parameter in tradeoffs involving

alternator and tuning capacitor mass, degree of magnet utilization, efficiency,

and power available to a load.

The purpose of this study is to provide an overview of these tradeoffs and an
estimate of trends in a setting of realistic ratings, while avoiding

engineering design details, excessive machine computation and possibly

misleading attempts at precision. The core observation is that the simple

circuit equation for a loaded and tuned alternator can be rewritten in terms of

power and exciting magnet and capacitor masses, provided one accepts a
simplifying assumption regarding capacitor mass. Basic magnetics laws are then

applied in the usual way to a single slot, permanent magnet excited linear
alternator to derive relations between masses, reactive voltage drops,

magnetization conditions, rated volt.amperes and power. Efficacy of capacitive

tuning may then be judged versus the added complexity from plots of stator,

magnet and capacitor masses as free parameters (e.g. the internal power factor

(IPF)) are varied within limits defined by stability and magnetization
constraints.

Precise evaluation of the effects on efficiency is not attempted here, because

normally in good high power designs one expects this to be a question of just
one or two percentage points out of say 90. The idealized models used in this

analysis are not capable of providing such fine resolution in efficiency.
However, checks are made to ensure that gross geometrical distortions, e.g.
extreme coil-to-core mass ratios, detrimental to efficiency are avoided.



FPSE-driven linear alternators rated tens of KWand excited by high energy
product samarium-cobalt magnets are considered promising candidates for
reliable and efficient long term generation of electric power in space.[2]
Although parameter values for illustrative plots were chosen to reflect
conditions representative of such a machine, it is felt that most of these
values, as well as modeling assumptions, are not overly specialized so as to
preclude useful general conclusions.

Magnet and Capacitor Mass Related to Equivalent Circuit Parameters.

Since a main objective of this study is to argue for trends in mass variation

with little given, apart from gross ratings and type of excitation, the simple

equivalent circuit shown in Fig. I is suitable. The alternator is represented

by a voltage source V_An in series with linear lumped elements. Magnet
parameters are at theY_eart of Vaen and the series inductance Ls. Hence, these

related quantities need to be st_d_ed in some detail. Electrical losses are

represented by a series resistance _ However, in a well designed machine
these losses are small compared to kVA rating and moreover, efficiency and

its variation is not the prime issue here. Hence, Rs will simply be ignored by
lumping it with the load. At the terminals of the machine the circuit is

completed through a tuning capacitor C in series with a resistive load RL. This

tuning is allowed to be partial in the sense that the IPF _ cos_(_gen ,T) _ 1,

including the case of no capacitor (i.e. C_®); that is, here "tuning" does not

imply resonance. This lets one explore fully the new degree of freedom

introduced by a series capacitor.

Both the exciting magnet mass Mm and the tuning capacitor mass M_ can be
related to the electrical quantities of Fig. I, and hence to eac_ other by the

circuit equation. The form and basis of these relations will now be indicated,

with details of the derivation of Mm from machine parameters given in Appendix
A.

The smallest possible capacitor mass is assumed to be proportional to the

reactive power Pc according to

Mc = Kc Pc = Kc 12 / (w C),

where _=2_f is the angular frequency and KC is a constant. An analysis[3] of

the ratings of several commercial ac power capacitors indicated that Eq. 1 is

at least a fair approximation over a limited frequency range. A Kc=3X10"
1 I

kgV- A" appears conservative, whereas half of this would be beyond today s

commercial technology.

(1)

Mm is involved through an equation relating the voltage drop VLs=WLs I, the

open circuit terminal voltage V , the maximum volt.ampere rating Pgen of thegen
machine, the ratio E of slot leakage voltage to V , the ratio K1 o7 gap. gen
leakage to magnet reaction inductances, ana a constant Km whose reciprocal

measures the magnet energy product per unit mass times the frequency and a gap
factor:

p- VLslVgen : [(I + KI) Km Pgen I Mm] + _-" (2)



Eq. 2 is obtained from Eqs. A20, A21 and A23, and is based on a linearized

magnetic circuit with geometrized leakage paths. The linearity assumption is

quite good for intrinsically square loop magnets, such as the Sm2Co 7.type, in
their normal region of use. Indeed, on the recoil line their permea_l lity is

only 3 or so percent above that of free space, making the body of the magnet
act in effect like a large air gap in a circuit of magnetically soft material

assumed not to be driven into saturation. Hidden in Eq. 2 is also the

assumption_that variations in magnet size are effected by uniform rescaling of
all of the magnet's and the gap's dimensions. This conveniently preserves

magnet shape and hence certain flux leakage ratios, but is felt not to be
destructive to subsequent arguments. Questions of magnet, pole shoe and gap

shape belong to machine design optimization studies[4], whereas here we are

using idealized geometry for a comparative study of variations in magnet size

to meet power factor, tuning or other conditions. Although magnet shape is
included as an adjustable parameter, there seems no reason to expect that

deviation from its normal optimum for a given magnet material and stator

configuration would pay significant dividends.

Relation Between Maqnet and Capacitor Masses

It remains here to relate Mm and Mc with the help of the circuital equation

12 RL2 + 12 (w Ls I_)2 2 (3)
(#C = vgen

written from Fig.l; note that the small Rs has not been distinguished from the
load. The alternator is assumed to be dellvering the maximum or rated power Pr

at rated current Ir. But as one might expect, the alternator's mass has

explicit dependence only on Pr, allowing some freedom in Ir, the load RL, the
internal V , and the IPF. Except for the IPF, which will serve as a free

ge fparameter, _ese degrees o freedom are, however, inessential to the analysis

as long as Eq. 3 is satisfied.

Eq. 3 can be rewritten in the form

a2 + (VL__s Pc )2 : 1, (4)

V e. Pgen

where a_IPF=IRJVgen. Substitutions from Eqs. I and 2 then produce the relation
sought between Mm and Mc. However, for calculations involving these masses it
is convenient to solve this relation for say Mc explicitly and also define new

symbols for recurrent groups of geometric and electrical quantities. Hence,
three new symbols are defined as follows:

Mmo _ [(I + KI) Kc Km]I/2 Pgen' (5)

I Kc_/_+- (E± _/i -a--2-) (I + KI) Km

i/2

(6)
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The contents of Eq. 4, when expressed in terms of Mc and Mm, then amounts to
the two equations

. Mmo
Mc-+ = (--G--- + 7+_) Mmo,

"'m

(7)

where the "+" case corresponds to I/(_C)>_L s or equivalently to T leading

_gen, and the "-" case to T lagging V . Thus when C is sufficiently largeto make inductive effects predominate _e capacitor mass is given by Mc_.

M¢ may decrease and approach zero, but clearly can not become negative. The "-"
case of Eq. 7 covers the contents of this observation in the inequality

Mm°

Tm +7_)_>0,
(8)

which when written out becomes

Pgen_>(C1- E)
Mm (I+ KI)Km

(g)

The special case of equality in Eq. 9 is important in its own right because it
corresponds to no capacitor (nc). Hence it is repeated below for emphasis:

( Mm )nc = (i + KI) Km (10)

Pgen (vli- _- E)

Qualitatively Eq. 10 states what one might expect: even if coil leakage

inductance were zero (E=O), one needs a large magnet to achieve an IPF close

to unity.

Approach to Evaluation of Capacitive Tuning Defined

In systems composed of diverse components often hard to quantify factors, such

as overall reliability, weigh heavily in final design. For multiyear space
missions, high alternator reliability must be achieved in a system requiring

low mass and possibly low volume. Alternator reliability is sensitive to

electrical insulation degradation due to the effects of temperature, radiation

and corona, and hence is likely to improve rapidly with advances in technology.

However, the mass of electromagnetic energy converters is tied to material

properties and magnetics principles less subject to rapid evolution. Therefore,

we choose to first compare the tuned and no-capacitor cases on the basis of

mass, and look for significant differences to justify the use of capacitors.

The above mentioned principles and properties fix rather hard lower bounds to

stator, magnet and capacitor mass, which can be incorporated using simple
models. If a mass advantage deriving from these basics exists in one case or

the other, then it must appear in any model faithful to these principles, even
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if it be simple and geometrized. Otherwise, the existence of such a mass
difference would rest on circumstantial complexities and would be of lesser

interest here.

Appendix B shows by two such geometrized models incorporating limits on flux
and current densities that the mass M of stator core plus copper coil varies

as the product of a fractional power _f the terminal volt.amperes Patland an
algebraic _function of a length ratio s; both fractional power and gebraic

function are geometry dependent. Moreover, at constant P. the ratio s is

adjustable to minimize M_. As tuning conditions (IPF) an_ magnet or capacitor
mass are varied within the constraint of Eq. 7, the shape factor s will

generally deviate from the value so which minimizes M. at constant P.. Indeed,
this may induce a significant deviation in M_ as the _ull range of the IPF is

explored. The varied tuning conditions may also have a significant effect on

the terminal voltage Vt, and hence on Ms through Pt" A detailed exposition of
these dependences is glven in the next section.

The models presented are thought to give the form of the dependence of Ms on Pt
and on s to sufficient accuracy for a comparative study. To get realistic

masses would require an increase in Ms by some practicability weighting factor,

and also would require mass allowances for capacitor associated hardware,

magnet transport cage or plunger, and so on. For comparison purposes, however,

such weightings will be assumed to play no decisive role.

Stator Mass Related to Internal Power Factor and Maqnet Mass

A. Parametrization of the stator mass.

Expressions (B14) and (B14') for the mass Ms of a bare stator consisting of a

magnetic core and a coil are derived for the geometrized configurations of
interlocked toroids and a long tube, respectively. They have the general form

Ms : Pt r F(s), (11)

where O<r<l, and the function F has a minimum at some value so of its argument.

r, F and so are geometry dependent.

An important point about stator mass and capacitive tuning follows from Eq. 11
and will be discussed in the section "Comparative Analysis of Stator Mass"

However, in order to make a quantitative assessment of the sensitivity to

parameter variation it is necessary to derive additional equations that express
the masses as functions of the degrees of freedom, a is chosen as the main free

parameter of variation. Choice of the magnet mass Mm as some function of a

gives an additional degree of freedom only in the tuned case. The development

of the necessary equations now follows.



B. Terminal volt.amperes.

Considering the external circuit, the definition of _ and Eq. 1, the terminal
voltage is

I 2] I/2V t = (Of Vgen )2 + (_--_-)

Mc 2]I/2= Vgen _12 + (Kc Pgen )

(12)

or equivalently,

Mc ) 2]I12Pt = Pgen a2 + ('Kc Pgen

i Mc 2]I/2=Pr + (KcPr)
(13)

in terms of volt.ampere products. This can also be deduced from the vector

diagram in Fig. 2. Note that Pr is always the real power, whether the

alternator is tuned (Mc>O) or not tuned (Mc=O). Eq. 7 can be used to eliminate

_ from Eq. 13, which transforms the above Pt to the form desired for use in. 11.

C. Shape scaling functions.

The shape factor s can likewise be expressed as an algebraic function involving

w, Pr, other parameters and materials ratings, and the degrees of freedom,
although now one is forced to specific geometries.

For the toroidal geometry the ratio Vt/Vgen is determined by Eqs. B5, A14, A8
and setting Xo=W/2:

Vt/Vgen = _ (I + K) Bs r22/(Am Br). (14)

Using Eq. Bll to eliminate r2 and Eq. 12 to eliminate Vt from Eq. 14 gives

(i + K) Bs (Ap Pt)I/2 s = Am Br[a2 + ( M c 2 ]1/2Kc Pge2 (15)

Finally Pt and AR are eliminated by Eq. 13 and Esq. B8, respectively, and the
result conveniently expressed as a formula for :



Jr (AmBr)2 a D (16)s2 =
_/-2 Kw (I + K) 2 Bs Pr

where

The analogous result in the cylindrical case is

Ir _o d r (Am Br) 3 D2 a

(s-l) 2 = Kw (I+K) 3 Bs2 k2 Pr

(17)

(18)

In these formulas for s the total cross-section Am of magnets of any one

orientation (see Fig. A1) is related to their volume _m only by the stated

convention that magnet shape shall be entered as an adjustable constant

independent of other degrees of freedom. Accordingly in the toroidal case one

can assume circular magnets of radius

rm = (Am/g)I/2 (19)

and specify their height to be

hm : 2 ah rm , (20)

where ah is the above mentioned constant. Introduction of the total magnet mass

Mm and its density Pm, along with Eqs. 19 and 20, gives

Am = _i/3 C 4 Mmpmah )2/3

In the cylindrical case the length L does not scale, and ah assumes the
meaning of a magnet height-to-width ratio. For this case

(21)

I L Mm 11/2 (22)Am = 2 Pm ah

These formulas for Am assume a single pair of oppositely oriented neighboring

magnets and consequently Mm=2Pm_- from the definitions. The usual practical

configuration of two pairs, whlc_ will be used later for making plots, is
covered by the transformation ah+2a h (see also Appendix A) with the above
definitions of Mm and Am maintained-

In the case of no capacitors, the magnet mass is given by Eq. 10. Using Eq. i0
along with Eq. 21, Eq. 16 for the toroidal geometry can be rewritten as



_T2/3Jr [#m (1 + KI)] 4/3 PrI/3 a2/3
s 2 : (23)

v_ ah4/3 _i/3 Kw (I + K) 2/3 Bs Br2/3 (_/1 -a -_ - _.)4/3

Similarly, Eq 18 for the cylindrical geometry can be rewritten as

(s i)2 2 IF Jr [#m (1 + KI)]3/2 (Pr/L)I/2 _ a )3/2
- -- , (24)

ah3/2 wI/2 Kw (1 + K) 3/2 Bs2 _/1 - _T _ _.

using Eqs. 10 and 22.

In the tuned case there exists the additional degree of freedom to trade off

Mm versus Mc, subject to the restriction imposed by Eq. 7. Mathematically, this
freedom means that one may choose Mm to be any physically acceptable function
of a and then find M_ from Eq. 7 along the inductive and capacitive branches.
However, as will be aiscussed, the particular choice M_=M_o is privileged in
that it minimizes (Mc+Mm). For this reason it may be h_lp_ul to write Mm in the
form

Mm(a) = R(a) Mmo(a), (25)

where R is any acceptable function of a or just a constant. D+ is then
determined for the two branches by the defining Eq. 17 and EqT 7:

D±2 = a2 + (R -I + 7±) 2 (i + KI) Km / Kc. (26)

Returning to Eqs. 16, 18, 21 and 22, the shape factors for the tuned case are
thus found to be

s+ 2 = (w Pr )I/3 Jr [IF Br #m (I + KI) Kc]2/3 a_i/3 R4/3
- 211/6 Kw Bs pm2/3 [a h (I + K)] 4/3 D_+

(27)

and

(s+ - I) 2 = IF Jr (#I/4 Br3/2 [#m (1 + KI) Kc]3/4 (Pr/L) 1/2 a_i/2 R3/2 D+2 (28)

- _ Kw aN3/2 Bs2 pm3/4 (1 + K)9/4

for the toroidal and cylindrical geometries, respectively. Along the inductive
branch the domain of a is restricted such that

R-I + 7- _ 0 , (29)

which is merely a restatement of Eq. 8. At the point of equality (i.e. Mc=O) in
Eq. 29 the inductive branch of the tuned MS versus a curve intercepts the no-
capacitor Ms curve.
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Comparative Analysis of Stator Mass

The stator mass of the models considered was found to be expressible in the
form of Eq. ii, where the function F has implicit dependence on the ratings
and parameters that determine power handling capacity, but has no direct
dependence on a or other degrees of freedom. These degrees of freedom enter
through the argument s of F, as was shown in the above section. It will now be
shown that the minimum achievable stator mass of a machine designed not to be
tuned is indeed the lowest possible stator mass. That is, a tuned design can
not be below it.

To prove this, first observe that the minimum stator mass in a design using no
capacitors (nc) is

(Ms)nc,min = prr F(So ) , (30)

where so is the point of minimum F(s), and the load power Pr appears because

P_=Pr for a resistive load in the nc case. Moreover, this minimum is
attainable because corresponding to so an acceptable ao always exists to

satisfy Eq. 23 or 24. The stator mass of a tuned (c) design can be written in

the form

(Ms) c = (Pt/Pr)r Prr F(s)

Since this F is the same as in the nc case, it follows that

(31)

Pr r F(s) >_ Pr r F(s o) = (Ms)nc,min •
(32)

As long as Mc#O, Eq. 13 implies

Pt > Pr , (33)

and hence that

(Pt/Pr)r > I , (34)

since r is positive. The conclusion

(Ms) c > (Ms)nc,min (35)

now follows from Eqs. 31, 32 and 34.

Indeed, the argument leading to Eq. 35 is unaffected by the choice of the
magnet mass in the tuned case because R(a) never enters into the argument.
Different magnet shapes ah may be chosen in the tuned and no-capacitor cases
and still conclude the same thing. This is so because these degrees of freedom
enter only through s, but have no effect on F itself. However, variation of
these degrees of freedom alters the shape of Ms(a) plots and shifts the points
where mass minimum is attained and where the tuned and no-capacitor curves

merge, lllustrations of these behaviors are given in Figs. 3A and 3B which
compare specific stator mass of the no-capacitor design as a function of a to
that of tuned designs, using representative values of parameters and ratings,
with _=0. For simplicity the R in Eq. 25 has been assigned various constant



values, and hence as Mc._Othe inductive (lower) branches of the tuned curves
terminate on the no-capacitor curve at various corresponding values of _ (cf.
commentafter Eq. 29). But regardless of R, no tuned curve can ever dip below
the minimumof the no-capacitor curve.

At the next level of sophistication, for each _ one can ask for that value of
R which minimizes either M , or even the total mass M_M+M+M Such a

S . m C" .
computatien determining the functlon R(a), and thereby _m(_), whlch for each

minimizes say M is numerically, although not algebraically, feasible. However,

the conclusion given by Eq. 35 remains of course the same. Presentation of the
results is deferred until after analysis of the magnet and capacitor masses.

Comparative Analysis of Magnet and Capacitor Mass

For the case of no tuning the specific magnet mass can be plotted from

(Mm)nc : (I + KI) Km (36)
Pr a(_/l - _-T- E) '

which is a trivial modification of Eq. 10. In the tuned case we consider the
sum of magnet and capacitor masses, writing it in the specific form

Mm Mmo
(Mm + Mc+) / Pr = (--_--- + _ + _*) Mmo/Pr

- '"mo Mm -
(37)

derived from Eq. 7, where

Mmo/Pr = [(I + KI) Kc Km]I/2 / (I . (38)

The LHS of Eq. 37 has a minimum at M =M with respect to variations in Mm. For• . m 0

Mm<Mmoit rises rapldly as Mm+O, while i_or increasing Mm the rise is
asymptotically linear except that in case of negative 7_(_) the Mm is bounded
from above in order to satisfy Eq. 8. It may be well to recall again that the

choice of Mm=M_o does not generally minimize the Ms , although the difference
may sometimes Re negligible, as illustrated in Fig. 3.

Fig. 4 shows plots comparing specific magnet mass in the no-capacitor case with
the minimized (Fig. 4A) and off-minimum (Fig. 4B) specific magnet plus
capacitor mass in the tuned case for the range of _ shown. Again representative
values were chosen for the ratings and parameters, and the coil leakage E has
been neglected. In each figure, three tuned curves have been drawn,
corresponding to Kc ranging from currently available values down to half of
those values. The value of the free space gap fringing flux ratio K_ chosen,
based on taking ah=I/3 in the cylindrical geometry, is likely closeF to reality
than the high flux leakage of a disk-shaped gap in the toroidal geometry. In

any case, if K_ is increased then all curves are raised and the minimum at

_ also tends_=i/_/2 in the no-capacitor curve sharpens. Deviation of Mm from m_ig. 4B.to raise the tuned curves, as is already known and illustrated i

i0



Although there is an apparent similarity to the analogous stator mass curves,

Fig. 4A shows that the magnet plus capacitor mass can dip slightly below the
minimum of the magnet mass for no tuning. The relative mass reduction afforded

by tuning is not impressive, unless for reasons such as engine stability or
limits on the allowed demagnetizing B-field swing AB it is necessary to operate

at an a close to unity in the no-capacitor case A decrease in K likewise
j • " C. .

produces unimpressive improvement within thls Mm=Mmo scheme, and Is finally

limited b% the allowed AB because Eq. 5 then forces the Mm to decrease also and
hence the AB to increase. Moreover, at the power levels considered here, these

magnet and capacitor mass reductions tend to be overshadowed by the ....

considerably larger stator mass. Therefore even in the total mass mlnlmlzlng
scheme to be discussed next, as much as a twofold reduction in Kc would still

give only a relatively minor reduction in M.

Minimum Total Mass - Results and Discussion

It is straight forward to find numerically, at each value of _, that value of

the magnet mass Mm which minimizes the total mass (Ms+Mm+Mc) in the tuned case.
This procedure thus determines the function R(_), as defined by Eq. 25, giving
a result different from the constant R=I that was shown to minimize (Mm+Mc).

The corresponding capacitor mass Mc(a) is then given by Eq. 7.

Such a computation was programmed for the toroidal geometry, using the mass

formulas developed for Ms, Mm and M_ and the results are presented in Fig. 5.
The total specific mass, Fig. 5A, the mass-minimized tuned case, has, as

expected, a behavior similar to that of the stator mass for various fixed R
plotted in Fig. 3A. The lower tuned curve in Fig. 5A starts at some point left
of the minimum on the no-capacitor curve and dips, as a increases, slightly

below that minimum before rising again to the point at resonance. The upper, or

capacitive, branch then rises monotonically as a decreases. This dip is
obviously minuscule and no significant mass reduction can be had by tuning,

provided one may design for operation at an a near the minimum on the no-

capacitor curve. Indeed, here a tuned design can have little mass advantage
unless the no-capacitor a needs to be above say 0.95. The corresponding magnet

and capacitor specific masses are shown in Figs. 5B and 5C, respectively.

Additional computations have shown that it is difficult to produce a

significant dip in the tuned inductive branch within reasonable variations of

the parameters. High magnetic fringing (ah increased to 0.5), reduced capacitor

specific mass (K_=1.5x10-"), doubling of power to 50 kW, and reduction of Bs to
i T had only a slight effect in this regard. The highest sensitivity was seen

for a reduction of Br to 0.7 T, but still the amount of dip was small. However,

reduction of both Bs and Br shifted the location of the no-capacitor minimum
toward lower a and increased the rise of the no-capacitor curve above the tuned

inductive branch. Hence if special circumstances, such as high temperature,

greatly reduce Bs or Br, and if stability requires a high no-capacitor _, then

capacitive tuning might offer a mass savings. For example, the stability of
free piston Stirling engines coupled to linear alternators has been reported to

depend both on the ratio # (Eq. 2) as well as on the value of any series

capacitance.[5] Maximum allowed values reported for # for various engines range
from 3 for a tuned case down to 0.5 for a no-capacitor case. Since
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/g = _/1 - aT (39)

in the no-capacitor case (see Fig. 2), an a of 0.9 is then entirely sufficient

to satisfy the lowest quoted upper limit on p. In Fig. 5A the minimum ordinate

on the inductive branch of tuned designs is only about 3% below the no-

capacitor mass at a=O.9. At this no-capacitor a and with Br reduced to 0.7 T,

but other_arameters the same as in Fig. 5, the numerical studies show that the

mass reduction gained by tuning increases to 114. If in addition the Bs is
reduced to I T, then one gets 16 %, as shown in Fig. 6. Moreover, from the

elementary magnetic circuit model leading to Eq. 2, one expects no particular

difficulties keeping p sufficiently small in the mass-minimized tuned scheme.

For the tuned case, Eq. 2 can be put in the form

p : [(I + KI) Km I Kc]I12 R-I + _- (40)

with the help of substitutions from Egs. 25 and 5. For the parameters used in

Fig. 5, one finds that [(I+KI)Km/Kc]I/2=O.80, while the minimizing function R is

plotted explicitly in Fig. 7 for several power levels. Thus roughly R_I.5,

giving p_0.53; note that tuning reduces the sensitivity of p to a. The

similarly behaving cylindrical model is expected to essentially support the
same conclusions.

Except in the case of the nc magnet mass, the a at which the total specific
mass is least can not be found by simple algebra in the present models. As

previously discussed, this a may even be excluded by stability considerations.
Nevertheless, the value of a for minimum M is relevant to design optimization

studies. In contrast to treating a as a design degree of freedom, there exists

an alternative approach in the nc case that prescribes a at the outset. Writing

the nc load power as

Pr = Vgen I a = V_ena _i - a_ (41)
Xs

one sees that at constant V_en/Xs the Pr is maximum at a=l/v/2. Equivalently,

the quantity V_en/(Pr XS) is_minimized. Based on this reasoning, an a=1/_/2

working rule h&s been used in linear alternator optimization studies. J6] To see

this rule's significance in the present context, let us neglect E and rearrange

Eq. 2 into the form

V_en - Mm/Pr (42)
Pr Xs (i + KI) Km

Hence at least for negligible E, this rule for maximum Pr is equivalent to
minimizing only the specific magnet mass Mm/Pr at constant (I+KI)K m. For as
shown already, the a for least nc stator mass depends on the parameters and
ratings, and hence does not follow this rule; Fig. 3 clearly shows that the
minimum specific stator mass is generally not at a=I/_2. As one considers
progressively derated parameters, this rule can become even less relevant to
minimum total mass. In the mass-minimized tuned cases computed, the minimum
total mass was somewhere on the inductive branch, but never at resonance (a=1).
However, the precise value of a for minimum M was not found.
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One may of course deviate from minimum mass tuning, shifting more mass into
core or coil such as to improve efficiency or to alter the magnet reaction or

some other parameter. The only hard restriction is Eq. 8, i.e. the non-

negativity of the capacitor mass. Although the sensitivity of the various

parameters to such off-minimum deviation has not been studied, the equations

developed here cover that mode as well.

Scalinq Effects - Results and Discussion

A brief numerical investigation of the sensitivity to variations in some of

the parameters was carried out to verify that the models produce physically

reasonable magnitudes and trends. To this end, Fig. 8 is a repeat of Fig. 5A

for a wide range of selected powers, extending from 12 kW to 100 kW. At
constant a, the total specific mass decreases with increasing power in a way
similar to the mass rule for an electric transformer.[7] Here, however, in the

nc case a constant specific magnet mass, given by Eq. 36, gets added to the

transformer-like stator specific mass given by the general form of Eq. 11.

Inspection of Eqs. B14 and B8 reveals that Mo/P_ varies as (j_p i/3)-3/4 in the
• _ • i ° °

nc toroldal model and as [Jr(Pr/L)I/2] 2/3 in the nc cyllndrlcal'model. The

s-dependence, residing in the function F(s) in Eq. 11, imposes additional

modulation on these powers because s too is a function of exactly JrPrI/3 or of

Jr(Pr/L) I/2, according to Eqs. 23 and 24, respectively. When capacitors are

used the dependence on Jr and P_ remains as above. Even though then Pt=DPr/a
and s is given by either Eq. 27for Eq. 28, the explicit form for D in Eq. 26

shows no dependence on J or P Thus Fig. 8 also provides implicit information
• . _ r"

on the scaling of speclflc mass with Jr" This also shows that in the toroidal

model the sensitivity of Ms/P r to Jr exceeds its sensitivity to P_ by cubic
power. Fig. 9 is presented to emphasize the generally great sens{tivity of the

total mass to current density.

The well known and substantial reduction in specific magnetics mass of
alternators and transformers theoretically achievable by increasing the
frequency can be thought of as due to reduced flux swing. In the toroidal model
this effect varies as f-3/4 while other effects of f get expressed through the

shape scaling function s, the terminal volt.amperes in the tuned case, and the
magnet mass. Examination of the frequency-resolved family of plots in Fig. i0
shows that for a fixed _ near the minima a function of the form af-3/4+bf-l,

with a and b constants, can approximate the nc ordinates quite well, at least
over the limited frequency range. Mechanical limitations alone may make
frequencies much in excess of I00 Hz impractical for l-slot linear alternators
rated tens of kW. And the potential mass savings can be lost if consequently Bs
must be reduced in order to control core and stray eddy current losses. With

regard to modest increases in frequency, the models on hand predict a mass
reduction at nearly the -3/4 power. To ensure this, s, or equivalently the
core-to-coil mass ratio, should not be allowed to deviate far from s_, for
otherwise F(s) will grow, tending to increase the mass. The nc toroi_al formula
for s, i.e. Eq. 23, indicates that to keep s fixed as w increases, one must
increase a such as to keep a/[_ I_(I-_2)] a constant. This accounts for the
shift to the right of the nc curve minima in Fig. I0. The nc magnet mass, being

proportional to I/(_l-e 2 ), will then still decrease with increasing w for
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a>I/_2, although at a rate less than w"1",this is so because a_1-_a decreases

with increasing a for a>1/_2. Qualitatively, to save mass, a higher frequency

nc design should be at a lower p.

The shifting of the nc specific mass curve minima toward lower a with
increasing power (Fig. 8) and toward higher a with increasing frequency (Fig.
i0) results primarily from mass redistribution in the stator, and is effected
through the argument Pr/w of s. The s-related and physically more interesting
core-to-winding mass ratio as given by

Mcore _ Pc s2 (43)

McoiI Pw

for the toroidal case and by

Mcore_ Pc (s 2 - I) (44)
Mcoil Pw

for the cylindrical case. A plot of Eq. 43, with power as a parameter, is
presented in Fig. II. Its purpose is to support the model by showing that
designs otherwise reasonable according to previous figures also produce
reasonable mass ratios.

Reference designs by which to judge the absolute validity of this simplified
modeling of a linear alternator are scarce in the literature. An existing 12.5
kW linear alternator labeled SPDE[9] and a paper study of a similar 25 kW one
labeled RSSE[IO] are described in unpublished reports. Both of these resonantly
tuned machines were designed with the help of flux mapping codes, although not
likely to the criteria invoked in this report. A design by Nasar and Chen[6] is
based on detailed geometric approximation of flux paths[ll], and is numerically
optimizedwith respect to a weighted sum of mass and electrical losses, subject
to a=I/{2 (cf. Eq. 41 and discussion) and to penalty functions on the
constraints. Table I compares the results, available or estimated, for the
above three machines with corresponding predictions by the toroidal and
cylindrical models. These models do about equally well and best in regard to
coil, magnet and capacitor masses, but they underestimate by a factor of 2 or
so the core mass, the core-to-coil mass ratio and #. Underestimation of core
mass is not surprising because the models assume a uniform stator flux density
and no pole shoes. Shifting of mass between coil and core can also be due to
weighting of efficiency or some unreported design criteria in the case of the
SPDE and RSSE.

Magnet Utilization - Results and Discussion

The peak demagnetizing field that a magnet can tolerate before loss of
intrinsic magnetic moment sets in is well known to decrease rapidly with rising
temperature. At 300 °C even the presently available high energy 2-17 type Sm-Co
magnets have usually lost over half of their room temperature intrinsic
coercivity.[12,13] Therefore the demagnetizing field, or the corresponding dip
(AB) of the B-field below Br, is an important factor in evaluation and
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comparison of alternator designs, especially at high temperature. The naive
analysis of demagnetizing forces in Appendix A clearly falls short of
accurately describing a magnet's field environment. Nevertheless the
implications of this analysis are worth considering for they point up the
consequent physics in a clear way. The expected result that a large magnet
suffers little reaction is embodied in the equation

_B Km Pgen K.... + _ (45)
Br I+K Mm I+K'

which is a combination of Eqs. A27, A22 and A24. Then in the nc case Eq. I0
applies, giving

AB (_/I - a2 - _-) K (46)

Br (I + K)(I + KI) I + K

and in the tuned case all a dependence can be absorbed in R(a) by using Eqs.

25 and 5 to put Eq. 45 into the form

AB _ I [ Km ] I/2 K+_ (47)Br (i + K) R(a) (I + KI) Kc i + K

In this analysis the part of a magnet under a stator pole face undergoes a
reaction which is the sum of the gap reaction K/(I+K) and a load power
reaction, while the rest of the magnet is ignored. For large Mm the gap
reaction predominates. As a is reduced in the nc case, the load reaction grows,
but remains bounded. The behavior of the nc magnet reaction between its upper
and lower bounds is presented in Fig. 12 for several values of the gap flux

fringing ratio K t and zero coil leakage _. The influence of flux fringing on
magnet reaction clearly diminishes with increasing a.

Another informative way to display the contents of Eq. 46 is to eliminate a by
using Eq. 36 and plot AB/B r against Mm/Pr, as is done in Fig. 13. The lower
branch of this plot, where a is increaslng and AB__/Br is decreasing with
increasing Mm/Pr, is the one of interest if a>I/_2 is required.

When minimum mass capacitive tuning is implemented, the result is a magnet
reaction less sensitive to a, because then R in Eq. 47 is not a strongly
varying function of a (see Fig. 7). Using the cylindrical model and the
previous reference set of parameters, Fig. 14 compares the a-sensitivity of
AB/B r of the nc to the tuned case for the same KL. Although the capacitive
branch has the lower magnet reaction corresponding to its greater magnet mass
(cf. Fig. 5B), the reaction varies but little. In both cases the magnet
reaction shown is well within the capabilities of modern, high-coercive rare
earth-cobalt magnets, even at 300 °C.[13] A plot analogous to Fig. 13 can be
done also for the minimum mass tuned case, but is not presented here.

High magnet temperature might require the reduction of the magnet reaction by

upping the magnet mass, or conversely, one might decide to make the magnets
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work harder by reducing their mass. In the nc case such freedom to alter the
magnet mass at a fixed a does not exist, unless one changes the magnet
height-to-width ratio ah. If for some reason a lower a is unacceptable, then
the only way to increase the normalized demagnetization reaction AB/B r in Eq.
46 (or to decrease Mm/Pr in Eq. 36) is to reduce the gap flux fringing KI by
decreasing ah. Not much is gained once KI becomes small compared to unity,
except that the magnet area Am as well as the shape scaling s keep increasing
(e.g., see Eqs. 21 and 23), m_king the magnets wafer-like and the stator
heavier. For any fixed a in the tuned case, one has the extra freedom to trade
off magnet mass versus capacitor mass in the inverse hyperbolic relation of Eq.
7, subject to the upper bound on magnet mass along the inductive branch imposed
by Eq. 8. Keeping ah fixed, one can easily decrease magnet size in this way to
make them work harder at any a, but at the expense of deviating from minimum M.
Also, as analyzed in Appendix C, s then decreases with decreasing R for large R
and can even increase with decreasing R on intervals that depend on a and also
on the model geometry. Instead of M, the R-freedom can thus be used to adjust

some other s-sensitive quantity such as Mcqre./McoH. Adjusting magnet mass in
the tuned scheme by varying only the magnez nelght, and thus keeping the magnet
area as well as s constant, is an interesting alternative which has not been
fully investigated. Allowing a limitedvariation in ah might be a feasible way
to effect more control over the core-to-coil mass ratio and hence influence

efficiency.

Conclusions

Based on idealized toroidal and cylindrical geometries, it was shown that the
stator mass of an alternator designed to be capacitively tuned is always
greater than the minimum achievable stator mass of an alternator designed with
no capacitors (nc), assuming equal utilization of materials ratings, and the
same frequency and power to a resistive load. This result can be attributed to
an increase in the terminal volt.ampere product caused by a series capacitive
reactance, which can, by design, either wholly or partially cancel, or even
exceed, the internal inductive reactance of the alternator.

Use of the internal power factor (IPF=a) as a design degree of freedom was
found to provide good clarification of various intricacies and options inherent
in comparing the two approaches. Series capacitive tuning adds a degree of
freedom which was expressed as a variation in the normalized magnet mass. This
additional degree of freedom may then be used to minimize, at any a, say the
total mass consisting of stator, the exciting permanent magnets and the
capacitors. However, at power levels of tens of kW, the stator mass is by far
the greater and hence tends to dominate the behavior of the total mass. In the
nc case, the a for minimum specific stator mass was found to generally vary
with t__he parameters and ratings, whereas the minimum specific magnet mass is at
a=i/_2. The a of the tuned case total mass minimum likewise varies, and is
never at resonance. In the nc case both stator and magnet specific masses are
unbounded as a÷l, but in the tuned case all masses remain finite. Moreover, in
the tuned case, the magnet plus capacitor mass varies at a less than
proportional rate with the capacitor specific mass (see Eq. 37). Therefore on
the basis of this study, costly efforts to reduce capacitor mass would seem to
be unwarranted.
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Unless possible external constraints are considered, such as driving engine
stability or deratings arising from high temperature, this study can find no
apparent advantage in capacitive tuning. With no such special constraints or
deratings, any overall mass advantage of a tuned design is entirely negligible.
However, a slight reduction in magnet mass for the tuned case could improve
stability and reduce windage losses, but at the expense of load fault effects
and capacitor reliability. Whenan upper bound is invoked on the ratio (#) of
the inductive voltage drop in the alternator to its internal emf, the nc
approach still seemsto be favored. This bound, which assures stability of
oscillation for an FPSE-linear alternator system, has been reported to be the
lowest in the nc case. For example, in the nc case an a of 0.9 is sufficient to
satisfy the lowest quoted value of 0.5 for the p limit. Indeed, with realistic
ratings and for a=O.9, the mass savings resulting from tuning amount to only a
few percent. Serious deratings, such as a magnet remanence reduced to 0.7 T and
a stator magnetic saturation reduced to i T, are needed for tuning to save
about 164. Unless the deratings are rather severe, one would likely not opt for
the undesirable bulk of extra hardware and potentially serious reliability
problems introduced by tuning capacitors. Safety considerations may require the
use of active feedback control to reinforce the otherwise rather marginal
amplitude stability of high power FPSE thermodynamic oscillators[14]. Active
feedback control may then raise the nc case p limit, further favoring no

tuning.

The exciting magnet reaction AB/B r due to the applied demagnetizing field has
been analyzed as a sum of elementary magnet gap and load power components.
While the self-demagnetizing influence due to the gap is clearly the minimum

possible AB/Br, there is also a bound on the maximum AB/B r in the nc case (seeEq. 46 . Since an nc design will likely have an a _ I/_/2, this condition
selects that, or lower, branch of the curve shown in Fig. 13, where the magnet
reaction is monotonically decreasing with increasing specific magnet mass.
Therefore the best that can be done in the nc approach to minimize magnet mass,
should that in itself matter, is to approach either the magnet reaction or
stability limits, should the corresponding limits on Mm exceed the absolute
lower bound on Mm at a = i/_/2. In the tuned case it is theoretically possible,
at any given a, _o arbitrarily reduce the magnet mass, but then the capacitor
mass, the coil-to-core mass ratio, and the total mass all increase without
bound. An alternative way to adjust the tuned case magnet mass while asserting
more control over variation of the other masses may be to also allow some
simultaneous adjustment in the ah. Varying magnet height with area fixed is an
interesting special case of such possibilities which need further
investigation. At each a, that magnet mass which minimizes the total mass,
including capacitors, was shown to be well defined and computable. The
resulting normalized demagnetizing reaction AB/B r for these as was shown to be
acceptable for both the mass-minimized tuned and nc cases; indeed, the values
of AB/B r computed in examples were all less than unity, and hence well within
the capability of modern, high-coercive 2-17 type samarium cobalt magnets, even
at 300 °C.

Algebraic modeling equations were developed to generate comparative plots of
the various alternator component masses as functions of the free variables. It
has been shown that the stator mass can be expressed as a product of a
transformer-like term, involving the terminal volt.ampere product raised to a

geometry dependent fractional power, and a simple algebraic function of a ratio
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s scaling the shape, s in turn uniquely determines the core-to-coil mass ratio
and is itself an algebraic function of the ratings and free variables. This

approach of grouping of terms makes possible some intuitive penetration of the
complexities of the many variables which determine the total mass and its

distribution. Then various scaling effects, couplings, sensitivities and trends

become apparent, which, rather than computation of actual designs, is the real

advantage of the method. Finally, this approach may be useful to clarify

scaling e_fects, sensitivities and trends in other alternator characteristics,

such as the efficiency, that strongly depend on mass and its distribution.
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Symbols and Abbreviations

ah

aw

Am

Ap

As

B

BI , B2

Br

Bs

C

D

D+_

f

f_+(R)

F

hg

hm

H

H1, H2

Hmin

Hs

i(t)

I

T

IPF

- magnet height-to-width ratio

- coil wire conductor cross-section (m2)

- cross-section of magnets of any one orientation (m2)

- a constant defined by Eq. B8 (m4/W)

- cross-section of stator core (m2)

- magnetic flux density (T)

- flux density in magnets no. 1, 2 (T)

- magnet remanence (T)

peak flux density in stator (T)

- capacitance of tuning capacitor (F)

- a function defined by Eq. 17

- D evaluated for inductive (-) or capacitive (+) IPF branch

- frequency (Hz)

- functions defined by Eqs. Cl and C7

- a function defined in Eq. 11

- total height of gap between magnet and pole faces (m)

- magnet height (m)

- magnetic field intensity (A/m)

- field intensity in magnets no. i, 2 (A/m)

- minimum (most negative) field intensity in a magnet (A/m)

- field intensity in stator core (A/m)

instantaneous alternator current (A)

- rms alternator current (A)

- complex vector rms alternator current (A)

- internal power factor of alternator
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I
r

Jr

K

KI

K C

Kg

KL

K m

Kw

P..

Z

Z
S

L

LLc

L
Lg

Lm

Ls

M

M¢

Mc+_.

Mcoil

Mcore

Mm

- rated rms alternator current (A)

- rated rms current density in coil wire (A/m 2)

- a constant defined by Eq. A6

- ratio of stator gap fringing flux to magnet flux under a stator
pole face, defined by Eq. AI8

- capacitor specific mass, a constant defined by Eq. 1 (kg/(V A))

- ratio of gap height hg to magnet height hm

- ratio of stator gap fringing flux to flux under a stator pole
face, with magnets absent

- a constant defined by Eq. A24 (kg/W)

- ratio of coil cross-section to total conductor cross-section

- ratio of coil leakage inductance drop to Vgen

- length of magnet in direction transverse to motion (m)

- mean magnetic path length of stator core (m)

- mean length of bordering strip used to estimate gap fringing
flux (m)

- length of coil in the cylindrical model (m)

- coil leakage inductance (H)

- stator gap leakage, or fringing, inductance with magnets
present, as defined by Eq. AI2 (H)

- magnet reaction inductance, with magnets in stator gap, (H)

- total equivalent series inductance of alternator (H)

- total mass, Ms+Mm+Mc, of alternator (kg)

- mass of capacitor (kg)

- Mc evaluated for the inductive (-) or capacitive (+) IPF
branch (kg)

- mass of stator coil (kg)

- mass of stator core (kg)

- total mass of magnets (kg)
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Mmo

Ms

nc

N

P

Pc

Pgen

Pr

Pt

r I

r 2

r m

R

R
L

Rs

- magnet mass for minimum Mm+Mc, defined by Eq. 5 (kg)

- mass of stator, Mcore+Mcoil , (kg)

- designates no-capacitor case

number of turns in stator coil

- a constant defined by Eq. A7

- volt.ampere product for capacitor (V A)

- volt.ampere product for alternator (V A)

- rated alternator power to a resistive load (W)

- terminal volt.ampere product of alternator under load (V A)

- radius of coil cross-section, toroidal or cylindrical model (m)

- radius (outer radius) of core in toroidal (cylindrical) model (m)

- magnet radius in toroidal model (m)

- normalized magnet mass, Mm/Mmo

- load resistance (_)

- series resistance representing alternator electrical losses (fl)

Rg, Rgl, Rgm, RLc, RLg, Rm, Rml, Rmm, Rs - reluctances, see Appendix A

R0± - roots given by Eq. C9

s - alternator model shape scaling ratio r2/r I

So

Vgen(t)

- value of s giving minimum stator mass for constant Pt

- instantaneous internal emf, or open circuit terminal voltage, of
alternator (V)

vt(t)

Vgen

- instantaneous terminal voltage of alternator under load (V)

- rms internal emf, or open circuit terminal voltage, of alternator
(v)

V
gen

- complex vector rms internal emf of alternator (V)

Lc' VLg' VLm' VLs - rms voltage drop across coil leakage, stator
gap fringing, magnet reaction and total series inductance,
respectively (V)

- total volume of magnets of any one orientation (m3)
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V t

w

x(t)

X o

Xs

O_

P

AB

/_o

PC

/Ocu

P_

P_

¢_(t)

¢_(t)

¢_(t)

W

- rms terminal voltage of alternator under load (V)

- width of magnet, or alternator plunger stroke (m)

- instantaneous alternator plunger position (m)

- amplitude of alternator plunger oscillation (m)

- total inductive reactance wL s of alternator (n)

- short symbol for the IPF

- ratio of alternator inductive voltage drop to Vgen

- a constant defined by Eq. C2

- constants defined by Eq. 6

- peak demagnetizing flux density swing (T)

- permeability (_o _m=) of magnet (H)

- relative permeability of magnet

- permeability of vacuum, 4_10-7H

- density of stator core (kg/m 3)

- density of copper (kg/m3)

- density of magnet (kg/m 3)

- density of stator coil, averaged over wire and insulation (kg/m 3)

- instantaneous flux through stator coil (Wb)

- instantaneous coil slot leakage flux (Wb)

- instantaneous magnet gap fringing flux (Wb)

- instantaneous total flux contributed by the magnets (Wb)

- instantaneous stator pole flux (Wb)

- angular frequency 2_f (sec -I)
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Appendix A

Internal EMFs r Magnet Sizef and Demagnetizing Forces

Basic magnetics equations are applied to the model shown in Fig. A! in order to
relate exciting magnet size to equivalent circuit parameters, power and
demagnetizing fields. A pair of oppositely polarized magnets moves between the
poles of a magnetic core made of some magnetically soft laminations. This
closed magnetic circuit links an N-turn armature coil, not shown, which
supplies power to a load. The path PI following the magnetic circuit may in
fact intercept another such pole face and magnet pair arrangement before
closing on itself" however, in such a case h_ and ha represent the total length
of magnet and length of air gap, respectlvely, in t_e circuit, and the magnet
pairs are assumed to be mechanically linked.

Internal EMFs and Equivalent Circuit

Summation of mmf around PI couples the magnet field H2, the stator field Hs,
the gap flux density B2 and the instantaneous current i according to

B2
H2 hm + _ hg + Hs Zs + N i = 0 (A1)

_o

Similarly, path P2 couples the magnet fields to each other according to

(H I + H2) hm + (B I + B2) hg / /_o = 0 (A2)

And the total flux contributed by the magnets is the sum

_m : Z(w/2 + x) B2 - Z(w/2 - x) BI , (A3)

where Zw=A_ is the total cross-section of magnets of any one orientation. Thus,
frlnglng flelds in the region between adjacent but oppositely oriented magnets
have been ignored. Moreover, flux fringing around the ends of the magnets and
"leaking" around the coil in its vicinity can at best be only estimated, unless

one computes the fields of specific geometries. Here formal symbols R_g and RLc
wi]l be assigned to these gap and coil leakage reluctances.

High energy rare earth-cobalt magnets of the type assumed here are well
characterized by

B = #m H + Br (A4)

in a cyclically driven mode along the recoil line in their normal quadrants of

operation, where _m=#m_o in the SI units. In this mode their relative
permeability _mr IS Sllgh_ly above unity and their remanence Br is about i T.
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To utilize the algebraic facility provided by the flux-reluctance-mmf notation,
the magnetic circuit is modeled as shown in Fig. A2. In the present case a
magnet is equivalent to a magnetic potential generator of strength hmBr/#m in
series with a position-sensitive reluctance [R (x)+R (x)], i=l,2, 6_ the part
of its body under a pole face of the stator. O_erwisge the notation is
standard, and a list of reluctances is defined below, where numerical
subscripts appearing on the position-sensitive reluctances refer to either

magnets nQ. 1 or no. 2:

Rml =
h m

Z (w/2 - x)'
(body reluctance under the stator, magnet no. I)

Rm_ =
h m

Z (w/2 + x) '
(body reluctance under the stator, magnet no. 2)

h_

Rg_ = #o Z (w/2 - x)
(gap reluctance under the stator, magnet no. i)

h9

Rgm - #o Z (w/2 + x)
(gap reluctance under the stator, magnet no. 2)

R - Zs
I

s #s As
(linearized stator reluctance)

R = reluctance to measure flux fringing around the magnets,
tg

R_c = coil leakage reluctance,

hgR - = total gap reluctance,
g #o Am

R - hm - total reluctance of magnet material in gap.
m #m Am

Further refinements to this circuit are possible, such as introducing a

leakage path between the junction of R_< and Rg< to the opposite side of the
flux generator, but will not be pursueB here.

Using Fig. A2 and successive Thevenin equivalent reductions or else loop
equation algebra, one finds the instantaneous flux in the coil to be

i_c(t) 2 Am Br x(t) [ (I + K) I i
= 4- + --

p w p RLg p Rm R

N i(t) ,
Lc

(AS)
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where

and

K : #mr Kg : #mr hg / hm , (A6)

p _ (I + K) (I + Rs /RAg) + Rs /R= (A7)

In a well designed machine the stator will utilize a magnetically soft material

that will not be driven into hard saturation. Therefore normally Rs<<RL9 and

Rs<< Rm, making

p _ i + K (A8)

a very good approximation.

Eq. A5 presents a useful decomposition of the total coil flux because its time

derivative gives the instantaneous terminal voltage vt(t) as a sum of terms
that have standard interpretations in alternator theory:

d_ c
vt(t ) : N _- - Vgen(t)

di

- (LLg + Lm + LLc) dt ' (A9)

where

Vgen(t) = N 2 Am Br . __dx (AIO)
p w dt

is the internal generator or no-load terminal voltage,

L (I + K) N2= (All)
Lg p R Lg

is the stator gap leakage or fringing inductance with magnets present,

N2
Lm - (A12)

p R

is the magnet reaction inductance for magnets in the stator gap, and

N2
L - (AI3)

Lc R L=

is the coil leakage inductance. For the usual case of sinusoidal x(t) with

amplitude xo the corresponding rms Vgen is

I

Vgen N _/2 Am Br (_= x ° , (A14)
pw

where in normal operation Xo=W/2. Hence forth all voltage and current symbols
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will denote sinusoidal rms values. This then establishes the correspondence to
the alternator lumped equivalent circuit shown in Fig. i.

Of the three load current induced voltages in Eq. A9 , namely

V Lm = (d L m I ,

(AI5)=wL I
Lg Lg '

VLc W LAc I ,

only VLm is completely determined at this p_i_.. The L_lis rather dependent on
the shape of the coil and its surrounding Since ot and coil geometry
are not the objectives of this study, LAc " will be considered an unknown value
controllable to a negligible value by gooa design practices, and the symbol

_ ML c / Vgen (AI6)

will be carried for completeness only. On the other hand, the L A is much more

significant because driven by the mmf Ni, a substantial amount o_ flux will
fringe around the magnets if the magnet height-to-width ratio is not small.
Resorting to one of the standard approximations is most expeditious, and we
shall assume R . to be the reluctance of a cylinder of height (hm+h_) and

cross-section o_ a strip of width (hm+hg)/2 bordering the periph_r_of the

magnet gap.[8] If [denotes the mean length of the strip, then this
prescription gives

RAg = 2 / (#o _ (A17)

Introduction of the slightly permeable magnet material between the pole faces
decreases slightly the fringing of flux around the volume between the faces.
The ratio of fringing flux to magnet area flux becomes

K I E LLg/L m = (1 + K) Rm /RAg

(I/#m r + K9)- K (A18)

(1 + Kg) A'

where KA is the ratio of fringing to central area flux for a free space gap.
Hence KA can be found from a given ah=hm/W and pole face shape. In the above
stated prescription for fringing,

[ (hm + h9) (AI9)K -
A 2 Am
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The ratio of the sum of the three inductive drops listed in Eq. A15 to Vgen
can now be written as

VLslVgen : [(1 + KI) VLmlVgen] + E , (A20)

having used the definitions in Eqs. A16 and A18. Finally from Eqs. A12, A14,

the first of A15 and the definition of Rm follows the useful expression

2 p #m Pgen (A21)

VLm/Vgen - W _m Br2 '

where _m is the volume of magnets of one orientation and P-en is the
volt.ampere product of the machine. From the total magnet m_ss

Mm = 2 Pm _m

follows the alternative form

(A22)

VLm/Vgen : Km Pgen / Mm

of Eq. A21, where the inverse of the constant

(A23)

4 p Pm /_m
Km = (A24)

Br 2

is proportional to the energy per unit mass of the magnets times the

frequency.

Suppose next that a second identical stator gap and a magnet pair mechanically
linked to the first pair are introduced into the magnetic circuit, as in some

existing designs. This is equivalent to doubling the hm and ho of the single
gap circuit, provided the R, is also doubled. This can be se_n by inspection

or shown by equivalent circ_t algebra. The formulas A20 through A24 remain

valid provided _m and M_ remain as defined, which thus doubles their values.

Clearly K is unchanged,"_ut Rm is doubled. It follows then from Eq. A18 that KI
remains invariant. Indeed, one can see that for most quantities of practical

interest this transformation is completely described by ah_2a h.

Demagnetizing Forces

It remains yet to establish the relation of the field swing amplitude in the

magnets to their volume, or mass, and P To this end the circuit in Fig. A2
gives the rather tedious exact solution gen"

= _ K Br N i(t) (R s/Rm) (Br/Km) [2 x(t)/w] (A25)
H2(t) /_m (I + K) p hm (i + K) p

for the instantaneous field in magnet no. 2. As before, the last group of
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terms can be dropped because (Rs /R_) is assumed to be very small. Moreover,

any part of a magnet not under a po_e face is subject to different

demagnetizing forces and influences the other part still in the gap. Therefore
the value of the above equation may lie mostly in that it accounts for the

effect of load current and air gap on the part of a magnet under a pole face,

where demagnetizing influences seem likely to be the most severe.

The minimum, or most negative, value of H2 in Eq. A25 occurs for peak positive

i, which is _/2 I in the sinusoidal case.-Thus any magnet part under a pole

face will experience a peak demagnetizing field of about

K Br N _2 1 (A26)
Hmin = _

_m (I + K) hm (i + K)

If N is eliminated with the help of Eq. AI4, then the result can be put in the
form

_ Br2 ( #m Hmin K )
- + (A27)

2 _m 4 #m Br I + K '

where 2_m is the total magnet volume. Note that this gives an interesting
alternatlve version of Eq. A23:

VLm/Vgen = - (i + K) I _mHminBr + I+KK ) . (A28)

This result can be substituted directly into Eq. A20 in order to express

VLs/Vgen too as a function of the peak demagnetizing field. In this paper, when
dealing with the _neak demagnetizing field, instead of H.mn., reference will
usually be made to the corresponding dip AB of the B-fle_d in the magnets below

the remanence Br. It is defined as the positive quantity

AB - -#m Hmin • (A29)
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Appendix B

Stator Mass for Toroidal and Cylindrical Confiqurations

The toroidal stator geometry, drawn in Fig. BI, consists of a magnetic core
torus of window radius r and cross-section radius r , interlocked with a coil

torus which f111s the core window completely. Hence t_e coil window has radius

rz and the coil cross-section has radius rI. The cylindrical geometry, drawn in
Fig. B2, consists of a magnetic core in th_ shape of a long pipe whose bore is

filled with coil wire running lengthwise. The cylinder's inner radius is rI,

outer radius is r2 and length is L. One can imagine, if desired, that this pipe
makes a loop, closing on itself. Exciting magnets may be thought of as existing

in appropriately located gaps in these magnetic circuits, but which are ignored

for present purposes. In fact, this omission may improve approximation to

reality because the extra magnetic circuit length needed to accommodate magnet

height is not useable for additional coil cross-section in the referenced

tubular linear alternators[2,4]. These particular geometries are interesting in

that their contrasting symmetry generates rather different functions to test

the sensitivity to alternator configurations.

(1) Interlocked Toroids

Stator mass Ms is the sum of the magnetic core mass

Mcore= 2 _2 (rI + r2) r22 Pc (BI)

and coil mass

Mcoil = 2 _2 (rI + r2) r12 Pw , (B2)

where p_ is the core density and Pw is the coil density averaged over wire and•

insulatlon. Denoting the wire conductor cross-section by aw, one can account

for insulation and space by writing Kwaw, with Kw>l, for the total area per
wire. Thus the coil has

2
rI

N - (B3)
Kw aw

turns, and in case of copper wire insulated by a much lighter material, a

density

Pw _ Pcu / Kw (B4)

As the magnetic flux density in the core oscillates with maximum permissible

amplitude Bs, the rms terminal voltage is found from Nd@c/dt to be
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N _ Bs x r22 (# Bs (TrrI r2)2
Vt = _/2 _/2 Kw aw

(B5)

with N finally eliminated by use of Eq. B3. And the current is at its rated

value

-Ir = aw Jr ,

as limited by the maximum permissible rms current density Jr" Then the

terminal volt.ampere product is

Pt = Vt Ir = (_ rl r2)2 / Ap ,

where

(B6)

(B7)

Ap -
_/# Kw (B8)

(_ Bs Jr

It is convenient to express all masses and dimensions in terms of Ap, Pt and a

dimensionless scaling ratio

s _ r 2 / r I (B9)

Using Eqs. B7 and B9 one finds

rl : _-I/2(A p pt)Z/4 s-i/2 , (BIO)

r2 = _-I/2(Ap Pt)i/4 si/2 (BII)

The desired mass formulas follow immediately from Eqs. BI, B2, BIO and B11:

Mcore = 2 _TI12 Pc (Ap Pt )314 (I + s) s I12 ,

Mcoil : 2 Ir 112 Pw (Ap Pt )314 (i + s) s -312 ,

giving the stator mass

MS _ Mcore + Mcoil _ 2 _I/2 (Ap Pt)314 (I + s) (Pc sl12 + Pw s'3/2)

(B12)

(B13)

(BI4)

For constant Pt the Ms(S) has a minimum at the sole real positive root so of

(3 s + i) S2 - (S + 3) pw/Pc = 0 (B15)

For example, if pw=Pc then So=l, giving Mcore=Mcoil, or if pc=2Pw then So=0.7576

and Mcore=1.15Mcoil.
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(II) Long Pipe

This geometry can be conveniently normalized with respect to its length L.
Otherwise the formulas are developed in the same way as in (1) above, and they

will be listed without further discussion and labeled by priming the

corresponding formula numbers of (1). Formulas which are the same as in (i)
are omitted.

-Mcore/L : Ir (r22 - rl 2) Pc , (BI')

Mcoil/L = IF r12pw , (B2')

Vt/L u Bs: _ • Ir rl 2 (r 2 - rl) , (B5)
_/2 Kw aw

Pt/L : 7r rl 2 (r 2 - rl) / Ap , (B7')

rI : (Ap/X - Pt/L) I/3 (s - I)-I/3 , (BIO')

r 2 : (Ap/lr • Pt/L) I/3 s (s - i) -1/3 (BIt')

Mcore/L : Iri/3 Pc (Ap Pt/L) 2/3 (s - 1) I/3 (s + i) , (BI2')

Mcoil/L : Iri/3 Pw (Ap Pt/L) 2/3 (s - 1) -2/3 (B13')

Ms/L = xi/3 (Ap Pt/L) 2/3 (s - 1) -2/3 [(s 2 - I) Pc + Pw] (B14')

For constant Pt/L the Ms(S)/L has a minimum at the sole root %>I of

s2 - 3s/2 + (1 - pw/Pc)/2 = 0 ,

which is

(B15')

so = 3/4 + (1 + 8 pw/Pc)I/2/4.

Note that in this geometry p =p. gives s^=3/2 and Mcore=l.25M¢oi]. One could say
that with respect to distribUtiOn of coi_ versus stator mass the cylindrical
geometry has an inherent bias.
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Appendix C

Variation of s with R in the Tuned Case

In the tuned case one has the additional freedom to vary the magnet mass or,

equivalently, R at a fixed a and ratings. This variation induces variations in

s-sensitiv_ quantities such as Ms and Mcore/McoH because s is a strong function

of R. A qualitative understanding of the aependence of s on R is therefore

useful, but is not apparent from a cursory inspection of Eq. 27 or Eq. 28
because the D-factor involves R in an inhomogeneous way. Therefore a brief

analysis of this dependence is presented for the case of variation of R at

constant ah.

A. Toroidal geometry:

2 is proportional to R4/3 D÷ where D_ is given byIn this case, by Eq. 27, s+ , _

Eq. 26. Is s_, or equivalently R4/3 D±, then a monotonic function of R? To

answer this, it is convenient to study instead the functions

f±(R) _ R8/3 D_(R) = _2 R8/3 + _ R2/3 (I + 7± R)2 ,

where

= (I + KI) Km / Kc

(CI)

(C2)

%, as defined by Eq. 6, is a manifestly non-negative quantity. Hence f (_2) is
a sum of positive terms each monotonically increasing with R. Therefore -- is
monotonically increasing with R.

The case of s 2 requires detailed examination because 7_ may be, and usually

will be, negative. This case can be understood by examining the derivative

fi(R) = (I/3) R-I/3 [4(a2 + ET!)R2 + 5__R + El (C3)

for changes of sign, for s2 is monotonic on any interval where f_(R) is of

constant sign. Assuming E=O,

+ : i (c4)

holds identically and Eq. C3 simplifies to

fC(R) = (1/3) R-1/3 (4R 2- 5_i/P_/I- _2 R + £) (C5)

For a>3/5 the quadratic form in R on the RHS of Eq. C5 is positive definite,

making f_(R)>O for all R>O. For a<3/5 this quadratic form has 2 positive roots

making f_(R)<O for

(5/8)_I/2(_1 - a2 - _(9/25) - a2 ) < R < (5/8)_i/2(_i - a2 +_(9/25) - a2 ). (C6
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Thus in the E=Ocase. the s2 is monotonically increasing for all R if a>3/5.

But if a<3/5, then s_ is monotonically increasing for all R except on

the interval C6, where s2 is monotonically decreasing with R. The C>O case can

be analyzed similarly.

B. Cylindrical geometry:

In this case, by Eq. 28, (s± - 1)2 is proportional to R3/2D_, but from the

point of view of Eq. 44 the interest is in (s_ - 1). However, it is apparent

that if one of the quantities s±, (s± - I)2 or (s_ - i) is monotonic, then

so are they all; e.g., s2 - I = (s - I)2 + 2(s -I ). Hence it is sufficient to

study the monotonicity of

f±(R) _ R3/2 D_(R) = R3/2 [_2 + _(R-I + 7±)2] (C7)

Again we examine the derivative

f_(R) = (i/2) R"3/2 [3(e 2 + E_)R 2 + 2ET±R- El (C8)

for changes of sign. For both ?÷ and 7_ the RHS of Eq. C8 has always one
positive and one negative root glven by

__± (_) [(_±)2 + 3_(a2 + _)]i/2

RO± : 3(a 2 + E?_) ' (C9)

where the symbol (_ labels the positive and the negative roots. In the case

E=O, Eq. C4 applies, showing that f_(R)>O (i.e., f+(R) is monotonically
mi

increasing) iff R>Ro±, and that f±(R)<O (i.e., f±(R) is monotonically

decreasing) iff R<Ro±, where

RO± = (1/3) EI/2 (_v_ - _2 + _4 - a2 ) (CI0)

are the positive roots in the _+ and 7_ cases, respectively.
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Table I

Toroidal and Cylindrical Models Compared to Known Designs

N&C TOR CYL

Results

Mcore/P r - 0.97

Mcoil/P r 0.39

Mm/Pr O. 30

Mc/P r N/A

Mcore/Mcoi i 2.50

Ms/P r i .35

(Ms+Mm) / Pr I. 66

Parameters

m

a 11_/2

pr(/L) 25

f 100

J 5.0xlO 6
r

#mr I. 20

Br 1.07

Bs 1.60

ah O. 40

Kw 2.O0

Kg 0.078

Kc N/A

0.38

0.41

0.29

0.93

0.80

1.09

0.48

0.29

0.21

-@

i .64

0.77

0.98

(26)

SPDE TOR CYL

i .31

0.90

0.27

1.46

2.21

2.48

2.22

i .00

12.5

105

3. IE6

1.08

1.08

1.80

0.33

1.54

0.21

0.60

0.59

0.31

0.14

1.03

1.19

1.50

0.45

3.E-4

0.73

0.41

0.21

0.14

1.79

1.14

1.35

0.47

4

(15)

RSSE

1.20

0.41

0.33

0.15

2.93

1.61

1.94

i .49

I .00

25

70

3. IE6

1.08

0.93

2.1

0.33

1.43

0.11

TOR

0.63

0.62

0.42

0.17

1.02

I .25

I .67

0.57

3.E-4

CYL

0.71

0.40

0.31

0.18

1.77

1.10

1.41

0.59

(28)

4

1. Specific masses are in units of kg/kW, Pr is in kW, Pr/L is in kW/m and is
labeled by (), and all other units are MKS.

2. N&C is a design by Nasar and Chen[6], and SPDE and RSSE are designs by
Mechanical Technology, Inc.[9,10].

3. TOR => Toroidal Model, CYL => Cylindrical Model.
4. N/A => not applicable. Blank space => value unknown. Some values for N&C,

SPDE and RSSE are best estimates only.
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(A) Toroidal model.
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(B) Cylindrical model.

Figure 3. Plots of specific stator mass versus internal power factor with

(dashed curves) and without (solid curve) capacitors. The tuned

curves are drawn for various constant values of Mm/Mmo and their C_W

'l' =0 curve. Two magnet pairs are used.limit is marked by on the M c
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(B) M=/Mmo=l.5, showing that this raises the tuned curves.

Plots of specific magnet plus capacitor mass versus internal power

factor with (dashed curves) and without (solid curve) capacitors.

The tuned curves are drawn for selected values of K and two choices
c

of constant Mm/Mmo. The K L used corresponds to ah_i/3 in the

cylindrical model.
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