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ABSTRACT

Permanent magnet excited linear alternators rated tens of kW and coupled to
free-piston Stirling engines are presently viewed as promising candidates for
long term generation of electric power in both space and terrestrial
applications. Series capacitive cancellation of the internal inductive reactance
of such alternators has been considered a viable way to both increase power
extraction and to suppress unstable modes of the thermodynamic oscillation.
Idealized toroidal and cylindrical alternator geometries are used here for a
comparative study of the issues of specific mass and capacitive tuning, subject
to stability criteria. The analysis shows that the stator mass of an alternator
designed to be capacitively tuned is always greater than the minimum achievable
stator mass of an alternator designed with no capacitors, assuming equal
utilization of materials ratings and the same frequency and power to a resistive
load. This conclusion is not substantially altered when the usually lesser
masses of the magnets and of any capacitors are added. Within the reported
stability requirements and under circumstances of normal materials ratings, this
study finds no clear advantage to capacitive tuning. Comparative plots of the
various constituent masses are presented versus the internal power factor taken
as a design degree of freedom. The explicit formulas developed for stator core,
coil, capacitor and magnet masses and for the degree of magnet utilization
provide useful estimates of scaling effects.






Lightweight Linear Alternators With and Without
Capacitive Tuning

Introduction

The steady state power output of any practical alternator is limited by the
removal of heat due to electrical losses and by internal inductive reactance,
even if more shaft power were available and other limits were not approached.
In rotary machines ranging from laboratory size to large turbo and hydro
alternators this so-called synchronous reactance may be about 0.5 to over 1 per
unit.[1] Indeed, such a fractionally high reactive voltage drop is deemed not
entirely bad because it can reduce risk of damage to the alternator in case of
Toad fault currents.

However, in space power applications the need to reduce generating system mass,
and perhaps also volume, without sacrifice of efficiency is an important
consideration. Likewise important is the need to suppress alternator inductance
dependent unstable modes of oscillation in the free-piston Stirling engines
(FPSE) that are now serving as drivers for permanent magnet excited linear
alternators. Hence, series capacitive cancellation of the inductive reactance
of such thermodynamic oscillator driven alternators is thought to be a viable
way to increase the specific power (ref. [9], p. 8-18) and also to control
unstable modes (ref. [5], p. 79). Indeed, this approach has been implemented in
recently tested FPSE-driven linear alternator-resistive load configurations.
Alternator inductance thus becomes a sensitive parameter in tradeoffs involving
alternator and tuning capacitor mass, degree of magnet utilization, efficiency,
and power available to a load.

The purpose of this study is to provide an overview of these tradeoffs and an
estimate of trends in a setting of realistic ratings, while avoiding
engineering design details, excessive machine computation and possibly
misleading attempts at precision. The core observation is that the simple
circuit equation for a loaded and tuned alternator can be rewritten in terms of
power and exciting magnet and capacitor masses, provided one accepts a
simplifying assumption regarding capacitor mass. Basic magnetics laws are then
applied in the usual way to a single slot, permanent magnet excited linear
alternator to derive relations between masses, reactive voltage drops,
magnetization conditions, rated volt.amperes and power. Efficacy of capacitive
tuning may then be judged versus the added complexity from plots of stator,
magnet and capacitor masses as free parameters (e.g. the internal power factor
(IPF)) are varied within limits defined by stability and magnetization
constraints.

Precise evaluation of the effects on efficiency is not attempted here, because
normally in good high power designs one expects this to be a question of just
one or two percentage points out of say 90. The idealized models used in this
analysis are not capable of providing such fine resolution in efficiency.
However, checks are made to ensure that gross geometrical distortions, e.g.
extreme coil-to-core mass ratios, detrimental to efficiency are avoided.



FPSE-driven linear alternators rated tens of KW and excited by high energy
product samarium-cobalt magnets are considered promising candidates for
reliable and efficient long term generation of electric power in space.[2]
Although parameter values for illustrative plots were chosen to refiect
conditions representative of such a machine, it is felt that most of these
values, as well as modeling assumptions, are not overly specialized so as to
preclude useful general conclusions.

Magnet and Capacitor Mass Related to Equivalent Circuit Parameters.

Since a main objective of this study is to argue for trends in mass variation
with 1ittle given, apart from gross ratings and type of excitation, the simple
equivalent circuit shown in Fig. 1 is suitable. The alternator is represented
by a voltage source Vg , in series with linear lumped elements. Magnet
parameters are at the %eart of V.., and the series inductance L. Hence, these
related quantities need to be stidied in some detail. Electrical losses are
represented by a series resistance R,. However, in a well designed machine
these losses are small compared to the kvA rating and moreover, efficiency and
its variation is not the prime issue here. Hence, R, will simply be ignored by
Tumping it with the load. At the terminals of the machine the circuit is
completed through a tuning capacitor C in series with a resistive load R,. This

tuning is allowed to be partial in the sense that the IPF = cos<{(Vgen,I) <1,
including the case of no capacitor (i.e. C+w); that is, here "tuning" does not
imply resonance. This lets one explore fully the new degree of freedom
introduced by a series capacitor.

Both the exciting magnet mass M, and the tuning capacitor mass M. can be
related to the electrical quantities of Fig. 1, and hence to each other by the
circuit equation. The form and basis of these relations will now be indicated,
with details of the derivation of M, from machine parameters given in Appendix
A.

The smallest possible capacitor mass is assumed to be proportional to the
reactive power P. according to

M. = K P. =K 12/ (wC), (1)

where w=2rf is the angular frequency and K. is a constant. An analysis[3] of
the ratings of several commercial ac power capacitors indicated that Eq. 1 is
at least a fair approximation over a limited frequency range. A KC=3x10'4
kgV'lA‘1 appears conservative, whereas half of this would be beyond today's

commercial technology.

M, is involved through an equation relating the voltage drop V ,=wlL I, the
open circuit terminal voltage V ., the maximum volt.ampere rating P ., of the
machine, the ratio £ of slot leakage voltage to V ., the ratio K, of gap
leakage to magnet reaction inductances, and a constant K  whose reciprocal
measures the magnet energy product per unit mass times the frequency and a gap

factor:
ﬁ = VLs/Vgen = [(1 + Kl) Km Pgen / Mm] + L. (2)
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Eq. 2 is obtained from Egs. A20, A2l and A23, and is based on a linearized
magnetic circuit with geometrized leakage paths. The linearity assumption is
quite good for intrinsically square loop magnets, such as the Sm,Co;; type, in
their normal region of use. Indeed, on the recoil line their permeability is
only 3 or so percent above that of free space, making the body of the magnet
act in effect like a large air gap in a circuit of magnetically soft material
assumed not to be driven into saturation. Hidden in Eq. 2 is also the
assumption_that variations in magnet size are effected by uniform rescaling of
all of the magnet's and the gap's dimensions. This conveniently preserves
magnet shape and hence certain flux leakage ratios, but is felt not to be
destructive to subsequent arguments. Questions of magnet, pole shoe and gap
shape belong to machine design optimization studies[4], whereas here we are
using idealized geometry for a comparative study of variations in magnet size
to meet power factor, tuning or other conditions. Although magnet shape is
included as an adjustable parameter, there seems no reason to expect that
deviation from its normal optimum for a given magnet material and stator
configuration would pay significant dividends.

Relation Between Magnet and Capacitor Masses

It remains here to relate M, and M. with the help of the circuital equation

1
2 RZE+ 12 (il - —)% =V 3
. (W Lg — =) (3)

written from Fig.l; note that the small R has not been distinguished from the
load. The alternator is assumed to be delivering the maximum or rated power P.
at rated current I.. But as one might expect, the alternator's mass has
explicit dependence only on P, allowing some freedom in 1., the Toad R, the
internal Vge . and the IPF. Except for the IPF, which will serve as a free
parameter, {hese degrees of freedom are, however, inessential to the analysis
as long as Eq. 3 is satisfied.

Eq. 3 can be rewritten in the form

o + (- =)f = 1, (4)
gen gen
where aEIPF=IRL/Vgen. Substitutions from Egs. 1 and 2 then produce the relation
sought between M “and M.. However, for calculations involving these masses it
is convenient to solve this relation for say M. explicitly and also define new
symbols for recurrent groups of geometric and electrical quantities. Hence,
three new symbols are defined as follows:

Mo = [(1+K) Ko K2 P, (5)
— K, 1/2
fyi:(f_:t\/l—a ) [(1+K1)Km}. (6)



The contents of Eq. 4, when expressed in terms of M. and M, then amounts to
the two equations .

M =(Mmo
M

ct * 72) Moo (7)
N _

where the "+" case corresponds to 1/(wC)>wL; or equ1va1ent1y to T leading

v ens and the "-" case to T lagging V gen- Thus when C is suff1c1ent1y 1arge

to make inductive effects predominate, the capacitor mass is given by M.

M. may decrease and approach zero, but clearly can not become negative. The "-"

case of Eq. 7 covers the contents of this observation in the inequality

M
M, -
which when written out becomes
_ 2 _
Poen N V1 - a 2) ‘ ()
My (1 +Kp) K,

The special case of equality in Eq. 9 is important in its own right because it
corresponds to no capacitor (nc). Hence it is repeated below for emphasis:

M (1 +K) K
—n_ ne = m_ (10)
( Pgen) V1 - 2’ - 2)

Qualitatively Eq. 10 states what one might expect: even if coil leakage
inductance were zero {£=0), one needs a large magnet to achieve an IPF close
to unity.

Approach to Evaluation of Capacitive Tuning Defined

In systems composed of diverse components often hard to quantify factors, such
as overall reliability, weigh heavily in final design. For multiyear space
missions, high alternator reliability must be achieved in a system requiring
low mass and possibly low volume. Alternator reliability is sensitive to
electrical insulation degradation due to the effects of temperature, radiation
and corona, and hence is likely to improve rapidly with advances in technology.
However, the mass of electromagnetic energy converters is tied to material
properties and magnetics principles less subject to rapid evolution. Therefore,
we choose to first compare the tuned and no-capacitor cases on the basis of
mass, and look for significant differences to justify the use of capacitors.

The above mentioned principles and properties fix rather hard lower bounds to
stator, magnet and capacitor mass, which can be incorporated using simple
models. If a mass advantage deriving from these basics exists in one case or
the other, then it must appear in any model faithful to these principles, even
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if it be simple and geometrized. Otherwise, the existence of such a mass
difference would rest on circumstantial complexities and would be of lesser
interest here.

Appendix B shows by two such geometrized models incorporating Timits on flux
and current densities that the mass M, of stator core plus copper coil varies
as the product of a fractional power of the terminal volt.-amperes P, and an
algebraic function of a length ratio s; both fractional power and gﬁgebraic
function are geometry dependent. Moreover, at constant P the ratio s is
adjustable to minimize M. As tuning conditions (IPF) ané magnet or capacitor
mass are varied within the constraint of Eq. 7, the shape factor s will
generally deviate from the value s, which minimizes M, at constant P,. Indeed,
this may induce a significant deviation in M. as the Full range of t%e IPF is
explored. The varied tuning conditions may also have a significant effect on
the terminal voltage V., and hence on M, through P,. A detailed exposition of
these dependences is given in the next section.

The models presented are thought to give the form of the dependence of M, on P,
and on s to sufficient accuracy for a comparative study. To get realistic
masses would require an increase in M, by some practicability weighting factor,
and also would require mass allowances for capacitor associated hardware,
magnet transport cage or plunger, and so on. For comparison purposes, however,
such weightings will be assumed to play no decisive role.

Stator Mass Related to Internal Power Factor and Magnet Mass

A. Parametrization of the stator mass.

Expressions (B14) and (B14') for the mass M, of a bare stator consisting of a
magnetic core and a coil are derived for the geometrized configurations of
interlocked toroids and a long tube, respectively. They have the general form

M, = P, F(s), (11)

where O<r<l, and the function F has a minimum at some value s, of its argument.
r, F and s, are geometry dependent.

An important point about stator mass and capacitive tuning follows from Eq. 11
and will be discussed in the section "Comparative Analysis of Stator Mass".
However, in order to make a quantitative assessment of the sensitivity to
parameter variation it is necessary to derive additional equations that express
the masses as functions of the degrees of freedom. a is chosen as the main free
parameter of variation. Choice of the magnet mass M  as some function of «a
gives an additional degree of freedom only in the tuned case. The development
of the necessary equations now follows.



B. Terminal volt-amperes.

Considering the external circuit, the definition of a and Eq. 1, the terminal
voltage is

L

Vi = [(a Vgen) ('ﬁ)

NIE

or equivalently,

2 ( ) 2172
P, =P at + (——
t gen K Pgen

C

1/2
P [1 " (KMcP )2] (13)

in terms of volt.ampere products. This can also be deduced from the vector
diagram in Fig. 2. Note that P, is always the real power, whether the
alternator is tuned (M>0) or not tuned (M.=0). Eq. 7 can be used to eliminate
M. from Eq. 13, which fransforms the above P, to the form desired for use in
Eq 11.

C. Shape scaling functions.

The shape factor s can likewise be expressed as an algebraic function involving
w, P., other parameters and materials ratings, and the degrees of freedom,
a]though now one is forced to specific geometries.

For the toroidal geometry the ratio V /V
and setting x, =w/2:

en 15 determined by Egs. B5, Al4, A8

Ve/Vyen = 7 (1 + K) B v,%/(A, B,.). (14)

gen

Using Eq. Bll to eliminate r, and Eq. 12 to eliminate V, from Eq. 14 gives
' M, (2 V2
(1 +K) B (A PIY2 s = A B[a+(_K_P__)] . (15)

Finally P, and A  are eliminated by Eq. 13 and E% B8, respectively, and the
result conven1ent1y expressed as a formula for s



2
2. _wd (A B)?alD

- — ' . (16)
V2 K, (1 +K? B P,
where
M S J1/2
= = C
D = P/Pye a[l + (KC Pr) ] . (17)
The analogous result in the cylindrical case is
J. (A B3 D?
(S—l)2= _ﬂw r‘(m r‘) a (18)

V2 K, (1 + K382 L%P,

In these formulas for s the total cross-section A, of magnets of any one
orientation (see Fig. Al) is related to their volume V_ only by the stated
convention that magnet shape shall be entered as an adjustable constant
independent of other degrees of freedom. Accordingly in the toroidal case one
can assume circular magnets of radius

ry = (Amlvr)l/2 (19)
and specify their height to be
hy =2 8, ry . (20)

where a, is the above mentioned constant. Introduction of the total magnet mass
M, and its density p, along with Egs. 19 and 20, gives

M 2/3
A, = qi/3 m . (21)
4 Pm 9n

In the cylindrical case the length L does not scale, and a, assumes the
meaning of a magnet height-to-width ratio. For this case

1/2
P DL T (22)
" 2 pm ah

These formulas for A, assume a single pair of oppositely oriented neighboring
magnets and consequently M =2p, "V from the definitions. The usual practical
configuration of two pairs, which will be used later for making plots, is
covered by the transformation a,+2a, (see also Appendix A) with the above
definitions of M  and A, maintained.

In the case of no capacitors, the magnet mass is given by Eq. 10. Using Eq. 10
along with Eq. 21, Eq. 16 for the toroidal geometry can be rewritten as



) 7’,2/3 Jr‘ [/‘m (1 + Kl)]4/3 Pr1/3 . 02/3
V2 a 3wk, (1+ 3B B (W1 - -

Similarly, Eq 18 for the cylindrical geometry can be rewritten as

2w J [uy (1+ KDI2 (P /L)Y ( o )3/2 (24)
ah/ 1/2 w (1 + K)3/2 852 \/1 - (12 -2

(s - 1)

using Eqs. 10 and 22.

In the tuned case there exists the additional degree of freedom to trade off
M, versus M., subject to the restriction imposed by Eq. 7. Mathematically, this
freedom means that one may choose M, to be any physically acceptable function
of a and then find M_ from Eq. 7 a1ong the inductive and capac1t1ve branches.
However, as will be a1scussed the particular choice M= is privileged in
that it minimizes (M_M,). For this reason it may be he]p?u] to write M, in the
form

M,(a) = R(a) M, (a), (25)

where R is any acceptable function of a or just a constant. D, is then
determined for the two branches by the defining Eq. 17 and Eq. 7:

D% = a® + (R + 902 (1 +K) K, / K. (26)

Returning to Eqs. 16, 18, 21 and 22, the shape factors for the tuned case are
thus found to be

2 . (UJ Pr)1/3 Jr [ﬂ Br fn (1 + K].) KC]Z/3 a-1/3 R4/3 D

(27)

-+

S+
+ 211/6 Kw Bs pm2/3 [ah 1+ K)]4/3 %
and

1/4 o 3/2 3/4 1/2
7 d.w’? B2 [, (1+ K K] / (P./L) / 212 R3/2 p 2
+

— (28)
\/2 Kw ah3/2 BSZ pm3/4 (1 + K)9/4

for the toroidal and cylindrical geometries, respectively. Along the inductive
branch the domain of a is restricted such that

R'l +9.20 , (29)
which is merely a restatement of Eq. 8. At the point of equality (i.e. M.=0) in

Eq. 29 the inductive branch of the tuned M, versus a curve intercepts thé no-
capacitor M, curve.



Comparative Analysis of Stator Mass

The stator mass of the models considered was found to be expressible in the
form of Eq. 11, where the function F has implicit dependence on the ratings
and parameters that determine power handling capacity, but has no direct
dependence on a or other degrees of freedom. These degrees of freedom enter
through the argument s of F, as was shown in the above section. It will now be
shown that the minimum achievable stator mass of a machine designed not to be
tuned is indeed the lowest possible stator mass. That is, a tuned design can

not be below it.

To prove this, first observe that the minimum stator mass in a design using no
capacitors (nc) is
=P F(s,) , (30)

(Ms)nc,min r

where s, is the point of minimum F(s), and the load power P. appears because
P,=P. for a resistive load in the nc case. Moreover, this minimum is
a%tainab]e because corresponding to s, an acceptable a, always exists to
satisfy Eq. 23 or 24. The stator mass of a tuned (c) design can be written in
the form

(M) = (P/P)" P." F(s) . (31)
Since this F is the same as in the nc case, it follows that

PN F(s) 2 P F(sy) = (Mdoe nin - (32)
As long as M#0, Eg. 13 implies

Py > Pr (33)
and hence that

(P/P)T > 1, (34)
since r is positive. The conclusion

(Mg)e > (Mg)ne min (35)
now follows from Eqs. 31, 32 and 34.

Indeed, the argument leading to Eq. 35 is unaffected by the choice of the
magnet mass in the tuned case because R(a) never enters into the argument.
Different magnet shapes a, may be chosen in the tuned and no-capacitor cases
and still conclude the same thing. This is so because these degrees of freedom
enter only through s, but have no effect on F itself. However, variation of
these degrees of freedom alters the shape of M (a) plots and shifts the points
where mass minimum is attained and where the tuned and no-capacitor curves
merge. I1lustrations of these behaviors are given in Figs. 3A and 3B which
compare specific stator mass of the no-capacitor design as a function of a to
that of tuned designs, using representative values of parameters and ratings,
with 2=0. For simplicity the R in Eq. 25 has been assigned various constant

9



values, and hence as M. +0 the inductive (1ower) branches of the tuned curves
terminate on the no- capacitor curve at various corresponding values of a (cf.

comment after Eq. 29). But regardless of R, no tuned curve can ever dip below
the minimum of the no-capacitor curve.

At the next level of sophistication, for each a one can ask for that value of
R which minimizes either M., or even the total mass M=M.+M +M_.. Such a
computation determining the function R(a), and thereby M (a) which for each a
minimizes say M is numerically, although not a]gebra1calq feasible. However,
the conclusion given by Eq. 35 remains of course the same. Presentation of the
results is deferred until after analysis of the magnet and capacitor masses.

Comparative Analysis of Magnet and Capacitor Mass

For the case of no tuning the specific magnet mass can be plotted from

M (1 +K) K
m = m , 36
S A -0 eo)

which is a trivial modification of Eq. 10. In the tuned case we consider the
sum of magnet and capacitor masses, writing it in the specific form

M M
(Mm + Mc+) / Pr = (o + =+ ) Mmo/Pr‘ (37)
- Mo Mo B
derived from Eq. 7, where
M /P = [(1+K) K KIY2 /o (38)

The LHS of Eq. 37 has a minimum at M = with respect to variations in M,. For
MM 1t rises rapidly as M¥+O while #gr increasing M, the rise is
asymptot1ca1ly Tinear except that in case of negative 7_(a) the M  is bounded
from above in order to satisfy Eq. 8. It may be well to recall aga1n that the
choice of M, =M does not generally minimize the M., although the difference
may sometimes De negligible, as illustrated in F1g 3

Fig. 4 shows plots comparing spec1f1c magnet mass in the no-capacitor case with
the minimized (Fig. 4A) and off-minimum (Fig. 4B) specific magnet plus
capacitor mass in the tuned case for the range of a shown. Again representative
values were chosen for the ratings and parameters, and the coil leakage £ has
been neglected. In each f1gure three tuned curves have been drawn,
corresponding to K. ranging from currently available values down to half of
those values. The value of the free space gap fringing flux ratio K, chosen,
based on taking a,=1/3 in the cylindrical geometry, is likely closer to reality
than the high flux leakage of a disk-shaped gap in the toroidal geometry. In
any case, if K, is increased then all curves are raised and the minimum at

a= 1/\/2 in the no capacitor curve sharpens. Deviation of M_ from M _ also tends
to raise the tuned curves, as is already known and illustrated in ?19 4B.
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Although there is an apparent similarity to the analogous stator mass curves,
Fig. 4A shows that the magnet plus capacitor mass can dip slightly below the
minimum of the magnet mass for no tuning. The relative mass reduction afforded
by tuning is not impressive, unless for reasons such as engine stability or
limits on the allowed demagnetizing B-field swing AB it is necessary to operate
at an a close to unity in the no-capacitor case. A decrease in K. likewise
produces unimpressive improvement within this M =M., scheme, and is finally
limited by the allowed AB because Eq. 5 then forces the M, to decrease also and
hence the AB to increase. Moreover, at the power levels considered here, these
magnet and capacitor mass reductions tend to be overshadowed by the
considerably larger stator mass. Therefore even in the total mass minimizing
scheme to be discussed next, as much as a twofold reduction in K. would still
give only a relatively minor reduction in M.

Minimum Total Mass — Results and Discussion

It is straight forward to find numerically, at each value of a, that value of
the magnet mass M, which minimizes the total mass (MM +M.) in the tuned case.
This procedure thus determines the function R(a), as defined by Eq. 25, giving
a result different from the constant R=1 that was shown to minimize (M +M.).
The corresponding capacitor mass M.(a) is then given by Eq. 7.

Such a computation was programmed for the toroidal geometry, using the mass
formulas developed for M., M  and M., and the results are presented in Fig. 5.
The total specific mass, Fig. 5A, in the mass-minimized tuned case, has, as
expected, a behavior similar to that of the stator mass for various fixed R
plotted in Fig. 3A. The lower tuned curve in Fig. 5A starts at some point left
of the minimum on the no-capacitor curve and dips, as a increases, slightly
below that minimum before rising again to the point at resonance. The upper, or
capacitive, branch then rises monotonically as a decreases. This dip is
obviously minuscule and no significant mass reduction can be had by tuning,
provided one may design for operation at an a near the minimum on the no-
capacitor curve. Indeed, here a tuned design can have Jittle mass advantage
unless the no-capacitor a needs to be above say 0.95. The corresponding magnet
and capacitor specific masses are shown in Figs. 5B and 5C, respectively.

Additional computations have shown that it is difficult to produce a
significant dip in the tuned inductive branch within reasonable variations of
the parameters. High magnetic fringing (aj, increased to 0.5), reduced capacitor
specific mass (K =1.5x107%), doubling of power to 50 kW, and reduction of B to
1 T had only a siight effect in this regard. The highest sensitivity was seen
for a reduction of B. to 0.7 T, but still the amount of dip was small. However,
reduction of both B and B shifted the location of the no-capacitor minimum
toward lower a and increased the rise of the no-capacitor curve above the tuned
inductive branch. Hence if special circumstances, such as high temperature,
greatly reduce B, or B, and if stability requires a high no-capacitor a, then
capacitive tuning might offer a mass savings. For example, the stability of
free piston Stirling engines coupled to linear alternators has been reported to
depend both on the ratio § (Eq. 2) as well as on the value of any series
capacitance.[5] Maximum allowed values reported for § for various engines range
from 3 for a tuned case down to 0.5 for a no-capacitor case. Since

11



g =1 - @ , (39)

in the no-capacitor case (see Fig. 2), an a of 0.9 is then entirely sufficient
to satisfy the lowest quoted upper 1imit on . In Fig. 5A the minimum ordinate
on the inductive branch of tuned designs is only about 3% below the no- -
capacitor mass at 2=0.9. At this no-capacitor a and with B. reduced to 0.7 T,
but other parameters the same as in Fig. 5, the numerical studies show that the
mass reduction gained by tuning increases to 11%. If in addition the B is
reduced to 1 T, then one gets 16 %, as shown in Fig. 6. Moreover, from the
elementary magnetic circuit model leading to Eq. 2, one expects no particular
difficulties keeping f sufficiently small in the mass-minimized tuned scheme.
For the tuned case, Eq. 2 can be put in the form

p= L +K) Ky / KIVERT 4 (40)

with the help of substitutions from Eqs. 25 and 5. For the parameters used in
Fig. 5, one finds that [(1+K1)Km/KC]1/2=O.80, while the minimizing function R is
plotted explicitly in Fig. 7 for several power levels. Thus roughly R~1.5,
giving f~0.53; note that tuning reduces the sensitivity of f to a. The
similarly behaving cylindrical model is expected to essentially support the
same conclusions.

Except in the case of the nc magnet mass, the a at which the total specific
mass is least can not be found by simple algebra in the present models. As
previously discussed, this a may even be excluded by stability considerations.
Nevertheless, the value of a for minimum M is relevant to design optimization
studies. In contrast to treating a as a design degree of freedom, there exists
an alternative approach in the nc case that prescribes a at the outset. Writing
the nc load power as

2

v —
Pr=VgenIa=—§§"—a\/l—a . (41)

S

one sees that at constant Vzen/XS the P, is maximum at a=1/y/2. Equivalently,
the quantity Vzen/(Pr X;) is minimized. Based on this reasoning, an a=1/y/2
working rule has been used in linear alternator optimization studies.[6] To see
this rule's significance in the present context, let us neglect £ and rearrange
Eq. 2 into the form

Vgen - M/ Py

P. X, (1+K)K

(42)

m

Hence at least for negligible &, this rule for maximum P_. is equivalent to
minimizing only the specific magnet mass M /P_ at constant (1+K,)K,. For as
shown already, the a for least nc stator mass depends on the parameters and
ratings, and hence does not follow this rule; Fig. 3 clearly shows that the
minimum specific stator mass is generally not at a=1/,/2. As one considers
progressively derated parameters, this rule can become even less relevant to
minimum total mass. In the mass-minimized tuned cases computed, the minimum
total mass was somewhere on the inductive branch, but never at resonance (a=1).
However, the precise value of a for minimum M was not found.
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One may of course deviate from minimum mass tuning, shifting more mass into
core or coil such as to improve efficiency or to alter the magnet reaction or
some other parameter. The only hard restriction is Eq. 8, i.e. the non-
negativity of the capacitor mass. Although the sensitivity of the various
parameters to such off-minimum deviation has not been studied, the equations
developed here cover that mode as well. '

Scaling Effects - Results and Discussion

A brief numerical investigation of the sensitivity to variations in some of
the parameters was carried out to verify that the models produce physically
reasonable magnitudes and trends. To this end, Fig. 8 is a repeat of Fig. 5A
for a wide range of selected powers, extending from 12 kW to 100 kW. At
constant a, the total specific mass decreases with increasing power in a way
similar to the mass rule for an electric transformer.[7] Here, however, in the
nc case a constant specific magnet mass, given by Eq. 36, gets added to the
transformer-like stator specific mass given by the general form of Ea. 11.
Inspection of Eqs. Bl4 and B8 reveals that M,/P. varies as (J,.Prl/3)'34 in the
nc toroidal model and as [.J‘.(PT./L)I/Z]‘Z/3 in the nc cylindrical model. The
s-dependence, residing in the function F(s) in Eq. 11, imposes additional
modulation on these powers because s too is a function of exactly Jr.P,.]'/3 or of
Jr(Pr/L)l/z, according to Eqs. 23 and 24, respectively. When capacitors are
used the dependence on J. and P, remains as above. Even though then P.=DP_/a
and s is given by either Eq. 27 or Eq. 28, the explicit form for D in Eq. 26
shows no dependence on J. or P.. Thus Fig. 8 also provides implicit information
on the scaling of specific mass with J.. This also shows that in the toroidal
model the sensitivity of M//P_ to J_  exceeds its sensitivity to P, by cubic
power. Fig. 9 is presented to emphasize the generally great sensitivity of the
total mass to current density.

The well known and substantial reduction in specific magnetics mass of
alternators and transformers theoretically achievable by increasing the
frequency can be thought of as due to reduced flux swing. In the toroidal model
this effect varies as f3/%, while other effects of f get expressed through the
shape scaling function s, the terminal volt-amperes in the tuned case, and the
magnet mass. Examination of the frequency-resolved family of plots in Fig. 10
shows that for a fixed a near the minima a function of the form af ¥ %4pfl,
with a and b constants, can approximate the nc ordinates quite well, at least
over the limited frequency range. Mechanical limitations alone may make
frequencies much in excess of 100 Hz impractical for l-slot linear alternators
rated tens of kW. And the potential mass savings can be lost if consequently B
must be reduced in order to control core and stray eddy current losses. With
regard to modest increases in frequency, the models on hand predict a mass
reduction at nearly the -3/4 power. To ensure this, s, or equivalently the
core-to-coil mass ratio, should not be allowed to deviate far from s, for
otherwise F(s) will grow, tending to increase the mass. The nc toroidal formula
for s, i.e. Eq. 23, indicates thPt to keep s fixed as w increases, one must
increase a such as to keep o/ [w?(1-0%)] a constant. This accounts for the
shift to the right of the nc curve minima in Fig. 10. The nc magnet mass, being

proportional to 1/(wa»/1-a2 ), will then still decrease with increasing w for
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a>1//2, although at a rate less than wl; this is so because av'1-a2 decreases
with increasing a for a>1/y2. Qualitatively, to save mass, a higher frequency
nc design should be at a lower f.

The shifting of the nc specific mass curve minima toward lTower a with
increasing power (Fig. 8) and toward higher a with increasing frequency (Fig.
10) results primarily from mass redistribution in the stator, and is effected
through the argument P./w of s. The s-related and physically more interesting
core-to-winding mass ratio as given by

zcore = Pc 52 (43)

coil Py

for the toroidal case and by

M

Mcore = Pe (s? - 1) (44)

coil Py

for the cylindrical case. A plot of Eq. 43, with power as a parameter, is
presented in Fig. 11. Its purpose is to support the model by showing that
designs otherwise reasonable according to previous figures also produce
reasonable mass ratios.

Reference designs by which to judge the absolute validity of this simplified
modeling of a linear alternator are scarce in the literature. An existing 12.5
kW linear alternator labeled SPDE[9] and a paper study of a similar 25 kW one
labeled RSSE[10] are described in unpublished reports. Both of these resonantly
tuned machines were designed with the help of flux mapping codes, although not
likely to the criteria invoked in this report. A design by Nasar and Chen[6] is
based on detailed geometric approximation of flux paths[11], and is numerically
optimized with respect to a weighted sum of mass and electrical losses, subject
to a=1/,/2 (cf. Eq. 41 and discussion) and to penalty functions on the
constraints. Table I compares the results, available or estimated, for the
above three machines with corresponding predictions by the toroidal and
cylindrical models. These models do about equally well and best in regard to
coil, magnet and capacitor masses, but they underestimate by a factor of 2 or
so the core mass, the core-to-coil mass ratio and f. Underestimation of core
mass is not surprising because the models assume a uniform stator flux density
and no pole shoes. Shifting of mass between coil and core can also be due to
weighting of efficiency or some unreported design criteria in the case of the
SPDE and RSSE.

Magnet Utilization - Results and Discussion

The peak demagnetizing field that a magnet can tolerate before loss of
intrinsic magnetic moment sets in is well known to decrease rapidly with rising
temperature. At 300 °C even the presently available high energy 2-17 type Sm-Co
magnets have usually lost over half of their room temperature intrinsic
coercivity.[12,13] Therefore the demagnetizing field, or the corresponding dip
(AB) of the B-field below B., is an important factor in evaluation and
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comparison of alternator designs, especially at high temperature. The naive
analysis of demagnetizing forces in Appendix A clearly falls short of
accurately describing a magnet's field environment. Nevertheless the
implications of this analysis are worth considering for they point up the
consequent physics in a clear way. The expected result that a large magnet
suffers little reaction is embodied in the equation

AB K p K
= m . gen + , (45)
B. 1+K M  1+K

r

which is a combination of Egs. A27, A22 and A24. Then in the nc case Eg. 10
applies, giving

BB (V1 -d® -2 K

—= + , 46
B, (1+K({(1+K) 1+K (46)
and in the tuned case all a dependence can be absorbed in R(a) by using Egs.
25 and 5 to put Eq. 45 into the form
K 1/2 K
a8 ! n + . (47)
B, (1 +K) R(a) (1 +K;) K 1 +K

In this analysis the part of a magnet under a stator pole face undergoes a
reaction which is the sum of the gap reaction K/(1+K) and a load power
reaction, while the rest of the magnet is ignored. For large M the gap
reaction predominates. As a is reduced in the nc case, the load reaction grows,
but remains bounded. The behavior of the nc magnet reaction between its upper
and lower bounds is presented in Fig. 12 for several values of the gap flux
fringing ratio K, and zero coil leakage £. The influence of flux fringing on
magnet reaction clearly diminishes with increasing a.

Another informative way to display the contents of Eq. 46 is to eliminate a by
using Eq. 36 and plot AB/B,. against M,/P., as is done in Fig. 13. The lower
branch of this plot, where a is increasing and AB/B, is decreasing with
increasing M /P, is the one of interest if a>1/y/2 1s required.

When minimum mass capacitive tuning is implemented, the result is a magnet
reaction less sensitive to a, because then R in Eq. 47 is not a strongly
varying function of a (see Fig. 7). Using the cylindrical model and the
previous reference set of parameters, Fig. 14 compares the a-sensitivity of
AB/B,. of the nc to the tuned case for the same K,. Although the capacitive
branch has the lower magnet reaction corresponding to its greater magnet mass
(cf. Fig. 5B), the reaction varies but little. In both cases the magnet
reaction shown is well within the capabilities of modern, high-coercive rare
earth-cobalt magnets, even at 300 °C.[13] A plot analogous to Fig. 13 can be
done also for the minimum mass tuned case, but is not presented here.

High magnet temperature might require the reduction of the magnet reaction by
upping the magnet mass, or conversely, one might decide to make the magnets
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work harder by reducing their mass. In the nc case such freedom to alter the
magnet mass at a fixed a does not exist, unless one changes the magnet
height-to-width ratio a,. If for some reason a lower a is unacceptable, then
the only way to increase the normalized demagnetization reaction AB/B, in Eq.
46 (or to decrease M /P. in Eq. 36) is to reduce the gap flux fringing K; by
decreasing a,. Not much is gained once K, becomes small compared to unity,
except that the magnet area A, as well as the shape scaling s keep increasing
(e.g., see Eqs. 21 and 23), making the magnets wafer-like and the stator
heavier. For any fixed a in the tuned case, one has the extra freedom to trade
off magnet mass versus capacitor mass in the inverse hyperbolic relation of Eq.
7, subject to the upper bound on magnet mass along the inductive branch imposed
by Eq. 8. Keeping a, fixed, one can easily decrease magnet size in this way to
make them work harder at any a, but at the expense of deviating from minimum M.
Also, as analyzed in Appendix C, s then decreases with decreasing R for large R
and can even increase with decreasing R on intervals that depend on a and also
on the model geometry. Instead of M, the R-freedom can thus be used to adjust
some other s-sensitive quantity such as Mcmw/McoW' Adjusting magnet mass in
the tuned scheme by varying only the magnet he1ght, and thus keeping the magnet
area as well as s constant, is an interesting alternative which has not been
fully investigated. Allowing a limited variation in a, might be a feasible way
to effect more control over the core-to-coil mass ratio and hence influence
efficiency.

Conclusions

Based on idealized toroidal and cylindrical geometries, it was shown that the
stator mass of an alternator designed to be capacitively tuned is always
greater than the minimum achievable stator mass of an alternator designed with
no capacitors (nc), assuming equal utilization of materials ratings, and the
same frequency and power to a resistive load. This result can be attributed to
an increase in the terminal volt.ampere product caused by a series capacitive
reactance, which can, by design, either wholly or partially cancel, or even
exceed, the internal inductive reactance of the alternator.

Use of the internal power factor (IPF=a) as a design degree of freedom was
found to provide good clarification of various intricacies and options inherent
in comparing the two approaches. Series capacitive tuning adds a degree of
freedom which was expressed as a variation in the normalized magnet mass. This
additional degree of freedom may then be used to minimize, at any a, say the
total mass consisting of stator, the exciting permanent magnets and the
capacitors. However, at power levels of tens of kW, the stator mass is by far
the greater and hence tends to dominate the behavior of the total mass. In the
nc case, the a for minimum specific stator mass was found to generally vary
with the parameters and ratings, whereas the minimum specific magnet mass is at
a=1/\/2. The a of the tuned case total mass minimum likewise varies, and is
never at resonance. In the nc case both stator and magnet specific masses are
unbounded as a+1, but in the tuned case all masses remain finite. Moreover, in
the tuned case, the magnet plus capacitor mass varies at a less than
proportional rate with the capacitor specific mass (see Eq. 37). Therefore on
the basis of this study, costly efforts to reduce capacitor mass would seem to
be unwarranted.
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Unless possible external constraints are considered, such as driving engine
stability or deratings arising from high temperature, this study can find no
apparent advantage in capacitive tuning. With no such special constraints or
deratings, any overall mass advantage of a tuned design is entirely negligible.
However, a slight reduction in magnet mass for the tuned case could improve
stability and reduce windage losses, but at the expense of load fault effects
and capacitor reliability. When an upper bound is invoked on the ratio (f) of
the inductive voltage drop in the alternator to its internal emf, the nc
approach still seems to be favored. This bound, which assures stability of
oscillation for an FPSE-linear alternator system, has been reported to be the
lowest in the nc case. For example, in the nc case an a of 0.9 is sufficient to
satisfy the lowest quoted value of 0.5 for the g Timit. Indeed, with realistic
ratings and for @=0.9, the mass savings resulting from tuning amount to only a
few percent. Serious deratings, such as a magnet remanence reduced to 0.7 T and
a stator magnetic saturation reduced to 1 T, are needed for tuning to save
about 16%. Unless the deratings are rather severe, one would likely not opt for
the undesirable bulk of extra hardware and potentially serious reliability
problems introduced by tuning capacitors. Safety considerations may require the
use of active feedback control to reinforce the otherwise rather marginal
amplitude stability of high power FPSE thermodynamic oscillators[14]. Active
feedback control may then raise the nc case f limit, further favoring no
tuning.

The exciting magnet reaction AB/B. due to the applied demagnetizing field has
been analyzed as a sum of elementary magnet gap and load power components.
While the self-demagnetizing influence due to the gap is clearly the minimum
possible AB/B., there is also a bound on the maximum AB/B. in the nc case (see
Eq. 46). Since an nc design will Tikely have an a 2 1/,/2, this condition
selects that, or lower, branch of the curve shown in Fig. 13, where the magnet
reaction is monotonically decreasing with increasing specific magnet mass.
Therefore the best that can be done in the nc approach to minimize magnet mass,
should that in itself matter, is to approach either the magnet reaction or
stability limits, should the_corresponding limits on M exceed the absolute
lower bound on M_ at a = 1/,/2. In the tuned case it is theoretically possible,
at any given a, o arbitrarily reduce the magnet mass, but then the capacitor
mass, the coil-to-core mass ratio, and the total mass all increase without
bound. An alternative way to adjust the tuned case magnet mass while asserting
more control over variation of the other masses may be to also allow some
simultaneous adjustment in the a,. Varying magnet height with area fixed is an
interesting special case of such possibilities which need further
investigation. At each a, that magnet mass which minimizes the total mass,
including capacitors, was shown to be well defined and computable. The
resulting normalized demagnetizing reaction AB/B,. for these as was shown to be
acceptable for both the mass-minimized tuned and nc cases; indeed, the values
of AB/B, computed in examples were all less than unity, and hence well within
the capability of modern, high-coercive 2-17 type samarium cobalt magnets, even
at 300 °C.

Algebraic modeling equations were developed to generate comparative plots of
the various alternator component masses as functions of the free variables. It
has been shown that the stator mass can be expressed as a product of a
transformer-like term, involving the terminal volt-ampere product raised to a
geometry dependent fractional power, and a simple algebraic function of a ratio
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s scaling the shape. s in turn uniquely determines the core-to-coil mass ratio
and is itself an algebraic function of the ratings and free variables. This
approach of grouping of terms makes possible some intuitive penetration of the
complexities of the many variables which determine the total mass and its
distribution. Then various scaling effects, couplings, sensitivities and trends
become apparent, which, rather than computation of actual designs, is the real
advantage of the method. Finally, this approach may be useful to clarify
scaling effects, sensitivities and trends in other alternator characteristics,
such as the efficiency, that strongly depend on mass and its distribution.
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Symbols and Abbreviations

ay, - magnet height-to-width ratio

a,, - coil wire conductor cross-section (m?)

An _ - cross-section of magnets of any one orientation (m2)
A, - a constant defined by Eq. B8 (m*/W)

A - cross-section of stator core (m?)

B - magnetic flux density (T)

B,, B, - flux density in magnets no. 1, 2 (T)

B, - magnet remanence (T)

B, - peak flux density in stator (T)

C - capacitance of tuning capacitor (F)

D - a function defined by Eq. 17

D, - D evaluated for inductive (-) or capacitive (+) IPF branch
f - frequency (Hz)

fi(R) - functions defined by Egs. Cl and C7

F - a function defined in Eq. 11

hg - total height of gap between magnet and pole faces (m)
b, - magnet height (m)

H - magnetic field intensity (A/m)

Hy, H, - field intensity in magnets no. 1, 2 (A/m)

Hoin - minimum (most negative) field intensity in a magnet (A/m)
Hq - field intensity in stator core (A/m)

i(t) - instantaneous alternator current (A)

I - rms alternator current (A)

T - complex vector rms alternator current (A)

IPF - internal power factor of alternator
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rated rms alternator current (A)
rated rms current density in coil wire (A/m?)
a constant defined by Eq. Ab

ratio of stator gap fringing flux to magnet flux under a stator
pole face, defined by Eq. Al8

capacitor specific mass, a constant defined by Eg. 1 (kg/(V A))
ratio of gap height hg to magnet height h_

ratio of stator gap fringing flux to flux under a stator pole
face, with magnets absent

a constant defined by Eq. A24 (kg/W)

ratio of coil cross-section to total conductor cross-section
ratio of coil leakage inductance drop to Vgen

length of magnet in direction transverse to motion (m)

mean magnetic path length of stator core (m)

mean length of bordering strip used to estimate gap fringing
flux (m)

length of coil in the cylindrical model (m)
coil leakage inductance (H)

stator gap leakage, or fringing, inductance with magnets
present, as defined by Eq. Al2 (H)

magnet reaction inductance, with magnets in stator gap, (H)
total equivalent series inductance of alternator (H)

total mass, MM +M_, of alternator (kg)

mass of capacitor (kg)

M. evaluated for the inductive (-) or capacitive (+) IPF
branch (kg)

mass of stator coil (kg)
mass of stator core (kg)

total mass of magnets (kg)
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mo

nc -

magnet mass for minimum M _+M., defined by Eq. 5 (kg)

mass of stator, M. ..*Meoi1: (kg)

designates no-capacitor case

number of turns in stator coil

a constant defined by Eq. A7

volt-ampere product for capacitor (V A)

volt.-ampere product for alternator (V A)

rated alternator power to a resistive load (W)

terminal volt-ampere product of alternator under load (V A)
radius of coil cross-section, toroidal or cylindrical model (m)
radius (outer radius) of core in toroidal (cylindrical) model (m)
magnet radius in toroidal model (m)

normalized magnet mass, M,/M.,

load resistance (Q)

series resistance representing alternator electrical losses ()
Let RLg, R Rosr Ruor R - reluctances, see Appendix A
roots given by Eq. C9

alternator model shape scaling ratio r,/r;

value of s giving minimum stator mass for constant P,

instantaneous internal emf, or open circuit terminal voltage, of
alternator (V)

instantaneous terminal voltage of alternator under Toad (V)

rms internal emf, or open circuit terminal voltage, of alternator

(V)

complex vector rms internal emf of alternator (V)

v - rms voltage drop across coil leakage, stator

Ls
gap fringing, magnet reaction and total series inductance,
respectively (V)

total volume of magnets of any one orientation (m?)
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rms terminal voltage of alternator under load (V)
width of magnet, or alternator plunger stroke (m)
instantaneous alternator plunger position (m)
amplitude of alternator plunger oscillation (m)
total inductive reactance wl, of alternator (Q1)
short symbol for the IPF

ratio of alternator inductive voltage drop to Vgen
a constant defined by Eq. C2

constants defined by Eq. 6

peak demagnetizing flux density swing (T)
permeability (u_ u_ ) of magnet (H)

relative permeability of magnet

permeability of vacuum, 4710 "H

density of stator core (kg/m®)

density of copper (kg/m®)

density of magnet (kg/m’)

density of stator coil, averaged over wire and insulation (kg/m3)
instantaneous flux through stator coil (Wb)
instantaneous coil slot leakage flux (Wb)
instantaneous magnet gap fringing flux (Wb)
instantaneous total flux contributed by the magnets (Wb)
instantaneous stator pole flux (Wb)

angular frequency 2nf (sec™!)
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11.
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Appendix A

Internal EMFs, Magnet Size, and Demagnetizing Forces

Basic magnetics equations are applied to the model shown in Fig. Al in order to
relate exciting magnet size to equivalent circuit parameters, power and
demagnetizing fields. A pair of oppositely polarized magnets moves between the
poles of a magnetic core made of some magnetically soft laminations. This
closed magnetic circuit links an N-turn armature coil, not shown, which
supplies power to a load. The path P, following the magnet1c circuit may 1in
fact intercept another such po]e face and magnet pair arrangement before
closing on itself; however, in such a case h, and h, represent the total length
of magnet and 1ength of air gap, respect1ve1y, in the circuit, and the magnet
pairs are assumed to be mechanically linked.

Internal EMFs and Equivalent Circuit

Summation of mmf around P, couples the magnet field Hy, the stator field H,
the gap flux density B, and the instantaneous current i according to

Hy hy, + Ji— h +H I+ Ni=0. (A1)
Ko
Similarly, path P, couples the magnet fields to each other according to
(H + Hy) hy + (B + B,) hg / e =0 . (A2)
And the total flux contributed by the magnets is the sum
¢ = L(W/2 + x) B, - I(w/2 - x) By, (A3)

where Iw=A_ is the total cross-section of magnets of any one orientation. Thus,
fringing fields in the region between adjacent but oppositely oriented magnets
have been ignored. Moreover, flux fringing around the ends of the magnets and
"leaking" around the coil in its vicinity can at best be only estimated, unless
one computes the fields of specific geometries. Here formal symbols R and R
will be assigned to these gap and coil leakage reluctances.

High energy rare earth-cobalt magnets of the type assumed here are well
characterized by

B =y H+ B, (A4)
in a cyclically driven mode along the recoil line in their normal quadrants of

operation, where g =4 in the SI units. In this mode their relative
permeability u.. is sT1ght1y above unity and their remanence B. is about 1 T.
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To utilize the algebraic facility provided by the flux-reluctance-mmf notation,
the magnetic circuit is modeled as shown in Fig. AZ. In the present case a
magnet is equivalent to a magnetic potential generator of strength h B./p, in
series with a position-sensitive reluctance [R_.(x)+R 7;(x)], i=1,2, of the part
of its body under a pole face of the stator. OTherwise the notation is
standard, and a list of reluctances is defined below, where numerical
subscripts appearing on the position-sensitive reluctances refer to either
magnets na. 1 or no. 2:

h
R = m , body reluctance under the stator, magnet no. 1
m S T Wz = W) (body g )
R hn (body reluctance under the stator, magnet no 2)
= . u . .
m2 py 1 (W/2 + X) y g
R g ( Tuct der the stat t 1)
= , ap reluctance under the stator, magnet no.
91 po L (W/2 - x) gap ! “ J
R g ( Tuct der the stat t 2)
= . reluctance un e stator, ma .
o2 R gap reluctance under stator, magnet no
l . .
R, = s, (1inearized stator reluctance)
B As
RLg = reluctance to measure flux fringing around the magnets,

R,. = coil leakage reluctance,

h
R = —3 = total gap reluctance,
g A
FO m
= hm - . .
R, = i A = total reluctance of magnet material in gap.

Further refinements to this circuit are possible, such as introducing a
leakage path between the junction of R . and R . to the opposite side of the
flux generator, but will not be pursueﬂ here.

Using Fig. A2 and successive Thevenin equivalent reductions or else loop
equation algebra, one finds the instantaneous flux in the coil to be

2 A B t 1 +K 1 1
g (t) = n B () ) { - + Ni(t) (A5)
¢ R R R
pw P lg P m le
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where

x
]

= fine Ky = fipe Ng / By (A6)

and

P

In a we11'ﬁesigned machine the stator will utilize a magnetically soft material
that will not be driven into hard saturation. Therefore normally R <« R _ and

: g
Rs<<Rm, making

(1+K) (1L+R,/R,) +R, /R, . (A7)

p~1+K (A8)
a very good approximation.
Eq. A5 presents a useful decomposition of the total coil flux because its time

derivative gives the instantaneous terminal voltage vt(t) as a sum of terms
that have standard interpretations in alternator theory:

d¢ di
Vt(t) = N —d—t—c = Vgen(t) - (LLg + Lm + Ll,c) F ' (Ag)
where
_ 2 A B, dx
vgen(t) =N D w g (A10)

is the internal generator or no-load terminal voltage,

(1 + K) N
is the stator gap leakage or fringing inductance with magnets present,
N2
L, = (A12)
m P Rm
is the magnet reaction inductance for magnets in the stator gap, and
N
L, = R, (A13)
. c
is the coil leakage inductance. For the usual case of sinusoidal x(t) with
amplitude x, the corresponding rms Vgen is
_ J2 A B w
Vgen = N -——E;:g-—lL—- Xo (A14)

where in normal operation x,=w/2. Hence forth all voltage and current symbols
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will denote sinusoidal rms values. This then establishes the correspondence to
the alternator lumped equivalent circuit shown in Fig. 1.

0f the three load current induced voltages in Eq. A9 , namely

Vig = W Ly I,
NLg = W LLg I, (A15)
Vv, =wl, T,

lc

only V, is completely determined at this point. The L, _ is rather dependent on
the shape of the coil and its surrounding slot. Since slot and coil geometry
are not the objectives of this study, L, _ will be considered an unknown value
controllable to a negligible value by good design practices, and the symbol

2=V, / Vg (A16)

will be carried for completeness only. On the other hand, the L, is much more
significant because driven by the mmf Ni, a substantial amount of flux will
fringe around the magnets if the magnet height-to-width ratio is not small.
Resorting to one of the standard approximations is most expeditious, and we
shall assume R, to be the reluctance of a cylinder of height (h +h ) and
cross-section of a strip of width (hy*h,)/2 bordering the periphery of the
magnet gap.[8] If [ denotes the mean length of the strip, then this
prescription gives

RLg =2/ (g, 1) - (A17)

Introduction of the slightly permeable magnet material between the pole faces
decreases slightly the fringing of flux around the volume between the faces.
The ratio of fringing flux to magnet area flux becomes

K = L/ly = (1+K) R /R,

_ Wy + Ky)

T+K) b (118)

where K, is the ratio of fringing to central area flux for a free space gap.
Hence K, can be found from a given a,=h /w and pole face shape. In the above
stated prescription for fringing,

« - I (h, + hg) . (A19)

¢ 2 A,
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The ratio of the sum of the three inductive drops listed in Eq. Al5 to V
can now be written as

Vis/Vgen = [(1 + K) Vip/Voed + 2, (A20)

having used the definitions in Eqs. Al6 and Al18. Finally from Eqs. Al2, Al4,
the first of Al5 and the definition of R follows the useful expression

2 P fn Pgen
VLm/Vgen = Wy, Brgz ' (A21)

where V_ is the volume of magnets of one orientation and P .. is the
volt.ampere product of the machine. From the total magnet mass

M, =2 Pm Vi (A22)
follows the alternative form
Vin/Vgen = Kn Pgen / My (A23)
of Eq. A21, where the inverse of the constant
4p py b
K = - mm (A24)
m w Br.2

is proportional to the energy per unit mass of the magnets times the
frequency.

Suppose next that a second identical stator gap and a magnet pair mechanically
linked to the first pair are introduced into the magnetic circuit, as in some
existing designs. This is equivalent to doubling the h; and h of the single
gap circuit, provided the R s also doublied. This can be seén by 1nspect10n
or shown by equivalent circtdt algebra. The formulas A20 through A24 remain
valid provided V, and M, remain as defined, which thus doubles their values.
C]ear]y K is unchanged "but R, is doubled. It follows then from Eq. Al8 that K,
remains invariant. Indeed, oné can see that for most quantities of practical
interest this transformation is completely described by a +2a,.

Demagnetizing Forces

It remains yet to establish the relation of the field swing amplitude in the
magnets to their volume, or mass, and P ... To this end the circuit in Fig. A2
gives the rather tedious exact solution’

KB NG (R /R (BJup) [2 x(t)/w]
L) T T e, T+ p (23]

for the instantaneous field in magnet no. 2. As before, the last group of
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terms can be dropped because (RS /R) is assumed to be very small. Moreover,
any part of a magnet not under a poﬂe face is subject to different
demagnetizing forces and influences the other part still in the gap. Therefore
the value of the above equation may lie mostly in that it accounts for the
effect of load current and air gap on the part of a magnet under a pole face,
where demagnetizing influences seem likely to be the most severe.

The minimum, or most negative, value of H, in Eq. A25 occurs for peak positive
i, which is 2 I in the sinusoidal case. Thus any magnet part under a pole
face will experience a peak demagnetizing field of about

o KB N V2 1

min py (1K) - h, (1 +K) )

(A26)

1f N is eliminated with the help of Eq. Al4, then the result can be put in the
form

2
I:’qen = - W Br‘ :um Hmin + K (A27)
2V, 4, B 1+ K/

r

where 2V_ is the total magnet volume. Note that this gives an interesting
alternative version of Eq. A23:

- _ B Hmin K
VLm/Vgen - (1 + K)( Br + 1 + K)- (AZB)

This result can be substituted directly into Eq. A20 in order to express

Vi /Vgen too as a function of the peak demagnetizing field. In this paper, when
dealing with the peak demagnetizing field, instead of H..., reference will
usually be made to the corresponding dip AB of the B-field in the magnets below
the remanence B.. It is defined as the positive quantity

BB = —py Hoiy - (A29)
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Appendix B

Stator Mass for Toroidal and Cylindrical Configurations

The toroidal stator geometry, drawn in Fig. Bl, consists of a magnetic core
torus, of window radius r; and cross-section radius r,, interlocked with a coil
torus which fills the core window completely. Hence the coil window has radius
r, and the coil cross-section has radius r,. The cylindrical geometry, drawn in
Fig. B2, consists of a magnetic core in the shape of a long pipe whose bore is
filled with coil wire running lengthwise. The cylinder's inner radius is ry,
outer radius is r, and length is L. One can imagine, if desired, that this pipe
makes a loop, closing on itself. Exciting magnets may be thought of as existing
in appropriately located gaps in these magnetic circuits, but which are ignored
for present purposes. In fact, this omission may improve approximation to
reality because the extra magnetic circuit Tength needed to accommodate magnet
height is not useable for additional coil cross-section in the referenced
tubular linear alternators[2,4]. These particular geometries are interesting in
that their contrasting symmetry generates rather different functions to test
the sensitivity to alternator configurations.

(1) Interlocked Toroids

Stator mass M, is the sum of the magnetic core mass

Mcore =2 ”2 (rl + rz) r22 Pc (B1)

and coil mass

Meoi1 = 2 12 (r] + 15) 18 p, (82)

coil
where p_ is the core density and p, is the coil density averaged over wire and
insulation. Denoting the wire conductor cross-section by a,, one can account
for insulation and space by writing K.a, with K>1, for the total area per
wire. Thus the coil has

2
Tr
N = L (83)
KW aw
turns, and in case of copper wire insulated by a much lighter material, a
density
Py ™ Poy ! K, - (B4)

As the magnetic flux density in the core oscillates with maximum permissible
amplitude B,, the rms terminal voltage is found from Nd¢./dt to be
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B 2 B
L UL Sy (AN S C (85)
V2 v2 K, a,

with N finally eliminated by use of Eq. B3. And the current is at its rated
value

T.=a, J. ., (B6)
as limited by the maximum permissible rms current density J.. Then the
terminal volt.ampere product is

Po=V, 1. =(7r r)2/ A, (B7)
where

J2 K
A = ———X— ., B8
P w B, J (88)

It is convenient to express all masses and dimensions in terms of Ay P, and a
dimensionless scaling ratio

sEr, /[ r . (B9)
Using Eqs. B7 and B9 one finds

"y ﬂ-l/Z(Ap p )4 5712, (B10)

rp = w3 (a, YA e (B11)

The desired mass formulas follow immediately from Eqs. Bl1, B2, B10 and Bll:
Megre = 2 112 pe (A P4 (1 4 5) st/2 (B12)

core
Moiy = 2 172 g, (A, PO (1 4 5) 572, (B13)

coil
giving the stator mass

M, = Mg * Megqp = 2 772 (A) POYE (1 +5) (p 512+ p, s77%) (B14)

core coil

For constant P, the M, (s) has a minimum at the sole real positive root s, of
(3s+1)s?-(s+3)p/lp. =0. (B15)

For example, if p=p. then s =1, giving Meore=Mcoi1: OF 1T pc=2p, then s ~0.7576
and M 1.15M

core” coil-"
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(II) Long Pipe

This geometry can be conveniently normalized with respect to its length L.
Otherwise the formulas are developed in the same way as in (I) above, and they

will be listed without further discussion and labeled by priming the

corresponding formula numbers of (I). Formulas which are the same as in (I)

are omitted.

- 2 2
Mcore/L = (rz - N ) Pe o

= 2
Mcoi1/L STV Py

BS

V, /L

W W

Pt/L =m rlz (rz - rl) / AP '

ry= (AT - P13 (s - 1)

rp = (A/m - P/LY3 s (s -1

Meore/L = T3 oo (A) P/L)%/3

COFG/

Meoir/L nl/3 Pu (Ap Pt/L)2/3

M/L = 73 (A, P/ (s -

For constant P,/L the M (s)/L has a minimum at the sole root s>l of

1/3

!

)-1/3

r

(s - Y3 (s+ 1),

(S - 1)-2/3 ,

D3 [(s2 - 1) p. *p,] -

s2 - 3s/2 + (1 - p,/p)/2 =0,

which is

s, = 3/8+ (1L+8p,/p)% .

(B1")
(B2")

(B5')

(B7')

(B10')

(B11'")

(B12')

(B13")

(B14')

(B15")

Note that in this geometry p =p. gives s =3/2 and M_  .=1.25M_ .;. One could say
that with respect to distribution of coil versus stator mass the cylindrical

geometry has an inherent bias.
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Appendix C

Variation of s with R in the Tuned Case

In the tuned case one has the additional freedom to vary the magnet mass or,
equivalently, R at a fixed a and ratings. This variation induces variations in
s-sensitive quantities such as M, and M. ../M. ;) because s is a strong function
of R. A qualitative understanding of the gepenJence of s on R is therefore
useful, but is not apparent from a cursory inspection of Eq. 27 or Eq. 28
because the D-factor involves R in an inhomogeneous way. Therefore a brief
analysis of this dependence is presented for the case of variation of R at
constant a.

A. Toroidal geometry:

In this case, by Eq. 27, si is proportional to RY/3 D,, where Di is given by
Eq. 26. Is si, or equivalently R4/3 D:' then a monotonic function of R? To
answer this, it is convenient to study instead the functions

f,(R) = R D2(R) = a? R¥3 + e B3 (1 +9, R, (c1)

where

e = (1 +K) K,/ K. (C2)

v7,. as defined by Eq. 6, is a manifestly non-negative quantity. Hence f (R) is
a sum of positive terms each monotonically increasing with R. Therefore sf is
monotonically increasing with R.

The case of s% requires detailed examination because y_may be, and usually
will be, negative. This case can be understood by examining the derivative

fr(R) = (1/3) RY3 [4(c® + €/P)R® + 5eq R + €] (€3)

for changes of sign, for s? is monotonic on any interval where f'(R) is of
constant sign. Assuming 2=0,

o’ + 672 =1 (C4)

holds identically and Eq. C3 simplifies to
£1(R) = (1/3) RY/3 (4R? - 51 - a® R+ €) . (C5)

For a>3/5 the quadratic form in R on the RHS of Eq. C5 is positive definite,
making f'(R)>0 for all R>0. For a<3/5 this quadratic form has 2 positive roots,

making f'(R)<0 for
(5/8)el2(/1 - a% - V(9/25) - a° ) <R < (5/8)el2(v1 - o +V(9/25) - a° ). (C6)
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Thus in the 2=0 casei the s% is monotonically increasing for all R if a>3/5.
But if a<3/5, then s is monotonically increasing for all R except on

the interval C6, where s% is monotonically decreasing with R. The £>0 case can
be analyzed similarly.

B. Cylindrical geometry:

In this case, by Eq. 28, (s, - 1)2 is proportional to R3/ZDE, but from the
point of view of Eq. 44 the interest is in (s - 1). However, it is apparent
that if one of the quantities s,, (s, - 1)2 or (sf - 1) is monotonic, then

so are they all; e.g., s - 1 = (s - 1)2 + 2(s -17). Hence it is sufficient to
study the monotonicity of

f,(R) = R¥2 D2(R) = R¥Z [2% + e(R7! + 1,)?] . (c7)

Again we examine the derivative
fo(R) = (1/2) R¥2 [3(a? + ey2)R? + 2e,R - €] (c8)

for changes of sign. For both y and y_ the RHS of Eq. C8 has always one
positive and one negative root given by

67, ® [(e7,)? + 3e(a? + €q2)]V/?

Ry, = : (C9)

0 3(a? + €1l)
where the symbol @ labels the positive and the negative roots. In the case
2=0, Eq. C4 applies, showing that f;(R)>0 (i.e., fi(R) is monotonically
increasing) iff R>Ry,, and that f;( )<0 (i.e., ft(R) is monotonically
decreasing) iff R<Ry, . where

Ry, = (1/3) €2 (V1 - a® + V& - a® ) (C10)

are the positive roots in the 7, and y_ cases, respectively.
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Results

Meore/ P -

core
Mcoi1/pr
Mo/ P
M/Pr
Mcore/Mcoil
M, /P,
(M+M,) /P,

p

Parameters

a

P.(/L)

Table I

Toroidal and Cylindrical Models Compared to Known Designs

N&C  TOR  CYL | SPDE  TOR  CYL | RSSE  TOR  (CvL
0.97 | 0.38 | 0.48 | 1.31 | 0.60 | 0.73 | 1.20 | 0.63 | 0.71
0.39 | 0.41 | 0.29 | 0.90 | 0.59 | 0.41 | 0.41 | 0.62 | 0.40
0.30 | 0.29 | 0.21 | 0.27 | 0.31 { 0.21 | 0.33 | 0.42 | 0.31

N/A > + 0.14 | 0.14 | 0.15 | 0.17 | 0.18
2.50 | 0.93 | 1.64 | 1.46 | 1.03 | 1.79 | 2.93 | 1.02 | 1.77
1.35 | 0.80 | 0.77 | 2.21 | 1.19 | 1.14 | 1.61 | 1.25 | 1.10
1.66 | 1.09 | 0.98 | 2.48 | 1.50 | 1.35 | 1.94 | 1.67 | 1.4]
1//2 + + | 2.22 | 0.45 | 0.47 | 1.49 | 0.57 | 0.59
1/,/2 + + | 1.00 + + | 1.00 + +

25 + | (26) | 12.5 + | (15) 25 + | (28)

100 + + 105 + + 70 + +

5.0x10° + + [3.1E6 + + [3.1E6 + +
1.20 + + | 1.08 + + | 1.08 + +
1.07 + + | 1.08 + + | 0.93 + +
1.60 + + 1 1.80 + + 2.1 + +
0.40 + + 10.33 + + [ 0.33 + +
2.00 + + | 1.54 + + | 1.43 + +
0.078 + + | 0.21 + + | 0.11 + +
N/A + + 3.E-4 + 3.E-4 -

1. Specific masses are in units of kg/kW, P. is in kW, P./L is in kW/m and is
labeled by ( ), and all other units are

2. N&C is a design by Nasar and Chen[6], and SPDE and RSSE are designs by

Mechanical Technology, Inc.[9,10].

5 W

SPDE and RSSE are best estimates only.
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. TOR => Toroidal Model, CYL => Cylindrical Model.
. N/A => not applicable. Biank space => value unknown. Some values for N&C,
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2.8
m
=
X
~
o)
X
v/ -
e
a
~
12}
1.0
J. = 3.0QE+Q0R6 K, = 1.50E+0006 M /M- ‘1Lt . to RL.:D.89,1.72,
- B | .QSE+0002 Kg = 1.90E-Q81 2.39,.3.36
B. 1 .PRE+0RR K. = 2.25E-804 P.=25 kW
B, = !.80E.000 P = 8.20€+003 The IPF Is inductive on lower
9 3.33E-eet Peu™ 8.89E+003 bronches, capacitive on upper
f = 1.BBE+RR2 Py ~ B8.40E+0O3 branches of the tuned curves.
e a L 1 2 L 1 11 1 3
0.1 D.2 0.3 0.4 B.5 0.6 B.7 0.8 2.8 1.8
04

(A) Toroidal model.

Mg /P Cleg/kWd

J. = 3.PRE+206 K, = 1 .SRE+DQD Hm/Hmo,'l'Lt.to Rt.:@8.75,1.21,
| Ko ! .RSE+Q0R Kg = | .BRE-081 {1.66,2.33,3.27

B. = 1 .0RE+20R Ko = 2.25E~-0084 PF/L'ZS kW/m

Be ! .80E+000 Pe = §.20E+003 The IPF is inductive on lower

o, = 3.33E-001 Pey 8.89E+003 branches, capacitive on upper

f = 1.00E+202 P, = B8.40E+003 branches of the tuned curves.

ae 1 L 1 L I\ '] 1 1
1 ©.2 ©.3 ©8.4 85 @©6 ©.7 ©.8 ©.9 1.0

(B) Cylindrical model.

Figure 3. Plots of specific stator mass versus internal bower factor with
(dashed curves) and without (solid curve) capacitors. The tuned
curves are drawn for various constant values of Mm/Mmo and their C4®
limit is marked by '|* on tﬁg M =0 curve. Two magnet pairs are used.
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(M *Mo D /P, Ckg/kWD

Figure 4.

(M +Mod /P Ckg/kWD

8.7
8.6
8.5 F
Q.4
2.3 |
B.2 |
J. = 3.00E+BR6 1: K = 3.BRE-BO4 M, = 1.2M  for curves 1.2.3.
T 1 .BSE+Q0P 2: K, = 2.25E-004
B 1 .BRE+RRQ 3: Ke = { .SBE-2Q4 Tha IPF is inductive on lower
2.1 | f = 1.0BE+BD2 branches. capacitive on upper
Kg | BRE-001 =0 branchas of curves 1,2,3.
K| = 4.00E-00!
Pm = 8.40E+00G3
e e 1 L Il I L L L 1
2.1 B.2 8.3 B.4 8.5 9.6 8.7 6.8 8.9 1.8
X
(RA) Mm/Mmfl, giving minimum (Mm+MC)/Pr in the tuned case.
8.7
.6 |
9.5
0.4
.3
8.2 +
J. = 3.0BE+RQ6 1: K_ = 3.8BE-@R4 M = 1.5M__ for curves 1.2.3.
Mo 1 .B5E+000 2: K. = 2.25E-004
8. 1.020E+200 3: Ko = | .SRE-BB4 Tha IPF is inductive on lower
.Y - f = 1._.POE+@0Q2 branches., capacltive on upper
Kg = | @OE-881 P=oe0 branches of curves 1,2.3
Ky, = 4.2QE-@Q!
P, = 8.42E+003
e a 1 1 1 1 I L — 1

Q.1 Q.2 0.3 0.4 B.5 0.6 R.7 2.8 0.9 1.0

(B) Mm/Mmfl.S, showing that this raises the tuned curves.

Plots of specific magnet plus capacitor mass versus internal power
factor with (dashed curves) and without (solid curve) capacitors.
The tuned curves are drawn for selected values of K, and two choices
of constant Mm/Mmo. The K, used corresponds to ahzl/3 in the

cylindrical model.
aN
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