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PREFACE

The Second International Workshop on Squeezed States and Uncertainty Relations was held

in Moscow on May 25 - 29, 1992. This Workshop was organized jointly by the P. N. Lebedev

Physics Institute of the Academy of Sciences of the Russian Republic and the University of

Maryland at College Park. The Workshop was supported in part by the Committee of Science

and Technology of the Russian Republic, the Lebedev Physics Institute, and the University

of Maryland. This program was one of the scientific conferences held in accordance with the

cooperative agreement between the Lebedev Physics Institute and the University of Maryland.

The first meeting of this workshop in this series took place at the College Park Campus of the

University of Maryland in 1991.

The purpose of this Workshop was to study possible applications of squeezed states of light.

Specifically, the workshop was concerned with the following questions.

(1) What physics can we do with squeezed states?

(2) Are there squeezed states in other branches of pl_ysics?

(3) What are possible forms for the uncertainty relations?

The Workshop brought together many active researchers in squeezed states of light and those

who may find the concept of squeezed states useful in their research, particularly in under-

standing the uncertainty relations. There were many participants from the European countries

including of course Russia. There were also many from the United States.

The third meeting in this series will be held at the University of Maryland Baltimore County.

The principal organizers are R. H. Rubin and Y. H. Shih. We expect that the international

character of this Workshop series will be preserved and strengthened.
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INTRODUCTION

Squeezed states of light were predicted in the 1970's. They were observed in laboratories

during the period 1985-1988. Indeed, the production of squeezed light is one of the landmarks

in the development of laser technologies. Efforts are being made to find new experiments using

this new laser technology. This new development encourages and enables us to study the forms

of uncertainty relations.

The physical basis of squeezed states of light is the uncertainty relation in Fock space whose

basic operation consists of creation and annihilation of photons. The uncertainty relation in

this case is that of the second quantization. One of the fundamental questions in physics has

been and still is how this uncertainty in second quantization is the same as or different from

the position and momentum uncertainty with which we are so familiar.

Let us consider a two-dimensional space with two orthogonal axes. The word "squeeze"

means that one of the coordinate variables is contracted while the other is expanded in such a

way that their product remains unchanged. For Heisenberg's uncertainty relation, we can in-

crease the uncertainty in position variable while decreasing that in the momentum variable while

keeping the value of uncertainty constant. Indeed, the squeeze transformation has been one of

the most important transformations in many branches of physics, including special relativity,

harmonic oscillators with time-dependent frequency, canonical transformations in classical me-

chanics, and Bogoliubov transformations in condensed matter physics, thermofield dynamics,

and symplectic transformations in mathematical physics.

Thus, the word "squeezed state" can have two different meanings. In a narrow sense, the

word is applicable only to two-photon coherent states in quantum optics. There are many who

say that the potential for industrial applications of the squeezed states of light is enormous.

There are also many who say that the squeezed state in optics was only a fad and is no longer

an interesting subject. However, we should not make a hasty judgment on this new word,

because the squeezed state can have its second meaning.

The word squeeze can also have a broader implication. It does not have to be limited

to quantum optics. The point is that there are many squeeze transformations in different

branches of physics. Indeed, there were .and there are many who have been studying these

transformations without using the word squeeze. The squeezed state of light has made a very

important contribution to the physics world by giving us the word "squeeze" as one of the

fundamental transformationss in physics. This word may therefore lead to an entirely new

organization of physicists who are working in many different areas of physics including quantum

optics.

The Workshop was attended by many researchers in the squeezed states of light as well as

those who worked on related fields even before the squeezed state of light became one of the

important subjects in physics. This volume contains four chapters. The first chapter contains

the papers on the latest development in quantum optics. The second chapter consists of articles

dealing with the forms of uncertainty relations. The articles in Chapter 3 are on theoretical

developments based on the concept of squeeze transformations. It is important to note that

the time-dependent problem in quantum mechanics is intimately connected to the concept of

squeezed states in optics. The papers in Chapter 4 contains the papers dealing with time-

dependent problems in quantum mechanics and quantum optics.
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-A PHASEONIUM MAGNETOMETER:

A NEW OPTICAL MAGNETOMETER BASED ON

INDEX ENHANCED MEDIA

Marlan O. Scully

Department of Physics, Teza_ A _ M University

College Station, Texa_ 778_3

Michael Fleischhauer, and Martin Graf

Sektion Physik, UniversitEt M_nchen

W-8000 M_nchen, Germany

Abstract

An optical magnetometer based on quantum coherence and interference ef-
fects in atoms is proposed whose sensitivity is potentially superior to the present
state-of-the-art devices. Optimum operation conditions are derived and a com-
parision to standard optical pumping magnetometers is made.

1 Optical Pumping Magnetometer

The detection of magnetic fields via optical pumping techniques was first discovered by

Franken and Colegrove in helium [1]. An atomic system with three lower magnetic sublevels

say, mj = +1,0,-1 and one upper level, is driven by resonant unpolarized light. A

magnetic field, which for simplicity we take to be parallel to the propagation direction,

splits the energies by an amount llaB, where a _ 107 s-l/Gauss and B is the magnetic

field strength.

Due to optical pumping, the population of the rnj ---- -4-1 states is driven into the

rnj = 0 level and the pump light will be transmitted through the otherwise absorbing gas.

Now, if there is a RF signal applied to the gas which is resonant to the sublevel

transition, the atoms will be driven back to the rnj = :kl states and the gas will again

absorb the optical radiation. Thus by monitoring the transmitted pumping light while

varying the RF frequency one has a sensitive measure of the spacing of the magnetic

sublevels. That is, the pumping light will be "shut off" when

5
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_RF = aB (z)

This is summarized in Fig.1.

Y

m T --

I tI::
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FIG.1. Optical Pumping Magnetometer Concept

The ultimate precision to which we can measure this frequency and the strength of

the magnetic field is determined by intensity fluctuations in the transmitted light beam,

i.e. fluctuations in the number rn of observed photoelectrons. To obtain the resonance

frequency, one determines the position of the half maxima. The intensity fluctuations at

this point lead to an error

_error = _ Am, (2)

where cgrn/Ow is the slope of the transmission curve at the half maximum.

Assuming shot noise in the number of observed photoelectrons, i.e. Am = yrm, and

100% detection efficiency, so that m = Pint,n/liu, we obtain under optimum conditions for

the frequency error

/ivAw_,.,.o,.= -y._ p_._, . (3)



Here Pin is the optical input power, v the frequency of the pump field, and t,_ is the

measurement time. "r,nag is the width of the transmission line, which in the absence of

power broadening is the transverse decay rate % of the R.F transition. Equating the signal

frequency (1) to the error (3) we arrive at the minimum detectable change in the magnetic

field for the optically pumped magnetometer

_mag / hv

-- a V Pi.t., (4)

Increasing the power of the pump radiation obviously increases the sensitivity. However, as

Pin grows the transmission line will get power broadened and 7mag will eventually increase.

In order to optimize the parameters, we calculated the width of the transmission line by

solving the density matrix equations within a second order perturbation approach in the

RF field. We thereby consider the level configuration shown in Fig.2.

i I

/ i !

b.
b o

b÷

FIG.2. 4-level scheme for the optical pumping magnetometer. Since the

magnetic field is parallel to the propagation axis, the unpolarized pump field

drives the rns = +1 lower levels to the ms = 0 upper state.

In the interaction picture we have the equations of motion for the populations

7



(5a)

(5b)

(5c)

for the RF polarizations

Pb+bo = --(iA at- "Yc)Pb+bo -- i_'_RF (Pb+b+ -- Pbobo) .9¢-i['_* Pabo,

Pbob- = --(iA + _c)Pbob_ -- iQRF (Pbobo -- Pb_b_ ) -- if_P:b o,

(6a)

(6b)

and for the optical polarization

r

Pabo = ---_pabo -- i_*RFPab- -- iQRFPab+ + i_Pb+bo + iQpb_ bo, (7)

Here 7+, 7-, 70 are the longitudinal decay rates of the optical transitions, F = 7+ +7- +70,

_'_RF and f_ are the Rabi-frequencies of the RF and optical field, and A is the detuning of

the RF-frequency from the magnetic transition frequency. In the absence of the RF-field all

population is optically pumped into level b0. Hence, in zeroth order the only non-vanishing

,,(0) = 1, and the medium is totally transparent with respect to thematrix element is b'bobo

optical field. In first order of the RF-coupling, low-frequency coherences build up. Solving

Eqs. (6) and (7) we find

p(1) (1)
b+bo _--Pbob- "-

QRF(A + i%)

A2 + 72 +
I"

(s)

where we have assumed _*RF = _RF" In second order of the RF-field, population in the

b± ground levels is created and the optical field will be absorbed. Noting that p(_ = 0,

we find from Eqs. (5a) and (5c) the imaginary part of the a - b± susceptibilities, which

determine the absorption of the pump field radiation

,, P 2N f_F ( 21fll2] (9)

:_ = _eo A2+7_+ r



As can be seenfrom this equation and Fig. 3, an increasing Rabi-frequency _ leadsto a
power broadenedtransmission line with width

7._,,g= % (1+ 41_l12) 1/__,-_-- (10)

-x"/x"(o)

-_o -'5 6 _,_/7o_ _b

FIG.3. Normalized imaginary part of optical susceptibility as function of RF

detuning A. The Rabi-frequency of the pump field is (from top to bottom) 0.1 ,

0.5, 1, 1.5, 2 x %F/4.

For a sui_ciently small input power, such that 7,,ag _ %, the minimum detectable mag-

netic field, Eq. (4), decreases with increasing input power Pin. However, above a certain

value Pie,, corresponding to the critical value of the optical Rabi-frequency

/ (11)
¢ 4

B,ns, attains a constant value

9



e.,.,--._V<V _--_-_' (12)

where A is the pump laser cross section. For a measurement time of 1 s, _ - 500 nm,

7¢ - 10a s-l, and A = 1 cm 2, the rhs of Eq. (12) is of order 10 -1° Gauss. The highest

sensitivity obtained experimentally so fax with an optical pumping magnetometer is of the

order of 10-9 Gauss [2].

2 Interferometric Measurements of Magnetic Level
Shifts

An alternative way of determining magnetic level shifts is to detect the change of the

index of refraction near an atomic resonance.

Let us consider a simple two-level atomic absorber. If we ignore the absorption for

the moment, the dispersion of such a medium near resonance is given by

n _ 1 + -_-_, 1 + .L3N _-, (13)

where _ is the wavelength of the atomic transition, N the number density of atoms,

A -- Wab -- u is the detuning between the atomic transition frequency W_b and the probe

field frequency u. An applied magnetic field which shifts the atomic transition frequency

will thus lead to a change of the index of refraction

An _ _3Na" B. (14)

A probe beam transmitted through a sample of these atoms over a distance L will hence

acquire a phase shift due to the magnetic field

2a-
2rr )_aNL a "

B

-r --_--"A
(15)

i0



Detecting th_s phase shift by interferometric means, for instance in a Mach-Zehnder inter-

ferometer, thus gives a sensitive measure for the magnetic level shift. The phase measure-

ment error is found from A¢_,.ro,.Arn ,_ 1. Assuming again shot noise, i.e. Am = _ and

equating the signal and error expressions, yields the minimum detectable magnetic field

Naturally, however, such a gaseous medium will not be useful because of the large absorp-

tion as indicated in Fig.4.

,10"15

8

X 4

0

-4

-8

t "_', , •

° b

" -4 0 4 8

FIG.4. Real (X') and imaginary part (X") of the susceptibility of a two level

atom, determining the index of refraction and the absorption.

This is the point where the idea of quantum interference in atomic systems comes

in. If the upper level a of an optical transition is driven by a strong driving field to an

auxiliary level c, the absorption from the ground state b is essentially cancelled [3], while

the index of refraction displays a large dispersion, due to quantum interference of different

absorption pathways.
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FIG.5. Left: A configuration in which strong driving field with Rabi-frequency

G' on a-c transition generates transparency on the a-b transition. Right: corre-

sponding susceptibility spectrum.

3 Optical Magnetometer Based on Electromagneti-
cally Induced Transparency

Near a resonance of the coherent medium we have a large dispersion of the index of

refraction. A probe field propagating a distance L through the phaseonium medium will

acquire a phase shift

A4o_ =- 3---A2NL.7 aB
4_r In'l_

(17)

due to the magnetic field. The induced transparency is not perfect due to collisional

dephasing of the c-b polarization (7¢) and the amplitude of the transmitted fieldwillbe

reduced by a factor

_ = exp{- 3---A2LN_}s_ Inl "

is, however, close to unity for sufiiciently strong driving fields.
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Putting a phaseonium gas cell "_n one arm of a Mach-Zehnder interferometer as per

Fig.6, the signal phase shift (17) can be measured by a balanced detection of the intensities

at the two outputs. As shown in Ref.[4], the operation of such a phaseonium magnetometer

is again shot noise limited. Equating the signal and noise expressions one finds for the

minimum detectable magnetic field in a phaseonium magnetometer

1 4rr 1
Brain --

,/2[ hpi_t_ ] j./_ (19)

drivingfield --_

1111
0 L

test

..,d7

FIG.& Mach-Zetmder interferometer

Increasing the number density N or the interaction length L enhances the signal phase

shift. On the other hand the transmittivity _ decreases. An optimum value is found when

4,, 1 19'12
3 ,_2LN .y

-re. (2o)

This gives for the minimum detectable field under optimum parameter conditions

(21)
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which is identical to the expressionfound for the standard optical magnetometer for the
caseof small input power. However, if in the optical pumping magnetometer the input

power exceedsa critical value determinedby the critical Rabi-frequency (10), the sensitiv-
ity remains constant, whereas in the caseof the phaseoniummagnetometer much higher
sensitivities are possible as can be seenin Fig. 7. Here the Rabi-frequency of the probe
field, _. is limited only by the condition of linearity

B
mm

f/<_ 7. (22)

0.1

0.01

10

etometer

phaseonium magnetometer

0.1 1 10 100 1000

P
i.

FIG.7. Minimum detectable magnetic field for the optical pumping and

phaseonium magnetometers as functions of the input intensity in units of pc

To see the potentially enhanced sensitivity, let us consider a special numerical example.

Reasonable values are: 7 = 107 s-l, 7c = 103 s-l, [_'[ = 7, A = 500 nm, L - 10 cm,

tra = 1 s, Pi, = 1 roW, a - 107 s-I/gauss, N = 2 x 1012 cm -3 (10 -4 tort at room

temperature). This gives a minimum detectable magnetic field strength of

Brain -, 10 -12 Gauss

which is smaller by one or two orders of magnitude than that of existing magnetometers.

Thus, the phaseonium magnetometer potentially leads to much higher sensitivities than

existing state-of-the-art devices.

14
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Abstract

A single mode. cavity is deformed smoothly to change its electromagnetic eigenfrequency.

The system is modelled w a simple harmonic osci_tor with varying period. The Wigner
functien of the problem is obtained exactly starting with s squeesed initial state. The result
is evaluated for a linear change of the ¢_vity length. The approach to the adiabatic limit

is investigated. The maxinmm squeezing is found to occur for smooth change lasting only
a fraction of the osdllstional period. However, only a factor of two improvement over the

adiabatic result proves to be possible. The sudden lindt cannot be investigated meaningfully
within the model.

I Introduction

If the length of an electromagnetic cavity is changed, there axe two meanings to the concept of

adisbaticit_,. Firstly, the movement may be so slow that the cavity eigenfrequency varies only

little during one osciIlational period; this is the adiabatic limit proper. However, the process

of establishing the correct osciUational frequency requires that the radiation hu time for many

round trips in the cavity. The cavity deformation may enter another regime, the eigenfrequency

does not change appreci&bly over a few round trips, but it may change significantly over a single

oscillational period. In this limit, we still expect the cavity mode to be described by a simple

harmonic oscillator, but its frequency changes smoothly with time. If the movement is rapid

compared with the cavity round trip time, the complete Maxwell equations need to be used in

the calculstiem. Solving un eigenvLlue problem with a moving boundary is a tricky problem; I
do not want to discu_ this situation here

The theory of a harmonic oscillator with vaxiable frequency is a paxazligmatic problem in physics.

Clusically it appears as a case of parametric driving, and quantum mechanically it is connected

to the history of adiabatic invaxiants. A classical discussion is found in van Kampen [I] and of

the many quantum treatments I wish to mention only Dykhne[2], Popov and Perelomov [3] and

Man'ko and his collaborators [4]-[5]. Because the Heisenberg equations of motion agree with the

classical ones, the quantum solution can be reduced completely to solving the classical problem;

this was recently shown in an elegant way by Lo [6]. The same conclusion wu formulated for

the Wigner function by the present author [7] albeit in a different physical context. Squeezing

introduced by time evolution has been discussed for other physics/situations in Refs. [8]-[I0].

17
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2 The general problem and its solution

In a cavity of length L we assume the Hsmiltonian for one radiation mode to be of the form

1 n'(0q') (1)H - (p'÷

where the time dependent frequency is given by

¢IT

n'(t) = n0_/(t) ; no = To" (2)

L0 is the initial length of the cavity. If we introduce the scaled variables

V (3)
I" ffi Not ; _'= _00 '

we find the Heisenberg equations of motion using the canonical commutation relations between

p and q

= _ ; , = _y(_) q, (4)

where the dot denotes derivation with respect to _. Integrating these equations gives the solution

for the Heisenberg variables as has been discussed in the literature.

In the Schr_dinger picture we obtain the equation of motion for the Wigner function in the form

8W 8W aW

_- +._-q - f(t)_- = 0. (s)

Its characteristics are the very Eqs. (4), but now they are classical relations between c-numbers.

In order to solve (5) we proceed as in Ref. [7] and define the fundamental system of solutions

wl and w= such that

,,,,(o) = _,,(o)= 1
(6)

,/,,(o)= ,o,(o)= o.

Their Wronskian is a constant of the motion equalling unity. We assume the mode in the cavity

to initially be in the squeezed state having the Wigner function

[ .' ]Wo(qo,,ro)= Cexp (qo- ,/)2 _-("o - _)' (7)s_/P

Expressing the general solution of (4) in terms of the solutions (6)

q= qo,,,,(,') + ,row,(,')
(8)

,r = q= eo_(_')+ ,ro_'s(')

18



and inserting qo and lr0 from (8) into Eq. (7) we obtain the required solution of (5)

W(q,_r,,) ffi Cexp[. (w'q-w"-q)' l.a-_-_

exp wlq -

Calculatin 8 the marginal distribution for the vffiriable q we obtain

_,(q,r) --- /d_W(q,_,r)

(q- q(,))']---- C exp ip¢2(r ) j

The Wigner function thus progresses along the classical trajectory according to

and its spreading is given by

(9)

(10)

(11)

w](_') (12)_2(_)= w_(_)a"+ -a-T-

At the initial time the squeezing is given by s 2, but at the final time, after the change of the

cavity length, the result is determined by the values of wl sad w2 at the end of the interaction.

It is generally agreed, that in the adiabatic fimit proper, the change of the squeezing must be

small, see e.g. Graham [11]. In the next Section we will investigate a simple mode], where we

can see how the situation is changed if the motion is smooth, but not necessarily adiabatic with

respect to the oscil]ational frequency.

3 Linear change of cavity length

We now a_tme that the length of the cavity is changed linearly, viz

L(t) - Lo + At = Lo ÷ At�No. (13)

The characteristic time scale of the cavity change is given by

L0 flo

Itol = _ = _ (14)

which goes to infinityforproperlyadiabaticmotion. Negative A mesas thatthe cavityismade
to contract.

With these definitions the function fit) becomes

L03 i (15)
f(t)= (L0 + At)'= (1+ (t/to))_ "
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Relations (4) give the equation

_+ y(,)_ = o, (16)

which has to be solved with the initial conditions (6). For the given function (15), this becomes

a Fuchsian problem with two singularities and the solution can be obtained in a straightforward

way.

We introduce the variables

A = oJL.'/_, -

t _" ),t L(O - Lo
T = to Noto Lo Lo

With these definitions the fundamental solutions (6) are given by the expressions

1 T)]}wl(_') = _{cm[Alog(1 + T)] - _-_sin[Alog(1 +

(17)

(18)

w,(_') ffi __sia[Alog(l+ T)] .

Regarding T as a function of 1-, we can eaafily see that these functions constitute s solution to

the problem. Exciting the cavity state by a claJs/cal source, we will find it in a coherent state

with J ffi 1 in (7). The width as a function of time becomes

#'(,)= w;(_)+ w|(_). (19)

Before we proceed to consider the consequences of the exact expression (18) for the width (19),

we look at the adiabatic limit proper, i.e. A =_ 0. Then we find

Alog(1 + T)=_ -_ _o = Not
(20)

With these results, the equations (18) go over into

_I(_)ffi _ co.not

= sinno,.
(21)

Remembering that Eq. (17) implies

V-Z- -o=
(22)

2O



we find thst the results (21) follow from s simple •pplicstion of the WKB-method to the equstion

(16). Inserting these results into the width (19) we find

E2(t ) = n0 (23)

As we cannot hope to change the osci11•tions] frequency by a large fraction, we rea_ the con-

clusion th•t no large smount of squeesing crux be achieved in the sdl-b_tic regime proper. This

a_rees with conclumons mTived •t in esrlier tre•tments, in pro'titular the sdi•b•tic inv•riance

of _E 2 hu been found, see e.g. Ref. [11].

Another peculiarity of the result (23) is th•t no trace of the oscBl_ionsl belmviour survives. If

the parmneter A is not too large, the situ•tion changes. Becsuse of the second term in wl of

Eq. (18), olcill•tions sppear in the width. To see how much Iqueesing they can achieve, we

write the solutions (18) in the form

1 sin _o]wl = vT'_'-_[co._o-_--_

(24)

w2 = -_ lv'_'_'_.in_o.

Here _0 is the srgument of the trigonometric functions in Eqs. (18). The width (19) then
becomes

_r'(t)-_f)° [ 1 1 . ]1- _,in2_, + _-_,,-'_, • (25)

For A =_ oo this reproduces (23). The expression hu • minimum for each fixed vaiue of the

parmneter A, but for larse A, this •pproaches the sdi•b•tic limiting value (23). For exsmp]e

A = I gives the minimum value 0.69 for the expression in square brackets in (25). This occurs

• t the time when _o = 0.55.

The best poesible vLlues for the squeesing are obtained with s very small A, in which cue the

minimum occ_-s for early times, _0_ 0. The expression (25) ¢sn then be written

1 + - 1 -> 2A_(t'_"

which is not • lo.,l_e improvement over (23). The minimum also occurs for • smsll parameter A,
in which cue we r•pidiy •pproach the bre•kdown of the validity of the theory. For very small

A, the expression (17) gives

1 (27)
Nolo -_ _ ,

which is not in the sdisbstic regime proper. The minimum then occurs *t times when

1
so_ _t _..4 < _to _. _ • (28)
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Thus we have to change the cavity eigenfrequency in i time less than the oscillation period. This

cannot obviously be achieved by mechanical means, and even using some electronic switching to

change the effective path length through the cavity, we can attempted this only in the microwave

region. However, u the advantage of the method is expected to be small, there seems to be

little motivation to solve the technical problems involved.

4 Discussion

We have solved the problem of the deformLtion of an intrscavlty field during a smooth change

of the cavity edsenfrequency. Even if we are allowed to depm't from the strict adi,_batic limit,

the expected equee_ing remains modest. The calcnlstion cannot be taken to the sudden limit,

because then the s/mple harmonic oscillator description is no longer valid. The complete Maxwell

equations must be treated in that case. In this aspect our problem differs from the corresponding

S_nger equation [12]-[14] where both the sudden and the adiabatic limit can be handled in

the same w_y.
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Abstract

The quantum theory of coherent radiation frequency

doubling in crystals with quadratic and cubic optical

nonlinearities is developed. The possibility to produce the

quadrature - squeezed state of the second harmonic (SH) field

is shown,the nonclassical SH states arising due to self-action

effect.

I. Introduction

The quantum theory of the second and higher harmonic

generation has been developed in a number of works (see, for

instance, Refs. i-3] in which the possibility of obtaining the

squeezed states of electromagnetic field and photon

antibunching has been analyzed. It has been established that

the frequency doubling is accompanied with the generation of

the squeezed states at the fundamental frequency whereas the

second harmonic (SH) field turns out to be in the coherent

state. At the same time the frequency doubling of the squeezed

light, as it was shown in Ref. 1, causes a decrease in

squeezing. From the practical point of view, the methods based

on the quadratic and cubic medium nonlinearities with respect

to the electric field are of considerable interest. It is

known 4 that in the centrosymmetric nonlinear medium, i.e. the

Kerr medium, the quadrature - squeezed field can be produced

due to the self-action effect. In the media mentioned above the

four frequency wave processes always occur in the presence of

self-action. In the media with the induced quadratic optical

susceptibility the three frequency wave interactions can also

occur under the evident influence of

25
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In the 'present paper the quantum theory of the SH

generation (SHG) in the presence of self-action is

developed. In the framework of the classical approach the

problem under consideration has been solved in Refs. 5 and 6.

The basic equations of the process which are of interest to us

are presented in Sec. 2. In the Sec. 3 SHG is analyzed for the

case of low efficiency of the fundamental radiation conversion

into the SH: however, we do not take into account here the SH

influence on the effective refractive index of the medium. The

possibility of the SH quadrature - squeezed state generation is

shown in Sec. 4.

2. Basic equations

Interaction of the fundamental wave of frequency W and

second harmonic wave of frequency 2(0 in an optical medium with

nonlinear susceptibilities of the second _ and third _J_

orders is described by the Hamiltonian:

(1)

where a+(a) and b+(b) are

operators of the fundamental wave and SH which

commutation relations:

Ea.a+l - i , [b,b+; - I,

the nonlinear parameter _ is proportional to

parameter 7 to _s_. The operator evolution is given

Heisenberg equations:

-- ._i2Oi+ _ iy +i•
0z

photon creation (annihilation)

obey the

_

(2a,b)

X_z_ , and

by the

(3a)

=
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Oz
(3b)

where z is the length of the medium in the direction of wave

propagation.

Let us discuss the terms on the right - hand side of Eqs.

(3a) and (3b). The first terms are associated with the process

of degenerated three-frequency interaction (the first term in

Eq.(3b) describes the SH generation (SHG), whereas in Eq.(3a)

the first term takes account of parametric interaction). The

second terms in Eqs.(3a) and (3b) deal with the self-action

and cross-action of the radiation of frequency _. Finally the

third terms in Eqs.(3a) and (3b) take into account the

cross-action and self-action at frequency 2_.

Assuming that at the input of the nonlinear medium the

fundamental wave and second harmonic are in the coherent and

vacuum states respectively, we have

M

a(z=0) = ao , ao:a> - ao:_>

A

b(z-O) - bo . bo:O> = 0

(4)

3. SH generation in the fixed photon number approximation

The analysis given below implies the low efficiency of the

conversion of the fundamental radiation into the SH. Therefore,

we can neglect the last terms in Eqs. (3a) and (3b). We thus

take into account the refractive index variation due to the

cubic nonlinearity caused only by the intensive fundamental

wave. The SHG process is analyzed in the fixed photon number

approximation. Using this approximation one neglects the photon

number variation of the fundamental wave, i.e. we suppose that

the operator of the photon number n(z)=a+(z)a(z) remains

unchanged during the process of the nonlinear interaction

(n(z)-no-aoao). It should be noted that this approximation is

27



in fact the quantum analog of the fixed intensity approximation

(see Ref. 7).

Let us introduce the new operators c(z) and f(z) for the

fundamental radiation and SH respectively:

c(z) - • a(z) o f(z) - • b(z.

These operators also obey the commutation relations similar

Eq.(2) and the initial conditions similar to Eq.(4),

evolution of the new operators is given by the equations:

(5a,b)

to

The

ms •

dz

d_(z) -i7=
- -ip • c'(z)

dz

By differentiating Eq.(6b) and using

equation for the SH operator f(z)

Eq.(6a),

With the

(6a)

(6b]

we obtain the

dz 1

-- _cz)+ 413"cno + - ) _c=) - 0
dz* 2

initial conditions

(7)

_(z-0)- bo , - -i_:. (8)
dz ',.o i

Below we make use of the operator f(z) expanded into the
2

Taylor series to within _ (_-_z]:

df : 1 d f : ,
f(z) - fo + -- : z + ----_- : z + (9)

dz ,=o 2 dz ,=o "'"

Returning to-6he primr7 Operators Of the fundamental wave and

SH (a and b respectively) we obtain the expression:

E

bCz) - • {b ° - i_za o - _ _Tz ao - 2(_z) (no+ _)bo).(lO)
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The evolution of the SH field operator depends on the value

the nonlinear parameters _z and 7z.

By averaging over initial states of the fields, we

the mean value for the operator b (I0) :

" 1 :, 2i (_o-_)
<b(z)> . -(i_z + - _Tz*):ao e

2

Here _=TZ:_o :z is the nonlinear phase addition arising

the self-action and _o=arg :(Io: is the fundamental

phase. In the framework of the considered approximation

operators b+ and b satisfy the commutation relation (2b).

Let us turn to the analysis of the SH field
2 "

statistics. Calculations of the Fano factor F-O_/<N>

N-b+(z)b(z)) result in the following expression:

of

obtain

(11)

due to

wave

the

photon

(where

F(z) " 1 + (_z) z (41(Io :z + 2)

Thus, as one can see from Eq.(12), the photon statistics

SH field becomes super-Poissonian.

(12)

of the

4. Quadrature components of the SH field

In this section we dwell upon the fluctuations of the SH

quadrature components described by the operators:

_1 1
£(z)- - + ,.T,(z)- -- - (13)

2 2i

The quadrature components (13) are registered by the balanced

homodyne detection (see Figure). The SH field being under

investigation is mixed with the coherent one at the same

frequency, generated in the absence of the self-action and

cross-action effects. The mixed radiation of the both reference

coherent wave and that of the analyzed SH is fed to the

balanced detector input. Thus, we have the possibility to

record one of the SH quadrature components for the field under

consideration.
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According to Eqs.(lO) and (13) the mean values of the

quadrature components (13) are equal to

<x(z)>- _Z:ao:
1

sin[2(_o-_)] - - _z_) cos[2(_o-_))].
2

<Y(z] > = -_z:_ o:z cos[2(_o__)] _ _ _Z_ sin[2(_o-_)]
2

and determined by the value of the nonlinear parameter _z

nonlinear phase addition _.

Calculations of the variances of the SH

component yeild in the expressions:

2
1 :Go:

0_ ._ +

x°y 4 4

(14)

and

quadrature

1

c-c_7)'z"-2(_z)')ccosc4C_o-®)-27zI-cosc4C#o-_)])
2

(15)

2_'Tz'csinc4(_o-®)-27zj-sin14(_o-®_j)_.

where the upper sign is for the X quadrature and the lower is

for Y. Let us transform Eq.(15) by retaining only the terms of

order (_z) 2 and smaller. As a result we have to within (_z) z

1

C" -- - Kz_ sin[4(_o-_)] + 2(_z_)" cos[4(_o-_)].
4

(16)
1

G z- - + K2_ sin[4(_-_)] - 2(_z_)' cos[4(_o-_)]y
4

where the coefficient K2-(_:_o:Z) z characterizes the

efficiency of the SH conversion. It follows from Eq.(16) that

the variances are the oscillatory functions of the parameter

due to the self-action. The oscillation amplitude depends on

the SHG efficiency and the value of the phase _. It is evident

that the variations of the variances have the opposite

tendency. The analysis of Eq.(16) is more clear provided the

initial radiation phase _ois optimize_

1 1

_o = _ + - arg(_) _ _.

4 27z

The extremal values of the variances Eq.(16) are equal to:

(17)
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1
- - ± . (iS)

x,y 4

One can see from Eq.(18) that it is possible to obtain the

quadrature - squeezed states of SH field. In this case the

predominant role is played by the self-action effect. In the

absence of the self-action (_-0) the SH field is in the

coherent state (OZ-O_-1/4). It is obvious from Eq.(18) that the
x y

degree of squeezing can be arbitrary high and is determined by

the efficiency of the SH conversion K z and phase

It follows from the calculation of the uncertainty

relation for the SH quadrature components that we have the

ideal quadrature squeezing to within (_z) z.

6. Conclusions

It follows from the analysis given above that SH

quadrature - squeezed states are produced by frequency doubling

in the presence of the self-action phenomenon which plays

a predominant role. The degree of squeezing is determined by

both the SHG efficiency and nonlinear phase induced by

self-action. The nonlinear medium where the considered process

is likely to occur can be realized in noncentrosymmetric

nonlinear crystal (for example ZnSe) or centrosymmetric medium

in a static electric field. It seems to be promising to use

optical fibers, in which the SHG efficiency can reach 1-5%

(Ref.7).

As it was mentioned above the possibility to produce the

squeezed states of the fundamental radiation isusually studied

in SHG process occurring in the absence of the self-action.

Outside the framework of the fixed photon number approximation

we also considered the fundamental field statistics, taking

into account the self-action effect. We have found that the

degree of the fundamental radiation squeezing depends on the

SHG efficiency and nonlinear phase as in the case of the second

harmonic field.
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Abstract

The redistribution of intrinsic quantum noise in the quadratures of the field generated

in a sub-threshold degenerate optical paxmmetric oscillator exhibits interesting dependences
on the individual output mirror trtnsmitta_ces, when they are included exactly. We present
here & physical picture of this problem, based on mirror boundary conditions, which is

valid for arbitrary tr_nsmitttnces and so applies uniformly to tli values of the cavity Q
factor representing in the opposite extremes perfect mcil]ator and amplifier configurations.

Beginning with a classical second-haxmonic pump, we shall generalize our analysis to apply
to finite amplitude _nd phase fluctuations of the pump.

1 Introduction

A degenerateopticalparametricoscillator(DOP0) has longbeen considereda nearlyidealsqueez-

ing device whc-n operated just below threshold. The quantum fluctuationsof the generated

sub-harmonic fieldaxe ratherimmune to spontaneous emissionsincethe two-photon transition

governingthe parametricdown-conversionprocessseesno resonantintermediatelevels.

Nearly allpriorwork dealingwith thisproblem [1,2,3]has been limitedto the situationin

which the DOP0 cavityisnearlyperfect.In a generalapproach [4,5]developed recentlyby the

author and Abbott, which isbased on the exact treatment of mirror boundary conditions,it

has become possibleto discusscavityproblems in quantum opticsforthe entirerange of cavity

transmissionspossible.In the presentDOPO context,thisapproach thus permits the extreme

limits of a single-pass amplifier (cavity transmission --*100%) end of a nearly perfect DOPO cavity

(cavity transmission ---,0%), and all intermediate-Q oscillator configurations to be treated on the

same footing. By employing this viewpoint (which may be viewed as a generMizstion of Collett and

Gardiner's approach [2]), we also develop a physically insightful picture of the general squeezing

tPermanent address
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problem, one which e_nphasizes the correlations of the input, output, and intracavity fields that

govern the relationship of intracavity and output field fluctu,,tions. Any reference to modes is

altogether avoided here.

After treating the DOPO problem with a pedectly monochron_tic pump, we shall model real-

istic experiments in which the pump field hM finite amplitude _nd phase fluctuations. Although

any ,_mplitude noise of the pump has a restively minor impact on the squeezing of the sub-

harmonic signal field, pump phase difusion even when it is tracked can cause a severe degradation

of that squeezing. More detailed discussions of this problem will appear elsewhere [6].

2 Mathematical Formalism

A description of the problem at hamd that covers the whole gamut of cavity transmission factors

is necess,,rily multimode in character. We avoid all reference to cavity modes by writing the

fully quxntized signal field inside the cavity in terms of its rightward (positive-z) and leftward

(negative-z) propagating parts. For the pcmitive-frequency part, this decomposition is written in

the Heisenberg picture (HP) as

E(+)(z,t) = (e+(=,t) + e_(z,t)e 0)

in which the operators e+(z,t) have expectation vllues that are assumed slowly varying in space

and time on the scale of the central wavelength 2r//=0 And period 2=/N0.

The parametric interaction of E(+)(z, t) with am intense quasimonochromatic is described via

the interaction Ham_iltonian (also written in HP) in a cavity of length t filled with the par_netric

medium:

, 3A X(2) itHz>oPo " T e_,,,,,, ,o [e2+(z,t) -F e2_(z,t)] dz -F Hermitian Conjugate (2)

The complex pump amplitude em,,p is at most slowly vaxying in time. The constants A and X(2)
are the cross-sectional area of the cavity and nonlinear susceptibility, respectively. The notation

used is the same as in Ref. [7]. We may write the equations of propagation for e± (z, t) in the

slowly-varying envelope approximation as

in which the nonlinear polarization waves p_iL(z, t) driving the parametric interaction are given

by a functional differentiation of the quadratic interaction Hamiltonian (2):

pNt'(z,t) -- --_(6/6e_(z,t)) H'voPo (4)
=

Thus, on combining (3) and (4), we have the following generalization of the single-mode equations

describing the parametric amplification process:

0 la)
ca)
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1
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NONLINEAR MEDIUM
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z=l

Fig. 1. The DOPO Cavity with End Mirrors at z = 0 and z = t.

To complete the formalism, we supplement Eq. (5) with boundary connections of the intra-

cavit_ ei(z, t) fields with the input vacuum fields. These connections are

e+(0,t)= t) + t);
e_(t, t) = -¢t+(t, t) + Pe_'Y'(t,t), (6)

in which e_:'_ are the two traveling pieces of the vacuum field entering the cavity through its
mirrors at z = 0 and z ffi t with inside-to-outside reflection and transmission coefficients (-_, t)

and (-F', P) respectively (see Fig. 1).

3 The Parametric Amplifier Problem

Without the cavity mirrors, the oscillator reduces to the amplifier configuration in which the two

traveling parts e+ and e_ are not coupled to each other. We may therefore concentrate on only

one of them, say the e+-field.

Furthermore, for simplicity, we shall assume in this section that the pump. has no amplitude
and phase randomness, so that it is strictly monochromatic. For this case, one may assume without

any loss of generality that q is real and positive, for any constant nonzero phase _bqof q may be

scaled out by redefining e+(z, t) to carry a constant phase factor exp (i_bq/2):

t+(z, t) -, e+(z, t) e_*'/2, (7)

without altering the physics.

By adding to Eq. (5) and by subtracting from it its Hermitian conjugate, one obtains the
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followingpair of uncoupled equations for the quadratures of e+:

o lo x÷(z,t)-qX÷(z,O; _+_g

where X+(z,t) - ½ (e+(z,t)+et(z,t));Y+(z,t) ffi _ (e+(z,t)-et+(z,t)) are the in-phase and

7r/2 out-of-phue quadratures. The solution of Eqs. (8) is straightforward in terms of the retarded

time variable, r - t - z/c:

x+(_,t) = x+ (o,t - 4c)e"; Y+(,,t) = Y+(o,t - 4c)e-"; (9)

which represents a phase-sensitive amplification process characteristic of the pea'araetric interac-

tion. These solutions are entirely equivalent to the following time-evolution equations

x÷(_,t) = x÷(z- a,0)e'_; Y÷(_,t) = Y÷(,- n,0)e -'_. (10)

The linear relationships of Eqs. (9) or (10) indicate that both the expectation value and fluctu-

ations about it of the X+-quadrature (]1+-quadrature) of the signal field amplify (attenuate) by

the same factor. This statement, valid both classically and quantum-mechanically, clearly implies

that any noise initially present in the signal is stretched along the X-quadrature and shrinks along

the Y-quadrature, as shown in Fig. 2. It is in this way that quadrature squeezing comes about in

a parametric amplifier.

4 The Parametric Oscillator Problem

Our treatment of the .parametric oscillator builds upon the simple amplifier analysis presented in

Sec. 3 by limiting z to lie between 0 and t and adding mirrors at z - 0 and at z -- £, which serve

to connect e+ and e_ and the input vacuum fields via (6). As in Sec. 3, we restrict our analysis

here to a perfectly monochromatic pump wave for which Eqs. (9) describe the interaction of the

e+ wave with the medium. Similar relations may be written down for the quadratures of the e_

-field (integrated backwards from z = l):

X=(z,t) = X_ (g,t - (g - z)[c) e*(t=*); (11)
Y_(z, t) = Y_ (t, t - (t - ,)/c) e-'(t-')

Since we are ultimately interested in calculating the quadrature squeezing of the intracavity

field e±(z,t), we concentrate here onwards on the quantum fluctuations alone of the various
quadratures. We first consider what the implications of the boundary connection relations (6)

are for the fluctuations. Since (f, t') and (_', t') are all real, these relations are formally the same

as those obeyed by any particular quadrature of e± and e_*c fields, including their X- and Y-

quadratures separately. Furthermore, the two fields (or their quadratures) on the right-hand side

(RHS) of each equation in (6) are uncorrelated at any t. To see this, we note, for example, that

the e_°C(0, t) field entering the z = 0 mirror contributes to the e__c(l, t _) field only after a time

t' - t -- 2//e during which the former field makes a full round trip through the cavity. Thus,

e_(O, t) is correlated with e_+*'(O,t-2t./c) which is not correlated with e_e(0,t), since the vacuum
field fluctuations are essentially &correlated in time. In view of this lack of correlation, we may
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Fig. 2. The Parametric Amplification Process. The X-quadrature is amplified by

s given factor (taken to be 2 here) while the Y-quadrature is attenuated by the same
factor.

writefor the quantum-mechanical varianceof,say,the Y-quadrature of fieldsat the mirrorsin

terms of the power reflectionand transmissioncoefficients(R,T) and (R',T') (with R = _2 etc.)

(AY+(O,t) 2) = R(AY_(O,t) _) + TIAY_'_(O,t)2);

(AY_(t,t)2)= R'(AY+(t,t)2)+ T' (AYYC(t,t):), (12)

while settingz -- t in Eqs. (9) and z - 0 in Eqs. (11)yieldsforthe propagation of variances

through the medium

With the aid of Eqs. (12) and (13), we may express the retarded propagation of the Y+-variance

at z - 0 in one complete round trip as

(AY+(0,t)')=
z

R (AY_(t,t - tlc):) e-i't + T (AY_.'_(O,t) ')

e-2'tR [_ (AY+(t,t - t/c):) + T' (AY'_'_(I,t- t/c)')]

+r(Av:.o(o,t):)
Rl_e -''t (AY+(O, t- 2tic)i) + T (AY_':(O, t)')

+RT'<-'; (AV:'<(t,t- t/c):).

(14)
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MIXING OF INPUT AND CAVITY

FIELDS AT z = ! MIRROR

Fig. 3. Round Trip Evolution of Fields and Their Variance.

The foregoing sequence of mathematical steps in arriving at the round trip propagation of variances

is shown diagrammatically in Fig. 3 to bring out the underlying physical picture.
In steady state, the quantum statistical properties of the field do not change from one round

trip to the next. In this long-time limit, suppressing the time entry of each variance in Eq. (14),

we get

(_y÷(0)2) _- [T (AYe"(0) _) + RT'e -_' (AYrC(/)2)] (15)
(1 - RR'e -_t)

a result that is uniformly valid for all values of (R, T) and (R', T') pairs (with the obvious energy-

conservation constraints, R + T -- R' + T' = 1). It is also worth noting that in the derivation

of (15), the only property of the input fields used was their white-noise (6-correlated) character.

Thus, (15) applies not just to vacuum-field inputs, but to arbitrary white-noise input fields.

In the good-cavity limit, R, R' __ 1, qf __ 0, we recover the result of Collett and Gardiner

generalized to allow for arbitrary white-noise input fields at the two mirrors:

T (AY_'c(O)21 + T' (AYr'(t) 2) (16)

(T + T') + 4qf

For vacuum-field inputs as explicitly indicated in Eq. (15), since the two input fields are statisti-

cally identical (except for their direction of propagation), we may write more simply

(T + RT'e -_t)

(Ay+(0) 2) - -_ - _ N,.,, (17)

where

_=(Av:.o(o),)=
4O



Note that the calculation of the variance (AX+(0) 2) of the X-quadrature of the intracavity is

entirely analogous and is given by Eq. (17) provided q is replaced by -q everywhere.

The degree of quadrature squeezing is the ratio (AY+(0) 2)/N,,_ which is generally the factor

by which two input fields with the same quadrature vaxiance, but not necessarily vacuum fields, get

squeezed on entering the cavity. Detailed discussions of this quantity in both textual and graphical

forms have been presented elsewhere, where its generalization to include arbitrary relative phase

between the two traveling components of the monochromatic pump has also been derived [5,6].

Having discussed the intracavity field, we now present the noise characteristics of the output

field. Like the former field, the latter field is strongly correlated with the input fields as well.

However, unlike the former, the output field quadratures can be easily subjected to a spectral

analysis by choosing a sufficiently narrowband local oscillator field and integrating long enough in

a balanced homodyne setup as was done in the origins] experiments [8]. We shall see that it is in

this spectral sense that the output field exhibits a very high degree of squeezing.

The boundary connection of the output is similar to Eqs. (6). For example, the leftward-

traveling output field at the z - 0 mirror is a linear superposition of the transmitted part of e_(0, t)

and the reflected part of e_'c(0, t). So any quadrature of the output field, say its Y_-quadrature,

obeys the boundary connection formula

Yma(O,t) ffi tY_(O,t) + _Y_+'_(O,t). (18)

However, unlike the intracavity field, we must know the full time dependence of Y_,t(0, t), not just

of its variance, before it can be spectraily analyzed. Equivalently, as (18) shows, we must know

how Y_(0, t) evolves in time. But, that is easy to write down over a complete round trip since we

know via Eqs. (9) and (II) how the intracavity field e_ interacts with the active medium in a

single pass through it, while Eqs. (6) tell us how the input fields e_"c leak into the cavity at the

z - 0 and z --- l mirrors. The round trip evolution of Y_(0, t) turns out to be

Y_(O,t) -- _e-_tY_(O, t - 2t/c)- t_r'e-_tY_e(O,t - 2t/c) (19)
+

which could also have been written down directly based on physical a_Iments presented below.

If Y_(0, t - 21/c) is the Y-quadrature of the cavity field just before it is incident on the z = 0

mirror from the right then after that mirror reflection a fraction if it is reflected while a fraction

of the input field ]"_'c(O, t - 2t/c) is transmitted. The two waves propagate rightward through

the medium with thdr Y-quadratures attenuated by factor e -ql, They are then reflected at the

mirror at z = t by factor -F while a fraction t_ of the second input Y_¢(0, t - G/c) is added to the

circulating wave. The net field then propagates a distance t leftward through the active medium,

with its Y-quadrature attenuated further by e -d as a result, to become the net field, given by the

left-hand side of Eq. (19), a time tic later.

A Fourier analysis of Eq. (19) is straightforward. We shall focus only on the central (zero-

detuning) frequency component since it has the largest noise reduction. Denoting the Fourier

transform of a function f(t) by ](/_), we see that for/_w = O, Eq. (19) yields

P_(o,o)- =
0),
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while Eq. (18)yields

= i?_(0,0)+ °(0,0).

By eliminatingY_(0,0) between these two relationsand using the energy-conservationrehttion

_2+ _ = i,one may easilyshow that

_'o.,(0,0) = (_ - ee-_) }7"°(0'0) + _'e-"?:"(t,O)
(1 -2") ' (20)

whose variance is related to the spectral variance of (uncorrelated) input-field qu_uiratures. If we

assume that the input fields have the same spectral quadrature v_-isnce at a given frequency, such

as is surely true for vacuum-field inputs then the spectral squeezing of the output field at zero

detuning is by the factor

(1 - ¢_e-_t) 2

Just as for the cavity field, the ratio (A_'o,a(0, 0)') / _A_'_"c(0, 0)') for the X-quadrature is given

by replacing q by -q everywhere in relation (21).

It is worth noting that just below threshold _e _t --. l, the X-quadrature of the output
field at the z = 0 mirror has infinite variance in its central frequency component, while the

corresponding Y-quadrature spectral component has a finite variance that depends on how large
the transmission I" of the other mirror is. In particular, for 2" -- 0 regardless of the value of R

(or of T), the output Y-quadrature has zero spectral variance at the llne center. This is a very

surprising result, implying as it does that even in a very low -Q but single-ended cavity the output

field is perfectly squeezed in the spectral sense, if the parametric gain is high enough to drive the

oscillator to its oscillation threshold. A more complete discussion of the output field, including

the bandwidth of the squeezing spectrum, may he found in ReL [6].

5 Squeezing in the Presence of Pump Noise

In a real experiment, pump noise is inevitable. Typically, the pump field has both amplitude and

phase noise that can be described well in classicM terms alone. For example, the pump amplitude

may have a small fluctuating piece, described in F.,q. (5) via a time dependent q,

q(t) -- qo + 5q(t), (22)

in which 5q(t) is an Ornstein-Uhlenbeck Gaussian process with zero mean and an exponentially

decaying two-time correlation

(6q(t) 5q(t'))= aore-r"-r'l. (23)

The pump phase noise,on the other hand, isultimatelylimitedby phase diffusionwhich iswell

describedby a classicalWiener-Levy Gau_ian random processwith zeromean valueforthe time

derivativeofthe diffusingphase,6_(t),a.d itstwo-time correlations:
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(6,/,)- o; (6,/,(t) = 2Da(t- t'). (24)
The constants 2r and 2D are the amplitude and phase-noise contributions to the total pump
linewidth.

Since detailed discussions of this problem have been presented elsewhere [6], we shall restrict

our derivations here to its relatively simple but physically revealing aspects. To begin with, we

shall take the white-noise limit, r --. oo, for the amplitude noise. In more precise terms, this is

the limit in which rf/c _, 1.

Since q in Eqs. (5) and (8) is time dependent, the exponentials in Eqs. (9) and (II) have

integrals in their exponents. For example, in Eq. (gb) one must replace

e-e, .., e-qO,-_" sq(t-,,Ic)_,'

for a given statistical realization of 6q. This means that the Y-quadrature variance is down by
the factor

e-_ot (e-2/0t sq(t-,/c)a,/_ e-2qt+_otc

in every single pass either leftward or rightward between the two mirrors. We used the familiar

result that for a Gaussian random variable z,

<e')= (25)
and the fact that when rt/c _ 1,

(6q(t) 6q(t')) __ 2ao6(t - t'), (26)

to obtain the preceding factor.

A recognition of the extra factor • 4°°to by which the Y-quadrature variance is altered when

the pump amplitude has a fluctuating piece immediately tells us that Eqs. (15) and (17) must

also be altered accordingly. Thus, for example, Eq. (17) takes the form

T + RT'e -3q°t+4°°tc)

=?i:
Since ao > O, the net effect of the/_-correlated pump amplitude fluctuations is to merely reduce

the parametric attenuation of Y-quadrature fluctuations thereby leading to a smaller intracavity

squeezing.

Although we have not discussed the opposite, static pump amplitude noise limit, rt/c ¢, 1,

it can be seen by physical arguments that for a given amplitude noise (6q2) ½, the static case

compromises intracavity squeezing more dramatically than the white-noise case, for it is roughly

the zero-frequency Fourier component of the pump noise spectrum that controls the steady state

characteristics of the signal field. As the noise bandwidth r increases, a fixed amount of amplitude

noise is partitioned into more and more Fo, rier components, so that the zero-frequency component

(like any other) goes down.
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We turn now to the computation of spectral squeezing of the output field in the presence of a

6-correlated pump amplitude noise. This tuk is quite involved when compared with the derivation

of the preceding intracavity variance formula. One must begin with the fluctuating analog of (19)

which may be shown to be

Y_(0, t) = _Pe-'(O-'_O-qc)Y-(0, t - 2t/c)- tPe-'_(O-_'-qOY._(O, t - 2flc)
+ Pe-_(t)Y__ (t, t - tic),

(27)

in which

d

yl(t) = Jo [qo+ 6q(t - Z/C)] (_T, (28)

A direct Fourier transform of Eq. (27) is not possible. We must compute tint the two-time

correlation functions (Y-(0,t)Y-(0,t_)), (Y-(0,t)Y_'c(0,t_)), and (Y_(O,t)Y_c(O,t')) th&t enter

the output autocorre]ation function (Y,_t(0, t)Y,_t(0, t')) via Eq. (18). A Fourier transform of the

output correlation then furnishes the spectral variance. To compute the former two correction

functions, we solve Eq. (27) for Y_C0, t) iteratively in terms of y_c at successively earlier times,

one differing from the next by the roundtrip time 2t/c:

in which

Y_(O,t) = -t_;' _ (_P)ne-'_"+'O)Y._'(O,t- 2f(- + 1)/c)
,,=o (29)

+ p __, (,_,P)'*e-'m,,+,O)Yy_(t,t-f(2n + 1)/c)
n=O

re/

_,(t) - ]o [qo+ 6q(t z/c)] dz. (30)

We may use the identity (25) and the white-noise approximation (26) to obtain the useful formula

(e-'_,(')e-'TV (')) -- e'(e+e')_"e½ [('_)+('_'_')+2(_"_'_v)] (31)

= e- (PI-P')qot e"od(p+P'+2P<) ,

in which p< is the smaller of (p, f).
When combined with the 6-correlated nature of the vacuum fields, relation (29) enables one

to secure the needed correlations from which the following output quadrature autocorrelation

function is obtained [61:

+ _ _,(_P)"+"'5(t-t'- 2(n- n')tlc)e-'t"+'e)"te '°°a('>+3"<). (32)
n=O n_O

_ (_P)" [6 (t - t'- 2nt/c) + _f(t -t' + 2nf/c)]e -''v*t+'°o'a + _(t - t')]
nmO

in which

(Y.ff_ (O,t) v'_.+ (O,t')) = (Y'°__ (t,t) Y"'__(t,t')) m C6 (t - t').
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As before, we are only interested here in the central frequency component of the quadrature

spectrum. This is obtained from Eq. (32) by integrating it over (t - t _) in the range (-eo, eo),

which is a trivial task due to the presence of a 6-function in every term. The resulting infinite

sums are related to the geomteric series and can be carried out in closed form. The net result of

these straightforward steps is the fonowing noise reduction factor at line center:

S_t)(O) = _ 1 + (1 - _a_'2e-'qqo-_odt)(1 - _Pe-a(oo-'._)t) 1 - _"e-a( _-°*_)' (33)
L

When the pump fluctuations are absent (o_ = 0), this expression naturally reduces to result (21).

In general, however, a graphical presentation of (33) is imperative for physical insights. This is

done in Fig. 4 for a symmetric cavity (R ffi }_). It is no surprise that as the pump amplitude

fluctuations increase in strength, the amount of squeezing reduces for any fixed value of R (i.e.

along a vertical line on the fi_a,_). For a fixed fluctuation strength, on the other hand, the higher

its value the slower the squeezing increases, with increasing R, to its maximum value at oscillation
threshold.

A reduction of the amplltude-noise bandwidth, so that Ft/c is no longer large compared to

1, leads to reduced output squeezing for the same reasons as for the intracavity field. It is

worth noting that amplitude noise, being essentially multiplicative in nature (see Eq. (5)), is
less important than pump phase noise which unavoidably couples the squeezed quadrature to the

highly fluctuating quadrature, thereby seriously undermining squeezing.

6 Pump Phase Fluctuations

Even the quietest pump, such as one generated by a highly stable laser, has intrinsic random

phase diffusion arising from the purely quantum mechanical process of spontaneous emission.

This means that squeezing in the sub-harmonic signal field when measured relative to a fixed (or

independently fluctuating) phase will show a time-dependent behavior as boththe squeezed and

unsqueezed orthogonal quadratures with phases slaved to the pump mix. However, if both the

local oscillator (LO) and pump are derived from the same laser, then the reference LO phase and

the phase of the ideally squeezed quadrature track each other. In spite of this phase tracking,

there is a residual effect on squeezing, due to the time dependence of the pump phase diffusion

[9], which we consider here.

In the presence of a finite/_(t), as described by a Wiener-Levy Gaussian random process with

moments (24), Eq. (5) has q replaced by qe g'_'O), and the signal quadratures X±(z, t) and Y+(z, t)

are defined relative to the phase &p(t)/2:

= ½ + ;
Y.,.(z,t) ffi _ [e+(z,t)e -I'_'(')/2 - e_(z,t)eit¢'(')12]. (34)

These quadratures evolve according to the matrix equation

(0 0/
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Fig. 4. Squeezing of the Central Frequency Component of the Output Field Quadra-
ture in a Symmetric Cavity. The full, dashed, and dotted curves represent values of

the fluctuation parameter a0d equal to 0, 0.005, and 0.01, respectively, while the

roundtrip gain coefficient qot is 0.05 in each case.
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in which the column vector V_(z,t) is (X±(z,t),Yi(z,t)) T and the _'s are the Paul] matrices

el-- 1 0 ; e2- i 0 ; e3-- 0 -1 "

Although Eq. (35) is a first order equation, it is a matrix equation with the coefficient matrix

on the RHS at any time not committing with itself at another time. This renders the solution a

formal one in terms of time-ordered or path-ordered exponentials. The path-ordering (or time-

ordering) has however the advantage that successive path-ordered (or time ordered) exponentials
from one roundtrip to the next may he easily multiplied. One first combines the solution of Eq.

(35) with the boundary connections (9) to determine the single roundtrip evolution of V+(O,t)

to obtain a matrix analog of Eg. (19). Iterative processing of such equation leads to a formal

solution that can, via the simplicity of writing products of time (or path) ordered exponentials

with contiguous limits as single time (path) ordered exponentials over the entire time (or path)
interval, be expressed in the form

OO

V+(O,t) - _., (_')_ C(0,2l, n;t)e2't'_'W "_ (t - 2hi�C). (37)
_zgO

In Eq. (37), W "'c is a column vector related to the quadratures of the two known input fields

and C(0, 2in; t), a path-ordered matrix exponential involving an integral over _(t), represents the

residual e_ect of pump phase diffusion over signal noise.

In Ref. [6], solution (37) serves as the starting point for computing the various variances and

correlations needed for determining the steady-state intracavity quadrature variances and output-

field quadrature noise spectrum. Eq. (37) is lufficiently complex that a statistic_ averaging over

the phase noise 6_, in spite of its Ganssian and 6-correlated nature, cannot he exactly performed in

the involved inte_als. One must settle for a series expansion of intracavity and output squeezing

in powers of the phase diffusion constant D, which has been determined to O(D 2) [6]. We refer

the interested re_ler to that reference for more details. It suffices here to state that pump phase

diffusion seems to be most important near threshold where the fluctuations in the X-quadrature

of the cavity field have a highly slowed relaxation rate.

7 Conclusions

We have presented here an analysis of squeezing in a degenerate parametric osciUator that lends

itself to an easy physical interpretation for the most part. For completeness, we have also summa-

rized the impact of pump amplitude and phase noises of sorts encountered in a real experiment

on the observed degrees of cavity and output squeezing. An exact analysis for the case of a finite

pump-phase diffusion noise 5_(t) is beset by the difficulties of computing the statistical averages

of path-ordered integrals involving 6_(t).
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Abstract

It is shown how a disturbance-type uncertainty principle can be derived from an un-

certainty principle for joint measurements. To achieve this, we first clarify the meaning of
"inaccuracy" and "disturbance" in quantum mechanical measurements. The case of pho-
ton number and phase is treated as an exaznple, and applied to a quantum non-demolition
measurement using the optical Kerr effect.

1 Introduction

One of the most appealing aspects of quantum optics is that within its domain of application

experiments can be realized that used to be confined to the domain of Gedanken experiments.

The proposed [1] quantum non-demolition (QND) schemes for photon number measurement are

such fundamental measurements. In fig. 1 we have sketched a simple setup [1, 2]. A signal beam S
is mixed with a probe beam P in a non-linear Kerr medium. The refraction index of this medium

is intensity dependent. Accordingly, the probe's phase will depend on the number of photons in

the signal beam. By coupling the outgoing probe beam with a reference beam,, the probe phase

can be detected and thus the signal photon number can be deduced. However, this is not the

only consequence of the interaction between signal and probe beams. Also the S-phase will be
influenced.

 J__U
FIG. 1 Basic QND scheme, using the Kerr effect.
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The experiment can be seen as an analog of Heisenberg's 3' microscope experiment [3]. Ther,

a particle's position is measured in a non-destructive way. In the 3'-microscope, it is argued
momentum is disturbed by an amount Dp as a result of measuring position, satisfying (h = 1)

6qDp > 1, (1

6q representing the microscope's resolution, i.e., its inaccuracy in determining position. Anal-

ogously, in the Kerr device, where photon number N is measured, the probe effect on signal

phase can be expected to take the form of a disturbance, in size reciprocally related to the N-
measurement inaccuracy. In order to avoid certain ambiguities (cf. [4]) we shall give a formal

definition of this disturbance notion. In particular we show how relations like (1) can be derived

in a precise way from uncertainty relations for the inaccuracy, achievable in joint measurements

of incompatible observables. Such relations have become available relatively recently [1, 6, 7].

±

2 Inaccuracy

We represent measurements by positive operator-valued measures (POVM's) [5, 8], a notion gener-
t

alizing yon Neumann's projection-valued measures (PVM's). For a discrete set of outcomes K, a
POVM .M = {b_/k, k E K} generates the probability of outcome k by Tr_IVlk, when the object is in

state _. Hence .Ad must satisfy _ke_c _fk = i, 2f/k >_ 6. A second POVM, O = {0j}, is then said to

represent a non-ideal measurement [7] of .Ad if there is a stochastic matrix Ark(_t Ark= 1; Aik > 0)

such that

0, = (2)
k

We use the shorthand Ad _ O for this relation. The O-distribution is a smeared version of
• , . t

the Ad-d_stnbutlon. Finally we need to characterize the amount of inaccuracy by a real number.

Clearly, if Alk = _lk, the Kronecker-delta, C) is equal to A4: then a measurement of C) is a perfect
measurement of Ad. Thus we need to quantify how much Ark deviates from 6t_. Consider again the

QND scheme of fig.1. Given that the incoming probe beam is described by a coherent state I//>

and the signal beam by _, it can be shown that the outcome probabilities P(q) of the outgoing

probe phase measurement are given by [2, 9]

P(q) = _.,s P(ql ns) < nsliJlns >,

= , cr = [S[, /_ = I_[2 sin (x,ns),

where we have taken the initial beam splitter's transmittivity 7 = ½. The constant X_ depends

on the non-linearity coefficient of the medium. Defining the POVM O by the requirement P(q) =

TriO(q), (2) is satisfied if {2t_/k} represents the photon number observable. The measurement

inaccuracy is characterized by the width of P(qlns), and can be interpreted as being due to excess
noise inherent in the measurement. For low photon numbers the response is approximately linear:

_ 1_12x_ns. Hence this measurement can be characterized by parameters quantifying noise (o)

and 9ain (cg_t/C3ns). A suitable inaccuracy measure is the ratio of these two:

o = 1 (4)
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In deriving (3) we ignored self-phase-modulation (SPM) [1]. It can be shown that, beyond

certain probe photon number, SPM has a strongly adverse effect on the measurement quality [2]
Refining the setup, however, can compensate for SPM to a large extent [1, 9].

3 Joint Measurements and the Uncertainty Principle

For finite-dimensional Hilbert spaces a general proof has been given that joint non-ideal measure-

ments of incompatible observables are possible, but that their quality is limited by an uncertainty

relation [7]. In the present paper we will focus on the phase-number observable pair. In this

infinite dimensional case no completely general result is known, but the special results obtained

are nevertheless quite convincing. Consider the (non-Hermitean) phase observable,

= In>< n + 11, (5)
n

given by L6vy-Leblond, In > denoting the number states[10]. Not only is it incompatible with fi,

but the pair forms a perfect analog of the position-momentum pair, cf.

ei_¢e ial_ -- elalCtei_ei_a, rn E _, cr • _. (6)

Next consider a second (ancillary) system, being in state _', and having similar observables ¢'

and fi' defined on its Hilbert space _f'. Then the composite observables

ere' := ehe 2i¢', fit := fi + fi' (7)

are compatible, as evaluation of their Weyl commutation relation, using (6), shows. Hence, fit

and Ct can be measured jointly. Then the POVM (2_/(¢,n) = Trw(_'[¢,n >< ¢,ni)}z [¢,n >
being the common eigen-states of Ct and fit, describes a joint non-ideal measurement of ¢ and fi.

Indeed, for the relation between the probability distributions of fit, fi, and fi' we find

P._,(n,) = _, P_,(n, - n)P_(n), P_,(n') =< n']_'ln' > . (8)

Comp_ing this with (2) we see that the fit measurement is a non-ideal measurement of fi, i.e.,

N ---* Nt, the stochastic matrix Ark being given by P_,(nt - n). Therefore the inaccuracy of the

non-ideal fi-measurement is determined by the spread in the number n' present in the state _' of

the ancillary system. Similarly the Ct-measurement can be seen to be a non-ideal measurement

of ¢ : ¢ ---, Ct, the inaccuracy being determined in an analogous way by the phase spread of
the ancillary system. As a measure /5¢ of the inaccuracy of the C-measurement we may take

[8! /_ = -1 + ]< eft'> t-2. In this way we have a formal scheme of generating joint non-ideal

measurements of incompatible observables. Indeed for position-momentum this scheme has long
been known (e.g. [11]). From an uncertainty relation derived for observables fi' and ¢' in state

_' [8, 10], the following inequality now straightforwardly follows for the inaccuracies of the jointly
performed fi-and C-measurements:

1

> (9)
This relation is of the same kind as (1). These were termed inaccuracy relations in [7]. In this

special case this relation is a consequence of the restrictions in preparing the ancillary object state.
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4 From Inaccuracy to Disturbance

Neither the "r-microscope nor the QND measurement referred to in sect. 1 are joint measurements:

in the first momentum is not a_tually measured; neither is phase in the second. Yet, with however

good a measuring instrument we try to measure the signal's initial phase, we can never quite
remove the inaccuracy from this measurement. It appears that there is a limiting inaccuracy

present already in the outgoing signal beam in the form of a phase disturbance caused by the

presence of a measurement arrangement for measuring photon number. In order to be able to

obtain a quantitative expression for this phase disturbance we first consider the general description
of measurements once again. In sect. 2 we saw that the outcome probabilities of measurement

results (i.e., the determinative aspect of megsurement) in general are described by POVM's. Now
we also need to take into account the object state after the measurement i.e., the preparative

aspect of the measurement. In the van Neumann framework a measurement transformation of

the first kind leaves the object in an eigenstate of the measured observable. In realistic cases this

should be generalized to operation valued measures (OVM's) [5]. If a measurement yields outcome
k, the output state will be/_(k), given that the object started out in state k. The probability of

k is then given by Tr[/_k(k)]. Accordingly, the mapping k _/_h[k] should satisfy

Tr[#_Ck)] = rr[k], _ > 6 --* bk(k) > O.
kEN

(10)

The POVM ,M = {2_/k} corresponding to the OVM {/_k} is therefore given by

(ll)

For every OVM thereisonlyone POVM, whereas many measurement transformationsmay realize

a given POVM. Now considerthe outgoingobject.Suppose we measure some POVM O = {(_z}

on it.Then the probabilitiesaregiven by

Po(1) = Tr[/_K(k)(9,] = Tr[k/_k((],)],/_K -- _/_k.
kEK

(12)

Hence a measurement of O in the finalstatecan be seen as a measurement of O = {_t} =

{_((gt)} in the initial state. Moreover, every repetition of the experiment yields values for both
l and k. Therefore we have a joint measurement, characterized by the bivariate POVM {fi_(0t)},

of which O is one maxginal and Ad is the other one. Summarizing, we see that consecutive

measurements of.A4and O may be seenas jointmeasurements ofA4 and O.

Let us apply thistothe QND scheme. Suppose we want to lookat the outgoingsignalbeam ,9'

in orderto findout the initialsignalphase.Then we must not measure the phase of the outgoing

stateks',i.e.,not Cbs,_ 0 inPs',but we must have @S "-'d)inks. We shouldbuildthe O-device

such that O isrelatedto as by (2),ratherthan that O itselfisthusconnected to @s,.In thisway

possibledistortionsin the medium axe compensated for.Since SPM has the effectthat as and

_s, are incompatible[2],thisdifferenceisnot quitetrivialhere.

IfCs -' b, however,we have ajointmeasurement oftiC'sandas. The former,the QND POVM,

measures JVs,the latterwe must chooseso as to measure @s. Accordingly,(9)isapplicable.The

phase inaccuracythus achievableislimitedby (26Ns)-_.
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Note that we have made no assumption about the nature of POVM O whatsoever. The above

reasoning holds quite generally. Define therefore

e*s := info(6*s), (13)

where the infimum istaken in the setof allPOVM's O satisfying_s -" {P. Assuming @s to be

optimal,forallsuch POVM's O the bound (9)must hold,so that [12]

1

e,s6_s >_ _. (14)

The quantity (13) does not depend on 6 (which is a variable in a set of POVM's), but on the
meter's transformation _r, which is implicitly contained in the condition @s -_ _). Thus e*s is

a property of the Ns-meter, known once the OVM {/_k} has been calculated from the device's

blueprint, e*s characterizes how much initial phase information can be retrieved from the outgoing

signal. In that sense the term disturbance is apt [12]. If aLl phase information is lost (e.g., if {/_}

is a measurement of the first kind), the disturbance ecs is maximal. If, on the other hand, the

meter measures nothing (e.g., if _g(_) = _ for all _), there is no disturbance at all, and e*s = 0.

5 Phase Disturbance in the qND-Scheme

Finally, we study the phase disturbance in the Kerr-setup of fig. 1. Define generalized phase states

I#';>:=Z](2")-v2'('"+½""("+')I">. (15)

For v = 0 thesereduce to the eigenstatesof (5).Then itcan be shown thatwe need to measure

the POVM {I¢;-½X, >< @;-½X,l} on ,9'inorderto get informationon @s. In fact,[2,13]

@r(l¢;--½X, >S'< @;-½X,{) = ./'-',,/_(@- _')l_' >s< @'la_', (16)

the latterapproximation beingvalidforlow photon numbers. Here Os denotesthe thirdofJacobi's

O-functions.The smearing functionp isplottedinfig.2.Note thatthe convolutionform of (16)

0.4

0..'1

0,2

O.I

FIG. 2 Polar plot of the phase smearing function p(¢) (linear regime, l 12x = 8).
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is in agreement with,(2). We have discarded an uninteresting phase bias term in (16).

Calculating 6,s from (16), we get 6_s __ -1 + exp(¼l_laX$), implying (cf. (4)):

1
2 ... (17"log(i+ 6,s)/SNs--4"

This isonly slightlyworse than the bound setby the uncertaintyprinciple(14),indicatingthal

the measurement proceduredescribedby (16)isoptimalinthe sensethat6¢s ___¢s.

As saidbefore,the disturbanceconceptevadesdistortionsinthe medium, and thereforephase

disturbanceisunaffectedby SPM, contraryto photon number inaccuracy(butsee [9]).

6 Acknowledgments

One of the authors (H.Martens) acknowledgesfinancialsupport from the Foundation for Philo-

sophicalResearch (SWON), which issubsidizedby the NetherlandsOrganizationfor Scientific

Research (NWO).

References

[I]Y. Yarnamoto, S. Machida, S. Salto,N. Imoto, T. Yanagawa, M. Kitagawa and G.Bj6rk,

Progressin Optics28, (ed.E. Wolf,North Holland,Amsterdam, 1990),p. 87.

[2]H. Martens and W. de Muynck, Quantum AspectsofOpticalCommunications, (eds.C. Bend-

jaballah,O. Hirotaand S. Reynaud, Springer,Berlin,1991),p. 41.

[3]W. Heisenberg,Zeits.f.Phys. 43, 172 (1927).

[4]K. Kraus, Phys. Rev. D35, 3070 (1987).

[5] E. Davies, Quantum Theory of Open Systems, (Academic, London, 1976).

[6] S. Ali and E. Prugovecki, Journ. Math. Phys. 18, 219 (1977).

[7] H. Martens and W. de Muynck, Found. Phys. 20, 257, 355 (1990).

[8] A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, (North Holland, Ams-

terdarn, 1982).

[9] H. Martens and W. de Muynck, Quantum Optics (1992) to be published.

[10] J.-M. Ldvy-Leblond, Ann. of Phys. 101,319 (1976).

[11] C. Helstrom, Found. Phys. 4, 453 (1974).

[12] H. Martens and W. de Muynck, Journ. Phys. A (1992), to be published.

[13] H. Martens, The Uncertainty Principle, (PhD thesis, Eindhoven University of Technology,

1991, unpublished).

54



N94-10570

ONE DIMENSIONAL REPRESENTATIONS IN

QUANTUM OPTICS

J. Janszky, P. Adam, I. FSldesi

Re6earch Latorat ory /or Cryst d Physics

PO Bo: lSt, H.l$Ot BIclapeat, HInlary

An. V. Vinogradov

Leledev Inatittte o� Ph_siea, Moeeog Rtuia

Abstract

The possibility to represent the quantum states of a harmonic oscillator not on the whole

a-plane but on its one dimensional manifolds is considered. It is shown that a simple Gaus-
sian distribution along a straight line describes a quadrature squeesed state while a similar

Ganssian distribution along a circle leads to the amplitude squeeJed state. The connec-

tion between the one dimensional representations and the usual Glauber representation is
discussed.

1 Introduction

There are several widely used representations to describe a state of a quantum oscillator in the

Hiibert space. The most natural one is the expansion of the state into the number state

OO

Ic>= Z c,l,,>.
n=O

Another well known possibility is the coherent state representation [1,2]

If >- 1jr/](a*)exp(-Is 12/2)Is > d2e, d2e- d(Rvo)d(Ima),

(1)

(2)

)'(a*) being an analytical function of a*. Here the state is represented by a superposition of

nonorthogonal coherent states all over the complex a-plane.

As already Olauber pointed out, there is an infinite number of ways of expanding any state

in terms of coherent states due to the overcompletenessof the latter states

II >= _1,/c(_,,a*)I_,> d2a, (s)
here the expansion function G(e,o*) may be a rather general function of e and e*. Being

confined to some given class of functions the uncertainty in finding G(o, a*) can be reduced. In
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this paper we shall deal with such representations that correspond to kern functions G(o,o*)

leading to integration over a one dimensional manifold of the o-plane in Eq. (31. The possibility

to represent any state on a subspace of the complex plane comes from Cahill's theorem on

overcompleteness [3,4]. We shall show that such nonclassical states as the quadrature and

amplitude squeezed states can be represented very naturally by superposition of coherent states

along a straight line or along a circle in the o-plane correspondingly.

2 Representation along a straight line

The most simple states emerging from superposition of coherent states are the even

and the odd Ix,- > states

Ix,+ >-- c+(l=> ÷ I-: >),

z,÷ >

(4)

I',- >= c-(I • > - I-_ >), (5)

where [ x > is a usual coherent state with real eigenvalue of the annihilation operator a [ x >=

x [ x >. It is remarkable that the even state I x, ÷ > being a superposition of two classical

states is squeezed [5]

1
(An2)2 _- _ _ x2/[1 + exp(2x2)]. (6)

where a 1 and a 2 are the Hermitian quadratures of the annihilation operator.

The squeezing can be further enhanced by adding the vacuum state to [ x, + >

I-,p >= cp(l, > +PIO> + I -: >). (7)

This way one can achieve a variance (Ae2) 2 = 0.0651 instead of 0.111 for I x, + > or 0.25 for
the vacuum state. Superposing more and more even states to it one can get even more squeezing

I ! >= T f(x) Ix > _x. (s)
--O0

In fact for any positi,_ even function ](x), but for the !(x) = 6(x) describing the vacuum,

the state de_ned by Eq. (8) is squeeced. A most important particular case is the Gaussian

superposition function [5,6]

=c c= ÷,/2)/,/2,, (9)
describing the usual squeezed vacuum state with uncertainties of the quadratures

(Ael) 2=(1÷'/2)/4, (Ae2) 2 = ]/4(1+72). (10)
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Similar distributions can be constructed not only along the real axis but along any straight

line. For example the squeezed coherent state with coherent signal a and squeezing parameter

= r exp(i0) can be written in the form I7,8]

l a,_ >- T/(:,a,_) Ia + exp(ie/2)x > _:, (11)
-00

f(x,a,£)=cexp(-x2/72-iSx), d_=Im[a*exp(it/2)], 7= e_-l., (12)

As the Gaussian superposition of coherent states of Eq. (8,9) was a useful generalisation of

the even states of Eqs. (4,7) analogously one can build an odd state 1,7,1 > resembling Eq. (5)

17,1>= T G(x,,7,z) l:>dx, (1_)
--00

2 (
G(x,%1) = clxexp(-x2/,72), c1 = =-._......._-_f_1 + 7,./.2)3/,. (14)

The mean photon number and the uncertainty of the quadrature a 2 in this state are

3"74 (15)
< _,1 I_t_ I%1 >= I+ 4(1 +,72}'

and

(An2)2 _ 3 (16)
4(1+ 72)"

We can see that the state I ,7, 1 > coincides with the one photon state I 1 > in the limit 7 = 0

and with increasing 7 at < ,7,11 ata 17,1 >= 2, ,7 = V• it becomes squeezed.

Simihrlyone can define states I ,7, a > with x n instead of x in their weight function G (x, 7, n).

Su perpositions of such states leading to Hermite polynomial weight functions are rather remark-
able

_o
IAn>= / An(x) I x > dx,

If

--00

kn (x) = _/VT3/ (2xn V)Hn (-.V_-_-_-Z) exp (-x212).

The states [ An > are orthonormalized (< ka I km >= 6nm), satisfy the relation

,IAn>= Ihn+l>+ V An-l>,

and correspondingly

(17}

(18)

(19)
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<AnlalA.>=0, <hnla2ihn>=_(2n+l), <A. latalA.>=--

The projection operator constructed from the Hermite states

oo

PA- _ Ihn><h.l,
a=0

is a unity operator both for the coherent and photon number states

< x IPhfy >=< x I_>= expl-(x- _)2/21,

5,+1
(2o)

(21)

(22)

<.lea Im>=*nm, (23)
which shows that any state can be represented by them. For example one can expand a ] ! >=

f_°°oof(x) Ix > dx state into the I An > states

oo

II>= _ f. IA. >, (24)
n=O

where

--(30

(2s)

3 Representation along a circle

Let us now consider a state emerging from superposition of coherent states with the same

amplitude ] a ]= R i. e. we choose only those coherent states which lie on the same circle in
the a-plane [5].

lF,R >= exp ',R2/2)/ F(4) [ Rexp(i÷) > d#.2_

If the radius of the circle is chosen big enough so that Eq. (2) can be replaced by

If >= ;Ial /< R f(a*)exp(-It, 12/2)Is > d2o, (27)

then we can find connections between the distribution function F(¢) and Olauber's weight

function f(a*)

F(÷) Rexp(i÷) [ ., ,,exp(-la[ 2)= l(c' ! 7-- a d2a, z = R exp (i¢)
" [,, (<R

(28)
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and

f(a*) = / F(_)exp(a* z)d_. (20)

We note that if one knows the time behaviour of the annihilation operator a(t) the analytic

expansion function ](a*,/) can be found from the expression [O]

I(,_*,0 = / a2,x(,,Oexp(- I* 12-*o*)I i" / ah x(,_,Oe×p(-I_ 12),, (so)
where X(_, t) is the normally ordered characteristic function (p being the density operator)

X(rl,t) = Tr[pexp(_at(l))exp(-q* a(/))]. (31)

Using Eq. (28) we 6nd for the n-photon state and the coherent state correspondingly

F(÷,a) = v/_R -" exp(-ia÷), (32)

F(¢,o) = zexp(- [o 12 / 2) I o I< R. (33)
Z--I_ I

According to Eq. (32) we can obtain the coefficients of the n-photon representation ca of Eq.
(1) if we know the distribution function F(÷)

cn = RnF,,I v_,

where Fn are Fourier, coefficients of F(÷)

(34)

co

F(,)= ]_ exp(-,'.¢)Yn. (35)
n=O

An interesting state is the state with Oaussian distribution function I u >

F(÷,u) = cu exp(-i6# - _#2). (36)

In case of extremely large u it describes the usual coherent state while in the opposite limit
it is the n-photon state (n = 6). Between these states it will be an amplitude squeezed banana

state. Graphically it can be understood if one visualizes how with decreasing u the muffin-like
coherent state going through a squeezed crescent.like state deforms along the circle into the
donut-like number state.

It is also worth mentioning that the Gaussian superposition of coherent states along an arc

are not only describe amplitude squeezing 110,11 t but they are also approximate number-phase
intelligent states [10] associated with the Peg,g-Barnett phase operator [12].

Remarkable feature of this state is the complete analogy with the usual quadrature squeezed

state discussed in the previous Section, as the Gaussian arc distribution is amplitude squeezed
while the Oaussian straight line distribution is quadrature squeezed. Moreover, as the even
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superpositionof two coherent states from Eq. (4) can be derived by truncation from the straight
line Gaussian state of Eqs. (S,0) so Schleich's superposition state [13]

I¢' >= ca÷(Iae > + I ae-v÷/2>), (37)
similarlycan be considered as a truncated arc Oaussian state of Eqs. (26,36).

A physical example, the so called phonon squeezing [14], where an arc distribu.ted state
occurs is the Franck-Condon transition induced by short coherent light pulse in a molecule

[5,14,151. It is worth mentioning that using Eq. (28) one can to some extent purposefully shape
the molecular vibrational state by special choice of the characteristics of the exiting light pulse.

For example we showed that by appropriate linear chirp the vibrational state can be turned
in the a -plane while using nonlinear chirp the amplitude squeezed vibrational state can be
deformed into a typical quadrature squeezed form.
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HARMONIC OSCILLATOR INTERACTION

WITH SQUEEZED RADIATION

V.V.Dodonov, D.E.Nikonov

Moscow Institute of Physics and Technology

Zhukovsky, Moscow Region, 140160 Russia

Although the problem of the electromagnetic

quantum harmonic oscillator is considered in te×tbooks on

mechanics (see, e.g., [1]) some its aspects seem to

clarified until now. By this we mean that usually the

quantum states of both the oscillator and the field are

radiation by a

quantum

be not

initial

assumed

to be characterized by a definite energy level of the oscillator

and definite occupation numbers of the field modes. In connection

with growing interest in squeezed states it would be interesting

to analize the general case when the initial states of both

subsystems are arbitrary superpositions of energy eigenstates.

This problem was considered partly in Refs. 2-4, where the power

of the spontaneous emission was calculated in the case of an

arbitrary oscillator's initial state (but the field was supposed

to be initially in a vacuum state). In the present article we

calculate the rate of the oscillator average energy and squeezing

and correlation parameter change under the influence of an

arbitrary e>'ternal radiation field. Some other problems relating

to the interaction between quantum particles (atoms) or

oscillators with the electromagnetic radiation being in arbitrary

( in particular, squeezed) state were investigated, e.g., in Refs

5-7.

Let us describe a charged harmonic

Hamiltonian

H = h_ a a
0

and the field by a hamiltonian

oscillator by a

(1)
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H R = iN _ _.bj jj,b
J

here ,._is the frequency of the oscillator, _ -
J

modes, a,b - corresponding destruction operators.

In a rather general case interaction can be

ones of

(2)

field

described in a

form

H i . h _ [Hja÷b* + Xa*bj J J J + H.c.] (3)

(H.c. means hermitian conjugated part, H and X are constants).
J J

In Schrodinger picture an arbitrary initial state vector

Iv,(O)> evolves into a state vector l_s(t)> as predicted by

+H + H.
Schrodinger equation with Hamiltonian H = H o m i

In interaction picture any Schrodinger operator Q changes

+ H
according to evolution operator U o corresponding to H = H o

Q(t) = Uo(t)QUo(t). (4)

For example

a(t) = a e×p(-i_t), b (t) = b e×p(-i_t). (5)
J J J

The interaction Hamiltonian in this picture

H
I

j

generates evolution operator U(t) so that a state vector

picture defined as

I_<t) > . u+<t) l_R(t) >O

will variate according to

= h _ IHja*b_exp(ic0t+ic_t)j + >_.a4"b.e×p(-i_t+icot)jJ J + H,c, I (6)

in this

(7)

l_(t)> = U(t) I_(0)>,

Expectation value in this picture

(8)

<Q>z _(t)

variates slowly, only due to interaction. On the other hand, it is

related to the conventional expectation value as follows

<Q.>,: < lUo <1o,

After introducing designations we can pose several questions

to answer:

1. Can absorption and emission be distinguished i_ a general case ?

2. Then how to calculate the mates of these processes ?

62



3. Is time ordering important in perturbation calculation for this

case ?

4. Does stimulated emission manifest itself ?

5. How does squeezing parameters of the oscillator and the field

vary ?

To calculate the rates of the processes we need to consider

infinitely long time intervals T ÷ _ in comparison with

oscillation period. But they must be much shorter than damping

time. Then the evolution operator has meaning of scattering matrix

S transforming initial state I_(0)> w li> to resulting one Ir>.

From Heisenberg equation one gets

S = exp (-iT), (11)
T

where all products are believed time-ordered (designated with

subscript T), and T - matrix is given by

QD

T = $ H (t)/h dr. (12)
I

-00

For our particular case

T = 2_h ]_ [ >_a*b.6(_-_)+ H.c.l, (13)
,j J J J

here the terms with p vanish because of a factor cs(_+_).
J

6. = 6(w-_). Delta function originates as a limit of an integral
J J

T/2

Int = _r e×p(ii_t) dt (14)
-_/2

(here the initial instant

Limits of this integral are

Int _ T,

in time re-designated

if _ _ O,

Int _ 2n 6(_), if T _

Further

as -f12).

(14')

(14")

Conventional

follows [8]. T - matrix is splitted in!o two

part

techique in quantum electrodynamics is as

parts - absorption

T- = 2n _ Xa*b 6(w-_)
j J J J

and hermitian _onjugated emission part T*. Then

(15)

probability for
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time T of absorption ( and similarly emission ) is declared as

P = <i IT+T-Ii_> E _ I :.'fIT-I i> 12, (16)
t

where summation is performed over a complete set of possible final

states. If rewritten in a form

T- = 2nM-6(Et-E _) , (17)

where E t and E_ are energies of final and initial states, it shows

employing (14) that (lb) expresses the well-known Fermi's rule

2nT

P " T E I<fIM-li:"I"6(Et-ei)" (18)
t

But is it always valid and why probability is defined in this

manner ?

The expansion of S - matrix (11) is as follows

S = 1 - i (T_+T -) - (T 2) 12 + ... (19)
T

The identity of normalization must be valid in all orders of

perturbation, i.e. for all powers of T as it is proportional to

the first power of coupling constant :

I = <rlr> = <i li> + <i IT+T+Ii> + <i IT-T+Ii>

+ <i IT'T-Ii> + <i IT-T-Ii>- <i IcT'),li>+ ... (2c,)

Then terms from second to fifth can be interpreted as a

probability of transitions in the second order, since the first

and the si>::th will be probability to stay in the initial state. So

conventional procedure ignores the second and the fifth terms. It

is possible only if T-li> is orthogonal to T*li>. It can happen

when either field or the oscillator is in energy eigenstate. Then

actually only t_wo levels are involved in any sort of transitions.

In this case emission and absorption can be distinguished. That is

on obtaining after measurement one of If>states
result of absorption from a result of emission.

For arbitrary initial state they cannot

e>_perimentally. But the total probability of

absorption together in (20) does not have

Therefore we have to revise our approach.

we can tell a

be distinguished

emission and

physical meaning.

More well-grounded
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procedure is to calculate not probabilities but observable
variations :

A<Q>z = <i IStQSIi> - <i IQli>. (21)

Besides, we do not need to introduce the Fork basis If>, but deal
only with the initial state.

Since the observable variation is expected to grow with time,

to calculate the rates of the processes we need to consider only

terms proportional to long time T. We will see later that

expressions like (21) contain terms with factor 6(_.-_) and terms
J

with 62(_-_) under a sign of summation. One power of delta
J

function disappear because of summation over the continuum of

modes. The rest one power will transform to factor T. So terms

with delta function of infinitely little difference to the first

and zeroth powers will give non-growing with time observable

variation. Consequently, these terms represent dressing bare

states by virtual quanta. Terms with the second powers of delta

function will give time-proportional variations of observables.

Just these terms correspond to transitions with creation of real

quanta.

For our case we need S - matrix up to the second order of

perturbation. In this order a time-ordered product

co co

(T2IT "__ dt, _£ dt 2 _z(t,)Hz(t2)IT/h 2, (22)

where

I H it )H (t)1[H (t)H (t)I = z 2 z ,
)H it ),• • • 2 "r Hx(ti x 2

is different from non-ordered product

(T 2) = TxT + T 2
T dtf

by a term

if t > t
2 i'

if t i > t2,

t
co 2

= Jr dt $ dt H (t ) /h E,
dtf --co 2 --co l z X •

The latter expression depends on time like
t

co 2

$ dt $ dtlexp(iAt +iDM: ) =-_o 2 -co 2 i

expEi (A-El) Z] - I
4_ 6(A+13) lie

_*_ i (i_-_)

(23)

(24)

(25)

• (26)
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Such terms do the

last fa=tor in (26) is not singular. Terms with A = or

opposite give a contribution to T2d_f

exp (2i AZ) -l+e>_p (-2i AZ)-I

l_jl 2 [ab_,a*b ]i 2iA ' (27)

which is not singular either. So T 2 contains first powers ofdtt

delta functions and can be neglected compared to T (the former is

coupling constant X times less).
J

not vanish only if A = -Q. If A = w + w then)

J

We arrive to an assumption

S = 1 -iT - TxT/2,

that leads to ,

I IT,Q]] li>_:Q> = <i [ i(T,Q] - _ ET,I

the first term being virtual and the second

Straightforward calculation using (29) gives for example

(28)

(29)

real.

I I"/i<a> = - _. iX.2_6<b > - _ _: IXj (2_6)2<a>,I j ,I J J
j J

Zi<bk>z = -iX 2n6k<a> - _ X 2n6 k _: X2_6.<b>,_ l J
J

* ' = i _. (k.<b a> - X.<a*b >)2_6- _: IXkl:(2n6k) 2<a*a) '
A<a a.;-x j J J J J J k

1 . . > * . 2 (30c)
+ _ _ (X k<bkbj ÷ XjX](<bjbk>) (2_) 6j6 k •

k.j

_<b_bk> x i(×k<a*b]> - Xk<bka>)2_6 k + [X)_12<a*a>(2nGk)z

[ ",_ * ", _ ] (30d)- r_6 k X k _ Xj__rt6j<bjbkx + X _ X2n6.<b*b > •
• J J j j k j

These variations are expressed in terms of expectation in

the initial state (designated with triangle brackets), can

define quadrature component variances by

I [ ' 1 _'P><Q> (31)D(P,Q) = _ <PQ> + <QP> - . •

Their variations can be e:..,_pressed similar to

= A<aa'> - 2<a> /_<a> - (Zi<a>)2 (32)
ZID (a' a) z z z z "

vai Lies

One

(30a )

(30b)

This kind of variance is important because in canonical
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coordinate-momentum space ImD(a,a) corresponds to correlation and

ReD(a,a) - to squeezing. In Schrodinger picture they rapidly

transfer from each to other.

Retaining in (30) and (32) only terms proportional to r and

dividing by T we obtain time derivative equations. From them we

clearly see that radiation damping

J

determines variation of amplitudes

d

dt <a> = - [ <a.> (34a)• x 2 '
d

dt <bk>x = - 2 I_'klz2rr6k <bk>" (34b)

These equations coincide with those obtained usually in the

frame of Wigner - Weisskopf approximation. Field modes and the

oscillator exchange their energies. As a result there is no effect

of stimulated emission but only two independent fluxes of energy:

d

dt <a"a>z - _,'<a'a> + E IX kl _'_Ok'Dkbk>, (34c)

d k
s- - m 2: 9. I"

_" <bkbk> z Ixkl 2-6k<a a> + I×kl_'2rt6k<bkbk>. (34d)

Squeezing-correlation parameter behaves in a similar way :

d

= 2 2nGkD(bk,bk),dt D(a'a)z - _,D(a,a) - _ Xk

d k

= _22_6kdt D(bk'bk)z - X k D(a,a) - l_k122_6kD(bk,bk).

(34e)

( 34"f )

Further development can be made for the specific

of coefficients in Hamiltonian (3). For the continuum

summation is substituted by integration over phase

summation over polarization indexes r

_ _ J_ Vp d_ d_

with volume V, solid angle element d_, mode frequmncy density
2

bJ

8nsc s

e:_pressions

of modes

space and

(35)

(36)
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Decomposition of vector potential A(r,t) over mode variables is

a(r,t) = E 2_ _ V e (b (t)e×p(ikr) + H.c.). (37)J J J
j j o

where e is a polarization vector and k- a wave vector of j-th
j

mode.

Gauge invariance substitution of oscillator momentum p _ p -

eA leads to the interaction Hamiltonian (3)

2 A2-epA •
H = + _ . (38)
i m 2m

Here e,m are the charge and the mass of the oscillator- The second

term in this case proves to be a unity operator in state-space of

the oscillator. Hence it results in an infinitely little

renormalization of field energy because of a factor I/V (for

infinitely large volume V). The coupling constant will be

!
e

_j - -i _ cosej,
(39)

_ m_ V
j o

where _ is the angle between a polarization vector and the
J

oscillation direction.

On the other hand, from the Hamiltonian in another gauge form

H = - eqE, (40)

where q is a coordinate of the oscillator and [ is the electric

field vector, it follows that the coupling constant

J J

But as all expressions contain delta functions 6(_.-_), constantsJ

(_9) and (41) coincide. We see that it is one of the cases when

gauge transform, performed over state vectors in the absence of

vector potential and corresponding to a change from gauge form

(40) to (38), does not make any difference. These transforms were

considered in detail in Ref. 10.

Einstein's stimulated coefficient can be also introduced.

Howeve_ it is different from a common one - it depends on the
6

angle and e:_.presses radiation power instead of probability :
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2 2
r_e COS e

B : 2.v I×12" 2m_
o

The spontaneous emission coefficient is obtained

Integration should be performed over solid angles of

also isotropically distributed),vectors (they are

vectors of modes :

2 2 2
e

_42)

from (33) •

pol ari sati on

not wave

= _ _ B dO = s • (43)
4 sc s 6_m_oc

A light beam containing several close modes has an energy density

I ÷

W _ p<b b.hw
r

or W = SW dO.

It will allow us to express eqs.(34) through

meaningfull values.

(44)

(45)

physical ly

$ BW di_, (46a)

d

_-_lh_<a*a>l = - _h_<a*a> +

(46b)

d ,

IWVI " B l_Ka*a> - W_],

d D(b,b)

d-_ D(a,a) = - _D(ala) + $ BW
h_Kb+b >

d_, (4&c)

d

IWVD(b,b)I - B [ph_Kb*b>D(a,a)- WD(b,b) I. (46d)

All above discussed enables us to answer posed questions :

In general absorption and emission can not be distinguished.

be used

Ii

2. So not Fermi's rule but expectation values should to

calculate the rates of these processes.

3. Time ordering in this case is not important up to the second

order of perturbation.

4. Stimulated emission does not manifest itself in the final

result.

5. Energy and squeezing-correlation parameters behave in a similar

way : there are independent interchange fl_xes of them

proportional to their current values.
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THROUGH PARAMETRIC CONVERSION

G. M. D'Arisao, C. Macchiavello, and M. Paris

Dipartimento di Fisica 'Alessandro Volta', via Bassi 6, 1-27100 Pavia, Italy

ABSTRACT: The performance of parametric conversion in achieving number amplification

and duplication is analyzed. It is shown that the ef[ective maximum gains O. remain well

below their integer ideal values, even for large signals. Correspondingly one has output
Fano factors F. which are increasing functions of the input photon number. In the inverse

(deamplifier/recombiner) operating mode, on the contrary, quasi ideal gains O. and small

factors F. __ 10% are obtained. Output noise sad no-ideal gains are ascribed to spontaneous

parametric emission.

1. INTRODUCTION

The ultimate transparency of optical networks is essentially quantum-Limited sad say improvement

beyond the standard performance depends on availability of nonstandard high quality quantum

amplifiers. The photon number amplifier (PNA) sad the photon number duplicator (PND) are the
quantum devices which are needed in direct detection, l The PNA ideally should ai_ect the state
transformation

[n) ---, {Gn) (1)

for integer gains G and input eigenstates In) of the number. Similarly, the PND, instead of

amplifying the photon number, produces two copies of the same input state for eigenstates of
the number, namely

In)--_ In,n). (2)

Both devices are particularly suited to local area network environments, where the minimum loss for

user-derivation is 3dB (in average), sad transparency rapidly degrades with the increasing number

of users. In such situation the PNA represents the ideal preamplifier to be inserted before each

derivation, whereas the PND--which ideally realizes the quantum nondemolition measurement of
the number--could itself be used as an ideal 1ossless optical tap.

The PNA and PND could also be profitably used in the inverse operating mode, namely the
PNA u a number deamplifier sad the PND as a number recombiner. The number deamplifier could

be used as a number squeezer, allowing production of subpoisso"isa states from coherent light; the
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numberrecombiner,on theotherhand, could produce novel nonclassical radiation from input twin-

beams [an example of such application in production of phase-coherent states 2 is proposed in Ref.

[3]].
The concrete realization of high quality PNA and PND for practical applications is an arduous

task. As explained in Ref. [4], number conversion, in a way similar to the customary conversion,

requires a medium with a X (2) or X (3) susceptibility, but here with a phase-dependent polarizability.
More precisely, almost ideal number conversion can be achieved upon modulating the nonlinear

susceptibility at a (G - 1)-submultiple of the wsvelenght of the amplified mode, G being the integer

gain [feasibility studies of number conversion using multiple quantum wells heterostructures are
currently in progresse]. The required phase-dependent polarizability in a X (_) or X(3) medium may

also be regarded as an intensity-dependent coupling for a X (G) or X(a+1) medium (simply from polar

decomposition of the boson field operators). This suggests that a gain-two PNA should be simpler

to realize than a generic G > 2 amplifier. However, as also explained in this paper, the intensity

dependent coupling should follow the power low (a*a + 1) -x/2' ata being the number operator of the

amplified mode. Such a decreasing factor is essentially the (1 + I) -I/2 saturating behaviour of a two

level system effective susceptibility in the inhomogeneous-brosdening limit, 5 but it is not obvious

that this power low--which is obtained in a semiclassical context-could survive in the quantization

procedure.
The previous observations quite naturally lead to ask if the conventions] conversion could

somehow simulate the number conversion, and what would be the range of physical parameters

where ideal behaviour is better approximated: this is the subject of the present paper. Quite

unexpectedly (see for example Ref. [I]) we find that ideal behaviour is never approached, even in

the Limit of large input signals. The most striking result is that conversion is never complete and,

therefore, the effective maximum gains G. remain we]] below their integer ideal values, even for large

input photon numbers: quantum mechanics thus reveals its subtle nature even for large quantum
numbers, here in form of noise in amplifiers [for a discussion on applicability of the correspondence

principle in a different context, see Ref. [7]].
The inverse devices--namely the number deamplifier and the number recombiner--are better

approximated by parametric conversion than the direct ones. We win show that ideal gains are
achieved in the large-n limit, whereu Fano factors F. remain nonvanishing but small (F. : 10%).

Therefore, it seems that at present the devices which are simplest to realize concretely should be

the number deamplifler and the number recombiner (even though probably the limited output noise

of the deamplifier could not be satisfactory for applications as number squeezer).

After presenting the theory of the ideal devices in Sect.2, the connections between the
conventional and the number conversions are explained in Sect.3, where a simple mean field approach

for analytical evaluation of the conversion time is also given. In Sect.4 the announced numerical

results on conversion times, effective gains sad Fano factors are presented. In Sect.5 we conclude

with some remarks on the physical interpretation of the nonideal behaviour in terms of spontaneous

parametric emission.

2. THE IDEAL NUMBER AMPLIFIER/DUPLICATOR

In the Heisenberg picture the ideal PNA corresponds to multiplication of the number operator by

the integer gain G

ata _ Sara, (3)

a being the annihilator of the amplified mode of the field. Because of the integer nature of ata,
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the dearnpfifierdoesnot trivial]y correspondto replaceG into G -l in Eq. (3). Actually the ideal

desmplification is the following

_t__. lG-,.t.l, (4)

where [z] denotes the integer part of z. As a consequence, even in the ideal case, the desmplificstion

has an input-dependent effective gain G.

G. = [G-'.] _<G-' (5)
n

for n input photons, iM_d G. : G -1 {or large n. [As IM_ exsmple, the cue G = 2 is depicted in Fig.
4.] In terms of the shift operator _+ : _+]n) - In + I), the transformation (4) is obtained as follows

where now (_+)Gln) = In+ G). In fact, the map (6) corresponds to the following 3

"' -" "I_), (7)

where a_G) is a boson operator creating G photons at a time, s namely

._)ln) = _/[G-ln] + 1In+ G), (8)

=1, [.(o),.,.]=c.(o)
The explicit form of a_G) is

a_c) = { [G-ln](h - G)' } 1/'

and from Eq. (10) it follows that

which is the deamplification (4).
transformation

(0)

(10)

a_G)a(G) = [C-lata], (11)

The direct amplification (3) corresponds to the inverse

[see Ref. [3] for more details about these maps]. The transformations (7) and (12) are essentially

permutations of two different types of boson. For commuting modes [a, c] ffi [a, c t] = 0 the permuting

map a ,-, c is realized by the Heisenberg evolution

where

PaP = c, PcP= a , (13)

Ir t .Tr "_ t . (14)

73



However, as a sad a(G) do not commute, it is convenient to consider & simultaneous change of the
field mode (namely the amplifier also converts the frequency or changes the field polarization). In

this case the amplifying operator is

Ir #",;.xp o). p[-,-;<o o,o+
The operator (15)_now &ttalns the transformations

p(G)(i®_+)p(o)=(_+)G®i, p(a> [(_+)G ® i] P(G) = i ® _+, (16)

where in the tensor notation 01 @ ()_ the first entry is {or the a mode sad the second entry for the

c mode. The Schr_dinger evolutions of the number eigenstates correspondin 8 to the amplifying _nd

deampl;fying operating modes are

P(G) I0, n> = IGn, 0) , (17)

P(G)In,0) = [G(G-'n), [G-'n]), (18)

where (z) = z - [z] denotes the fr*ctional part of z and In, m>= In>. ®I,n)c.If one would consider
only one mode in the above trsasformations---say a--a frequency conversion P(_) is needed. In this

case the evolutions (17-18) rewrite

P(G)P(,)In, O) = [Gn,0) (19)

Pft)P(G)IO, n) = IO(G-_n), [G-IH), (20)

whereas totally ignoring the mode c corresponds to trace the transformations (19-20) over this mode,

adopting a density matrix representation for states. In this way nonunitary transformations for the

reduced density matrix of the signal mode a are obtained, which do not preserve the Newmsan-

Shannon entropy: these are the 'photon fractioning' sad 'multiphoton' transformations of Refs.[3,9].
The mode c is responsible of the added noise which is present even in the ideal case (see Eq. (5))

sad corresponds to the 'idler mode' of the customary Linear amplification. 3

Apart from the _ phase shift--which can be obtLined by changing the optical path of the
b mode sad which, however, for an input number eigenstate corresponds to sa irrelevant overall

phase factor--the evolution operator (15) comes from the interaction HamiJtonian in the Dirac

picture

h, = ,Io)_+ h._. (21)

for a dimensionless evolution time

(22)
2

The Hamiltoni_n (21) has the following constsats of motion

_.4 = ata + Gc tc , (23)

cl._ = G (G-tara) = G (G-1_.4) , (24)

and, because of identity (24), only _ must be specified. In the following evaluations we use the

basis of the Hilbert subspace corresponding to fixed _._ eigenvalues

tn>,_= IoA- Gn,n>, n = o,1,...[G-_o.d (25)
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In this basis Eqs. (17-18) rewrite

P(G)ln)c. = IO)c. , (26)

Pcc)lO).= IIa-',4)., (27)

whereas the Hamiltonian (21) takes the tridiagonal form

(') 1). (28)//,1'*), = "_.')1'_- 1). + _.+, ,, + ,

,_(°) = _/n(lO-',] - n + 1). (29)

Conservation of the interaction Hamiltonian (21) itsel£ corresponds to the resonance condition

Gw_ = we. In the nonresongting case a third pump mode d is needed with wd = G_o - we: Eq. (21)

is obtained from the interaction Hamiltonlan in the $chr$dinger picture

_'= =lolod+ b.c. (30)

in the parametric approximation of classic*l undepleted pump, namely with d in a highly excited
coherent state.

The photon number duplicator in some respect is similar to the gain-2 photon number amplifier.

Instead of amplifying the number of photons, it produces two copies of the same input state for

eigenstates of the number operator. If the input copies are carried by the modes a and b whereas

the output by c, the duplication map reads

IO,O,_,)--, I,_,,,,o)

and is trivially inverted for n= =nb [for the generLl case see Ref.

(31) corresponds to the Heisenberg evolution

_+@_+@i--.i@i@_+,

(31)

[3]]. The state transformation

(32)

which is obtained as permutation of the boson operators a(1,1) and c, where =I=,I) now denotes the
two-mode creator

=l,,_)l'_.,'_b)= _/(min{,_=,nJ)+ 11,,. + t,nb + 1), (33)

[=0,1), =lu)] = 1, [=(1.1), =t= + btb] = 2aOj ) . (34)

The following realization of a_l,l ) is obtained in Ref. [3]

(g_l,l) --" a#bt 1
_. (35)

In s way anaiogous to the PNA, the Dirac picture interaction Hsmiltonlan of the PND is

H/= al,,1)c + h.c., (36)

with constants of motion

1 (ata +btb+ 2ctc ) ,

dD= at= - bib.

(37)

(38)
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The Hilbert subsp&ce of interest for duplication corresponds to dD = 0; the subspaces for fixed

eigenvalues so are spanned by the eigenvectors

I")0o= I_'D- ",.o - -,"). (39)

For fixed sD the Hsmi]tonian (36) hM the tridiqons] form

H,In.) -- _.°>ln- 1). +.a(.,_,l-+ 1)., (40)

#(') = _(s - n + 1)n. (41)

Frequency conversion and simultaneous duplication require a classical undep]eted pump mode d at

frequency _ = Wo+ wb - we, with interaction Hsmiltonian

h'= ,_l,,icd+ h.c. (42)

3. NUMBER-OPTIMIZED DOWNCONVERSION

The Hamiltonians (30) and (42) are complicated by the occurrence of the multiboson operators a_c )

and a_1., ). An outlook at Eqs. (I0) and (33) reveals that the G-photon smplL_cation corresponds to

a X (G+I) susceptlb_ty and the duplication to a X(3). In the followinp the G = 2 case-the simplest

to attain in practice--will be considered only. For (ata) :_, 2 the two photon operator a_z) can be

approximated as follows

a_2) __a t2 [2(ata + 1)] -½ , ((at,) _,, 2). (43)

On the other hand, for dD= 0 the two-mode operator a_z,l ) is simply

a_l,z) ----at(ata + 1)-½b' , (ata = bib). (44)

Hence the ttandltonians (30) and (42) become

_r' __ at2 [2(a'a + 1)] -_ cd + h.c. (PNA), (45)

If' - at(ata + 1)-½bred + h.c. (PND). (46)

As a crude approximation we substitute the intensity-dependent factors in Eqs. (45-46) with their

constant &versge values and use the customary four wave mixing Haj_iltonians

HF,'M = at2cd + b.c. (PNA), (47)

f'Ir;l'M = atb_cd + b.c. (PND) • (48)

In the parametric approximation of undepleted classical pump d, Eqs. (47-48) correspond to the
interaction Hamikonians

_/I -- at_c + b.c. (PNA), (49)

Ht = atbtc + h.c. (eND). (50)
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The interaction time is resc_led by v/]_, Id being the intensity of the pump d: the relation between

the dimensionless time _"and the real time t (namely the length of the nonlinear medium) now reads

T - X(3)V/_t . (,51)

The Hamiltonians (47) and (48) were already suggested by Yuen I, who inferred the ampLifying

performance from the conservation laws (23-24) and (37-38), with the assumption of complete

conversion of the input signal. However, we wi/] show that complete conversion is never achieved,

apart from the case of one input photon. As an example in Fig. 1 the sverqe output photon

number is plotted for Hamiltonian (48) versus the interaction time r, for both cases: number

duplicator (]hal0 = Inblo = 0, (nc)o = n,) and number recombiner (]hal0 = (nblo = n,, Incl = 0).

An oscillatory quasiperiodic (or long-time periodic) beh&vior is evident, conversion never being

complete st any time: the ideal gain is not reached, and the unconverted photons contribute to

the output noise. Therefore, the saturating factors in Eqs. (45-46) are crucial to get complete

conversion. Semiclassical]y a similar saturating behavior oc (I + I)-½ is obtained for interaction

of radiation with a two level system in the inhomogeneously-broadenlng Limit or in the adiabatic-

following regime: s however, a full quantum treatment is sti].] l&cking and would require a wideband

emedysis. Here we only consider the performance of parametric Hsmi]tonians (49-50) in achieving

approximate PNA and PND. In this case the interaction time r = _-. for conversion depends on the
input photon number n,

(nc)0 , (]no)0 = 0 : direct operating mode),n, = (no)o, ((no)0 = 0 : inverse mode), (52)

which, in order to simulate the intensity-saturating low in Eqs. (45-46), shouid behave as follows

~ (53)

The conversion time (53) could be obtained tuning the pump intensity on the input photon number

n,: for n, varying in a wide range, this wouJd require a suited feedback mechanism based on a

quantum nondemoLition measurement of n,. In the following we give more accurate evaluations of

7"., using either analytical methods (a mean field approximation) and numerical calcuiatlons. The

results obtained in the two ways wi/] be compared and discussed in the end.

3.1 A mean ,field approzimation

In ]Lef. [I0] a Lineariatlon procedure for parametric conversion has been proposed, where

Hami]tonians (49-50) are approximated in a se[fconsistent way by the ideal ones (21) and (36).

As we wLll see in the followings, this approach is correct only in the Limit of large input photons

numbers in the ampLified/dupLicated channels (i.e. a and b modes), namely it is suited to describe

the inverse operating mode only. The method allows evaluation of the conversion time I".: its major

Limitation is that it leads to ex&ct conversion end, therefore, there is no systematic way to estimate

quantum fluctuations and nonideal gains. As a consequence, the direct operating mode cannot be

described in terms of the time-reversed transformation of the inverse mode, because in this case

knowledge of the output noise become essential. Therefore, in this section we anaiyze only the
desmpLifier / recombiner case.

The starting point of the method is to rewrite Hamiltonians (49-50) in a form similar to the
ideal ones (21) and (36), namely

_I! = f(a*a)Ac + A'f(a*a)c, (54)
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where

sad

A = J' `(_) (PNA), (55)
t a(H) (PND)

(2z+3-(-1)=) ½ (PNA), (56)f(z)= (z + I)½ (PND).

The operatorfunctionf(ata)willbe treatedM a c-number time-dependenteffectivecoupling,to

be determined selfconsistently a posteriori. The Hami]tonisa (54) is rewritten ms

RI = f(a_a)Act + f(ata - _)Atc, (67)

where, in order to have a unified description of the two devices, the integer number u is used

1 (PNA), (58)u= 2 (PND).

We write a mesa field Hamiltonisa taking the intermediate value/(ata) =/(ata - _) between the

two forms in Eq. (57) sad averaging on the input state. One obtains

_#,,F= I(_,(,)) [A_'+ h.c.], (69)

where

and

,_0(_)= {,t(,-),0-))o, (60)

j_(z)---_v (¢ + _) (61)

(the oscillating (-I) "'(') term in Eq. (56) is neglected). In the Dirac picture the time evolution of

an operator O is written ms follows

(_(_') _ exp (iHo,J') (_exp (-iJ_°,,l") , (62)

using the time-averaged HAmi]tonisa H°,

H°_ = 17._o" H^! r(7" )d1" = $(1.1"----))(Ac, + A'c) , (63)

o(,-)= L" l(,o(,,))d,,. (64)

The evolution of the operators A and c takes the simple form

A(r) = A cose(r)+ icsine(_') (65)

c(_')= ccos0(I-)+ iAsin S(I"). (66)

78



0 2 • S 8 10 0_ 2 • 8 8 10

A _

• I " ! " ! "

0

0 8 4 6 8 SO 0 | 4 e 8 10

T

Figure 1: Time evolution of the output signal l_o) (figures on the top) and of the r.m.s, output

noise _ (figures on the bottom) for parametric conversion (Hsmiltoaian (50)) of input number

states with n, = 10. The two figures on the left refer to the number duplicator ((n°/U = (nblu =

0, (nc)o : n,); those on the right to the number recombiner ((n°)o = (nb)o = n,, (no) = 0). The
small circles enclose the conversion point corresponding to _" : _'..

We are now in a position to eva/uate n°(_') selfconsistently. From Eq. (65) one has

n._(1") --(At(1-)A(_-))o = (A'A)o cos2S(_'). (67)

For large input photons ni sad v = I the expectation n.4 can be approximated as

n_ = [,_o12] = ,_.12. (68)

From Eqs. (64) and (67) we obtain the following integral equation for n°(r)

no(r) --- n, cos20(_') = n, cos_ /(n°(.r')),'t'r'. (69)

Differentiation of Eq. (69) leads to

v_d_ = de (,=,cos_O+ - (TO)

From Eqs. (65) and (69) one can see that complete conversion occurs at I- = 1". such that

e(_-.)= _. (TI)
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Figure 2: The best conversion time _'. for parwametric Hsmiltonians (49-50) (PNA on the left
and PND on the right). The squares are for the smplliler/dupllcator, the circles for the

desmplifier/recomblner. The lines without dots represent the mean-field approximation.

After integrating Eq. (70) from 0 = 0 to 8 = _ we find the conversion time as a function of the

input photon number n,

n=v-½ n,+ K ,

where K(k) denotes the complete Jacobian el]iptic intesrsl

K(k) - f0½(1 - ksin 2 (TZ)

For large numbers n., using the asymptotic behavior K(k) -_ - log _ for k --* 1, one obtains

r. ~ _u-_,_-_ los n, (74)

which, a part from s loga_thmic correction, has the same form of the preliminary result (53).

5. HUMERICAL RESULTS

The quantum evolution of input number eigenst&tes for the Harailtonians (49-50) is evaJuated

numerically, tshing uuivants4Ie of the tridlagonA1 forms (28) and (40), which now read

_.(.°) = _/n(s - 2n + 1)(-' - 2n + 2). (, = ,o). (75)

_('1= v_(, - _ + 1), (_ = ,o). (T6)
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Figure 3: The maximum effective gain G. (corresponding to the conversion time r. of Fig. 2)

for parametric Hami/toulsas (49-50) (PNA on the left, PND on the right). The squares are for

amplification/dupllcation, the circles for the inverse operating mode.

The evolution of the output signs/ has been checked using the numerics/results in Ref. {11]. In

Fig. 1 we report a sample of the evolution for the PND. The time-dependence is periodic or

nearly periodic for very low input photon numbers n,, whereas it becomes more and more irregular

(essentis/]y irreversible) for increasing n,. Qualitative differences between the direct and the inverse

operating cases are evident. In the direct case the output signs/exhibits maxima corresponding
to high noise level, whereas low noise occurs only for depleted signs/. In the inverse case, on

the contrary, the first occurrence of s 1ocs/ maximum for the signs/ coincides with the absolute

maximum, whereas the relative noise is s/ways well below the subsequent vs/ues (this gap being

an increasing function of n,). The conversion is never complete in both cases, however, it is more
eliicient in the inverse operating mode, due to the low noise at the output. The conversion time I".

has been identified as the time corresponding to the first locs/maximum of the signs/(in the direct
operating mode this could be slightly lower thsa the absolute maximum). The same features in the

time evolution can be found for the PNA approximated by the conversion Hsmiltonisa (49), with

analogous differences between the direct sad inverse operating modes.

In Fig. 2 the conversion time I". is plotted against the input number n,, for both Hsmiltonisas

(49) and (50). The direct sad inverse operating modes lead to two different curves, the former
corresponding to longer conversion times I-. (a part from some features which are peculiar of the

deampllfier for low inputs n,, and are reminiscent of the fractional behaviour (68)). The mean field

approximation, which is pertinent only to the inverse operating mode, is reported for comparison.
A good agreement is found for large n,, better for thePND than for the PNA. For large n, numerics/

best fits give power-low behaviours of the form I-. _. n -°, with a _.- .4 or sm_ller.

In Fig. 3 the maximum effective gain G. (corresponding to the conversion time I". in Fig. 2)

is reported. One can see that parametric conversion when used as a gain-two number amplifier
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Figure4: Effectivegain G. for the deampUfier with G = 2: circles and fulJ llne describe the

parametric conversion (Hsmi]tonian (40)); triangles and full line describe the intensity-saturating

Hsm_tonisn (45)_ dot-dashed line corresponds to the ides] desmp]_er 15).

leads to an effective gain G. which is s decreasing function of the input signal n,, approaching the
vs]ue G. _- 1.28 for large hi, well below the ides] gs]n. In a similar fashion the effective gain of the

duplicator G. = Ino(7".))/Inc(0)) tends asymptotics]ly to G. _ .78. The inverse operating mode,
on the contrary, behaves quite we]], the desmpL_er achieving the ides] G. -- I/2 gain and the

recombiner G. -- I in the large r_, limit. The desmpliiier gain is compared with the ides] one (5) in

Fig. 4, where also the intensity-saturating case (45) is reported [notice that in the direct operating

mode the intensity-saturating Hsmi]ton/ans (45-46) lead to ides] behaviour].

FinA]ly, in Fig. 5 the output Fano factors F. at the conversion time I-. Lre plotted. It is evident

that parametric conversion leml to noisy PNA and PND, with F. "--n -_ and exponent _ slightly
lower then 1: this corresponds to an output slgns]-to-noise ratio which is slowly (logarithmicslly)

_ullshing. The number desmplifier and recomhiner are better approximated, with F. _ .13 for

large n,: on the other hand, the intensity-saturating HamLltonian (45) leads to vs_shing F. for

large n, (F. is exactly zero for even n,.)

6. CONCLUSIONS

We end with some remarks on physics] interpretation of numerics] results. We have seen that

psra_netric Hami]tonians (45-46) are not good candidates for number smpliflcation/duplicstion

devices, whereas they could be pro/_tably used to achieve approximate number desmp]Jfics-
tion/recombination. Here we emphasize that the source of noise in the Simul&ted number devices is

the socs]led 8pontaneou_ parametric em_$son. 12 AS & matter of fact, as explslned in Ref. [Ii], the

Hsmiltonians 145-46) are formally similar to the Ha_iltonian of a laser amplifier: in particular, Eq.

(46) can be put in correspondence with the Hsmiltonian describing a cluster of N two-level atoms
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Figure 5: The Fsno factor F. at the conversion time r. of Fig. 2 for parametric Hsmi]tonians (49-50)

(PNA on the left and PND on the right). The squares are for amplification/dupllcation, the circles
for the inverse operating case. The triangles correspond to the intensity-saturating HamiltoniLu

(45).

interacting with one (resonant) mode of radiation

_rI oc at J_ + aJ+, (77)

where Jo = ]_N=_ o_, sze the collective spin-flip operators for atoms. In fact, the s_gular momentum

operators can be represented in terms of the two mode-operators b and c as follows

1 (ctc - bib) 'j+=_', j_ = b'c, J. = _
(78)

l (ctc + btb ) j= NJ=-_ , ¥.

When operating as a PND the H_miltonian (46) acts on input states with n_ = n6: in the direct

operating mode one hu (nolo = 0 _nd (nolo = _,, whereas in the inverse (no)o = n, _d (n_)o = 0,
namely [M[ = J in both case: this is exactly the spontaneous emission limit for the parametric

converter (as opposed to the noisless coherent superradiant limit corresponding to M = 0). Thus,

in conclusion, both the output noises and the nonidea] effective gains are signs of the spontaneous

parametric emission in the converter.
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Abstract

We consider a model of oscillator with nonpolynomial

interaction admitting exact solutions both for energy

eigenvalues in terms of zeros of Besse! functions considered

as _L_ctions Of the continuous index, and for the

ccr_-esponding eigenstates in terms of Lommel polynomials

Let us consider the following Hami!tonian,

H -- 0c__L _ ÷ )k [c_ + + -I..-2,,+ _] + C_ _ + I (I)
+

Here _ and _ are usuai boson annihilation and creation operators, ,._

and _, are positive real parameters (the generalization to comple:.x

coupling constant >, does not lead to any new result, since the phase

of >, is trivially eliminated by the canonical transformation _ _ ,_et¢_

preserving the energy spectrum). If the mean number of quanta ix

close to zero, then .'I) turns into the Hamiltonian of usual forced

csuil ie.t_or- In the opposite quasiclassi_al regime of large mean

nu_t-er of e'::'.c_tations N = <_+_'.'_-:-_.I the substitution _ _ Na"2e _¢'

leads tc the e_ergx'-ir, dependent ir,teractior, Hamiltoniar_

H = ),.cos,p _ (2)
knt

which ix in fact e>:'act, since the e::.cpressior_ inside the figure brac-

kets is nothing blot the Susskind-Glogower cosine phase operator [I]

which properties were discussed in detail in the known review by

CaroL(thews a_,d Nieto Z2].

E:_::pa_:ding the energy eigenstate _E> over the Fock states
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(5)
T_--U

and taking into account the known matri>- elements of operators e and

•_ c.ee can easily reduce the stationary Schroedinger equation to the

fo!!o)_ing set of coupled linear algebraic equations,

o i (4)

It is convenient to introduce dimensionless variables

= XI_ , lJ = El_ (5)

Then normalized energy /_ is determined from the equation @(2,p)=O,

where function _. is the characteristic determinant of system (4):

-tJ 2 0 0 0 .....

I-W _ 0 0 .....

0 _ 2-H 2 0 .....

0 0 _ 3-_ _ .....

(6)

E>--:panding this determinant over the elements of the first row one can

easily obtain the following recurrence relation,

• (2, /_) = -p_(_, H-l) -_2_(2, p-2)- (7)

Ir:troducing new function

F(_,W) = m-W_(iE_,p) (8)

one can rewrite (7) as follows,

2W
F(_, _) + F(_, /u-2) = -2-3_ F(_, /J-l)- (9>

But this is the .well known relation for Bessel functions [_,4].

Consequently, the energy levels are determined by zeros of Bessel

functions in accordance with the equation

2H_7 (2_) = 0. (I0)
-i -p

For small values of parameter _ the well-known power series e<pansion

of the Bessel function leads to the equation

_ (---_: _

-.m - 0. (!1)

For _ _ 0 the solutions of this equation with respect to W are

determined by the poles o _ gamma-function. Evidently, they reproduce
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appro:-:imate!y the equidistant harmonic oscillator spectrL_m: W _ n ;
rl

r_ = (),1,2,... Since all poles of gamma-function are simple, with the

residues (-l)nln!, the correction to the n-th energy level has the

2(n_i_
o.,-_er of i__

AJO _. _ 2, Wn = rl -- iB2{n÷i)/TL + •-- , r_!.

Note that all corrections are negative.

For large values of the coupling constant we can use the

a_ymptctic formula

J_l_W(2z) _ (_2)-I/2cos(2_ + _/J/2 + _/4).

Then for I-I the spectrum is equidistant again, but with

twice distance between the neighbouring energy levels:

H _ 1/2 + 2n -4z/_ + O(m-i).
r_

Here _ is at, arbitrary integer having the same order of magnitude

the large parameter 2. Note that energy values depend on the coupl

constant in a specific almost periodic manner:

W (z) _ _ (_ + n12).

Now let us look again at eq. (4). Comparing it with

recurrence relations for special functions given in [3,4],

recocnize that it is nothing but the equation for Lomme! 's

mials (which are in fact polynomials with re__peet to I/2)

(12)

k n own

(13)

the

14)

as

ng

(15)

different

one can

polyno-

_(_ + _)
R ('z._ + R ¢'mD - _" R (z__

n÷l,_J r, -i,l- _ _._ r,,l- _
(16)

Consequent Iy,

_H) _ C-ID n-LC'n-[D!CC'n-_-/jD 2L-r,

c =N(la,Z)Rr,._iaC-2zD =N(/a,z) Lr, _. ! {'n-2 I_)!FC L-/_
l=0

w_ere N(_,---') is the normalizing factor. For e::<ample, the first

:oe_i :ients _-(_) _IJi/N(H• = c ,z) are as follows,
rl ri

c = 1, = wl-_, = W(W-1) i 2 I
0 l 2 "

Taking into account (12) we have, e.g., +or the ground state

"_(0) "_(0) _iO) 2

¢ = 1, c = -z, c = _ ,
0 i 2

In conclusion let us discuss the correspondence between

quantum problem under study and its classical

(17)

three

(18)

counterpart

<19)

the

described
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;_ the energy - phase canonical variables

E = _r2 + q2__. _ = arccos [q,'C2E_ *'2] (2(,)
2

wlth _amiltonian

H = E + kcos_ . (211

Since this Hamiltonian depends .[_ne_z-[y on the energv variable E, the

canonical equations of motion

_E..',.,',gt = _H.."_:,, a_o."_t =-_H..,-_E (22)

cap be _und wit-bout diffi-_ulty for an arbitrary "potential" /_¢,1:

¢< _b = -t, P_d_b = Eo + /COD - /(_,.). ('_-_

Hot.;e,.'e-, in the quantum case just the "potential " cos_ seems

dist_ng-',ished- For e>(ample, if one takes ,instead of (2) the interac-

tion Hami_'tonla-:

= X. COS_
tr,i

_e.- i=,=_ead of _6_ and (7 _ one gets - 2_1

-_ 0 _; .....

0 I-_ 0 _ .....

•i-(_,/_) = _ 0 2-_ 0 .....

0 _ 0 3-_ _ .....

0 0

0

0

Q i_iml.,. _im mll.'LII_I , , , I . . • .

wi%h unknown solution.

Althouoh the physical meaning of the

Hamiltonian (I) is not clear at the moment (its

H = B_/2 + kcos_ describes the Josephson junction), we hope that

tc its beauty it will find applications in future.

The authors thank V.P.Karassiov for valuable dis=ussions.
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Abstnlct

The quantum description of ligth propagation inside a planar waveguide is

given , looking in particular at the behaviour of the field inside a directional

coupler. Nonclassical effects are presented and discussed.

Introduction

Electromagnetic fields in optical guided wave systems are usually

described simply by using classical Maxwelrs equations, but there are cases in

which a quantum treatment is necessary.Three purely quantum phenomena are

known having no classical analogous; namely photon antibunching,

sub-poissonlan photon statistics, and squeezing of optical fields. If problems
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connected with these phenomena or the evolution of photon statistics are to be

dealt with,a quantum mechanical treatment must be used.

Of course a inear system is not able to produce or change these

properties but a nonlinear one is. For this reason,in the following the

Hamiltonlan for a nonlinear optical waveguide will be derived,and its application

to some propagation problems will be considered.Although the I-lamiltonian is

quite general,emphasis is given to planar structures only and a more suitable

approach to descdbe propagation fenomena is discussed.

One of the results of having the propagation problem treated in quantum

mechanical form is to allow for the possibility of studying how purely quantum

effects propagate in linear systems.We will show ,for example,that a quantum

effect as squeezing is affected by the operation of switching in a linear structure

because of the phase changes involved in the operation.

2. Quantlzation of the radiation field

The recent experiments on nonclassical states of light have called for a full

quantum analysis of the electromagnetic field [1] especially in the cases of

propagation of the fields inside diparsive media.

We remember that the standard quantization method consists of writing the

Hamiltonlan in a given volume V , demanding periodicity in space. For

propagating fields, the space evolution is then replaced by a time evolution, by

linking the space and time variables by the equation 7,, ct. The length of the

nonlinear medium is then replaced by an effective interaction time. Of course this

method has two main imitations. The flrt one is that, by identifying the space

evolution with time evolution we lose one vedable and this formalism can

describe only c.w. operation : the second problem is that this procedure cannot
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be applied rigorously to a dispersive medium, where each frequency propagates

with different velocity.

However we remember that by using the Hamiitonlan formalism and working in

the Heisenberg picture, the time evolution of _z,/) operator is given by

8t =

(1)

so that the oenermor for time evolution is the Hamiltonian _./_

_aenerator for snaL'a Dmuaaation is tha momantum o oemto[_/..;

(2)

The _ operator is related to the wave flux of the Poynting vector [2].

Therefore a suitable way to quantize the radla_ion field to describe the

propagation fenomena is the one starting from the flux of the Poynting vector.

This leads us to the realization that the important quantity is the flux and not ,

as usually is assumed with the Hamiltonian form_sm, the energy density.

In this way instead of quantizing the field in a large volume and demanding for

spatial periodicity, it is necessary to assume a time periodicity T of the field,

with the requirement that T must be large with respect to any relevant time.

Then instead of writing the field in term of spmial modes ( thus performing a

Fourier analysis of the space variable z into the wave vector K m ) it is possible

to write it in term of temporal modes ( thus performing a Fourier analysis of the

time variable t into discrete frequendes o) m ) and space dependent

operators. The advantage is that the temporal modes remain the same inside

and outside the dielectric medium [3] and the space evolution of the mode

operator can now be obtained by means of the momentum operator; moreover

dispersion of the material can be included.
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By the help

dielectric )

of this formulation the expression of the electric field is ( inside a

E (z,t)- E+ (z,t)+ E (z,t),

where the cross stands for c.c. and

(=t) = _[ h_ ]'_ [_(=_om)exp(-k_)] (3)

being _ (z,(om) and their conjugates form el set of locaJized creatJon and the

annihilation operators ,Cam the field frequency, n(o3) the refractive index at the o)

frequency, e o the dielectric constant and c the igth velocity.

The number operator for the field becomes

A

N(zo,_m)- ;* (zo,wm) a(zo,mm) (4)

which represents the number operator of the photons of frequency co m

passing through the plane z,, z0 during a period T , and the commutation

rules now become commutation at "equal space':

fa(=oo_,_,÷ (x,(ot)l= aIje_('- _) (5)

and the _; operator is defined as

A_ A. ._,(_. _,(h _ a (_co,,_a(_o_m_
m

(6)

O)mis thewewevectorofthefield.
where knm n((om) c
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3. Quantum mechanical deacdptlon of propagation In a planar

wavegulde

A planar dielectric wavagulde is a medium whose dielectric permlttivity

depends on one direction,parallel to which we shall assume the x-axis (s.Rg.1).

If this medium does not contain absorbing centers,if there is no

amplification of radiation,and if the permittlvity is weakly dependent on the field

frequency coi ,the electromagnetic field inside the guide is expressed in terms

of normal modes in the following form [4,5]

A (r) - _ 0 f (x) exp( I _ .r), (6)

where _ Jis the wave-vector with components y and z (13I.r= ky y + kz z) of the

j-th mode propagating inside the waveguide and f (x) is a function dependent

only on x, defined over all space, and determined by the wavagulde structure.

Therefore each guided mode is defined by a _ vector at each (oj frequency.

From the quantum thery point of view ( as pointed out in the previous

paragraph ,if the operator describing the field mode in a free space is given by

( note the operator is the one that obeys at the equal space commutation rules)

(7)

in a guided strucure it can be described as

(8)
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and eq. (6) written in oparatodal form becomes

 (r.O = exp(- O + c.c.]
/

where A o is a constant.

l
., '112.

,-

(9)

Rg.1 A planar wavaguide

We would like to remark that in the case of dispersionless material the time

evolution of the field operators( Heisenberg equation) is the same as the one in

space , i.e. the Harniltonian operator and the momentum operator

approach provide the same results. This remark is particularly important when

we consider the quantum treetmen of a guided mode inside a guiding

structure, due to the fact that in general we propagate different spatial modes

of equal frequency and we are not obiged to take into account dispersion of the

medium if we assume a c.w. propagation.

The same kind of consideration is still valid if we study the propagation of single

or more modes inside a nonlinear planar waveguide with third order nonlinearity.

These cases have been extensively studied in the paper [5].

In the following we analyze the case of propagation in a directional coupler,

which is one of the most interesting guiding devices , very important from the

point of view of its switch properties.
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4. Behaviour of • linear dlreoUonal coupler when nonclassical states are

involved (squeezing)

The directional linear coupler consists in two adjacent and parallel

waveguides [ 5,6 ](channels ).When radiation goes through the

structure,exchange of power between the channels is possible because of the

evanescent field which is present in the region between them.

In the frame of classical theory the coupler is studied by using the

[5,6 ],in which a perturbation polarization responsible for the

coupling contains the refractive index of the guides. Complete power transfer

occurs in a distance L - ( x/2)K , where K is the coupling constant

determined by the refractive indices of the structure; if the detuning parameter 8

is zero,that is in the case of complete phase matching [6 ] ,being
1

8 : _ (13a- I_) (10)

where 13a and j30 are the wavevectors of two modes of equal frequency

propagating in channel a and b respectively .If 8 is not zero the maximum

fraction of power that can be trasferred is proportional to

 +s2"

From the classical equations for the complex amplitude for the directional

coupler,in the frame of the coupled-mode theory,with obvious generalization we

have the following Heisenberg equations for the operators,

f da/dz - -iKbexp(i2 8z),
dl_ / dz - -iKa exp(-2i 8 z), (11)

95



where _ and _ are the field annihilation operators in channel a and b

respectJvely .For the sake of simplicity we neglect damping terms because we

are interested in the coupling effect only,this is a good approximation in the

region of low temperature and optical frequencies. Without taking into account

dispersion the set of eqs. ( 11 ) is the same that we can write startimg from the

momentum operator with the substitutions t -> z/c and _ -> c _.

In this way we get the following solutions of eqs.(11)

(12)

A
where a0 and _X) are the input annihilation operators and

Ca,: ei_Z(cos(yz) - i 8,_ sin(¥z)]

Cu= e- BZ[cos(yz) + i 8/-f sin(¥z)]

Ga = - i K/-r sin(yz) eBz

Gb = - i K/-tsin(yz) e- _z

where? = _ +S2

To study the propagation of nonclassical field through the structure we use the

following charactedstic function

CN(_)= Tr{pexp[_ + ] e_P[-I_'a] = exp[-_ql312+ _(S'_ + sI3"2)+13v_-13"w]

(13)

which is able to descdbe a field which is not a pure coherent or squeezed

state,but has simultaneously squeezed ,coherent and chaotic features [ 7 ].In

eq.( 13 ) W = W exp(i _) ) is the coherent signal,and M and S are related to the
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noncoherent part of the field.So for the vacuum state we have M= S., W= 0

;in the pure coherent state M=S-0, and for the chaotic field W-S-0.

The state is a pure squeezed state if

M- Q,, 0.5((4S + 1) -1)

S=, exp(i _ ) cosh(r) sinh(r) (14)

r being the squeezing parameter [13 ].

A mixed state is given from a superposition of a pure squeezed state with

coherent signal W and a cahotic field

characteristic function given by eq.( 13 ) if

M= Q+ N,

where N is the noise photon number.

described by the normally ordered

(15)

We shall suppose that the input statistics of fight in both modes can be

described by the normally ordered characteristic function ( 13 ).Putting solutions

(12) into eq.(13 ) we can see that the truncated normally ordered output

characieri- stic functions will have the same functional form as the input ones with

new terms

s,.

W a = Itt_O) Ca + I_ 0) Ga (16)

where the superscript (o) labels the input quantities,and similar expressions can

be found for the b-mode,by interchanging the subscripts a and b.
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We are interested in finding expressions for the variances < ( A Q ) 2 > and

<( zt p)2 > ,(where _= _+_i + and _= -i(_l-_i + )).lnref.(14)it

is shown that

< ( zt0)2> = 1+ 2 M+ S+ S'

<(AP)2> =1+2M- S- S' (17)

Several interesting cases can be considered which depend on the way the

coupler is feeded.

Let us suppose first thet a pure squeezed state enters channel b and a

coherent state (or vacuum) channel a. It can be shown in this case that for

L- x /2K and 8,,, 0 we have

< (Ab)2> m- < (A_)2>_o, < (A_')2>• = < (_b)_ be,

(1¢)

This means that at the output of channel a we have an opposite squeezing than

at the input of channel b,while the output in channel b shows no squeezing.

A related situation is obtained when two opposite squeezed fields enter the

two channels in the same conditions as in the previous case.In this case

squeezing is preserved in both channels because the field entering channel a

comes out of channel b with opposite squeezing and the same happens with

field entedng channel b.At intermediate lengths of the coupler the squeezing is

not completely preserved.

A very interesting role is played by the detuning parameter. In general [14]

if 8 _* 0 some noise is added to both channels and squeezing is reduced, and

for some special values of 8, noise is absent. Let us consider for example

the case in which 8 = _ K.. In this case ¥ .- 2k and for the same coupler

length I.-'q'/2k if a squeezed field entered channel b and a coherent or vacuum

field channel a then we have at the output
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< (_)2> • = < (A_z> a--

< (A_)2> _ = < (A_z> bo.

,

(19)

We can see that changing the detuning parameter from zero to ,_F3"K

switches from one channel to another.This result is rather interesting for the

purpose of measurement.The squeezed stats is detected by interfering it with a

coherent reference light and looking at fluctuations.The switching behaviour just

described allow to preserve both the squeezed state and its reference beam.

5 Directional end contradlrectJonal coupler with modes with small

different frequency propagating inside

We have studied the problem of propagation of radiation in a coupler

assuming two different frequencies inside the channels, with the hypothesis that

each channel can support one only guided mode : this is possible if the two

frequencies are quite similar. In general for a coupler the more realistic

description of the field propagating inside aJl the structure is the one which takes

into account the superposition of the single modes propagating in each channel

( so called supermodes); in the case of different frequencies this approach is

particularly convenient and it is the one that we have adopted but in its

quantum analogous, i.e. introducing this concept in the statistical dependence of

the modes supported by the structure.
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The motion equalion of the operator describing the propagation inside the

structure is given by ( Heisenberg form)

az = -h (2O)

where j is the index corresponding to the mode ( _ 1,2) and this equntion is

related to the momentum o¢_r_or G, thin for this case is g_en by

).1

where /(j= 13p:n-n-,_,is the mode wave vector, X is the coupling constant, which

depends on the refractive index n(mj ) distribution inside the coupler. It is very

interesting (o observe that the G operator looks like the one of a second order

nonlinearity for a bulk material.

Using the approach of the supermodas we can describe the two fields of

different frequency supported by the strucure as

I1> -- 2-_(llln >+ Ult Ilou_> + u2_12ou¢> )

12> - 2-_(12in >+ u121 louP + LCZ212ou/> ) (22)

being Uj,k • function relaled to the transformation law of the coupler ,

containing all the informations about the structure , such as the coupling

constant, the detuning parameter, etc. ( see functions C ¢b and G a.b of the

provious paragraph ).

To follow the statistics of the field we start from the characteristic function ( the

antinormaJ one) from which it is possible to dedve all the factorial moments and

the photon counting distribution. As in the previous paragraph we suppose the

input state is a superposition of a coherent state and noise , including

squeezing.
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Due to to the hypothesisof the supermode we can write the char_edstic

function for all the fields _1 and _ , CA (_1,_), but we can follow also the

behaviour of each separate mode CA(_) [ 8 ] :

1

j.1

(noise) (squeezing) (coherent)

+ (- e1 J31 + C;Z, PII + c.c.)]}.

( interference of noise )

c.c.) +

(23)

The output characteristic function is of the same form as the input, where all the

features of the coupler am inside the B and C coefficients of the eq.(23).

Several cases of inputs states have been studied, such as coherent, two-photon

coherent , two-mode squeezed states and all factorial moments have been

calculated [8] finding as the detuning pemmetr plays a very important role on the

evolution of the file(Is : it adds addidlonal noise if it is non zero [8].

It is interesting also to follow the photon counting distribution which put into

evidence the switch properties of the structure always starting from the hypotesis

of supermode supported by the coupler. An example is shown in Rg.2, where

the datuning parameter 8 is zero, the input state in the first channel is a two

photon coherent state in the first mode , with • " small amount of

squeezing" ,and a coherent state in the other mode. The picture shows the

marginal photon number distribution in the channel 2 ; at a suitably distances the

sub-Poissonlan behaviour turns super-Poissonlan, which characterizes the field

in the squeezed vacuum state: this conttrms the switching of ligth of certain

photon statistics from one mode to the other one.
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Fig.2 - The marginal photon number distribution for 8 -0 and K -i for the

channel 2

Conclusions

The propagation of ligth in a linear directional coupler can be studied without

taking into account the dispersion of the dieiectdc constant until c.w. field

propegation is considered; of course dispersion must be taken into account in

non stationary cases andwhen the structure of the propagating device supports

different frequencies.

The ability of the coupler to switch from one channel to the other by introducing a

phase lag allows to change the squeezing directions, until the _> parameter

is of suitably values; in general a detuning different from zero reduces the switch

properties of the coupler and adds additional noise to the propagating fields. This

effect is in turn evident also on the photon counting distribution.
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Abstract

The multiphoton detectors for the strong squeesed light vacuum are considered. Te re-

suit is compared with the perturbation theory. It is shown that as the degree of squeezing is
increased the statistical factor decJeases.

Multiphoton transitions in atoms due to squeezed light were analyzed for the first time by

Yansky and Yushin [1] by using perturbation theory. On the other hand, at present parametric

generators of squeezed light are discussed [2]. They allow us to obtain high density of photons

N -,, l0 2° - 10 2x in resonator with volume V -_ lcrn a for stored energy density >_ lJ. Although

experimentally such photon densities are not reached, it is of interest to describe physical processes

in atoms interesting with intensive squeezed light. For the squeezed vacuum ]0 >0, as is known,

N =,< 0la+a[0 >,= [u[2(a+(a) - are operators of appearing and disappearing of quantum of

electromagnetic field), u = lule'÷ is squeezing parameter of Stoler unitary transformation [3, 4] of

operators a + (a) to the new variables of squeezed field b + (b):

b = #a + ua +

b + - _*a + +v'a;l_12-l_,l 2- I (1)

For the squeezing degree u _- 10x° - 10 xl the criteria for application of perturbation theory

methods are not satisfied. In fact, let us coincides two level system with nonzero average dipole

moment d in the excited state (2) (neglect for simplicity the dipole moment in the ground state (1)).

The characteristic theory parameter p appearing due to multiphoton transition on the degenerate

level (2) has the form [5]
/,= Fd/_ (2)

where F is the amplitude of the intensityof electromagneticfieldwith frequency _. Parameter

p _> q0 (q0 is the number of photons participatingin the transition)isreached for N -_ 102°-

lOZ(qo~ 3 - 5, d ~ 10D).
In the paper [6] the statistical factor X(o6) = W(°)/W(s) was calculated for the multiphoton

transition on the degenerated level of hydrogen atom for the source of gauss electromagnetic field

(G) and pure colferent source (6). It was shown that with the increase of radiation intensity the

difference in statistical properties of multiphoton excitation of atom disappear. The expression was
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received for the probability of coherent multiphoton transition in the presence of probe radiation

with intensity _" and frequency G ;_ w :

_2 -_'t j2 (3)

where q0 = (A - _)/tw, & is electron excitation energy, 7 is damping constant of excited

electron state, J_,(z) is the Bessel function of real argument. Using the formula (3) gives us

methodical advantage because it permits to realize the rearrangement of multiphoton process

with the frequency of probe radiation. Let us consider the statistical factor X(s6) - W(s)/W(5),

where W s is the transition probability under the action of squeezed light. S - matrix formalism

is used for calculating W s. Confining to the second order of perturbation theory on the probe

radiation. We have:

wS(fz) = a_l__ f__oo dtexp[iqowi-_]l'(t) (4)

where I'(t)isgeneratingfunction of transitionprobability:

/'(t) =< G(t) >.

The evolution operator G(t) satisfied the motion equation:

= _(t)= + f(O=+]a(t); G(o)= 1

= ive-_";v = da(2,_/V)m
(5)

The brackets < ..- > in (5) denote the averaging over squeezed state, d=2 in (5) is dipole moment

in electronic state (2), d_ _ 10e0ac for the level with the main quantum number n = 3(ac is the

Bohr radius, e0 is the electron charge). The solution to (5) may be presented in the following

normally ordered form [7]:

G(t) = e'*(Oe-u*(')=÷e a(=)=

B(O = -_ J,'g(_)

ACt ) -- - dr, g(n )g*(r2)
rt-

(6)

Let us use back transition to (1):

a = /_*b-_b +

a + = /_b+ - v*b

With the Backer - Hausdorff transformation

cA.eB = eA+B.e_[A,a]

[[A,B],A] = [IA,B],B]= 0
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it is easy to recieve the following expression forthe generating function/(') of quantum transition

under the action of squeezed light

= fo')(O,< _l_-_"+B',')b÷. _<_'_,'+_,,'_bl_>,

= e_{-I_l_lBl :_- _(B_._" ÷ _._.)} (7)

The value /9 characterizes the initial coherent state I/_ > . In the case of squeezed vacuum we

have P)(t) - _0')(_). The received exact expression for the generating function/'(')(t) does not

permit to make analytical calculation of the transition probability and creates certain di_culties

for numerical calculations. This expression differs from the known formulas in I7,8] obtained

in perturbation theory in two positions. Firstly, in (7) the reemitting of photons is taken into

account, secondly, anomaly correlation functions with nonequal number of operators a and a are

not discarded. The first condition for the strong field is strictly necessary. The second condition

may be used for both weak and strong fields, as will be shown below. Taking into consideration

the remarks let us simplify the common expression for the transition probability. Present formula

(6) in antinormal form and rewrite f0')(0 :

- (_1)_1_1_,.,,' < o1¢".,,+-'.1o>, +=
rn,_O

oo

+ e-I_P _ (-1)_B'_B'_ < Ola'_a+'_lO>,
re!n!

m_n

(8)

The presentationof the evolutionoperator G(t) in antinormal form is caused by simplicityof

calculations,forexample:

. < o1_+1o>.= 1+ I,_1_= I_,1== _r + 1

The lastterm in (8) isthe contributionof anomaly correlationfunctionsmad do not gives the

contributionin multi-photon processes.Thus, we leavethe firstmember in (8).We find:

_')(0 - _-I,,l'lBP.h(IBl'_l_l) (9)

where 10(x)ismodified Besselfunction.Let us considerthe photon density lu[ _, 1 corresponding

to perturbationtheory.In thincase (seeAppendix) itmay be shown that statisticalfactor(X(,s))

W(')
x(,,) = _ = (2q0-1)!! (lo)

This result coincides with the known conclusion in [1]. In Fig. l the calculation of statistical factor

X(,O in nonperturbative approach is given. Dashed llne corresponds to perturbation theory. For

comparison the same Fig. 1 gives the statistical factor X(oO. Naturally, near field intensity which

corresponds to the suppression coherent multiphoton excitation effect [10], the statistical factor

increases drastically, which creates additional possibilities for experiment.
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Appendix

Let us use the expression for the multiplication of coherent state Ic_ > And squeezed state [/_ >.

< e[,B >°= _exp {-{(lel' + I#l' + P,_'2 + v--",#2)# + #-'l°"',$}

Rewrite A,_m as:

34_

7r

= - clxe-'z"Io(x )
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(aac_ = d(Re_)d(Imol) - is the measure of integration in complex plane or. So, the generating
function may have the form:

After calculating this integral we obtain the generating function (9). Let us use the summation

formula for the Bessel function [11]:

J0(2asin,/2)= E J_(a)e""

Let write the expression for the multiphoton transition probability W(') under the action of the
squeezed light:

•._ _1_ F.,5(qo - m) __ iFq.,W(')

here we denote:

The last integral is known [11], We receive:

/_( _ 2_ ! (2k+qo)!X
"_ "" k--0

x :F2(qo+ I/2,qo+ 2k + I;qo+ I,2qo + I;-4a),

where 2F2 is the common hipergeometricalseries.At a _: I, 2F2 "_ I. We use the integral

representationforthe factorial.Itispossibleto sum up the series:

P®(#) is the Legandre polynomial.

asymptotic expression [1 l]:

We receive:

W (,) ,,_

w(') ~ (_)®
qo!'p®(_)

In the approximation Iv I _ ] (_ _ 1). Let us use the

p®(_,)= (2qo-1,!!®
qo!

(a/_2)® 1)" 1)!!
(qo!)2 (2qo- .. = W(a)(2qo -
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Emission of resonance fluorescence by an atom near the surface of a four-wave mixing phase

conjugator is considered. The dipole radiation field, regarded as a Heisenberg-operator field, is

decomposed into plane waves with the aid of Weyrs representation of the Green's function for the wave

equation. Each plane-wave component which is incident on the surface of the nonlinear medium, is

reflected as its phase-conjugate image. Summation of all reflected plane waves then yields the phase-

conjugate replica of the incident dipole radiation. This field adds to the radiation which is emitted by the

atom into the direction away from the medium. The condition under which squeezing occurs in the

emitted resonance fluorescence is investigated.

I. INTRODUCTION

Squeezing in resonance fluorescence from a two-state atom was first considered by

Walls and Zoller. 1 They derived conditions on the optical parameters for which the

emitted radiation would exhibit squeezing, and it appeared that only for a very limited

range of the parameters squeezing could occur. On the other hand, squeezed states of the

free electromagnetic field can be generated through four-wave mixing as two-photon

coherent states. 2 In this paper we consider a combination of these two processes: a two-

state atom with transition frequency too is close to the surface of a four-wave mixer in

the phase conjugation setup. The nonlinear transparent crystal is pumped by two

counterpropagating laser beams with frequency top, as shown in Fig. 1. Then, an

incident plane wave with frequency to is reflected as a wave with frequency 2top- to,

and this wave counterpropagates the incident wave. This device will be referred to as a

phase conjugator (PC). When an atom in the neighborhood of this PC emits

fluorescence, then part of this radiation will be incident on the PC, and will be reflected

as its phase-conjugate replica. The total radiation field then is the sum of regular

fluorescence, which is emitted directly into the direction of the detector, and the phase-

conjugate image of the incident field. In addition, we shall assume that the atom is
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drivenby a laserwith frequencyo)L, andthis field propagatesparallel to the surfaceof

thecrystal.

IIIiii1"1111

O)p fop

I11111111 II

Fig. 1. Geometry of a four-wave mixing phase conjugator.

II. DIPOLE RADIATION

An electric field E(_, t) has a Fourier transform, defined as

_(L co) = f_****dt e i°x Eft, t) (1)

In terms of this transform, the positive-frequency part of F_.(_,t) is defined as

E(i, t)(+) = _-_ Io d_ e-ira _.(i, co)

and the total field can then be written as

F_.(_,t) = E(r,t)' ' +H.c.

(2)

(3)
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Here,the field is a quantum operator field, and the t-dependence signifies the Heisenberg

picture.

For a (quantum) dipole 12(0, with Fourier transform l](co), which is located at

position h, the Fourier transform of its electric field is given by

4-_e ° eiklT-hl (4)

with k = co / c > 0. The subscript p indicates that this field is the particular solution for a

dipole in empty space. We shall assume that the plane z = 0 is the surface of the

medium, and that the atomic dipole position vector is given by h = h Cz, h > 0. In order

to obtain the field reflected by the PC, we expand the dipole field into plane waves.

Then for each wave its phase-conjugate image is a counterpropagating wave, multiplied

by the appropriate Fresnel coefficient, and shifted in frequency according to the rule of

Fig. 1. The decomposition of the field _p(?,co) is accomplished by using Weyrs

representation of the Green's function for the scalar wave equation:

e ikl?-_l i ** 1

I -fai = f-*-- dl -e iax+il3y+iTlz-h[, (5)

where ), is given by

I4k - 
Y:[i4oc2--+132_k 2

(6)

It isunderstood thatwc take the form for which the argument of the square root is

positive.When wc substitute(5) into(4) and carry out thc V operations,thcn the result

isthe desiredexpansion intoplane waves. The polariT-ationof the waves isdetermined

by the dipole operator, and this has to bc decomposed into surface- and plane

polarizationcomponcnts. Thc detailsof thislengthy calculationcan bc found in Rcfs. 3

and 4. Furthermore, wc have to make an asymptotic expansion in orderto findthe field

in the radiation zone. This was done with the method of stationary phase.5

Subsequently, the inverseFourier transform has to bc calculatcd,to obtain the positive-

frequency part of the ficld. The finalresultfor the radiationfield,evaluated at the

positionof a dctcctor,locatedunder an angle 0 with the normal tothe surface,is

2 e-it%'c

t)(+)= trot- (7)
4/r.EorC2
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Here, x = (h / c)cos0, coo is the atomic transition frequency, and the Heisenberg operator

l_l(t) is given by

l_(t) = _.(t) (+) -P* e-2i%t P-(t) (-) (8)

The positive-frequency part of the dipole operator is proportional to the atomic lowering

operator, and the negative-frequency part is proportional to the raising operator.

III. DRIVEN ATOM

Now assume that the atom is irradiated by a nearly-monochromatic laser beam, with

an electric field of the form

EL (t) = Eo Re eL e--i(oLt+¢(t))
(9)

The phase ¢(t) is a random process, which accounts for the laser linewidth. We take the

phase to be the independent-increment process, leading to a Lorentzian laser lineshape

with a width equal to _.. This field couples to the atomic dipole as -_.. EL in the

Hamiltonian, giving rise to stimulated transitions between the two levels. The equation

of motion for the atomic density operator G in the rotating frame, and ayeraged over the

stochastic laser phase, can readily be solved. For the matrix elements we obtain:

I n2orl+APoE(A2+rl2) (I0)

< el( l e >= f Eorl+ A(1+ Vo2)(AE+rl 2) '

1 n A(A - in) (11)
<el_lg>=- 7 no2rl+A(l+po2)(A 2+ri 2)

Here we introduced the notations: A = coL -coo, _ = k + A(1 + Po2) / 2, and f_o =1 _[, with

f_ the (complex) Rabi frequency of the transition, A the Einstein coefficient for

spontaneous decay, and Po the absolute value of the Fresnel reflection coefficient.

2

IV. DEFINITION OF SQUEEZING

The electric field of the emitted radiation is given by Eq. (7). The slowly-varying

amplitude of the resonance fluorescence, with respect to the incident field, is given by 6

E(x (t) = E(t) (+) e i(ah't+¢(t)-et) + H.c. (12)
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with E(t) (+) the projection of the field from Eq. (7) onto a fixed polarization direction.

Angle o_ can be varied in an experiment. For ot = 0 or _x = x / 2 this corresponds to the

in-phase and' out-of-phase quadrature component of the field, respectively. The

Heisenberg uncertainty relation for quadrature fields with different values of o_ is

1
AEc,(t)zME_x.(t) > _-I < lEa(t), E_.(t)] >1

g
(13)

and with Eq. (12) this becomes

(AEct(t))2(AEcc(t))2 _> <[E(t)(+),E(t)(-)] >2 sin2(o__ot,) (14)

Then we define the field Ea(t) squeezed, if

(zfJE_x(t)) 2 < I< [E(t)(+),E(t)(-)] >l , (15)

holds. From Eq. (14) it follows that when Ect(t ) is squeezed for a certain value of a,

then the quadrature component of the field which is 90 ° out of phase with this Eet(t )

must have enhanced fluctuations.

As a measure for the amount of squeezing we introduce the normalized quantity

s = (AEcx)2-I < [E(t) (+), E(t) (-) ] >1 (16)
<E 2 >

so that squeezing occurs under condition

s<0 (17)

V. CONDITION FOR SQUEEZING

The squeezing parameter s can readily be evaluated, given the solution for the atomic

density operator a. It appears that parameter ot can be chosen, such that it minimizes s,

but this choice depends in a complicated way on the phase of the atomic transition dipole

moment, the phase of the Rabi frequency, and the normal distance between the atom and

the surface of the medium. 7 For this optimum value of o_, parameter s is found to be

A(A 2 + n 2)

s= 1 (1 + po2)[n2rl + A(1 + Po2)(A 2 + 1"12)]2
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× P l,)+AI.- t
(18)

Therefore, squeezing occurs when the following condition on the optical parameters

holds:

(l + ]32 )[£--"221]+ A(i + p2)( A 2 + .112)]2 <

< A(A2 + r12)[f2o2(A+ll_ po2lrl) + All _ po4i(A2 + r12)] ,(19)

If we set Po2 = 0 in Eq. (19), then we recover the result for a free atom. 8 When we set

f2o2 = 0, which corresponds to the case without the driving laser, then it is easy to verify

that in this situation squeezing never occurs. Figure 2 shows the region were squeezing

occurs, as a function of the laser power and the phase-conjugate reflectivity, and for zero

detuning A and laser linewidth 7_.

0 0.O4 0.08

Fig. 2. Squeezing occurs when the reflectivity and the laser power are such that the

corresponding point in this plane is within the loop.
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Abstract

An historical account is given of the circumstances whereby the uncertainty relations were
introduced into physics by Heisenberg. The criticisms of QED on measurement-theoretical

grounds by Landau and Peierls are then discussed, as wen as the response to them by
Bohr and P_senfeld. Finally, some examples are given of how the new freedom to advance

radical proposals, in part the result of the revolution brought about by "uncertainty," was
implemented in dealing with the new phenomena encountered in elementary particle physics
in the 1930s.

1 Introduction

I must thank the organizers of this conference on Squeezed States and Uncertainty Relations for

the kind invitation to speak here. For some years I have studied and written on the history

of modern physics, and so I assumed that I was to speak on some topic in that field. Let me

say why a talk on the history of physics may be relevant, and why I have chosen the title as I

have. According to a Greek historian of the period just before the Christian era, Dionysius of

Halicarnassus, "History is philosophy from examples." But why should physicists care anything

about philosophy, by examples or otherwise? Because physics was and is natural philosophy, and

never more so than when we deal with uncertainty relations.

I will begin by discussing the general significance of the Heisenberg uncertainty relations, how

they entered physics, and what interpretational (i.e., philosophical) problems they were intended

to solve. I will then mention the criticisms that Lev Landau and Rudolph Peierls addressed

to the measurement problem in QED, criticisms which led Niels Bohr and Lon Rosenfeld to

attempt to justify the real existence of quantized electromagnetic fields. But I will not be so

foolhardy as ¢o review this subject in technical detail, when I am in the presence of so many

experts on quantum optics. Instead, I shall ask how the establishment of a quantum mechanics

that accepts the impossibility of exactly describing an atomic system in classical terms, influenced

the thinking of physicists as they tried to understand the phenomena of subatomic, i.e., nuclear

and subnuclear, systems. For, after the introduction of "uncertainty," physicists felt permitted to

advance hypotheses that would have been unthinkable before the quantum mechanical revolution
of 1925-26.

In particular, I shall discuss some bold developments during the 1930s in quantum field theory

and in nuclear and cosmic ray physics, three subjects whose confluence gave rise to the new field
that is now called elementary particle physics. [1]

-_.t"

119
PRECEDiI,,iL_ PAGE E_LAi_K NOT FILMED



2 The Origin of the Uncertainty Relations and of Com-

plementarity

In a recent biography of Heisenberg by Da_;id Cassidy, entitled Uncertainty, the author begins a

chapter, which is called "Certain of Uncertainty," as follows:

On March 22, 1927 Werner Heisenberg submitted a paper to the Zeitschrift fuer

Physik entitled _On the perceptual [anschaulich] content of quantum theoretical kine-
matics and mechanics." The 27-page paper, forwarded from Copenhagen, contained

Heisenberg's most famous and far-ranging achievement in physics-his formulation of

the uncertainty, or indeterminacy, principle in quantum mechanics. Together with

Bohr's complementarity principle, enunciated later that year, and Born's statisti-

cal interpretation of Schrdinger's wave function, Heisenberg's uncertainty principle

formed a fundamental component of the so-called Copenhagen interpretation of quan-

tum mechanics-an explication of the uses and limitations of the mathematical appara-

tus of quantum mechanics that fundamentally altered our understanding of nature and

our relation to it ... [This] marked the end of a profound transformation in physics

that has not been equalled since. [2]

The development of quantum mechanics by Heisenberg, Born, Jordan, Bohr, Schroedinger,

Dirac, and others in 1925-26 marked the end of a period, beginning with Planck's introduction

of the quantum of action in 1900, that was characterized by efforts, sometimes described as

"desperate, _ to apply the well-established Newtonian particle and Maxwellian wave concepts,

even if modified by Einstein's relativity and restricted by the quantum rules of Bohr-Sommerfeld.

But quantum mechanics entailed a whole new epistemology. Common-sense notions of causality,

separability, locality, visualizabilty, and measurability demanded, at the least, reinterpretation,

and perhaps utter abandonment at the quantum level. Heisenberg's uncertainty principle lay at

the very heart of all this consternation and excitement. How did it first appear?

After Born, Jordan, and Heisenberg set out the principles and methods of matrix mechanics,

Schroedinger introduced wave mechanics, and soon proved that the two very different approaches

would always lead to the same predictions. (The equivalence of wave and quantum mechanics was

independently shown by Wolfgang Pauli.) This immediately raised the old spectre of the wave-

particle paradox in a new context, as did the experiments of 1927 on electron diffraction. (However,

histories of quantum mechanics emphasize the theory, and they do not seem to take much notice

of the latter.) After 1927 it became necessary to take seriously the matter waves of Louis de

Brogiie, and to explain how the de Broglie-Schrdinger wavelike electron could be the same object

that leaves a well-defined track in a Wilson cloud chamber. Bohr and Heisenberg, then Bohr's

assistant in Copenhagen, had been very concerned about this paradox the previous year, and to
help clear up the matter, Bohr invited Schroedinger to visit them. Accordingly, Schroedinger took

the train to Copenhagen from his post in Zurich, in October 1926. The Austrian physicist still

adhered to a _realist" view of electron waves, and rejected any notion of "quantum-jumping," that

is, the transfer of energy in discrete amounts, rather than continuously.

By all accounts [4], poor Schroedinger was attacked so vigorously by the usually congenial
Bohr that he became ill and took to bed. Bohr, however, pursued him even into the sickroom,
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and would not allow him to rest. Nevertheless, Schroedinger left Copenhagen without giving up

the reality of his waves and still refused to concede the existence of quantum jumps.J4] According

to Heisenberg, the result of the visit was a continued preoccupation by Bohr and himself with the

problem of interpreting the quantum theory. As Heisenberg described it:

For allthat,we in Copenhagen feltconvinced toward the end of Schroedinger's

visitthatwe were on the righttrack,though we fullyrealizedhow difficultitwould be

to convinceeven leadingphysiciststhat they must abandon allattempts to construct

perceptualmodels of atomic processes.During the next few months the physicalin-

terpretationofquantum mechanics was the centraltheme ofallconversationsbetween

Bohr and myself... Sinceour talksoftencontinuedtilllongaftermidnight.., both of

us became utterlyexhausted and rathertense.Hence Bohr decided in February 1927

to go skiingin Norway, and Iwas quiteglad to be leftbehind in Copenhagen, where

I could think about thesehopelesslycomplicatedproblems by myself.[5]

Recallinga conversationwith Einstein,who had maintained that itwas only the theorywhich

decideswhat_we can observe,Heisenbergbegan to questionwhat we reallysee when we examine

an electrontrackin a cloud chamber:

Infact,allwe do seeinthe cloudchamber areindividualwater dropletswhich must

certainlybe much largerthan theelectron.The rightquestionshouldthereforebe: Can

quantum mechanics representthe factthat an electronfindsitselfapproximately in a

given placeand that itmoves approximately with a given velocity,and can we make

theseapproximationsso closethatthey do not causeexperimentaldi_culties?A brief

calculation..,showed thatone could indeedrepresentsuch situationsmathematically,

and thatthe approximationsaregoverned by what would laterbe calledthe uncertainty

principleof quantum mechanics.[6]

Upon Bohr's return to Copenhagen, there was "a fresh round of difficult discussions," in which

Bohr insisted that the correct solution was to be given by the principle of complementarity. "But

he soon realized," said Heisenberg, " ... that there was no serious difference, _ and that the main

problem remaining was how to convince other physicists of the new way of looking at the world.

That would not be easy. Comparing the scientist's voyage of discovery with that of Columbus,

Heisenberg said:

In science,too,itisimpossibleto open up new territoryunlessone isprepared to

leavethe safeanchorage of establisheddoctrineand run the riskof a hazardous leap

forward ... When itcomes to enteringnew territory,the very structureof scientific

thought may have to be changed, and that isfarmore than most men are prepared to

do.[7]

For a brief period, Bohr and Heisenberg had had a falling-out, since Heisenberg wished to

base his uncertainty relations entirely upon the particle viewpoint of matrix mechanics, while to

Bohr the indeterminacy was related to the necessity of including in the discussion the comple-

mentary wave aspect of matter and of radiation. However, the two had reconciled their views
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by October 1927, when Bohr gave a major addressat the FifthSolvay Congress in Brussels,es-

sentiallyrepeatinga speech that he had made a month earlierat Como, Italyat a conference

on the centenary of Alessandro Volta. At the Solvay conference,there began the famous and

long-lastingBohr-Einsteindebateson the interpretationof quantum mechanics,the forerunnerof

the Einstein-Podolsky-Rosenarguments and Bohr'sreply.[8]

3 The  Measurability of Quantum Fields

In the spring of 1929, Heisenberg gave a set of lectures on quantum theory at the University of

Chicago, a major portion of the lectures being concerned with a critique of the wave and particle

concepts in interpreting experiments on Wilson photographs, x-ray and electron diffraction, etc.

He also analyzed the spreading of wave packets, and he obtained uncertainty relations for elec-

tromagnetic fields, e.g., those holding for the simultaneous measurement of a component of the

electric and a compnent of the magnetic field, both being measured in the same volume element.

His conclusion was that: "After a critique of the wave concept has been added to that of the

particle concept all contradictions between the two disappear, provided only that due regard is

paid to the limits of applicability of the two pictures." [9]

In his Chicago lectures, Heisenberg gave three "proofs _ of the relation

he

AE=AHv >- _-'_'L, (I)

for the fieldsaveraged over a cubic cellof side 61. However, as shown laterby Bohr and

Rosenfeld,due to the presenceof a 6-functioninvolvingthe time differencein the commutator of

two fieldcomponents, the inequality(1)isambiguous. When the averagingismore appropriately

done over a space-timeregion,ratherthan space only,the right-handsideof (I) becomes zero.

[I0]Bohr and Rosenfeldconcluded: "From thisitfollowsthat the averagesofallfieldcomponents

overthe same space-timeregioncommute, and thus shouldbe exactlymeasurable,independently

ofeach other."[11]

The work of Bohr and Rosenfeld was in largepart a response to a criticismof QED, based

on measurement theory,that had been made by two very young (and ratherbrash) theorists,

namely Lev Landau and Rudolph Peierls.In 1929 Landau was visitingphysicscentersinWestern

Europe on a grant from the Soviet Union, spending some time with each of Ehrenfest,Pauli,

Heisenberg,Rutherford,Kapitza,and Born. However, forthe most parthe stayedinCopenhagen

with Bohr, who (we know from his correspondence)was at that time concerned and, rather

uncertain,about the uncertaintyrelationsfortwo electromagneticfieldcomponents. [12]Visiting

Zurich at the beginningof 1930, Landau began working on problems of QED with Peierls,who

was then Panli'sassistant.In December of 1930,Landau again visitedZurich,and he and Peierls

wrote a paper arguing that QED was essentiallymeaningless,because a fundarnentallimitation

made the measurement of electromagneticfieldsimpossiblein the context of quantum theory.

Obviously,thispaper was intended to (and did)generatea major controversy.[13]

According to Rosenfeld:
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There was indeed reason for excitement, for the point raised by Landau and Peierls

was a very fundamental one. They questioned the logical consistency of quantum elec-

trodynamics by contending that the very concept of electromagnetic field is not sus-

ceptible, in quantum theory, to any physical determination by means of measurements.
The measurement of a field component requires determinations of the momentum of

a charged test-body; and the reaction from the field radiated by the test-body in the
course of these operations would (except in trivi'al cases) lead to a limitation of the

accuracy of the field measurement, entirely at variance with the premises of the theory
... On the other hand, ... the occurrence of irregular fluctuations in the value of any

field comp.onent ... was known to be responsible for one of the divergent contributions

to the self-energy of charged particles. Landau and Peierls, somewhat illogically, tried

to bring it into relation with their alleged limitation of measurability of the field, and

this only further confused an already tangled issue. [14]

As noted above, after two years of soul-searching, and by the use (in thought experiments)

of classical test bodies, the consistency of QED as regards measurements was proven, for, again

according to Rosenfeld [15]:

So long as we treat all sources of electromagnetic fields as classical distributions of

charge and current, and only quantize the field quantities themselves, no universal scale

of space-time dimensions is fixed by the formalism. It is then consistent to disregard
the atomistic structure of the test-bodies and there is no restriction to the logically

admissable values of the charge density. [16]

Surely this is one of the few examples of a problem of physics reduced to one of mere logic. As

in much of Bohr's work on measurement theory, a great deal of effort went into assuring readers

that they need not worry further about the puzzling issues that gave rise to the paper. Abraham

Pais quotes approvingly a friend's remark on Bohr-Rosenfeld: "It is a very good paper that one

does not have to read. You just have to know it exists." [17]

4 The Legacy of Uncertainty: The Positron and the Neu-

trino Conjectured

After the probability interpretation and the (quite separate) measurement problems of non-

relativistic quantum mechanics had been "solved," or at least put in abeyance for a time, most

thoughtful physicists felt that the first order of business was to look at other fundamental issues

of the theory, especially those related to the striking new phenomena then being revealed by ex-

periment. At least one important era of research had been successfully concluded; Dirac in 1929

expressed it as follows:

The general theory of quantum mechanics is now almost complete, the imperfec-

tions that still remain being in connection with the fitting of the theory with relativity

ideas ... The underlying physical laws necessary for the mathematical theory of a

large part of physics and the whole of chemistry are thus completely known. [18]
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Dirac admitted that there remained great practical difficulty in actually solving the compli-
cated equations for atomic and molecular systems, but he failed to mention that there were also

"fundamental" questions remaining even in nonrelativistic quantum mechanics; for example, the

treatment of collective behavior like superconductivity. As the quotation above shows, the fun-

damental problem that concerned Dirac at this time was the relativistic theory of the electron

itself, and this also appeared to be implicated in at least three other problematic areas, namely:
quantum field theory, nuclear physics, and t_e cosmic rays. [19]: i

Problems associated with the theory of the e_ct-rbn had been present almost since the turn of

the century. The existence of a finite-sized concentration of electric charge appeared to require a

new stabilizing force to prevent its explosion. As a constraint on the structure, physicists (notably,

H.A. Lorentz) advanced the l_yp0thesis that all the mass of the electron was electromagnetic in
origin. In classical models, this required the (spherical) electron to have a radius

e 2

r 0 _ a--,r/_c 2 (2)

• and m, being the mass and charge of the electron, c the velocity of light, and a a dimensionless

constant of order unity, whose value depended on the assumed structure of the electron. (We shall

assume in what follows that a - 1). Letting the radius tend to zero gave the electron an infinite

self-energy, i.e., an infinite mass. There was difficulty in reconciling a finite electron with the

theory of relativity, and Lorentz had suggested that within the electron radius to, physical laws

that were different from the usual ones might apply. [20]

The problem became acute with the advent in 1925 of quantum mechanics, in which the

electron was treated as a point particle. The most obvious relativistic generalization of the

Schroedinger equation, the Kleln-Gordon equation ("the equation of m_y fathers"), did not
give the correct fine structure of thehy rdrogen spectrum, which Arnold:Sommerfeld h_ somehow

managed to obtain (without electron spin!) by using the Bohr-Sommeffeld "old" quantum theory.

The problem in quantum mechanics was that the electron spin was not properly taken into ac-

count. Dirac set out to find an equation that would give the right spin and magnetic moment to

the electron (he referred to these as "duplexity phenomena") by remedying the _incompieteness of

the previous theories lying in their disagreement with relativity, or alternatively, with the general

transformation theory of quantum mechanics." [21]

Dirac's new electron theory was spectacularly successful in treating the fine structure of hy-

drogen, Compton scattering, the electron's magnetic moment, and other important physics-but it

also gave rise to new puzzles. The chief dimculty was the presence of negative energy states, which

were meaningless in a relativistic theory, since an electron in such a state would have a negative

mass. Dirac tried to prevent electron transitions to these negative energy states by declaring that

they were all filled, and hence, by the exclusion principle, unavailable in practice. If occasionally
"holes" did occur, they would act in every way as positive electrons.

Later, the one-electron theory of Dirac, with filled v_uum States, Was Supplanted by a quantum

field theory, which was then combined with the quantum field theory of the electromagnetic field

that Dirac (and also Pascual Jordan) had pioneered in 1927. The theory of the two fields in

interaction became known as quantum electrodynamics (QED). [22] However, this completely
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relativistic theory was itself plagued by serious inconsistencies, of which the most egregious were

the so-called "divergences," namely, infinite predictions for the physical mass and charge of the

electron. These divergences arose when virtual (i.e., energy-nonconserving intermediate) states

were summed over, according to the rules of perturbation theory. The lowest approximations

did give finite results, and were in surprisingly good accord with experiment. It was, therefore,

assumed that the theory was correct at lower energies, but that it broke down above some critical

interaction energy. In a suitably modified QED, it was argued, the small value of the expansion

parameter (the dimensionless fine-structure constant, a = 1/137) would validate the perturbation
expansion.

Quantum mechanics can be expressed either in configuration space or in its complementary

energy-momentum space, the two spaces being related by the Fourier transform theorem. Thus,

a critical high energy can be related to a critical small distance. QED was working well at the

energy scale that corresponds to the Compton wavelength, but it was assumed that it would very

likely break down at the classical electron radius r0, which is 137 times smaller than the Compton

wavelength. That might account, it was thought, for the apparent contradictions to accepted laws

of physics that were puzzling physicists around 1930, especially in the higher energy nuclear and

cosmic ray phenomena, since r0 = 10-13crn is almost identical with the known range of nuclear

forces. [23] This distance was also a "natural" fundamental length at which to expect a breakdown

in the classical theory, as Lorentz had, in fact, predicted at the beginning of the century. One

of the principles guiding the development of quantum theory had been that classical physics is a

limiting case of quantum physics (Bohr's Correspondence Principle); it was not forgotten in the
1930s.

Bohr suggested just such a breakdown of known laws in his Faraday lecture to the British

Association in London in 1930, and repeated the idea at a conference in Rome in October 1931.

[24] To Dirac he wrote: "I ... believe firmly that the solution to our present troubles will not be

reached without a revision of our general ideas still deeper than that contemplated in the present

quantum mechanics." [25] Heisenberg, who adopted the same belief as Bohr, tried to make a

theory involving a minimum length, introducing a space that was a lattice-world, rather than a

continuum, a concept to which he returned several times later on in his life. As the appropriate

lattice spacing he proposed the distance h/2cMc, where M is the mass of the proton. Thus this

distance is about 2000 times smaller than the electron's Compton wave length. He motivated his

choice by the argument that distances smaller than the uncertainty inherent in a measurement

with the most massive known elementary particle, the proton (i.e., the uncertainty in position

determination by an ideal hypothetical proton microscope) were meaningless. This, then, was one
legacy of the uncertainty relations. [26]

Let us now leave aside the problems of QED and consider the conventional picture of the

structure of the nucleus around 1930. In 1930 it was believed that there were only two elementary

particles, the proton and the electron (described in an Encyclopedia Britannica article by Robert

Millikan as negative and positive electrons). These particles interacted according to the laws of

Maxwell and of quantum mechanics to produce ordinary matter. Thus all matter, atoms and their

nuclei were supposed to be electrical in nature. (The only additional fundamental interaction was

gravity-curved space-time perhaps-although if all mass were truly electromagnetic, then perhaps

gravity itself was intimately entangled with electromagnetism. (The notion of a unified field, was
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considered by Einstein, Hermann Weil, Theodor Kaluza and Oskar Klein, and others.)

One of the most immediate dimculties with the electron-proton nuclear model was //-decay.

Without the neutrino, not yet postulated by Pauli, any theory of fl-decay inevitably violated

energy and momentum conservation. These days we may find it surprising that the generation of

quantum revolutionists did not insist upon the preservation of the basic conservation laws. (Indeed,

Bohr rather preferred the idea that energy was not conserved in individual elementary processes,

but only statistically. He argued that in that case, the first and second laws of thermodynamics

would have a comparable statistical foundation. [27])

Some other difficulties of the electron-proton model were [28] :

• The symmetry character of the nuclear wave function depends upon the parity

of the atomic mass number A, not Z, as the model predicted. [The number of

fermions in the nucleus in the model is 2A-Z]; when A-Z is odd the spin and

statistics of the nucleus were given incorrectly. For example, nitrogen (Z = 7, A

- 14) was known, from the molecular band spectrum of N2, to have spin 1 and
Bose-Einstein statistics. In the e-p model, it was composed of 21 fermions-so it

should have had half-integer spin and should have obeyed Fermi-Dirac statistics.]

• No potential well is deep enough and narrow enough to confine a particle as light
as an electron to a region the size of the nucleus. [The argument for this is based

on the uncertainty principle and on the relativistic electron theory.]

• It is hard to see how to "suppress" the very large (on the nuclear scale) unpaired

magnetic moments of the electrons in the nucleus, which would conflict with the

data on the hyperfine structure of atomic spectra.

The great attraction of the electron-proton model was that it was a unified theory. Indeed, no

more unified theory has existed between that of Thales of Miletus (who is said to have believed that

everything is made of water) and modem string theory. The only problem was that the electron-

proton model could not coexist with quantum mechanics. But could it be that quantum mechanics

was the correspondence limit of some more general dynamical theory that might relinquish even

more of measurability than quantum mechanics did? For example, the observables in the new

theory might be represented by operators that were non-associative, as well as non-commutative.

Such was the thinking as the thirties began: A new physics was in the of6ng, a new revolution

in physics as one penetrated below some minimum distance. In part that thinking was correct-a

new physics was in the of Bng. But it was not to be a physics of new laws, but one of new particles!

The particles were new, but they obeyed the known laws of relativity, quantum mechanics, and

quantum field theory.
The first of the new particles, the neutrino, was proposed by Pauli in a famous letter, dated 4

December 1930 and addressed to a meeting on radioactivity in Tuebingen (via Hans Geiger and

Lise Meitner). The letter began: "Dear radioactive ladies and gentlemen." The new proposal had

probably more a conservative than a radical character. One of the suggested neutral fermions

was supposed to sit with each electron in the nucleus, thus solving the spin-statistics di$culty.

In//-decay, it would accompany the emitted electron, thus permitting the conservation of energy
and momentum. Pauli called the particle a "neutron," and indeed it was meant to accomplish
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a part of what was later done by the neutron and the neutrino together. (Of course, it still did

nothing to help the "confinement" and the hyperfine structure difficulties of the electrons in the

nucleus. It should also be noted that Pauli's neutron was a purely conjectural particle, designed

to be almost undetectable. The actual neutrino was detected only on the 1950s.)

Pauli was very uncertain about his neutron-neutrino idea, and while he told people about it

privately, he did not want the idea to be published. One of the first times it was mentioned in

print was in a report given by S.A. Goudsmit at an international conference in Rome in October

1931. [29] However, at the same meeting, Bohr discussed "Atomic stability and conservation

laws," saying about/3-decay:

If energy were conserved in these processes, it would imply that the individual

atoms of a given radioactive product were essentially different, and it would be difficult

to understand their common rate of decay. If, on the other hand, there is no energy

balance, it is possible to explain the law of decay by assuming that all nuclei of the

same element are essentially identical. This conclusion would also be in accord with

the general evidence on the nuclear statistics of non-radioactive elements, which has

revealed the essential identity of any two nuclei containing equal numbers of protons

and electrons. [30]

A proposal rather close to our present idea of the neutrino was first presented by Pauli at

the Seventh Solvay Conference in October 1933, a year and a half after the neutron had been

discovered. A few months later, Fermi made his/3-decay theory, conserving all important physical

quantities and fitting the/3- decay lifetimes very well. Nevertheless, in October 1934 at an inter-

national conference in Lond0n-Cambridge , the preferred theory presented was not Fermi's, but a

non-conserving theory proposed by Guido Beck and Kurt Sitte and openly advocated by Bohr.

[31]

5 The Legacy of Uncertainty: The Neutron and the Fermi-
Field

The annus mirabilis of elementary particle physics was the year 1932. Here is how the discov-

eries went: January, deuterium (Urey et al.); February, the neutron (Chadwick); April, the first

accelerator induced nuclear reactions (Cockroft and Walton); August, the positron (Anderson);

September, the cyclotron (Lawrence). In the same year, 1932, Heisenberg wrote a three-part paper

which introduced a neutron-proton model of the nucleus. [32]

Heisenberg's model is widely praised in nuclear physics textbooks, and some of the physicists

who were active in nuclear theory during the 1930s (e.g., Bethe) have said that it allowed them to

use quantum mechanics, because it effectively took electrons out of the nucleus. In Heisenberg's

model, nuclei are built of protons and neutrons interacting through charge-exchange forces. In

the Hamiltonian describing the nucleus, only neutron and proton space and spin coordinates

appear, and the isospin operators are introduced to change the nucleon type. Thus, if one ignores

the frequent mention and use of nuclear electrons in the Heisenberg paper, treating it as pure
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phenomenology of nuclear systematics, it is possible to argue that Heisenberg's model makes

quantum methods available to nuclear physics (although the usefulness of such a partial approach

had already been demonstrated by Gamow in his a-particle model of the nucleus).

However, there are still electrons, and they play an important role, in Heisenberg's "neutron-

proton model" of the nucleus. For example, the neutron is an electron-proton compound; the

charge that is exchanged to provide the attractive binding force is an electron; in //-decay ra-

dioactivity, the electron is emitted without a neutrino (and it is thus an energy, momentum,

and angular momentum non-conserving theory); in addition to the electrons bound in neutrons

and particles, there are other "free" nuclear electrons to account for the frequent occurrence of

interactions involving high energy radiation, e.g., Bremsstrahlung.
It is diftlcult for us to see how so radical a departure from physical norms could have been

tolerated. It is, in fact, so dit_cult that most textbook authors are embarrassed to reveal that

Heisenberg's fundamental theory violated almost all conservation laws (charge is an exception

to this rule), or that half of the Heisenberg work consisted of wrestling with this devil! In the

Hamiltonian, one sees that the neutron is treated as an electron-proton composite of spin 1/2,

obeying Fermi statistics, while the proton is an elementary fermion. The p-p interaction is pure

Coulomb; the n-n interaction is a double exchange, as in the hydrogen molecule, or more generally,

as in covalent bonding; the n-p interaction is one-electron exchange, as in the ion H +. It was only

after the success of the Fermi/_- decay theory that Heisenberg accepted the idea of the neutrino

and the "elementary" neutron, and he was one of the first to do so! [33]

Fermi's tlieory of//-decay contributed much to the solution of the dii_culties of nuclear struc-

ture theory, aside from being a good account of this special form of radioactivity. Embracing

Pauli's neutrino (so christened by Fermi after Chadwick's discovery of the proton's neutral part-

ner), the theory treated the emission of an electron-neutrino pair, coupled in a _four-vector" state,
much like the emission of a photon from an excited atom. The photon was not "in the atom" to

begin with, but it was created in the transition. Thus electrons and neutrinos need not be inside
nuclei. Advances in radiation theory using QED also showed that the large observed radiative

interactions were made by virtual electron-positron pairs in the nuclear Coulomb field- these were

the "low-mass" radiating charges of the nucleus. The radiative processes consisted of, besides

Bremsstra2alung, pair production and pair annihilation. [34]

The upshot was that it became unnecessary to postulate the existence of electrons in any

nucleus, even those that _-decay. Heisenberg enthusiastically accepted the idea of the Fermi-field,

not only for fl-decay, but also as the nuclear analog of the electromagnetic field. Thus, much as

atoms were held together by the exchange of electromagnetic quanta, the photons, nuclear forces

were to be carried by the quanta of the nuclear field, i.e., electron-neutrino pairs. The small value

of the Fermi coupling constant, fitted at low energies to the observed rates of _-decay, would be

compensated in the case of nuclear binding, where higher virtual energies were dominant, by large

matrix elements of the interaction. Indeed, these matrix elements were more than large-they were

infinite! Thus, if the integrations in calculating the matrix elements were cut off at a suitably

chosen high energy (again implying a characteristic length), it was possible to fit the required

strength of nuclear binding forces. [35]

Unfortunately for the many physicists who had been attracted by the high degree of unification

presented by the Fermi-field theory of nuclear forces, it was not possible to fit both the strength
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and the range of nuclear forces simultaneously by the choice of cutoff. That such a procedure

would fail by many orders of magnitude became clear to Heisenberg when he worked out the

details; independently, this result was found and published by two Russians, Igor Tamm and

(once again) Dmitri Iwanenko. [36]

Meanwhile, in far-off Japan, a young physicist of the next scientific generation, Hideki Yukawa,

advanced boldly to the next step. Challenging the new orthodoxy of quantum mechanics and

quantum fields, just as the previous generation had done in postulating and developing those

new dynamical systems, Yukawa decided that a new field should have a new quantum, not the

electron, not the electron-neutrino pair, but a quantum all of its own. He called this the "heavy

quantum," or the "U-quantum," of the nuclear force field, which he called the U-field.
This scientific revolution that has been called, by Yoichiro Nambu, the paradigm of modern

elementary particle theory, namely, the identification of forces and their representation by quantum

fields, having their characteristic quanta, came about this way, as Yukawa relates it:

The crucial point came to me one night in October [1934]. The nuclear force is

effective at extremely small distances, on the order of 2 × 10 -15 cm. That much I knew

already. My new insight was the realization that this distance and the mass of the

new particle that I was seeking are inversely related to each other. Why had I not

noticed that before? The next morning, I tackled the problem of the mass of the new

particle and found it to be about two hundred times that of the electron. It also had

to have the charge of plus or minus that of the electron. Such a particle had not, of

course, been found, so I asked myself, "Why not?" The answer was simple: an energy

of 100 million electron volts would be needed to create such a particle, and there was

no accelerator, at that time, with that much energy available. [37]

After presenting this paper at a physics meeting, and after submitting the article with his

theory to a journal in November 1934, Yukawa felt that his struggle with the problem of nuclear

forces had been, for the time being at least, resolved. He concluded his account of his scientific

life up to that time as follows:

I felt like a traveler who rests himself at a small tea shop at the top of a mountain

slope. At that time I was not thinking about whether there were any more mountains

ahead. [38]

I too feel that it is time now to rest, without proceeding further with this description of the

legacy of uncertainty.
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Abstract

The quantum non-demolition measurement of the cyclotron excitations of the electron
confined in a Penning trap could be obtained by measuring the resonance frequency of the

axial motion, which is coupled to the cyclotron motion through the relativistic shift of the

electron mass.

1 Introduction

The process of making a measurement on a quantum mechanical system introduces quantum

noise to that system. A quantum non-demolition measurement (QND) scheme seeks to make a

measurement of an observable by feeding all the introduced noise into a conjugate variable to

that under consideration. An ideal QND observable is one which has always the same values in

repeated series of measurements. It means that the total Hamiltonian of the system plus the

interaction with the measurement device must commute with the observable to be measured at

given times, for a stroboscopic QND, observable or at any times for a continuous QND observable

[1].
Recently there has been a number of theoretical papers [2, 3, 4, 5, 6] proposing schemes for

QND measurements and fewer experimental realizations mainly in the optical regime [7, 8, 9].

In this paper we present another scheme which could be easily verified because the system is

well known and studied. The system is an electron confined in a Penning trap [10]. Penning

traps for electrons, protons and ions have been extensively used for high precision measurements

of fundamental constants and laws of Nature, like for instance the g-factor of the electron and

the CPT invariance [11]. In this paper we will show that it could also be used to give a QND

measurement of the excitation number of the cyclotron motion.
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2 The Penning trap

A Penning trap consists, of a combination of constant magnetic field and quadrupolar electrostatic

potential in which a charged particle, for instance an electron, can be confined. It is composed

by two end-cap and one ring electrodes to which a static potential V0 is applied [11]. There

is also a homogeneous magnetic field/_0 along the symmetry axis of the trap assumed as the

z-axis. Neglecting the contribution of the spin, which we keep locked, the Hamiltonian for the

electron of charge e and rest mass mo in the trap is given by the following expression

with

1.=_(_-_) +_, (1)

,_ (_ z o)= _Bo,_Bo, (2)

vo (x'+_ )v = _ 2 _: (a)

Bo -_ 58100G

Vo _- 10V

zo -_ 3.3x10 -am

The typical experimental values are

where zo specifies the dimension of the trap. It is easy to show that in terms of rising and

lowering operators the Hamiltonian (1) becomes [10]

(4),,_-_:(o:_+_)+,o.(o.,o.+_)-_. (<_.+})

(s)

(_)

(r)

with

1 ['_c, '_ ip.)]

_r_o, _/'," ]

a, = V_z + i 2motv.o p,.

The displaced_&tron angular frequency is

(8)

with wc = [elBo/moc the bare cyclotron frequency.
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The axial angular frequency is given by

and the magnetron frequency by

I leiVoOJz _ _202

_m _ "_" \_cc/ "

The ranges of frequency in the experimental situation are:

c,]c/2_r -_ 164 GHz

w,/21r ~ 64MHz

_=/2_r ~ II kHz.

Thus each frequency belongs to a very differentband of the electromagneticfield.

(9)

(10)

3 The measurement model

The question one can riseis: how can we measure the various frequenciesof oscillation?In

order to make a measurement we need to couple the system to what Feynman calledthe 'Yestof

Universe" [12].Itturns out that the best way ofmeasuring the propertiesof the variousmotions

ofthe electronisto measure the currentinduced by the axialmotion of the electronalong the z-

axis[13].Indeed, the electricchargesinduced by the oscillatorymotion on the end-cap generate
a current which ban be measured.

The system plus the measurement device isrepresentedin Fig I. Here L is the inductance of

the measurement device and R itsresistance.The induced current dissipateson the resistorR

which isin therm_l equilibriumat temperature T _-4 K. u(t) representsa stochasticpotential
which gives the effectof thermal fluctuationsor Johnson noise.

The axialmotion plus the read-out are describedby the followingHarniltonian

eH' = 2mo 2
-boo

+ / m [(pelt)+ kCft)Q)2+ n2q2Cf )] (11)
0'

where we have considered a thermal bath with a continuous distribution of modes linearly coupled

to the electronic circuit; @ is the electric flux in the inductance L, Q is the electric charge on the

capacitor C which is the capacity of the trap; az represents the induced charge due to the axial

motion of the electron [14] with a = cm/2zo where 2z0 is the distance between the two end-caps

and a is a constant of order of unity which takes into account the curval;ure of the capacitor
surfaces.

However, if we wish to measure the properties of the cyclotron motion we need a coupling

between the axial motion and the cyclotron motion. In earlier experiments with the Penning

trap [10] this coupling was introduced by adding an inhomogeneity on the magnetic field Bo by
means of a "magnetic bottle".
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FIG. 1 The axialmotion of the electroncoupled to the read-out apparatus.

4 The Hamiltonian of the system

The precision of the measurements is, however, so high that we cannot get rid of the relativistic

corrections; then, the coupling between the two modes is also given by the relativistic shift of

the electron mass [15]. In such a case the system's Hamiltonian we have to consider is

Hr#. - HNR + H_ (12)

IINR _ (__ _,_12 4. eV (13)

x(H_ = 8m_c2 __ (14)

Finallywe can write the followingHamiltonian of the quantum system:

+ _+moc_

where we have completely neglectedthe magnetron motion which isnot coupled to othermotions.

Itisnow easilyseen that the couplingbetween the axialmotion and the cyclotronmotion isdue

to the relativisticshiftof the mass.
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5 The QND observable

Ifwe now introduceas before the coupling with the externalworld,the totalharniltonianbecomes

-tH = t_ca_a_+ h_(a_a_)_+

+y-_1 moo2
pz4 2

8_c2 + --Y-_ +

¢2 +f+ + + + dn [(p(n) + k(n)Q) _+ _q_(n)I (16)2C _-L
0

with

wc = wc 1-_x_/ -_ (17)

= 2moc2. (18)

Itisevident that a_ac = F_c is a QND observable because

[,_o,H] = o. (19)

The axialmotion of the electronrepresentsthe probe that enables us to measure the proper-

tiesof the cyclotronmotion. Indeed,the axialfrequency now depends on the cyclotronexcitation

quantum number ¢tc,which isa constant of the motion, at leastas long as we can neglect the

spontaneous emission of the cyclotronmotion. Ithas been measured [10]that the spontaneous

emission coefficientis"),_'__ I s thus,ifthe measurement isperformed in a time much shorter

than -),_'*we can neglectthe spontaneous emission of the cyclotronmotion and perform a QND

measurement of the excitationnumber _. It has also been shown [16]that % could be re-

duced by the cavitye/_ect[17].Indeed, when the characteristiclengthof the cavityof the trapis

shorterthan halfwavelength of the cyclotronmotion, the cyclotronspontaneous emission should
be inhibited.

One can also show that the anharmonidty of the axial motion is very small and can be

neglected.It turnsout that itis(w,/_¢)2 times smallerthan the anharmonicity of the cyclotron
motion. Thus the equations of motion now are:

i

= K[H, _]
i

0¢ L

_= OH
oQ oz Tc c + dn[r(n)+ k(n)Q]_(n).

0

(20)
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By making a Markov approximation in the equation of motion for the variables of the thermal

bath, we can write the following equations [18]

a

p, ffi -rno_z- _Q

L Q az _fQ + _(t)
/_= C C

(21)

where _, represents the rate at which the axial motion dissipates its energy due to the coupling

with the rest of Universe represented by the read-out apparatus. Of course, in such a case one

has to sustain the axial oscillation with an oscillating external potential V(t) tuned at the axial

frequency of the electron. In the experimental situation is always

hw= << kBT

with kB the Boltzman's constant. Then, it is possible to show [18] that the statistics of the noise

term _(t) is that of a white noise with expectations

(_(t)) ffi 0 (22)
(_(t)_(t'))ffi 2"ykBT 6it - t_).

By introducing the Fourier transforms defined by

-too
1

f(t)- -_ f dw](w)e _t (23)

we can write the linearsystem:

_(_)

,_(_)

C

_(_)

+_(_)

ffi 0

= 0
C

_Q(_) _(_1 = o
L

(24)

with

m z

mo (25)

(26)
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The determinant of the homogeneous system is

(I2
--_d 2

with

i.e., the characteristic frequency and the bandwidth of the electronic circuit respectively.

The solution of the algebraic system is easily obtained and we get:

(27)

-_-_

P(_)= Z"

(3o)

¢_(w) = (_(a_)- IP(a_)) (31)A

We see that at _ -- _, both 0 and @ are zero and the current which dissipates energy on the

resistor is only due to the induced charge on the end-caps.

6 Output statistics

The signal to be measured by the read-out is the voltage at the extremes of the resistor R which

is proportional to the induced current. The induced current is proportional to the axial velocity

of the electron through

l(t) ffi ai(t) - ap(t) (32)
m

thus the fluctuations of the measured potential are directly connected with the fluctuations of
the axial momentum of the electron:

_,(_) = i(_)R + #(_)
where _(_) takes into account the Johnson noise on the resistance R.

the output voltage is given by:

(_(_)_.,(./))-(_o,,(_))(_(,/))=

(33)

The spectraldensityof

0_(_)_(./))+ --(0_(_)_(_/))+ (_(_)_(J)))+ <_(_)_(_')).(34)
171

For simplidty we take the drivingpotentialV(t) noiselessthen we get:

A(_)A(_')

a _(_(_)_(J)) (36)
0_(_)_(_'))= LC a(_)

(_(_)_(J)) -- 2LT, kBT 6(_ + J). (37)
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FIG. 2 The two resonances of the normalized output variancesof the signalfor

we _ &,. The value of the maximum at _o-__D,isnot shown because itgoes out of

the scale.Itsvalue is80.

Thus eq. (34) becomes

with

(f,,.,,(_)f,'.,,(j))- (_'.,(_))(_.,,(j))= v.,(_)6(_,+ J)

(,==R/m),,.,;,,.,=[(a=R/m),,.,;- 2%(c,,=- ,:)] }v_,=(_)= 2L'7,kaT1-I-[((_,_ w2)(G._=_ w2)_ ==_=/mC]=+ ['y,,,.,(C,,=- _)]= "

7 Conclusions

(38)

(39)

In Fig.2 we plotV,,,=(_)/V=,¢(C_,) versus a_ for a given value of v, _ _=. We see two maxima

for _o > 0; one is for _ - _oeand the other for _o -_ _D,. As soon as we tune the electronic

frequency _, in resonance with 3,, we obtain only one maximum for v -- _D= (Fig.3). From

eq. (26)we see that the resonance frequency depends on the quantum number f_ ofthe cyclotron

motion. In Fig.4 we show the top of the curves obtained with _ - 0 and _ - I. In order to

discriminatebetween the two maxim& we need a sensitivityAtD=/to=,,,7 x 10-1° which isslightly

above the experimental limit, as long as we know, which is extimated to be Aw=/w= ... 10 -9 [10].
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FIG. 4 The amplified top of the resonance of the output variances of the signal
for r_ = 1 and f==- 0.
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Abstract

The origin of the Dicke cooperative states, ad hoc assumed for superradiance in the

system of molecules where no mutual interactions exist but all encountering the same field

of radiation, was studied by considering two harmonic oscillators driven by a common field

of radiation. A phasing operator as q_N = D(a)+PND(a), where D(a) is the displacing
operator and PN the projection operator for constant energy N for two oscillators, was
derived. The eigen states of the phasing operator (I)N are found to show a finite correlation
as for the Dicke cooperative states.

1 Introduction

The important notion put forward by Dicke [1], that molecules can not be treated as independent

when the molecules are interacting each with a common field of radiation, introduced the well

known phenomena of superradiance with the ad hoc assumption of cooperative states. This ad

hoc assumption of the Dicke's cooperative states may be a natural consequence of the fact that a

forced quantum oscillator can be described in terms of the Glauber's coherent states [2]. However,

it may be more enlightening to examine in rigorous quantum mechanics how two independent

molecules (harmonic oscillators) are getting correlated simply by having separate interactions
with a common field of radiation.

Furthermore, it may be more interesting if we restrict the interaction between the radiation

and the molecular system to be "elastic", that is, no net transfer of energy between the molecular
system and the radiation field.

Naively this restriction may correspond to an elastic light scattering from the two molecule

system and a possibility of phasing or correlation of the two molecules by this continuous scattering

of light ( more correctly a driving field of radiation in the elastic channel of interaction).
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2 Two Driven Oscillators

We consider two harmonic oscillators driven by a classical field :

H = hw(a+a, + a+a2) - xo( a+ + a, + a + + a_)E(t) (1)

where we do not have a direct coupling between the two oscillators. This system seems to be con-

sidered as trivial because a single harmonic oscillator driven by a classical field is fully understood

[3]. Since we will be extending the solutions of the single harmonic oscillator driven by a classical

field to the two oscillator problem of Eq.(1), we want to recollect here some important results of

a driven harmonic oscillator [3] :

D(_)I0/ = exp(_a+ - _'a)10) = Is) (2)
D(a)ln) = (( a+ - <;)"/v"-A-U_.)I,_) (3)

where D(a) is the displacement operator, la} coherent state of Glauber,

/?a = (izo/tt) E(t)expi_tdt, exp(aa+ - a'a) = exp(-lal_/2)exp(aa+)exp(-a a).
oo

We address now to the two oscillator problem of Eq.(1).

Suppose the two oscillators are prepared in a state IN) of total energy N = nl+n2, then we

let IN) be driven by a classical field D(a) but we restrict the driven system D(a)IN) to remain

at the same energy of iN).

The quantum mechanical matrix element corresponding to this process may be written as

(NID + (a)PN D(a)l N) (4)

where PN represents the projection operator for states of total energy N :

N

PN = _ IN - .)I-)(-I(N - nl (5)
n.=0

Alternatively we may define a new operator :

ON -- D+(a)PND(a)

and Eq.(4) can be written as
(NI'I>NIN)

This implies some particular IN) states can become ellen states of the operator iN.

(6)

(7)
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3 Evaluation of (NICNIN)

For two harmonic oscillator states of total energy N we can write

N

IN) = __a c_lN - n)in) (8)
n_--O

From eq.(3) and eq.(8) we obtain

N

n(_,)l/) = _ _. ((,1+ - ,_;)N-.(,+ - _)"/VCN - ,,)_-.')I")(,)1")(_) (91
n----0

where the suffix (1) and (2) refer to the oscillator index. Equation (5) can be rewritten as

N

F,,,= Z ((at)N-"("l)"lv'( i -n)!V_-.')1o)(2,1o)<,,(Ol(,(Ol(_)(a'_aN-'_/v/_.nl._/(N- n)!) (10)
n----0

From eqs.(6), (9) and (10) we obtain

N N

(N[_NI N) = Z IZ c_ (0[(2) (010) {a_( a+ -- _2/-*xm-N-'_'-+"ltul _ ¢11.,N-,,,)
n=O m=O

Iv_n!v_m!v/(N- n)!,v/(N - _)!}1<_)(,)1o<)(_)1_ (111

Making use of al_) = _1_,) and a'_(a + - oF)" = (a + - a*)"a" + m!(a + - _')"-"/(m - n)!
we can obtain

(NI'I, NIN)
N N

_1_ _ (o1(_)(o1(,){'/_-i_.t(a+-<_;)'-"/v/gU._('' - '_)!
n=O m=O

+(,,+ _ ,_;),,,,_7/V-_.Wv_,.w}{v/(N - m)! (a + - '_;)"-'l'v/( N - nl!(n - m)!

+(a + - c_7)N-_ ot_-"/v/(U - rn)!_/(U - n)!} la)(,) [a)O)l 2 (12)

Since we are dealing with two identical molecules and the same common field of radiation we may

set _1 = _2 = c_ and make use of the following [3],

alO)= o, (o1_)= exp(-lal2/2) (13)

N N N

Z Z Z cmc_ {exp(-2]a[i)/n[(N - n)!}{ _f_m!v/(N - m)! &,,,,
n=O m=O I=0

+ (-11N-"¢-_.,I,_l_(N-")/(m- n)!V(m- m)!
+ (-11"%/(N- m)! I,l:"/(r, - r,,)!V-_.'
+ (-1)Nlal 2N/v'-_m!v/(u - m)! }{ (V/[-N- t)iv'T]!6,.

+ (-1)N-"VTiM'(N-")/(I- r,)!-v/(N- t)!
+ (-1)"x/(N - 0! I'_1_"./(n - t)!v'7f.
+ (-1)NM:NI,/If.v/(N- t)!} (14)

to obtain

(NiCNiN)

145



Since IN) of eq.(8) can be represented by a (N+l)-dimensional state vector, CN can be defined

as a (N+I)x(N+I) matrix operator to give

N N

m=O 1=0

where we find, from eq.(14), the (l,m) matrix element of the operator _r¢ as follows:

N

0_" = y]_(exp-2lal2/n!(N- n)!){v/-_m!v/(N - rn)! &..
rt=0

+ (--1)(N-")V_W.I,_l_(N-")/(m- n)!v/(N - m)!

+ (-1)"v/(g - m)! I,_l_"/(r, - m)!V_, v

+ (--1)NIc_I2N/v/-_mV.v/(N -- m)! }{ x/(N - l)!v_[ 5,.

+ (--1)N-"v_.Vlal2CN-")/(l- n)!v/(N- l)!

+ (-1)"_/(N -l)! lal2"/(n - l)?v/-l!.

+ (--a)NlalZN/v/'_.x/(N --l)! )

(15)

(16)

We can check for the correct limiting values:

lim (}/""(a) = 8tin
a---_O

)1lim (NICNIN) = _ Or,, _mV.v/(N- rn)!/_n!v/(N- n)! _m,_
at ---*0 n=0 m=0

N

n=O

4 CN As Phasing Operator

In order to probe into the physical meaning of the operator (I)N we illustrate for the simplest

nontrivial case of N = nl + n2 = 1.

The CN operator is then given in the form

+oo+o,)
(I)N:I __-- (I)] 0 (I)] 1 (17)

and the matrix elements are obtained from eq.(16) as follows:

¢_ = +_' = exp(-21_12)(4- 81,_12+ Sl,_l4)
¢o, = +Io = exp(_2lal2)(_81al_+ 81'_1')
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Diagonalizing the matrix of eq.(17) gives the eigen values A1 and A2 as

AI = _oo+ q)ol,

A2 = _oo__oa

The corresponding eigen states IA1) and IA2) are obtained as follows:

(18)

1

[A,) = _(10)(,)[1)(2) + [1)0)10)(2)) ,

l

IA2) = _([0)(,)11)(2)- ]1)(1)[0)(2)) (19)

Correlation or phasing of two oscillators can be measured by a value of < xl • x2 > where xl and

x2 are the two harmonic oscillator coordinates of displacement [4].
We can see easily

(0](2)(ll(1)xa" xzll)(,)10)(2) -- (010)(11(2)xl. x ll)( )10)0) -- 0

for the case of a = O, but for our eigen states of (I)N we obtain

(Allzl. z21 l) =
1

= _x o {(0](2)(l](1)a+au]0)0)]l)(2 ) + (1](2)(0[(1)ala2+ll)(u[0)(2)}

= x02

We can thus see that the two noninteracting molecules in the common driving field of radiation

find themselves as correlated. The correlated eigen states of the concerning Hamiltonian of eq.(1)

can be found as the eigen states of the phasing operator _N as introduced in eq.(6).

The existence of the correlated eigen states of the two oscillator Hamiltonian thus justifies

the ad hoc assumption of the Dicke cooperative states for independent molecules all in the same
common field of radiation.
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It is shorn chat the usual one and eve-node squaszin$ are based on

reducible representations of the SU(1,1) sroup, Censral£ssd squeez£n$ is
introduced with the use of different SU(1,1) rotations on each irreducible

sector. Tvo-mode squeeztn8 entan&les the modes and information theory
methods are used to study this encanKlsmenc. The encan|lemenc of three nodes
is also studied vlch the use of the serene subadditivicy property of the

entropy.

In a recent paper [1] we have explained that :vo-mode squeez£ns is based

on reducible representations of the SU(I,1). The varioum irreducible sectors
have been identified and different SU(I,i) rotations have been perfornod on

each of them, $onoralizin| in this way the concept of squsezin|. In this

paper we extend chess ideas. In section 2 we consider one node squaszinS and

prove that £t is also based on reducible representations of SU(1,1). The eve
irreducible sectors are identified and different SU(1,1) roeations are

applied on each of them, leneralisins in this way the concept of one-mode
squeezin|. In secClon 3 the t_o'node case is considered in connection wich
bach the SU(1,1) and SU(2) Stoups. Some of :he results presented in [1] are

briefly reviewed here. Each irreducible sector of the SU(1,1) (or SU(2))

Stoup is squeezed independently 'and the Seneralissd squeezed scats is
characterised by an infinite number of squoezin$ parameters. Hamiltonians
which will lead to this t_rpe of squeezins, are presented.

Two-node squeezinJ entan$1as the :re nodes. Especially our |snsralised

squeszins sheen|los them in a very complicated way. One approach co study
this entan$1sment is by usins information cheery nechode. In section _ we
use the subaddivity and scrams subadditivit7 properties of the entropy to

define quantities which express the entanSloment of eve and three quantum

system. EslUmelally £nterascin$ are the results for three entan$1ed systems,
because ahoy indicate chat this case Ls a non.trivial |snsralisacion of the
eve system entanglement. The latter case has of course boon discussed since

the beSLnnin& of quantum mechanics; but it Is only recently chat some
preliminary discussion of the former case has appeared [2]. Our results
based on information theory methods sussest that the three system

entan$1sment is a very incerast£n$ problem chat requires fur=her study.

2. Gonerallsed one-node saueezlne

We consider the harmonic oscillator Hilber: space H and express it as

(l)
H - Ho + H1

vhere H is the subspace spanned by the even number ei6enscaces and H1 the

subspac_ spanned by the odd number elKenstaces. We also consider the

corrsspondin$ projection operators co these subspaces:
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is

" " _ I 2"><2. Jo
N-O

z

U

x 1 " _
N-O

I 2N + I > < 2N + i J

fo + fl " 1

The one "ode squeezing operator8 are defined as:

1 1

S (r, #, ;) - exp [- - r e "llk - - r • II K ] exp (l_K)
2 + 2 " o

(2)

1 + 1 1 +2 1 2
" -- a a + -- • K " --'a " K " - aK 0 , + ,

2 4 2 - 2

[% K±] - ± x± ; ix , K+] - 2 z° (3)
ql

m

K2 Ks 2 1" " 2 (K+ K + K K+) - k(k-1) - - L
- - 16

They form • reducible representation of SU(1,1). Here specifically,
they fom the k - 1/4 irreducible representation when they act on H only"

and the k - 3/4 lrreduc£ble representation when they act on H1 only°[3].
gelatad co ch£s la the fact chat:

IS(r, l, ;), eo] . IS(r, l, _), tl] - 0 (4)

The followtn$ unitary operator squeezes independently each £rreduclble
soccer:

U(r° l° A° ; rl ll 11) " S(ro' Is' As) "o + S(tl' 11' AI) x 1 (5)

This £s nora general than the operator of •qu.(3). Only Ln the epecLal
CASe

r° " rl ; Io " I1 ; _o " A1 (6)

the operator (5) reduces to the operator (3). Accir_ with the operator (5)
on • coherent state i A >, ve get a generalLsed squeezed stats:

J A • to _o ll _1 >" U(ro Io _o ' ll J A >, r o ; r I • r I _1 )

" S(to' t o' Ao ) wo i A • + S(r 1, I 1, _1) fl i A • (7)

In the specLal case of equ.(6) ChLs reduces Co the usual squeezed
states.
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In systems described by the Hamlltonlan

+ (_o e+2 + (_1 _1 *a2)H - _'e • + + _o*a 2) a +2
fo + fl (8)

ordinary-coherent states will evolve into the generalised squeezed states

(7). In the special case _o " #1 the Hamiltonian (8) reduces to the
Haalltonlen

+ a2 +2H-_aa+_ +#a (9)

which is associated to the ueuel squeezed states,

3. GeneraZlsed Cvo.mod_ saueezf.e

The appropriate iroup for the study of eve-Rode quadratic Hamllconiens

is Sp(4,R) [_]. In this paper we shall only consider its subgroups $U(1,1)
and $U(2) In connection with the H_ilconians:

t ÷ ÷

H1 " _1 el + al + _2 •2 + a2 + # 81 a2 + # a 1 a 2 (10)

H2 " _1 •1 + al + w2 •2 + a2 + # 81 a2+ + # a I a 2 (11)

correspondinlly. Both of these HamiltonlL, ts have been used extet_ively in
quantum optics problems [5].

Scarcinl with the $U(1,1) I;roup ve exprilj the eve-mode Hllberc space as

kllm_l

where Hk is the subspace spanned by the number ei|enscatee

Hk" ( J N+k, N> ; No_x (o, - k) ..... o)

go also introduce the correepond/n 8 projection operators

%" J

The eve-mode SU(1,1) nqueezin$ operators are defined as

(13)

(14)

I 1

S(r, l, _) - exp [ - - r • "it K+ + - r e II K.] exp (L _ K )
2 2 o

1

K+ - •1 + a2+ ,' K. " •1 a2' Ko "-2 (el+ al + a2+ a2 + 1)

K2 1 1

" -4 (81+ al a2+ a2)2 " -4 (15)
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They form • reducible representacton Of SU(1,1). More speci£ically,
when they ace on the space Mk only, they form the

.1+ Ikl
2

irreducible representation of SU(1,1) which belonss in the discrete ser_es.
Note also chac

[SCr, #, X), wk] - 0 (17)

The follovlns unlcary operator squeezes Independently each irreducible

sac(or:

U((rk' *k' ;k }) " _ s(rk' *k' xk) xk (18)

In the special case

-r -r -r 1 - .-.
° " " 3,- O

cLg)
... - e i - dPo - e1 ....

"'" " )'-I " _o " )'1 ....

the operators (18) reduce co the operators (15).

AcCin S vich the operators (18) on eve.mode coherent states we goc

$oneralisod eve-node squeezed states:

u (It k 'k _k )) I _., *2 • " _ S¢rk' 'k' %) % I A1, *2 • ¢20)
k

In the special case 05 equ. (19) they reduce co the usual ewe-mode
squeezed states, In sysceas described by the lhutllconlan

H- "1 "1 + "1 + "2 a2+ a2 + _k (_1_ al a2 + _k* at + a2+)'k (21)

ordirutry coherent acacia v111 evolve trice the scscoe o5 oquº(20). In the
special cue chic 811 the e_, ere equal co each ocher, the 14aailcontsn (21)
reduces4_chrlimtllconisn _10).

In the case o5 the SU(2) Stoup vo express the eve-nods HLlborc space as

HA x HB - j_ 142j+1

J - 0, q, 1 .....

vhero H2j+I is the subspace spanned by the number ol$onscacos

H2j+I. { J N, 2J-N> ; N-0 ..... (2J) }

We also Introduce the correspondLn| proJecclon operators

(22)

(23)
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-!JO J N, 2J-W> < N, 2J'NJ_2J+l N

The SU(2) squeezing operators are defined as:

1 -10 1 eL0
T (r, 0, _) - exp [ - - r • J+ + - r J ] exp (IAJ o)

2 2 -

1

J+ " al+ a2 ; J " al a2+ ; Jo " - (al+ al " a2+ a2)
- 2

1
1 +

j2 . [ _ (aI al + a2+ a2)] [ - (al+ aI + a2+ a2 + l)]
2 2

(2_)

(25)

They form a reducible representation of $U(2). When they arc on the
space H... only, they form the J irreducible representation of SU(2). Note
also th| T L

[T (r, 0, _), -2j+1] - 0 (26)

The following unicary operator performs SU(2) rotations independently on each
irreducible sector:

U ((r2J+l, #2J+l' A2J+I)) " _ T(r2j+l' #2J+l' 12J+l) w2J+l (27)

In ohm special case:

_1 _2 ""

The operators (27) reduce to the operators (25).

operators (27) on rye-mode coherent states we get the states:

u #2j+l'  2j÷l I A1, A2 • "

T (r2j+l, '2J+l' X2J+l) "2J+l J AI' A2 •
J

They viii be formed during the time evolution of ordinary coherent
scares in systems described by the Hamiltonian:

(28)

Actin| with the

(29)

H - _l at + al + e2 a2 + a2 + _ _2J+l (#2J+l al a2 + + #2J+l el + a2) (30)

In the special case thac all the #_.I are equal Co each other, the
Hamilcon£an (30) reduces Co the Hd_leonian (11).

The uncertainty properties of the states (20), (29) have been studied in
[1]. The results presented chore shov that both o! those states exhibit
squeez£n$.
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4. Information chaser aDoroach Co auancum entan!Immen r

In this section we use quantum information theory methods for the study
of two- and three-mode correlated systems. Let p be a two-mode density

matrix and <_1>, <N_> the average number of photons in the two modes. As in
our previous work [_] we define the information contained In this density
matrix as

th ch
I - Smax Sip) - S[Pl (<NI>) x P2 (<I_2>)] - Sip)

S(p) - - Tr p _n

ch <Ni>Ni

Pi (<Ni>) "
<Ni>)l+N i I Ni > < Ni J ; i I, 2 (31)(I +

Follovin I the negencropy ideas of Brillouin we subtract here the entropy of
the system from the maximum entropy c_at the system could have had, vlth the
averase number of ph0cons lathe cvomodes-been=kepcfixed, The .uLximua

entropy iS=equai co the entropy of a thermal system vich an avera|e number of

photons In the two nodes <NI>, <);2 >. Takinj parclal crates, ve define:

Pi A Tr2 p ; P2 " Trl p (32)

and express the Inforuaclon (31) as [7, 8]

i - I1 + 12 + I12

th
Ii - s [Pl (<3i>)] " s(Pl)

I12 - S(Pl ) + S(p 2) - S(p) (33)

I. is chainformacion lnehe mode i; and_Zlo is the information in the
corral|clan between _ha t_o nodes. The subaddicfQlcy propert'ye_ures chac

the I17 is non-negative. Numerical evaluation of the quantities 11, I2, I12
for sigeral examples has been presented in [1].

A non-crlv181 extension of chess ideas occurs in the case of throe

correiaced nodes. The Infornaclon in this case is given by

I - s (_ch) . s(#)

oth-:_l_ (<BI>) x O2 _h (<32>) x p3 ch (<33 >) (3_)

_e define

_lJ " Trk p ' _i " Trjk #

I i - S[_Ich (<31>)] - $(_i)

Iij - S(_ i) + $(_i) - S(Plj)

I_ is the lnforwaCion in the mode I.
c6rrelacion'becveen the modes (i,j)
in the three-mode system as:

(35)

_j Is the information in the
then express the total information

I - I 1 + 12 + 13 + I12 + I23 + I(12 ; 23) (36)
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where

I(12 ; 21) - S(Pl2 ) + S(P23 ) . S(p) . S(P2) (37)

The stron 8 subadditivity property [9] ensures that the quantity I(12 ; 23) is
non-noKecive. For symmetry reasons, somebody mlsht be tempted to split
I(12 ; 23) as:

I(12 ; 23) - I13 + A (38)

so that he can express the information I of equ.(36), as the sum of the three
infoL_ations in the three modes; the three infontationJ in the correlated

pairs of modes; and the quantity A characterisin 8 the correlation between
ell modes. However the quantl_ A is not necessarily positive and its
interpretation as infor_ttion would be incorrect. Therefore, the information
I of a three-mode system is the sum of the three lnfontations in the three
modes; the _o correlation lnfornations in ewe of the pairs; and the

information I(12 ; 23) of equ.(37) which describes new types of correlations
In the three-mode systems. This result can be used as a "suide- of how to

study the entan$1emont of throe systems. It is soon that three system
entanglement is a non-trivial jenerolisation of _vo system entanslenent .

In nany cases the co_opt of squeozir_ is based on reducible

representations of the SU(1,1) (or SU(2)) Stoup. In these cases different

SU(1,1) (or SU(2)) rotations on each irreducible sector lead co Sensralised
squeezing. These ideas have been applied to both one-node and _vo-node
squsezin S.

Two-mode squeezin 8 correlates the _wo-nodee and lnfornacion cheery
methods have been used for the study of chess correlations. The

subadditiviCy and strong 8ubadditivl_ properties of the entropy have been

used for the study of _wo and three correlated syltum, correspondinsly" It
has been shown chat _he entanslenent of three systems is a non-trivial

generalisation of the entanslenent of _wo system. Further work is required
in this direction.
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Abstract

The completeness properties of the Schr6dinger minimum uncertainty states (SMUS)
and of some of their subsets axe considered. The invaxiant measures and the resolution

unity measures for the set of SMUS axe constructed and the representation of squeezing and
correlating operator and SMUS as superpositions of Glauber coherent states on the real line
is elucidated.

1 Introduction

In the present paper we consider the completeness properties of the set (and some subsets) of the

states, which minimize the SchrSdinger-Robertson uncertainty relation [1]

_ _>I
o', o', _ _(1 + 4c_), (1)

where crq and _p axe the dispersions of the quadrature operators Q and P ([Q, P] = i ),
i

a, = (X 2) - (X) 2, X = Q, P,

end c is their covaxiation,

c = (1/2)(QP + PQ) - (Q><P).

We call such states SchrSdinger minimum uncertainty states (SMUS). In fact they were intro-

duced by Dodonov, Khurmyshev and Man'ko [2] and studed as correlated states (see Re£ [3]

and references therein). When the covaxiation is zero, c = 0, one gets the Heizenberg minimum
uncertainty states (HMUS) and when in addition to this the dispersions axe equal, _rq = _, the

corresponding MUS axe the Glauber coherent states (CS) [4].

From the group-theoretical point of view SMUS axe equivalent [5] to the group-related CS [6]

with maximal symmetry [7], the group in this case being the semidirect product H,._ SU(1,1)

(see also [8]) of the Heizenberg-Weyl group H,. and the quasiunitaxy group SU(1, 1) .._ Sp(2, R).

Up to a phase factor they coinside [5] with the Stoler states [9], known also as squeezed states

or two-photon CS [10] widely used in quantum optics (see for exaxnple the review papers [11, 12]

and references therein). The stable time-evolution of SMUS, which is important for the squeezing

e_ad correlating processes, is considered in [5]. In other notations it was in fact obtained in [13].
SMUS axe continuous set of states, which is clear from the definition. For such sets of states

the completeness properties (in the Hilbert space _) axe very important for the applications in
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mathematicaland theoretical physics. In the weak sense [6] the completeness of a continuous

set of states Ix) is defined as a dense subset in 74, while in the strong sense it is defined as the

(integral) resolution of the unity operator

x- /I )(xl (2)

where d_(x) is a positive measure in the label space X 9 z. Such complete set of states Ix) is called

(in general sense) CS [6]. The group-related CS are always complete in the weak sense, while the

resolution of unity has to be proved in every case. A sufficient conditions is the square integrability

of the corresponding representation of the group involved against the invariant measure.

In this paper we consider the resolution of unity (2) for the set of SMUS and for some of
their subsets. First we construct the corresponding invariant measures and check the square

integrability against them. Since the latter failed to be wdid we look and find the noninvariant

measures, which provide the resolution (2). We call such measures the resolution unity measures

(RUM). In other notations (i.e. in no relation to SMUS) for the H,_ _ SU(I, I)-C$ RUM were

considered in [8]_
According to the definition of CS they are always over complete (at least in the weak sense

[6]) in 74 family of states. Then it worth looking for a more simple subset of CS which is also

complete in 74 or in some subspace (or even subset) of 74. We consider this problem in the last

section. In particular we construct the squeezing and correlating operators as integral along the

real line of projectors on the Glauber CS and reproduce the result of JLnszky and Vinogradov [14]

for the superpositions of Glauber CS along the real axis.

2 The Invariant Measures and RUM for SMUS

Up to a phase factor SMUS can be written in the form [5] of the H_D SU(1, 1)-CS with maximal

symmetry

+ _at IO),

[ 1 (3)= (1-1 12) /4exp 2 1-1 12 J'

where at = (1/v/_)(@ - iP) is the boson creation operator, [a, at] :- 1, rl is arbitrary complex

number and _ belongs to the unit disk, [_[ _< 1. One also has the relation to the Stoler states

[z; _) (i.e. the squeezed states or the two-photon CS)

,_;vl) -- lz;a) =exp [l (zat'- _a')] 'a)

where Is) is the Glauher CS and

_ = ei_tanh Izl, rj=a'-_', a'=acoshlzl+'6e_6sinhlz].

The second momenta _q, ap and c are expressed in terms of _ in [5, 15] and in terms of z in [8].
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TheH_D SU(1, 1)-CS (3) are related to the representation T(g), generated by the semidirect
sum algebra h_ su(1, 1) (known also as the one mode two-photon algebra)

h_ = lin. env. {1,a, at},

{ 1_ 1 f_ 1 f $}su(1,1) lin. env. K_=_a, K+f_(a ), Ko=_(a a+ ) ;

T(g) = exp(TK+ - VK_ + iwKo) exp(it + aat - &a)

--- T('7,w)T(t,a), g=g(7,w;t,a). (4)

In terms of the above group parameters the invariant measure is a product of the SU(1, I)- and
the H_-invariant measures,

dp(7,w;t,a) = sinh2A 1 2
A2 d_7daw d2a dr, A2= 417[2- _._ • (5)

But the representation (4) is not square integrable against the invariant measure (5) on the group

manifold. Then we have to look for the invariant measure d_(_; 9) on the factor space G/K _ (_; T/),
which is a label space for the SMUS [_; r/), Eq. (3),

d2-y d_

du(f;_) : (1 - 1_12)3" (6)

This measure is not a product of the SU(1,1)-invariant measure on the label space K)1 D _ and

the H_-invariant measure d_T/ on the label space ¢ _ T/. And we still do not have the square

integrability, i.e. the right hand side of the Eq. (2) with Ix) = ]_; 17/and d#(x) = dp(_; 77)goes to
infinity.

Let us now look for the noninvariant resolution unity measure (RUM). The noninvariant RUM

if exists is highly nonunique. It is clear from the definition of RUM as a measure providing the
resolution (2), that if dp(z) is a RUM for a group-related CS [z) then

du,(=) = du(g. _), (T)

where g • z denotes the action of the group element on x E X, is a set of RUM. It is an open
problem whether the noninvariant RUM exists simultaneously with the invariant one. For the

Glauber CS la / the invariant measure d2a is the only RUM. In our case of SMUS the simplest
noninvariant RUM reads (in Stoler parameters)

1 --z_ ¢2

d_o(z,a) = _e a-zd2a,

which can be expressed in terms of _, 77by means of the relations obtained above.

measures d#o(_; y), Eq. (7), are obtained by means of the group action

(_._--__,_-_ +o)g" (_;_) = k_- o_ u-_ '

where g = g('t,w; t,a) and u, v are the new SU(1, 1) parameters,

iw _ A2 1u = cosh h - _-_ sinh A, v = - sinh A, = 4171= - _w .

(8)

The other

(9)
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As we have already noted the RUM for the H,_) SU(1,1)-CS were constructed in Ref. [8].

With the Note added in proof in [8] their measure should read (however we were not able to obtain

the resolution of unity by means of this measure)

22r(2)exp [Re(_2)/(1- 1_12)]da_d_.
dr (_;7) = (1- 1_12)3/2

3 Completeness of Some Subsets of SMUS

The two parameters subset [_o;7) of SMUS with fixed _0 (i.e. with fixed second momenta of the

qua_irature operators) forms a strongly complete system in 74

¢ 1 (1 -1_012) -' daT, (10)

which in Stoler parameters is known [16] and corresponds to the genera_zed Glauber CS (i.e.

to the H_-CS with the squeezed and correlated vacuum as the initial vector ). Such resolution

of unity was used in [16] for construction of new quasi probabilities "based on squeezed state".
Note that the RUM in (10) is H_-invariant and is obtained (up to a constant factor) from the

H,_) SU(1, 1)-invariant measure (6) by fixing _ = _0. If we fix the other complex parameter

7 = 7o we get the subset {J_;_o/} (this is SU(1, 1)-CS with Glauber CS as initial ve_or) which
however is not complete even in the weak sense in 7-I since the SU(1,1) representation involved

here is not irreducible. If we put 70 = 0 we obtain the complete (but only in the weak sense)

set of even SU(1,1)-CS I_; +) [15] in the subspace 74+ of even functions. The state I_; +) is in

fact squeezed (and/or correlated) vacuum. In the subspace 74- of odd states we have the strongly

complete system of the odd SU(1,1)-CS I_;-) [15],

l{;-) = (1 -l_IZ)Z/4exp[_(at)2/2]11),

D 1 d2_,dv(_)l_;-)(-;_1 = 1_, d,.,(_)-- 2= (1 - 1¢12)2'

(11)

(12)

where I1) is the first exited state and du(_) is the SU(1, 1)-invariant measure. The state ]_; +) is

the squeezed vacuum, and I_;-/is the squeezed one-photon state. Note that I_; -/is not SMUS.

The second momenta a_, a_ and c in this state obey the equality

2 2 1 (1+4c :+8) (13)

i.e. [_;-) is another type of MUS. As in the case of squeezed ground state it is correlated when

Im _ _ 0 and aq _ 0 when _ --* 1. In the subspaces 74± there are also strongly complete sets of
even and odd CS la)i [17], which are linear combinations of two Glauber CS la) and I - a).

Let us consider the subset of SMUS I_;17) with fixed _ = _o and Imr/= 72,0, that is with fixed

second momenta aq = aq,0 - a0 and c = co and fixed first momentum (P) =- p = po. This is

the one parameter set of states ]q;_0,p0), q "" Rer/E IR. It is the set of CS for the commutative

subgroup generated by the unit operator and by P. It is also the subset of general Glauber CS
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alongthe real axis, the initial vector being the squeezed and correlated vacuum, displaced by

p0. The unitary representations of the group of translations (by q along the real line) are highly

reducible thereby the set {Jq; _o, p0) } is not complete in _f even in the weak sense. Let for simplicity
po = 0 and consider the operators

B(_o) =/]a jq;_o)(_0; ql dq. (14)

B(_0) is an unbounded (Hermitean) operator, well defined in the Hilbert space 7_ with the following

property: it leaves the set of SMUS stable, that is the states [¢') = B(_o)J¢) is SMUS if I¢)

is. Moreover if Iq) is the Glauber CS on the real line then (one can calculate that) B(_0)Jq)

is an arbitrarily squeezed and correlated state. Thus B(_0) is an (one dimensional) integral

representation of the squeezing and correlating operator. One can also get an arbitrary SMUS by
means of a fixed operator

B = Ira Jq)(qJdq = B(_o = 0),

but acting on different states ]¢). The obtained state BI¢) is clearly a superposition of the CS

Iq) with the weights ¢(q) = (ql¢). If (but not only if) ]¢) is SMUS then BI¢) is also SMUS with

arbitrary c and a_ > 1. The representation of squeezed states as superpositions of Glauber CS on

the real line was recently considered by Janszky and Vinogradov [14] in the form f]a ]q)G(q)dq,
G(q) being the Gaussian weight function.
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Abstract

A pair of correlated photons generated from parametric down conversion was sent to two

independent Michelson interferometers. Second order interference were studied by means
of a coincidence measurement between the outputs of two interferometers. The reported

experiment and analysis studied this second order interference phenomena from the point of
view of Einstein-Podolsky-Rosen paradox. The experiment was done in two steps. The first

step of the experiment used 50 psec and 3 nsec coincidence time window simultaneously. The
50 psec window was able to distinguish a 1.5 cm optical path difference in the interferometers.

The interference visibility was measured to be 38% and 21% for 50 psec time window and
22% and 7% for 3 nsec time window, when the optical path difference of the interferometers

were 2 cm and 4 cm, respectively. By comparing the visibilities between these two windows,
the experiment showed the non-classical effect which resulted from an E.P.R. state. The

second step of the experiment used a 20 psec coincidence time window, which was able to
distinguish a 6 mm optical path difference in the interferometers. The interference visibilities

were measured to be 59% for an optical path difference of 7 ram. This is the first observation

of visibility greater than 50% for a two interferometer E.P.R. experiment which demonstrates
nonclassical correlation of space-time variables.

1 Introduction

Two photon interferometry has drawn a great deal of attention recently because it provides a tool

to study the foundation of quantum mechanics sad the fundamental properties of the electro-

magnetic field. A two photon interference experiment using two independent interferometers was

proposed by J. D. Franson[1] which constituted a new type of E.P.R. experiment for space-time

variables. Since then several experiments have reported the second order (second order in inten-

sity, fourth order in field) interference effect.J2]-[5] These experiments have shown visibility less

than 50% when the optical path difference of the interferometers are greater than the coherence
length of the optical beam. The reason that the visibilities are less than 50% is due to the use

of large coincidence time windows in these experiments. It has been pointed out that classical

models predict a maximum of 50% visibility for these experiments.J2][3][6] Quantum theory pre-
dicts visibility greater than 50% for certain entangled states we called E.P.R. state. To make the
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typeof argument presentedby E.P.R.[7]thisstatemust be produced. For thisexperiment a short

coincidencetime window isneeded to prepare an E.P.ILstate.

Recently,a largeset of measurements for a two photon interferenceexperiment have been

carriedout in our laboratory.In thisexperiment parametric down conversionisused to produce

thecorrelatedtwo photons. The intensityofthe down convertedradiationused forthe experiment

issu_cientlylow so that a two photon stateisproduced such that each beam containat most

one photon. Each photon ispassed through an independent Michelson interferometerand isthen

detectedby a coincidencecounter.Ifthe interferometersaresetso thatthe opticalpath differences

are longerthan the coherencelengthof the fields,thereisno firstorderinterference(firstorderin

intensity,second orderin field).However, thereissecondorder interferenceiftheopticalpaths of

the two interferometersare approximatelyequal.The interferencearisesfrom the frequencyand

wave number correlation in a given pair generated by the phase mxtching conditions, _ + _ - _p

and kl + k2 -- kp, where wp and k_ are the pump frequency and wave number. The second order
interference is measured by studying the visibility of the interference fringes that axe generated

by varying the optical path difference of the interferometers. The visibility of the interference
can be estimated by classical and quantum models. The classical model never predicts visibility

greater than 50_. However, for idealized condition, the quantum mode] predicts a I00_ visibility
when the coincidence time window is shorter than the optical path difference. In this case, the

registration time of one photon traversing the long path and the other following the short path of
the interferometers is outside the coincidence window and will not be registered by the coincidence

counter. As shMl be explained below, the use of a short coincidence time window is equivalent to

preparing a type of entangled state discussed in the original E.P.P_ paper.[7]

We report in this paper an experiment which for the first time shows second order interference

visibility greater than 50% for two independent interferometers. We also show in detail how the

E.P.R. state is generated for the coincidence counting experiment.

2 E.P.R. Paradox and E.P.R. State

The E.P.ILparadox was based on the argument thatnon-commuting observablescan have simul-

taneous reality.[7]E.P.IL firstgave theircriterion:if,without in any way disturbingthe system,

we can predictwith certainty(i.e.,with probabilityequaltounity)the valueofa physicalquantity,

then thereexistsan element ofrealitycorrespondingto thisphysicalquantity.The gedankan ex-

periment discussedby Einstein,Podolsky and Rosen was modified by Bohm in1951.[8]In Bohm's

version a singlet state I _) of two spin _ particles is produced by some source,

I i [ i (I)

where IfiJ_)quantum mechanicallydescribea stateinwhich particlej has spin"up" or "down"

alongthe directionft.For thisstate,ifthe spinofparticleI ismeasured along the z -axis,particle

2 willbe found to have itsspin oppositelyalignedalong the z-axiswith unitprobability.Thus,

the z-component of the spinof particle2 can be measured without inany way disturbingitand

so isan element of realityaccordingto the E.P.R.criterion.Itissimilarlyfound that the other

components of the spinof particle2 can be determined as elements of physicalrealityand must

existwithout consideringwhich component isbeing measured. Of course,thispoint of view is
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different from that of quantum mechanics. Philosophical arguments aside, the predictability of
the spin of particle 2 with 100% certainty _fter measuring the spin of particle 1 is a mathematical

consequence of quantum theory applied to state of the form (1). States of the type (l) a_e a
particular type of entangled state,[9][10] which will be called E.P.R. state. It is the E.P.R. state

which leading to the nonclassical interference behavior of the two particle system. It is the E.P.R.

state has no classicaJ analog.

The existence of polarization E.P.R. states have been experimentally demonstrated.[11]-[14]
The new type of E.P.R. experiment considers the measurement of position and time correlation

in contrast to the historical measurement of polarization correlation. The key element is to seek

an E.P.R. state for space and time variables. This is closer to the originM E.P.R. gedankan

experiment for the determination of position and momentum of a photon. In this case, see FIG. 1,
the two-photon E.P.R. state sought is of the form,

•spR= _(LI,L2)+ _(S_,S2) (2)

where the firstamplitude correspondsto the photons both passingalong the longerarms ofthe

interferometersand the secondamplitude correspondsto them both followingtheshorterarms. It

isclearthatthisisan E.P.R.stateofthe typedefinedabove,ifphoton 1 isdetermined in the long
(short)arm, then,photon 2 followsthe long(short)path. The photon path isthen an element of

physicalrealityaccordingto the E.P.R.criterion.In practicestate(2)isproduced by parametric

clown conversion. Ifwe assume perfectphase matching, then because ]cI+ ks - constant,a

momentum measurement ofone photon determinesthemomentum oftheother.So themomentum

ofthe photon isalsoan elementofphysicalreality.Ifthisstatedoes exist,inidealizedconditions,

itssignatureisan interferencevisibilityof 100% when the opticalpath differenceof the two

independent intederometersare equal.

However, the output of the interferometersisnot state(2),but ratherthe state

= _(L_,_)+ _(Sl,S_)+ _(L,,S_)+ _(S,,L_) (3)

which differsbecause of the presenceof the lasttwo terms,which correspondingto one photon

passing the long arm and another p_ming the shorter mnn of the interferometers. State (3) can not

give any determination of the p4ttlm of the photon. It gives a maximum of 50% visibility, which

can not be distinguished from a d_L_sical model. However, it will be seen in the next section,

that according to quantum mechanics, the last two terms of (3) can be suppressed by using a
coincidence time window which is shorter than the optical path difference of the interferometers.

3 Theoretical Discussion

Our versionofthe new type ofE.P.R.experiment isillustratedin FIG. I.The photon pairgener-

atedfrom parametricdown conversionissentthrough two independent Michelson interferometers

I and II. The optical path differences ALl = Ll - S'1 and AL_ = L2 - S_ can be arranged to
be shorter or longer then the coherence length of each beam of the down conversion field. The

coincidence measurement is between the two output of the interferometers.

The two photon state of the parametric down conversion can be considered as,

= f dk_f dk,S(k_+ k, - _,)A(k_)Ikl)_ Ik,) (4)
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where kl is the signal, k2 is the idler and k_ is the pump wave number, the 5 function comes from

the perfect phase matching condition of the parametric down conversion, A(k) is the wave packet

distribution function and its width determines the coherence length of the wave packet. After

leaving the intefferometers, the wave function becomes,

-- _f dkaf dkaa(&,+ &3 - I_).A(k,)

•[Ika,.)I I k s) Ik2s)+ Ik2s)+I k s) I k z)]
(5)

where I/_M) =J k_)e i_Mi), _0 is the phase shift caused by passage of the wave through the system.

The four terms of state (5) corresponding to the photons which have followed the long-long, short-

short, long-short and short-long paths of the interferometers. State (5) is not an E.P.R. state, the
coincidence rate can be estimated as, P_ -- R_o I _ J2,

(6)
P_ ffi tLo I dkaF(kl) . {1 + coskIAL, + cos(i_, - ks)AL3

+} cos[k,(ALt + AL2)- _AL,] + ½cos[k,(AL, - AI._) + _AL.,])

where I A(kl) 12_- F(kl). Function F(ks) will genera]y have about the same width as I A(k) I_. If

ALl and AL2 are greater than the first order coherence length of the wave packets, the second,

third, and fourth terms in (6) will vanish. The last term contains cos[ks(ALs - AL2) + _AL_];

consequently, so long as I ALl - AL2 I is less than the first order coherence length of the wave

packet, this term gives rise to the interference fringes. If I ALs - A/_ I << coherence length

(equal optical path difference) then the visibility of these fringes attain their maximum value of
50%.

A similar result can be obtained from a classical modeL[6][15] In the classical analog to the

above experiment the electric field leaving the inte_erometer i will be

E, ffi_2 / dl_A(l_)eiOf'-"iO"(ei_l'i)+ e'_{si)) (7)

where we neglect the polarization vector. The intensity is given by

Ii ffi _ / dk/I A,(ki)j2 .(1 + cos 5,) (8)

where 6i ffi _ALi ffi _o(Li) - _0(Si). The modulation as a function of the optical path difference

ALi is determined by the width of the function ] Ai(k_) 12and gives the first order interference
coherence length of the field.

Now suppose the second order interference is measured, the coincidence counting rate Rcoc<

/i/'2 >, where the bracket denotes an ensemble average,

< laI2 >ffi fdk] fdk2 <1 Aa(&a) 121A2(k2) 12>

(9)

In order to model parametric down conversion it is necessary to account for the correlation in

the two beams that is imposed by the phase matching condition. To do this assume perfect phase

matching and take

<1A,(k,) 12l A2(k2)12> -- ,_(k, + ka - k,,). G(k,)
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so that
R,= R_ofdkiG(k_){1+ cosk_ALI+ cos(k,- kx)AL2

(10)

+½cos[k,(AL,+AL2)-k,AL2]+ ½co_[k,(AL,- AL_)+ k,AL_I}
Itisthe same as (6)which we have derivedfrom the state(5).

Itisnot surprisingthata cla_cM model givesthe same answer as thatofquantum mechanics,

because the above calculationshave dealtwith the wave nature of ra_liationforboth the quantum

and the classicalmodels. However, ifone can takeadvantageof the particlenature ofthe photon,

the quantum predictionwillbe different.This ideahas been demonstrated inthe earlypolarization

E.P.R.experiment using a coincidencemeasurement to produce an E.P.R. st&re.[13]For the two

photon interferenceexperiment a coincidencemeasurement isnot enough tosuppress the lasttwo

terms of (5)unlessthe coincidencetime window isshorterthan the opticalpsth differenceofthe

interferometers.Then the registrationtime differencein which the photons followthe long-short

and short-longpaths are outsidethe time window, i.e.,the lasttwo terms of (5) willnot be

registeredby the coincidencecounter.[16]This _cutofP' effectwillresultinan E.P.R.state,which

has no classical analog,

I
= _f dk,f ak,6(k,+ k_- k,)A(k,).[Ik,_)Ik_)+Ik,_)Ik2_)l (11)

E.P.R.state(II)_ provide 100% interference visibility,

/ dk, F(k,). {1 + cos[kt(ALt - AL2) +/hAL2]} (12)P_ R,o

To realize 100% visibility, besides equal optical path difference in the interferometers, a pump

field with zero band width is required along with perfect phase matching for the parametric down

conversion. One can easily axrange & narrow enough spectra] band width of the pump field by

means of & single mode laser as was done in this experiment, hut, in principle, it is impossible to

achieve perfect phase matching. When the finite size of the crystal and the finite interaction time
of the down conversion is taken into account, the 6 functions of (kl + k_ -/_,) and (_l -I-t,_ - to,) are

replaced by functions with non-zero widths giving kl + k2 ffi/_ ± Ak and _ +_ = _o_4- Aw.[17]

In this case (12) becomes,

R¢ = _ / dk_F(k_). {1 + cos[k_(ALt - AL_) + _AL2 4- AkAL2]} (13)

The uncertainty Ak will reduce the interference visibility.
A detailed sad careful study of the influence of the coincidence time window and the non-

perfect phase matching cam be found in reference (6). For a quasi monochromatic wave model,

which is reasonable for parametric down conversion, the general solution of/L may be written as

= #_o{10 + f, _[k,(/XL, - ZXL2) + gZXL_]} (14)

where we assume thst the optical path difference is much longer then the coherence length of

the down conversion beams and ignore the triviM terms. The f's depend on the detail of the

experiment, in particular the coincidence time window and the uncertainty Ak. For a large

coincidence window, fl/fo attains a maximum value of 50%. When the time window becomes

shorter and shorter espcciM]y shorter than the optical path difference of the interferometers, h/f0

reaches 100% for zero Ak.
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4 Experiment

The experimental arrangement is shown in FIG.I. A 351.1 nm single mode CW Argon laser

beam was used to pump a 50 nun long potassium dihydrogen phosphate (KDP) nonlinear crystal

for optical parametric down conversion. The coherence length of the 351.1 nm pump beam was

measured to be longer than 5 meters. The KDP crystal was cut at TYPE I phase matching

angle for generation of wl and u_ photons. Both degenerate and nondegenerate (in frequency)

photon pairs have been used in the experiment. In the degenerate case, _l -- 22 -- 702.2 nm.

The emission ,ingles were about 2° relative to the pump. In the nondegenerate case,632.8 nm

and 788.7 nm signal and idler pair were generated. The signal and idler photons were emitted

at angles 1.8*and 2.3°relative to the pump beam, respectively. The signal and idler photons then

were selected by pinholes and sent to two independent Michelson interferomete_ I and II. The
interferometers are 5 m apart in order to have space-like separated detections. Two Geiger mode

avalanche photodiodes DI and D2 with 1 nm spectral filters (centered at 702.2 nm for degenerate

case and 788.7 nm and 632.8 nm for nondegenerate case, respectively) were used for monitoring

the first order and the second order interferences by means of direct counting and coincidence

counting. The coincident circuit provides 20 psec, 50 psec and 3 nsec time window. NI, N:, N,

which corresponding to the number of counts from detector I, detector 2 and from the coincidence

time window were recorded simultaneously. The above measurements have taken advantage of the

state-of-the-art millimeter lunar laser ranging high resolution timing diagnostic technique, which

has been developed at the University of Maryland.

The optical path difference ALl = LI - L2 and AL_ = L_ - S_ of the two independent
Michelson interferometers I and II can be changed by step motors continually from white light

condition to about 7.2 mm which is longer then both the coherence length of the down converted

fields and the 20 psec time window. It is also possible to move one of the mirrors discontinuous]y

to a maximum AL -- 12 cm.

The experiment was performed in two steps. First, we used a 50 psec and a 3 nsec time window

simultaneously for the coincidence measurement. By comparing the interference visibilities for

AL > 1.5 an between the 50 psec and 3 nsec coincidence window, we expect to see the "cut off"

effect.702.2 nm, photon pairs were used for the first step measurement.

1: ALi< coherence length
We have measured the first order and the second order interference visibilities when both ALl

and A/a were shorter than the coherence length of the field. We have also measured the first and

second order interference visibilities when the optical path difference of one interferometer was

shorter than the coherence length and that of the other was much longer than the coherence length.

Fig. 2 (a,b) shows the second order and the first order interference visibilities with AL2= 5 mm

and ALl scanned starting from the white light condition. 97% second order and 82% first order
interference visibilities were observed at the beginning of the scan. All reported values are directly

meam_ed without noise reduction and theoretical corrections.

2: AL_ > coherence length

Fig. 3(a,b,) reports two typical second order interference visibility measurements in which

AL2was set to a value which was longer than the coherence length and ALl was scanned from

white fight condition. For each data point, the visibility was calculated from measurements similar

to these shown in fig. 2. It is clear that the interference disappeared at about ALl -- 500pro which
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corresponding to the first order coherence length of the field (determined by the band width of

the spectral filter) and reappeared around ALl = AL2. These measurements were repeated many
times.

Fig. 4 and table 1 report the second order interference visibility measurement for ALl = ALa

with 50 psec time window and 3 nsec time window. The interference visibilities were measured to

be (38 4- 6)% and (21 4- 7)% for the 50 psec window and (22 4- 2)% and (7 4- 3)% for the 3 nsec

window, when the optical path difference of the interferometers were 2 cm and 4 can, respectively

The ratios are about 1.7 4- 0.3 for AL = 2 can and about 3.0 4- 1.6 for AL = 4 can, respectively.
The "cut off_ effect is clearly demonstrated. However, we still need a visibility more than 50% in

order to have a unambiguous quantum result.

The second step of the experiment used a 20 psec coincidence time window. Higher interference

visibility ( >50% ) was expected at AL > 6 mm. In this experiment, 632.8 nm and 788.7 nm photon

pairs were used for the measurement. The wavelength 632.8 nm was used for easy alignment. We

used a CW He-Ne laser beam as input signal to match the 632.8 nm down conversion mode. Both

632.8 nm and 788.7 nm radiation have much longer coherence length due to the stimulated down

conversion (or so called induced coherence). The parametric amplified signal and idler radiation

were used for careful alignment. High visibility first order interference of the stimulated down

conversion beams were observed before taking date.

Fig. 5, 6 and 7 report the experimental results. Fig. 5 (fig. 6) is a typical measurement in

which ALI(AL2) was fixed at 7 mm and AL2(AL_) scanned around 7 mm. Fig. 7. reports the

measurement in which both interferometers were scanned around 7 ram. The 7 mm optical path

diference was much longer than the coherence length 0f the down conversion beam, no first order

interference can be observed in NI or N2, however, the coincidence measurement Nc showed clear

interference fringes in the above measurements. The fringe visibilities are 59% with a period of

632.8 am and 59% with a period of 788.7 am for the type of measurements in fig. 5 nd fig. 6,

respectivdy. When both AJ_q and AL= are changed together the visibility is 58% with a period
of 351.1 am. The solid curves in fig. 5, fig. 6 and fig. 7 are the fittings for 632.6 nm,788.7 nm and

351 nm, respectivdy. The standard deviation for these measurements is about 2%.

In summary:

1. The existence of E.P.R state has been observed by means of:

(1). the "cut off _ effect, i.e., the interference visibility comparison between 50 psec and 3 nsec
coincidence time window.

(2). direct measurement of more than 50% interference visibility for a 20 psec coincidence

time window. This is the first observation of visibility greater than 50% for the two independent

interferometers experiment.

2. The second order interference coherence (second order in intensity fourth order in field) is

not limited by the coherence length of the pump beam only, but also by the non-perfect phase

matching of the parametric down conversion. The uncertainty of the correlation in frequency

determines the second order coherence length. We believe it is the non-perfect phase matching

of the down conversion that reduced the visibility of the second order interference fringes in our

experiment.

We acknowledge many fruitful discussions with C. O. Alley. This work was supported by the
Office of Naval Research under Grant No. N00014-91-J-1430.
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TABLE I: Second order interference visibility for equal optical path difference with
_O-psec and 3-nsec coincidence time window.

Second Order Interference Vis_ility
Equaloptical pathdiffenmce

L! - S 1 = L2 - S2

Li - Si 3-nsec 50-psec

(ram) window window
Visibility ratio

0

1.1

1.8

4.0

20.0

40.0

(95+ 1)_

09 + 2)_

(40+2)_

03±2)_

(22-+-2)_

(7-+-3)%

(97+3)_

(46±5)_

(47±5)_

(42±5)_

08 + 6)_

(21 + 7)_

1.02 + 0.03

1.18+0.14

1.17 + 0.14

1.27 + 0.17

1.72 + 0.32

3.00 + 1.63
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Abstract

According to Heisenberg's uncertainty relation, in quantum mechanics it is not possible
to determine simultaneously exact values for position and momentum of a material system.

Calculating the mean value of the Hamiltonian operator with the aid of exact analytic Gaus-

sian wave packet solutions, these uncertainties cause an energy contribution additional to

the classical energy of the system. For the harmonic oscillator, e.g., this nonclassical energy
represents the ground state energy. It will be shown that this additional energy contribution
can be considered as a Hamiltonian function, if it is written in appropriate variables. With

the help of the usual Lagrange-Hamilton formalism known from classical particle mechanics,
but now considering this new Hamiltonian function, it is possible to obtain the equations of

motion for position and momentum uncertainties.

1 Introduction

According to quantum mechanics it is in principle impossible to simultaneously determine the ex-
act values of two canonically conjugate variables like position and momentum. These values can
be given only with a finite uncertainty, a mean square deviation or fluctuation (_2) = (z2) _ (z)2

and (_2) = (p2) _ (p)2, where the brackets (...) denote quantum mechanical mean values. The
lower bound of these uncertainties, the minimum uncertainty product is defined by Heisenberg's

uncertainty relation

- T" (1)

In this paper the most simple but also most important one-dimensional problems, the free motion
and the harmonic oscillator (HO) will be discussed in detail (the results for the free motion can
be obtained in the limit w L-_ 0", where w is the frequency of oscillation). The corresponding

time-dependent SchrSdinger equation (SE) (in position space),

h 2 02

ih -_O _(z,t)= Ho, ¢(x,t)= { 2max 2 + v} _(z,t), (2)

has exact analytic Gaussian-shaped wave packet-type (WP) solutions ¢(x,t). The uncertainty of
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position, reflecting the wave aspect, causes the finite width of this function, which can be time-
dependent as it is known from the spreading of the "free-particle" WP. The particle aspect is
expressed by the fact that the maximum of the WP follows the trajectory of the corresponding
classical problem.

Calculating the mean value of the Hamiltonian operator Hop with the help of the Ganssian
WPs to obtain the energy of the system,

iE) 1 m _12

= ilion)= _ iv2) + _ (x2)

= (! m _ix?) +(! (_) +m _2_ (p?+ _ 2_ _ (_))

= E_+k.

(3)

the uncertainty of position and momentum causes, that in addition to the classical energy Ed, a
contribution E occurs.

In classical mechanics, the iconserved) energy Ea of the system is equivalent to the Hamilto-
nian function, Ect = H, which also determines the dynamics of the system via the Hamiltonian
equations of motion.

In this work, it will be shown that in analogy to classical particle mechanics, the additional

contribution £: in (3) can be considered as Hamiltonian function for the position and momentum
uncertainties. Therefore, the dynamics of these properties reflecting the (nonclassical), wave
aspect, i.e. the equations of motion, can be obtained from this Hamiltonian function in exactly
the same way as it is known from the formalism for classical particles.

For this purpose, E has to be expressed in terms of appropriate variables and corresponding
canonically conjugate momenta to provide the Hamiltonian 7_L.

2 Appropriate Variables for the Uncertainties

Using the Gaussian WP-solutions of the SE, exact analytic expressions for Eel and/_ can be ob-

tained. In the case of the HO _: just represents the groundstate energy, usually given in the form
a

Ecs = _h_. However, there is much more information contained in E, especially connected with

the dynamics of position and momentum uncertainties. In order to extract this information, the
Gaussian WP used to calculate the mean values shall be given in the form

{ 1 }@L(x,t) = N(t)exp i[y(t)_ 2 -t- -_ip)_ + K(t)] , (4)

where _ = x - (x)- x - _/(t)(theexplicitform of Nit)and K(t) isnot relevantforthe following
discussion).The maximum of the WP at positionx = ix) followsthe classicaltrajectoryq(t).

The WP width _ isconnected with the imaginary part y_ of the complex coefficientof }2 in
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the exponent, y(t), via

2h h 1
--" •Y'= (5)

Inserting the WP into the SE proves that (x) = r/(t) obeys the classical Newtonian equation for
a corresponding point particle,

+ _2 _ = 0. (6)

To determine the time dependence of the WP width, the complex (quadratically) nonlinear equa-
tion of Ricatti-type,

2tiy+(2_y)2+ w2 0
7/2 (¢)

has to be solved. With the help of the new variable a(t) introduced in Eq.(5), the complex Ricatti
equation can finally be transformed into the real (nonlinear) Newton-type equation

1

+ w2,_ = _" (8)

In contrast to the equation for the WP maximum, Eq.(6), the equation for the QP width, Eq.(8),
contains an inverse cubic term on the rhs.

Additional insight into the dynamics of the investigated systems can be obtained by linearizing
the Ricatti equation (7) with the help of

2h
m y = _'' (9)

introducing a new complex variable A = fi + i_ = ae i¢, to provide the complex linear equation of
motion

+ JA = 0, (10)

which has exactly the same form as Eq. (6), but now for a complex variable.
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It can be shown [1-3] that in cartesian coordinates, _ is directly proportional to the classical

trajectory,

_ao_......_= (=) _ 17(t), (11)
W_

and in polar coordinates, the absolute value a is identical with a(t) = (2m(_2)/h) ½ from Eq. (8),

and thus directly proportional to the WP width.
Furthermore, u and _ (in cartesian coordinates), or a and _o (in polar coordinates), respec-

tively, are not independent of each other, but coupled via the relation

_-_ = 32_= 1. (12)

The physical meaning of this relation is that A(t) moves in the eomplez plane like a particle in a
real two-dimensional plane with conserved angular momentum. Therefore, the 1/aS-term in Eq.

(8) represents the "centrifugal force" for this motion in the complex plane.

3 Lagrange and Hamilton Functions for Uncertainties

In Eq. (5)itisshown how the mean squaredeviationofposition,(_2),isconnected with Yt or a

(and thus A),respectively.In a similaxway the momentum uncertainty(i_2) isconnected with yR

and Yl or & and _b(and thus i, respectively,via

2 Yl = -2- -2- (c_2 + 32_b2) " (13)

Therefore,the energy contribution/_can be writtenas

h a_2 ,o_a2)= (i_"+J _') = g (d_ + + .
(14)

Assuming that a and _0 are the required appropriate generalized coordinates, still the canonically

conjugate momenta have to be determined in order to express _? in a proper Hamiltonian form. In
analogy to classical mechanics, a Lagrangian function for the position and momentum uncertain-
ties can be obtained by simply changing the sign of the potential energy contribution into minus,

leading to

h a_2 _2)AL(a,¢,e,_)= _ (d_+ - .
(15)
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Thus, the generalized momenta are given by

(_L _ • (16)
_-'--a -- Pa
O& 2

O_L _ Ot2_ P_ (17)

With the help of these definitions, the energy fluctuation/_ can be written in the correct Hamil-
tonian form

p_ h _2a2_= + _-/_+ ¥ • (18)

This Hamiltonian function _L provides the equations of motion for the variables describing the
ware aspect in exactly the same way as the classical Han_iltonian function of particle mechanics
yields the equations of motion for the variables describing the particle aspect.

In addition, an interesting consequence follows from Eq. (17), defining the angular momentum
As mentioned in the previous section, this is an angular momentum property connected with

tPl_emotion of _ in the complex plane under the additional condition, that the %onservation law"

= _ is fulfilled.
However, inserting this into (17) shows that the conserved angular momentum-type quantity

p_, has the constant value

h (19)
P_'= 2 '

a value that usually does not describe an orbital angular momentum but the nonclassical angular
momentum-type property spin!

Furthermore, it should he mentioned that the uncertainty product (1), if it is written in terms
of the new coordinates and momenta, takes the form

2u(t) = p_.+ (_p_.)_. (20)

From Eq. (19) follows that p_ = 1i2/4, i.e. it is just the (constant) minimum uncertainty. The

second term, however, represents the square at the position-momentum correlations, as

h o (_')=ha_ = 2 (_po) (21)
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is valid.

For po - 0 and thus d - O, i.e. the WP width is constant and no correlations between position
and momentum exist.

4 Conclusions

The information on the dynamics of the considered systems contained in the time-dependent SE
can also be obtained from a corresponding Newtonian equation for these systems, ifa complex
variable is used, where the imaginary part of this variable is proportional to the classical trajectory
and the real part is uniquely connected with the imaginary part. The connecting relation expresses
a kind of conservation of angular momentum for the two-dimensional motion in the complex plane.

In polar coordinates, the absolute value of the complex variable, a(t), is directly proportional

to the WP width _, and thus t ° t_euncertainty (iz_i :

It is possible to express the difference between the mean value of the Hamiltonian operator,
(Hop), and the classical energy, Ed, in terms of the coordinates a and ¢ and the corresponding

canonically conjugate momenta. Thus, it is possible to write E in t_e form of the Hamiltonian

function 7_L, where t_om tee correct equations0_-motion forthe awavep_opertles" (uncertainties)
can be obtained in exactly the same way as the equations of motion for the particle properties
can be obtained from the classical energy, respectively Hamiltonian function.
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Abstract

The problem of a quantumparticle coupled to a quantum-mechanicalheat bath has a

broad and general description in terms of a generalized quantum Langevin equation, as

described in a sedesof papers by Ford, Lewis and O'Connell. Here we show how a squeezed-

state environment may be incorporated in this general framework.

1 INTRODUCTION

In a paper entitled "Quantum Langevin Equation", Ford, Lewis and

O'Connell [1] gave a broad and general description, in terms of a generalized

quantum Langevin equation (GLE), of a quantum particle, moving in an

arbitrarily external potential and coupled to a quantum-mechanical heat bath.

Related papers included an extension incorporating the presence of an external

time-dependent field [2]. In Ref. 1, we presented the general form of this

equation consistent with fundamental physical requirements, in particular

causality andthe second law of thermodynamics. Next, we discussed an

independent-oscillator (IO) model of the heat bath and we showed that, in

addition to being a simple and convenient model with which to calculate, the

most general GLE can be realized with an IO model. In addition, the IO model

incorporates many other models that have appeared in the literature, in

particular the blackbody radiation heat bath.

In the IO model, the quantum particle is surrounded by an infinitely large

number of heat-bath particles, each attached to it by a spring. In Ref .1, the

heat-bath is taken to be at temperature T. Here, we assume that the modes of

the bath are squeezed and our purpose is to outline what aspects of Ref. 1 need
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to be modified as a result. As it turns out, the only changes occur in expressions

involving ensemble averages, specifically the autocorrelations of the random

(noise) force F(t) and the oscillator position x(t).

2 DISCUSSION

=

As before, the Hamiltonian of the IO system is

H= i
(I)

Here m is the mass of the quantum particle while mj and 00jrefer to the mass and

oscillator frequency of heat-bath oscillator j. In addition, x and p are the

coordinate and momentum operators for the quantum particle and qj and pj are

the corresponding quantities for the heat-bath oscillators. Also, V(x) is a one-

dimensional potential (but generalization to three dimensions is

straightforward[I]). Use of the Heisenberg equations of motion lead to the GLE

describing the time development of the particle motion:

m_t. It_. dt' g(t- t')_(t') + V'(x) = F(t),
(2)

where the dot and prime denote, respectively, the derivative with respect to t

and x. In addition, g(t) is the memory function:

g(t) = _ mjco_cos ((ojt)e(t), (3)
J

where e(t) is the Heaviside step function. Also

F(t) = _ mj%2qjh(t) (4)

is the random (fluctuation) force, where q_(t) denotes the general solution of the

homogeneous equation (corresponding to no interaction). In Ref. 1, to find the

expression for the (symmetric) autocorrelation of F(t), we assumed that in the
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distant past the oscillators are in equilibrium at temperature T and with respect

to the heat-bath Hamiltonian. This led to the result

_F(t) F(t') + F(t') F(t))

x coth (h_/2kT) cos [o_(t - t')],

(5)

where _"(o)) is the Fourier transform of the memory function I_(t). To get the

corresponding result in the case of a squeezed bath, we essentially have to

generalize the expressions for <qj qk > etc. appearing in Eq.(4.12) of Ref. 1. To

this end, it is convenient to use the familiar oscillator operators a, a + and aj, a_.

As a result, using the procedure of Ref. 1, we obtain

1 <F(t) F(t') + F(t') F(t)>
2

= 2 hmj o)3{(<a_" aj> + 1/2)cos o_i(t- t')
J

+ Re <aj aj> cos o)j (t + t')

+ Im <ai aj> sin _ (t - t')}

r=,
2 | do_ Re "_(e) 11oo{<a*(e) a(e) + 1>) cos o_(t- t'),=,,

]o
+ Re <a(o)) a(co)> cos o) (t + t')

+lm <a(o_) a(o))> sin co (t + t')},
(6)

where the second equality follows from the use of the expession for Re _(oJ)

given by Eq. (4.16) of Ref. 1.

In the particular case of the bath being in a thermal state, at temperature

T, the last two terms on the right-side of Eq.(6) are zero and Eq.(6) reduces to

Eq.(5). In the case of a squeezed bath, all of the terms in Eq.(6) are non-zero

and detailed expressions for the various quantities may be found, for example,

in the work of Gardiner et al. [3].
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As in the case of a thermal bath, the result for the symmetric position

autocorrelation viz. 1/2 <x(t) x (t') + x(t') x(t)> is given by the right-side of Eq.(6)

except that the integrand has an additional factor Io_(o))l2, where (z(o)) is the

generalized susceptibility. Such a relation is, in essence, a generalization of

the fluctuation-dissipation theorem to the case of a non-thermal bath.

In conclusion, the results of Refs. 1 and 2, supplemented by Eq.(6) of the

present paper, provide a general framework for discussing the problem of a

quantum particle in a heat-bath whose modes are squeezed.
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Abstract

The notion of squeezing in spin systems is clarified and principle for spin squee_ng is

shown. Two twisting schemes are proposed as building blocks for spin squeezing and are

shown to reduce the standard quantum noise, ,_, of the coherent S-spin state down to the

order of 5"1/3 and ½. Applications to partition noise suppression are briefly discussed.

1 Introduction

First, we will review the uncertainty relations and coherent states of spin [1] compared to those of

boson. Then we will define squeezing in spin systems and show the principle for spin squeezing [2].

Secondly, we will propose fundamental schemes for spin squeezing, namely, one-axis twisting and

two-axis counter.twisting, and discuss their limits [2]. Finally, applications are briefly discussed.

2 Uncertainty Relations- Spin vs. Boson-

Let us begin by comparing spins and bosons with respect to their uncertainty relations (TABLE I.)

The spin commutation relation is [S,, ,.q:]=iSk, where S,.:.k are orthogonal spin components and the

relation holds for any permutation of i, j, k. The same is true for associated uncertainty relations,

This is quite different from the boson uncertainty relation since the right
hand side (RHS) is state-dependent [3].

The coherent states can be defined as the minimum and equal uncertainty state; the state that

minimizes the left hand side with the two uncertainties being equal. The eigenstate of the spin

component of a certain direction (6, _), ,.%._=Sx sin 8 cos ¢+S_ sin 8 sin ¢+S, cos 8. with eigenvalue

S satisfies this condition if Sk is the eigen component (which is 5') and S, and S 3 are normal

components (whose variances are S/2). This state is called a coherent spin state (CSS), Bloch

state, or directed angular momentum state [1].

Before talking about squeezing, let's look at the linear motions. A linear Hamiltonian propor-

tional to an arbitrary spin component rotates the spin vector about an axis. This is a precession.
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TABLE I, Spin vs. boson with respect to uncertainty relation, coherent state and squeezing
--"'-Spin T " Boson

1 - [,,,,,,,j=,/2

_s3 _s 28 > s__ __'_ >l 16

Uncertainty

Relations

Coherent

States

Translation

Squeezed
States

Squeezing

Z

,,.\y
H = hnS

x _-_Tr/2
(-4S__)< S/2

• . , Y

Spin Squeezing ?

x S,(t)=_,S,(o), .%(t)=g_sAo)
H=?

a2

(.._Aa,2) = 1/4

(Aa,2} < 1/4

0 81

a2

al(t)=G-la,(O), a_(t)=Ga2(O)
H = hix(a)) 2 + H.c.

188



It is regarded as a translation of the state on the spherical phase space of the spin. Although the

rotation may change the uncertainties of the original spin components, the coherent spin state

remains the minimum and equal uncertainty state as long as the component on the RHS is taken

parallel to the mean spin vector.
Now let's discuss squeezing in a spin system. In a boson system, it is always regarded as

squeezing if a certain quadrature amplitude has a variance smaller than the square root of the
RHS of the uncertainty relation; that is 1/4. If we define the squeezing of spin likewise [4] -- a

certain spin component has a variance smaller than the square root of the RHS -- we can squeeze

the spin by just rotating it. If this were really squeezing, the experimentalists would be very

happy since they could do this easily. Unfortunately, it doesn't offer any improvement beyond the

standard quantum limit.

The quantum limit of spin systems can be attributed to the directional uncertainties of the

spin vector. Therefore the uncertainties normal to the mean spin vector are the relevant quantities

to be squeezed. To eliminate the superficial coordinate dependency, we write the criterion of the

spin squeezing as (ASz)) < S/2 (one of the component normal to the mean spin vector has a

variance smaller than S/2) [2].

The next problem is how to squeeze the spin. Boson squeezing is regarded as attenuation of

one quadrature amplitude and amplification of the other by the same factor. This can be done
by a degenerate parametric amplifier described by a quadratic nonlinear Hamiltonian. Geomet-

rically it is an area-preserving linear transformation on the boson phase space R _. The global

shrinking/stretching is possible because boson phase space is an open plane.

In the spin case, permutative commutation relations obviously prohibit such a simple atten-

uation/amplification. In other words, global shrinking/stretching is impossible on the spherical

phase space S _ of spin. The squeezing of spin is inevitably localized in phase space and, therefore,

can be quite different from that of bosons.

3 Squeezed Spin States

Let's see how spin can, in principle, be squeezed. An S-spin system can be considered as a

collection of a number, 2S, of 1/2-spins. In the coherent spin state pointing up, all spins are

up (Fig.1 (a)). Therefore the z-component of the total system is S. However, whether the x-

component of each spin takes 1/2 or -1/2 is completely independent and random. Therefore the

variance is simply the sum of individual variances, 1/4, which is S/2. The same is true for the

y-component. These uncertainties are the origin of the standard quantum noise of the CSS. The

spin vector S is like a cone rather than an arrow. The diverging angle of the cone decreases with

increasing S, since the base radius of the cone is proportional to x/S.

In practical applications, it is desirable to reduce quantum noise for a given S. We have just seen

that the origin of the standard quantum noise is a lack of quantum correlation among individual

spins. If they are correlated, fluctuations of individual spins can cancel each other out (Fig.1 (b)).

We refer to such a state as a squeezed spin state (SSS) [2]. Such a state can be conceived as an

elliptical cone [5].
One way to establish the quantum correlations among individual spins is to let them interact

with each other. This is a nonlinear interaction. Another way is to let them interact with an

already correlated system such as squeezed light.
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random 4-g" 2S - Y

x Coherent Spin State
(a)

FIG. 1. Quantum correlation and spin squeezing

correlated

" 2S " Y

x Squeezed Spin State
(b)

3.1 One-axis twisting

Let's consider the simplest nonlinear Ham_ltonian, the square Of a spin component, for example,

H = h_:S_.-Tlais interaction leads to 5'+-(/a) = S+(O)exp[il_(S, -F {)], a rotation proportional to

S,, where/_ is the strength of the interaction. If the initial state iS on the equator of the sphere

(Fig. 2 (a)), the interaction twists the noise distribution (Fig. 2 (b)).

Z

y

(a)/1 = 0, CSS 19, 0) (b)/_ = 0.2 (optimum) (c) # = 0.4 (excessive)

FIG. 2. Quasi-probability distribution Q(0, ¢) [6] for one-axis twisting. (S = 20,/_ = 2xt).

The increased and decreased variances are,

S
v+ _ _ (uS) 2

S

squeezin 9 swirliness (at p = 241/6S-2/3)

where/_S > I and/_2S << 1 are assumed. The noise distribution is stretched by a factor of/_S in a

certain direction, while it is shrunk by the same factor in the orthogonal direction. This is nothing

but squeezing. However, the stretching of the distribution is not exactly along a geodesic of the

sphere, it is slightly S-shaped. The second term arises from this non-ideal effect, swirliness. The

deviation from the geodesic becomes comparable to the reduced width of the distribution when/_
is increased to the order of S -2/3. Then the variance reaches its minimum of S 1/3. Because of the

swirliness, it is impossible to further reduce the quantum noise by means of one-axis twisting.
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3.2 Two-axis counter-twisting

The swirliness can be canceled out if we twist the noise distribution simultaneously clockwise and

counterclockwise about two" orthogonal axes both normal to the mean spin vector (Fig. 3 (b)).
This can be done, for example, by the following Hamilton•an,

hx 2 S2_
H = t_x(5'_,f2 - S;,_{ 2) = -_-(S+ - )

We refer to this as two-axis counter-twisting. The noise distribution is shrunk along a geodesic

and stretched along the orthogonal geodesic until it spans almost half the sphere. If we twist the

distribution more, it splits into two and no further improvement occurs.

Y Y Y

IX X X

(a) t' = 0, CSS 10,0) (b)/_ = 0.203 (optimum) (c)/_ = 0.248 (ezcessive)

FIG. 3. Quasi-probability distribution Q(0, &) for two-axis counter-twisting. (S = 20,/_ = 4xt).

3.3 Limits of noise reduction

50,
Let's compare the minimum variances of two

kinds of squeezed spin states. The dots show 20
the exact minimum attainable variances cal-

culated numerically (Fig. 4). The variance ._10

of the ordinary coherent spin state increases >_ 5

linearly with S. One-axis twisting can reduce
it to the order of S 1/3. Two-axis counter- 2

twisting can further reduce it to 1/2.

0.5'

/
°,•

S)._ so_6o '
.• ...... S ---r --l_'_-ax-i-'$

• .1,4

FIG. 4. Minimum variances vs. S

4 Applications to Partition Noise Suppression

There are man3' systems which can be described as a spin system. Spin squeezing described

here offers better performance in these systems. For example, dispersion-less beamsplitters and

interferometers for bosons and fermions can be described as a spin system with ,,q being the

191



half of the total particle number N passing through them [7, 5]. The operator Sz corresponds

to the half of the particle number difference NA - NB between two paths (A and B), and 5'+

transfers a particle from one pal, h (A) to the other (B). The outputs of 50% beamsplitters (i.e.,

(Sz) = 0) have the number and phase partition noises SN-_([A(NA - NB)]2)I/2=2(AS,_) 1/2 and

_¢------([d(¢a --CB)]2)112_(AS_2)lI_/[(S=)[ • For ordinary linear beamsplitters, they are _fN=x/_

and $¢_l/vfN since the output is in CSS I_r/2,0). Their ratio can be changed by spin squeezing

without violating the uncertainty principle _N_i¢ >_ 1. Physically, they can be realized as nonlin-
ear interferometers. Both self-phase-modulation HI=hx(N_ + N_)=2h_(N2/4+S_) of particles

in both paths and mutual-phase-modulation HI=h)_NaN_=hx(N2/4 - S_) between particles in

different paths lead to one-axis twisting. Optical Kerr effect and Coulomb interaction give these

number-dependent phase modulations. These nonlinear beamsplitters can achieve either _N_N ale

or 6¢_N -s/e [8].

5 Summary

In summary, We have clarified the notion of squeezing in a spin system. Spin is squeezed if one of

the components normal to the mean spin vector has a variance smaller than S/2. We have shown

the principle for spin squeezing. The spin can be squeezed by establishing quantum correlations

among elementary spins. We have proposed the fundamental schemes for spin squeezing. One-axis

twisting can reduce the noise down to S 1/3 and two-axis counter-twisting can reduce it to 1/2.

We have also discussed possible applications of spin squeezing to the sub-quantum-limit partition

of quanta. Partition noise in either particle number or phase can be suppressed with a nonlinear

beamsplitter which performs spin squeezing.
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Abstract

We compute thequantum entropyformonomode and two-mode systemssetinsqueezed

states.Thereafteritisalsocalculatedthequantum entropyforangularmomentum algebra

when the system iseitherin a coherentor in an intelligentspinstate.These valuesare

compared with the correspondingvaluesofthe respectiveuncertainties.In general,quan-

tum entropiesand uncertaintieshavethesame minimun and maximun points.However for

coherentand intelligentspinstateitisfound thatsome minima forthe quantum entropy

turnout to be uncertaintymaxima. We feelthat.thequantum entropywe use providethe
rightanswersinceitisgiveninan essentiallyuniqueway.

1 INTRODUCTION

Some years ago Deutsch [1] proposed a new definition for the quantum uncertainty of a physical
observable which immediately was taken up by Partovi [2] to carefully analyze the measurement of

the system ix,p). Timeago, trying to understand the physical properties of supercoherent states

[3] we started to call this new quantity S(}, I_ >) _' -I < _1¢ > ]2In I < _bl_ > 12 the quantum

entropy of the system _ in the state I_b>. In this article we keep using this notation which we feel

is more appropriate. There will not be any sort of ambiguity with the standard use of the density

operator for the statistical quantum entropy since in the following calculations we will only deal
with pure states.

Our motivation is to go further with the quantum entropy and to calculate its values for

physical systems less trivial than the monomode ix,p) one. We take the two-mode system when it

is set on a two-mode squeezed state and the non-canonical, finite, angular momentum algebra of

observables when it is either in a coherent (CSS) or in an intelligent spin state (ISS). Thereafter

1Talk given at the Squeezed States Workshop, U. Maryland 28-30 march 1991
Fax address:(58)(2)9621695;e-mail emsca!usb[aragone@sun.com

193



we estimate the (Heisenberg like) uncertainties I of these different systems and compare them

with those previously obtained for the quantum entropy. Roughly speaking S -_ In I implying
coincidence of their extremals. It will be seen that, however, for ISS, it happens that states which

minimize the quantum entropy are local maximuns for corresponding uncertainty.

In the next section we study the continuous, canonical cases of monomodal and two-modes

systems. The third section deal with the three-dimensional angular momentum algebra. In the

last one we discuss the results we have obtained.

The problem we are interested in is to compute the quantum entropy S(_, 1¢ >) of different

physical systems • = {(z,p); (z_,p+);(J_)} and if possible to determine the states for which

S(¢, I¢ >) attains its minimum. In this work we do not solve this problem in its full generality.
We calcule S(_, I¢ >) for some subspaces of I¢ > and we find the states belonging to these

subspaces for which S is extreme. We take the oportunity to compare with uncertainty functionals

naturally related to these systems. It is worth pointing out what is the origin of the states we

consider: all of them arise through the Heinsenberg relations, either by minimizing uncertainty

functionals I(A, B, I¢ >) or by introducing intelligent states, i.e. those states which satisfy the

functional equation I(A, B, I¢ >) = C([A, B], I¢ >) (C is given below).

2 ONE AND TWO MODE SQUEEZED STATES

This is the continous and canonical case. We start considering the monomodal case, where _1 =

{x,p} and the states I¢ > for which we calculate S(_, [¢ >) are the squeezed states [4] (SS)

(note the SS arise from the Heinserberg uncertainty relation). If we denote by ]z > the standard

coherent states
Iz >-- D(a,z)lO >, D(a,z) -- exp{za t - z'a}, (la, lb)

the SS are defined
Iz,r¢ >-= S,(r,¢)lz >,

. l , -2i¢_2
Sl(r,_o) - expt_rte a - eZi¢(at))_}.

If one introduces the squeezed annihilation operator a(r, _)

a(r,_) _- S,(r, cp)aSt(r,_) = coshr a + e2i_ sinhr a t,

the SS turn out to be their eigenvector with eigenvalues z,

a(r,_o)lz,r_o>-- zlz,,'_o>.

Following Deutsch the quantum entropy S(@,, I_b>) is defined by

s(_,, l¢ >) = s(x, I_,,,_o>) + S(p,tz,,'_ >)

(lc)

(ld)

(2a)

(2b)

(3a)

where

£S(x, lz,r_ >) =-- I < xlz, r_ > 121nl< xlz,r¢ >)l2dx
Oo
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where

= 2-I(I + In{Ir(ReT)-1}),

s(p,Iz,,_>)- -f21 < pi:,,_> ?I-I< plz,,_> )I2dp

= 2-'(1 + h{,(Re_)-'}),

ait a! _

[ai, a!] -- 6ij, [ai,aj] ----0

The two-mode coherent states are defined by

Iz >= D(a,z)10 >_= (D(al,zl) ® D(a_,z2))lO > ®10 >

where in an obvious two-dimensional vector notation

a[z >= z]z>, a - (al@ 12x_,12x2® as)

The two-mode SS are given by

]z,r_>- &(r,_)Iz>,

S,(r,,p) =_ exp{r(e-'i_ ala_ -- e2i'a! a_ ) }.

(3b)

(3c)

7 --- (cosh r + e2i¢ sinh r)(cosh r - sinh re2i_') -1, 3,-1 - 7(-r, _). (3d)

Consequently S has the value

S(#_, I_k>) = 1 + Inx + 2 -1 ln{1 + sinh) 2r sin2 2_}. (4)

S(#1, Iz, re >) attains its minimun 1 + In a- in two cases: i. if r-O, i.e. for pure coherent states

since Iz, re >= [z > or ii. if _ = nx/2, n E Z which corresponds to the proper SS. In both cases

one gets what it has been shown [5] to be the minimun of the quantum entropy for this simple

system.

To obtain the final results is eqs. (4a-b) we have used that [6]

_{Iz,,_ >}(x) =< xlz,,_ >=

= _r-¼(ReT)¼ exp(-i2-½Im z)exp(i2½Im z)exp{-72-1(x - 2½Rez) z} (5a)

_{Iz, r_ >}(p) =< plz, r_ >

= r-¼(ReT-1)¼exp(i2-½Im z)exp(-i2½1m z)exp{-(27)-l(p- 2½Imz)2}. (5b)

The two-mode system #2 -- {zi,pi, i E (1,2)} has two annihilation and two creation operators

(6)

(7a)

(7b)

(8)

Observe that S2(r, ¢) contains (al, a_) corresponding with two modes we have now in the system.

It is possible to generalize eqs. (2) to

a(r,_) _ S2(r,9)aS2(r,_) = coshr a + e2'_'sinhro',at, (9a)
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a(r,_)lz, r_ >= zlzr_ >. (9b)

these eqs. are based upon

S_(r,¢)D(a,z)S2(r,_) = D(a, M(r,_o)z) = D(a, w), (10a)

where M(r, qo) is defined by

w = M(r, qo)z - coshr z - e2i_sinhralz = (a, jS)T (10b)

(a] is the standard antidiagonal Pauli matrix). Computation of S(#2, [z,r_ >) entails the eva-

luation of S(x, [z,r_ >) and S(p, [z,r_ >),

s(¢2, >)= S(x, >)+s(p,]z, r_o >)

--/I <xlz,r_>l slnl<x]z,r_>12d2z

-fl < plz, r_ > 121nl < plz, r_ > J2d2p

= 2{1 + lnr + 2 -xln{1 + sinh22rsin22_} = 2S(#x,]z,r_ >). (11)

As it happened for the monomodal case, there are two cases where the entropy has a minimun:

i. for r = 0, wich corresponds to two-mode coherent states and ii. for _ = nr/2, these are the

proper two-mode squeezed states• Calculation of S(¢2, ]z,r_ >) (11) becomes straightforward

after deducing the two (dual) representation of the wave functions < xiz, r_ >, < p[z, r_ >• It

can be seen that

I< x[z,r_ > 12= _-'Rea{l - (Re_)2(Rea)-2} ½"

•exp {-Rea(x - 2½Rew) 2 - ReB(x - 2½Rew)To'l (x -- 2½Rew) }

I< plz,, > 12= - •
•exp{-Rea(p - 2½lmw) 2 - Re/3(p - 2½Imw)ra_(p -- 2½Imw)}

(12a)

(12b)

The uncertainty I(z, p, Iz, r_ >) for the monomodal case is the standard quantity (Ax)2([z, r_ >)

>). It turns out to be

I(@_, [z,r_ >) = 4-_(1 + sinh 2 2r sin2 _)

Consequently, since S(#2, [z,r_ >) _ C_ + 2-t In I(@:, [r_ >) we observe that their minima

coincide. For the two-mode system one has the uncertainty matrix [6] 1(O2, [z, r_ >) defined by

1(02, lz,rw >) -- (Ax)2(AP) 2 =

(Ax]) 2 (Az])(Ax2)_ ((Ap,) 2 (APx)(AP2)'_ (14a)

Minimum uncertainty states (MUS) are defined as those for which 1(02, 1¢ >) _' 12x2/4. In

the present case we have that

I(#2,]z, r9 >) = 4-](1 + sinh22rsin29) 12x2.

We have the qualitative situation already discussed for the monomodal case: minima of S(@2)

and 1(02) coincide wuth either two-mode coherent or with proper squeezed states. Now we shift
our interest to consider the less traditional, finite, non canonical system generated by 3-dimensional

angular momentum algebra•
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3 THE ANGULAR MOMENTUM ALGEBRA, COHE-

RENT AND INTELLIGENT SPIN STATES.

The three-dimensional angular momentum algebra @j provide a simple example of what one might

think to be a general physical system. Its three generators Ji, i E (1,2, 3) satisfy the commutation

relations
[Ji,Jj] = i_,,tJt. (15)

In general we will think of a physical system @A to be a set of observables @A = {Ai,i E _p}

constituting some algebraic structure (i.e. very often this structure is a Lie algebra). The natural

generalization of the quantum entropy definition initially given [1] for _1 (eqs. (3)) is

i---p i--P

S(_A,I¢>)__,S(A,,I¢>)=__,I<a,I¢>I21nI<a_I_>I _ (16a)
i=0 i=1 ,_1

where Jal > are the eigenstates with eigenvalues a_ of the observable Ai,

A_la i >__ aila i >. (16b)

Actually, a physical system • might be considered represented by different sets of observables

{Ai}, {Bi}, "" wich can be thought as equivalent quantum atlases which represent _.
In terms of field theory one is thinking in the possibility of {Bi} being a redefinition of the

initial observables {A,}.

An already interesting, and non trivial example is whether, following this definitions of a phys-

ical system, _ = {x,p} can also be represented by {N -= ata, _}, the number and a convenient

phase operator [7]. Of course, one expects that the quantum entropy of a physical system _ must

be independent of its quantum representation, S(_A, I¢ >) = S(_e, I_b>). We will not dwell on

this interesting point in this article. Entropic calculations will be compared with uncertainties,

which do not have a clearly cut, inambiguous definition, as we will comment below.

One of our main motivations of the present calculations is to better understand which are, for

each specific given physical system, the states I_b > minimizing its quantum entropy, i.e. those

states satisfying

J---S('_, l¢' >) + '_l'/' >= O, < g'lg' >= 1. (17,, - b)
_1_ >

Instead of directly solving this problem, which we cannot do now, we study the behaviour

of S(_, I_ >) for subfamilies I_ > having a relevant physical origin, related to or stemming in

uncertainty relations.
It is worth recalling what is the general situation concerning uncertainties functionals [8].

Given two physical observables At, A2 Schwarz's inequality tell us that, for physical states I_ >:

< ,/,I,/,>= 1,
I(A1, A2, J_b>) =

(AAI)(AA_) > 4-_[ < [At,A2] > 12 -C([AI,Aa],I_P >). (18)

MU$ (minimum uncertainty states) are those for which I has a local minimum and IS (intel-

legent states) are states that satisfy the equality in eq. (18). The role of physical theories is to
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provide the value of commutator [A1, A2]. In principle one may find IeMvS > _ IS, [¢, _ MUS

and [¢MUS,I >. It seems that IS constitute a very large set, being the states corresponding to
intersection of two functionals.

• a has two properties: i. is finite, i.e. it has irreducible unitary representations which are finite

(due to compactness of SO(3)) and il. is non canonical, i.e. there are not additional observables

Ki : [Ji, Kj] = i/Si._• _j is one the simplest physical systems where there are IS which are not

MUS [8]. The two kind Of states that will be considered here are the coherent (CSS) [9] and the
intelligent spin states (ISS) [8].

CSS are given by

where

less >- Ir >- R(r)l - j >= (1 + r_')-Je'JI - j >

R(r).=_ exp{rJ+ } exp{In(1 + rr')Ja}exp{-r'J_ }

= exp{-iS& }, fi = (sin ¢,-cos¢, 0)

r =e -iwtan(_), 0 ....<O <a', 0 <_p <2a'.

(19a)

(19b)

(19c)

Iss Iw,,.(_) > have been defined as those for which I(J1, J2, Iw(_) >) = C(J3, Iw(_) >). They
turn out to be

[wj,,,(r) >= a,,_cg'_y{y2Je',J+[-j >}, 0 < n < 23" (20a)

where

a. =_ {Z,_[yz + rr'(y - 2)(z - 2)]21}-½, (20b)

_F(y,z) =_ F(1,z),r_ =_ r(1 - 2/y),r 2 = r °2 (20c - d)

In particular [Wi,o(r ) >= [ - r > and Iw#ai(r) >= [r > are CSS. We denote [m >i the

respective eigenstates of Ji,

Jilm >i= mira >i (21)

We first calculate S(q_j, [r >). Accordingto eqs. (16)

1:3 mmj

S(Cj, lr >)= -_"]_ _ I, < mlr > I_]n 1,< mlr > 12. (22a)
i:1 mf-j

It is immediate to obtain the values of i < m[r > and its associated probabilities

I,,2< ml_ > I_ :

{2(1 + rr')}-2¢c_(j,m)[1,i + r[20+_)ll,i- r[2O-'l, (22b)

13< air > [2 -- {(1 + rr')}-2¢a(j,m)lrl 2t¢+=_, (22c)

a(j, m) = 2j!(j + m)!/(j - m)!.

No closed expression has been obtained for eq. (22a). The same happens with the entropy for
ISS. Its value is

i:3 mfj

s(¢_, Iw.(_) >) = - _ _ I, < mlw.(_) > 12In l, < mlw.(.) > 12 (23)
i:i mf-j
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where

< + m + p)!(p!(j- m -
p--O

p=j+m+p

(1,-i)*(q!(j + m + p-q)!)-lrJ+m+_-qpJ,+"+P-q, (24a)
q--O

[< w,(r)]m >3 12= a,a(j, ra)½ [r12_+")(_+") 2, (24b)

0 in1¢'2 k

r = tan(_)e- / , n E Z, p, - Y10_{y2J-t(y _ 2)t}. (24c)

Fig. 1 shows the structure of S(rI, j, Ir >) in terms of the 0,_ parametrization eq. (19c). S

has local minimums at _ = n_r/2, 0 = lr/2. Details of the 0 dependence for _o = n7c/2 appear in

fig. 2,3. It can be also observed that the minimum values of S increase with j.

Then we present in fig. 4 S(_j[wj,,(r) >) for the first proper ISS [wl.t(r) > (Iwl.0(r) > and

[wl,2(r) > are CSS), and just to have a better feeling of it behaviour we show, in fig. 5, the shape

of S(_j, [w_,,,(r) >) for j = 2, n - 1,3, proper non coherent intelligent spin states.

Then, fig. 6 shows that the minimum for S occur for the central ISS, i.e. in case of j = 2

for ]w2.2(r) >. In general it will occur for n -- (j,j .4-/2) according to whether j is integer or

half-integer.

What can be said about the uncertainties?

In spite of arguments given [10] in favor of AJ _-- (A J2) 1/2 as the right quantity one should

take to define the uncertainty of _i (AJ is a clear rotational invariant quantity), we will take

partial and full quadratic uncertainties I(J1, J2, It/' >),

l(+s, 142>) = I(J,, J2), IO >) + I(Js, .Is, [_ >) + I(J3, J,, I_b>)

as the physical relevant quantities which provide an additional insight concerning informational
behaviour of q_a.

It seems to us that quadratic uncertainties are the typical elements of a quantum mechanically
based definition.

As it is shown in figs. 7,8 there is a sharp qualitative difference in the behaviour of I(_a, ]_ >)

and I(J_,J_, Irk >). While I(Ja,J2, [w.(r) > presents a local minimum at 0 = _'/2 (Irl -_ 1);

I(_s]wi,,,(r >) has a local maximum at this same point.

Since S(_j, Iwj,.(r >) exhibits a local minimum at 0 = _r/2 and the full uncertainty shows a

maximum, one cannot qualitatively relate anymore these two quantities through S -_ In I. these

property is exhibit in fig. 7 where it is shown the anomalus behaviour of I(_s, Iw¢,.(r) >). Partial

uncertainty for l(Jl, J2, Iwj,.(r) >) is shown in fig. 8. Its behaviour is completely different of the

full uncertainty. Partial uncertainty minima coincide with entropy minimums.

4 CONCLUSIONS

We have estimated the values of the quantum entropy (not to be confused with the statistical

quantum entropy due to the statistical mixture of quantum states) for monomode squeezed and
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two mode squeezed states. Calculations were extended to the angular momentum system _

where the states we used to probe S(¢j) ca.me from the natural generalization of the standard

coherent states or by 'imposing intelligence, i.e. states which satisfy the now operatorial Heisenberg

equality.
In this case, the proper central IS were shown to be the best ones, i.e. they minimize S(¢j).

We systematically compared the behaviour of S(¢_) with that of I(¢j) just to understand why

one must abandon the use of these latter quantities in favor of S(_j). We observed the presence

of anomalous behaviour in I(@_) when one considers ISS, giving additional support to the choice

of S(@j) as the right physical quantity one has to consider for every physical system.
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Abstract

A review on the current efforts to approach and to surpass the fundamental limit in
the sensitivity of the Weber type gravitational wave antennae is reported. Applications of

quantum non-demolltion techniques to the concrete example of an antenna resonant with

the transducer are discussed in detail. Analogies and differences from the framework of the
squeezed states in quantum optics are finally discussed.

1 Introduction

The importance of detecting gravitational waves, as frequently pointed out, consists not only

in verifying one of the most direct and astonishing predictions of the simplest metric theory of

gravitation, i.e. General Relativity, but also in the possibility to open new windows on phenomena

in the Universe in which only violent releases of gravitational energy occur [1]. Gravitational waves

have not yet been directly measured because of the extreme smallness of the power emitted even

by astronomical systems. The hypothetical sources which are strong candidates for emitting

gravitational waves, according to our understanding of them actually only due to informations

collected via the electromagnetic astronomy, are divided into two classes based upon the time

evolution. Impulsive sources can be catastrofic events such as supernovae explosions and collapsing

binary systems. The frequency spectrum of gravitational waves of this kind is fiat up to 10a Hz,

these impulsive phenomena having a characteristic duration of the order of milliseconds. One

expects a perturbation of the metric tensor h _ 10-21 - 10-is for events in our Galaxy and

h _ 10 -23 - 10-21 for events in the Virgo Cluster. Periodic sources can be pulsars if they deviate

substantially from axial symmetry. The expected frequencies range is in this case between 10-2 and
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102 Hz, while h m 10-2_ - 10 -25. The efforts to detect gravitational waves have been concentrated

from the very beginning on the impulsive events because of the larger expected perturbation to
the metric tensor. It turns out that the modulation of the space-time induced by a gravitational

wave on an extended body can also be seen as a production of a force field in it. Detecting

the gravitational wave is therefore translated into the problem of detecting this small force of

geometrical nature and the displacements produced by it in a test mass. The displacement induced

in a body of reasonable sizes, m lm, has therefore an amplitude of the order of 10 -2. if the event

is due to the a supernovae event in the Virgo Cluster. The accuracy required to measure such a

small displacement is so high that the quantum nature of the detector has to be taken into account

because the De Broglle wavelenght of a macroscopic test mass is of the same order of magnitude of

the expected signal due to the gravitational waves. Here we report on the status of the art of the

measurement techniques developed to allow monitoring of a class of gravitational wave detectors

in a quantum regime. After a brief introduction for schematizing the detectors of gravitational

waves and the sensitivity limit due to the fundamental noise in part 2, we introduce, in part 3, the

quantum non-demolition measurement schemes for overcoming these limitations. The applications

of stroboscopic and continuous quantum non-demolltion schemes for a gravitational bar antenna
resonant with the transducer axe described respectively in part 4 and part 5. Conclusions deal also

with the analogies and the differences from the quantum optics framework and the importance of

this topic for understanding quantum mechanics applied to single macroscopic degrees of freedom

repeatedly monitored.

2 Weber gravitational antennae:fundamental sensitivity

limits

The gravitational wave detectors devised so far are based upon monitoring of the distance between

two masses localized at different points. The equivalence principle requires a non-local, extended,

structure of a gravitational wave detector because it is possible to nullify locally the effects of a

gravitational field by means of a suitable choice of the reference frame.
Let us consider two masses in free fall: what is then measured is their variable distance which is

supposed to be much smslhr than the gravitational wavelength. The effect of a gravitational wave

coming along z axis with proper polarization is to increase of hi2 the distance along _ axis and

to decrease by hi2 the distance along z axis. A classification of the gravitational wave detectors
divides these into non resonant and resonant detectors if the two masses are respectively free or

elastically coupled.
In non resonant detectors the distance between the two masses is measured by means of

interferometric devices. The arms of the interferometer proposed so far are of the order of Km and

use of multiple reflections allows to increase the physical paths by several orders of magnitude.
In this contribution we wiLl not be concerned with this kind of detectors but we shall instead

consider the resonant detectors (Weber type gravitational wave antennae), the quantum Limit in a

interferometric antenna being enforced by the shot noise and the momentum fluctuations imparted

by the photon flux to the central mirrow of the interferometer [2].

Resonant antennae are tipically cylindrical bars of materials having low internal dissipations.

The materials used are silicon, sapphire, niobium or a particular aluminum alloy (A1 5056) and
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the mass of the antennae is of few tons.

One can show that the motion of the ends of a cylindrical bar of mass M and length L

oscillating in its fundamental longitudinal mode is equivalent to that of a harmonic oscillator of

mass M/2 and equivalent length 4 L/_r 2. If z is the displacement from equilibrium position the
equation of motion of the Weber oscillator is

2
x+--+w0_z= L'h(t) (1)7-0

where 7"0is the damping time, w0 is the proper frequency and h(t) is the amplitude of the incoming

gravitational wave. The forcing term due to the gravitational field is proportional to the distance
between the two masses. From this formula one can calculate the cross section for the transfer

of energy from the wave to the antenna and one finds that this is proportional to the mass of

the antenna and to L _. The proper frequency w0 is chosen to be tuned with the frequency of the

expected wave (10SHz) and the corresponding wavelenght is very large compared to the size of the

antenna. To amplify the extremely small oscillations coupling of the bar with another oscillator

of very small mass is used [3],[4]. In this case a system of two coupled harmonic oscillators is

obtained in which the energy is continuosly transferred back and forth from M to m via beating.

If the dissipations in the two oscillators are made negligible the amplitude of the oscillations in

the second resonator is increased by a factor l/v/" fi with respect to the first resonator, where
# = re�M, provided that the frequencies of the two uncoupled oscillators are made coincident.

The motion of the transducer is transformed into an electric signal by means of a variable capacity

and an amplifier schematizable as an ideal amplifier of gain A and two noise sources generators

with current and voltage spectral densities respectively Sin and SV,. The sources of noise are

the thermal noise, i.e. Brownian motion of antenna, which gives a contribution KT to the energy

of the oscillator, being K the Boltzmann's constant and T the thermodynamical temperature

of the antenna and the amplifier noise, which is expressed by means of the parameter T,, =
(SV, SI,,)1/2/K_, called noise temperature of the amplifier. This last noise has two effects: it

contributes directly as an additive noise source at the output and it acts on the transducer leading
to an increase of the temperature. In other words every transducer is at the same time an actuator

and the amplifier noise gives rise to a back-action force acting on the mechanical oscillator.

If we define a noise temperature Tet! as the temperature which corresponds to the minimum

detectable energy Ee!! = K T.S! transferred to the bar by an impulsive signal with an output

signal/noise ratio equal to 1, we find, using a Wiener algorithm in the data analysis [5]

I( 1)(T,!! = 2 T,_ 1, + _ 1 + _QT,_,] (2)

where Q = woT-o is the quality factor of the mechanical system,/3 is substantially the fraction of

energy transferred to the electromagnetic circuit by the bar throug the capacitive conpling and
,_0 the impedance matching factor defined as

SV. 1

A0 = -_ _o" (3)

For the antenna of the Rome group continously operating since one year at CERN one has a

thermodynamical temperature of _ 4.2K; the other parameters are Q _ 5 • 10e and an amplifier
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noisetemperatureT, __ 10-7K [6]. It has been possible to achieve this last result making use of

a SQUID amplifier. So one gets for TegI a value of m 10_K, which is not far from the quantum

limit temperature

tu_
TQL = _- -_ 10-SK. (4)

One expects that the force with which a gravitational wave acts on the antenna is by many

orders of magnitude below the thermal noise even at thermodynamical temperatures as low as

10inK which is the temperature at which the third generation antennae will operate. Howewer,

due to the particular features of the data analysis based on the variation of energy in the oscillator

in the time, the quantum regime is reached earlier than as expected by (4). By writing the amount

of energy which is exchanged during the measurement time At between the harmonic oscillator
and the thermal reservoir and the quantized energy introduced by the measuring apparatus is

easy to show that the quantum regime is obtained when the following condition is satisfied

KTA....__ << h (5)
Q

This can be also shown by reasoning in terms of displacements instead of energy. The variation

of the length of the bar due to a gravitational wave with amplitude h is, according to (1)

_Z h (6)
! 2

Because typical values for h are h = 10 -21 (which corresponds to a supernova explosion in

the center of the Galaxy) taking L = 1 m, one gets from (5) a variation of the length of the bar
AL __ 10-1° cm which coincides with the standard quantum limit (i.e. the root square mean of

the position of a harmonic oscillator in his fundamental mode)

It follows therefore that if we do not overcome this limit no information can be obtained on the

evolution of the harmonic oscillator.

In these conditions one can find a method to measure the position of the quantum oscillator

and to see if an external force has acted on it. However in doing this one must take into account

that the position operator _(t) does not commute with itself at different times. Indeed with a

measurement of _(t) at time t one put the oscillator into an eigenstate of _(t); if one repeats this
measurement at the instant t + r one puts the oscillator into another eigenstate. It turns out

that it is not possible to know if the change in _(t) is caused by a very weak classical external

force because of the quantum demolition of the state. What is needed is therefore a measurement

which does not prevent the execution of the next measurements of the same observable avoiding

the demolition of the projection Of the state on that observable. This is possible in non-relativistic

quantum mechanics as we will discuss in the following considerations, because this theory make

limitations only on a simultaneous, perfect knowledge of two canonical observables.

212



3 Quantum non demolition measurements

The introduction of the quantum non-demolition measurements (QND) dates back to an article

by Landau and Peierls [7] in 1931. However only recently, after understanding the role of quantum

mechanics in the fundamental limits to the amplifier sensitivity [8],[9] a_ud under the request to

surpass the quantum limit in detectors of small displacements [I0],[11], the problem has been

studied in detail [12],[13]. The idea of a QND strategy is to perform a series of measurements

of one observable of a single object in such a way that the act of the measurement itself does

not affect the predictability of the result of the next measurements of the same observable. In

order to do this the observable, the instants of time in which it is observed and the interaction

Hami]tonian should be all carefully chosen for a given dynamical system. For instance, a first high

precision measurement of the position of a free particle implies a large dispersion in the possible

values of measurements of momentum. If a second measurement of position is made, clue to the

Heisenherg evolution, the result will have a large dispersion too. Instead, if a measurement of

momentum in a free particle is made at a given instant of time, a second possible measurement

will give the same result due to the constant value of the momentum between the two consecutive

measurement, provided that the interaction dtle to the first measurement has not demolished the

state. This simple example shows the route to define quantum non-demolition measurements.

Only particular observables which satisfy a commutation relation at different times t_ and tj are

allowed to be monitored in a QND way, i.e. if

=0. (8)

Moreover, we must also take into account the perturbation on _(t) induced by the measuring

apparatus which is coupled to the observed system by means of the operator Hamiltonian Hi.

To avoid changes in the expected value of the observable during the measurement the following

condition must be satisfied:

{_(t), H,] =0. (93

This condition assures that the interaction Hamiltonian is simultaneously diagonafizable with the

measured observable, no changes are induced in the measured observable during the measurement

time in which only the interaction Hamiltonlan will be responsible for the time evolution. A

sequence of measurements performed under conditions (8) and (9) will give always the same result.

This is a definition of a QND measurement. If the instants of time in which it is satisfied (8) are

discrete the QND scheme is named stroboscopic or, in a realistic configuration with a duration of

the measurement small with respect to the characteristic timescale of the motion of the observed

system, quasi-stroboscopic [14],[15],[16]. Otherwise, having a continuous set of instants of time,

the QND scheme is named continuous.
In the case of a single oscillator one introduces the two components of the complex amplitude

_ "_.L i,e_

X1 = Re[(& + z,,,w)e ] (lO)

•_j__ i.,t: im[( + ]

such that _(t) = X_"_cos wt + X_"2sin wt. Their properties are
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(a) dX1 dX2
dr- dt =O_[Xl(t),._l(t+r)l=[._.(t),._(t+r)]=O (11)

By using(_)and(b)weget

ih
(b) [._l(t),_2(t)] = --. (12)

[x(t),z(t+r)]=-[X1,X3]{coswt sinta(t+r)-sinwt cosw(t+r)}= i/i sinwr. (13)
Wlgd

This means that to do a QND measurement of the operator $(t)in a single harmonic oscillator

one needs the Hamiltonian (here _ is the variable of the measuring apparatus which couples with
the oscillator)

Hi = go 6(t- nr ..-_)zq (14)

such that the interaction between the system and the measuring apparatus is turn on only when

_(t) commutes with itsdf, that is why this kinds of measurements are calhd stroboscopic Q.N.D..
For a component of" the complex amplitude, X"I, a QND interaction Hamiltonian should be

[19.]

that is approximately obtained by using the interaction Hamiltonlan

Hi 2Eo cos w,,,t _

(15)

(16)

provided a low-pass filter at ta, << w,,, is used. For practical reasons a different pumping is used,
namely a up-conversion around an electrical frequency _, such that the interaction Hamiltonian
is now

Hi = EoCOsw.tcosw,,,tfe(t = _[COS(W. + _.,)t + cos(_.- _,,,)t] $_ (17)

which allows an approximate measurement of _ if a filtering around _. is performed with a

selectivity such that the te_ osdllating at w, 4- 2_,,, are madenegiigible. It has been pointed

out that the continous approximate QND measurement scheme of one component of the complex

amplitude is obtained as a first order approximation of the corresponding stroboscopic scheme

[17]. If we start from the interaction Hamiltonian of a stroboscopic measurement of X"'I expressed
in terms of the physical observable

ffi= Eoc°sw, t___i_(t-nTr)-_lfl= Eocosw, t__,(-1)"g(t-nTr)_?l (18)
n 0)1 n _M1

we will see that, by Fourier expanding the Dirac-distribution, it is obtained

ffi = Eo cosw, t _ cos(2n + 1)wlti_ (19)
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that, at the first order, is

A

Hi = E0cos .tcos (20)

i.e.the usual approximate scheme for monitoring of -_i. Thus knowing a QND stroboscopic

strategyit is simple to write the correspondingQND approximate continuous strategy.This

property willbe particularlyusefulin the followingconsiderations,where the more complicated

but realisticcaseoftwo coupled harmonic oscillatorswillbe treated.

Ithas been pointedout thatalsointhe classicalregime,i.e.when the amplifierisnot quantum

limited,the QND measurement schemes providea bettersensitivitybecause one phase ofthe signal

isshieldedby the back-actionforceof the amplifier.A quantitativemodel in the classicallimit

has been developedin [18]:itturns out that by writingthe noisetemperature as

Tb: W"T. 1 (21)
{41e T

fora standard 'amplitudeand phase'monitoring isr < I,and fora QND/BAE scheme r may

be greaterthan unity. This isdue to the squeezingof the electricalnoise intoone mechanical

phase. A generalizeduncertaintyrelationfor the two classicalconjugate observablesdue to the

back-actionof the amplifiernoiseisintroducedas

KsT.
AXIAX2 _ 2_,_, (22)

which may be obtained through a replacementon the righthand sidein the standard quantum

uncertaintyrelationship
t_

AXxAX_ --_2nuv,,L (23)

of h with KsT,/w,. If a squeezing factor p such that AX 1 ----- pAX, is introduced (p _ 0 means

a noise-free measurement of X1) the minimum burst noise temperature can be written as

2 2

(24)

showing that the r figure of merit has a dynamical interpretation in terms of a squeezing factor.
Recently, an interpretation of the back-action evasion strategies in which they are seen as an

alternative to the usual impedance matching for maximizing the signal to noise ratio has been
discussed [19].

The description of the QND measurement suggests how to measure small forces below the

standard quantum limit. By means of a simple integration of the Heisenberg equation in presence
of an external force F(t), one gets for the QND operator ._

A ^/_ F(t)X,(t) = Xz(to)-I _ sin tat' dtt (25)
rnw

A sequence of measurement of -_1 will then give as a result a sequence of eigenstates linked to the
value of the external force
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Jl F(t) sin wt', dr'. (26)=  (t0) -

By means of successive measurements it is possible to study the form of F(t) simply inverting (26)

F(r) - sin _t *="

The singularities for t = rt_r/w corresponds to a null information on the force acting on the
harmonic oscillator on some instants of time. This can be compensated by using a second osdllator

(i.e. a second antenna) with complex amplitude _ + i_ which has eigenvalues

_tl F(t) sin _t', dr' (28)((t,r)=((to)-

here obviously the singularities are in t,, = (2n + 1):r/2w.

4 QND quasi-stroboscopic scheme for coupled harmonic

oscillators

The current generation of gravitational wave antenna of the Weber type operates by means of

an antenna coupled to a small mechanical resonator. In such a way the energy deposited in the

antenna by a gravitational wave burst is transferred to the transducer. In the case of an ideal

transfer of energy, i.e. with both a perfect tuning of the two uncoupled frequencies and negligible

dissipations during the beating period, the amplitude of the oscillations in the transducer is larger

than that in the antenna by a factor equal to the square root of the ratio of the equivalent masses
of the two resonators. All the detectors operating in coincidence as described in [6] were equipped

with a resonant transducer and the same is also planned for the third generation of gravitational

wave antennas cooled at 50 mK now under development. It is therefore important to generalize

the previous considerations on the QND schemes to this situation, as already outlined in [20]. As

we have seen, it is possible to schematize the gravitational cryogenic antenna and the resonant

transducer with two coupled harmonic oscillator having masses respectively rnffi and rn_ (with

rn_ << 1). The two coupled mechanicals oscillators are described by the Lagrangian# = rrtx

1., 1., 1 , , 1 _ /_) 1 (_¢/) (29)

where the normalized coordinates _ = v/'m-_z and 1/= x/'_-_l/have been introduced, together with

the matrices T and V

(1 0)T= 0 1

2 2

/.

(30)

(31)
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As we have already cited to obtain the maximum coupling the two oscillators should have the

same frequency wffi = wu = w, i.e. they should be tuned. In this case one finds the solutions

w+u : Wo2 1+_± I+ (32)

which we can write more easily introducing a± = _ ± _p (I + 4) obtaining w_ = Wo2(1+ a+).

The normal coordinates E+ corresponding to the eigenfrequencies w:_ are linked to the physical

coordinates by means of an orthogonal matrix

/(,.,..,.+2 _(_++_ "'/-m-_"
Let us introduce the complex amplitudes of the normal modes

which satisfy the relations

X'_ = ÷ cosw+t - _ sinw±t
(34)

[_-+,_+] = i___h [__,_f]-- i/i (35)
w+ w_

a6 well as

[_h(t),£_,(t+ ,-)]= [._r.,(t),,_r.,(t+ ,)] = 0.

We can also rewrite the Hamiltonlan H of the system as

(36)

_= _[(x?)' + (_,+)'1+-_[(x,-) + (_;)']. (37)
The commutator [_(t_- SE),_(t + r)- $(t + ,)] is calculated by writing _ and k in terms of the

complex amplitudes X_=,X_2 of the normal modes which are integral of the motion and by using

the same computation procedure which led us to formula (13). Using (35),(36) we obtain, finally,
the expression

w2 ]
ih [W_sinw+r + -sinw_r

[_)(t) - _(t),!)(t + r) - _(t + r)] = Mw#_ [w= _-/ "

This quantity becomes, in the limit # _ 0

(38)

[_(t)- _(t),_(t + _)- _(t + _)] =
ih ,,g + _2_

2Tnlt¢,_ (,_2
sin_r coswnr (39)
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where_ = _ = _v/-_-_ --* w and cab = _2 = _VZfi" The (38) and (39) show that
the commutator of the operator _ - _ with itself at different times is time dependent and it

has a characteristic beating behaviour. We have seen that in a quasi-stroboscopic scheme for

a single harmonic oscillator the commutator is zero each half a period of the motion and the

stroboscopicity is defined whenever measurements with a duration small compared to the period

of the motion are performed. This implies a measurement time, a duty cycle, very small and a

consequent small value of the effective electromechanical quality factor. In the case of a double
harmonic oscillator this drawback is less pronounced because the commutativity is assured every

half of a beating period for a time of the order of a period of osdllation. Thus quasi-stroboscopic

QND schemes already proposed as a generalization of the conventional BAE scheme based upon

a continuous monitoring [17] and already tested on a single osdllator system [21] can be adapted

to this situation. In the case of a single harmonic oscillator the duration of the measurement must

be small compared to the period of the harmonic osdLlator T, in the case of two coupled harmonic
osdllators this duration is of the order of some periods of the uncoupled osdllator, although the

interaction must be turned on every quarter of a beating period. The interaction Hamiltonian for

a two coupled harmonic osdLlator system is therefore

Eo nT_ AT nTB __H' = T _[8(t 5 + -) + 8(-t + -_ + )](_ - _)_ (40)
n

where Ts is the beat period and AT is of the order of the period of a single harmonic osdllator.

Practical values are TB -- 40ms andAT _ 2ms. To calculate the error in a quasi stroboscopic

measurement of the operator _ - _ performed for instance in the interval _Blr _ , ,2;:_B+___z 2_r we

identify the conjugate observable of _-_ as the quantity (15v - 16ffi)/2. This last can be expressed in

terms of the components of the amplitudes of the normal modes and the commutator at different

times of the two conjugate observables is obtained as

1 ih( a_-I a+-i
[_(t + r) - &(t + v),_(i_(t)-/_ffi(t))] = -_- c__(a_ + 2) cos w+r + c_+(a+ + 2) cos ca_v). (41)

When 7"= 0 the commutator relationship (41) is written as

1
[_(t) - _(t), _(l_v(t) -/_,(t))] = itl (42)

which is exactly the quantity [_(t),-_lbffi(t)] + [_(t),-_i_y(t)].

By expressing ca+ and ca_ in terms of the frequencies _ and cab and substituting in a± their

expressions in terms of/z we get finally

1
[i(t + 7-) - _(t + ,'), _(_(t) - g,(t))] = in(cos ,_,- cos ca=,-

1 + # sin_rsin cas_') (43)

_p(p + 4)

2_" _" 271"

If the measurement is performed in the interval [_s ca, _ ÷ -_]' we can approximate

cos cast __ 1 and sin cast -_ cast - _ and a measurement of infinitesimal duration t' performed
in such interval and with a precision A[_(t) - _(t)] allows to evaluate the error introduced in the

measurement process on the uncertainty product as
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1 h 1+#
A[_(t + t')- _(t + t')]- _A[/i_(t)- i_.(t)] _ _[cos _t'- sin 5vt'(wet'- 2) j

V/#(# + 4)
(44)

from which, under the approximation for the trigonometric functions, we obtain

1 h

2A[_(t) - _(t)]" (45)

The error due to a measurement of duration t* on the operator l) - z is calculated starting from
Aid(t)- _(t)] because

i +£ sin_t'(_Bt'- 2)1zx[i(t+ t') - _(t + t')] _ a[i(t) - _(t)]lcos_t' v/_, + 4)

If the notation now is changed defining a, = A[_(t) - _(t)] we have

-_[cos ff_t'

and in the limit of t' ---*0 we get

(46)

1+# ,g

sin wt'l_t'- _1] (47)
y/#(# + 4)

dAt 1 + p _

at - V/p(p + 4) 2 "A' (48)

from which, by integrating, we obtain the error on a measurement performed around t = a"
_--/B as

z'(# + 1) _r]. (49)
A[_(t + r) - _:(t + r)] _ Aid(t)- x(t)]exP[2"/U(Pv, + 4)

For instance, for a choice t = [ r 2r 4r_2-wB -_ ] and r = -_- we obtain

2_ -- " _ 2,_)] _. _) . _ L_)] 2_0,+1)All) ( + 27r)w- z(2-_B + w _ A[Y(2 5J - z(_s 5J exp[ V/p(p + 4) ] (50)

A drawback of these measurement scheme appears when # is very small and the frequency of the

measurement is consequently very small too. To overcome this problem a multimode configuration
can be used. In this case the commutator at different times more frequently approaches zero when

compared to a two-mode configuration of the same final mass ratio. A more detailed description
of this point can be found in [22].

5 QND continuous schemes for coupled harmonic oscil-
lators

Also QND continuous schemes can be used for coupled harmonic oscillator. A first example is

given by a monitoring of the complex amplitude of the physical modes i and _ [23]. Introducing
the complex amplitudes such that
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we can rewrite the Hamiltonian in terms of _ and _ and, by writing the Heisenberg equations

for the time evolution of _, we obtain

(52)= -_v,_ sin tout.
dt

The complex amplitude is not a constant of the motion. However it is easily proved that it is a

QND observable. A relationship valid for an infinitesimal time 1" is derived for the time evolution

+ r)= sinto,tr (53)

and this implies the commutation rule for _ at different times

[_(t + r), _(t)] = [_(t) - tou $ sin tout, _1 = 0 (54)

because of the commutativity between YI and _. Thus _ (or _, for which similar relationships

hold) is a QND observable, although it is not conserved during the motion. From (52) the

coordinate $ is inferred as

(55)=
tou sintovt dt

apart from the singularities already discussed appem'ing when sin w_t = 0. When a classical force

F(t) acts on the system the Hnmiltonian operator .is modified aJad the added term is

H_ = -(_ + 3) FCt) (56)

obtaining, in this case, the following expression for the time evolution of

dY1 = _toys sin to_t sin to_t F( t )" (57)
dt m¢_

However the effect of the external force to be detected, in our case of geometrical nature, on

the transducer is negligible compared to the effect on the antenna, due to the smaller size of the

transducer. Thus Ht _- -_F(t) and the second term in (57) can be omitted. In this reasonable

approximation, i.e. F(t) acting only on the antenna, _ is also QNDF, i.e. QND also in presence of
an external force. To obtain a continuous monitoring of _ we need a QND interaction Hamiltonian

of the type

H, = Eocos to, t cos to_ t(_ - _)_ (58)

that is a coherent superposition of pumpings at frequencies to, + to_. Analogous considerations

can be made for the monitoring of the real or the imaginary part of the complex amplitude of

one normal mode expressed in terms of the physical modes through (33). The advantage in this

case is that the quantity X-_I+ is a constant of the motion and its monitoring is the standard one
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already discussed for a single harmonic osdUator. This is obtained by means of the interaction
Hamiltonian

A

Hi = lc0cos,_.t cos_+ t (_ - _)_ (59)
and the analogous for monitoring a component of the complex amplitude X{ by substituting w+

with w_. One drawback of monitoring one component of the complex amplitude of the normal

modes is that the information on the other mode is lost, and it is crucial to have informations on

both the modes to take full advantage of the resonant schemes.

An alternative scheme suggested by the time dependence of the commutator consists in a

monitoring corresponding to the foUowing Hamiltonian:

A

H, = E0cos_, t cos_ t cos_v t (_ - s)_. (60)
This coupling allows to infer informations on both the modes because, upon Eltering around w, in

such a way to neglect terms oscillating at w, + 2_B, _, + 2_, _, + 2(_ + wa), it can be rewritten
as

HiA= TE°cos_. t(_+_+ + #_._;-)_ (6Z)

where/3± are coefficients related to the coefficients of the matrix (33) and are expressed as

_ _(1+_)!z P-'/=I)
/z

,/#,.(1 + _: (62)_ = [,-.(_- + _ T _))]-_/'(

which, in the limit of p --, 0, goes to/9+ = :FI/vr'Z_-_=/_. In this limit the interaction Hami]tonian

assumes a simple form
E0

H, = _ cos_,t(2_* - 2i-)_ (63)
which contains informations on both the normal modes and in such a way that QND measure-

meats can be performed on both the modes. In all the three cases here discussed the selectivity

requirements on the electrical circuit are more stringent than in the case of a single harmonic os-

cillator, because now the electrical osdllator must have a quality factor Q, >> w,/_s in order to

avoid detection of sidebands contributions. The interaction Hamiltonian (60) can also be written
as

Hi_= -_E°cos w,, t(cosw+t+cos__t)(_ - _)_. (64)

With the analogy to the multipump scheme discussed for a single oscillator we can imagine a

interaction Hamiltonian of which (64) is only the first order approximation

tt,"Tcos_,t[__,cos(Zn+l)_+¢+ _--_cos (2m + 11__ t](_ - _)0 (65)
n=O m=O

which corresponds, in the limit of a stroboscopic pumping of the kind

+oo +oo

g= Eo (_'_(-1)"6(t- n_r)+ _(-I)_6(t - nTr-- _)](_- _),_ (66)
¢t=O 0,3 m=O
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It is interesting to observe that after a time equal to TB/2 both the trains of Dirac distributions

will coincide, i.e. Ts/2 = rt_r/w+ = rn_rflv_ where n = rn + 2 (the fact that rt and m have the

same parity assures the same sign of the corresponding Dirac pulses at those times). So each half

a period the two trains are summed and the quasi-stroboscopic scheme discussed in the previous
section can be considered as the first order approximation of the stroboscopic scheme resulting

from (66). This completes the connection between the multipump continuous schemes and the

quasi-stroboscopic scheme introduced in the previous section.

6 Conclusions

We have shown the scenario under which quantum non-demolition measurement schemes should

be demanded for detecting gravitational waves in the generation of resonant gravitational wave

antennae currently under development, particularly ultra-low temperature resonant bar antennae

such as the Rome, Legnaxo and Stanford ones which will work at a thermodynamical temperature

of -_ 50 inK. Both QND stroboscopic and continuous schemes have been discussed as well as their

link and practical schemes to implement them. However the interest of quantum non-demolition
measurement schemes goes beyond the only detectability of the gravitational radiation, involving

also the quantum measurement theory and the predictions of it for repeated measurements on

a single macroscopic oscillator. Feasibility of the generation of macroscopically distinguishable

states using a QND scheme has been recently discussed in quantum optics [24], [25]. It has been

pointed out that the generation of Schroedinger cats. using micromechanical oscillators with quan-

tum limited sensitivity is also feasible [26]. Unlike the optical case, in which the QND measurement

is obtained with a frequency mL,dng due to non-linear susceptivity, the QND measurement for the

mechanical case is obtained using an electric field which can be large as one wants. Dissipations

in a mechanical osdllator also are quite low compared to electrical or optical oscillators. More-

over, analogies to the production and the detection of squeezed states in optics [27] have been

shown. We want to point out a fundamental difference between the two topics: in the case of the

optical squeezed states we deal with a quantized field in which its quantum nature is responsible
for the limitation to the sensitivity, in the case of quantum non-demolltion measurements on a

harmonic oscillator the eventual force field which has to be monitored is considered classical and

the fundamental limitations comes from the process of the measurement and the interaction of

the meter with the external environment. What is squeezed in a QND measure is the back-action

noise generated by the amplifier and the squeezing is made in a phase orthogonal to the one which

is detected [21]. Despite of this conceptual difference the formalisms to deal with QND strategies
are similar to the one used to deal with squeezed states. This analogy is so narrow that also multi-

pump [28], [29] and quasi-stroboscopic [30], [31] schemes have been indipendently and successfully

implemented for squeezing the light. Further thoughts on the analogies and the differences be-

tween quantum non-demolition measurements on a harmonic oscillator and the squeezing of the

quantum noise can give rise to a better understanding on the same interpretation of Quantum

Electrodynamics and the operative origin of the vacuum fluctuations of the field in terms of a

measurement process [32], an aspect of this fascinating and successful theory which has been very

little investigated until now.
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Abstract

It is discussed that the metric induced on the quantum evolution
submanifoid of the projective Hilbert space describes the uncertainties
and correlations of the operators generating the quantum-state evolu-
tion, and exhibits the inherently-quantized geometry.

Introduction

Berry's phase and its extensions [1-6] are the striking phenomena that show

how the law of quantum-state evolution is geometric. It is determined by

the evolution curve in the projective HUbert space P, and is independent of

a specific choice of the Hamiltonian as long as it gives that projected curve
in P.

The phase difference due to the 1-parameter (A) evolution is seen in the

first-order term of d)_ in the transition amplitude (¢(A)I,p()_ + d,_)). On

the other hand, geometry of the evolution curve C in P is characterized by

the Fubini-Study metric [7,8] induced on C: ds _ = 1 - + dA))l 2.

(Here and hereafter, the state vectors are assumed to be normalized.)

Recently, Anandan and Aharonov [9,10] have obtained a remarkable re-

sult that if the 1-parameter evolution is generated by a Hermitian ope-

rator A, then the relation ds = AAd)_ holds, where AA is the variance

(AA) 2 = (¢1A21¢) - (¢IAI¢)L This means that the "velocity" of evolution

along C is just equal to the uncertainty of the generator of that evolution.
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The purpose of this paper is to report briefly the further results recently

obtained in the study of geometric aspects of quantum evolution. More

detailed discussions will be found in Ref. [11].

2 Geometry of Uncertainty and Correlation

There axe a variety of 1-paxameter evolutions for a generic quantum state.

Each evolution gives each curve in the projective Hilbert space P. It is

preferable to consider the multi-dimensional submanifold A/"of P, in which
various evolution curves axe embedded..M is properly called here the quan-

tum evolution submanifold. If a given state is paxametrized by a set of n

real numbers a = (a l, a2,..., an), then a local coordinate of Af is identified

with a. In this case, the metric induced on A/"is given by

=- 1- I(¢(a)lq,("+ da))l:. (1)

If the evolution of the state I¢(a)) is assumed to be generated by n inde-

pendent Hermitian operators {Ai(a))i=l.2 .....n, that is,

- iO,l¢(a)) = A_(a)l¢(a)) (i = 1, 2,..., n), (2)

then Eq.(1) has the form ds 2 = gij(a)daida j, where

1
gij(a) = _(¢(a)lai(a)A_(a)+ A_(a)A,(a)l¢(a))

_( ¢(a )la,(,;,)lO( a ))(,l,(a )lai(a )t¢(,_,)), (3)

provided that 0i = tg/Oa i and the summation convention is understood for

the repeated upper and lower indices. Thus, one can see that the diago-

nal 9, and off-diagonal glj (i _ j) components axe respectively equal to
the uncertainties and correlations of the operators generating the evolution

[lx,121.
The metric (3) defines the Riemannian structure of A;. The metric-

compatible connection can be expressed as a simple quantum expectation

value [11]:

rlij = I(¢I[O_Bj + 0jBi- i(B_Bj + BjBi)]B_

+Bk[aiBj + OjBi + i(B_Bj + BjB_)]I_I,), (4)
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where the operators B_ axe given by B_(a) = A_(a) - (_(a)lA+(_)l_b(a)).

With this expression, it is straightforward to ascertain the Riemannian par-

Mlelism: _Tkg+j = i)_gij - rhikghj - rhjkgih = O.

Geometric aspects of the uncertainties and correlations can be seen best

in the squeezed state example. The single-mode two-photon squeezed state

[13] is given by [z)_ = D(z)S(_)]O I = exp(za t - z°a)exp[l(_a t_ - _°a2)][0).

a t and a axe the usual bosonic creation and annihilation operators. [0) is

the vacuum state annihilated by a. D(z) and S(_) axe called Glauber's

displacement operator and the squeeze operator, respectively. The displa-

cement operator gives a correspondence relation between relevant operators

and their classical counterparts in the phase space (z,p) with the paxame-

trization z - (x + ip)/v_, x and p are respectively equal to the expectation

values of the position X - (a + at)/v_ and momentum P - (a - at)/iv/2

operators in the squeezed state.

Consider the translational evolution: [z(:L p))_ ---* [(z + dz)(x + dx, p +

dp))_, where the squeeze parameter is fixed. From the transition amplitude,

the metric ds _ = 1- [_ (z[z + dzl{[ 2 is directly calculated as

1 1
d82 = _(cosh2r - sinh2r cos2_b)dz2+ _(cosh2r + sinh2r cos2_b)dp2

1

+2 × _ sinh 2r sin 2#bdxdp, (5)

provided the parametrization _ = re -2i_ (0 _< r, 0 _< _ < 2_r) has been
used. This is the Euclidean metric in a non-Caxtesian coordinate. On the

other hand, the above translational evolution is generated by the following

- = A=lz) ,

operators:

Ax = -P + p (6a)

- i Iz)¢ = A,iz)¢, A, = X - 7" (6b)

The uncertainties and correlations in the squeezed state axe the familiar
ones:

1
(AA=) 2 = (AP) 2 = _(cosh2r- sinh2r cos2_b),

(AA_)2 (AX) 2 I= = _(cosh 2r + sinh 2r cos 2_),

1

C(A=, Ap) - -C(X, P) - _ sinh 2r sin 2_b,

(7a)

(7b)

(?c)
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where C(A, B) = C(B, A) = ½(¢]AB + BAle) - (¢[AI_b)(¢IBI¢).These

quantitiesinfactgivethe components of the metric(5).

The effectsof squeezingas the expansion,contraction,and rotationin

the phase space has been explored geometricallyby the methods of phase-

spacerepresentationsofquantum theoryintheliterature[14,15].The metric

(5)describesthose effectsin a peculiarrepresentation-freemanner.

Since the metricisgiven in terms ofa referencestate,itcarriessome of

quantum numbers characterizingthatstate.Accordingly,A/"possessesthe

quantizedstructure,in general.In what follows,such examples are given.

The firstexample isthe displacednumber state[16]:]z),,= D(z)in),

where [n) - (n!)-l/2(at)n[O)(n = 0,1,2,...).Consider the translational

evolution]z(z,p))_----+]z(z + dz,p + dp))n.The metriciscalculatedas

= (n + 2)(d=2+ds2 dp_). (s)

Therefore,the phase space locallyidentified withA/"associatedwith the evo-

lutionofthe displacednumber statehas a Euclideanmetricwith a quantized

conformalfactor.

Another example is the squeezed number state [17]: [ _),_= S(_) [

n) (n = 0,1,2,...).The squeeze parameter isagain paxametrized as _ =
re-2_. Consider the evolutionI_(r,_#)),_----_I(_+ d_)(r+ dr,_b+ d_))n..A/"

islocallylabelledby (r,_b).The metricisthen found to be

ds2 = 1(n2 + n + 1)(dr 2 + sinh 2 2rddp2). (9)

This is the metric of the Lobachevsky space [18] with a quantized conforma]

factor. Its Gaussian curvature [18] is also quantized as K - -8/(n 2 -t-n + 1).

It is interesting to see that the curvature vanishes in the "classical limit"

n--tOO,

3 Conclusions

It has been demonstrated that the Fubini-Study metric induced on the quan-

tum evolution submanifold N" is completely given by the uncertainties and

correlations of the operators generating various evolutions, and A: admits

the quantized Riema_nnian structure.
In the above simple examples, only the conformaI factors of the metrics

are quantized. This may be paxtiaUy due to the mathematical fact [18]

that all two-dimensionM spaces axe conformally equivalent to the Euclidean

space. In general, each component of the metric is individually quaatized.
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Abstract

Bohmian mechanics is a deterministic theory of point particles in motion. While avoid-

ing all the paradoxes of nonrelativistic quantum mechanics, it yields the quantum formalism

itself--especially the role of self-adjoint operators--as a macroscopic measurement formal-

ism. As an "application" it is shown that much of the confusion connected with the phase

operator for the electromagnetic field arises from a misunderstanding of the role of operators

in quantum theory.

1 Introduction

We would like to apologize for the bad title: we will try to explain why the casual use of the

words "observables" and "measurements," which are on John Bell's list of bad words in his article

"Against Measurement"[1], "measurement" being the worst of all, leads to much unnecessary

confusion concerning the meaning of the quantum formalism. But first we introduce an even

worse word: following Bell we will use the abbreviation "FAPP" for "for all practical purposes."

Quantum mechanics suffers from its irreducible reference to "observers" and "measurements":

We have, for example, the fundamental rule that I¢(q)J2dq is the probability of observing a particle

in dq about q in a position measurement. This rule entails 1) indeterminism, because it deals

with probabilities on a fundamental level; 2) subjectivity, because it refers to an observer and

3) vagueness, because the notion of measurement is vague. It has repeatedly been emphasized,

however, that these are inescapable components of modern physics. The following reasons are

frequently cited:

• It is meaningless to talk about trajectories of particles, because the uncertainty principle

doesn't allow for a simultaneous measurement of position and velocity (Heisenberg).

• It leads to contradictions even to think that a particle might have a well-defined position
and velocity at the same time.

• It is mathematically impossible to add "hidden variables" (e.g., actual positions) as a further

specification of the quantum state (yon Neumann [2]).

This is wrong! In fact it is almost trivially wrong: A counterexample has existed for more

than four decades, namely Bohm's quantum theory [3], which we prefer to call "Bohmian me-

chanics." By trying the obvious, namely by seeking a motion of particles in space compatible
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with SchrSdinger's equation, one is led directly to Bohmian mechanics. This theory is clear, ob-

jective and deterministic. The entire quantum formalism--operators as observables, randomness,

etc.--emerges as a measurement formalism, or more precisely, as a phenomenological formalism

for describing measurement-like experiments. Thus one arrives at an explanation for the quantum

formalism rather than at an alternative theory which might give rise to "new predictions." We

will argue, however, that Bohmian mechanics nonetheless refutes most of the approaches to the

problem of the phase operator in quantum optics. It turns out, in fact, that there is no problem!

But let us first give a brief review of nonrelativistic quantum mechanics.

-2 The Quantum Formalism

• State: The state of an N-particle system is given by a vector ¢ E 7"/= L2(]R3N).

• Dynamics: The time evolution is given by the unitary evolution Ct := e-_Ht¢o, which is

equivalent to SchrSdingers equation ih_¢ = He.

Observables: The observables of the system are given by self-adjoint operators on _. To find

operators corresponding to classical observables one replaces the classical Poisson brackets

by the commutator: {, } _ _[, ].

Measurements: In a measurement of an operator A = ]_ Aila,>(ai] on a system in the state

¢ one may find only one of its eigenvalues )_, with probability prob(i) = I<a l¢)l=. After the

measurement the system is in the corresponding eigenstate ]ai> (collapse rule).

3 The Fundamental Ambiguity

There can be no cioubt that the predictions of quantum mechanics are of an amazing accuracy.

But neither this nor the mathematical simplicity and beauty of unitary evolution in Hilbert space

should hide the fact that a fundamental ambiguity enters at the very point where mathematics

makes contact with reality: Measurements! Measurements of what--if the wave function _ is

really the complete state? And as J.S Bell has said [1]:

It would seem that the theory is exclusively concerned about "results of measurement",

and has nothing to say about anything else. What exactly qualifies some physical

systems to play the role of "measurer"? Was the wave function of the world waiting to

jump for thousands of millions of years until a single-celled living creature appeared?

Or did it have to wait a little longer, for some better qualified system ... with a Ph.D.?

This fundamental ambiguity, connected with "measurement" and collapse is also responsible

for the familiar paradoxes associated with orthodox quantum mechanics such as SchrSdinger's cat

paradox or the measurement problem. In the following we shall show that these difficulties simply

evaporate by giving up the unquestioned assumption that ¢ alone provides a complete description

of the state of a system. Bohmian mechanics will permit an understanding of quantum phenomena

in a language everybody is using anyway: a th_ry of particles moving in space.
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4 Bohmian Mechanics

State: (q, ¢), q E ]R 3N, _D E L2(]R3N), i.e., the state of an N-particle system is given by its

wave function and the actual positions q = (ql,..., qN) of the particles which the theory is

about.

• Dynamics: The time evolution is given by a first-order differential equation for the positions

of the particles, with ¢ evolving in the usual way:

d h VkCt

_qk(t) = v_'(q(t))= _--_-kIm-_t (q(t))

0 N h2

ih-_¢(x,t) = (- _ _-_mkAk + V(z))¢(z,t)
k=l

(1)

(2)

(Note that the role of ¢ is to generate a Galilean covariant vector field on configuration

space which guides the motion, and this leads directly to (1).)

This is all we need! It is a crucial property of this dynamical system that it conserves the dis-

tribution p = ]_b]2, which we call the equivariant measure. The quantum formalism, randomness,

Born's rule--"If a system has wave function ¢ then its configuration has distribution ]¢]2"--and

all the rest emerges from a detailed analysis of these equations. No further axioms about measure-

ments are necessary nor is there room for any such axioms. That this is so was already sketched

by David Bohm in his 1952 paper [3]; a more detailed analysis can be found in [4]. Let us give a

summary of the main crucial features of Bohmian mechanics: In addition to being clear, objec-

tive and deterministic it also agrees with experiment. There is, however no need for collapse, no

measurement paradox and no need to split the world into system and observer.

Let us look at some simple examples.

4.1 Example: the motion of a Gaussian wave packet

Consider the time dependent one-particle wave function Ct(x) of a freely evolving Gaussian, which

starts at the origin with velocity Vo and width a. From (1) one obtains the velocity vector field and

easily solves the differential equation for the positions, obtaining the solution flow q_q0 (t) := q(t) =

rot + q0_/1 + t_/a 4. Note that the motion is clearly non-Newtonian. Only in the limit of large

times, the particles move with constant velocity v_(qo) := vo+qo/a 2, which means v_ is a random

variable with a Caussian distribution, centered around v0. Now let us define the momentum as the

random variable p := rnv_, which can be approximately determined by measuring the position

q(T) at a large time T: p ,_ mq(T)/T. Clearly the probability distribution for p is exactly the same

as the one obtained by projecting the initial state on the eigenstates of the momentum operator.

It can in fact be shown quite generally that for an arbitrary freely evolving wave function Ct(z),

p is well defined, with distribution given in the usual way by the Fourier transform i o(p)l 2. Note

that p is not at all the same as the "classical momentum" giyen by m times the actual velocity.
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4.2 Example: the two-slit experiment in Bohmian mechanics

The particle passes through either the upper or the lower slit. The interference pattern occurs

because the wave function guiding the particle develops this pattern. Closing one slit will lead

to a different wave function and therefore to different paths and a different----or no--pattern.

The randomness observed in the experiment is due to uncertainty in the initial conditions, as in

classical chaotic systems.

5 Measurements/Experiments

Let us sketch an analysis of measurement-like experiments; for a much more detailed analysis see

[5]. We describe the combined evolution of a composite system consisting of System ® Apparatus.

Let the initial state of the apparatus be ¢0 and let ¢i denote the orthogonal apparatus wave

functions corresponding to the possible outcomes. (Think of separated wave packets corresponding

to possible pointer positions or patterns of ink spots on a computer printout--which may, for

example, register detection by a photocounter.) We assign the values )_i to the "pointer states"

¢i. It turns out [5] that if an experiment is repeatable then in the simplest case there exists a

basis {l¢i)} of the system Hilbert space such that under the interaction with the apparatus

I¢/)®I¢0)-* l¢,>, I¢,>. (3)

(Note that the unitarity of the time evolution together with the orthogonality of the I¢_) forces

the orthogonality of the ]q)i).)

An arbitrary state ]¢) = _cil¢,) may be expressed in this basis, with c, = (¢i]¢). The

linearity of the time evolution implies that

I¢>, I¢0)-* c,1¢,>® I¢,). (4)

Thus using Born's rule--which we remind you is a consequence of Bohmian mechanics--we

find that [(¢_1¢)12 is the probability to find the outcome Ai.

Let us make a remark on the "measurement problem": Certainly the wave function is in a

superposition after interaction with a superposition of eigenstates, but the complete state is given

by the wave function and the actual configuration. The trajectory will end up in but one of the

different disjoint wave packets, and thus the dynamics does not lead to a macroscopic superposition

of outcomes, as would be the case if we had only a Schrbdinger wave function. Moreover, for the

further evolution the influence of the other wave packets turns out to be FAPP negligible. In this

way collapse is merely a matter of convenience.

Now let us make contact with the usual operator formalism. Define the self-adjoint operator

A := __, A,1¢,)(¢il. (5)

With this operator we can calculate the statistics for the outcome in the usual way.

The fact that a self-adjoint operator on the system Hilbert space alone suffices to describe the

full statistics for the outcome of the experiment supports the misleading idea that some preexisting

properties of the system have actually been "measured," the apparatus playing a purely passive

234



role. That this is not generally the case,that we rather haveto regard the result as being the
joint product of the system and the apparatus, has been emphasized by Bohr)

For the analysis of more general experiments it is convenient to introduce the following no-

tation. The map A _ P(A) := _]_,_t, 1¢_){¢il, from subsets of IR to projectors on 7-l, is what

mathematicians call a projection-valued measure (PV). 2 With this notation (¢]P(A)I¢) is the

probability to find the result in the set A. Note that A = f )_P(d.X).

It turns out [5] that if one doesn't assume repeatability a positive-operator-valued measure

(POV) O(A) plays the role of P(A). These operators need not be projectors, i.e., it may be that

O(A) 2 _ O(A). The probability of finding the result in the set A is given by {_b[O(A)[¢). Define

the self-adjoint operator B := E )t_O()_) (= f )_O(d_)). Thus the expected value of the outcome

is given by (¢1B1¢): Note that knowledge of B alone does not provide complete information

about the statistics of the outcome, as it does for repeatable experiments, because in general

B" -_ _ )_O()q). Thus for nonrepeatable measurements it is not possible to cast the information

about the entire statistics into a bilinear form involving a single self-adjoint operator.

POV's have been proposed as a means of providing a generalized description for "fuzzy

measurements"[6]. Note, however, that POV's arise naturally from a measurement analysis in

Bohmian mechanics, in which there is no "intrinsic fuzziness."

6 The Phase Problem in Quantum Optics

6.1 A brief history of the phase operator

For the following discussion it will be sufficient to focus on a single mode of the electromagnetic

field, which is well-known to be equivalent to an one-dimensional harmonic oscillator. We will

use the standard notation a, a t for the annihilation and creation operators, and N := ata for the

number operator.

For a classical harmonic oscillator the phase is a respectable observable. What is its quantum

mechanical counterpart? We give a short sketch of some of the main approaches to the "phase

problem." A detailed discussion can be found in [7].

• 1927 Dirac [8]: A polar decomposition of the creation and annihilation operator into ei#v/-ff :=

a, which seems to imply v/-Ne -i# = a t, "yields" [O, N] = -i. Dirac noticed himself that this

definition leads to contradictions, e.g., if one takes the expectation value of the commutator

for an energy eigenstate.

• 1964: Susskind and Glogower [9] prove that there is no way to define an unitary operator U

with the property Uv/N = a. Therefore there can be no self-adjoint operator • such that

U = e iv, which explains the flaw in Dirac's ansatz. They conclude that a self-adjoint phase

operator doesn't exist.

1 oo
• 1968: Loudon defines nonorthogonal "phase eigenstates" [10]: ]¢):= y/_2_,_=oe'"tlnl.

1Position measurements are exceptions. Position plays a distinguished role in Bohmian mechanics, as it does in
the real world.

2p2 = p = pt; P(0) = 0, P(fl) = 1; P(UAi) = _[_P(Ai) for mutually disjoint sets Ai.
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• 1976: Ldvy-Leblond, usingthe London states,constructsa POV [11]: A _ fa d¢1¢)(¢1, for

A any subset of [-Tr, 7r].

• 1986: Barnett and Pegg introduce "negative-photon-number" states and define the unitary

operator [12]: e I¢ := E__oo ln)(n + 11.

• 1988: Barnett and Pegg suggest a limiting procedure, based on the definition of phase

eigenstates in a finite-dimensional Hilbert space [13]. I¢,_) := _ _=0ei'n¢"lm), en :=

¢0 + 27r/(s + 1)n,n = O...s, _, := Z_=0 enlen)(¢,_l. The limit s --* oc is then taken at the

end of any calculation.

• 1991: Mandel proposes an operational approach to the quantum phase [14]. He suggests an

experiment, together with some procedure to derive quantities he calls the "cosine and sine

of the phase difference." He finds disagreement with the predictions based on the (second)

Barnett-Pegg operator or the Susskind-Glogower operator.

6.2 Discussion of the different approaches

Let us first address two questions which might now be irritating the reader: 1) How can it be

the case that we have a nonexistence proof and several explicit constructions of self-adjoint phase

operators at the same time? 2) What exactly is going on in this peculiar (hi)story?

The answer to the first question is easy. The nonexistence proof of Susskind and Glogov,;er

tells us that there is no polar decomposition of the annihilation operator into a positive and a

unitary operator. None of the "phase operators" suggested by Barnett and Pegg provide such a

decomposition (if they serve any purpose at all, it is certainly not for this). But how can one

decide who is right? And, perhaps more to the point, what is the physical re!evanceof all these

operators?

This leads us to the second question. We are often told that for every classical: observable

there exists a corresponding self-adjoint operator. Recipes such as "replace the classical Poisson

brackets by the commutator" are used as a guide to postulate the correct commutation relations.

This seems to work perfectly well for position and momentum but not for the phase. But so what?

Why should it?

We have sketched in (4.1) how to describe "momentum measurements" without invoking postu-

lated commutation relations. The analysis of the experiment shows that the momentum operator

as a multiplication operator in Fourier space yields the correct statistics. Note, however, that it

can be shown that for the actual ve!ocity_ertainly a classical observable--there is neither a cor-

responding operator nor a POV! This simply means that there is no experiment which measures

the actual velocity in the sense of section (5).

The POV proposed by Ldvy-Leb!ond is an explicit example how to describe an abstract phase

"measurement" without a self-adjoint operator. In order to decide which is the "right" description

for the phase one would have to ask for the experiment which an operator or POV is supposed to

describe. 3 But what is the physical relevance of pursuing the question as to which experiments

are described by a given operator? Note, however, that for a given experiment, say Mandel's

3This has been emphasized by LSvy-Leblond. His focus, however, was more on advertising a more general

formalism for describing experiments than on applying it to a special example.
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experiment, it is well-knownhow to calculatethe photocountstatistics, which is all that is relevant.
There is no room left for postulating operators or eigenstates. An analysis of the experiment at

hand shows what quantities are actually "measured" and which mathematical objects, be they

operators or POV's or what have you, simplify the description of the predictions. And, as is

also stressed by Mandel, different experiments yield different operators. There is no unique phase

operator, nor do we need one. In other words: There is no problem!

7 Conclusion

We end by quoting Bell one last time [15]:

..... in physics the only observations we must consider are position observations, if

only the positions of instrument pointers. It is a great merit of the de Broglie-Bohm

picture to force us to consider this fact. If you make axioms, rather than definitions and

theorems, about the "measurement" of anything else, then you commit redundancy

and risk inconsistency.
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UNCERTAINTY RELATIONS, ZERO POINT ENERGY

AND THE LINEAR CANONICAL GROUP
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Abstract

The close relationship between the zero point energy, the uncertainty relations,

coherent states, squeezed states and correlated states for one mode is investigated. This

group-theoretic perspective enables the parametrization and identification of their multimode

generalization. In particular the generalized Schrbdinger-Robertson uncertainty relations are

analyzed. An elementary method of determining the canonical structure of the generalized
correlated states is presented.

1 Introduction

Advances in atomic physics and quantum optics have made it possible to examine and verify

many of the immediate predictions of quantum mechanics. The most celebrated of these is the

Heisenberg [?] uncertainty relation

(iq) 2 (AP) 2 _ (1)

where

(2)

(3)

are the dispersons in the coordinate and momentum variable. The Heisenberg uncertainty relation
in the form

h

Aq. Ap > _ (4)

has been verified in gedanken experiments llke the Heisenberg microscope and in the simple pic-

tures of de Broglie waves.

Since Aq and Ap have different dimensions their individual magnitudes cannot be compared

without choosing units for length and momentum. By a suitable scale change we could scale

them inversely as long as the unit of action is fixed; in this case the change is in the unit

of {mass2/(time) 2} or equally well in the unit of length since action has the dimensions of
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{mass × (length))2/time}. Having fixed any such choice we can talk of the numerical values

of Ap and Aq. Another and earlier result of quantum theory is the existence of zero point energy

[?]. If p and q are canonical operators satisfying the commutation relations

qp-pq=ih (5)

then the "energy" 1 2_(p + w2q 2) has a nonzero minimum value:

1 _wq-ip wq+ip_ hw(P2+w2q2l=w_, V_'-_ J +V>hw/2" (61

Since the first term is non negative, w ata, there is the zeropoint energy hw/2 for the ground state

which is annihilated by the operator

a = (wq + ip)/_. (7)

While the notation is new, the zeropoint energy is as old as quantum theory!

It is well known that there is an immediate connection between the two relations. For every

E(w) = (wq - ip)(wq + ip) > 0 (8)

but this implies

w2{q2) + (p2) + iw(qp- pq)

= w2(q 2) -wh + (p2) >_ O.

Hence the discriminant of this quadratic form should be negative: that is,

(9)

(10)

4 (q2)(p2) >h2. (11)

p = p_ (p) (12)

Noting that the deviations from the mean

Q=q-(q),

also satisfy the canonical commutation relations we, derive

1 h2
(Q2)(p2) >

(13)

which is Heisenberg's uncertainty relation.

We may therefore say that the zeropoint energy relation (6) was not invariant under the linear

canonical transformation

q---_Q=q-(q) (14)

p----_ P=p-(p)
(15)
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nor under

q----+Q=w½q (16)

p ----+ P = w-½ p. (17)

Imposition of these canonical transformations on the Planck zeropoint energy inequality (6) gives

the Heisenberg uncertainty relation.

But there are yet other linear canonical transformations: the simplest one is

q ---+ qcos 0- w-lpsinO (18)

p -----+wqsin 8 + pcos 0. (19)

While the Planck zeropoint inequality is invariant under this transformation, the Heisenberg

uncertainty relation is not. We get, for any 0,

{ (q2)cos 2/9 + (p2)sin 2/9 _ (qp + pq)cos/9 sin/9}. (20)

h 2

{(q2) sin2/9 + (p2) cos2/9 + (qp+ pq) cos/9 sin/9} >_ -_--. (21)

By an elementary rearrangement this gives

{(q2)+(p2)}2-{((q2)-(p2))cos20-(qp+pq)sin2O}2> li2. (22)

By choosing

we get the inequality

tan 2/9 = -(qp + pq)/{ (q2) _ (p2) } (23)

h 2

(q2)(p2) (qP + Pql2 > -- (24)
4 - 4"

This is the SchrSdinger uncertainty relation provided we replace q and p by q - (q) and p- (p).

It was derived by SchrSdinger and by Robertson[?]. It is stronger than the Heisenberg uncertainty

relations and reduces to it in the special case of "uncorrelated states" for which

((q- (q)) (p-- (p)) + pq) = 0 (25)

or equivalently

(qp+ pq) = (q)(p> + (p>(q). (26)

Even for a harmonic oscillator of frequency v this is not in general true and the correlation

oscillates with twice the frequency. So a Heisenberg minimum uncertainty state is not canonically

invariant. For the harmonic oscillator this has been known for decades. Dodunov and Mafiko

[?] have given a general systematics of such a derivation. The clue to the SchrSdinger-Robertson

generalization of the Heisenberg uncertainty relations is the requirement of invariance under the

group of linear canonical transformations. The state of the minimum energy for the harmonic

oscillator with Hamiltonian
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is the vacuumstate I_) satisfying

with the associated wave function

al@) =0 (28)

¢(X) = (71") -1/4 exp(-x2/2) • (29)

This is a state of the minimum uncertainty. But the minimum uncertainty class is wider, among

these are

alz ) = z lz ) ,z complex number (30)

with wave function

¢(X) = (_)-1/4 exp {--(x -- Z)2/2} • (31)

These are the "coherent states" introduced by Schr6dinger [?] and rediscovered decades later

in the context of quantum optics by Glauber [?] and by Sudarshan [?]. They constitute an

overcomplete family of states in terms of which every state can be expressed in infinitely many

ways; further in terms of them every density matrix can be exhibited as a sum of projectors Iz)(z]

to the coherent states with distribution valued weight [?] and [?].

But the coherent states are not a canonically invariant set. The scale transformation ("squeez-

ing")

q----+exp(w])q, p---,,exp(w-_)p (32)

takes a coherent state into a new class of [?] states which are now called squeezed states. In terms

of a, a t these are the Bogoliubov - Valatin transformations [?]. The unitary transformation

V = exp {-iw½(qp + pq)/2} (33)

accomplishes the squeezing: and thus the one parameter family of overcomplete sets of squeezed

coherent states with wave functions.

¢(x) = exp - r2z) /2} (34)

labelled by 3 parameters w, Re z, Im z. For each w we have an overcomplete family of states.

This is still not general enough. There are still more canonical transformations that can be

performed which will make the state no longer a minimum uncertainty state in the Heisenberg
sense but which would be minimum Schrbdinger uncertainty states. These are the correlated

states whose wave functions have been obtained by Dodunov, Kurmyshev and Mafiko [?]. A

simpler version of this is as a complex Gaussian:

where a,¢3, 3, are complex parameters satisfying (/3 +/3")2/(a + a*) = 3' + 3'*. The imaginary part

of 3' is arbitrary. These therefore contain two complex parameters

1

2_1
(Aq) 2 -

(qp+pq) _ (q)(p} _ (p)(q} _ 2a2 (36)
Ot 1
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Making use of the appealing phasespacepicture introduced by Planck [?] for the quantum
oscillator, the ground state with the zeropointenergy (for w = 1) has a phase space patch which

is a circle with unit radius and an area r which is (27r) times the uncertainty. The mean value of

! (p2 + q2) within this circular disc is ½ which satisfied Planck. So his picture of the ground state2
is a circle of unit radius centered at the orgin. By

P

q

Fig.1. Planck's picture of the minimum energy state and the coherent states. The

coherent states are centered at the point ('_2', z_72")"

displacing the origin to v_ z we get the two parameter (one complex parameter) family of coherent

states.

Squeezed states are obtained by area preserving deformations of the circles into ellipses with

major (minor) axis along the coordinate directions.

0
Fig.2. Planck pictures for squeezed states.
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When the ellipse is tilted we get the more general family of correlated states discussed by

Dodunov, Kurmyshev and Mafiko. Of course this tilting alters things only for the squeezed states

but not for the coherent states.

Fig.3. Planck pictures for correlated states.

2 The Group Theoretic Significance of the States Which

Have Minimum SchrSdinger Uncertainty.

The linear canonical transformations on a pair of canonical variables form a group SL(2, R) _ T(2),

the semidirect product of the special linear group with translations. The minimum uncertainty

state of Planck are invariant under the harmonic S0(2) subgroup of this group; this is its stability

group. So the quotient of the canonical group by the harmonic stability group the correlated

states are in one-to-one correspondence with the elements of the coset of dimension 5 - 1 = 4.

These states are realized by single mode lasers and states with substantial squeezing and/or

correlation have been generated and identified.

It is a natural question to ask whether these notions and correspondences can be generalized

to n-degrees of freedom and multimode laser beams. Group theory can be invoked to get a general

answer to the problem.

3 Multimode Correlated States and Their Group-

Theoretic Relevance

Consider a system of n canonical pairs {q_,pr}, 1 < r,s < n. The homogeneous linear trans-

formations are Sp(2n, R) and the translations are T(2n). So the linear canonical group is the

semidirect product Sp(2n, R) [_ T(2n) with n(2n + 1)+ 2n(2n + 3) parameters. We seek canon-

ical invariants bilinear in the 2n canonical variables and look for the appropriate conditions to

get the minimum generalized Schr6dinger uncertainty. We expect this to come from the ground
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state If_)annililated by all annililation operators (q, + ip,)/v_ and states obtained from [f_) by

the action of the linear canonical group. Since these involve individual harmonic SO(2) elements

for each degree of freedom and any O(n) rotation between the various degrees of freedom the

stability group of If_) has n + _2 = _n(n + 1) parameters, we expect a family with _n(3n + 5)

parameters corresponding to the dimension of the coset space.

Even for small values of n this dimension grows rapidly; we adopt a more elementary method

to obtain the generalized correlated states. We describe in detail the case for n = 2 and remark

that the method generalizes for arbitrary n. The multimode coherent states are 2n parameter

states obtained by T(2n) acting on I_). Let us consider the group Sp(4, R) which is a double

covering of SO(3,2) and has the same Lie algebra of dimension ten. This algebra can be obtained

by the three (p,.p,), the three (q,.q,) and the four ](q,.p, + poqr) which close under commutation.

The generic SO(3,2) algebra has two invariants, one of the second order and one of the fourth

order. If we consider the expectation values of the ten quantities (p,.p,), (q_q,), ½ (q_p, + p,q_)

they furnish a 4 x 4 symmetric non negative matrix which is bounded below by the zero point

energy

en e12 a b )
e12 c d

b d A2 A2

1. Let this matrix be denoted by:

(37)

By suitable harmonic SO(2) transformations in (ql, p_) and in (q2, p2) this can be reduced to the
form

e I 0 a t

0 e2 d

a t e _ fl

b' a' 0

By scale transformations independently for the two
form

d'

0 • (3s)

A

degrees of freedom we can reduce this to the

e 0 a" b"

0 e c" d"

a" c" f 0

b" d' 0 f

(39)

Now harmonic SO(2) transformations in (q_,p_) and in (q2,p2) can be used to diagonalize the

other diagonal blocks to get

e 0 a' 0)

0 e 0 d'

a' O f O "

0 d' 0 f

(40)

Now the SO(2) rotation between the two degrees of freedom can be used to transform this into

0 e+d' 0 0 (41)
0 0 f+a' 0 "

0 0 0 f+ d'
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Further scaletransformations in the two degrees

0 gl 0 0

0 0 g2 0 "

0 0 0 g2

of freedom can render this to the final form

(42)

Thus there are two invariant quantities gl, g2 which maybe recognized as the uncertainties in
1

the two natural modes. Note that gl,g2 are both positive and not less than 5h.

Naturally the minimum uncertainty state must have degenerate structure with
1

gl = g2 = 2 h • (43)

This is the vacuum state ]fl/in the natural modes. The correlated states are obtained by the action

of the group Sp(4, R) ['-_'] T(4). The T(4) action demands that we replace q,p by q- (ql, P-(P),

after which we may ignore them. Since the state Ifl) has a 3-parameter stability group we may

restrict attention to the quotient manifold of cosets.

This construction can be immediately generalized. We take the 4 x 4 diagonal block of the

2n x 2n matrix and carry out the transformations outlined in the previous scheme and then take

the bordering 4 x 2, 2 x 4 and 2 x 2 blocks. Now make orthogonal transformations between

the modes to make the 6 x 6 block diagonal with possibly unequal diagonal elelments. Scale

transformations independently in the three modes will make them diagonal with pairs of values

equal. Now the process can be repeated with the bordering 2 × 6, 6 x 2 and 2 × 2 blocks; and

repeating the procedure we can diagonalize the 8 x 8 matrix with

(p_) = (q_), (p]) = (q_),..., (p4_) = (q42). (44)

This can be done with the 2n × 2n has matrix is fully diagonalized with adjacent pairs of diagonal

elements equal; that is the eigenvalues are

gl,gl,g2,g2,ga,gs,. .. ,g,,g,_ . (45)

1 The distinguishedThis is the canonical form with n invariants gl,g_,... ,g, with each g_ >_ ih.

generalized correlated states have degenerate eigenvalues
1

gl = g2 ="" = g- = _ h. (46)

This is the multimode vaccum state! We can get the multimode coherent states by displacements

which are the real and imaginary parts of zl,z2,... ,z,. Squeezed states are obtained by scale

transformations in each mode independently so that the diagonal eigenvalues became

)hgl, Allgl, ... , )_,_g,, A_'lg,, • (47)

The displacements and squeezings introduce 2n + n = 3n parameters. But the generalized corre-

lated state is obtained by the full coset of the linear canonical group Sp(2n, R) _ T(2n) by the

stability group of the N-mode vacuum state ]_/.
These correlated states maybe displayed explicitly but are too cumbersome. The multimode

correlated states have wave functions which are displaced Gaussians with phase factors. Depending

upon the experimental requirements we may obtain intensity correlations, photocount statistics

etc. directly. The number of parameters describing such correlated states are enormous and would

be restricted by the method of generation of such states.
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4 Discussion

Some remarks are in order about the correlated states in quantum field theory. As long as the

number of excited modes is finite, however many, there exists a unitary transformation from the

multimode vacuum state to the multimode correlated state. These unitary transformations are

generated by a quantity bilinear in the canonical variables. These operators are unbounded but

do generate unitary transformations. When the number of modes became infinite, the generic

correlated state cannot be obtained form the vacuum state they would be in a different Hilbert

space from the Fock vacuum. [?]

It was the purpose of this paper to demonstrate the close relation between the correlated

states and the linear canonical group; and to show that the correlated states which minimize the

SchrSdinger uncertainties is related to the canonical multimode vacuum which is invariant under

linear unitary transformations of the modes. The generic wave functions are Gaussians with a

determined number of independent parameters.

The one and two-mode analysis is equally applicable to the propogation of the Gaussian Schell

mode paraxial wave fronts through a system of thin lenses which are, respectively, isotropic and

nonisotropic. This has been carried out elsewhere [?].

Correlated states are the generic family which include squeezed states and coherent states as

special cases. For each value of the complex parameter a, we have an overcomplete family of

states in the case of one degree of freedom. For the multimode case the parameter defining the

generic form (37) from the canonical form (42) are such labelling parameters.
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Abstract

Using super-Baker-Campbell-Hausdorffrelationson theelementsofthe supergroupOSP(2/2),

we derivethe supersqueezeoperatorand the supersqueezedstates,which are the supersym-

metricgeneralizationofthe squeezedstatesofthe harmonic oscillator.

1 Introduction

The concept of supersymmetry became of wide interest to physicists because of attempts to obtain

a grand unified theory of the fundamental interactions. In particular, such supersymmetric theories

predict that there are fermion partners to fundamental bosons, and vice versa. However, searches

for this fundamental supersymmetry have so far proven fruitless, and something of a, "Trust me,

we'll find it at the next accelerator"-attitude has emerged.

On the other hand, phenomenological manifestations of supersymmetry have been found at low

energies, e.g., in the contexts of nuclear physics [1], atomic physics [2], and WKB-theory [3]. The

supersymmetry and atomic physics interests [2, 4] of Alan Kosteleck:_, Rod Truax, and myself,

combined with our interest in coherent states [5, 6], led us to develop super-BCH relations [7, 8] as

a precursor to deriving a complete supercoherent states formalism. With Alan's graduate student,

Beata Fatyga [9], we gave supercoherent states for three distinct systems: (i) the super Heisenberg-

Weyl algebra, which defines the supersymmetric harmonic oscillator; (ii) an electron in a constant

magnetic field, which is a supersymmetric quantum-mechanical system with a Heisenberg-Weyl

algebra plus another bosonic degree of freedom, and (iii) the electron-monopole system, which has

an OSP(1/2) supersymmetry. (I also want to mention that Alan, Rod, and I have joined forces

with Man'ko to obtain time-dependent supercoherent states [10].)

At the first International Workshop on Squeezed States [11], Alan reported on our supercoher-

ent states [12]. In the question and answer session of Alan's talk, he was asked if we were trying to

extend our results" to the supersqueezed states of the harmonic oscillator. (Honest[ That was not

a set-up question.) Alan replied that we were, but that it was a harder problem. (If that response

had come from me, instead of Alan, you might now suspect that it was a set-up answer.) Anyway,

having committed ourselves, we hoped to do it before this Second International Workshop on

Squeezed States. And we did-by the skins of our teeth. The last calculation (although not the

last check) was finished on May 18.

1Email: mmn@pion.lanl.gov
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In Sec. 2, I will give a quick review of coherent states and squeezed states. (See, also, Ref. [5]).

Then, I go on to show how, given the superdisplacement operator for coherent states [9, 12], one can

obtain supersqueezed states if one can first obtain the supersqueeze operator. This supersqueeze

operator is derived in the following section. I conclude with a description of the supersqueezed

states. Further details and results will appear elsewhere [13].

2 Coherent states and squeezed states

In the SchrSdinger formalism, those states which minimize the x - p uncertainty relation are

2-o; '] +ii_z ,

= S_0 = S/[2m_]1/2.

(1)

(2)

When $ = 1, these Gaussians have the width of the ground state of the harmonic oscillator with

natural frequency v = w/(27r), and are the coherent states. When S # 1, they are the "squeezed
states" of the harmonic oscillator. Their uncertainty product evolves with time as

(3)
111+1 _-_) sinl(2wt)].[Ax(t)]2[Ap(t)]2 = 4 4 (S__ 1 2

In the (displacement) operator formalism, the coherent states are given by

[1] o.D(a)10)= exp[aa t - a*_]10) = exp - I_1' _ 7_.1") - I_), (4)

where In) are the number states. The displacement operator,D(a), is the unitary exponentiation
of the elements of the factor algebra, spanned by a and at:

D(a) ffi exp[aa' - a* al = exp [-l iai2] exp[aa'l exp[-a* a], (5)

where the last equality comes from using a BCH relation. With the identifications Re(a) =

[mw/2]I/2Xo and Ira(a) = p0/[2rru_] 1D, these are the same as the minimum-uncertainty coherent

states, up to an irrelevant phase factor .....
Obtaining the squeezed states from=the displacement operator coherent states is more compli-

cated than from the minimum-uncertainty coherent states. One starts with the "unitary squeeze

operator"

[ a?a ? . aa]

S'(z) = exp [z--_--- z -_-j (6)

- exp/a+ exp a0

exp [ei_(tanh ala'] ( 1 "_<½+""> [-e-'i(tanh r)21 (8)= r)-Vj \ co-_r ] exp ,
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where z = re i# and Eq. (8) is obtained from a BCH relation. A normal-ordered form for the

second term in Eq. (7) is

Note that S(z) by itself can be considered to be the displacement operator for the group SU(1,1)

defined by 1

K+= ata t, K_=-_aa, Ko= (ata+]).

The squeezed states equivalent to the ¢ of Eqs. (1-2) are obtained by operating on the ground

state by
T(a,z)10) = D(a)S(z)lO) = (11)

z -- re i'b, r = In S. (12)

[¢ is a phase which defines the starting time, to = (¢/2w), and ,.q is the wave-function squeeze of

Eq. (2).]
Although the operator method appears, at first sight, to be more complicated, it has a dis-

tinct advantage when one wants to consider supersymmetry. The operator method has a direct

supersymmetric generalization. The mathematics is clear, and so one does not have to solve the

problem of how to include the fermionic sector in the wave-functon formalism. That answer will

come out in the end.

3 How to obtain supersqueezed states

Recently, we used the operator method to find supercoherent states [9]. Among the examples in

this study, the supercoherent states of the harmonic oscillator were obtained. From the super

Heisenberg-Weyl algebra defined by

[a,a t]=I, {b,b t}=I, (13)

the superdisplacement operator was obtained:

D(A, 0) = exp[Aa t - Aa + 0bt + _b] (14)

= (exp[_llAl_]exp[Aat]exp[-]a]) (exp[-l_o]exp[Obt]exp[Ob]) . (15)

6 and _ are odd Grassmann numbers. They are nilpotent and they satisfy anticommutation

relations among themselves and with the fermion operators b and bt. A and A are complex, even,

Grassmann numbers. Explicit calculation yields

D(A, 0)[0, 0) = [1 - (1/2)Ye]IA, 0) + OlA, 1). (16)

The two labels of ]0, 0) in Eq. (16) represent the even (bosonic) and odd (fermionic) spaces. The

bosonic space contains an ordinary coherent state ]A) and the fermionic space has zero or one

fermions. (See Ref. [9] for further details.)
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From the aboveit is clear that the supersymmetricgeneralizationof the SU(1,1) squeeze
operator of Eqs. (6-8) is what is neededto obtain the supersqueezeoperator and, hence,the
supersqueezedstates.The groupinvolvedis the supergroup0SP(2/2). In addition to the su(1,1)
algebraelementsof Eq. (10), it hasfive more:

.0 1/,
1 tt 1 1 t i t --:

Q1 = _a b, Q2 = _ab, Q3 = _a b, Q4 = _ab. (17)

4 The supersqueeze operator

To obtain the supersqueeze operator as a product, one solves the t-dependent equation

S(Z, Oj,t) = exp[t(zK+ -:-ZK' + 8,Q1 + _Q2 ÷ 0"_2Q3+ 82Q,)] !

__ ¢-y+K+ e'mKo e,v-K- eB1Qz euMo eBaQ4 e_aQa e_Q2 i
= sl(u,_,, _k,0. (18)

By construction, U, the 7i, and the _k's are functions of t. Thus, taking the derivative of Eq. (18)

with respect to t and then multiplying on the right by S -1 yields

(19)

This can explicitly be written as ("dot" signifies _,)

[ZK+ - 7K_ + 01Q1 + _1Q2 + _2Qa + 02Q4]

= "_+K+

+ [e_'+K+]%Ko[e-'Y+K+]

+ [e_+K+ e_KO]__ K_ [e-_Noe-_+K+ ]

"{- SB_IQISB 1

+ SB [e_'Q']pMo[e-_'Q']S_ 1

+ S.[e_'Q'e"M°l_Q_[e-"_'°e-_'q_]S_1
+ SB[e_'_' e.MOe_,q,]_q_[e-_,_, e-.Moe-_Q,]S_ 1

" "_4 pMo+ SB[e_'_'e"*'Oe_'_'e_'_']_Q_[e-_q_e-'_ e- e-_'Q']S__

(20)

where

_B _--- [e'_+K+ eT°K°e"r-K-] • (21)

Note that SB is the form of the ordinary squeeze operator defined in Eq. (7).

All the terms on the right hand side of Eq. (20) can be written in nonexponential form by

using super-BCH formulas and the graded commutation relations. When this is done, there are

really eight equations, one for each of the factors multiplying the eight elements of the algebra
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osp(2/2); i.e., an equation for each of the factors multiplying K+, K0, etc. With some algebra,

each of the eight equations can be changed to a set of equations having only one time-differential
in each.

These eight equations can actually be solved as twenty separate, coupled, differential equations,

of simpler form. This is because the four even group parameters {p, 7+, 70, 7-} can each be

written as having three terms, containing products of zero, two, or four of the 0j, respectively, and

the four odd group parameters {_} can be written as having two terms, containing products of one

or three of the Oj, respectively. (We wll use a presubscript to denote this; e.g., _1 = (1/_1) + (3_1).)

One takes the eight equations and expands all of the expressions in powers of the 0_. The order-

zero, -two, and -four pieces of the even equations are separated and, similarly, the order-one and

-three pieces of the odd equations are separated. One places the lower-order solutions into the

higher-order equations. (Note that the boundary conditions needed are that the solutions must

all be zero when t = 0. Then the supersqueeze operator will be obtained when we set t = 1.)
One can do this in e/well-defined manner. In particular, the solutions shown below were

obtained by finding, in order: (0/_), (o'_+), (070), (07-), (a_), (_2), (_s), (,_4), GP), (27+), (270),

(2"r-),(3_1),(3_2),(3_3),(_,), (,_), (,'r+), (,%) and (,__).
In the solutions we will use the suggestive notation

,. - [z_,12, _,,,=_[z/_,12,

where r and e i_ are now understood to represent Grassmann-valued quantities.
make the replacements

Z _ re i_, _ --, re -is.

(22)

Then, one can

(23)

Some care is needed because the quantity e i_ is strictly defined only for [_[ :_ 0 and T -_ 0, where

is the body of _. However, the solutions given below are not affected by this. Even so, the

physical meaning of Grassmann numbers remains an open question [14].
We also define

c -= cosh y, s - sinh y, y - rt, (24)

,x,- _o2_,o1= _D7,o,o2. (25)
With this, the complete solutions to the group parameters are:

_u = 0

-t"_rffr2{_,O, -_202](c- 1) + _20,e -''_ --_102e'/d](,.q- y)}

+--' 1_t.4 ,

ei'b ro, o,(sc - y) 4. ei*_,02(c - 1)2
4 r2 c2

+e-i*_O,s _ + Y2¢(sc + y -- 2s)]

Ce'* [(2y+sy2-s)+c(1-_y 2s)+(--5sc2+lsc')],+8--gi--_ -
7o = [-21nc]

(26)

(27)
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c- I)]

(28)

-e-{_O2e1(c- 1)2 + 0202(sc+ y - 2s)]

93

_e-" [(2y +sy'-s) +c(8Y-2s)+ (*c2(1---_+21nc)--4c y)], (29)8r4c a

_, = _[,o, + (_- 1)_'_od

nuS['_20102(y -- 2C* + yC) + ei_b_101_2(2C(1 -- C) -}- ys)], (30)

& = l[_p, + (__ 1)_-'_od
1 2

r

+4_[ei_2_O12(ys - 2(c- 1)) + _2_10_2(yc - s)], (32)

_, = 1_[(__1)_-'"el +,ed
r

+ 4__[_-,_=e,02(-4¢=+ 4c+ 2y,) + _,0102(-4,_ + 2, + 2v_)]. (33)

Setting t = 1 yields the general supersqueeze group parameters.

5 The supersqueezed states

Then, using the above group parameters, the graded commutation relations among the generators,

and the properties of Grassmann algebra, the supersqueezed states can be found to be

T(A,O,Z,O,)IO, O} = D(A,O)S(Z,O,)IO, O) = [A,O;Z,O_)

= #r_ha(.')[(1-2-_e)I(A,Z),0> + 0 [(A, Z), I)]

+ar+_th2(a+)[_,(A,Z),0>+ (1+ lae)I(A,Z), 1)1, (34)
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where
| 1

= 1 - #[(2_u)+ (4.)] + 3-_(_u)2, (35)

= 1 + --1)[(2%)(24- + (4%)] + (2+ 1)2(2%)2, (36)
4 32

h_(a t) = 1 +g[(2%)+(_7+)](at-7[) _ + (_7+)2(at-_) _, (37)

h2(at) - (at-A)c [l+l(_+)(at-_)']. (38)

As with the supercoherent states, we find that the supersqueezed states axe a linear combination

of squeezed states in the bosonic sector with zero or one fermion in the odd sector. What is

different, however, is that the squeezed states axe multiplied by a linear combination of boson

raising operators up to order four.

In the limits A --- 0 and Z _ 0, the supersqueezed states reduce to the "fermisqueezed states"

_- _1 _ 0,0, D(0,0)S(0,0,)[0,01 [1 _ (_L) I-_ (I_) [(I- [0,0)+ >]

+ [_L-I(_)] [(I-b100)[i,1)+_[I,0>]

q-[-- 2_2(-_-)] [(i - i_0) [2, 0) + 0[2,1)] . (39)

6 Acknowledgments

Of course, I wish to thank and acknowledge my colleagues, Alan Kosteleck_ and Rod Truax, with

whom this work was done [13].

References

[1]

[2]

[31

[4]

[51

F. Iachello, Phys. Rev. Lett. 44, 772 (1981); Nucl. Phys. A370, 284 (1981).

V. A. Kosteleck_, and M. M. Nieto, Phys. Rev. Lett. 53, 2285 (1984); V. A. Kosteleck#, M.

M. Nieto, and D. R. Truax, Phys. Rev. D 32, 2627 (1985), V. A. Kosteleck#, M. M. Nieto,

and D. R. Truax, Phys. Rev. A 38, 4413 (1988), and references therein.

A. Comptet, A. D. Bandrauk, and D. K. Campbell, Phys. Lett. B 150, 159 (1985).

V. A. Kosteleck3; and D. K. Campbell, Physica 15D, 3 (1985).

M. M. Nieto, in: Frontiers of Nonequilibrium Statistical Physics, eds. G. T. Moore and M. O.

Scully (Plenum, New York, 1986) p. 287; in: J. R. Klauder and B.-S. Skagerstam, Coherent

States - Applications in Physics and Mathematical Physics (World Scientific, Singapore, 1985)

p. 429; in: Festschrift in Honor of John Klauder's 60th Birthday, eds. G. G. Emch, G. C.

Hegerfeldt, and L. Streit (to be published), and references therein.

257



[6] S. Geeand D. R. Truax, Phys. Rev.A 29, 1627(1984).

[7] D. R. Truax, V. A. Kosteleck)_,and M. M. Nieto, J. Math. Phys. 27, 354 (1986); V. A.
Kosteleck_,M. M. Nieto, and D. R. Truax, J. Math. Phys. 27, 1419(1986).

[8] V. h. Kosteleck:_and D. R. Truax, J. Math. Phys. 28, 2480(1987); B. W. Fatyga, V. h.
Kosteleck_',and D. R. Truax, J. Math. Phys.30 291(1989).

[9] B. W. Fatyga, V. A. Kosteleck:_,M. M. Nieto, and D. R. Truax, Phys. Rev. D 43, 1403
(1991).

[10] A. Kosteleck3_,V. I. Man'ko, M. M. Nieto, and D. R. Truax, Phys.Rev. D. (to be submitted).

[11] D. Han, Y. S. Kim, and W. W. Zachary, eds., Workshop on Squeezed States and Uncertainty

Relations, NASA Conference Publication 3135 (NASA, Washington, D. C., 1992).

[12] B. W. Fatyga, V. A. Kosteleck:_, M. M. Nieto, and D. R. Truax, in Ref. [11], p. 261.

[13] A. Kosteleck)_, M. M. Nieto, and D. R. Truax, Phys. Rev. D. (submitted).

[14] M. M. Nieto, in: Santa Fe Workshop: Foundations of Quantum Mechanics, eds. T. D. Black,

M. M. Nieto, M. O. ScuUy, R. M. Sinclair, and H. S. Pilloff (World Scientific, Singapore,

1992) p. 95.

258



N94-10592

INFORMATION ENTROPY VIA

GLAUBER'S Q-REPRESENTATION

C.H. Keitel

Blackett Laboratory, Imperial College,

London SW7 2BZ, Great Britain

K. W6dkiewicz

Institute of Theoretical Physics, Warsaw University,

Warsaw 00681, Poland

Abstract

We present a convenient way to evaluate the information entropy of a quantum mechanical
state via the Glauber Q-representation. As an example we discuss the information entropy

of a thermally relaxing squeezed state in terms of its Q-representation and show the validity
of the corresponding entropic uncertainty- and Araki-Lieb inequalities.

1 The information entropy

Shannon and Wehrl were the first to describe the information of a quantum mechanical state in

terms of its probability distributions [1]. Later, there has also been a substantial amount of work

on this topic from the quantum optics point of view [2]. The question of comparability of the

information entropy with the Heisenberg uncertainty has been treated as well. The Heisenberg un-

certainty has turried out to be of enormous significance because of its experimental measurability.

However, it only takes the second moments into account whereas the information entropy is sup-

posed to be an exact measure of the information and thus of the uncertainty or non-information.

In comparison to the significant Heisenberg uncertainty inequality, there is a similarly meaningful

entropic uncertainty relation. Bialynicki-Birula et al., derived such an inequality more than 15

years ago [3].

In this paper we would like to put forward a possibility to evaluate the information entropy

as a function of the Q-representation since this representation is well-known for many interesting

quantum mechanical states and completely describes the state. In particular we here would like

to investigate the information entropy for the squeezed state which evolves to a thermal state via

an appropriate Fokker-Planck equation. Special interest is devoted to the entropic uncertainty

relation. As a major result we show that a squeezed state also obeys the minimum entropic

uncertainty relation. However, it turns out that the evolution of the squeezed state via the Fokker-

Planck equation, does lead to a change of the information entropy and the marginal contributions

but surprisingly does not influence the minimality of the uncertainty relation. This even means
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that a thermal state fulfills the entropic uncertainty relation with an equal sign. We moreover

investigate the Araki-Lieb inequality [4] for information entropies and find agreement with the

well-known results of von Neumann entropies for the thermally relaxing squeezed state.

We start off the paper with some basic facts on entropies and develop an expression for the

information entropy in terms of the Glauber Q-representation. The definition of the quantum

mechanical entropy is given by:

S = -Tr{_lna} (1)

with a being the density matrix operator and assuming the Boltzmann constant to be 1. This

often called von Neumann entropy is zero for a pure state and non-zero for a mixed state. It is

moreover known to be constant for a closed system which arises from the fact that a unitary time

evolution does not change the eigenvalues of P.

Thus, normally, the evolution of the entropy of subsystems of a closed system is of greater

interest. Considering two disjunct interacting systems that form together the whole system being

described by P, we can introduce the reduced density operators aA = TrB{_} and aB = TrA{a},

where TrA and TrB abbreviate the tracing over the variables of the subsystems A and B, respec-

tively. This leads to the definition of the entropy of the subsystem A: S(aA) = --TrA{pAlnpA}

and to the analogous expression for subsystem B by replacing A by B in the above formula.

These reduced'or here called marginal entropies describe information or more directly disorder

and uncertainty of A and B and are not necessarily time independent like the entropy of the whole

system S of Eq.(1). Information about the interaction of A and B is neither included in S(aA)

nor in S(PB) so that we expect the sum of S(aA) and S(_B) not to be smaller than S. And, in

fact, Araki and Lieb [4] proofed the following triangle inequality:

IS(a,) - s(a )l <_s _<s(a,) + (2)
Because of the close relation of entropy and uncertainty and moreover the existence of a lower

bound of S, the second inequality can be interpreted as uncertainty relation. The calculation of

the above entropies requires the diagonalization of the reduced density operators. Since this is

often difficult, the information entropy or Shannon-Wehrl-entropy was introduced according to:

(a;o) - -  (elale)ln( l le), (3)
e

with

Ol ) - (4)

The corresponding expressions for tlae subsystems can be obtained by exchanging a by aA or /_B,

where the so far arbitrary operator () may be chosen differently. If we are dealing with operators

that can be expressed in terms of the annihilation and creation operators h and 6 t of a boson field,

it is reasonable to consider the information entropy

s(a,a)=- f

= - id'aQ(a)lnQ(a),
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where
1

is the well-known Glauber representation of a state _, and where la) is the boson coherent state

with the decomposition of unity f d al )( l -- _.

According to following calculations, the information entropy of a squeezed state is not zero

as opposed to the yon Neumann entropy which is always zero for a pure state. This obviously

makes the information entropy more interesting than the yon Neumann entropy. The form of

Eq.(5) as well as Shannon's early work [1] suggest to define an information entropy for any phase

space distributiofi. The Q-representation, however, has turned out to be appropriate for realitic

measurements as shown in the analysis in terms of phase propensities [5] and heterodyne measure-

ments. [6] For the investigation of the entropic uncertainty principle for information entropies,

the marginal entropies are evaluated by inserting the marginal Q-representation in the above ex-

pressions, instead. Letting al and a2 be arbitrary coordinates in the complex plane of a, we thus

define

Q_(o,) = J d_sQ(a,,a_) (8)

and

S_ ffi - f daiQ,(a,)lnQ,(a,) (9)

for i, je { 1, 2}, i unequal j. This leads to the entropic uncertainty relation for information entropies,

which, as a major result of this study, will turn out to hold for the squeezed state and its thermally

relaxing state.

In the following, we put forward the time independent information entropy of a squeezed state and

its evolution to a thermal state via the Fokker-Planck equation and evaluate the corresponding

information entropies.

2 Information entropy and entropic uncertainty relations

of a squeezed state

2.1 Statics

In this section the squeezed state is described by the time independent Q-representation

1 [-la ao[_+_{(a-ao)2+(a'-ao)2} ],Q(a,a')- rch(s) exp - th(s)

with the corresponding information entropy:

(10)

S = - / d2aQ(a,a')lnQ(a,a °) = 1 + In 2 + In(e" + e-°). (11)
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The letter s here denotes the squeezing parameters and a0 describes the coherent state which has

been squeezed. We now want to compare S with the information entropies obtained out of the

marginal Q-representations. Those marginal information entropies are obviously dependent on
the choice of coordinates, where our considerations in the following will concentraate on the most

interesting Cartesian coordinates.

The Q-representation in Cartesian coordinates (a_ = Reck, c_v = Ima) has the form

1 2 (a0),) 2] x exp [- 2 _ (a0)v)2 ] (12)Q(a_,a,)- rch(_)exp[ l+e 2°(a_- l+e -2°(a' '

leading to the marginal quasi-probability distributions,e.g.:

Q_(a_) = oo da_Q(a_,a_) = rch(s) exp 1 + e2°(a_ - (a0)_)= ,
(13)

and thus to the marginal information entropies, e.g.:

1 1 7rS_ = - Q_:(a=)lnQ=(a=)da= = _ + _ln_ + In(1 + e2°), (14)

1 - {In(1 e-2°).and correspondingly Sv = { + _lni + + Considering above equations, it is now easy

to see that squeezed states fulfill minimum entropic uncertainty

S = S= + Sv, (15)

and that the Araki-Lieb inequality is valid as well: ISx - Sv[ < S.

A similar consideration can be done for polar coordinates with a = re i¢ and a0 = roe i¢°. The

integrals here are not as straight forward as in the Cartesian case. For special cases as the weakly

squeezed vacuum, however, it was possible to show the validity of the uncertainty and Araki-Lieb

relation [7].

2.2 Dynamics

Our interest now turns to the time evolution of the information entropy, its marginal information

entropies and its influence on the inequalities investigated in the preceeding section. The time

evolution of the Q-representation is governed by the Fokker-Planck equation

---° .Io (16)

This equation follows from the well-known Fokker-Planck equation for the P-representation with

Q(a,t) = f _--Aexp[-]a- _]2]P(/_,t), fi is the mean number of photons and q turns out to be
it

3'(fi + 1).
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Wenowmove on with the solution of the Fokker-Planck equation for Q, assuming the squeezed

state to be the initial state at time t equal to 0. Following reference [7] this turns out to be:

Q(,_,t) 2 1

ex.r oo) + oo)')]x rch(s) I-I/_- c_°12+

= exp[a(Ol,_l_+ b(t)(,__+ ,_*_)+ c(t)o + c(t)'a" + N(t)],

(17)

(18)

(19)

with n(t) = _(1 - e-'U). For the rather long analytic expressions of a(t),b(t),c(t) and N(t) we

refer to reference [7]. At this point it will only be of interest that the Fokker-Planck equation has
preserved the Gaussian character of the initial state.

In the followingwe would like to point out that also the time dependent Q representation due
to the last equation leads to minimum uncertainty. Even more it turns out that every normalized
Gaussian function of the following form has this property:

Q(a, t) = exp[a(t)lal 2+ b(t)(a 2+ a *z) + c(t)_ + c*(t)c_*+ N(t)], (20)

where the real coefficients a(t), b(t) and the complex c(t) are now arbitrary with the only restric-

tions to fulfill: a(t) < 0, 21b(t)l < la(t)l and N(t)is determined such that Q(c_,t) is normalized.

Using the same notation as in the static case, some algebra gives rise to the corresponding infor-

mation entropy and marginal entropies:

S(t) = 1 +lnr- lln(aZ(t) -- 452(_)),
(21)

1 1 1s_(t) -- g + _ln,_ - ln(-a(t)- 2b(t)), (22)

S,(t) = _ + _ln_" - ln(-a(t) + 2b(t)), (23)

yielding immediately for all times t

S(t) = S.(t) + SAt). (24)

At t = 0 this is in agreement with the minimum Heisenberg uncertainty relation of a gaussian

wavepacket of the above form because the product of uncertainties in space and momentum is

exactly one. Since the Fokker-Planck equation does conserve the Gaussian character of the wave

function and does moreover give not rise to any phase factor, the Cartesian entropic uncertainty

relation is even fulfilled with the equal sign for all times. Thus we have also a minimum uncertainty

relation for the thermal state, what is not expected from the Heisenberg uncertainty inequality.

Moreover one finds for any Gaussian distribution that the Araki-Lieb inequality is equivalent

to:

1 In -2b <__ln(a -4b 2)+l+lnr2 + 2b -
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In the case of a thermally squeezed with its particular values for the coefficients a(t), b(t), c(t) and

N(t) an even stronger inequalility can be derived:

IS=(t) - S_(t)l < S(t)- (1 + ln2). (26)

which , however, does not mean that all phase space distributions fulfill the Araki-Lieb or even

the improved inequality [7].

In conclusion, we introduced a way to evaluate the information entropy in terms of the Glauber

Q-representation. Taking advantage of these entropies, we approached the question of comparabil-

ity of the Heisenberg uncertainty and the Shannon-Wehrl-entropy like description of information

for the example of a thermally relax!ng squeezed state: The first just considers second moments
and is therefore a - though very important - approximation whereas the other is exact but aca-

demic. We find full accordance concerning the validity of the Heisenberg and entropic uncertainty

inequalities for the thermally relaxing squeezed state but as expected also observe disagreement

in the case when the equal sign holds.
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Ab_raet

FAectron systems which have low dimenakm _! properties have bmm constructed by squeez-

ing the motion in zero, one or two-dir_tion. An isolated quantum dot is modelled by a
potential box with delta.pro_ed, pen_mble pot_ential walk embedded in g large outer box

with infinitely high potential _ which repr_ent the work function with respect to vac-
uum. We show the smooth crouovm' of the density of stgt_ from the three-dimension to

quasi-zero.dimensional electron gas.

I Introduction

Quantum wires and quantum boxes with three-dimensionally confined electrons constitute a con-

siderable part of recent semiconductor research [I, 2]. To study the optical properties of these

systems, one should investigate the density of states (DOS) carefully, because the change in the

density of states affects directly the optical properties of these structures as a result of reduced

dimensionality.
The DOS of a low dimensional electron gas(LDEG) in the presence of magnetic field has

been discussed in many liter&tures measuring the rnagnetocapacitance [3, 4]. Furthermore an
electrical confinement which is usually controlled by (alternate) gate voltage [5] and, so called

the illumination method [6] are used to get a LDEG. The etched silicon filaments also discussed
recently as qfiantum wires or quantum dots [7]. But the DOS of a LDEG of confined electrons

in small space which is constructed by reducing the size of the confinement is not discussed
frequently, see ref. [1]. A typical example of an ideal system having Q0D charactor is that of
electron confined in a quantum box with impenetrable potential barriers. Despite of the large
number of studies on quantum wire and quantum box structures up to date, we have not found
research on the crossover of the DOS from a three dimensional DOS to a quasi-zero dimensional

DOS. In Section 2, to illustrate the formation of a quasi-one-dimensional electron gas(QiDEG}

using the clauica] electrostatic method, a simple metal.insulator-semiconductor(MIS) structure
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with very many parallel gate electrodes has been trested by making use of the conformal mapping

method. In section 3, we consider a rather artificial quantum box structure, so called the three

directional double-barrier resonant-tunnellng structures(DBRTS) to study quantum mechanically,

and have calculated the locJd density of states and the global density of states. In section 4, the

crossove_ of the DOS is calculated. Especially, we reveal the crossovers of the DOS from 3D to

QOD.

2 Construction of the very many parallel quantum wires

To study electrical properties of 8 quantum wire, we _rst start with • quasi-two-dimensional

electron gas(Q2DEG) •t simple metal-insulator- _miconductor(MIS) structure. A Q2DEG system

with many parallel gate electrodes is shown in Fig.1 in which an electron gas is confined to the

x-z plane. We actually try to confine the electrons in the z-direction as well to form a Q1DEG

system.

' i •i i

o "¥-_ -I'J¢ ¥ 17 '
v, _l_qvl_v I E'* Ivl

F,

Fig.1 Fig.2

Fig.1 A Structure of symetric gste arrsys. Fig.2 The boundary condition in w-

plane.

To ceacul_te the charge(density) distribution •t the MIS interface (y=0 plane) to see the

formttion of • Q1DEG, we will use the conformal m•pping method which is useful especially for

two-dimensionnl problems and we assume that significant changes in the electrode potential (and

thus is density in the channel) c&use only a slight change in the near junction band bending.

This type of •pproximation has been used by Shik [8] to calculate various properties of the M1S

structure.

The pr0biem-is-_i_g the Laplace equation in insulator region.

a--_-+ _ = o (i_

with the boundary condition;
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At y -- d, • [_ is alternate gate potential Vz and _ and at y = O, _ II..o is constant, i.e.

equipoteatia] surface. The next step is getting the d_tribution of the surface carrier density.

.,(z) = 4re I,.o. (2)

We solve the problem by tiddng the following confonmd trzndorm_tion [91.

W ffi U + iV = • "'1_, z ffi z + il

where d is the thickness of the insulator, Now the insulator region is nmpped on the upper half

plane and the bound_y condition is givm as in Fig.2.

After getting the potentisl which sstidy the boundary condition, we now get the electron
density distribution n(z) anaJytic_y from Eq.(2):

KdV2.
n(=) ffi _[l + (VI/V3)-' _(-1) _+] < sinh((2n - 1)lra/2d)

[co.h(,z/d) + a.h((2.- i)/2d)] >]

where a is the glte interval and rn is the number of sites.

(3)

uU),

I.O

Ill

Ikl

e.4

' ;0

•_I -II -I -i • I 11 l •

f t s j

.- .o •

/(
r

I I • I ILll,"

Fig.3 Fig.4

Fig.3 The surfsoe charge density vs. position.
Fig.4 Croesover of the global DOS from 3D to 2D in the range Us = 0 to Us = 20,

as I function of E/Eo. Here Ul t*bes the values 0, 2, 12, 16, 20.

A typical density distribution is illustr&ted in Fig.3 where we can see immediately the many

paral]d QIDEG (eventhough we show here only two wires). The one dimensional electron density
of the order of 10s/on is obtained for the typical operating gate voltage when a is I000_. We
also investigated the cue of znti-symmetric gate voltage. Similar results have been obtained but
in symmetric case it is e_y to construct one dimensional electron channels especially for smaller
number of gates. In our cadculation we took a/d ffi i, which sltisfy the first approximation, _ = 0
plane is equipotential.
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3 The quantum boxmodel and the DOS

Now we come back to quantum system with a delta-profiled qmmtum box. Usually a quamtum dot

hi an dement of the array of quffintum dots. But the interaction among quantum dots decre_u_

rapidly with increasing dot separation [10] and is unimpotant for the usual experimental situation

[lxl.
Therdorea_p*rateddn_equ_a__tum boxi_ _ for our study. For ar_angLd_ wir_L_ I _

AD), Arora and others[12] used the impenetrable pote_qtial will., but in this paper we consider

three sets of penetrable barriers. We stazt our calculations with the model, i.e., the typica_ three
directional DBRTS, which consists of two thin(,- 50_)/__,A_ layers, eeparated by a thin

GaAs laye_ along all three directions. The potential is expressed by

v(z, y,z) = _6(z + a) + 6(z - a) + _6(_ + b)+ 6(U- b)+ _6(z + e) + 6(z - e) (_)

In this potential, the six AlzGat__A_ potential barriers have been replaced by 6-functions with

strengthes VI,V3 and Vs in the z,y, and z direction, respectively. The parameters V,(i ffi 1,2,3)
axe given by

= _av. (5)

where d_ are the b_rier widths and _Vm are the conduction-b_md discontinuities. In order to deal

with finite density of states,J13], we must place our structure in & large impenetrable rigid box
extencHng from -I,/2 to 1,/2. With proper boundary conditions[14], the SchrSdinger equation is

separable, we can write the wave function in the product form

3

i=l

The separated wave functions, @_,_tidy the reduced equations.

_,- + [2._/A'][E,- _]_, = 0

(6}

(7)

with

Here E is the total e_ergy corresponding to the Haaniltonian H and E,(i - z,_,z) is the energy

e_senv_ued_,'
The locJd density of states in the DBI_S h_ been obtained in various cases [15]. It is defined

as a functio_ of r = (z, U, z) and E by

N(z, y, z; E) ffi -(2/_r)ImG(r, r'; E)

where the factor of 2 implies spin degeneracy, G(r, d; E) is the single particle Green's function,

and o,_, and _(- e or O) label st&te parity. Next we consider the global DOS N(E). It can be

calculated by taking the integration over the box volume,

N(E) ffi8 fo'dZ fo'dY fo_dzN(z,,,z;E). (1O,

E = _ E, (8)
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The amplitude of the wave function imide the well for both even and odd parities of z, y, and z
¢omponenets are given elsewhere[14]. N(E) can be rewritten as follows:

(2/.') .._ d_[C,.O,,) + G.O,,) + (G.(_ ) - G.C_)),in(2v,)/2p,]N(E) Jg

fZ a_[G.(_)+ G.(_)+ (c.0_)- G.(_)),m(2_)/2_Jx

off_[G.0_)+ G.0_)+ (G.0_)- G.0_)),m(2_)I2_16(E- E,) (I_)x

The properties of functions G.(p_) and G.(p_) are already revealed in Ref.14.
When we take approprisJ_e limiting _, the Eq.(11) recovers 111 the well-known expressions

of the DOS of 3D, 2D, 1D, and 0D. since the calculations ate straightforward, we haven't repeated
here.

4 Crossovers of the density of states

Now we consider crossovers of the global DOS from a high dimension to a low dimension.

4.1 From 3D to 2D

This cue may happen when two of three potentials U[s(Ne the reference 15) approach zero, while

the remainder varies from zero, i.e., 3D case, to infinity, i.e., 2D cue. The F.,q.(11) can be modified

M

2r _2 :/2(¢-z.pn
4bc2m. 'N(E) ffi Jo dpt[a.(pt) + a.(p_) + (G.(Ih) - G.(p,))sin(2/h)/2p_] (12)

The result of the numerical behavior of Eq.(12) is shown in Fig.4 and indicates the transition of
the DOS from 3D to 2D. In this case we take Us = U3 ffi 0, Ui changes from 0 to 20, and E/Eo

varies from 0 to 8. Higher values of UI correspond to a st_ircJtse-like 2D behavior which shows

step_ at E/E. = P with i = 1,2,3,....

4.2 From 2D to ID

This corresponds to the ease of Us going to zero, U_ to infinity, and U3 varying from zero, i.e., 2D
cMe, to infinity, 1D case. So G(ps) ffi 1, G.(pt) = r E 6(pt - (t+ 1/2)r),G.(_) = ,r _ 6(p_ - (l +

l)lr). Then we can get the modified equation of N(E) u follows ;

r_fi2 _/o "l_(s-z') d/h[G.(p3) + Go(/h) + (G,(p_) Go(P_))sin(2p_)/2p_]_.-_cN(E) -

x [ll[(rl2a)_EIE. - ((m + 1/2)_'/a)' - (J_lb)'] '/'

+ 1/[(r/2a)_E/Eo - (m + l)_rla_- (p_/b)_]_/']. (13)

The Fig.5 shows the graphical rmult, that is, the crossover of the global DOS from 2D to 1D. In
this cue, for the sake of convenience, we take a ffi b, [/'3 t 0 and Ul --* oo, U_ takes the values
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of O' 2, 8, 16, 20, _d_E_E._i--t_m 0.0 to 8.6: Onei_i_' tha t the steps at E/Eo = 1,

4, 9, ..-, that is, the two dimensional band edges, Lre shifted to peaim at E/Eo = 2, 5, 8, 10,
..., i.e., the one dimensional lured edges. As U2 increues, the motion of confined electrons _long

the y axis atarts to shrink and is guided only along the z 6. This weak additional confinement
shifts the 2D band edges towLrds higher ener_ _d t_nally the typical 1D Charscteristics of the
DOS comes to bevisu_sod. Higher vLlues of U= correspond to increasod shazp peak, of the DOS

of the 1-D quantum wire cue, which ate in good _t with thor° of A:al_wa and S_i

[13] and of Tsang [16]. The values Lt E/Eo = 5 and 10 ate roughly twice throe Lt E/Eo = 2 and
8, respectively, which comes from the double degeneracy of the e/genztatm. SimilLr discussions
were treated by Berggrent and Newson [I T] in the case of the 2D electrons in the presence of a

m_gnetic field.

I..L i \ :

i/:7 ..... /
"" J

S¢F 
L# , , .

"'; ' ' ' " ' 'IAI.

Fig.5

f-

F li i-

im im 6 • _ • • TJ im **

e/L,

Fig.6

Fig.5 cr(_m- Of the glo_bal_DOS frgm.o2p__o iD. _H__e_w_¢iake_U_ = ooandU, =
0, 2, 8, 16, 20. Higher values of U2 correspond to s sawt_t[di=_e !D l)eh_vior.

Fig.6 Crossover of the global DOS from ID to 0D. Here we take U1 = U_ = oc
and Us ffi 0, 2, 10, 20, 80. Higher values of Us correspond to a shLrp line shape 0D
behavior.

4.3 From ID to OD

In this cue, we take both UI find U_ to be infinity, and Us va_ from zero, 1D case, to infinity,

0D cue. Then Eq.(ll) becomm

__ r, fJ(SlS,)'n

N(E) = (2/-) _.._. Jo d/h[G.(p_) + G,(ps) + (G,(/h) - Go(/h)) sin(2/h)/2p3]
|,inStaL

x L[E - (_2/2mc)(l_/2a)_ + (m_/2b)= + (p_/c) _ (14)

(2E°)N(E) ffi £ G,(t) + Go(t) + (G,(t) - G.!t))sin(2t)/2t (15)
i,.=i [E/Eo - [_ - m_] t/_
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wheret = (,rl2)(EIEo- _ - m=)m.
Fig.6 shows the transition of the glob4d DOS from ID to 0D. For the sake of convenience, we

put a = b = c. The Eq.(15) recovers the well-known DOS of L qulmtum dot [16], when we take

Us to be infinity. Sawtooth type nutximunm at E/Eo = 2, 5, 8, I0, ..., are now moved to the
positions at E/Eo = 3, 6, 9, 11, ..., as the strength of Us increases. When the confining potentiaJ
increase, both primary peaks and secondary ones appear, which reflect the coexistance of ID
and 0D behavior. The secondary peak with the lower energy is a reminescence of the ID DOS

shifted tow_ds higher energy due to the _ulditional confinement, and the primary peak (higher

energetic peak) m-ises from quasi 0D states. BscLuse the di_erences between peLks axe so high, we
used diferent scsdes for the DOS sods ranging from 1.0 to over 2000. The DOS clearly shows the

potentiLl strength (U_) dependence of the spstis/quantimLtion through Eo. This kind of secondary

polka are also shown in many experiment_l data of s transport measurement [18]. We know that
the electron systems used in above experiments axe in in intermediate state between ID and 0D,

because the potentisl strengths Lre not infinitely high.
We believe that this kind of DOS transition which shows intermediate states will Also occur in

real syste_ns where, for example, the barriers have finite widths. For b_rriers with finite thickness,

the effective mass of the electron changes in passing from the quantum-well region (G_,s) to the
barrier regions (AIGaAs) of the structure. Bruno and Bshder [15] have considered this for the one

directionLl DBRTS case and showed that the DOS at the low-energy subband edges is higher than
the DOS at the same energies in the _ences of b,Lrriers (for delta-profiled barriers). In our case,

we can estin_te that our result for the DOS will be incre_ed a bit upwmrd at the same energies
because of the additive form of the potenti4d which we have taken.

In this paper, first we showed _. an example the fornuLtion of many electron wires using the

conformLl mapping method. Next, considering a penetrable quantum box, with a volume of a
axbxc, in a very large rigid box of volume/_, we r._dculsted the general form of the locaJ and

globsd DOS.
The merit of this model is as follows :

I) the mode] is simple to handle and easy to c2dcuhLte anslyticsJly,

2) in this model, one can recover the results of aJl the limiting cases of the 3D, 2D, ID, and
0D,

3) staxting from one equation we can discuss all three crossover cues.
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Abstract

Following a brief review of the original Casimir and Aharonov-Bohm effects, some other
effects of similar natures are mentioned. A Casimir interaction between AB fluxes is pre-

sented. Possible realizations of the Casimir effects for massive charged fields in solid state

structures; and a new AB effect for photons are suggested.

1 Casimir and Aharonov-Bohm Effects

There are two types of quantum mechanical effects which can be attributed to the non-trivial

topologies of the configuration or phase spaces.
First kinds of these effects are named after Casimir [1]. When the space is bounded the vacuum

expectation value of quantized fields acquires non-zero values and becomes space dependent, which
then creates a force on the boundaries. The attractive force between the parallel conductive plates

is the first example of this kind [1]: the vacuum fluctuations of the electromagnetic field produces
an attractive force on the unit area of the plates given by F = -(r2/240)(hc/a 4) where a is the

seperation of the plates. This force is already observed in experiments [2]. The topological nature
of this effect is in the fact that the field momentum perpendicular to the plates is discretized; i.e.,

the effective topology is not R s but S 1 x R 2.
The second kind of effects are known as the Aharonov-Bohm (AB) effects, which involve the

electron field: when a confined flux is placed in the space, the electrons moving in te outside region

pick up a phase which is observable in the interferance experiments [3]. In this effect the topology

of the plane perpendicular to the flux line is multiply connected.
These exist some other examples which are similar to the above mentioned effects:

Several calculations have been made for Casimir effects involving boundaries of different shapes

[2]. Examples with moving boundaries are also studied which are used to obtain squezzed states

of light [4].

1Mailing address.
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Someof the physicaleffectswhich have been proposed to be similar to the AB effect are the

followings:

Introducing an impenetrable charged line in place of the magnetic flux and replacing the

electrons with neutral magnetic dipoles one obtains a system equivalent to the AB effect [5].

AB experiments involving the correlated charged particles are also proposed. Ideas involving

electron-positron pairs extended to obtain AB effect for the effective photon field [6].

2 An Interaction Connecting Two Effects

Consider two parallel, tightly wound solenoids, confining fluxes _1 and _2 in them, which are seper-

ated by the distance a. The vacuum expectation value of the energy for the massive, charged field

in the region outside the flux lines have a finite "interaction" term depending on 01_2 and on a.

For a scalar charged field the interaction energy in the slice of space with unit thickness having
its normal parallel to the fluxes is

he 2 2 e_
A1A2, A - (1)

E#_,2 = 2_.2 a2 21r"

Note that the mass of the field does not contribute to the interaction term which only appears

in the self energy terms involving O 3 and OI seperately. The energy (1) leads to an attractive
force on the unit length of the flux lines given by

0 _C 2 2A1A_
F¢,.2 = _aEc,®2 = 7r'-"5 a'--'-5 (2)

The above force is derived for a hypotetical scalar, charged field. For charged fields with spin,

for each spin degree of freedom we expect to thave a force equivalent to (2). For example for the
electron field the force should be multiplied by two.

If the fluxes are quantized, for integer fluxes, fields with integer charges, that is e±, _±, r ±

particles contribute to the Casimir interaction. On the other hand the quark fields can contribute

only to the interaction of the fluxes quantized to the one or two-thirds of integers. In conclusion

we can say that the Casimir force between the quantized AB fluxes may count the number of
families [7].

3 Comments on Possible New Realizations

The recent developments in solid state physics enables one to create two-dimensional and one-

dimensional structures (=quantum dots) in which we can trap charged particles. These structures

my raise the hope of observing new Casimir effects involving massive fields.

Finally we like to suggest an experimental set up which may realize an AB geometry for the

photon field: In the double slit experiment, if we place an infinitely long, thin, neutral and perfectly

conductive wire perpendicular to the incoming light beam, we expect to observe an AB type effect

for the photon field. This, unlike the one suggested in Ref.[6], would be a purely neutral AB effect.
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Abstract

The eigenvalue problem of the operator a + (at is solved for arbitrary complex ( by
applying a nonunitary operator to the vacuum state. This nonunitary approach is compared
with the unitary approach leading for l(I < I to squeezed coherent states.

1 Introduction

The eigenvalue problem to linear combinations of boson operators in the standardized form a + _at

can be solved with squeezed coherent states only in the case [([ < 1 when it is equivalent to the

eigenvalue problem of an operator _a+pat under the condition [_[2_ i_12_ 1 with the substitution

( - _, ((, _, _ arbitrary complex numbers) [1]. This corresponds to the unitary approach because

the squeezed coherent states can be obtained by applying unitary squeezing operators to coherent

states [2]. However, this eigenvalue problem can also be solved for arbitrary complex _" with a

nonunitary approach providing in the limiting case ( -4 oo even the solution of the eigenvalue

problem for the boson creation operator at. The corresponding eigenstates are not normalizable

for [([ _> 1 and are not states of the usual Hilbert space H (Fock space) in this case but they are

states of a rigged Hilbert space K' in Gelfand triplets of spaces K C H C K' [3]. Such states

that do not give finite expectation values for relevant operators as, for example, for the number

operator could be, therefore, considered as pathological ones. However, they play an important

auxiliary role for the formulation of a new kind of orthogonality and completeness relations on

paths through the complex plane of eigenvalues, where at once two dual states belonging to the

parameters ( and (' = _ or_" = 1 are involved [1].

2 Nonunitary approach to the eigenvalue problem

The solution of the eigenvalue problem

(_ + _t)la; ( >= _1_;_ >, (i)
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can be represented in the number-state basis In > in the following nonnormalized form

1 [n >
I_;_>= _ _.., n.

® a" i'/'] (-1)k-' (¢)'

or by derivatives of a Ganssian function in the form

(-¢)- ¢ __I_;f >= exp _ 6"gd-exp i- >.

(2)

(3)

Substituting in (2) the number states by the generation from the vacuum state, one obtains by

means of the generating function of the Hermite polynomials H.(z)

,a;_ >=exp (aa' - _a 'f2) [0>. (4)

Two special eases are easily obtained from these formula, the coherent states [o; 0 >

. o.I_;o >= _ _-_ I" >= exp I_>, (5)

and the squeezed vacuum states I0; _ >

,/(2m- 1)!!
10;f >= _ v _-_ (-¢)'12rn >. (6)

m=O

(otat- {at2) does not preserve the normalization of the states. TheThe nonunitary operator exp
J

corresponding normalized states

c7)

are only possible for It] < 1.

The expectation values of the canonical operators

Q(_) = _/_(ae +ate-'_), P(_o) =- -i_/_(ae d:'_), (s)

denoted by cross-lines are

Q(_---5 1 - ¢¢-
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• /_'ae_(1 + (*e -_2_) _ a*e-i_(1 + _e _2_)

P(_)= -'V_ i-_. '
(9)

and their variances are

The uncertainty product

(AQ(_))_ h(1-_e'_)(1-Ce -'2_)
= 2 1-¢¢" '

(Ap(_))2 h (1 + Ceil)(1 + (*e-i'_)
= 2 1- _'* '

h2{ (¢e12_" - (*e-i_') 2 }(z_Q(_))*(z_v(_))_= T 1- _- _-_ ,

(lO)

(11)

is the minimal possible one for 4 angles _t according to

e',_.-, = , (AQC_..,)p (_p(_..,)p = ¥, (12)

corresponding to the extreme values of the variances

(AQ(_._,)p= a1a=I¢l,(Ap(_,)p = h I 4-I(:1
2 1 4- I¢1 21 _: I¢1"

(13)

One has pure smpUtude (phase) squeezing if the minimal (maximal) value of (AQ(_o_,)) 2 cor-

responds to P(_,) = 0. This leads to the following coordinate-invariant conditions for the

arguments of the Hermite polynomials in (2):

1. amplitude squeezing, _ real numbers,

O_

2. phase squeezing, _ imaginary numbers.

In the more general case, _ is a complex number. The expectation value of the number operator

is

((-/\ 1-((* / + 1 .

and its variance

(AN), = ((I + ¢(*)°c - 2(at*) ((I + _(') c_" - 2('°0 + 2(("
(I _ ¢¢.)a (1 _ ((.)2"

(15)

The nonunitary approach provides a new convenient parametrization of the squeezed coherent

states.
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3 Unitary approach to the eigenvalue problem

The unitary squeezing operators
=

= = - + iv_(aat+ ata)

transform the basis operators a and at according to

(16)

• (::.)S(_,_,( )(a, at)(s(_,v,c))t = (a, at) ,c"

= sh_
=_k_-ivsh_,u{=_ T, _= Iv/T_-v',l,l'-I_I'=I- (17}

The solution of the eigenvaiue problem of the operator a + (af is obtained by the following

application of the unitary squeezing operators to coherent states [7 >

etX etxot

(. + ¢.,)s(_, v,F) _ >= (.,, + u.t)s(_,v,_')17 >

eiXot

(_,v,_ )

eIXClr
> (18)

V/i -ICI 2

where X is an arbitrary angle and _ and r/are given by

e-iX( * sin X

_= _o,v= C_1¢12

By choosing X = 0 one finds

e---

_e,

_/ 1-[([ 2 _[(_U-sinUxICl_ si. _x Arsh _ ICl= (19)

lot; ( >,_or._= exp { ('c_24-_"---[(-_--(Or.2 }

" exp { 21-_Arsh (V/_ [_[ j(_[u) ((°a' - (a'2) } I

The unitary approach is restricted to ]_1 < 1.

v_ -I¢1 =
m>. (20)

|

=

=

E

k
h
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4

The states < _;_1 are left eigenstates to the operator a + (at according to

< ;(_(.+¢.t)=_< ¢"('I'

Dual states and eigenstates of the creation operator

and they are dual to the states [a; ( > in the sense of the orthogonality relation

and of the completeness relation

1 daexp - [a;(>< (.,_-;]:I.

(21)

(22)

(23)

The integration path C through the complex plane is widely arbitrary with the only restriction

that it it must begin in one sector and end in the other sector where exp -_ vanishes in the

infinity for fixed values of (.

The eigenstates of the creation operator at according to

.riB;oo>- _IB;oo> (24)

are

(-I)" ff_,jS(_)ln > (25)I_;oo>= exp _.t _(_)I0>- _ v_
w._O

where 6(_) is the one-dimensional delta function of complex argument (analytic functional). They

are orthogonal to the coherent states [a; 0 >

< _';0l_;oo >= s(,_- 8). (26)

This relation shows also that the cdherent states are already complete on paths through the

complex plane.
More details and references can be found in [1].
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Abstract

The prescription for introducing a gauge

transformation into a quantum transition amplitude,

nominally well known, contains an ambiguous feature.
It is presumed by some authors that an appropriate

transformation of the phase of a wave function will

generate the associated gauge transformation. It is
shown that this is a necessary but not sufficient

step. Examples from the literature are cited to show
the consequences of the failure of this procedure. One

must distinguish between true gauge transformations

and unitary transformations within a fixed gauge.

1. Introduction

The necessary procedure to introduce a change of gauge in

quantum mechanics is quite standard [1,2]. (We adopt the

terminology that the phrase "gauge transformation" implies the
so-called "gauge transformation of the second kind" [1].) This

quantum-mechanical procedure begins with a change in the

potentials employed to represent an electromagnetic field, and
then associates with these altered potentials a changed

interaction Hamiltonian and a particular phase transformation of

the wave function. Some practitioners presume the inverse: that
the phase transformation of the wave function will always imply

that a gauge transformation has been done. It is the aim of this
paper to show that this inverse procedure does not necessarily

produce a gauge transformation, and that significant

misinterpretations can occur thereby.
When a non-gauge-changing unitary transformation (a "phase

transformation") is presumed to actually produce a gauge

transformation, it may not have practical ill :consequences. In
some cases, it simply induces an identity transformation in the
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transition amplitude. The outcome is less benign when the

non-gauge phase transformation is interpreted as a gauge
transformation, and used to infer further physical conclusions.

For example, this has led to the concept that one particular gauge
is more fundamental than others. These difficulties are discussed

in Sec. 3 after a review of basic information in Sec. 2.

2. Formal Background

The approach taken here is that of semi-classical
electrodynamics. Quantization of the field is not necessary for

present purposes. Both relativistic and non-relativistic
formulations will be used; relativistic because matters are

clearer in that c0ntext, and n0n_relatlvlstlc because that is

where the difficulties have actually occurred. It is presumed

throughout that the fields and the gauge-transformatlon functions

are explicitly time dependent.
A gauge, transformation of the electromagnetic four-vector

potential A _ by the real, scalar generating function A is
accompllshed by

A_ -_ Ac_ = A_ - a_A (2.1)

or the non-relativistic equivalent

-, _c = _ _ sA/a(ct) (2.2)

(2.3)

where A"=(_._). This is accompanied in quantum mechanics by a

change in the phase of the wave function induced by the unitary
transformation

_ 90 = U@, (2.4)

with

(2.s)

_5

When one wishes to change the gauge in which a transition

amplitude is expressed, it is necessary to know how the
Hamiltonian is transformed. It follows directly from the

Schr6dinger equation that this transformed Hamiltonian operator is

given by

- iha/St = U (H - iha/@t) U*, (2.6)

or, equivalently, by [3'4]

- USU* -XhU0* - UHU* + in'U*, (2.7)
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where the dot on the U indicates the time derivative. The Dirac

analog of this Schr6dinger result is instructively simple. From

the Dirac equation

(iS-e_-m )_ = O, (2.8)

one obtains

(2.9)

where _ • V_A_, and A_ G is given by Eq. (2.1).

The transition amplitude employed will be the generic form

(S-1)r I = -(i/h) _ dt (%r, HI_t), (2.10)

which is commonplace in scattering theory, but is useful also in
bound-state problems. It represents a physical situation in which

the transition-inducing electromagnetic field is not present at

asymptotic times, i.e., there is no field present at large
negative times when the initial state is prepared and at large

positive times when final measurement of the transition products
is made. The state _ is one with no electromagnetic field present.

Its Hamiltonian will be called H0. The state • satisfies the

Schr6dinger equation with full interaction. In other words,

(ih_t-Ho)® - O,

(ihat-S = o,

H = Ho+H I•

(2.11)

(2.12)

(2.13)

For the usual problem in which an atomic or molecular potential V

is present at asymptotic times, as distinct from the

electromagnetic field whose application causes transitions, one

can state

s° - (pZ/2m)+V, H - (2.14)

in an arbitrary gauge, where no stipulation has been made as to
how the field is to be represented by scalar or vector potentials,

or a combination of both. To be as straightforward as possible in

this formalism, it is required that the field is to be turned on
and off adiabatically, so that one can require the vector

potential at both positive and negative asymptotic times to be the
same (nominally zero). This restriction is known [3-8] to assure
that the same physical result will arise from the transition

amplitude in Eq.(2.10) in different gauges, but with the use of
exactly the same non-interacting wave function _r, regardless of

the choice of gauge for H, and 91 •
Finally, the relativistic transition amplitude analogous to

285



Eq. (2.10) is stated [9]

(S-l )fl = -(i/n) _ d4x Yre_# i, (2.15)

where T is the Dirac adj oint ___#t¥0, and a static binding

potential is singled out, so that the non-interacting and

interacting Dirac equations are, respectively,

(iS-_°V-m)@ = 0 (2.16)

(iS-e_-;°V-m)# = O. (2.17)

3. Statement of the Problem

Whereas there is really no ambiguity in the information

reviewed in Sec. 2, the way in which it is employed in the

literature is not uniform. A simple unifying concept which serves

to characterize the inconsistencies which arise is to note that

they all stem from the improper notion- that a gauge-change-like

unitary transformation applied to the wave function is a guarantee
that a gauge change has actually occurred ......

Possibly the simpies£ example of this problem occurred in

connection with the demonstratidn_" [IO,li] that _he substitUtion

@=U# in Eq.(2.10) (for a particular Choice of U) can give a good

approximation for certain classes of transitions in which dressing

by a low frequency field is present. The result of this

approximation is that Eq.(2.10) becomes

(S-l)fl = -(i/n) f dt (#f, HiU_i). (3.1)

This has, however, been characterized as a gauge transformation

[12] solely on the grounds of the presence of the unitary factor

U, even though there is no transformation at all of the

interaction Hamiltonian H i.

Another example is a procedure intended to change the gauge
in which a transition amplitude is expressed in a fashion which is

purported to be "manifestly gauge invariant". The device employed

is simply to inse_rt a unit operator into the transition amplitude
in the form of U'U. Then the U factors are attached to the wave

functions, and a gauge transformation is presumed to be

accomplished. (A clear example of this is in Ref.13.) Equation
(2.10) would then become

(S-1)fl = -(i/n) f dt (If, H UtU@i)

= -(i/h) f d_ ((U_f), (UHIU_)(U_I)). (3.2)

Since the wave functions now bear the unitary transformation

factors U as in Eq.(2.4), they are regarded by some authors as

being in a new gauge.

There are several defects with the above procedure. One is

i

!

I
P
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the fact that the non-interacting wave function 0 is transformed

as well as the interacting wave function 9. This fact has been

noted by some authors, and concluded to be necessary [13-18]. A

corollary of this procedure is that there then exists a preferred

gauge, since only in one gauge is it possible to have the
non-interacting wave function appear without its unitary

transformation factor. The preferred gauge normally selected is

the so-called "length gauge", or "EF" gauge, where the

dipole-approximation interaction Hamiltonian is H,=-eE'@. For

example, the statement is made that [14] "... the _e_tbook wave
functions can, in general, only be applied in the E.@ formalism

...,,. The presumed necessity to apply a field-dependent gauge

transformation factor to represent a non-interacting state in any

gauge other than the length gauge has been termed an oxymoron

[19]'Another problem with the procedure expressed in Eq.(3.2) is

that the interaction Hamiltonian is not properly stated. The true

gauge-transformed interaction Hamiltonian follows from Eq.(2.6) or

(2.7), taken together with Eq.(2.13). By contrast, the form

H P = UHIU* (3.3)
!

is simply a unitary (or phase) transformation of the operator H x.

It is not the gauge-transformed interaction Hamiltonian. The

actual gauge-transformed interaction Hamiltonian is given by

S G= USU* + (UHoU*-S o) + ih6Vd*. (3.4)
I

The clearest way to see the true meaning of Eq.(3.2) is to

employ the relativistic form given in Eq.(2.15). The lack of

second order differential operators in the Dirac equation and the

simple form e_ for the interaction term makes the relativistic

form especially clear for formal purposes. The procedure analogous

to Eq.(3.2) employed in Eq.(2.15) gives

(S-l )rt =[-(i/h)_ _x "re_U'U_t= -(i/h) d4x (U#r)e_(U_t) ' (3.5)

since U always commutes with e_. Equation (3.5) shows plainly that

there is no gauge transformation at all. The interaction term

remains identically the same as the original, and does not

transform to the new gauge as would follow from Eq.(2.1).

The procedure in Eq.(3.5), as in Eq.(3.2), is simply a

unitary transformation within a fixed gauge.

4. Resolution of the Problem

The resolution of the ambiguities discussed above is

straightforward. One simply states a transition amplitude in an

unspecified gauge, containing all four components of the

electromagnetic potential function, as given in, for example,
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Eq' (2.15)_. in a particular gauge, designated by the superscript
(a) , this is

(S-l)fl =-(i/h) f d4x % e_(a)#(')., (4.1)

In gauge (b), it is

= -(i/h) [ d4x _ e'(b)@ (b)(s-1)r,
fL 1" (4.2)

The non-interacting state _f is the same in both instances since

it is independent of the field. This is the type of transparent

gauge invariance that has also been given the name "manifest gauge

invariance" [19], although that description is risky, since
the same phrase means different things to different researchers, A

better name would be "strong gauge invariance", since it so

strongly stresses the complete equivalence of all gauges.

There is no clear algebraic transformation that connects

Eq.(4.1) with (4.2). Nevertheless, they must be equivalent if all

gauges are equally valid. This has been shown by calculation of

practical examples [6,7] as well as by the demonstration [3] that
the formal difference between the expressions which are the

non-relativistic analogs of Eqs.(4.1) and (4.2) has a null result.

The mis-identification of the simple phase transformation in

Eq.(3.2) or (3.4) as a gauge transformation follows from an

attempt to achieve algebraic identity between transition

amplitudes in different gauges. What is achieved instead is simply
a unitary transformation within a fixed gauge.

Another motivation for employing Eq.(3.3) as a

gauge-transformed interaction Hamiltonian in place of Eq.(3.4)

makes use of arguments [14,15] involving dependent? on the dipoleapproximation and on the preferred use of the • interaction.

Such arguments are inherently risky. One cannot view as

fundamental a formalism which depends critically on an interaction

which cannot extend to very strong fields or to the presence of
significant magnetic influences.

me
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The concept of squeezing has so far been applied mainly to light, as is evidenced by numerous

research works on the subject of squeezed light. Since in quantum mechanics both light and the

simple harmonic oscillator are described within the same mathematical framework, there is of

course no difficulty in applying the concept to the simple harmonic oscillator as well. In fact,

theoretical development of squeezed states and squeezed light owes much to physical insights

one obtains as the analogy between light and the harmonic oscillator is exploited [1, 2]. There,

however, exist only a few publications [3, 4, 5] that deal directly with generation of squeezing

in a harmonic oscillator. Since the two quadrature operators for a simple harmonic oscillator

carry the physical meaning of position and momentum operators apart from constants, a squeezed

oscillator, i.e., a simple harmonic oscillator in a squeezed state, exhibits squeezing in actual position

or momentum. Thus, a squeezed oscillator once generated can play an important role in atomic

or molecular experiments that require precise initial determination of the position or momentum

of the particles involved.

In our previous work [5], it was shown that squeezing can be generated in a harmonic oscillator

by subjecting it to collisional interaction. The model chosen for this study is one-dimensional

collision between a helium atom, taken as a structureless particle, and a hydrogen molecule,

approximated as a simple harmonic oscillator. The harmonic oscillator was assumed to be prepared

in its ground state before the collision. Thus,

[_b(t = O) >= I0 >, (1)

and the initial quadrature variances are given by

(2)
(ax,) 2 = (ax2) 2 = _.

As the collision proceeds, the oscillator develops into a superposition state,

IV(t) >= _ a,(t)ln >= _ la,(t)lei_"(°ln >. (3)

The quadrature variances at time t are then given by [6]

(AX1)2 1 1= _ + _ nla.I 2+ _ y_ n_/K-4-Tv/'_+ lla.lla.+21cos(4.+2 - 4.)
/1 I%

- [_ v_ + lla.lla.+alcos(4.+a - 4-)] 2, (4)
I1
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and a similar expression for (AX2)L Wodkiewicz et. al. [7] have shown that a superposition state

consisting of a finite number of eigenstates In > can exhibit squeezing for appropriate values of

the magnitudes ]a,, I and phases _b,_ of probability amplitudes, and thus there is a possibility of

squeezing in the collision state given by Eq.(3). Our calculations, as reported earlier [5], show

that there occurs a relatively strong squeezing near the time of minimum separation and a weak

squeezing altanately in position and momentum after the collision is over.

It should be noted that, in most of the collision studies in the past, attention was focused on

the magnitudes la,,I of the probability amplitudes as they yield the transition probabilities. For

our study of collision:induced squeezing, however, the question of how the phases develop in time

as the collision proceeds is also an important issue, because the variances (AX1) 2 and (AX2) 2

depend not only on the magnitudes la.I but also on the phases _b,,, as can be seen from Eq.(4).

Even if the magnitudes la.I are fixed, the variances can take on different values for different phases

_bn.

In order to emphasize the importance of the phases, we show below that squeezing can be

achieved from a coherent state simply by changing the phases alone. Let us consider a harmonic

oscillator in a coherent state la > at time t = 0. If we let the oscillator develop freely in time, its

state at time t is given by

I¢(t) >= e-1°l_/2_ _ -"_"v .,e In >. (2)
ill

The variances (AX1) _ and (AX2) 2 remain ¼ throughout. Let us now assume that the phases of

the coherent state are changed at time t = 0 so that the oscillator develops in time according to

I¢(t) >= e -lal'/2 _ a'_ i_. -in,o,
_n-_nlee In >. (6)

As compared with the coherent state, Eq(5), the state represented by Eq.(6) has additional con-

stant phase factors 0,_. Althogh this state is not identical with the coherent state, it has the

same Poissonian state distribution as the coherent state and may thus be called a "quasi-coherent

state". It is our purpose to show that, with appropriate values of 0_, the quasi-coherent state can

show squeezing in X, or X2. To illustrate this, let

0, = { 0, if n is even,-_ if n is odd. (7)

The state represented by Eqs. (6) and (7) are a linear combination of even and odd coherent states

[8] with the relative phase between the even and odd states given by _. The variance (AXe) 2 for

this state can easily be computed using Eq.(4), and similarly (AX2) 2. The result of the calculation
is

1

(AX,) 2 -- ¥ + Iol 2 -lal2 sin2(_ - _t) -lal%-,lol' sinZ(_ _ we),

' 1

(Ass)2 __ 7 + la12 - 1_12c°s2( ¢ - _t) - lal 2e -'l_l_ cos2(¢ - _t).

The variances oscillate between v_ and v,,i,_ where,

1 .. 1

v,,,_ = 7 + lal 2, v,_i, = _ -''lal2e -'l°'i_

(8)

(9)

(lo)
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It is evident that the quasi-coherent state with the phases given by Eq.(7) exhibits squeezing

because vmi,_ < !4"
The example presented above shows clearly that two states with different phases in genera] have

different degrees of squeezing, even if they have the same state distribution. This means that, even

if one considers collision processes that produce the same state distribution, the degree of squeezing

obtained during and after the collisions can be quite different, depending on how the phases _b,, of

the probability amplitudes develop in time as the collisions proceed. It is therefore evident that,

for a detailed study of collision-induced squeezing, further study on the time development of the

phases in collisions and its relation to collision parameters such as potential energy surfaces and

collision energy is needed.

Acknowledgments

This research is supported in part by the Korea Science and Engineering Foundation and by

the Center for Thermal and Statistica] Physics of Korea.

References

[1] D. Stoler, Phys. Rev. D1, 3217 (1970).

[2] R. W. Henry and S. C. Glotzer, Amer. J. Phys. 56, 318 (1988).

[3] X. Ma and W. Rhodes, Phys. Rev. A$9, 1941 (1989).

[4] C. F. Lo, II Nuovo Cimento 105, 497 (1990).

[5] H. W. Lee, Phys. Lett. A153, 219 (1991).

[6] H. W. Lee, Phys. Rev. A39, 424 (1989).

[7] K. Wodkiewicz, P. L. Knight, S. J. Buckle and S. M. Barnett, Phys. Rev. A35, 2567 (1987).

[8] Y.Xia and G.Guo, Phys. Lett. A136,281 (1989).

293





N94-10598

POSITIVE PHASE SPACE DISTRIBUTIONS

AND UNCERTAINTY RELATIONS

Jan Kniger 1

Institute for Theoreticcl PkT/sics, University of Ghent

Proeft_inatraat 86, BgO00 Ghect, Belgium

Abstract

In contradistinction to a widespread belief, Wigner's theorem allows the construction

of true joint probabilities in phase space for distributions describing the object system as
well as for distributions depending on the measurement apparatus. The fundamental role

of Helsenberg's uncertainty relations in Sch_dinger form (including correlations) is pointed
out for these two possible interpretations of joint probability distributions. E.g., in order

that a multivariate normal probability distribution in phase space may correspond to a

Wigner distribution of a pure or a mixed state, it is necessary and sufficient that Heisenberg's
uncertainty relation in SchrSdinger form should be satisfied.

1 Introduction

Joint measurements of conjugate variables q and p are realized in many optical devices. This

implies that one can think in this domain of a representation of quantum mechanics by means of

joint probability distributions (j.p.d.) in the phase space of conjugate variables q and p [1]. This

is perhaps the most convenient way to a realistic underpinning of quantum mechanics. A major

advantage is that the incompatible variables q and p are c-numbers. The Wigner distribution

function, which is widely used in optics, is the simplest language for coherent and squeezed states

[2]. For these states the Wigner function is nonnegative. However, it is well known that the Wigner
distribution cannot be considered as a true (nonnegative) probability distribution in general [3].

The aim of this paper is twofold: in the first part (sections 2 and 3) we present an analysis

of the central question to consider phase space representations of quantum mechanics as true

(nonnegative) probability distributions [4, 5] ; in the second part (sections 4 and 5) we emphasize
the fundamental role of Hei._enberg's uncertainty relations in SchrSdinger form for Gaussian Wigner

distributions and compare this with j.p.d, depending on the measurement arrangement (positive

operator valued measures).

2 Wigner's theorem

On account of the commutation relations between the operators _ and _b, there is no unique

operator corresponding to the monomial qnp,n. As a consequence there is no unique construction

1electronic address: kruger@inwphys.rug.ac.be
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of the j.p.d.. In general, a j.p.d, is completely determined by a given correspondence rule.

Notwithstanding this arbitrareness, the existence of true probabilities in phase space is severely

restricted by Wis_ner's theorem [3], which considers the following five requirements:

(1) The j.p.d, is the mean value of an hermitian operator K(q,p) depending on the c-numbers

q andp: /(q,p) =
(2) The j.p.d, is a linear functional of the density matrix (sesquilinear in the wavefunction):

this means that/f(q,p) is independent of _.

(3) The j.p.d, is a true probability function: f(q,p) >_ O.

(4) When integrating over momentum space, the marginal distributions coincide with the

proper quantummechanical probabiliti_ in q: ff(q,p)dp =< q I_l q >.

(5) When integrating over position, the marginal distributions coincide with the proper quan-

tummechanical probabilities in p: J"/(q,p)dq =< p I P[P >.

Theorem 1 The five requirements (I)-(5) are incompatible.

The requirement (2) is not expLicitdy present in the original version of Wigner's theorem; the

necessity of this requirement was emphasized by Mfigfir-Schlgchter [6], who observed that in the

absence of the arbitrary restriction (2) Wigner's theorem cannot be realized. In the stronger

version of Kruszynski and de Muynck [7] the requirement on one marginal distribution suffices.

3 Realisation of positive phase space distributions

For our purpose, it is sufficient to consider two different interpretations of j.p.d, as functionals of

the density matrix.

(1) The j.p.d, f(q,p) is interpreted as the probability that the variables q and p have certain

values, the variable considered as s property possessed by the object system. In this case, two

possibilities are leh open for the construction of true j.p.d':

(1.1)/(q,p) a
In this case the requirements (1)-(5) are only compatible with a restricted class of functions.

E.g. for the WeyI correspondence rule, the restricted class Of functions are Gaussons (see section 4).

The Wigner distribution cannot be considered as a true probability distribution in general, because

e.g. it takes necessarily negative values for pure states that are not Gaussons. However, one

can easily construct positive non-Gaussian Wigner j.p.d, corresponding to rnized states. For

a representation of quantum mechanics by means of true Wigner j.p.d, one can add the new

requirement that only nonnegative j.p.d, are physical states. This means e.g. that a one photon

state is represented by s mixed state [10]. This idea is made plausible by the experimental fact

that it is impossible to prepare a pure state with 100 % efficiency.

(1.2) f(q,p)/_ a no,incur f_,nctionaZ o/_.

J.p.d. which are a nonlinear functional of the density matrix are not restricted by Wigner's

theorem. The j.p.d, which is the product of the proper quantum mechanical marginal distributions

is a trivial example: f(q,p) =< q I P [ q >< P ] P[P >. Non-trivial examples with correlations

exist also in the literature [ll].In this case the j.p.d, is a multilinear functional of the density

matrix. We have considered a complete analysis of true distributions which are quadratic functional
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of the density matrix [5]. This results in a new concept of j.p.d, which is based on a consistent

phase space interpretation of the energy eigenstates of the wave function.

(2) The j.p.d. /(q,p) is not function of the object system alone, but may also depend on the

measurement arrangement of two incompatible observables Q and P. The measurements mutually

influence each other in such a way that the singly measured quantum probability functions cannot

be reproduced from the measurement results. In this case it is no longer desirable that the

marginal probability distributions equal the single measured ones, hence Wigner's theorem does

not restrict this class of j.p.d, and/(q, p) may be a linear function of the density matrix. The

optimal stochastic phase-space representations introduced by Prugove_ki [12] are an example of

this class. In general the distributions of class (2) can be considered in the framework of positive

operator valued measures [13].

4 Heisenberg's uncertainty relation in SchrSdinger form

and coherent and squeezed Wigner distributions

We consider case (1.1) for the Weyl correspondence rule. In this case the construction of true

j.p.d, for pure states is restricted by the remarkable and important theorem which was proven by

Hudson [8] for one-dimensional systems and generalized by Soto and Claverie [9] for systems with

an arbitrary number of degrees of freedom.

Theorem 2 The necessary arid su_icient condition for the Wigner distribution f_nction of a pure

state to be nonaegative is that the corresponding wave f.anction < ql_P > is the ez-ponentiaI of a

quadratic form.

As a consequence the wave function represents a coherent or a squeezed state and the j.p.d, is

a bivariate or a multivariate normal (Gaussian) distribution in phase space. Conversely, in two--

dimensional phase space of the conjugate random variables q and p the most general normalised

bivariate normal probability distribution with mean values q and _ can be put in the standard
form

f(q,p)_ 2wV_expl -_ [cr,(q _ q)z - 2_,a,( q - q)(p - _) + _q(p - _)'] , (1)

where a, and crp and a,a, represent respectively the variances and the covariance a¢ = E[(q - q)z],
etc.; E denotes the expectation value and A is the determinant of the covariance matrix: A =

crgav - cr_a, >_ 0. SchrSdinger derived a more general and stronger form of Heisenberg's uncertainty

relation including the correlation aq_:

cr_ap - aqa, 2 > h2/4, (2)

which we call"Heisenberg'suncertaintyrelationin SchrJdingerform". Itiseasy to deriveand

to diagonalisethe correspondingdensitymatrix, f(q,p) may now representa pure or a mixed

state.The eigenfunctions< qI¢ > areoscillatoreigenfunctionsfunctionsmultipliedby a common

q-dependent phase factorwhich ischaracteristicforthe correlation.We can show explicitelythat

thereisa closeconnectionbetween a Gaussian distributioninphase space,quadraticHarniltonians

and temperature dependent oscillatorstates.This impliesa connection between physicaland
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statistical parameters. The eigenvalues of the corresponding density matrix axe (1 - z)z" with

z = (A - h/2)/(A + _/2), which leads to a su_cient condition for a bivariate normal probability

distribution to be a quantum state:

Theorem 3 In order that a bi_ariate normal probability distribution in phase space _ith _ariances

_., crp and covariance-w._ TMmay cOrrespOnd io a Wigner distribution of apu_oramized state, it is

necessary and su_icient that Heisenberg's uncertainty relation in Schr6dinger form cr,_p -cr,_ 2 >_

h /4 shoed besatisfied[4, 14.
It is very remaxkable that the Schr6dinger form of Heisenberg's uncertainty relation, which is a

necessary condition to be fulfilled for every Wigner distribution function, is also a su_cient condi-

tion in the case of a bivariate normal probability distribution. Indeed, to be a Wigner distribution

function, f(q, p) must satisfy an infinite set of KLM [15] or equivalent conditions in general, but
for the two-dimensional Gaussian distribution the infinite set reduces to one simple necessary and

su_icient physical condition. In this respect, the uncertainty relation in Schr6dinger form is more

fimdamental than Heisenberg's relation in the usual, less stronger form aqap > h2/4. Moreover,

the Schr6dinger form is invariant for linear canonical transformations (in general Sp(2n, R) in-

variant transformations), while the usual form is not. Finally, for quadratic Hamiltonians, which

are closely related to the Gaussian Wigner distribution, the Schr6dinger form remains invariant

during the motion if the variances and the eovmiance are dependent on time. Indeed, i_n this case

the quantum LiouviUe equation is equivalent to the classical Liouville equation and therefore 6/,

p, aq, ap and _q_ have the same time dependence as in the classical case. These are further reasons

why the uncertainty relation in Schr6dinger form is more relevant than Heisenberg's relation in
the usual form.

For systems with an arbitrary number of degrees of freedom the strong form of Heisenberg's

uncertainty relation is derived from the inequality tr(al_a) > 0 where the vector a is given by

a = A(# - 6/) + B(;6 - 1_), A and B being arbitrea7 matrices, and which takes the form:

B* _p,q-,h/2 _p_ B -

Therefore Heisenberg's uncertainty relation in Schr6dinger form takes now the matrix form:

- ,h /2 >_0. (4)

I 1 I° 1where cristhe covariancematrix °,.,-,a, and _ the fundamental symplecticmatrix __ o •
#Pdl up,p

Theorem 4 The necessar't/ and su_icient conditions for a Gaussian phase space function to be a

Wigner distribution is that the covariance matriz _r satisfies Heisenberg's uncertaint_ relation in

SchrSdinger form: cr- _A13/2 >_ 0 [4].

Analogous remarks as for the bivariate j.p.d, are valid for the multivariate j.p.d., the eq. 4 is

now Sp(2n, R) invariant. The theorem entails a considerable simplification with respect to the

theorem of Simon, Sudaxshan and Mukanda [17],where Sp(2n,R) invariantpowers of#a -_ satisfy

n complicatedinequalities.The differencebetween a pure and a mixed stateisgivenby a theorem

ofLittlejohn[16]:

Theorem 5 The necessary and sufficient condition for a Gaussian Wigner distribution to be a

pure state is that the rnatriz 2cr/1i is a symplectic matriz: a/ga = (h2/4)B.

In two dimensions the matrix relation reduces to _r, ap - ¢rq_2 = _2/4.
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5 Hemenberg s uncertainty relation in SchrSdinger form

for j.p.d, depending on the measurement arrangement

Itwas argued in section3 thatthe constructionofj.p.d,ofclass(2)isnot restrictedby Wigner's

theorem. RequiringGalileiinvariance,linearityand positivityforany densitymatrix describing

the objectsystem,we have forthe most generalform of the j.p.d.:

f(q,p)_ h-_tr(b_,_ob,,_obj) (5)

where/_,.o.o and _obj are the density matrices describing exhaustively the measurement apparatus

and the object system and bq_ represents the displacement operator. If both _,,_o and _obj are

pure states then f(q, p) reduces to the transition probability/(q,p) = h-"tr(_b_°, D,_%_). The

marginal distributions are always given by the convolution of two true probability densities:

f(q,p)dp =< q]_o [q > * < q[_jiq >, (6)

f(q,p)dq-< p [ P_o ]P >* < P ] P_J ]p >' (7)

which can be seen as accuracy calibrations given by the Confidence functions < q I P,_--o ] q >

and < p IP,,_o [P >" The coupleq,< q ]_,=_o]q > togetherwith p,< p ]_,,_0[P > can alsobe

interpretedas a fuzzy sample point in phase space [12].Remark alsothat,for thesej.p.d,the

ordening of operatorsisequivalentwith a measuring procedure.One can alsowritethe j.p.d,as

a convolutionof two Wigner distributions:

f(q,p) =/_..,(q,p)./_(q,p). (8)

the first one representing the measurement procedure and the second one describing the object sys-

tem. This "smoothing" or "coarse graining" of the Wigner distribution eleminates fast oscillations

in _ and givesthereforea betterrepresentationin the classicallimit[18].Another consequence

of the lastformula isthatthe covariancematrix # isthe sum ofthe covariancematrix a_j ofthe

objectsystem and the ¢r,,_,of the measurement procedure.Hence we obtain the "operational"

uncertaintyrelation
- _ > 0. (9)

which reduces in one dimension to oq#p - crq__ > h2. This operationaluncertaintyrelationis

in accordance with the experimental uncertaintyrelation(Aq)_=(Ap),ffi_ h [19]. Comparing

thiswith the uncertaintyrelationsfor the j.p.d,of the precedingsection,we observe that the

inequalities axe the same, except for the essential difference that _ replaced by 2h, expressing the

presenceof extranoisedue to the measurement procedure.
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SQUEEZED COLOUR STATES IN GLUON JET

S.YLKiIin, V.I.Kuvshinm

I_ih_te il Phy_ff_m

g],arl_a a_.70, Min_k UOO_I, Bela_

S.A.Fixq;o

Sk=_y_a a_.,_, Mi_k nO080, Belm'uJ

Abstract

T]be poa/b_/ty of brmstiolt o_eqaNud stat_ dg]_ _ _' qms•tum clw0_odylt_ic=

du to :osdiseu aoapmarbative eelht_rsctioa drafts jet evolstioa is tle procem of e+e -
u=tLt]-tiou isto ksdzou, which axe saa]otgou to the qnatam tbtoz zqzmNd ststm is
qautum e]octrodyasmke is demonstrsted sad the Jqumsis$ p_smeters are cskllstod.

1 Evolution equation for gluon field

The sluon partof the quantumchromod_, H.milton_ he. the form[Z]

B, = _ + u., =/(_(_'.R.+ g.J.)- _.ec.,J-_+

_e_.c,.X,x& + ½_'(c.=X_=)'+ ½g,(_c._ x&)')e=
O)

where _. = -_A °. - 8,&., _. = _ x ._,, _.-Isctor potential of Siuon field, C.==-=tracture

constants of the 80(3), a, b, c, = l,..., 8 are colour indicm; i, j, k, l-indices of &vectors.

The £eid of SJuous sppemu in the form of SJuon jet or ¢ucsde, which is produced by the

quark with lsrp trsademd momentum. Due to the cul_c and quadratic nonlinearities in (1)

bremstrah]ung 81uous divide and st the end of perturbetive caw.sde we have • jet of S]uous with

approzimate]y equ ,,! emersi_ _d molz_a [2].

At the end of cuscsde multiplicity distribution of sluo_ is close to nesstive blnoudal distribu-

tion [3, 4] which can be considered ,,, • ,_ of Poimon (coherent) distributio,,-.

The importt_ce of noaperturbstive hedrmfisstion sts4je i= counected with confinement, sub-

pomon multipl/city distributions st thiJ stage [5, 6], connection with interm/ttency [7], p4uring

of paztous durins colour kmein& uonlinmu/tiw of (l) hi=t on the pom/bilitim of _queesed sluon
etstm.

Let us take for _hnplicity that all sluoaJ ia jet have eqmd eners_ and moment=. Chome rich

the mystem of coordinate= that hm ue =z e0incidin8 with the direction of sluon momentum. The•

in the momentum reprmentstion the operator of sluon mifmte_action takes the form
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where_(_) _ u_hii_t_n (production)operetta of 0uons with b-colourud _-u_tor
component, k0 t_i me tare 81uon ener_ ud mm: _ - _z = m_.

Evolution equation for 8]uon operator wltb indlcm = and k

_A_ = EAL_ (4)

then t_m the form

_AZ = fi_q +/,A_"+ ,, (s)

2 Squeezing of the gluon field in jet

Let us _oive the equation (5) for andl time &t << llg, £ = _/_ - I/,I_. Tin, the _iution of

(5), b written in the mstriz form

/A|(0 I ,,1( + (i'.I (,)0,
A_'(Q / = _ _ AP(O/

(A,(,,,APO) / = _ _ _-R f_ (_)

/At(0), [, f, /2'.,,
Let u_ t_ke it some moment _0 = 0 the co,,ditions: _ = O,9f_ = O, ud thst fz and f_ vm7 slowly.

Then the solution tabm the form

AIO)= A|(O)- _I(0)/,'-_ - _"(O)h,_. (s)

This ezprmm_n coincides with the ezpremion for ideal _queesed state [8]

A|=A_, +._A_'_ (9)
chr -- 1 - if_t, sl_ --- fu, e_ --- -i (10)

where e and 0 _,z _qu_sis_ pard---tins. Tbm the mdbquusins b pomible for the Ouon field with

fixed colour trod Loruts component.

In quantum opt_ ucb ststeJ are nuNd _ pure quorum ststed and operstom z_ = (A -

A+)I_ and zz = (a ** A - A+)I_ can have awrNp_ fluctuations mndier then 1/4.

3 Evolution of gluon multiplicity distribution in jet

Take vector of state Ir_, ns,...,,_ • where n.- the number of sluons with definite indices i _nd

a. The operator of full sluon number/_ acts on the v_or M

,_I_."_,...,"- >= ("_+"_ +'" +-.)l_,,'_,...,'_ • (111
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It is ckar that say part of H_ act_ on the vector

4.6 c d
JNe,_ >= _ A_ AhA _ Inx, n_,..., n, >= ins, n_,..., he÷l, n_÷=,..., _-x, n_-l,..., n, >

It does not cban_ abe number of partkle

>- +,,0 +... + >

and then

[_,_ =0.

(12)

(13)

(14)

Thus the total number of 81uon is jet under made conditions (_ = co_t, & = co¢_) does not

change with the time and it is not difBcult to see that gluon multiplicity dimtribution does not

change with the time.

It can be also shown that the value equeesin$ sh_. for every mode il limited [9]. Foton multi-

plicity of aqueesin$ |farm distributions have been meal earlier for phenomenological dmcription

of mine pmpertiu of hsdmn multiplicity dimtribution [10, 11].

Here we obtain for model gluon jet that the equeesed statm of colour gluon field can appear

due mlJinteraction and nonperturbative mechankm of gluon mlfinteraction and can be particularly

important at nonperturb_tive erase of jet evolution.

Due to nonperturl_tivenem, pairing of 81uon and nbpoimon multiplicity distributions Jquees-

in8 states can be responsible partly for hadmnisation of colour partom (con_inment) end inter-

mittency (fractal dimemion) phenomenco in multiparticle procemu.
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The exact expressions for density matrix and Wigner

functions of quantum systems are known only in special cases

and ,practically, all of them and their references are

described in [I-3]. Correspondending Hamiltonians are

quadratic forms of Euclidean coordinates and momenta. In

this paper we consider the problem o2 one-dimensional free

particle movement in the bounded region O < x < a (including

the case a= ®). For this problem the solutions of Schrodinger

equation are weli known:

Wn (2/a)l/2sin(.nx/a) En (_nh 2 ": , : ) /(2ma_'), n:I,2.3 .... (1)

Then the equi_librium density matrix can be calculated by

formul a

p (x. x', n ) =_ _n (x)_" (x') exp (-hE n ) (2)

Indroducing the expression (1) to (2) and reading some

simple transformations we obtain two series, each of which
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is, practicalliy the definition of teta-function [4]

00 r%

e 3 (z 1r ) =l+2_n__OS (2_nz)exp (i-rn _ ) (3)

As result we have the expression

#(x.x',9)=_ 3 2a 2ma 2 3[_ 2ma2

The replacement ,e=it,-h transforms the expression (4) into

the propogator or Schrodinger equation for the particle in a

box obtained earlier by various, methods in [3,5,7].
r%

Evidently in the limit _,'a t_ _ _ (i.e. low temperature

and smal_] size of a box) the density matrix can be good

approximated on;y by the first order term of the expansion

series (2). The question is in obtaining from the exact (but

not very obvious) formula (4) the asymptotics of the density

matrix in quasi - classical limit #/a 2 (high temperature and

wide box).

The qualitive behaviour or the probability density

#(x,x,,_) in this case is clear from physical consideration.

It must be almoust constant at all points inside the box

except very small region near the wall corresponding to de

Brog;e wave length. In this region the density matrix must

leads to zero. However, it is interesting to obtain this

result from the formula (4). More over we would like to know

the character of the deflexion uniform distribution inside

the box caused by quantum corrections. This problem can be

solved using the equality [4] for teta-function

e3 (z 1" )-- (i/T )l"2exp (--iz2/r )®3 (-z/r I -1-'r ) (5)

Due to the fact that in our case the parameter T is pure

=

h

306



r

i

complex and restricting by the first term of expansion

series(3) of the function 83(-Z"TI-I.'T) when _*0 we obtain
the fol ]owing formula describing the quasi -cl assi cal

behaviour of the density matrix

/-

p(x,x', f_)=(m.J2-f_ht_)_t_lexp [-m(x-x' )%2_h _'] (I+

22xp r-ma:'/p.r/_]ch [-2m (x-x)-,-_e,:'])-exp [-m (x+x _ _ _ _

+ 2exp [-ma --_h_]ch [-2m(x*x' )/_h:'])_ (G)

,.-his formula s correct in the region ix ; x'! < a (i.e. at

the left half of the box ). For the points outside of this

region one have to use the properties fol]oing from (3)

and (4)

p (x, x' ) =p (x'. x). p (a-x, a-x' ) =p (x, x' )

For the dlagona] elements of probability density we have

[ol 1 owin_o expression

,__.c_._,__, *2exp [ [l-exp [-_m^-_ Jp (X, X', ;._)= (m-"2nF ¢h_ )'"_ I-

L
t-% m-% #.% _ e_ e'_

-exp [-2mx_/_h_]ch [4mx.'_h_]) ,_ x_a.-2, ma_'.-,_h_ >> 1 (8)

.,-he first two terms in figure brackets describe

the probability density of particle position in the infinite

half space right from the wal] placed to the point x=O. The

other terms give corrections caused by the-presence of the

second wall. Note. that this corrections don't oscillate as

it can be seemed from formulas (3) and (4).

In the centre of the box the density matrix is equal to

(a..'2, a.2 #):const <_ _, _-_ exp (-ma_/2m _)

and the half space case on the same distance from the

coordinate centre we have an analogous expression but

without two in front of exponent. "t-he exact expression of
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s,_aL_,s-!cal sum have th.e form

z (:-_)= -- 30' -',
I _rr -¢'_ I -2 _, _.._a ;

T_L's quasi-c]asslca] expansi.on is

z (,_'-" ' .... 2.;i- ,.., .2.: ;-J- Z, _.a2,..,:,t.,2 ,_,,-a _,_P-,-.;_!m , 2" ('! ,-2.e×D [ -_.,ma . ,_,h7''] ' " -

(9)

ii J

From (4) one can obtained the Wigner function

W(p, q, p..)=Io (q+_..2. q-_/2, f_) exp (-i p_./h ) d;f (1 ",_)

Taking into consideration that

bounded by the interval -2q _<

0 -< q -< a/2 we have [7]

q

W(p,q,_)=-- os (2py/h)
8 _"[8

the integration region is

< 2q under the _ 4..- _OLqui tl 014

q- (h/ap)sin (2pq/h)® 3 a
(_)

but when a/2 -< q -< a one have to use the equal i ty

W(p,q,f_) = W(p,a-q,n)

The Wigner for a free particle in half space was exactly

expressed by the error-function for the first time in [8]
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NEW SQUEEZED LANDAU STATES

C. Aragone

Deparlamento de Fisica, Univ. S. Bolivar
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Abstract

We introducea new setofsqueezedsatesthroughthecoupledtwo-mode squeezedopera-

tor.[tisshown theirbehaviourissimplerthan thecorrelatedcoherentstatesintroducedby

Dodonov, Kurmyshev and Man'ko inorderto quantum mechanicallydescribethe Landau

system,i.e.a planarchargedparticleina uniformmagneticfield.We compare resultsfor
both setsofsqueezcdstates.

A planar charged particle moving in a uniforn magnetic field is a very interesting quantum

mechanical system• It is not trivial, needs the two spatial dimensions to describe it, it has some

reminiscence of the two dimensional oscillator, but requires in addition the peculiar presence of

the angular momentum operator which play a role as important as the hamiltonian. As recently

it has been pointed out [1], the system has an Osc(l) dynamical degeneracy group. It seemed to

,s the system has a physics rich enough and mathematically particularly well understood in terms

of the holomorphic (and antiholomorphic) coordinates that deserved to be revisited.

A planar particle of charge e, mass ,n, moving in a uniform magnetic field _ = B_: can be
described by the classical first order action

• o

s =< 7. -_ - (2m)-'[_ - 2-_eB(i-e')] 2 > w < 7.7' - H >. (I)

7 is the two-dimensional vector position of e, _ its canonical momenta (which in the presence

of the vector potential _ = 2-1B(iF *) does not coincide with m"_), and the linear operator i

indicates a positive x/2 rotation, i.e. (i-5')_ = -eslv_. We choose B such that eB_-mw is always
positivc, without losing generality.

The Landau system _L---_{'F*, "_, H, A----*-(i'-_). "_} is quantized by imposing

As shown in ref.

variables

'_----_P'* - 2-_mw(i_), _*__ + 2-1mw(i7"). (3)

-_ is the q-operator representing the observable roW. In terms of these quantities the hamiltonian

and the angular momentum take the form

[r/,pj] = ih6i, i,j = (1,2). (2)

[1] it is convenient to introduce two sets of additional, momentum-like

_..+2H = (2.,)-'{T _ + 4-',,,2+_ +++ ,_+A} = (2.+)-' • , (4)
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1 "'42A= (-i7')•T = (2._)-{• - _'_}.

Observe the interestingchiralaspectof A in terms of "_ and 7.

Itisinmediateto noticethatw, commutes with 7rj,

(5)

[w_,_r_]= 0. (6)

Consequently _ and A commute with H. Since

[A,wil = -ih,,iw _ = ih(i-_), (7a)

(Tb)

we see that {1, "J, A} constitute a dynamical symmetric group (which will be easily recognized,

when represented by its holomorphic components wz, _ to be Osc (1)), i.e. commutes with H.

It is convenient to introduce holomorphic dimensionless variables z,_, pz,pr, x,, rr, w,,wT_ to

analyze the system,

z_=(2-1h-lrnw)ll2(x + iy), p, = (2hrnw)l/2(pr - ipv ) = -iO, + c.c. (8)

The two momentum-like set of variables take the form

xz = p, + 2-1ir_ , rr = Pr- 2-1iz (9ab)

while If and A become

wz = pz - 2-1i_. , wr = pT + 2-1iz

H = hw{p_pr + 4-tz_ "+ 2-tA} -_--?u-'h,

A= ih{_p,-- _p,}_t,_ = h[_- _O,].

Ileinsenberg commutation relations eqs. (2) change to

[z,p,] -- i - [z, _,1 - [z,w,] -_" C.C. •

(10ab)

(11)

(t2)

(13)

The two main physical observables h, A have a very simple structure

h - _r,_rr + 2-t -_'nl + 2-I, A = r_'r - u,_w_ -_'nl - n2 (14ab)

where rr, w,, ir,,tar can be regarded as two sets of decoupled annihilation and creation operators

(15)

since [w,,r, r,.7] = 0. We emphasize the fundamental role of the both h, A(H, A) in determining the

two-mode quantum structure of the system, The energy degeneracy is broken by the presence of

n2, the second fundamental quantum number. These two series of discretes numbers will become

the origin of the two couplex parameters labelling the coherent Landau states dicovered long time
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ago [2] by Mal'kin and Man'ko. (Incidentally our a'r coincides with a of ref. [3] and our w, equals

-iao. To introduce coherent Landau states we introduce the state 10,0 >= ,boo

¢,00(z_)= ,r-½e-½a. (16)

2-'idzd_ = dxdy. The ground subspace is determined by the orthonormal set ,kop

,_10, 0 > = 10,p >
IO,p>= (¢)-½(i_)PlO,O >.

Each level-n energy eigenspace has the discrete orthonormal basis

_b0obelongs to the ground subspace, i.e. a'rl 0' 0 >= 0 and is unitary (using the natural measure
= (p!)-t/a

_,., = (,!)-½(p!)-½_2C-IO,O >.

(17)

(18)

Equations (14) tell us H_b,p = h_(n + 2-1)tb,,, and Atl,,,t = h(n - p).
We define tile coherent Landau states [2] by

[w, s > ---_e'''-w_+"'r-_' [0, 0 > (19a)

w,s E (_. They constitute an over complete unitary system of the Hilbert space {_b,,p,n;p E

0, 1,...} in the usual sense (for coherent states)

< wlst[w2sa >= e -½1"2-'tla-I'_-'tl%ilw_ll'll'in(_-*O+il*211sd*in(¢3-¢_) (19b)

w = Iwl,'*, s = Isle".
They have three basic properties: i. They are a'_-eigenstates with eigenvalue w, ii. they also

are eigenstates of oJ, with proper value s

_,lws >= wlw, s > , _,lws >= slws >, (20)

and iii. they propagate remaining in the family. If one starts on iws > leaving the system to

evolve, at time t q)t, will be described by

e -°''_' Iws >= Iwe-i'_', s > . (21)

Eqs. (20) suggest a way to compute q-mechanical expected values for physical observables

F(p,p,z,'_). One has to transform them to their representation in terms of the new variables

(r,_',_,_), then normal ordering in both types of variables and finally taking into account eqs.

(20).

In this way we obtain:

< z >eL=< wslzlws >=< wsl(i_rr- i_)lw, s >= i(w -_) (22a)

<z 2>cL=-(w-ld)' , <z_>=(w-_')(W-s)+l (22b, c)

plus their respective complex (hermitian) conjugates. We also obtain

<p,>cL=2-* < lr,+w. >cbm2-t(W+s) +c.c. (23a)
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< p_ >eL= 4 -1 < (Tr, + w,) 2 >= 4-1(W+ s) _ + h.c. , (23b)

< P,I_ >eL = 4-I + 4-_( w + _)(W+ s) (23c)

<h>cn=<wslhlws>=wW+2 -1 , <A>CL =ww-s_', (24a, b)

<h 2 >eL =(wW+2 -! )2+wW , <A s>cL=<A>_L+WW+s_. (25a, b)

Recalling definitions (8) relating z,_" and real dimensionless variables x,y we can calculate

physical uncertanties, which are defined for canonical sets of variables in terms of holomorphic
variances Az, Az_" =< z_ > - < z >< _ >, Apt , Ap,pr. they turn out to be

(Z'_)_L = 4-'(AZ)_L + 4-'(A_)_L + 2-'(AZ_)CL = 2-1 = ('Xy)_L,(A_y)CL= 0.

In a similar way, we find for the physical momenta

(26abe)

(Zap,)_-L= 2-1 = (zap,p,)CL 0. (27abe)

Consequently both uncertanties attain lowest bound

(Az)cL(Ap,)cL = 2-' = (AY)CL(AP_)CL.
i

(28)

Coherent Landau states are minimun uncertanty states (MUS).

Squeezing can be now analysed, since the standard procedure to consider this type of states

involves the squeezing of associated coherents states. Complexive decoupled squeezed Landau

states have been introduced in ref. [3], where they have been called correlated coherent states. :--

Since squeezing is not that intuitive we face in principle four different types of squeezing: i

partial squeezing in rrTr,, partial squeezing in w,t,.,r, or full, complexive squeezing in both sets of |

variables.
=

The complexive squeezing might be either decoupied or coupled in both set of variables. One

might think that it could be enough to squeeze just in the dynamical constituents of the hamilto- =

,liaii :_:rr.::_il :order to obtain physically=appealing results. _'l'h-trS_l_r,_rnary::type oi" :"sqtieezlng" can i
be shown to lead to states which are irrelevant, since they are neither minimun uncertainty states
nor the variaqces of any canonical variable can tend to zero.

We are obliged to turn our interest to more radical way of squeezing. As we said above, we

must try complexive squeezing, i.e. to introduce squeeze operators which squeeze both type of
quanta, the rr and the w-ones.

Let us first consider what we call "decoupled" squeezing, as it has been done in ref. [3]. The
squeezing operator is defined as

S(ql, q2) =- e _''°'- _''°7_ _'_-r-½q_z -" S'(q])S_'( q2). (29)

We consider the squeezed states

Jws,qt,q2 > =_-S(qt,q2)iw, s > • (30)

where both w and s are distorted.
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Both the x and w variables transform non trivially here,

(xT)q, _= S+ rTSq, = x-_chrl + e_i_*'shrl_z

(wr)_ _- S+ wzSq2 = w, chr2 + e_i_=shruo.,r. + h.c. .

(31)

(32)

Tile squeezed transformed of the tteinserberg canonical variable z zq,q2_--S+_zSq_ becomes
in the present case

zqaq_ = i(_rrchrt + e2i*ashrl_r, -w'i:chr2 -e-2i_shr2wz). (33)

The complexive squeezed expectation values of z and p, are therefore

< z >,,_=< z,,¢, >CL = i[s,,(w) --_'_(s)], (34a)

< p, >q,;,=< (p,),,_, >vLffi 2-'[_'q,(w) % s,2(s)] , (34b)

where subindex CL indicates the coherent Landau state Iw, s > and sq(u)_--chru + e2i_shr$.

Quadratic complexive squcezed expectation values become

< z 2 >,_,2= -[s,_(w)- _q2(s)] 2- shrlchrle 2_' -shr_chr2e -2i_.2 (35a)

< z_2 >q,_=< • >vie,< z >w_ +chr_ + shr], (35b)

< p_ >q_q2= 4-t(_q, (w) + s_(s)) 2 + 4-1shrtchrte -_i_' + 4-1shr2chr2e 2_*_, (36a)

<p, pz>qt,=4-_[_,(w)+s,,(s)][s,,(w)+_,(s)]4-_ch_r_+4-_sh_r_. (36b)

From this expressions for the holomorphic variables we can evaluate physical uncertanties to

see how they behave for complexive decoupled squeezing. They are

( mplt)q,q_2 = (Ax)_¢_ = 2-1chr_(chr_ - shr,cos2tpt) + 2-tchr_(chr_ - shr_cos2_) - 2 -1, (37)

(Ay)_,_ = (Ap_)_,__ = 2-tchr,(chr_ + shrtcos2tpt) + 2-_chr_(chr_ + shr_cos2%o_) - 2-_. (38)

For _t = 0 = ¢p_ Az and Ap_ are squeezed since:

(Ap_)_,_ =o=_, ffi (Ax)_,=o=_, = 4-_e -_'' + 4-'e -_' --. 0+ , r_, r_ _ oo (39)

while, of course Ap, and Ay increase according to eq. (38). Tl,e partial uncertanties get closer

to their lowest bound,

2 2 2
= ' = s-'[1 + - = = (Ap,),,,, (40)

This result indicates that physical squeezing, in the sense that the squeezed states are also

minimun uncertanty states, is obtained just for r_ = ft. Complexive decoupled squeezing leads

to physical squcezing modes, but the two independent "a priori" parameters q, and q_ have to
coincide.

A nicer solution to finding squeezed states of Ct arises by considering the fact that we have

two modes in the system. For this situation a more natural squeezed operator can be defined,
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similarly to what has been done for the two photon case in ref. [4]. The "coupled" squeezing

operator we postulate is given by
._,c_=---_e½'_'"'_- ½_' _""'. (41)

It naturally depends upon only one parameter. It is straighforward to show that the squeezed

yalues of rz and w, respectively are
r

= %-.ch_ + e"'sh 2w-_,, (42)S_ _'¥Sq

Sq+w, Sq = w, ch 2 + e'i_'sh 2 r ,. (43)

As expected this type of squeezing makes x-variables to have w-components and viceversa.

The new associates squeezed states are defined by

[ws,q > --_Sqlw, s > (44)

where Sq has been introduced in eq. (41), It is inmediate to perform in this case similar calculations

to what has already been done for the previous case. Results turn out to be mathematically simpler

and physically interesting. We get

<: z >,-'< zq >CZ,'- i(w - _)ch 2 4" ish2(_e"_* - we-2'_*), (4.5)

< p, >,- 2-'(W + s)ch; 4- 2-'sh2(We'i_' 4- se-'"P). (46)

In addition one finds that (A,)I = (Ap,)l = 0. Finally the variances of the canonical variables

attain the respective forms.

(Am)', = 4-'e'(l - cos2_) + 4-'e-'(l + cos2_) = (Apy)_, (47a)

(Apz)_ = 4-'e'(1 + cos2_)4- 4-'e-'(1 -cos2_o)= (Ay)_, (47b)

Both uncertanties coincide, their value being

x2A 2 _A(A),,(p.), = (Ay),(p,), = 4-'(ch, - (48)

For ¢ = klr/2 we obtain squeezing and minimun uncertainty.

In conclusion we feel these coupled squeezed states (44) are the natural ones for introducing

squeezing in the Landau system. We have shown they behave in a simpler way then those defined

in ref. [3] while they also lead to physical squeezing.
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Abstract

The conception of quantum chaos is described in some detail. The most striking feature
of this novel phenomenon is in that all the properties of classical dynamical chaos persist

here but, typically, on the finite and different time scales only. The ultimate origin of such a
universal quantum stability is in the fundamental uncertainty principle which makes discrete
the phase space and, hence, the spectrum of bounded quantum motion. Reformulation of

the ergodic theory, as a part of the general theory of dynamical systems, is briefly discussed.

1 Introduction

The main purpose of this talk is to explain new physical ideas in the so-called quantum chaos

whicl_ since recently attracts ever growing interest of many researchers [1-5, !0]. In appendix

I als0 briefly discuss the concept of coherent/squeezed states innonlinear, particularly, chaotic

systems in a more qlose relation to the topic of this Workshop.

The recent breakthrough in understanding of the quantum chaos has been achieved, partic-

ularly, due to a new philosophy accepted, explicitly or more often implicitly, in most studies of

quantum chaos. Namely, the whole physical problem of quantum dynamics was separated into
two different parts:

The proper quantum dynamics as described by a specific dynamical variable, the wavefunc-

tion ¢(t), and by some deterministic equation, for example the SchrjSdinger equation. This

part naturally belongs te the general theory of dynamical systems and is essentially mathe-
matical; the problem is well-posed and this allows for extensive studies.

The quantum measurement including the registration of the result and, hence, the collapse

of the ¢ function. This part still remains very vague to the extent that there is no common

agreement even on the question whether this is a real physical problem or an ill-posed one

so that the Copenhagen interpretation of (or convention in) quantum mechanics answers all

the admissible questions. In any event, there exists as yet no dynamical description of the

quantum measurement inc]udlng the ¢ collapse.

i
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In this way one can single out a very difficult problem of the fundamental randomness in quantum
mechanics which is related to the second part only, and which is foreign, in a sense, to the proper

quantum system. On the other hand, there is a close relation of this separate problem to the

quantum chaos itself (see Section 4 below and Ref.[4]).
The importance of quantum chaos is not only in that it represents a new unexplored field of

nonintegrable quantum dynamics with many applications but also, and this is most interesting
for the fundamental science, in reconciling the two seemingly different dynamical mechanisms for

the statistical laws in physics.

Historically, the first mechanism was related to the thermodynamic limit N --4 oo in which

t]ae completely integrable system becomes chaotic for typical (random) initial conditions (see,

e.g.,Ref.[6]). A natural question - what happens for a large but finite number of freedoms ¥ - h_

still no rigorous answer but the new phenomenon of quantum chaos, at least, presents an insight

into this problem too. This mechanism, which is equally applicable in both classical and quantum

mechanics, may be called the traditional statistical mechanics (TSM).

The second (new) mechanism is based upon the strong (exponential) local instability of motion
chd.racterized by positive Lyapunov's exponents A > 0 [6, 7]. It is not at all restricted to large

N, and is possible, e.g., for N > 1 in a Hamiltonian syst.em. However, this mechanism has been

operative, until recently, in the classical mechanics only. This phenomenon is called dynamical
chaos as it does not require any random parameters or any noise in the equations of motion.

Notice that in a I-Iamiltonian (time-reversible) system the motion is unstable in both directions of

time because for each positive A there is the equal negative one, and for almost all trajectories the

instability, depends on positive (in a given direction of time) exponents only. Hence, the dynamical
chaos is also time--reversible, and no 'time arrow' exists or is required in the theory:

The quantum system bounded in phase space has a discrete energy (frequency) spectrum and

is similar, in this respect, to the finite--. N TSM. In. both eases the motion-is almost periodic.

Moreover, such quantum systems are even completely integrabJe in the Hilbert space (see_ e.g.,

Ref.[3]). Yet, the fundamental correspondence principle requires the transition to the classical
mechanics, including the dynamical chaos, in the classical limit q _ _, where q is some (big)

• quasi-classical parameter, e.g., the quantum number n (the action variable, h = 1). Again, a
natural physical conjecture is that for finite but large q there must be some chaos similar to the

finite--N TSM. Yet, in a chaotic quantum system the number of freedoms N does not need to

be large as well as in the classical chaos. The quantum counterpart of N is q, both quantities

determining the number of frequencies which control the motion. Thus, mathematically, the

problem of quantum chaos is similar to that for the finite-N TSM.
Some researchers believe that the only way out of the above apparent contradiction is the

failure of the correspondence principle [37]. If it were so the quantum chaos would be, indeed, a

great discovery. 'Unfortunately', there exists a less radical (but also interesting and important)

resolution of this difhculty to be discussed below.
The main difficulty here is in that the both problems suggest some chaos in the discrete

spectrum which is completely contrary to the existing theory of dynamical systems and to the

ergodic theory where such dynamics corresponds to the opposite limit of regular motion.

The ultimate origin of the quantum integrability is discreteness of the phase space (but not,

as-yet, of the space-time!) or, in the modern mathematical language, the noncommutative geom-

etry of the former. This is the very basis of the whole quantum physics directly related to the
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fundamental uncertaintyprinciplewhich impliesa finitesizeof an elementary phase-space cell:

Az. Ap>?i (per freedom).
As an illustrationI willmake use of the simplemodel described classicallyby the standard

map (SM) [7,S]:

W= n+ k-sinS; -0=8+T._ (I)

with action-anglevariablesn,8,and perturbationparametersk, T. The quantizedstandard map

(QSM) isgiven by [9,10]

__ -_ exp(-ik, cosS), exp -z_-n _/,, (2)

where momentum operator fi = -iO/O0. To provide the complete boundedness of the motion

consider SM on a torus of circumference (in n)

L - 2;:,m (3)
T

with integer m to avoid discontinuities. The quasi-classical transition corresponds to quantum

parameters /c _ oo, T _ 0, L _ oo while classical parameters K = kT = const, and m =

.[,T/21r = const remain unchanged.

The QS.M models the energ!/shellofa conservativesystem which isthe quantum counterpart

of the classicalenergy surface.

In the studiesof dynamical systems,both cla._sical-andquantal,most problems tmreachable

forrigorb_asmathematical analysisaretreated=numerically_ using computer as a universalmodel
With allobvious drawbacks and limitationssuch =numerical experiments" have very important

advantage as compared to the laboratoryexperiments,namely, they pro_dde the complete infor-

mation about the system under study.In quantum mechanics thisadvantage t)ecomescrucialas

in laboratoryone cannot observe (measure) the quantum system without a radicalchange of its

dynamics.

2 The definition of quantum chaos

The common definitionofthe classicalchaos inphysicalliteratureisthe strongl_lunstablemotion,

that isone with positiveLyapunov's exponents A > 0. The Alekseev - Brudno theorem then

impliesthat almost alltrajectoriesofsuch a motion are unpredictable,or random (seeRef.[11]).

A similardefinitionof quantum chaos,which stillhas adherents among both mathematicians as

wellas a few physicists,failsbecause,forthe bounded systems, the set of such motions isempty

due to the discretenessofthe phase space and,hence,of the spectrum.

The common definition of quantum chaos is quantum dzlnamics of classicallzl chaotic s_jstems

whatever it could happen to be. Logically, this is most simple and clear definition. Yet, in nay

opinion, it is completely inadequate (and even somewhat helpless) from the physical viewpoint

just because such a chaos may turn out to be a perfectly regular motion as, for example, in case

of the perturbative locali:ation [12]. In QSM the latter corresponds to k<l when all quantum

transitions are suppressed independent of classical parameter K which controls the chaos.
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I would like to define the quantum chaos in such a way to include some essential part of the

classical chaos. The best definition I have managed to imagine so far reads:

the quantum chaos is finite-time (transient) dynamical chaos in discrele speclmtm
In other words this new phenomenon reveals an intrinsic complexity and richness of the motion

with discrete spectrum which has been considered since long ago as the most simple and regular.

This is certainly in contra_tion with the existing erg0dic theory. In what follows I will try

to explain a new approach to the ergodic theory which is necessary to describe the peculiar
phenomenon of quantum chaos,'

3 The time scales of quantum dynamics

Already the first numerical experiments with QSM revealed the quantum diffusion in n close to

the classical one under conditions K_I (classical stability border) and k_>l (quantum stability
border) [9]. Futher studies confirmed this conclusion and showed that the former followed the

latter in all details but on a finite time interval only [10, 13]. This observation was the clue to

understanding the dynamical mechanism of the diffusion, which is apparently an aperiodic process,

in discrete spectrum. Indeed, the fundamental uncertainty principle implies that the discreteness
of the spectrum is not resolved on a sufficiently short time interval. Whence, the estimate for the

diffusion (relaxation) time scale :

", oo< e. (4)
Here .o is. the density of (quasi)energy levels, and ,Oois the same for the operative elqenstate.s which

are a_(ually present in the initial quantum state ¢(0) and, thus, do actually control the d.ynam]cs.

In QSM the quasi-energies are determined rood 27c/T and, surprisingly, # = LT/2_ - m is a

classical parameter (3). As to .Oo,it depends on the dynamics and is given by the estimate [10,
131:

tn ((An)s) m
-~-= ~O- <- (3)T T -rR r - T

Here r is discrete map's time (the number of iterations), and D is the classical diffusion rate.

This remarkable expression relates an essentially quantum characteristic (r,_) to the classical one

(D). The latter inequality in Eq.(5) follows from that in Eq.(4), and it is explained by the

boundedness of QSM on a torus. In the quasi-classical region rR --, k 2 --_ oo (see Eq.(1)) in
accordance with the correspondence principle.

Besides relatively long time scale (5) there is another one given by the estimate [14, 10]

In q In k

t, ~ --if- --, ln(K/2) (6)

where q is some (large) quasi-classical parameter, and where the latter expression holds for QSM.

It may be termed the random time scale since here the quantum motion of a narrow wave packet

is as random as classical trajectories according to the Ehrenfest theorem. This was well confirmed

]n a number of numerical experiments [15]. The physical meaning of scale t, is in fast spreading
of a wave packet due to the strong local instability of classical motion.
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Even though the random time scale t, is very short it grows indefinitely in the quasi-classical

region (q, k ---*co), again in agreement with the correspondence principle.

Big ratio tR/_, imlles another peculiarity of quantum diffusion: it is dynamically stable as was

demonstrated in striking numerical experiments [16] with time reversal.

Thus, the quantum chaos possesses all the finite--time properties of the 'true' (classical-like)

chaos on the corresponding time scales in spite of the discrete spectrum. To put it another way,

the phenomenon of quantum chaos demonstrates that the limiting case of the regular motion

in the general theory of dynamical systems, which appears to be fairly simple and transparent,

reveals, in the quantum chaos, its internal complexity and richness to the extent of approaching

its opposite, the 'true' classical chaos, or deterministic randomness.

I think that the conception of characteristic time scales of quantum dynamics is a satisfactory

resolution of the apparent contradiction between the correspondence principle and the quantum

transient (finite-time) pseudochaos. Some physicists, however, feel that such an explanation is,

at least, ambiguous because it includes the two limits which do not commute:

lira lim _ lira lim
Itl-_ q-_* q-o. Itl-o.

While the first order leads to the classical chaos, the second one results in an essentially quantum

behavior with no chaos at all. To relax these doubts I notice that in physics one does not need

any limits at all, and can describe, principally, anything quantum-mechanically. If, nevertheless,

we would like to make use of the much simpler classical mechanics (foUrpractical purposes) the

only one limit (q _ oo) is quite sut_clent as the physical time is certainly finite. At last, even if

it would be heipfui for some reason to formally take the limit ltl --, oo thls should be eoncfii.ional

that is one for a fixed ratio Itl/tR(q),for example. The limit ItI --, _o is related to the existing

ergodic theory which is asymptoti6 in t. Meanwhile .the new phenomenon of the quantur_ chaos

requires the modification of the theory to a finite t|me which is a difficult mathematical problem

still to be solved. The main difficulty is in that even the distinction between the two opposite

limits in the ergodic theory - discrete and continuous spectra - is asymptotic only.

In any event, since quantum mechanics is commonly _cepted as the universal theory, the

phenomenon of the 'true' (classical-like) dynamical chaos strictly speaking does not exist in nature.

Nevertheless, it is very important in the theory as the limiting pattern to compare with the real

quantum chaos. On the other hand, the practical importance of statistical laws even for a finite

time interval is in that they provide a relatively simple description of the essential behavior for a

very complicated dynamics.

4 The quantum steady state

As a result of quantum diffusion and relaxation some steady state is formed whose nature depends

on the ergodicity parameter

l, D
a= :. (7)

where 1, is.the so-called locali:ation length (see Eq.(10) below). If ,_ _ 1 the quantum steady state

is close (at average) to the classical statistical equilibrium which is described by ergodic phase
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density ga(n) =const (for SM on a torus) where n is a continuous variable. In quantum mechanics
n is integer, and the quantum phase density g_(n, r) in the stead), state fluctuates [17, 5}, the
ergodlcity meaning

1

.g,Cn)= I¢,(n, )12= Z (s)
where the bar denotes time averaging.

According to numerical experiments the ergodicity does not depend on the initial state which

implies that all eigenfunctions era(n) are also ergodic, at average, with Gaussian fluctuations [17,

5] and the dispersion

1 (9)= Z"

This is always the case sufficiently far in the quasi-classical region as _ -,_ k2//., _ Kk/rn ---*"_

with k _ oo (K = kT and m = LT/2,v remain constant) in accordance with old Shnirelman's

theorem [1S].

An interesting unsolved problem is the microstructure of ergodic eigenfunctions, particularly,

the so-called 'scars' [29] which reveal the set of classical (unstable) periodic trajectories (see Ref.[30]
for the theory of scars). -

Finite fluctuations (9) show that a single chaotic quantum system in a pure state described
by ¢,(n, r) represents, in a sense, a finite statistical ensemble of M -.- L apartlcles _. .Moreover,

Eq.(9) shows that all the basi_ states in a chaotic quantum system are statistically independent

as if the system were in a. mixed state _d not]n a l_ureone as it a_tually is. This-means tLat the

quantum chaos provides the dynamical loss of quantum coherence which is of principal importance

in many problems, for example, in the theory of quantum measurement. The fluctuations result,

partlcularly, in partial recurrences toward the initial state but the recurrence time is much longer

as compared to the relaxation time scale rR and sharply depends on the recurrence domain.

If _ _ 1 the quantum steady state is qualitatively different from the classical one. Namely, it

js loc_alized in n within the region of size l, around the initial state if the size of the latter 10 << l,.

Numerical experiments show that the phase space density, or the quantum statistical measure, is

approxir0ately exponential [10, 13]

g,(n) ._. _exp \ 1o 7" l, _ D (10)

for initial g(h, 0) = 6(n). The quantumensemble is now characterized by M" --, l, .., k_ "particles".

The relaxation to this steady state is called diffusion localization , and it is described approx-

imately by the diffusion equation [19, 28]

8g 1 0 o 8g Og n

for initial g(n, O) = _(n) where new time

(11)

(12)
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accounts forthe discretemotion spectrum [20].The lastterm in Eq.(ll) describesthe "backscat-

tering"of ¢ wave propagating in n which eventuallyresultsin the diffusionlocalization.The

fittingparameter rR _ 2D was derivedfrom the best numericaldata available(seeRef.[21]where

a differenttheory of diffusionlocalizationwas alsodeveloped).

5 Concluding remarks

In conclusion I would liketo brieflymention a few important resultsforunbounded quantum

motion. In S.M itcorrespondsto L ---,oo. First,thereisan interestinganalogy between dynamical

•localizationin momentum space and the celebratedAnderson localizationin disorderedsolids

which isa statisticaltheory.The analogy was discoveredinRef.[22]and essentiallydeveloped in

Ref.[23].Itisbased upon (and restrictedby) the equationsforeigenfunctions.The most striking

(and lessknown) differencebetween the two problems isin the absence of any diffusionregime in

ID solids[24].This isbecause the energyleveldensityof the operativeeigenfunctionsin solids

Idp I
..... tn (13)Po dE u

which is the relaxation time scale, is always of the order of the time interval for a free spreading of

the initial wave packet at a characteristic velocity u. In other words, the localization length I is of

the order of the electron scattering free path. On the contrary, in momentum space, for instance

in the standard map, each scattering (one map's iteration) couples ,-, k unperturbed states, so

that ,_ k2 _ i scatterings axe required to reach the localization l --, k2. Another (qualitative)

explanatiba, of this surprising difference is in that the density of quasienergy levels for dr_.ven

systems is always much higher as compared to that of energy levels. The same is true for a

conservagiv.e 2D system as compared with 1D motion in solids. Thus, the Anderson localization
is the spreading, rather than diffusion, localization.

Another similarity between the two problems is in that the B]och extended states in periodic

potential correspond to a pecular quantum resonance in QSM for rational T/4r [9, 10].

An interesting open question is the dynamics for irrational-Liouville's (transcendental) T/4:r,.

As was proved in Ref.[25] the motion can be unbounded in this case unlike that for a typical

irrational value. The latter is the result of numerical experiments, no rigorous proof of localization

for k _ 1 has been found as yet. In Ref.[2S] the conjecture is put forward, supported by some

semiqualitative considerations, that depending on a particular Liouville's number the broad range

of motions is possible, from purely resonant one (Inl ~ r) down to complete localization (Inl_l).

If the quantum motion is not only unbounded but the growth of unbounded variables is expo-

ndntial, the "true" chaos (not restricted to a finite time scale) can occur. A few exotic examples

together with considerations from different viewpoints can be found in Refs.[10, 26]. One particu-
lar model is 3D linear oscillator with phase-dependent frequencies described by the Hami]tonian

1 3 0 '

However, such chaos does not seem to be a typical quantum dynamics.

The final remark is that the quantum chaos, as defined in Section 2, comprises not only

quantum systems but also any linear, particularly cla._sical,waves [27]. So, it is essentially the
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linear wave chaos..Moreover, a similar mechanism works also in completely integrable nonlinear

systems like Toda lattice, for example [31]. From mathematical point of view all these new ideas

require some perestroika in the existing ergodic theory. Perhaps, better to say that a new ergodic

theory is wanted which, instead of benefiting from the asymptotic approximation (Itl --* _ or

N --4 ec), could analyze the finite-time statistical properties of dynamical systems.. In my opinion,
this is the most important conclusion from the first attempts to comprehend the quantum chaos.
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Appendix: universal squeezing of coherent states

The coherent states have been introduced and are widely used as the special most narrow wave

packets for the linear harmonic oscillator. In this and only this ease the pazakets do not spread, and

it allows, particularly, for the unambiguous distinction between the coherent and squeezed states

which attract recently much attention [32]. The generalization of both onto nonlinear oscillations

remains unclear as many different attempts do attest [33]. The main obstacle here i$.a universal

phenomenon of the stretchlng/squeezing for any narrow wave packet in: n6nline_ dynam;ds. Even

in a completely integrable system the linear (in time) local instability of motion always occurs

just as a result of nonlinearity which malces the frequendes o_(n) dependent on initial conditions:

In quantum mechanics it corresponds to unequal energb' level spacings. As a result the squeezing

parameter

d,,*- ~ nC_e)2.~ (LXn)2t _ __ (_,t)2 (_'_)_
s(t) =- n

permanently grows with time. Here d,_., ~ v/'ffA6 ~ (vawt)An/V/'ff and d,_+, ~ 1/d,_., are
the maximal and minimal dimensions, respectively, of an initially 'round' (coherent) wave packet

(An/v/'ff ~ v/'ff_O ~ 1) on the action-angle phase plane in polar coordinates v/if, #; v_ =

(n/_)ldw/dnl is dimensionless nonlinearity, and the minimum-uncertainty relation [34]

d_._ • d,,,+,, --. 1 used is the quantum counterpart of the classical phase-space area conservation.

The former is not exact [35]

dW 1 d2_a 03W (An) z
-- ,_ -- - ,'_ W wv2 -
dt 24 dn+ aO 3 n 2

where W(n, O, t) is the Wigner function, and_,2 = (n2/w)d2w/dn2. This estimate determines the

inflation time scale til when the phase-space area A, occupied by a quantum state, substantially

increases (AA ~ A):
r_ 2

+ Cs0~ 1)
_'2o..t+! ... (An) s
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The latter estimate holds for the coherent initial state (so = (An)2/n = 1).

It is instructive to compare ti! with the two other characteristic time scales of the packet

dynamics, namely

s squeezing time scale (As ~ 1):

• stretching time scale (AO ~ 1):

~ v /ZXn -. z ~ z)

~ n/An --. (so ~ 1)

in quasiclassics (n _ 1) t,_ _: t,, ~ t_! (so ~ 1). If An _ v/'ff (initial squeezing parameter

so _ 1) the discreteness (quantization) of action n comes into play and destroys the wave packet.

Apparently, it happens when An= ~ 1 at the packet center, or A0 ~ 1. Hence, beyond the

stretching time scale taa single packet does no longer exist. In a sense, t,t is the packet life time.
The ultimate origin of the packet inflation is in that the uncertainty relations are generally

inequality. An attempt [36] to reformulate them as the equality, using the universal relation

Hn dpdq - 2"_v

for any pure state, is very restrictive as W may be negative. Particularly, this is just the case

during inflation when W oscillates around zero.
Recently another version of 'phase-space density' (also called Husimi distribution)

• 1 12
S(p,q,t) =  l<al¢>

_eca_e very popular. Even though this function has a clear, physical mearting as the ex-pa_sion
in the basis of the coherent states at points a -- (q + ip)/v_ and, moreover, is never negative it

may substantially distort the picture of quantum evolution owing to the inherent restriction of

resolution in both p and q separately. Particularly, for a classically unstable and, hence, chaotic

motion the squeezing of a narrow wave packet is almost completely hidden, the stretching only

showing up [15].
In the latter case the squeezing (as well as stretching) is most fast (._(t) ._ exp(2At) where

the instability rate h is the Lyapunov exponent), and it explains a very short random time scale

(6). This scale essentially depends on the initial wave packet, estimate (6) corresponding to

the special, least squeezing, packet with An ~ (A6) -1 -.- v/k. This is also a sort of coherent

state but very unusual one which depends not on the action n but on perturbation parameter

k (An/v/k ~ v_/xe ~ 1). The squeezing due to the lo_=al instability is terminated at time

(6) by the distruction of the packet which disintegrates into many scattered pieces [15] when
A0 ~ An ~ 1 as explained above. However, if the packet resides on a classical (unstable) periodic

trajectory of period P _ t_ the squeezing is restricted, due to periodicity, by the time P/2, and a

quasistationary structure may exist. This phenomenon manifests itself in the so-called 'scars' on

the chaotic eigenfunctions [29, 30]. The set of such almost 'frozen' packets may form a natural

coherent basis for chaotic quantum systems [19].
In conclusion I would like to emphasize again that even though the distinction between coherent

and squeezed states remaines, as yet, ambiguous the squeezing itself is generic.
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Almnet

The general theory of atomic angular momentum states is mind to derive the
Wigner distribution function for atomic angular momentum number states, co-
herent states, and squeezed states. These Wigner functions W(0,9) are
represented as a pseudo-probability distrilmtion in spherical coordinates # and 9 on

the surface of a sphere of radius _fj-(j+l) where j ill the total angular momentum.

1 Introduction

The phase space description of electromagnetic fields has had great success in
leading to an understanding of the relationship between semidassical and quantum
theories of light. It was Sudarshan [1] who proved the optical equivalence theorem, i.e.,
he derived the relationship between the quantifies measured by a photodetector and the
mean values of the corresponding operators. He showed that the function appearing in
the diagonal coherent state representation, that is calculated from the density matrix,
provides a link between the semiclassical and quantum descriptions. This function,
now denoted by P(a), is generally singular for nonclassical states [2]. In such cases the
Wigner function [3,4] has proved to be especially attractive as an alternative. The
Wigner function has also proved to be quite useful in discussing related topics [5] such
as the photon number distribution and the phase operator distribution. In these

problems, the concept of the area of overlap in phase space has been especially useful.
The nonclassical characteristics of the atomic systems, particularly a collection of

two-level atoms, has been a subject of much investigation [6,7]. Much of the work has
concentrated on the direct calculation of the variances in the atomic operators such as

Jx, J*, and J-. Very little has been done on the relationship between the nonclassical
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aspects and the phase space distributions for atomic operators. For general angular
momentum systems, Arecchi, et al. [8] introduced the analog of the diagonal coherent

state representation

P = I P(a'13)I a'[3} (a'[SI sins da dr5,

where / a,_) represents the atomic coherent state

(1)

-i(j÷m)p
• [jm), (2)

and where ljm) is the eigenstate of J_ and Jz" The parameters u and _ correspond to

0 and ¢ except that a is measured off the south pole. The coherent state obtains the

minimum of the angular momentum uncertainty relation (AJ2zJ (_y,) _ I(Jz,)/2/4,

where x: y: and z" form an orthogonal coordinate system with z" in the _' direction with

angular coordinates (a,_). The coherent state is just a rotation of the ground Fock state
/j,-j) away from the south pole. Areechi and co-workers discussed the utility of the
function P(a,_)in atomic problems, and Scully and co-workers have discussed the

• 1
Wigner function for spin-I[ particles [9]• Using the general theory of multipole

operators [10], Agarwsd [11] introduced the Wigner function for systems of arbitrary
angular momentum. To arrive at this distribution, we first expand the atomic angular
momentum operators as

G = GKQTKQ,

where T/_@ is the multipole operator defined by

_m_j (J_ K Jm)TKQ = (_1_ "__ , [jm) (jm'l,
m--j m Q

(3)

(4)

where |__m_ Jm"] istheusualWig_er3jsymbo]. The expansion coefl3cient8

in Eq. (3)_----'areobtained from the orthogonality of the multipole operators, namely

GKQ--Tr (GT;,) . (5)

The Wigner function associated with G is then defined by [11]

2j +K

W(0JP) ffi _.0Q_k_ YKQ(0'q_)GKQ '
(6)

where YK@ are the usual spherical harmonics. Note that
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TrG = _fW(O,cp) sin0dOdq_ = 1 , (7)

a general property desired of any distribution function. Note further that if two

operators G (I) and G (2) are represented respectively by the Wigner functions W (1)

and W (2), then

Tr (G 1G2) ffi [ w(1)(e,_) w(2)(e,_) sine de d_, (8)

J

a defining property of the Wigner distribution. In fact these two features, Eqs. (7) and
(8), can be used to derive the form, Eq. (6), of the Wigner ftmetio_ Thus, unlike the P
function, all expectation values can be obtained in terms of the Wigner functions alone.

In this paper we shall consider the structure of the Wigner function associated
with the important states like (i) Fock states /j,m), (ii) coherent states/a,_), and
(iii) squeezed states/_,m,) associated with a collection of two-level atoms interacting
with a squeezed photon bath. We examine how the quantum character of the state is
reflected in the properties of the Wigngr f_mction.

2 Angular Momentum States Ijm)

We first obtain the Wigner function for the state/jm). The density matrix can be
written in the form

p ffiIjm)',Jml. (9)
Upon using Eqs. (4) through (6), that are used in defining the Wigner function W, we
find that

$

(10)
Wjm(0'q_) = YK0(O'cP)(-I_n _ m 0 m

As expected Wjm is independent of _.
This function is plotted in Fig. 1 as a function of 0 _ (0,4) and _ e (-_,_ for jr5 and

mffiO, -1, ... -5. We plot the distribution both as planar and spherical surfaces. If we
suppose that/jm) is an orbital angular momentum state, then quantum-mechanically

we would expect the angular momentum vector of length _ _ to be oriented inside

a sphere of radius _ _ such that its z component is mtt where m = - 5, ..., 5. This
situation is depicted in Fig. 2 [12]. The Wigner function W(8,q_), when integrated over
the domain of spherical angle, 8 e (0,_r) and _ E (-_,x), contributes the most positive
probability at precisely these locations in 0. At these 0 values there is always one peak
on the _wavy sea" that is not cancelled by a trough and so contributes a large amount of
probability. In Fig. 1 we plot the function W(_ _0)as a two-dimensional surface, and also

the normalized function I_ ffi W� _ in spherical coordinates so that the oscillations
can be viewed as variations in the surface of a sphere of radius one.
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FIG. 1. Here we plot for 0 • (0,_ and _ E C-_t0, the normalized Wigner

function I_"F°ck = wF°ck/_0_"f) , where wFock(e, cp) is given by Eq. (I0). The

angular momentum Fock states represented here are/jm) =/5,m) where m = 0,
-I, -2, -_,-4, -6. When integrated over 0 and _, the V_igner function contributes
the most positive probability precisely at the locations where the angular

momentum vector for/jm) of length _ _ has z component m_ (see Fig. 2).
These contributions occur where the dominant positive crest of the Wigner
function I the peak that is not cancelled by any troughs -- contributes. To bring
out all the features of W(0,_) we plot it first as a two-dimensional surface
function of 0 and _ in (a), (c), (e), (g), (i), and (k). This method of presentation
brings out the scale of the local positive and negative variations of W with
respect to the plane _0,q) • 0. Then in (b), (d), (f), (h), (j), and (I), we take a global

view by plotting _0,p) = W(O,p)/_'_ on a sphere of radius one.

Z

m=0

m=-I

m=-2

m=-3

m=-4

m=-5

Im[ h

FIG. 2.' Here we show a schematic diagram of the angular momentum

vector for the Fock states inside a sphere of radius _ _. The vectors all have

length _ tt but z component m_. These vector locations correspond to the
maximal contributions from the Wigner functions shown in Fig. 1. In
particular, the Wigner function always has an uncancelled dominant peak at
precisely these locations in the angle 0.
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3 Atom/e Coherent State/a,/Y)

We next consider the Wi_ner £_nction for the atomic coherent state, Eq. (2),

p = l a,_) (c_l . (11)

Using Eqs. (2), (4), and (5), the coemcilmte of the operator G for the density matrix,
Eq. (11), are found to be

J 2j _-2i .in

m=-i

(12)

The Wigner function wc°herent(8; _) is then g/yen by Eq. (6) and is plotted in Fig. 3 for

a = _ = x/4, recalling that a is measured at the south pole. (Again we have

normalized _f = W/_/'fO'_.) The coherent state appears as a positive porCurbation on

the surface of a unit sphere. It is a Gauasian-like distribution located on the sphere's
surface at e = 3g/4, q_= g/4; the "Wiilner toothache" state. It is just a rotation of the

ground Fock state Wigner function from section 2. The Gaussian shape is analogous to
that found for the Wigner distribution for coherent states of the single mode radiation
field.

Ib}

FIG. 3. Here we plot the Wigner distribution wcoherent/_'_'_ for the
coherent state/a,D), Eq. (2). We choose the parameters o_=z/4 that correspond
to a Gauseian distribution localized at 0 = 3x/4, _ = z/4. This distribution is
qualitatively similar to that of the coherent state for photons. Again we present a
two-dimensional surface view (a) and a spherical coordinate perspective (b).
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4 Atomic Squeezed State/_m)

We finally consider the state [12,13] of the angular momentum system defined by

where ¢,4 m is the normalization constant. For m = -6, this state -- generated by a non-

He_tian operater-- des._b:s th, _h,vior of a _oU,_onot _o-l;_! atoms
interacting with a squeezed coherent photon state, m me suave, _q. _ o j, the x

quadrature, i.e., Jx is squeezed as per Eq. (13),

_ __ , (14)

where _" is defined by

2e (15)
• = mnh (2,_1).

This relation implies that ((AJz) 2) < /(Jz}[ 12 that shows a suppression of x noise, AJx,

in uncertainty relation ((AJ_) ((AJy)2.) > KJz_[ 2 14 at the expense of the y fluctuations,

AJy. Thus the states of Eq. (13)can be consi.der_, as.suitable candida_ fo.rsq_e_evOe
states of the general angular momentum system, oesmes, Agarwal ann run t_oJ nn
shown that the states, Eq. (13), are the eigenstates of the operator

(J- cosh/_/ + J+ sinh/_/)/_'_ with the eigenvalue m, and that these states
are the analog of the two photon coherent states [2] for photons. Note further that

Eq. (13) can be written in terms of the elements of the rotation operator coefficients

3"
dram, (x/2) via the relationship

(jml _P) = Ap • °m dJmp (r,/2), (16)

where we define

+J (-1)q (17)(0+m)__)_O+p)_0--p)_)'__ _-_-q)_qt(q+p-_)t_+_-,0_"
dJmp(_,/'2)ffi 2j q--j

Upon using Eqs. (13), (16), and (17) for the squeezed state, and Eqs. (4) and (5) for the
definition of the Wigner function, we find the coefficients of the squeezed density

operator G to be

/ 1,,, "IC_zed'_Em--j m'--jE(-1)J-m (2K+1)1/2 .J (_ J'. / E ,dJ_.p[2 ¢2m ' (18)

L m" j

where we have also introduced the value of the normalization constant. The Wigner

distribution W squeezed (a_) obtained from Eq. (6), using Eqs. (17) and (18), is plotted in
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Fig. 4 forj = 5 andp = -5. We take the squeezing parameter 0 equal to -2.13xlO-S

which, in the Agarwal and Purl system of two-level atoms interacting with a squeezed
photon bath, corresponds to a mean photon occupation number of

I , ffi h 5O ¢- 2.65.n 18 ss_n normalized
/

so that the elongated Gaussian of the squeezed state appears as a =Wigner banana"
draped across the sur_ce of sphere of radius one at the south pole. (To see this, one
must take the surface in Fig. 4a and mentally map it onto a sphere of radius one, as in
Fig. 4b.) Notice that the localization of' the state is squeezed in the x direction at the

expense or"knowledge about the y locatio_ _ and Puri [18] have shown how the
atomic states Eq. (13) can be produced if the coll_'tion of two-level atoms interacts with a
broad band squeezed bath and if one concentrates only on the s_:eady-state solution for
the collective system. The parameter _ characterizes the squeezed bath with average
photon number equal to sinh2_.

(a)

Co)

FIG. 4. Here we plot the Wigner fimction for a squeezed angular momentum

state I_, -5) defined by Eq. (13). The flmction wsquxzed(e,_) is computed using

Eqs. (6), (17), and (18) for a squeezing parameter of O= -.2.13 x lO "_ corresponding

to a mean occupation number of R = 50. In (a) we plot the function as a surface
W(O, cp) as before. We have normalized the variation in the surgace in spherical

coordinates to a sphere of radius _ in Co) so that the elongated Gaussian
appears here as a "Wigner banana" draped across the surface of the sphere of
radius one at the south pole. Notice that the squeezed state is more localized in
the x" direction than the coherent state, Fig. 3, at the expense of decreased
localization or increased noise in the y'direction.
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5 Summary and Conclusions

In summary t_e Wigner distribution for a general angular momentum state has
been derived and given explicitly for a Fock state, a coherent state, and a squeezed state.

Represented as a pseudo-probability distribution on the sphere of radius one, the
Wigner function is plotted for these three situations. These plots enable us to
understand the nonclassical nature of the states of a collection of identical two-level
atoms since the collection is described by the addition of the spin operators for each

atom.
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Abstract

It is shown that the wavelet is the natural language for the Lorentz covariant description

of localized light waves. A model for covariant superposition is constructed for light waves

with different frequencies. It is therefore possible to construct a wave function for light waves

carrying a covariant probability interpretation. It is shown that the time-energy uncertainty

relation (At)(Aw) _ 1 for light waves is a Lorentz-inva-riant relation. The connection between

photons and localized light waves is examined critically.

1 Introduction

The word "squeeze" is relatively new in physics, but the squeeze transfornlation has been one of

the most important transformations in both relativity and quantum mechanics [1]. The geometry

of squeeze is very simple. Let us consider the two-dimensional xy coordinate system. We can

expand the x coordinate while contracting y in such a way that the product xy is preserved.

This transformation is built in many branches of physics, including classical mechanics, special

relativity, quantification of uncertainty relations, the Bogoliubov transformation in condensed

matter physics, and two-photon coherent states in quantum optics [2]. Indeed, this new word

enables us to study the squeeze transformations more effectively and systematically.

The concept of squeeze in quantum optics was developed from the parametric oscillation. Let

us start with a simple harmonic oscillator with a given frequency. If we add a small sinusoidal

variation to the frequency, the original oscillator will be modulated [3], and the resulting oscillation

will be, to a good approximation, a superposition of two oscillations with different frequencies. We

can use the mathematics of this oscillator system for the Fock-space description of creation and

annihilation of two photons in a coherent or correlated manner, created in a laser cavity where

the index of refraction undergoes a sinusoidal variation with respect to time.

Indeed, the mathematics of this two-photon system was worked out by Dirac in 1963 [4]. It is

possible to translate the mathematics of this two-photon system into that of the Wigner phase--

space distribution function defined over four-dimensional phase space. It is remarkable that the
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two-photon coherence we observe in laboratories can be described by the squeeze transformations

in this four-dimensional phase space [5].

Fourteen years before the appearance of his 1963 paper [4], Dirac observed that the Lorentz

boost in a given direction is a squeeze transformation. In his 1949 paper entitled "Forms of

Relativistic Dynamics" [6], Dirac observed that the Lorentz boost along a given direction is a

squeeze transformation. The application of this idea to relativistic hadronic system was made in

1973 [7].

These days, we have a new mathematical technique called wavelets, which serves a useful

purpose in signal analysis [8]. This technique contains many features which are not available

in the conventional method of Fourier analysis. It accommodates squeeze transformations. The

wavelets can also constitute a representation of the Lorentz group. With these features in mind,

we shall examine in this-paper whether the wavelet can serve as the proper language for covariant

localized light waves.

Photons are important particles in physics. Since they are relativistic particles, the quantum

mechanics of photons occupies an important place in relativistic quantum mechanics. The diffi-

culty in formulating the theory of photons is that there is no position operator which is covariant

and Hermitian. This is known as the photon localization problem [9]. However, when we discuss

photons, we always think of localized light waves in a given Lorentz frame. The question then is

whether someone in a different Lorentz frame will think in the same way.

With this point in mind, we considered the covariance of localized light waves [10]. It was noted

in our 1987 paper that localized light waves cannot represent photons. It was shown however that,

if the momentum distribution is sufficiently narrow, the light wave distribution can numerically

be close to that of the photon. For this reason, it is still useful to study the covariance of localized

light waves.

The question of relating waves with photons is a well-defined problem in physics [11], even

though the problem has not yet been completely solved. In this paper, we shall bring them closer

together by using the wavelet formulation of light waves.

2 Localized Light Waves

For light waves, the Fourier relation (At)(Aw) __ 1 was known before the present form of quantum

mechanics was formulated [12, 13]. However, the question of whether this is a Lorentz-invariant

relation has not yet been fully examined. Let us consider a blinking traffic light. A stationary

observer will insist on (At)(Aw) ,-_ 1. An observer in an automobile moving toward the light will

see the same blinking light. This observer will also insist on (At')(Aw') _'2 1 on his/her coordinate

system. However, these observers may not agree with each other, because neither t nor _ is a

Lorentz-invariant variable. The product of two non-invariant quantities does not necessarily lead

to an invariant quantity.

Let us assume that the automobile is moving in the negative z direction with velocity parameter

ft. Since both t and w are the time--like components of four-vectors (x, t) and (k,w) respectively,

a Lorentz boost along the z direction will lead to new variables:

t" = (t + flz)/(1 - t3_) '/2, w" = (w + ilk)/(1 -/_),/2, (1) -_
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wherethe light waveis assumedto travel alongthe z axis with k = w. In the above transformation,

the light wave is boosted along the positive z direction. If the light passes through the point z = 0

at t = 0, then t = z on the light front, and the transformations of Eq.(1) become

These equations will formally lead us to

(At')(Aw')- 1- (At)(Aw), (3)

which indicates that the time-energy uncertainty relation is not a Lorentz-invariant relation, and

that Planck's constant depends on the Lorentz frame in which the measurement is taken. This is

not correct, and we need a better understanding of the transformation properties of At and Aw.

This problem is related to another fundamental problem in physics. We are tempted to say

that the above-mentioned Fourier relation is a time-energy uncertainty relation. However, in

order that it be an uncertainty relation, the wave function for the light wave should carry a

probabihty interpretation. This problem has a stormy history and is commonly known as the

photon localization problem [9]. The traditional way of stating this problem is that there is no

self-adjoint position operator for massless particles including photons.

In spite of this theoretical difficulty, it is becoming increasingly clear that single photons can

be localized by detectors in laboratories. The question then is whether it is possible to construct

the language of.the photon localization which we observe through oscilloscopes. Throughout the

history of this localization problem, the main issue has been and still is how to construct localized

photon wave functions consistent with special relativity.

However, in this paper, we shall approach this problem by constructing covariant localized light

waves and comparing them with photon field operators. As we shall see, the task of constructing

a covariant light wave is constructing a wavelet representation of a light wave. First, we construct

a unitary representation for Lorentz transformations for a monochromatic light wave. It is shown

then that a Lorentz-covariant superposition of light waves is possible for different frequencies.

After constructing the covariant light wave, we shall observe that there is a gap between the

concept of photons and that of localized waves. From the physical point of view, this gap is not

significant. However, there is a definite distinction between the mathematics of photons and that

of light waves.

3 Affine Symmetry of Wavelets

Like Fourier transformations, wavelets are the superposition of plane waves with different frequen-

cies. In addition, the distribution function has the affine symmetry. Let us briefly examine what

the affine transformation is [14].

To a given number, we can add another number, and we can also multiply it by another real

number. This combined mathematical operation is called the affine transformation. Since the

multiplication does not commute with addition, affine transformations can only be achieved by
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matrices. We can write the addition of b to x as

x' 11)=(0 (4)

This results in z' = x + b.

translation matrix is

We can represent the multiplication of by e' as

We shall call this operation translation.

7).

The inverse of the above

(_)

X t

which leads to x' = e'x. This multiplication operation is usually called dilation. The inverse of

the above dilation matrix is

0 0) _
The translation does not commute dilation. If dilation precedes translation, we shall call this

the afflne transformation of the first kind, and the transformation takes the form

1 b('0_)(o'0)_(o'_) (s)

If the translation is made first, we shall call this the affine transformation of the second kind. The

transformation takes the form

en = e" e_b) (9)(0 0)(_0_) (0
Indeed, the afflne transformations of the first" and second kinds lead to

x' -- e"x + b, x' - e'7(x + b), (10)

respectively. Let us next consider inverse transformations. The inverse of the first-kind transfor-

mation of Eq.(8) becomes an affine transformation of the second kind:

(7 °_)(0_1_):('-"0/_) (11)

while the inverse of the second kind of Eq.( ) becomes an affine transformation of the first kind:

0 7)(,-_ 0(0 0 1) = (eo n -b_). (12)

The distinction between the first and second kinds is not mathematically precise, because the

translation subgroup of the a_ne group is an invariant subgroup. We make this distinction purely

for convenience. Whether we choose the first kind or second kind depends on the physical problem
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under consideration. For a covariant description of light waves,the affine transformation of the
secondkind is more appropriate, and this affine transformation takes the form

z'=e'(x+b), (13)

and its inverse is

x = e-'x'- b = e-'(x'- e%). (14)

Therefore, the transformation of a function f(x) corresponding to the vector transformation of

Eq.(13) is

f (e-'Tx-b) = f (e-'(x-e'b)) . (15)

This translation symmetry leads us to the concept of "window," which will be discussed further

in Sec. 4.

Next, let us consider the normalization of the function. The normalization integral

f lf(e-'x - b)l_dx
(16)

does not depend on translation parameter b, but it depends on the multiplication parameter r/.

Indeed,

f IS(e-'x - b)l dx= e, J I/(x - b)l (17)

In order to preserve the normalization under the affine transformation, we can introduce the form

[8] e-'/2 f(e-'_x - b). (18)

This is the wavelet form of the function f(e-'tx - b). This is of course the wavelet form of the

second kind. The wavelet of the first kind will be

_ b)). (19)

Both the first and second kinds of wavelet forms are discussed in the literature [8]

4 Windows

There are in physics many distributions, and their functional forms usually extend from minus

infinity to plus infinity. However, the distribution function of physical interest is usually concen-

trated within a finite interval. It thus is not uncommon in physics that mathematical difficulties

in theory come from the region in which the distribution function is almost zero and is physically

insignificant. Thus, we are tempted to ignore contributions from outside of the specified region.

This is called the "cut-off" procedure.

One of the difficulties of this procedure is that a good cut-off approximation in one Lorentz

frame may not remain good in different frames. The translational symmetry of wavelets allows us

to define the cut-off procedure which will remain valid in all Lorentz frames.

We can allow the function to be nonzero within the interval

a < z _< a + w, (20)
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while demanding that the function vanisheverywhereelse.The parameterw determines the size
of the window. The window canbe translatedor expanded/contractedaccordingto the operation
of the affine group. We can now define the window of the first kind and the window of the
secondkind. Both widowscanbe translatedaccordingto the transformation given in Eq.(4). The
window of the first kind is not affectedby the scaletransformation. On the other hand, the sizeand
location of the window of the secondkind becomesaffectedby the scaletransformation according
to Eq.(11). Depending on our need,wecan definethe window to preservethe information. The
idea of introducing the new word "window" is to define the information-preserving boundary
conditions.

The window may becomea very powerful device in describing the real world, especially in
localization problems dealingwith distributions concentratedwithin a finite region. The concept
of cut-off in a distribution function is not new. However,the cut-off processcausesmathem&tical
difficulties usually introducing undesirablesingularities. Also the cut-off process destroys the
Lorentz covariance,unlessit is donecarefully. A goodapproximation in one Loreaatzframe is not
necessarilya goodapproximation in different frames. In this paper, weshall examinepossiblerole
of waveletsand windows in discussinglocalizedlight wavesand their connection to photons.

5 Light Waves and Wave Packets in Quantum Mechanics

We are concerned here with the possibility of constructing wave functions with quantum proba-

bility interpretation for relativistic massless particles. The natural starting point for tackling this

problem is a free-particle wave packet in nonrelativistic quantum mechanics which we pretend

to understand. Let us write down the time-dependent SchrSdinger equation for a free particle

moving in the z direction:

.0 t)= i 02
z_¢(z, 2mOz:¢(z,t ). (21)

The Hamiltonian commutes with the momentum operator. If the momentum is sharply defined,

the solution of the above differential equation is

¢(z, t) = exp[i(pz - p2t/2m)]. (22)

If the momentum is not sharply defined, we have to take the linear superposition:

(23)

The width of the wave function becomes wider as the time variable increases. This is known as

the wave packel: spread.

Let us study the transformation properties of this wave function. Rotation and translation

properties are trivial. In order to study the boost property within the framework of Galilean

kinematics, let us imagine an observer moving in the negative z direction. To this observer,

the center of the wave function moves along the positive z direction, and the transformed wave
function takes the form

¢,(z,')=exp[-im(vz-2v2t)]/g(k-mv)e'("-'"/"=)dk , (24)
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where v is the boost velocity. This expression is different from the usual expression in textbooks

by an exponential factor in front of the integral sign. The origin of this phase factor is well-
= understood.

In nonrelativistic quantum mechanics, ¢o(z,t) has a probability interpretation, and there is

, no difficulty in giving an interpretation for the transformed wave function in spite of the above-

mentioned phase factor. The basic unsolved problem is whether the probabilistic interpretation

can be extended into the Lorentzian regime. This has been a fundamental unsolved problem for

: decades, and we do not propose to solve all the problems in this paper. A reasonable starting

point for approaching this problem is to see whether a covariant probability interpretation can be

given to light waves.

For light waves, we start with the usual expression

1 fg(k)ei(kz__t)dk.f ( z, t ) = _r (25)

Unlike the case of the SchrSdinger wave, w is equal to k, and there is no spread of wave packet.

The velocity of propagation is always that of light. We might therefore be led to think that the

problem for light waves is simpler than that for nonrelativistic SchrSdinger waves. This is not the

case for the following reasons.

(1). We like to have a wave function for light waves. However, it is not clear which component

of the Maxwell wave should be identified with. the quantal wave whose absolute square gives a

probability distribution. Should this be the electric or magnetic field, or should it be the four-
potential?

(2). The expression given in Eq.(25) is valid in a given Lorentz frame. What form does this

equation take for an observer in a different frame?

(3). Even if we are able to construct localized light waves, does this solve the photon localization
problem?

(4). The photon has spin 1 either parallel or antiparallel to its momentum. The photon also

has gauge degrees of freedom. How are these related to the above-mentioned problems?

Indeed, the burden on Eq.(25) is the Lorentz covariance. It is not difficult to carry out a

spectral analysis and therefore to give a probability interpretation for the expression of Eq.(25)

in a given Lorentz frame. However, this interpretation has to be covariant. This is precisely the

problem we are addressing in the present paper.

6 Extended Little Group for Photons

The little group is the maximal subgroup of the Lorentz group which leaves the four-momentum

of a given particle invariant. For a massless particle moving along the z direction, the little group
is generated by [15]

J3, gl , Y_, (26)

with N1 =/(1 - J_, N2 = I(_ + J_ , where Ji and Ki are the generators of rotations and boosts

respectively. The above generators satisfy the commutation relations:

IN1, =0, [g3,g,] = [J3,g2]= -iN2. (27)
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Thesecommutation relations are identical to thoseof the two-dimensionalEuclidean group.
In addition, we can consider K3 which generates boosts along the z direction. This operator

satisfies the following commutation relations with the above generators of the little group.

[K3, J3] = 0, [K3, N,] = -iN_, [K3, N2] = -iN2. (28)

Since the operators N1, N2, J3, and K3 form a closed Lie algebra, we shall call the group generated

by these four operators the "extended little group."

The boost generated by K3 has no effect on J3, while changing the scale of N, and N2. In

particular, if we start with a monochromatic light wave whose four-potential is

AU(x) = (A,O,O,O)e i(k_-_') (29)

in the metric convention: xu = (x, y, z, t), the Lorentz boost generated by K3 leaves the above

expression invariant. Since N1 and N2 generate gauge transformations which do not lead to

observable consequences, we can stick to the above expression, and ignore the effect of N1 and

N2.J3 generates rotations around the z axis. In this case, the rotation leads to a linear combination

of the x and y components. This operation is consistent with the fact that the photon has two

independent components, which is thoroughly familiar to us. Therefore for all practical purposes,

A_'(x) has just one component which remains invariant under transformations of the extended

little group. We can thus write A"(x) as

A"(x) = Ae i(k'-_0. (30)

While the groul_ of Lorentz transformations has six generators, the extended little group has only

four. This means that the extended little group is a subgroup of the Lorentz group. How can we

then generalize the above reasoning to take into account the most general case? The choice of the

z axis is purely for convenience, and it was chosen to be the direction of the wave propagation.

If this direction is rotated, it is not difficult to deal with the problem. If the boost is made

along the direction different from that of propagation, then the operation is equivalent to a gauge

transformation followed by a rotation. Therefore, the extended little group, while being simpler

than the six-parameter Lorentz group can take care of all possible Lorentz transformations of the

monochromatic wave.

The above reasoning remains valid for the case of the superposition of several waves with

different frequencies propagating in the same direction:

A_,(:r) = _ Aie'(k,_-'_,'t), (31)
i

and the norm:

Y = _ [A,[ 2.
i

remains invariant under transformations of the extended little group.

(32)
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7 Unitary Representation for Four-potentials

One of the difficulties in dealing with the photon problem has been that the electromagnetic four-

potential could not be identified with a unitary irreducible representation of the Poincar4 group.

The purpose of this section is to resolve this problem. In Ref. [15], we studied unitary transfor-

mations associated with Lorentz boosts along the direction perpendicular to the momentum. In

this section, we shall deal with the most general case of boosting along an arbitrary direction.

Let us consider a monochromatic light wave travelling along the z axis with four-momentum
p. The four-potential takes the form

Au(z) = AUe i``(z-t), (33)

with

A _' = (A1,A_,A3, Ao). (34)

We use the metric convention: x _' = (x, y, z, t). The momentum four-vector in this convention is

pU = (O,O,w,w). (35)

Among many possible forms of the gauge-dependent four-vector A u, we are interested in the

eigenstates of the helicity operator:

0 0 0

&= 0 0 0 •
0 0 0

The tour-vectors satisfying this condition are

(36)

A_ :_ (1,4-i,0,0), (37)

where the subscripts + and - specify the positive and negative helicity states respectively. These
are commonly called the photon polarization vectors.

In order that the four-vector be a helicity state, it is essential that the time-like and longitudinal
components vanish:

A3 = A0 = 0. (38)

This condition is equivalent to the combined effect of the Lorentz condition:

and the transversality condition:

--_AU(z) = 0, (39)

V.A(x)=0. (40)

As before, we call this combined condition the helicity gauge.

While the Lorentz condition of Eq.(39) is Lorentz-invariant, the transversality condition of

Eq.(40) is not. However, both conditions are invariant under rotations and under boosts along

the direction of momentum. We call these helicity preserving transformations. If we make a boost
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along an arbitrary direction, this is not a helicity preservingtransformation. However, we can
expressthis in terms of helicity preservingtransformationsprecededby a gaugetransformation.

Let us considerin detail the boostalongthe arbitrary direction. This boostwill transform the

momentum p to p',
= (41)

However, this is not the only way in which p can be transformed to p'. We can boost p along the

z direction and rotate it around the y axis. The application of the transformation [R(O)B,(_)] on

the four-momentum gives the same effect as that of the application of B_(rl). Indeed, the matrix

D(rl) = [Bt(r/)]-' R(e)B.({) (42)

leaves the four-momentum invariant, and is therefore an element of the E(2)-like little group for

photons. The effect of the above D matrix on the polarization vectors has been calculated in

Appendix A, and the result is

D(¢)A_= = A"* + (v_/_)u(,,e), (43)

where -2 sin(O/2) cosh (rl/2) (44)
u(rhe) = cos(O/2)cosh(rl/2)+ V/(COS(O/2)cosh(o/2)) = - 1

Thus D(r/) applied to the polarization vector results in the addition of a term which is propor-

tional to the four-momentum. D(r/) therefore performs a gauge transformation on A_:. With this

preparation, let us boost the photon polarization vector:

A_: = B_,(,7)A_. (45)

The four-vector A_: satisfies the Lorentz condition p,A._ = 0, but its fourth component will not

vanish. The four-vector A_ does not satisfy the helicity condition.

On the other hand, if we boost the four-vector A_ after performing the gauge transformation

D(r/),

A'_ = Bc,(rl)A_

= Be,@)[Bg'(,1)R(e)B,({)]A_

= R(t_)B,({)A_. (46)

Since B,({) leaves A_ invariant, we arrive at the conclusion that

= R(O)A . (47)

This means

A'_ = B,_(rl)D(rl)A_ = (cos 9,-4-i,- sin 8, 0),

which satisfies the helicity condition:

(48)

(49)
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and

p'. A'± = 0. (50)

The Lorentz boost B(r/) on A_: preceded by the gauge transformation D(T/) leads to the pure

rotation R(O). This rotation is a finite-dimensional unitary transformation.

The above result indicates, for a monochromatic wave, that all we have to know is how to rotate.

If, however, the photon momentum has a distribution, we have to deal with a linear superposition of

waves with different momenta. The photon momentum can have both longitudinal and transverse

distributions. In this paper, we shall assume that there is only longitudinal distribution. This of

course is a limitation of the model we present. However, our apology is limited in view of the fact

that laser beams these days can go to the moon and come back after reflection.

With this point in mind, we note first that the above-mentioned unitary transformation pre-

serves the photon polarization. This means that we can drop the polarization index from A"

assuming that the photon has either positive or negative polarization. A"(x) can now be replaced

by A(x).

Next, the transformation matrices discussed in this section depend only on the direction and

the magnitude of the boost but not on the photon energy. This is due to the fact that the photon

is a massless particle [15]. For the superposition of two different frequency states:

A(x) = Ale '_l(z-0 + A: '_(_-0, (51)

a Lorentz boost along an arbitrary direction results in a rotation followed by a boost along the

z direction. Since neither the rotation nor the boost along the z axis changes the magnitude of

Ai(i = 1,2), the quantity

[A[ 2 = [AI[ 2 + [A2[ 2 (52)

remains invariant under the Lorentz transformation. This result can be generalized to the super-

position of many different frequencies:

A(x) = _, Ake '(kz-'), (53)
k

with IAI2 = Zk I&l 2 .The norm [A[ 2 remains invariant under the Lorentz transformation in the

sense that it is invariant under rotations and is invariant under the boost along the z direction.

Can this sum be transformed into an integral form of Eq.(25)? From the physical point of

view, the answer should be Yes. Mathematical!y, the problem is how to construct a Lorentz-

invariant integral measure. It is not difficult to see that the norm of Eq.(32) remains invariant

under rotations, which perform unitary transformations on the system. The problem is how to

construct a measure invariant under the boost along the z direction.

8 Localized Light Wavelets

For light waves, we use the form of Eq.(25). Let us write down the expression again.

f(z,t) -- i [ g(k)ei(kz-_t)dk.
J

(54)
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However,the form commonly usedin quantum electrodynamicsis

A(z,t)= f v_a(k)ei(kz-"Odk.

This is a covariant expression in the sense that the norm

(55)

f la(k)l_(1/') dk" (56)

is invariant under the Lorentz boost, because the integral measure (1/w)dk is Lorentz-invariant.

On the other hand, the expression given in Eq.(54) is not covariant if g(k) is a scalar function,

because the measure dk is not invariant.

It is possible to give a particle interpretation to Eq.(55) after second quantization. However,

A(z,t) cannot be used for the localization of photons. On the other hand, it is possible to give

a localized probability interpretation to f(z,t) of Eq.(54), while it does not accept the particle

interpretation of quantum field theory. ,

If g(k) is not a scalar function, what is its transformation property? We shall approach this -:"

problem using the light-cone coordinate system. We define the light-cone variables as

s=(_+t)/2,

The Fourier-conjugate momentum variables are

!

u = (z-0. (57) i

& = (k-,,.,), k,,= (k +,,.,)/2. (58)

If we boost the light wave (or move against the wave with velocity parameter/_), the new coordinate
variables become

s' = a+s, u'= a_u, (59)

where'a± = [(1 4- fl)/(1 q:/_)],/2 . If we construct a phase space consisting of s and k, or u and

k_, the effect of the Lorentz boost will simply be the elongation and contraction of the coordinate

axes. If the coordinate s is elongated by a+, then k, is contracted by a_ with a+a_ = 1.

In the case of light waves, k, vanishes, and k_ becomes k or w. In terms of the light-cone

variables, the expression of Eq.(54) becomes

f(u) = (1/27r) i/2 f g(k)elk*'dk. (60)

We are interested in a unitary transformation of the above expression into another Lorentz frame.
In order that the norm

f Ig(k)l_dk (61)

be Lorentz-invariant, f(u) and g(k) should be transformed like

f(u)---* v/-d;f(a+u), g(k)---* .¢rffSg(a_k). (62)

i

m

Then Parseval's relation:

f I:(u)l 2du = f Ig(k)l_dk (63)
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will remain Lorentz-invariant.
It isnot difficult to understandwhy u and k in Eq.(62) are multiplied by a+ and ct_ respectively.

However, we still have to give a physical reason for the existence of the multipliers (ai) 1/2 in front

of f(u) and g(k). They are there because the integration measure in Eq.(54) is not Lorentz-

invariant.

In Ref. [10], we argued from our experience in the relativistic quark model that the integration

measure can become Lorentz invariant if we take into account the remaining light-cone variables in

Eq.(57) and Eq.(58). Indeed, the measures (duds) and (dk,,dks) are Lorentz invariant. However,

this argument is not complete because the s and ks variables do not exist in the case of light

waves. In Ref. [16], Kim and Wigner pointed out that the multipliers in Eq.(62) come from

the requirement that the Wigner phase-space distribution function be covariant under Lorentz

transformations.

Let us illustrate the wavelet form using a Gaussian form. We can consider the g(k) function

of the form

g(k) = (1/rb) '/' exp (-(k - p)2/2b) , (64)

where b is a constant and specifies the width of the distribution, and p is the average momentum:

= [ klg(k)l_dk. (65)P
J

Under the Lorentz boost according to Eq.(62), g(k) becomes

(a/_b)v'v__ exp{- ¢__ (k - ,/_p)'/2b}. (66)

We note here tlaat the average momentum p is now increased to v/_'p. The average momentum

therefore is a covariant quantity, and a_ can therefore be written as

__ = n/p, (67)

where fl is the average momentum in the Lorentz frame in which a_ = 1.

As a consequence, in order to maintain the covariance, we can replace f(u) and g(k) by F(u)

and G(u) respectively, where

F(u)=_y(u), c(k) = _pn-g(k). (6s)

These functions will satisfy Parseval's equation:

f IF(u)l 2du = f IG(k)l 2dk

in every Lorentz frame without the burden of carrying the multipliers v/5-_ and vf&'Z.

(69)

9 The Concept of Photons

It is now possible to construct a localized wave function for a light wave with a Lorentz-invariant

normalization. This wave function is now called the wavelet. We shall examine in this section
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whether the waveletcan be usedfor photons. If the answeris NO, we then have to examinehow
closethe wavelet is to the particle descriptionof photons.

Let us see how the mathematics for the light-wave localization is different from that of quantum

electrodynamics where photons acquire a particle interpretation through second quantization. In

QED, we start with the Klein-Gordon equation with its normalization procedure. As a conse-

quence, we use the expression:

g(k) = (70)

where a(k) is a scalar function. The Lorentz-transformation property of this quantity is the same

as that for G(k) of Eq.(68).

However, the basic difference between the above expression and that of Eq.(68) is that the

kinematical factor in front of a(k) is 1/x/_ in Eq.(70),-while that for G(k) of Eq.(68) is 1/v _. This

is the basic gap between wavelets and photons. The gap becomes narrower when the distribution

in k becomes narrower, i

Furthermore, we can use the concept of windows to sharpen up the localization. Instead of i

leaving insignificant non-zero distribution outside the localization region, we can assume that the

distribution vanishes outside the region.

I have to do some more writing.
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Abstract

The theory of quantum effects in non-linear dielectric media infiuenced by pumping exter-
nal field based directly on Maxwell equations is developed. The diagonalisation of Itsmilto-

nian of quantised generated field by the canonical BogoIiubov transformations allowed to oh-

rain the general expressions for the number of created photons and for the degree of squeeging.
As an example for the ease of plane pumping wave the results are calculated in the sero order

of secular perturbation theory on small parameter characterising the medium non-lines_-ity.
The Heisenberg equations of motion are obtained for non-stationary case and commonly used
elective Hsmiltonian derived from the first principles of quantum electrodynamics.

As it is well known for theoretical description of squeezed states the quantum treatment oI

light is necessary. Consideration of the medium as classical one supposes some effective interaction
of the pumping and generated waves. For such description effective Hamiltonians were commonly

used. But the problem of correspondence between the Heisenberg equations which follow from
the effective Hami]tonisns and the Maxwell equations for quantized electromagnetic field in the

medium was not investigated up to now.
The main contents of our paper is to treat the theory of qusntized electromagnetic field propa-

gating in the medium with time dependent dielectric properties on the base of Maxwell equations.

This problem is quite analogical with the theory of quantum effects in non-stationary external

fields [I]. But in our case the role of "external field" is played not by the pumping field itself but

by the induced non-stationary dielectrics] properties of the medium.
The non-linear medium is described by the tensors of dielectric sensibilities of second, third

and higher ranks which determinate the medium polarization produced by the electric field. In

the frame of semiclassical theory we shall decompose the whole electromagnetic field into the sum

of intensive classics] pumping field Ev_(x ) and generated by the medium quantized field E_(x)

E_(x) = Epk(_) + E_(x). (1)
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where

Supposing the pumping field to be more intensive then the generated one we can omit the terms

in the operator of electric induction which are higher than linear in quantized field. From the

quantised Maxwell equations in the medium the following integro-differential equation follows for
the operator of vector-potential/[_(s) (we use gauge with A0 -- 0, o_/_k(x) --- 0 )

:: L::

_K°_ 0, (2) :
=_

K,j ffi1+ + (3)
00

(L,,EjX=) -- 41" f X!_)(t- I'; x)_(t', x)dt ', (4)
--O0

GO O0

--¢0 --00

So we are resulting with the problem of quantization in the external field which is included into

the kernel of the integral operator K u.

The ground of secondary quanti_._tion is that the quantized field must be decomposed over the

complete system of solutions.Aj(x)u!_p)¢(=)=E[u_p)¢(x)_(p)__°fthe classical equation+u_)_(x)ac+(P)],_ corresponding to the qUantized one(6)2 i

[a_(p), a+(p')] = 6._,Spp,.

To orthonormalise the set of solutions it is necessary to introduce a scalar product [2]

| O0

-co -_

Operators a_(p), a+(p) annihilate and create free photons in the medium when time tends to infin-

ity in the state with quantum numbers p, a. When time increases negative- and positive-frequency
solutions will be mixed which has the interpretation as particles-antiparticles creation. As the

consequence the role of photons in the medium win be played By quasiparticles which creation-

annihilation operators b+(t), b,(t) (here cr ffi (a, p) ) disgonalize the Harniltonian of quantized field

in a moment t and which are connected with a+, a_ by the canonical Bogoiiubov transformation

The number of the quasiparticles created by the medium in o-state is

No(t) =< O_oolb_+(t)b.(t)lO_oo>= _ _+_(t)C%,(t).

(10)

(11)
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The degree of squeesing is defined by the value of dispersion of quadrature components

1 (b+(t) _ bo(O)1 (b+(t) + bo(t)) X,,,(t) -x,.(t) =

or by their linear combinations

The matrix of sq_ing is

Yt,3# -- _ QaoXx,2o.

(12)

(13)

1

=< >= :F$)+ (¢ =F• ) QT]oa, (14)

(here minus for i = k ffi 1, plus for 1 ffi k = 2).

Let us apply the developed formalism to the quantum process of light generation [3]. We

shall suppose the non-linear crystal to be placed in s flat resonator without losses and medium

absorption [4]. To obtain solutions of 2 we shall decompose u!_)"(x) over the space harmonics of

resonator. The system of equations for the Fourier coefficients can be solved by the perturbation

theory with the small parameter e

e = gtE_mmt[ xO)(_e'-w) I < 1. (15)1+ 4txO)( )

Because of parametric resonance it is necessary to make use of the secular perturbation theory [5].
From the zero order solution it is easy to obtain the number of created by the medium photons

in n-mode

N.(t) = IS.I2sinh 2A.eI, (16)

where 0, and A,_ are some constants of the order of I. From the matrix of squeezing it is seen

that the quadrature components dispersions grow exponentially st a large time. However there

is a time interval [0, t,_mi,] during which the dispersion of one of the quadrature components is

squeezed to the value less than the standard quantum limit

(IT)
1

tn,,,_ = -z---arctanh e-'*,
Ant

1 2 sinh 2 rn
Snnt== -- 4 •2r. - 1 < 4' (18)

where *'n is proportional to the difference between the sum of generated wzwes frequencies and

the pumping wave frequency caused by medium dispersion. So the frequency upset caused by the

medium dispersion destroys squeezing.

As it is commonly known, the diagonalization of Hamiltonian is equivalent to the solution of

Heisenberg equations. Now we shall introduce the Heisenberg operators of creation and annihilation

and deduce the equations for these operators for the case of non-stationary external field.

Simple differentiation of bo(t) with the help of Bogoliubov transformation 10 provides that the

quasipsrticles operators satisfies the following equation

b°Ct) = E{I¢+(t)iI_(t) - _T(t)q'(t)]opb/_(t)+[O+(t)q(t) - CrCt)O']opb_(O}. (19)
a
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The operators of quasiparticles differ from the Heisenberg operators Co(¢), c+(t) extended to the

non-stationary case only by a phase [1]

I

co(t) = e-".C%o(t), S.(t) = 2 / _o(,')_,', (20)
--00

where _°(r) is the instant energy of quaJiparticle. Remembering that in terms of Heisenberg

operators the Hamiltonian is also diagonal and with the help of 19, 20 we obtain the generalized

Heisenberg equations

_°(t)= -,[c°(t),_(t)]+

In the irate when time tends to infinity Bogoliubov coe$cients tend to constants and we are

resu]ting with the ordinary Heisenberg equations.

Inserting the expressions for the Bogoliubov transformation coefficients for zero order pertur-

bation theory into generalized Heisenberg equation 21 we obtain the following equation describing

the process of parametric generation of photons in n and l - n modes

_(t) = -ia_(t) + eA.O:,e-'_cL.(t), (22)

where f/is the energy in mode n or 1 - n. It is clearly seen that this equation may be provided as

the usual Heisenberg equation _ =-i[c,, H] by the standard effective Hamiltonian [3]

_.11(t) a_t(t)_(t) + a_+_.(t)_,_.(t) + " -'_ + += t^.[o,,e c.(t)__.Ct)+o,,e_"_(0__.(t)]. (23)
z

So the st_dard quadratic effective Hamiltonian is obtained as the zero order of secular pertur=

bation theory applied to the exact integro-differential equation which describes the propagation

of quantized electromagnetic field in non-stationary medium. The corrections to it also can be =

obtained in the frame of exposed here self-consistent description of the process of squeezed states

generation based on the first principles of quantum electrodynamics.
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Abstract

The minimum uncertainty and other relations are evaluated in the framework of the
coherent states of the damped harmonic oscillator. It is shown that the coherent states of
the damped harmonic oscillator are the squeezed coherent states of the simple harmonic
oscillator. The unitary operator is also constructed, that connects coherent states between
damped harmonic and simple harmonic oscillators.

1 Introduction

Recently there has been a surge of interest in the minimum uncertainty state which is one of the

fundamental features of quantum mechanics[I]. Introducing the canonical conjugate variables for

the harmonic oscillator, position z and momentum p in the appropriate dimensionless units, the

coherent states can be described by a symmetric uncertainty in z and p with Ap. Ax = 1 and

Ax = Ap = 1. From the restriction of the uncertainty principle, Az. Ap, we may consider a more
precise position 'Az < 1 and a more uncertain momentum Ap > 1. These states, i.e., one variable

is squeezed at the expense of its conjugate, are called squeezed states or minimum uncertainty

states, which can not be obtained from the optical sources generating the coherent states[2], but
from two-photon coherent states[3] including ordinary coherent states as a special case. This kind
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of change in the variable corresponds to the measurement of either z or p in a rotating frame in

phase space. This new space is the qua_irature phase, that is directly related with a homodyne or

heterodyne detection. Recently, two-photon devices have produced the squeezed states of light[4]

with high precision interferometers[5].

The two-photon coherent states or minimum uncertainty ca,, be distinguished from a coherent

state in many ways, i.e., different photon processes, quantum statistical properties and coherence

properties. The coherent state can be generated from one-photon stimulated processes, while the
two-photon coherent states are generated from two-photon processes for two photons of the same

mode. For the photon annihilation operator with frequency _, we may define the coherent states

[ a > (a [ a >= _ [ a >), and for the case of a two-photon process, a self-adjoint operator

a = al + ia_ yields < Aa_ >=< Aa] >= 1/4 for the coherent state [ a >, as derived in Sec. 3

below. However, the states with a more precise quantity < Aa_ >_ 1/4 and a more uncertain

< Aa_ >:_ 1/4 are permitted by the uncertainty < Aa_ >< Aa] >>_ 1/16 with minimum

uncertainty < Aal >< Aa] >= 1/16. This indicates that the ordinary coherent states are
different from the minimum uncertainty.

The purpose of this paper is to show that our previous results[6] of the coherent states for

the damped harmonic oscillator (DHO) are the squeezed states of simple harmonic oscillator

(SHO). Introducing the Caldirola-Kanai Harniltonian[7], we review the propagator, wave function,
uncertainty relation and coherent states[8] of the Caldirola-Kanai Hamiltonian in Sec. 2. In Sec.

3 we define the self-_joint operator and construct the coherent states for DHO. We determine the

properties and structure of the unitary transformation of the coherent states of DHO and SHO in

Sec. 4. The results and discussion will be given in Sec. 5 together with graphs.

2 Propagator and Wave Function of DHO

We introduce the CMdirolwKanai Hamiltonian for DHO as

p2 __,tI = 2

2m

where "y is the positive constant. As we have developed the quantum theory or damped driven

harmonic oscillator by the path integral method[8], the propagator and wave function of DHO ,,re

given as

112

K(x, t; Zo, O) = ,_e_" ]2xih sin wt exp[_./.r(z0- 2 _ e-ez2)
d

+ " + :d)cos t - 2e :=o)}] (2)sin_t _( •

ql.(z,t) = N H.(Dz)exp[-i(n + 1) cot-l( _/----+ cot_t) - Az 2] (3)(2'_n!)l/2 2 2_ '

where
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N(,)-
7 2

_(t) 2 - 4_ _ sin2wt + _sin2wt + 1 , (4)

A(t)- 2h_(t/' _ '

(.._),/, e_D(tl = _.

To construct the coherent states (1 O >) for DHO, we define the annihilation operator a and

creation operator a t as

where s`(t) and r/(t) are

s`(t)

1
, = _(_z- s`p), (s)

1 .
at = _(S' P-'7"z), (6)

- 2(ReA)-l/_exp {icot-' (---_ + cotwt)} , (7)

A ' cot_t)t . (8)ffi v_ih_exp{icot-(---_+

Equations. (5)-(6) satisfy the commutation relation [a, a t] - 1, which corresponds to [z,p] = ih.

The coherent states in the coordinate representation [ z > can be expressed by

r 1 , o 1 t, l s`'o2]
< z I o >= (2xs`S`') -'/'lexp [-2-_;z + -=S`- _ I a -_-_-- J (9)

With the use of Eqs. (5)-(8) the uncertainty relation can be easily obtained as

(AxAp) ffi Is, II ,! I-- _(z)

= _ 1 + + sin s _t (10)

Here, Eq. (10) is the minimum uncertainty corresponding to the (0,0) states. All of the formulas

derived above reduce to those of simple harmonic oscillator (SHO) when "f = 0. The propagator

[Eq. (2)] has a very similar form to those of Cheng[9] and others[10], but Eq. (3) is of a new form.

3 Two-Dimensional Self-Adjoint Operators

We introduce the dimensionless two self-adjoint operators

(11)
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and the corresponding eigenstates

[ a >=l al >1 +i [ 02 >2, (12)

where al and a2 are real. We refer to (al, a2) or (ol, 02) as the quadrature components, and the

relation between Eqs. (11) and (12) are given by

allal>l ffi allaz>l,

a2]a2>2 ffi a2la2>_ •

(13)

Using Eqs. (5)-(6) we may express Eq. (11) as

al = _--_[(_-_')x+(,'-,)p], (14)

a_ = _[-(,7 +,l")x + (, + ,')p] • (15)

Rewriting Eqs. (14) and (15) as the representation of z and p, we get

= (, + ,')al - i(, - ,')a_, (16)
p = (7 + _')al - i(_ - _*)a2. (IT)

With the use of the wave function expressed as Eq. (3) and through the following definition

< aa_ >.,.-< (a_- < al >.,,.)(al- < al >,.,.)" >_.,.,

we obtain the uncertainty relations at various states as

( ,.i.. 1= n +2)(n + I) 8 '< Aa_ >.+2,.< Aa] >.+2,.

< Aa_ >.+i,.< Aa] >.+,,.

< aal >.,.< aa_ >.,.

< aa_ >.-i,.< aal >--L-

< _a_ >.__,.< Aal >.-2,.

= 1(. + I)2 _-2_I.

= (2. + 1)_ _ 1"_'

ffi n2-_-_ 16 '

= ln(n 1) .i,,. 1m .

-- -"*8

Averages in the coherent states can be defined as

< _ la lot >=<a >=¢_,

(18)

(19)

(20)

(21)

(22)

(23)

(24)

E

IE

and thus we have
I

< a_ >= _(a + a') = al ,

i ,
< a_ >= _(o - _) = o_,
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1
<.;.,> - o_+

1

]

and the following a, representation

/ 2 _ 114 _alrna].<,_,Io>=_,7)exp[-(,,; - o)' + i

where al I _1 >= st ] a >.

(27)

(28)

(29)

, (3o)

4 Unitary Transformation

Now we will construct the unitary operator that transforms the coherent states for SHO to that

of the two-photon coherent state of DHO and vice versa. From Eqs. (5)-(6), we can easily show
the relation

a - Vao-Aato, (31)

at ffi --_'aO + v'ato , (32)

where the expressions of ao and aot by a and a t are

= u'a + ha t ,

= ,_'a + va t ,

ao (33)

ato (34)

for a pair of numbers ,_ and v satisfying

I vl 2- I_12-- ] . (35)

We take the values of v and _ as the following:

v = u -iv_-_--fiv

- ' r +- _-V_e- L,_o _ +

- - e _(_sinwt+cosw O- e:_(coswt- 72 V _ _ sin wt) (36)

+_ e-_ sinwt sin _t)- (_ sin wt +V Wo

w° _ [[/cot-'(_ v/Vz--_
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rnwo . 1

- _e_[_e-'a-(l+iVf_-_)]exp[icot-l(-_+cotwt)]

+_ e-_ sinwt - v_e- t _--_ sm wt + col _t)

= 2-+LUe - 2+ _' '_' cot-'(_ _t) tan-'

Since a canonical transformation is defined as any transformation which keeps the commutator

invariant, we can confirm that the transformation of vaxiables from (a0, a+o)to (a, a t) given in Eqs.

(31)-(32) and (35) is a canonical linear transformation. According to a theorem of Von Neuman-

n[11], there exists a unitary operator Uo which yields all the linear canonical transformations,

i.e.,

b_.o,°0+)=uo+ou._= ..o- _4 <38)
relation [a,a t] = 1] and unitary transformation [Eq. (38)] provide a withThe commutation [

properties exactly similar to those of ao. Therefore, we may obtain the usual properties of a as

N = a'a, (39)

Nln> - nln>, N[0>-0, (40)

In > = Uoln>o , (41)

and a coherent state for DHO is given by

l a>- Uola>o, (42)

where I e >0 is a coherent states for SHO. The representation of coherent states for DHO in the

SHO space is given by

1 12 I 12 ___2 (43)
<ala>of_-Tv exp- la -_[ao +2v" °-_b'Tv"+ c_'C_o ,

where the coef[icients are

1 -v_

= (_+_-_++ .__'/'/'',
[ (#sin,,,t+cos,,,O_+(?e-" + 1)sin_t ]tan -1
t(a+ + _ sin_t + eosa_t)(_e -'a + 1) - sina_t_/B _ - 1/ '

2v ° 2 \wo2e-'a + 2w,_o_/ exp i tan-' 2 -/9 -. ,,,- .,-- = -- -- _'-T_'e-2_' (44)
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2v °

1
w "---

V °

The wave function< n [a > fora coherentstateof DHO inthe stateof SHO can be obtained

from Eq. (43).Using the followingformulawith the nth Hermite polynomial,

® H.(z)
e2zt-t2 = E n! tn _

_0

It I< oo, (45)

and through the similar derivation of Eq. (9), we can easily obtain

o<-I,_> = 2,/y_.(_--,+2+_)L_+__-_S_j
1 j2 A" 2_× H.[(-2.A)-m_]exp(-_l_-_ ), (46)

where the coefficientsinEq. (46)are givenas

[? -''(-2uA)-a/' = 2"_ ( e-'a +2+wo_ _w -2+_ J e ie'_,

+ sinwt

0,,_ : tan-I _- A,_sinwt '

_/(_-,,), + a - _, - 2_-,' + _(_-,_ + ]1'+ 1- _,
A,,_ : Bv_ '

-(W°e-" + 1) _qrt(W°e -'a - 1)' + 1 - _'
_4P

+_/t(_,,-"'- 1),+ _- e2ll("°,,-'',,,., + _)'+ a- _'l.

If we represent the annihilation operator ao in the state of DHO, we get

(47)

(48)

from the definition of Eq. (18) we obtain the quantities

< Aao_> _ < ':' I (_, - '_.',)' I o,>

1 I'= _"I,'+
mt,,,,k_ I'- 2_. I,.

4_0
(49)
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< Aao22> _ I 12

1

- 2._ 1,112

_ lw _n/__
- 0-,

l 2

< A%',>< A%',>= i_ B ,

(50)

(5])

<A_> = l_l'

= _ _-"- 2+._ J (52)

The repetition of representation for the annihilation operator a in the state of SHO yields

< a >o = < ao I a I ao >= uao - Aa_ _=ah = ahl + iahs, (53)

A _

<lxa_ >o ----"<
1

= i I,.'-._ I

ffi - • -'_ sin _wt +
4

l
<A.l>o = il_'+_l

_o I (al - ah,)' I ao >,

w_..e-n(cos_,t _ 7 ]wo _ sin wt) 2 ,

sin,,,t+ _s,,,t) _+ --.',' sins,,,t(_-_.+ 1)
t,_o

< ,aa_>o<_aa]>o

w 7 7 2
+ wo--e_t(c°swt - _ sinwt)(_--_ + 1)sinwt] _

7 2
+ [cos _t - _-_ sin' wt]s} ,

(54)

(55)

(56)

<Aa 2>o = I,Xls

1 .,,o -,t w.y__2)s= _ -2+_o ' (57)

in Eq. (42) we have defined the unitary operator that is a linear canonical transformation.
From this equation we have

<aol_'> = <aolULlao>

= o'7,(_o,a;) < ao l a > (58)

i
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A direct application of the following formulas[12]

1 A
eO,Ae_BeO,C = exp(c,A + c_B + c_C + _{c,c_[ ,B] + clc_[A,C] + c_c_[B,C]}

J

+_-,r,iA,[A"'"IA'[B'[B""'[B'C]'"](i+ 1)l(j+ I)!
i=l jffil

(59)

ecla_ _mts_s _ = exp{cla t2 + _ata + csa 2 - (at 2 + ata + aa t + a _)
Oo

+_ (-2jp
if, (J + 1)t [-2c'c3(ata + aa t) + 8c_csat']}

e 2el -- 1 e -2c=- l

= exp[(c_-8c_c__ c,c,)a"(c_-c_c_+2c,c_ _'c_)ata
e-2_ - I

+(-_,c,+2c,c, _- )aat+ (c,-c_c,)a_l

gives the unitary operator in the I a >o representation,

I [ A., X, A'_,I

U(")(ao,a_) - _exp [_-_vao + (; 1)a;ao - _-_uao]

r_ e r__l
= _ exp [_-_vao - In vatoao - _'_uaoj

_ V_,1 exp [A,,aeo + B.4ao + C,,aoato + D,,a2o]

where the coefficientsare

AU = 2--;+ _""+_ _ _. l-_-. '

- - In v - J-_l-_-(l - v 2) ,
21n v

= -_.-_(I- _'),
zlnu
A

D_, Y; 1 v 2)
-- 21nv ( - .

(60)

(61)

(62)

(63)

(64)

5 Results and Discussion

Starting from the coherent states of DHO, we have shown that these states are the squeezed states
of SHO and vice versa. We have also evaluated the averages of the operators a0, a, Aa_ and Aa_

in both spaces of DHO and SHO. We have constructed the unitary operator which transforms the
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FIG. 1. _(t) as a funtion of _at at various values of z = 7/u_.

coherent states (] _ >0) to the coherent states ( l a >), i.e., I a >= Ua [a >0.

Figure 1 illustrates the behavior of//(t) [Eq. (10)] as a function of t and x -- "r/w. As z

increases, the ami_[itude of the oscillation becomes large. For the condition "r '¢_ wo, _ _ wo and

7 -'* 0, j3(t) approaches to unity, with DHO reducing to SHO. Therefore, the uncertainty relation

for the (n,n) state [Eq. (I0)]oscillateswith the period x.

From the definitionof the se|fadjoint operator and Eq. (18), We have evaluated the minimum

uncertainty for various statesin Eqs. (19)-(23).The minimum uncertainties for the diagonal and

firstoff-diagonalstateshave the value of 1/16, and the minimum values for the second off-diagonal

statesare I/8. For < Aal >_ I/4, the corresponding canonical part resultsin more uncertainty.

The creation and annihilationoperators (at and a) in Sec. 4 can be shown under the condition

Iv [_- [A [2_ I.The operators (a_,ao) are transformed to the operators (at,a) through unitary

operator U_. The behaviors of [ v I and I A I are depicted in Figures 2 and 3, respectively. We

can confirm that I v I oscillates periodically in general, but I A I behaves in a more complicated

fashion, and as x = -y/u_ increases to larger than unity, the oscillation decays rapidly .

The average of Aao21 and Aao22 in the states of DHO are given in Eqs. (49)-(50). < Aa0al >

oscillates with exponential decrease, while < Aa022 > does so with exponential increase. The

minimum value of < Aa02_ >< Aa0_2 > is 1/16 at/3(t) = 1. The averages of Aal and Aa_ in the

space of SHO are evaluated in Eqs. (54)-(55). The uncertainty relation [Eq. (56)] has a minimum

value of 1/16 at t -- sin "1 nr or t = cos-l(7/2oa-4oa/7), and maximum value at t32 = (wo/_s)2e -2.'t

(Figure 4). ............

Equations (61)-(63)represent the unitary operator which transforms I _ >o to I" > and vice

versa. Therefore, we can obtain the scaled state through < x] a _>=< x ] U I c_ >o.

In conclusion, we have shown the uncertainties and their relations in the states of SHO and

m

p

w

E
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FIG. 2. I v [ versus wt at vaxious values of -?/_o.

0 1 2 3 4 5 6
bJ

FIG. 3. IA Iversus_t at variousvaluesof "y/_.
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FIG. 4. UncertLinty rd_tions versus _t.

DHO. We have also shown that there exists a unitaxy operator to connect the coherent states of

SHO with tho6e of DHO.
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Abstract

We show that the probability distributions P,_(q,p; y) :- I(nlp, q; y)l 2, which axe obtained

from squeezed states, obey an interesting partial differential equation, to which we give two
intuitive interpretations: as a wave equation in one space dimension and also as a pseudo-

diffusion equation. We also study the corresponding Wehrl entropies S.(y), and show that

they have minima at zero squeezing, y = 0.

1 Introduction

This talk is based mainly on a work which was done in collaboration with Salomon Mizrahi

from Brazil.

Squeezed oscillator states are defined in terms of the bosonic creation and annihilation op-

erators, a*:= - anda := + asfollows:

[z; _) - IP, q; _) :- 7)(q,p)S(_)IO), where z := (q + ip)/_/_, (1)

and 10) is the ground state of the harmonic oscillator. Both 7) and S are unitary operators. 7)

creates the coherent state, and is defined by

7)(q,p) :-- exp[za t -- z'a] = exp[ipx -- q_x], (2)

and S(_) is the squeezing operator:

S(_) := exP[2(_at2 - _..2)], (3)

where _ is a complex variable. For _ = 0, we recover the ordinary (unsqueezed) coherent states.

The squeezed states satisfy the completness relation, flP, q;_)(P,q;_[ _2, = 1 , for every _.

Therefore,

dpdq ,P"(q'P;_) 21r - 1, where p,_(q,p;_) := I(p,q;51n)l _ (4)

where In) is the number state. If we interpret the real parameters q and p as the position and

momentum variables, then (4) allows us to interpret the non-negative functions P, as proba-

bility distributions in the (q,p)-phase plane, for every n and _.
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In this talk, I shall consider these P. for real values of the squeezing parameter _, which will

be denoted by y. In particular, I shall show that the P,,(q,p; y) satisfy the interesting partial

differential equations (9) and (12), to which two intult_ve_nt_rpretations can be given. Finally,

I shall show that the Wehrl entropy S,,(y) (14) of the P. must have their minima at zero

squeezing, y = 0.

2 Explicit Form of the Distributions Pn

The distribution P.(q, p; _):= [(nip, q; _)I s gives the probability of finiding n bosons (photons)

in the squeezed states [q, y; _). It is a physically important quantity, and it has been calculated

by different methods. The dependence of P.(q,p; _) on n was studied by Schleich and Wheeler

[2]. For _ = y, the P. is given by the following complicated expression [1,3,7]:

P,(q,P;Y) := I(P,q;yln)l 2 = 2v _ [ q21W,),p2]__q..__J' n >_ O, (5)2- .!() + 1)It"(2'_'w)l_ exp

where

1 - 3' and w := q + iTp
7:=e 2_, rl:= 1+ 7 , 7+-------_, (6)

and where H.(2, r/; w) are the generalized Hermite polynomials (_7-/P), which are defined in

terms of the raising operatores R(a,/_; x) - c_x -/3_ , as follows [1]:

_r (_,_;_)= R"(_,_;_). 1= _ (n -g_)!_! - (_)_-"" (7)
#=0

These polynomials are equM to the standard Hermite polynomials for a = 2 and/_ = 1. In the
limit, B _ 0, these/_.(x) becomes simple powers of x: H.(_, O, x) = _'_x '_. Therefore, in the

limit of zero squeezing, _, _ 1, we have r/_ 0, so that the above _'/_ 's become simple powers

of w. Thus, for y --* 0, equation (5) gives the following well-known Poisson distribution of the

unsqueezed coherent s_ates:

P.(q,p;O) = 2"n! exp - , n > 0, where p2 := q_ +p_, (8)

When discussing probability distributions, it is useful to think of the regions that are surrounded

by the equlpotential curves, P,,(q,p; y) = const. ; I shall call these regions potential regions.

Thus, the potential regions of the above Poisson distribution P,,(q, p; 0) are concentric circles in

the (q,p)-plane. But for y _ 0, these regions will have approximately elliptical shapes, whose

the major axes lie along the p-axis for y < 0 and along the q-axis for y > 0. These regions

become more elongated in one direction and narrower in the other, as lY[ increases.

3 The Partial Differential Equation for the P_

Since the integral (4) of the distributions P.(q,p; y) over the whole (q,p)-space remains con-

stant under squeezing, it is useful to think of the change of P,,(q,p;y) as functions of y as a
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redistribution of probability densities in phase space, which maintains the positivity condi-

tion P,,(q,p; y) >_ 0 for all y. This redistribution of the P,,(q,p; t/) is governed by the following
interesting and amazingly simple partial differential equation:

1 (0 2 lo2)72Op2 where 7 := e2_. (9)

This equation was originally obtained [1] by straightforward but lengthy differentiation of the

expression (5), and by using the following property of the g_7 _ [1]:

____- 1 0 ag.(a, r/, w) = 4Ow2f-I.(a, ti, w). (10)

However, we can now derive it by two other more general methods [5], as reported in the
summary section.

4 Interpretation as Wave and Pseudo-Diffusion Equa-
tions

I shall now present two possible intuitive interpretations of the above differential equation:

(I) D'Alembert or Wave Equation: The following is a new interpretation, which was

not discussed in [1]: For a fixed squeezing parameter y, equation (9) looks like the wave

equation for one space dimension q, if we think of the p variable in (9) as the time variable
t:

c2 _-_ ¢_(q,t; y) = -4_rp(q, t; y), where p(q, t; y) = -- P.(q, t; Y(7)),
71"

(11)
In this interpretation, the parameter 7 would then play the role of the speed of light c(n) in

matter, which depends on the parameter y, similar to the dependence of c(n) on the index

of refraction index n. If the P. are thought of as electromagnetic potentials q_(q, t; y), then

4_P,,(q,p; Y(7)) will play the role of a time-dependent charge distributions -47rp(q, t; y).

(II) Pseudo-Diffusion Equation: By substituting _ = 2e_ into (9) , we obtain a more
symmetric differential equation for the P.:

02O p,, 1 e2___q2 OP2]"_y (q'P;Y) = 5 - P'_(q'P;Y)" (12)

This equation is also new and permits a more pertinent intuitive understanding of the

redistribution process of the P,,, by comparing (12) with the diffusion equation in two
dimensions [6]:

_T(q,p;t) = a + T(q,p;t) , (13)
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wherea is _he diffusion coefficient. Equations (12) and (13) are similar, if we interpret

the squeezing parameter y as the time variable. However, the two equations differ in two

interesting aspects:

(1) The sign in front of _-_ in (12) is negative rather than positive. Such a "negative
diffusion coe_cient" leads to " infusion" rather than diffusion in the p.direction. Con-

sequently, as y increases, the equi-probability curves, P,_(q,p; y) -- const., move

the origin along the p-axis, but away from the origin along the q-axis. Therefore, we ex-

pect the probability regions to be concentric elongated "quasi ellipses" which are extended

along the p-axis for y -* -o0. They become more and more circular as y approaches zero,
and then stretch outwards along the q-axis, as y _ oo. For the above reasons, we shall

call equations (9) and (12) "pseudo diffusion equation".

0_ 0 _

(2) The "diffusion coefficients" exp[2u]/2 and -exp[-2y]/2 and in front of _ and _ in

(12) depend on y. For y -* +oo, the term _e2U-_P,, dominates the r.h.s, of (12), whereas

for y _ -oo, the second term dominates. This dependence on y can be given an interesting

intuitive explanation: Let us consider the redistribution process when y is very large: In

this case the probability densities P,,(q,p; y) are extended in the q-direction and tightly

squeezed or compressed in the p-axis, which makes it difficult to compress them further

along the p-axis. For this reason the "infusion coefficient" becomes so small, namely

exp[-2y]. In contrast, the diffusion along the q-axis must become faster and faster, in
order to diffuse all the incoming density flux from the other orthogonal p-direction, which

is entering the cigar-shaped potential regions through their lengthy boundaries.

5 The Wehrl Entropy for the Pn

A useful measure for the information content of the probability distributions P.(q,p; y) is the

Gibbs or Wehrl entropy [7], which is defined by

dpdq (14)
S,,(y) := - / P,,(q,p;y)lnP,(q,p;y) -"_" .

Because of the symmetry P,,(q,p;-y) = P,(P,q;Y), the entropy (14) is even in y: S,(-y) =

S,,(y). Therefore, at y = 0 each S,,(y) must have either a maximum or a minimum. We shall now

argue that S,(0) should correspond to a minumum: We assume that S,(y) does not oscillate

as a function of y. Therefore, it is enough to argue that S,_(y) grows with [y] for large values

of [y[. For large positive y, equation (12) behaves essentially like a one-dimensional diffusion

equation in the q-vaziable. But it is well-known that the solutions of diffusion equations lead

to entropies which increase with time [6]. Therefore, the S,(y) must increase as y ---* oo. But

since the S,(y) are even in y, they must also grow as y ---* -_. Hence, the S,(0) must lie at

the bottom of the curves S(y) vs. y.

Finally, we note that the yon Neumann entropy S_N(p) := -Tr (pl.np) for the pure states

p := In)(nl must vanisch. In contrast, explicit calculations of the Wehrl entropies of the Poisson
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distributions (8) showsthat S,_(O) _>_1 for all n, in accordance with a conjecture by Wehrl [7],
which was proved by Lieb [8].

To summarize this section: in contrast to diffusion equations, where the entropies of their

solutions always increase with time, the entropies S,_(y) for the solutions of the above pseudo-

diffusion equation first decrease monotonically as y grows from -oo to zero, but then increase

monotonically as y grows from zero to +oo.

6 Summary and Outlook

Two equivalent partial differential equations (9) and (12) were presented and then interpreted,

as wave and as pseudo-dlffusion equations. The probability densities P,,(q, p; y) (5) provide
infinite number of their solutions.

By the time of writing the present lecture notes, we succeeded in proving, by two general

methods, that the expectation values (q,p;_[O[q,p;_ I of an arbitrary operator O, satisfy a

generalized version of the above partial differential equations, which also include rotations, i.e

for the general squeezing _ = re i¢. Interesting examples of O are the number operators N and

N2; their expectation values provide the simplest solutions of (9) and (12) . Also the projection

operator [q,p; _)(q, p; _[, and consequently its Wigner function, satisfy these equations.
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1 Introduction

The standard approach of quantum statistical mechanics uses the density op-

erator _ to describe the (mixed) state of the physical system of interest. Since _ is "

an operator in the Hilbert space, we usually need some representation to perform --

the practical calculations. There are many equivalent representations in the lit- --

erature, e.g., the coordinate repr_ntation, P-representation, Q-representation,

Fock space representation, Wigner function and characteristic function (Chi func-

tion hereafter), etc. In this paper we will use the last two representations since

they provide a "phase-space picture" for the quantum-mechanical problems [1]. i

In quantum equilibrium statistical mechanics, a system (A) immersed in a heat

bath (B) with temperature T is described by the canonical ensemble. According |

to ensemble theory, thedensity operator is: '-

exp(- '=:
= Tr[exp(-fl[--I)]' (1) i

where fl = _T is the inverse temperature and/7/is the Hamiltonian of (A). The

structure of (B) and the interaction between (A) and (B) are irrelevant to the

density operator. If/:/is (inhomogeneously) quadratic and with a finite number of
,

degrees of freedom, the density operator will correspond to a finite-mode thermal
_

Squeezed Coherent State (SqCS) [2]. !

In quantum non-equilibrium statistical mechanics, ensemble theory is no

longer valid and we have to build a model for the heat bath (B) and consider
i

(A)+(B) as a total system. The total Hamiitonian then contains three parts m

the Hamiltonian of (A) and (B) and the interaction Hamiltonian.

It is well known that the number of degrees of freedom of a heat bath must

be infinite (the thermodynamic limit), otherwise, due to the Poincar_ recurrence

theorem there will be no phenomena such as approach to equilibrium, damping ..

or dissipation. The simplest model of a heat bath is an assembly of infinitely --

many harmonic oscillators with linear couplings to (A). In this kind of model,

the total Hamiltonlan is quadratic if the Hamiltonian of (A) is quadratic. Since

for quadratic Hamiltonians we have a phase-space picture of quantum mechanics

with the help of Wigner and/or Chi function, we can construct an infinite-mode

384



(pure) SqCSfor the total system in an infinite--dimensional phasespaceusing
thesefunctions. After reduction, i.e., ignoring the heat bath but keepingits "in-

fluence', wewill get a finite--modeSqCSfor (A). In the limit as time approaches
infinity, it can be shownthat (A) will approachequilibrium, and the finite-mode

SqCS will becomea thermal SqCSconsistent with the fluctuation-dissipati6n
theorem [3,4, 5, 6, 7, 8].

In this paperwe introducea geometricinterpretation of thesenon--equilibrium
phenomenavia the Chi-function representationof infinite-mode SqCS.In Sec. 2
notations, conventionsanda lemmaonmatrix are introduced for the mathematics
used in this paper. In Sec. 3 we study finite-mode SqCS'sby Wigner and Chi
functions and then extend them to infinite mode. In Sec. 4 we use the quantum

Brownian motion asanexampleto illustrate geometricalreduction in phasespace.

2 Mathematical Preliminaries

Throughout this paper, h is set equal to 1; "T" denotes the transpose of a

matrix and "-T'denotes the inverse of the transpose of a matrix. The phys-

ical system under consideration is of N = n + 1 degrees of freedom, where n

is either finite or equal to infinity. The symbols _ = (x°,xl,x2,...,x '_) and

= (k °, k 1, k2,..., k") denote the N-dimensional canonical coordinate and mo-

mentum respectively, thus _" _- (_; k) is a vector in 2N-dimensional phase space.

and _ denote N-dimensional position and momentum operators corresponding

to the canonical variables _" and k.

The metaplectic group Mp(2N,R) is an N(2N + 1)-dimensional Lie group.

It is the quantum analogue of symplectic group Sp(2N,R). The elements of the

Lie algebra of Mp(2N,R) can be organized as anti-hermitian operators in the

following form:

n

-- + + +
2 i,j=0

i _

i
= -_(q;_)Jrn(_;_) 3-, (2)

385



where ai_ = aji, _ij = Bji and

rn= (-_ T

is a 2N x 2N real matrix [9], while

:) C sp(2N, r) (3)

J=(?l 10)' l=NxNunitmatrix. (4)

The Lie algebra of Mp(2N,R) is isomorphic to that of Sp(2N,R). The action

of exp[_(m)] E Mp(2N,R) on (_;/_) is:

exp[_(m)](_;/_) "r exp[-0(m)] = exp(-m)(_;/_) T, (5)

where exp(-m) E Sp(2N,R).

Lemma [10]

If M is a symmetric and positive definite 2N x 2N matrix, then there exist

two matrices $1, $2 e Sp(2N, R) (but not unique), such that

(6)

where w = diag(wo,wl,w2,... ,w,), wi > 0 for all j, and

0)S,. (7)

Remarks:

(1) S e Sp(2N, R) if and only if STJS = J by definition.

(2) wj's are not eigenvalues of M in general. We will call them the "symplectic

eigenvalues" of matrix M.

(3) The eigenvalues of JM are :kiwi's, hence we can calculate wj's from JM

as an ordinary eigenvalue problem.

(4) If the matrix Cj corresponds to a 2-dimensional rotation on the

(xj, kj) plane, then

. (8)

Therefore $1 in (6) can be replaced by CjS, and hence is not unique.
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3 Squeezed Coherent States in Phase Space

3.1 Wigner Function

The Wigner function of an N-mode density operator/_ is defined as [11, 12]:

W(_; f¢) = r -N f-_¢o dgexp(2ik. _p(_.- g, _. + y-"), (9)

where p(_, 2) is the coordinate representation of the density operator _3.

The Wigner function is real and normalized by definition:

F ° d£dk, W(£;f¢)= 1. (10)

However, it is not always positive--definite and is thus called the quasi-probability

distribution function over the "phase space" _" = (:_; f¢).

If the density operator is an exponential of a quadratic form of position and

momentum operators, then the Wigner function is a Gaussian distribution in 27:

W(_ = CN exp[--(27-- 27c)M(27- 27c)T]. (11)

where CN = 7r-m_ is the normalization constant, 27cis a constant vector in

the 2N-dimensional phase space, and M is a symmetric, positive definite matrix

with all its symplectic eigenvalues smaller or equal to 1. (Otherwise (11) will not

correspond to a physical state.) The Gaussian Wigner function (11) corresponds

to the multimode thermal SqCS in general [2]. It contains the ordinary coherent

states (when M is a unit matrix) and the ordinary SqCS (when all the symplectic

eigenvalues of M equal to 1) as special cases.

The "Wigner ellipsoid" of (11) is defined as:

(27- 27¢)M(27- 27_)-r = 1, (12)

which is an ellipsoid in the 2N-dimensional phase space with its center at 27cand

its shape determined by M. We can take the Wigner ellipsoid as a geometric

representation of the Gaussian Wigner function.
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3.2 Characteristic Function (Chi Function)

The Chi function of a density operator #5 is defined as:

X(Z; f:) = Tr[_b(-Z;-k)], (13)

It can be shown that Chi function is the symplectic Fourier transformation of

the Wigner function:

X(_; ;) - f'__.: d_Yd_W(_;/_) exp[-i(_- k-/_-_)]. (14)

The normalization condition of the Wigner function corresponds to X(0; 0) = 1

in the Chi function. Since the operator/9(-_;-k) is unitary, X(_; k) is complex

in general.

The Chi function which corresponds to the Gaussian Wigner function ill) is

also Gaussian:
1

X(Z_ = exp[--i_JM-1jT _T + i_J _[]. (15)

Analogue to the Wigner ellipsoid, we can also define the "Chi ellipsoid" for a

Gaussian Chi function as:

(Z- Z¢)JM-'J'r(f - Z¢) T = 1. (16)

The center of Chi ellipsoid is the same as that of the Wigner ellipsoid, while the

shape of this ellipsoid is determined by the matrix JM-aJ T.

3.3 Mean Vector and Covariance Matrix

For an N-mode (mixed) state with the density operator _, the mean vector

is defined as ((_); (_)) in the 2N-dimensional phase space, where (0,) -- Tr(_i),

etc. The covariance matrix is defined as a 2N × 2N matrix of the form:

U Q) (17)QT V '

u,s _=((0,- - = - (18)

(19)
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1

Qij _((_ - (_))(_j - (_J)) + (L - 6_J))(_,- (_)))

= (2(4,_j + _j_,)) (20)

For the Gaussian Wigner function (11) or Gaussian Chi function (15), the me_,

vector is _'c, and the covariance matrix takes the form:

Therefore (15) can be re-written as:

exp[_l_.2 V _ TX(_ -Q

3.4

(21)

+ (22)

Time Evolution of Wigner and Chi Functions

Consider an N-mode Hamiltonian:

= (23)

According to thewhere K is a 2N × 2N positive definite symmetric matrix .

lemma introduced in Sec. 1, this kind of Hamiltonian can be transformed into

the following form:

where w - diag(w0,wl,... ,w,) and the ¢oi's are symplectic eigenvalues of the

matrix K. The time-evolution operator exp(-itH) is an element in Mp(2N,

R) and the time evolution of (_; 15)'is a special case of (5):

exp(it/-/) (_;/_) T exp(--ittt) = R(t)(_;/_) T, (25)

where

R(t) -- exp(tJK) - S-' /I cos(cot) w-' sin(tot)) \-wsin(wt) cos(wt) S (26)

is an element in Sp(2N,R). {R(t)]t ER} forms a one-parameter subgroup of

Sp(2N,R) describing the phase flow in the 2N-dimensional classical phase space:

(:_(t); k(t))m = R(t)(:_(0); k(0)) T. (27)
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It is well known that for the quadratic Hamiltonian (23), the time evolution
of Wigner function and Chi function follow exactly this phaseflow:

W(_'; t) - Cg exp[--(_'-- _'¢(t))R(t)-TMR(t)-'(_. - _'c(t))m], (28)

i

x(z. t)

where _'_(t) R(t)Z T.

(29)

3.5 Reduction of Multimode Squeezed Coherent States

Consider the quantum system (A)+(B) discussed in Sec. 1 whose density

operator is _AB. If we reduce this system by ignoring (B), the expectation value

of an operator (gA which corresponds to a measurement on (A) will become:

(Oa) = Tr[_AOA], (30)

where pA = Tr(B)(PAB) is a well-defined reduced density operator for (A) which

contains the "influence" of (B) on (A), Tr(m) represents the "partial trace" which

only takes trace with respect to the degrees of freedom of (B).

If the Wigner function W(£A,EB; kA,fcB) corresponds to the original density

operator _3AB, then the reduced Wigner function corresponding to pA will be [12]:

WA(£A;kA) =/_: d_,BdkBW(E.a,:_B; kA,kB). (31)

As for the Chi function, if X(_,A, :_B; fvA, ks) corresponds to fiAB, the reduced Chi

function corresponding to PA will take the form:

XA(E.A;_:A) = X(E.A,O;k.A,O), (32)

which is a restriction of the original X(_?A; _B,/_a;/_S) to a subspace in the 2N-

dimensional phase space. From the mathematical point of view, it is easier to use

the Chi function to perform the reduction. E
@

E
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Now let us use N-mode to one-mode reduction as an example. For a given

N-mode Gaussian Chi function (22), we want to make a reduction by ignoring

all the degrees of freedom which correspond to modes 1,2,... ,n and leave only

the 0-th mode. Without any calculation, we can write down the reduced Chi

function directly :

(1 o Voo i(xOkO o
X(x°,k °) = exp[-_(x 'k°) -Q00 V00 (x°'k°)T + -- koxc)], (33)

which is a one-mode Gaussian Chi function.

The geometrical interpretation of this reduction process is cutting the original

Chi ellipsoid in the 2N-dimensional phase space by a "shifted (x °, k °) plane'--the

plane which is parallel to (x °, k °) plane and passes through the center of the Chi

ellipsoid. The section on the Chi ellipsoid gives the "Chi ellipse" on the shifted

(x °, k °) plane which represents the reduced one-mode Gaussian Chi function. A

schematic graph of this geometrical reduction is shown in Fig. 1.

3.6 Infinite-Mode Squeezed Coherent States

The infinite-mode SqCS is a naive generalization of finite-mode SqCS. Com-

paring the three equivalent representations of finlte-mode SqCS's: (11), (15) and

(22), we see that (22) can be directly generalized to infinite mode without any am-

biguity or convergence problem. So we will take (22) in the infinite-dimensional

phase space as the definition of infinite-mode SqCS, all the above formulas which

involve (22) can be applied to infinite--mode case.

4 Quantum Brownian Motion

In this section we shall study quantum Brownian motion of a harmonic os-

cillator. The physical picture is a quantum harmonic oscillator immersed in a

dissipative heat bath. In classical statistical mechanics, this problem can be
.|

studied via the Langevin equation:

11I j( +/11"7 ._" +)_I_2X = O, (34)
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C_/ellipse

2N-dimensional \
Chi ellipsoid

Fig. 1. Reduction as a geometrical operation in phase space.
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where X, M and _ are the coordinate, mass and frequency of the oscillator, and

M7 is the friction constant.

The quantum analogue of the Langevin equation can be achieved by several

quantum-mechanical heat-bath models, e.g., the FKM model [3], linear cou-

pling model [4, 5], independent-oscillator model [13], etc. Actually it can be

proved that all these models are equivalent [14]. In this paper we will use the

independent--oscillator model since it is the simpl_t and most intuitive.

4.1 Independent-Oscillator Heat-Bath Model

Consider the Brownian particle to be a harmonic oscillator immersed in a dis-

sipative heat bath with inverse temperature/9. Using the independent--oscillator

heat-Sath model, the total Hamiltonian of the system is [13]:

H- 2M + Mfl_Q2 + _'[ + _miwi (Oi- (_)2], (35)
i=1

where (_ and t5 are the position and momentum operators of the Brownian par-

ticle; _i,/5i, rni and wl are the position operator, momentum operator, mass and

frequency of the i-th heat-bath oscillator, i = 1,2,3, .... This Harniltonian is a

special case of (23).

It can be proved that in order to make the Brownian particle satisfy the

quantum Langevin equation:

M Q +M7 Q +Mf_2(0 = 0, (36)

the spectral distribution of heat-bath oscillators must obey:.

n

miw?,5(w -wi) = 2M7. (37)
i=1 71"

4.2 Quantum Brown Motion in Phase Space

In the following we will study time evolution of the Brownian particle by the

reduced Chi function. The initial condition is chosen to be t5 = F3A®_3B, where _3A

is the initial density operator of the Brownian particle which corresponds to an
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arbitrary Gaussian Wigner/Chi function, and _B is the initial density operator
of heat bath which is in thermal equilibrium at the inversetemperature ft. Since

the detailed calculations can be obtained by combining the calculations in [6] and

[13], here we will only discuss the result and the geometrical interpretation.

Let the degree of freedom of the Brownian particle correspond to the 0-th

mode, and those of the heat bath correspond to other modes. The infinite-mode

Chi function for the initial condition state is (22) with the following parameters:

U0o, Vb0, Q00 and z_, which correspond to the initial conditions of the Brownian

particle, are arbitrary; _c has only two non-zero components corresponding to

z ° since the mean vectors for all heat-bath oscillators equal to zero; and other

elements in the covariance matrix are:

1 1

Uij - 2r_wi coth(_/_wi)6ij,

1 1

Vii = _rniwi coth(_flwi)6 O,

(38)

(39)

(40)U_o= Vo_= V_o= yoj = Q,o= Qoj = Q,j = o,

for all ij = 1,2,3, ....

Combining (29) and (33), we get the time-dependent reduced Chi function of

the Brownian particle (the index 0 for the canonical coordinates is suppressed):

l ( Voo(t) -Qoo(t) )X(x,k;t) = exp[-5(x,k) -Qoo(t) Voo(t) (x,k) T+i(xkc(t)-kxc(t))]. (41)

It is easy to write down the corresponding Wigner function by comparing (11)

and (15):

W(x,k;t) - Cx exp[-(x- x¢(t),k - kc(t))U(t)(x- x¢(t),k - k¢(t))T], (42)

where

M(t) = 2[Uoo(t)Voo(t)- Qg(t)] -Q00(t) v_(t) "

Unlike ordinary reduction methods [5, 6, 7], we obtained this reduced Wigner

function without using integration over the heat-bath degrees of freedom.

Comparing (41) with (42) and (43), we see that at any moment the Wigner

ellipse and the Chi ellipse are similar and their areas inversely proportional to
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each other. (Although both areas are time--dependent in general.) When time

approaches infinity, the Brownian particle will approach the equilibrium state

which is independent of its initial condition and consistent with the fluctuation-

dissipation theorem. In Fig. 2, we plot the time evolution of Wigner ellipse and

Chi ellipse of the Brownian particle in phase space.

5 Conclusion and Outlook

The method and result discussed in this paper are valid as long as: (1) The ini-

tim state of (A) is a finite-mode (not necessary one-mode) Gaussian Wigner/Chi

function. (2) The Hamiltonian of (A) is quadratic and with finite number of

degrees of freedom.

If (1) no longer holds, then we will not be able to use an ellipsoid in phase space

to represent the state. However, the phase-space picture continues to be valid

since time evolution of the Wigner/Chi function will still follow the phase flow in

classical phase space. On the contrary if (2) is not true, e.g., as in quantum tun-

neling problems, then time evolution of the Wigner/Chi function will not follow

the phase flow exactly and the phase-space picture will fail. In order to relieve

this limitation, some authors introduced the idea of "effective potential"[15, 16]

so that time evolution of the Wigner/Chi function can be still expressed in terms

of the phase flow. Integration of this modified phase-space picture with the

dissipation mechanism is an interesting question and worth pursuing further.
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SHORT PULSES
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i, _o_, 60th October-Anniversary prospect 7a, Moscow, Russia

hBSTRACT

Correlated squeezed states for- a quantum oscillator

acted by very short in time pulses modeled by special

dependence on time off frequency off oscillator in the form

off sequence of t.hree delta-kickings of flrequency are

constructed based on the method of quantum integrals of

motion. Also t.he correlat.lon coefficient and quantum

variances of operators of coordinate and momenta are

writ.t.en in explicit form.

The aim of the paper is t.o discuss the squeezing phenomenon

J,_, correlations in the system of quantum parametric oscillator

wi!.h special dependence on time of frequency off oscilllaLor. We

consider Lhe case when oscillator is acLed by very short in Lime

pulses. This dependence on t.ime we will model by _-kickings off

frequency. In this paper we will consider t.he ease off sequence of

three _A:ickinq__ off frequency. The _.a_es_-_off one and two _-kickings

of frequency were considered in [i]. Short pulses in the form of

_-kicking were discussed briefly in t.he case off two-mode squeezing

[2] and for the chain, off quantum oscil',a_ors' [3].

Let. u_ consider t.he quantum paramet.ric oscillator which is

at:ted by very short in tlme pulses. We are modeling this action by

the special dependence on Lime of frequency off oscitlaLor. We will

use t.he model off 8-[.ic.}. ings of ¢r equency.

Let. the first kicL be at. initial moment off time t =0, the
1

second one in the moment ta=T. and the third one at. t3=_T.
The HamilLonian of the system is of t.he form

: p2/2m + m 2Ct.3q2.,"2 CI)
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',,'here q is coordinate operator p is momentum operator, m is the

mass and _t) is time-dependent Frequency. We choose the f,o] lowing

dependence on time of" osci 1 lator Frequency
3

/112C t.)_-2Z_( t-t n') " (2)

h=l

_. corro._ onding to Hamiltonian Ct) are of"The _quations of" motion .._p

t he form

d_ + coos- 2_Ct.) - 2_SCL-T) - 2_Ct-2_))q :0 C3?
" 0

Toll,awing the usual scheme [4] one can construct integral of

motic, n for the Hamilt.onian (1)

ACt] = - .. /m) a_
2. hm ) 1/_. r I,_o°

where function _ is the solution of' equation of` motion C3). If"

f'un<.tion _ satisfy additional condition
i:

the integral of" mot.ion (4) and its hermttian conjugate sat.isf`y

br.,son c:ommutation relations. The ground state of" the system can be

f'c,tmd from the condi t ion

= 0
and has the form

O°(q't? = lfaexp" _ Cb,'mco)
, imeoj -

The coherent, states of" the^system can be found as ei ger_f"unctions

of the integral of" motion ACt)

ACt) _aCq,t,) : _/JaCq,t.),

wl-,er-e a i _- complex number and has the f`orm

{ ,al' 3 /- aq a2."}VjaCq, t) :¢o( q, t)exp + -- , C.f.i)
2 c._Jm_ 2_

O'

_ 'O,dh ,-_o 1,3 VI_ _ , . coherent..;t.atec-., are "- "-'-Or,_ can _,ee that. ground and - '

_ __. _ qu.-_dr-at i ,"wavepacket.s wi th t.i me--d_pendent c:oeflflic,._,,t.- i n .. f,..'.,rrr,

under exponent, i a I _".... 'J u; I(_'L, J Orl,

In order ' :,_,, ',Tit.e integral of mot.ion in expl]c:it f,z>rm one h.:,;

to solve equations C,:.q) for the flunc:tior_ _ in the case of" sequer_c.e

4OO
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of three 8-kicks of frequencies (2). For the function e(t) one can

write following solutions

¢ EL) = A e_% t + Be-_% t t<O
o

eiCt) = A°eX°o t + BOe-X_ t O<t<t1 1 " 2"

e2Ct) A e_eo t + B e-_eo t

ea(t) ASe o + lJ3e o , t>t 3.

(7)

So, one has four regions of changing the function c(t). At three

points of time t 1, t. a. t 3 we have following conditions for

fiunctions e_

._((t._) = _.__l(t._),

e_(t._) - e__l(t () = 2_ e__l(t_).

From this conditions one can find the conditions for coefficients

A_ and B_. Taking in the initial moment of' time the wave with Ao=l

and Bo=0 one has the solutions for e-function after 6-kickings

c s e_% t , t<0. (83
o

_1[t) = Cl-im/e o] e_ t + _/_e-t_ t 0<t<x (g)

K 2

e__(t9 = [<1-_/_o)_+ oT e-__%t]e_i% t +
o

+ (_a./%)(1-t_./%)e__%Z]e-_% t ,

ca(t) = [(1-im/_)(Z _-- l)e-_ z

( i09

tK

+ 6- (1 + xa)e3_%T e-_°o t t.>2x
o

2K

where Z:2cos%x + 6- sin%z.
o
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If, bef,or-e8-kickings the system was in coherent states then

af,ter the sequence of, _-kickings of, f,requency the oscillator will

be in correlated squeezed state determined by f,ormutae (6) with

function _ given by f,ormutae (11). In order to have explicit

expression f,or these states in another periods of time one has to

put in formulae (6) the explicit expression for _ f,unction in this

period of, Lime given by f,ormu]ae (7).

The disperssion of, coordinate after sequence of, 6-klckings
wii! be equal Lo

^ ^ h 4_ s

e. =<_alq2 I_a>-<_alql__ a>2: _met[ 1 + e2--(z_-l)_stn2e:(t-2_) +
2 22_o o

o o

The correlation between coordinate and momenta in this stale ;s

not equal to zero and is of the form

1. ., .... ,, h rr

t ---- ill "__-- 2 <OelqP+Pql&"-"&lql&><OelPl&> 2

+- -
o o

So one has statistical dependence of" operators of" coordtnat.e an,:l

momentum af`ter set i es oi" 8-k i ck i rigs and i n some e__,rt o,4t ,,," _._me

the di.--..[;,_,r-ssio[_ of coold.;L_t.e is less tt_en before 6-kickings. So

we have two phenomena due to seria of short tn time pulses acted
_, < * ! ica]on oscillator: squeezing r_,henomenon and phenomenon of" _,ta_ .__,t

dependence oF operators oF coor-dinates and momenta.
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FLOQUET OPERATOR AS INTEGRAL OF MOTION

V. I. Man'ko

Lebedev Institute of Physics, Moscow, Russia

Nonstationary quantum systems have no energy levels. However, for time-dependent periodical

quantum systems, the notion of quasi-energy levels has been introduced in Ref. [1, 2]. The main

point of the quasi--energy concept is to relate quasienergies to eigenvalues of the Floquet operator

or monodromy operators which is equal to the evolution operator of a quantum system taken at

the moment coinciding with the period of the system. The purpose of this article is to relate the

Floquet operator to integrals of the motion and to introduce new operator which is the integral

of motion and has the same quasienergy spectrum that the Floquet operator has. Implicitly, the

result of the article was contained in Ref. [3], but we wish to have an explicit formula for this new

integral of motion.

If one has the system with Hermitian Hamiltonian H(t) such that H(t+T) = H(t), the unitary

evolution operator U(t) is defined as

I@,t) -- U(t)lq , O), (1)

where [_, 0) is the state vector of the system at the initial time. Then, by definition, the operator

U(T) is the Floquet operator and its eigenvalues have the form

f = exp(-ieT), (2)

with h = 1, where e is called the quasienergy state vector. The spectrum of quasienergy may

be discrete or continuous for different quantum systems [3]. We wish to answer the following

question. Is the quasienergy a conserved observable or not? This question is relhted to another

question. Is the Floquet operator F(T) an integral of motion or not? The answer to the second

question is negative. The operator U(T) does not satisfy the relation

OI(t)
0--"_ + i[H(t),I(t)] = 0, (3)

which defines the integral of motion I(t). Thus, the Floquet operator U(T) is not the integral of

motion for the periodical nonstationary quantum systems. But as it was found in Ref. [3], the

operator of the form

I(t) = U(t)I(O)U-'(t) (4)

satisfies equation (3) and this operator is the integral of motion of the quantum system. Thus,

for periodical quantum systems, let us introduce the unitary operator M(t) which has the form

M(t) = U(t)U(T)U-I(t). (5)

This operator is the integral of motion due to the construction given by the formula (4) for any

integral of motion. The spectrum of the new invariant operator M(t) coincides with the spectrum
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of the Floquet operator U(T). We have therefore answered the question about quasienergies.

Since these numbers are defined as eigenvalues of the integral of motion M(t), they are conserved

quantities. Thus we generalize the concept of quasienergies connecting these quantum observables

with the integral of motion of periodical quantum systems.

The construction given above allows us to introduce new invariant labels for nonperiodical

systems, for example, with the time-dependence of the Hamiltonian corresponding to quasicrystal

structure in time. For such systems, the analogue of the invariant Floquet operator (5) will be

the operator
M,(t) = U(t)U(tl)U(t2)U-X(t). (6)

This integral of motion is connected with the two characteristic times of the quasicrystal structure

tx and tz. For poly-dimensional structure, we can introduce the integral of motion

'=° ]M=¢,/=v(,/[Hv(,,/ u-'(,/, (7)

where ix, t2, ..t,, are the characteristic times of the system. The eigenvalues of the operators Mx(t)

and Ms(t) are conserved quantities, and they characterize the nonperiodical quantum systems

with quasicrystal structure in time in the same manner as quasienergy describes the states of

periodical quantum systems.
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COHERENT STATES AND UNCERTAINTY RELATIONS

FOR THE DAMPED HARMONIC OSCILLATOR

WITH TIME-DEPENDENT FREQUENCY
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Abstract

Starting with evaluations of propagator and wave function for the damped harmonic osci]-

]ator with time-dependent frequency, exact coherent states are constructed. These coherent

states satisfy the properties which coherent states should generally have.

Since Schr6dinger[1] constructed the coherent states for the harmonic oscillator, they have been

widely used to describe many fields of physics[2,3,4]. Glauber[5] has used coherent states to dis-

cuss photon statistics of the radiation field, and Nieto and Simmons[6] have constructed coherent

states for particles in various potentials. Hartley and Ray[7] have obtained exact coherent states

for a time-dependent harmonic oscillator on the basis of Lewis and Riesenfeld[8]. Recently Yeon,

Um and George obtained exact coherent states for a damped harmonic oscillator with constant

frequency[9] and also the propagator, wave function, energy expectation values, uncertainty rela-

tions and coherent states for a quantum forced time-dependent harmonic oscillator[10].

In this paper we evaluate the wave function and uncertainty relations and construct exact

coherent states for the damped harmonic oscillator with time-dependent frequency described by

the modified Caldirola-Kanai Hamitonian through the path integral method,

_ /(t)'7, _,- _,ylm_ 2 -- _

H = f(t)[e "v, + e T(w + 4f(t) _)z j, (1)
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where f(t) is dimensionless time-dependent function and has the value f(t) It=o= 1.

Very recently, we have obtained the propagators and wave functions for the damped driven
harmonic oscillator with an external driving force F(t)[11], driven coupled haa'monic oscillator[12],

quantum oscillator chains[13] and a mode of the electromagnetic field in a resonator with time-

dependent characteristics of the internal medium[14] by the path integral method. Through similar
calculations in the above papers we may evaluate the propagator for the Haxniltonian of Eq.(1) :

[ rn_e_(t+e) t'2 _irn_. . t t 3' ]e_tz2
K(z,t;z',t') = t2xihsin(wgf(t) dt) ] t exp{'_'-lcot(_Je f(t) dr) 2wf(t)

2e]O+e)xx' _i 7 lo._e _,a'tsin(wry, f(t) dr) + [cot(._ f(t) dr) + - ",- * 1" (2)- _f(t),

The solution of the Schr&linger equation is given as the path-dependent integral equation with

propagator K, •

_,(z, t) = f g(x, t; z', 0)_(x', 0) dx', (3)

which gives the wave function q_(x, t) at time t in terms of the wave function _(x', 0) at time t = 0.

At t = 0 the Hamiltonian [Eq.(1)] reduces to the Hamiltonian of a simple harmonic oscillator, and

the corresponding wave function becomes

_(_',o)=(-- j ..._., _)e ,- . (4)
2'_ntv/_ V h

Substitution of Eqs.(2) and (4) into Ecl.(3 ) yields the wave function

_ "'"e'at)'/'---_- exp{-i(n _:+ 1/2)cot[w]Wocot(w f(t) dr) + _]}O(x,t) (

x' eA':'H.(Dz), (5)

where

_2 3'4 fot "_ sin(2_ f0 t_ 1C_w02 sin2(w f(t) at) + _ f(t) dt) + 1 ,
(6)

_.,o e"' ._,, e" "' 2 ]
A = 2h _, + ,-_--=-.{_'[cot(,,,t. ,ol f(t) at)- 2wf(t)

- [cot(_0_0'f(t) at)+ _l),

Dfv h _ ' ReAffi 2 ' -4"

To evaluate the uncertainty values, we calculate the quantities

/2< z >_. = _._(x, t)x_.(x, t) dx

nv_'_"_ e,.(t) 5 ______e-too6 .
= _ ""+' + v_D "'"-'

= p6._,_+t +/_'$m,n-s ,

(7)

(8)

(9)
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<mlpln>

= 176.,,,+1 + r/'6.,,,__ ,

< m Iz 2 In >-- ¢(n -4-2)(n -4- 1)/_' 6,_,,,+, -I- (2n -4- 1)O/J'$.,. + Cn(n- 1)/_" 2$.,,._2 ,

< rnIp'l- >-- v/(n+ 2)(n+ 1)rt2&.,,,+,+ (2n + 1)nrf&.,,,+ .Jn(n - 1)rf'&.,,,_,,

i10)

(11)

02)

where

X

< m I _(_p + p_) I - > = _/(. + 2)(. + x)u, 6..,.+_+ _L_-(2. +

+ _/-(-- 1)u',f6,.,._,,

/o'0(t) = _ot-'[ _ot(., f(t) at) + _1,

e'"" ¢2-_u(t) = _ = _-_"_'°('),

(13)

(14)

(15)

,1(0 = -ih-_ei¢(O

- i _exp[_,t{1-i_[_'(eotiWfo'fit ) dr) "t2,,,7(t))

t 7- (cot(oa fi t) dr) "1-_)]}]

(16)

O'(t) _- _00{'2[coti_a Z'fit)dr) 2_(ti]3¢ - [cot(_ a_otf(t)dr)+3'_] } , i17)

_(t) = ¢1 + _,(t). (is)
With the help of Eqs.(9)-(12), the uncertainty relations in the various states can be obtained am

[(,,xx),(,.,p),]'?,,.= [(<_, > _ < _>,)(< p, > _ < p >,)1,/+;,.
- ¢(n + 2)(n + 1) lu II '7 I

= _/(. + 2)(. + 1)_(t), (19)

(20)
A 2 a 1/2 h

[(_) (Ap) ].+1,.= _(n + 1)t_(t),
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L

2 2 1/2 ._ (21)[(_z) (z_p)L._ ffi (2n + 1)/_(0 •

Changing in + 1) to n and (n + 2) to n in Eqs. (20) and (21), respectively, we can easily obtain

the uncertainty in the in - 1, n) state and in - 2, n) state.
Now we return to the coherent states. Before we construct the annihilation operator a and

creation operator ai, we will briefly discuss the properties of the coherent states. These states

can be defined by the eigenstates of the nonhermitian operator a,

a I a >= a [a >. (22)

Using the completeness relation for the number representations, we exp4md I a > as

In> = e -Ol2)laP]_ an

---- e-O/2)laPe a*_ [0 > , (23)

where I 0 > is the vacuum or ground state and is independent of n. The calculation of < _ I a >

in Eq. (23) gives
< _1 a >= e-½{lol'+l_P)+oO" (24)

Here, Eq. (24) has nonzero va]ues for a _/_, and thus the states axe not orthogonal, but when

I a -/3 12---*/_ the states become orthogonal.
Since the eigenvalues a of the coherent states axe complex numbers u + iv, the completeness

relation of the coherent states is written as

f d2a (25)la><al ,_

where 1 is the identity operator and d2a is given by d(Re u)d(Im v).

From Eqs. (9),(10),(15) and (16), we have the relation

_" - ,7"_,= ih. (26)

We can define the annihilation operator a mad creation operator at for the damped harmonic

oscillator with time dependent frequency as

1
a = T_C_=-.p)

1 .
at = _(. p- _'_), (27)

where the expressions of = and p by a and at are

x -- /J'a+pa t ,

p - _}°a+rla. (28)
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Since r; is not equal to p in F.,qs. (15) and (16), we can easily confirm that a mad at are not

Herrnitian operators, but the following relations aze preserved :

[z, p] = iti ,

[a,a t ] = 1. (29)

Here, the operators a and a t are different from a_ and ao, i.e., creation and annihilation operators
of the harmonic oscillator, and can be expressed as

a ffi Aao+ua_,

at = _'ao + A'aot . (30)

Therefore,the coherentstatesof the damped harmonic oscillatorwith time-dependent frequency

axe the squeezed statesof the simple harmonic oscillator.

We can evaluate the transformationfunction < z ] a > from the coherent statesto the

coordinaterepresentationIz >. From Eqs. (22)and (27)we have

h8

[T/z - #-_--_z ] < z l a >- iha < z l a > • (31)

Solving this equation, we obtain the coordinate representation

< z l a >-- N exp[laz - (2ih/_)-lr/z _] (32)o

Here, N is the integal constant constant. Choosing N to satisfy Eq. (25), we find the eigenvectors

of the operator a given in the coordinate representation I z > as

I exP[2sl__._z, a I is l#'a, ]< z 1o >- (2_r##,)x/4 + -=_- _ I o -27 ' (33)

where

(2_._*)-1/' = ,--if-,
iT/ null -vt"

2_--"_ = _ (,• t1 -/_,(t)],

/_'p : e-2io(O,

(34)

Next, we prove that a coherent state represents a minimum uncertainty state. With the help

of the relation between a, a t, z and p, we evaluate the expectation values of z, p, z 2 and p2 in state
l a > as follows:

<z> = <t_lF'a+Fatla>fF'o+Fa° ,

<p> = <olr/'a+r/atjo>=r/'a+r/o" ,

<z 2> : #'202+##*(l+2aa')+#2a'2,

< p2 > : 17"202 + r/r/'(1 + 2oa') + rl2a" _

(35)
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I
_t

FIG. I. (Az) 2 for the (0,0) state as a function of _t at wrious values of _,/_ with _/_ = I.

From above expressions,we get

(Az) 2 = _u/J"-- 2-'-_=e -_' , (36)

(Ap) = = r/r/'= rn_°h_-2e'aB2(t), (37)

and thus we finally obtain the uncertainty relation

(Ax)(Ap)=1.,,IIv I= (38)

Equation (37)isthe minimum uncertaintycorrespondingto Eq. (13)in the (0,0)state.

Taking 7 - 0 and f(t)= l,allthe formulaswe have derivedarereduced tothose ofthe simple

harmonic oscillator.The propagator [Eq.(2)]and the wave function[Eq. (5)]do not have similar

forms to those of Cheng[15] and others[16],but are of new form. We should point out that the

same classicalequation of motion can be obtained from many differentaction,and thus one may

have many differentpropagatorscorrespodingto the actions.

FiguresI,2 and 3 illustratethe behaviorsof (Ax) 2,(Ap)2 and Ap-Az as a functionof_t at

various values of 7/_ and _/_ for F(t) -'- eO at "y_ 0. When oscillation starts, (Ax) 2 and (Ap) 2

have the period 11, but their periods decrease rapidly with increasing time, and the amplitude of

(Az) _ decreases exponentially, while that of (Ap) 2 increases exponentially. The uncertainty for

the (0.0) state with period I'[ is reduced to that of the harmonic oscillator of 0 ° and 180 °.
From all of the above results, we conclude that the coherent states for the damped harmonic
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1 2 3 4

_t

FIG. 2. (Ap)2 for the (0,0) st&te & s & function of _t &t v'_rious vLlues of "t/_ with _/_ = I.

1.e

1 2 3

wt

FIG. 3. Ap. Az for the (0,0) state versus wt at various values of _/_) with w/( - 5.
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oscillator with the time-dependent frequency described by the modified Caldirola-Kanai Hamilto-

nian which we have constructed satisfy the renowned properties of coherent states.
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Abstract.

The behavior of the electromagnetic field in an ideal

caoity with oscillating boundary is considered in the

resc-_nce long-time limit. The rates of photons creation

_ vacuum and thermal states are evaluated. The squeezing

coef*icients for the field modes are found, as well as the

_ackward reaction of the field on the vibrating wall.

1. Field Quantization in a Cavity of Variable Length

Here we give the results of our recent investigations relating

to the behavior of the quantized modes of the electromagnetic field

inside a resonator with oscillationg walls. We consider the electro-

magnetic field in an empty resonator formed by two ideal conducting

plain boundaries _ =0 and x =L(tb, and restrict ourselves to the

linearly polarized modes with the electric vector parallel to the

boundaries. Then the field can be described b_ means o_ the single

scalar equation for the corresponding com_o_e_ o_ the vezt_ poten-

tial with the nonstationary boundary conditions El] _we assume c = i_

- = 0 0 < x < '"'_" (O,t) = (L('LD....... _ _ _ t) = 0 _1)_t _xx ' ' "

The c_:amtizatzon _rocedure in this case was propose_ by Moore [12.

_A_other approach including the case of a maEsive boson scalar field

_a_ investigated in re$.[2].) The starting point of Moore's method is

the following choice of the fundamental sol_tions of eq. (I),

_."_ , xp _.nr_..(t-x) - exp -_'_(t+×) , (_)
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,_-_r_ction R(_) being a solution of the functional equation

R[t+L(c) 1 - R.[_-L(t,] = 2

In the stationary case LC'LD = L 0 the solut±on of eq. (3) :s

F:_°'(_.) = _/Lc). Thus mode functions are usual standing waves

o_.. sin (rtroc;'Lc))e:_<p(- £ _F_ t --'L0 )-

(3)

trivl al :

(4)

A_ ap._ro::<imate solution of <3) for a slowly moving wall was found in

[I__. BL'.t in the most interesting case of the parametric resonance

= Lo[ I ÷ = - 1,2..., I, i<<i (5)

tha_ solution appears val'_d only for not very' large values of time

sat_sfyzng the' restriction _.ct L << I. The correct asymptotic e:_.'.pres-
0

sion for the function p(t) = R(L) - t in the long'time limit z_t >._ I

.... = c = 1, _.=exp[(-l)q+1._q_{]):was _ained in refs. [3-5] (L°

pC___ =- C2/nq__-Im(In[l + _ + e>'p(_qL)(l-f.)]}, (6)
d.

Cot the motionless walls the field operator 40 in the Heisenberg

_;icture c_n be developed over the set of functions _ cx :

If the right wall oscillates only during the time interval 0 _ _ _" T,

then for _ > T the field operator Can be written in two forms,

(8)

coin-
where _n(;_,{) is the solution of the nonstationary problem (!)

tiding with W_ °' at _ < O. It seems reasonable to assume that measur-

ing devices react to s_ec_dv-s_a_e _t_'_n_ _ues (4) which are wave

functions o_ p_s _c_[ quantum states possessing definite energy

va!L:es. Then _ust the set of operators (,_,_) has the physical sense

at _" > T. Since all quantum properties of the field were defined with

_e_pe't to the state determined by the set of operator=_ (_÷) (which

were "physical" operators for t -:."0 ), we have to e:_.pand the "new"

operators ( ,n +) over the "old" ones (b,b),

= + _r_f . (9)

To cal.-c_late the Bogo!iubov coefficients c_ and /gn_ one should take

into acco-_nt that both svstems of mode functions (2) and (4) tonsil-

!

!

416

? IXGrr.._5



---_t=_::_-._ete orthonormal sets with respect tc the scalar product [I]

L(LD

0

T_r_; the _.ollowing re'ations can be obtained [3-5],

"._' _ ['/)'L'")'_" i/2 -- [ ?[ ' i ,

' _'u)_ L .--"Lo - i

---_- .__-__i=ed calculations of these iF,tegrals were performed in [3-5].

-_:e _:-_:I= resul ÷. for q = 21" is as follows (6:1#_/_m_,

sin[n:2zY_-+'_/2_"] sin[n(r'-+"Li_] [Ln(T__+,_)(I-I/2_.,] ,12_= e>cp _ • ,

IF. the malt. reso,_,a_ce case o_ :"=I the follov_ing e:_:pres_i_-r _? t_e

.:odL_li squared cf the Bogoliubov c_efficients can be obtained,

r_ 12}

2. Rates of Photons Generation

The t_tal number of photons created in the ,n-th mode from the

vacuum state to the time instant _ equals

"+" 2

n

. ._ ,=,] weOmitting the detailes of calculations g_ven in [_-_ present the

f;nal result ,_'.= 1)

Pn_ '_" (_un_)-_[ In(_/261 - (-l_.in(I/2n6)]. (!5)

S;r_e i,_ the case under study _(_)=e>..p(-na',.)/n, we get the ,_c_llc,w:ng

rste _f photons generation i_ the ,,_-th moQe when the wall v'_brate= at

t_e t_;ce f-equency of the first resonator elgenmode for _.-.:>!:

dF' Id_ = (,'/n,_)[ I - (-!)"" ]. (!a

This result is valid in fact o_!y for not ve.v arge nL._De_s .T_. Sin-e

--, _eal situations we shoul w_ _ ._,_i_ time t by the reson_=.tzr _-_,a>_at_:,n

t:,_e T (due to t,_e dissipat_'--,_ irside walls), the maximum number _

photon_= generated in the ,r_-th mode equals approximately
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,--e_e _.,f.:_:is the quality _actor of the resonator's m-th mo_e.

_u_ _.s 15)-(17) essentially differ from the results of

_e _=_.'6, __, where the problem of photons creation in a resonator with

----=_ill_ing_ ideal mirror was also con=idered. However the authors of

t_,_t papers did not take into account the deep reconstruction of *_=_.__

_:e_ modes inside the resonator in the long-time limit. Therefore

the r_ o_-__ photons generation obtained in [6] and [7] was proportlo-

_I in e_==nce to (z_,)2-.= . , whereas our _ormula$ show that this rate i_

_'-r_r_io_al to the _irst p_wer o _ the product t_ - The quadratic law
2 q

P _ "z_o L) is valid only in the short-time approximation under t_=

cond t_c_ P << I, as was shown in [8].
q

Is th_ initial density matri>_ of the _ie!d corresoonds to the

_'lanzk dist-ibuticn with _inite temperature_ then t_e ave_mge number

c _ __i_ional'-__ "thermal" quanta created in the ,_-th mode e_ueis [4]

go i.e_:p¢3/®> + iI (liB>= 2(n",,_)-"[ I - (-1)m" ] _ in ..... + CK'26/m._,

]'=I e:,.'.p(I/_)

where ® =_TLo/_hc , _ is Boltzmann's constant, T - temperature.

The -'_-al number o_ "thermal" photons does not depend on time.

Moreover_ "_ the even modes it is almost zero up to the terms of the

order of 2C%'m. In the low temperature limit ® << 1 and _or _?I r4]

: 4(n_m.)-i[ 1 - (_,)m. ] -I/® ... F L,,',c_Pt)'_ . "e "" • _"o '

_--,the high temperature limit one gets £4]

"= "__..-resor.at_r has a _in_te,. _uality _actor. Q£':_._ in the m-th mode,

_=.-;_-- t_=_ temperatu'-e co.'rections can be neglected provided

zO ;:, I. (2!'
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3. Squeezing Coefficients

b-'c_ let us consider variances of canonical coordirates and

m_,_e-t-_ __perators (quadrature components)

^ L" L 3x;r_......= ;r_ + %*" "_' P._ = _ C..¢: ,r- "

_ th_ ".-_tial quantum state of the field was vacuum or coherent one,

t-e - tn-:_: f-z, llowing _eneral formulas are valid [83,

_:_._t_e _=_ase of g=2 _Je have [4,.,

' -'{ -(_n_).s;(rur,)[},¢ ;t_) : i - (n=trL) 1 - (--l)'r=
rh rh

Cwhe-_ ,i (x) means the integral sine function:

si (x) = Sdtsin(_)/t-

)i_--_==__=that the variance ,'s always _e_ than _ts 'value i- t_=

(26)

uec , _ the squeezed_tate e =../"..-.Thzs means that the field o-_curs ,n

= 1- 2_ assumes the
__._._.e. The r_=lative squeezing coefficient Kn_ .x x

.F

ma>cimum :alum Ki=O._2 for _ = 1. For large _ :::, 1 this coef icient

slowly decreases according to the asymptotic formula

K _ 21(_) • (28)

The aanonical momentum variance increases in time accomding to

the same law as the number of created quanta (15). The general depen-

dence=_ a:f variances on time are rather intricate. As was shown in

[El, in the s.ho_t time limit z{ << 1 there is a small squeezing in the

--,_:,-_¢_.-_,_-,_,mJtmen_um ud_z_nce: _ _ *-(1-n_> (for ,_ = !). Meanwhz!e in
p.c, =

_h=_ !a_g ime limit the situatior, is quite opposite there 's some

squeez_r,g o "_ the camonical coordinate, and unlimitedly growing ir

time ,-a-ia_ze of the car, onica! momentum, AS to the cevar_ance of the

cc,_d:nate an_ momentum (25), it turns out to t e _=q_al to zero up to

the ter_s c _ the order of (_)-i. This mea_s that the field occurs i_

-czeszed b:_t unco_related state. Ncretheless, this state is rot a
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-i-i-_,m u_nce_tainty state, since c, o x..

e_z.lalned t,y a strong interm, ode interaction.

l when _,... • This is

4. Back Reaction on the Oscillating Wall from the Field

Zt is well known that vacuum fluctuations of electromagnetic

_ie!c _e.-.c,.Itin an attractive Casimir's force bet_een unc_a_ged

zond_,cti_Z plates [._-!1]. The general e::-,'pression for the ft.,roe pre=_s-

:ncj t.___ -,-,._:n:3_a'l ( more precisely the T -component of the energy-xl

.........= .__-sor of the field ) was calculated in E10,12]:

F = - [ c_[t-L('_bb + _(t+Lc'_bb I. (29)

_ere fLin:tion _('_V} is expressed through R-function introduced accor-

ding t_ eqs. (_. and (3) as follows ', in dimensionless units; remind

that we consider the case of "one-dimensional" electrodynamics ),

2

__C'.V}.: _ R'C.VD 2 R'C'_D ÷ _ [R'C'_D] 2 • (30)

In the za_e of motionless wall (29) and (30) lead to the know_

expression for Casimir's force in one dimension

F (°_ = -nk,a/24L _ (_ 1 ',
o

_he corrections to (31) in the limit of small velocities _f the wall

(with respect to the velocity of light) were :alculate_ ir [IT,]. The

additional force appears attractive and prop_-tional to the square of

wall "s velocity. Here we calculate the same force using the long-time

asymptoti:s of R-function (6). Since [d_/dtl _ [$f. I << _ , we can

differentiate R-function with respect to time believing parameter _"

to be ce-_=_tant. Then the first three derivatives are as _ollows,

Since the force exhibits rapid oscillations, it seems

average all time dependent functions contained in

period of oscillations T = 2-'q. All integrals can

e?_<actly with the aid o÷ formula ([14], eq.2.5.16(22))

(32)

(33)

(34_

(35)

reasonable t_

(35) over the

be calculated



."O S . rL"

¢"

d .'_. =

(.-,"- 0)'""

_.. ,_ ..2 /. .... -i

•.,._:_: > -= ;_ c'_*'_ _._.
(7_7)

",'F...... .-F:'" ' = -:. cnq_.. _.,, *_-_-,:-_"
2

•"C'P" F.' . .,' = "-- -. -'.- ', - '
i

._ _=__-*--,- these e;:;:pre=-sions into (29) and (30) we get fina'!y

f7 2

j ? = ' +_'S fOrmL_la coincides with _I). Note that this is not the

. _ (the minimal resor, ance ,value is g = 2), so that pho-_-=::-_.-_= --_ e

t,_--,=-, a-s -..or created inside the resonator, and the f_rce com,=erves

it-_- ".'_c:J,_mvaI_te. Fc,r g > 2 we have not attraction_ but an e::<ponen-

:" "_iv rcreas.ng pressure on the oscillating _all due to the c_=a

ti:n o _ _eal phc,tons in the cavity. By the way, formula (39) sh_s

ci =_ _+I that for t _ _ the physical results do not depen_J o_ the. .__ ._,__ _

o q L._i_,-- c _ _he parameter _ characteri_i_g the dimer_si:nless amp.;tLtde

_a!l'=_ .ibra:ions_ =4nee <F> is proportional to e::::p(l_in4_t'-

5. Discussion.

Let L_,s,summarize the main results. We have presented a ne_ solu-

tion for m,o_e functions of the electromagnetic field i. _.i:e ar ideal

cavity _ith ___ci'lating wall in the ._o_g-tiTe -esoran:e .'i,mit. .'_.

appears t_,at ths _:e!d modes structure is slgni'i_antly changed in

tFi_ "i,Tit in com:_arison with the case e* mction!ess bourd_ies • :t

i_= see- _"_stincti? if one compares, e.g., the time deri,vati_:es of

• . ._0_=jr- is-- (t) and _(?.') given by (6): ir the motlo_less case one

gets L_-__/ :in dimensionless Ltnl+=_ w_ereas in the Ic.r,g-time r--:-

-_e-:e :'_it the :orresponding value appears much less than ur_ity for

_ __-__ . i_stants o _ time ex:epting those when cos(nq_ is very

_I__,_se _: -'.. (see eq. (32)). _'hysical'y this c,_a_ge of the field ,_o_es

structL:-e manifests itself in the transition from the qua_ratlc !a_

:.f :,heron =_ generation in the short-time _ppro×imation to the l-_ear

law _i_,the long-t" me asymptot_cs. We have established also the ._:__i-==
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5"l:ty of oDta:_in_ some _ueezing _although rather moderate) _n t_e

_esona_e modes.
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