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Abstract

It is shown how a disturbance-type uncertainty principle can be derived from an un-

certainty principle for joint measurements. To achieve this, we first clarify the meaning of
"inaccuracy" and "disturbance" in quantum mechanical measurements. The case of pho-

ton number and phase is treated as an example, and applied to a quantum non-demolition
measurement using the optical Kerr effect.

1 Introduction

One of the most appealing aspects of quantum optics is that within its domain of application

experiments can be realized that used to be confined to the domain of Gedanken experiments.

The proposed [1] quantum non-demolition (QND) schemes for photon number measurement are

such fundamental measurements. In fig. 1 we have sketched a simple setup [1, 2]. A signal beam S
is mixed with a probe beam P in a non-linear Kerr medium. The refraction index of this medium

is intensity dependent. Accordingly, the probe's phase will depend on the number of photons in

the signal beam. By coupling the outgoing probe beam with a reference beam,, the probe phase

can be detected and thus the signal photon number can be deduced. However, this is not the

only consequence of the interaction between signal and probe beams. Also the S-phase will be
influenced.
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FIG. 1 Basic QND scheme, using the Kerr effect.
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The experiment can be seen as an analog of Heisenberg's 3' microscope experiment [3]. Ther,

a particle's position is measured in a non-destructive way. In the 3,-microscope, it is argued
momentum is disturbed by an amount Dp as a result of measuring position, satisfying (h = 1)

6qDp > 1, (1

6q representing the microscope's resolution, i.e., its inaccuracy in determining position. Anal-

ogously, in the Kerr device, where photon number N is measured, the probe effect on signa_

phase can be expected to take the form of a disturbance, in size reciprocally related to the N-

measurement inaccuracy. In order to avoid certain ambiguities (cf. [4]) we shall give a formal
definition of this disturbance notion. In particular we show how relations like (1) can be derived

in a precise way from uncertainty relations for the inaccuracy, achievable in joint measurements

of incompatible observables. Such relations have become available relatively recently [1, 6, 7].

2 Inaccuracy

We represent measurements by positive operator.valued measures (POVM's) [5, 8], a notion gener-
alizing yon Neumann's projection-valued measures (PVM's). For a discrete set of outcomes K, a
POVM 54 = {-h_/k,k E K} generates the probability of outcome k by Tr_IVlk, when the object is in

state _. Hence 54 must satisfy _keK 2f/'k = i, 2f/k > 0. A second POVM, O = {0j}, is then said to

represent a non-ideal measurement [7] of 54 if there is a stochastic matrix Ark(_z Aak = 1; Aa E 0)

such that

d, = (2)
k

We use the shorthand 54 _ O for this relation. The O-distribution is a smeared version of

the .M-distribution.'Finally we need to characterize the amount of inaccuracy by a real number.

Clearly, if Azk=/irk, the Kronecker-delta, O is equal to 54: then a measurement of O is a perfect

measurement of 54. Thus we need to quantify how much A_kdeviates from _ftk. Consider again the

QND scheme of rigA. Given that the incoming probe beam is described by a coherent state 18 >

and the signal beam by _, it can be shown that the outcome probabilities P(q) of the outgoing

probe phase measurement are given by [2, 9]

P(q) = _,.s P(qlns) < nslblns >,

P(qlns) _-exp [-½ (i__)'] (3)= ,= = 181, = sin (x,ns),

where we have taken the initial beam splitter's transmittivity "r = ½. The constant X, depends

on the non-linearity coefficient of the medium. Defining the POVM O by the requirement P(q) =

TriO(q), (2) is satisfied if {Mk} represents the photon number observable. The measurement

inaccuracy is characterized by the width of P(q[ns), and can be interpreted as being due to excess
noise inherent in the measurement. For low photon numbers the response is approximately linear:

I_ _, [_12X,ns • Hence this measurement can be characterized by parameters quantifying noise (u)

and gain (cgt_/Ons). A suitable inaccuracy measure is the ratio of these two:

cr 1

i_Ns - O_/Ons -- ]fl'-_" (4)
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In deriving(3)we ignoredself-phase-modulation(SPM) [I].Itcan be shown that,beyond

certainprobe photon number, SPM has a stronglyadverseeffecton the measurement quality[2]

Refiningthe setup,however,can compensate forSPM to a largeextent[I,9].

3 Joint Measurements and the Uncertainty Principle

For finite-dimensional Hilbert spaces a general proof has been given that joint non-ideal measure-

ments of incompatible observables are possible, but that their quality is limited by an uncertainty

relation [7]. In the present paper we will focus on the phase-number observable pair. In this

infinite dimensional case no completely general result is known, but the special results obtained

are nevertheless quite convincing. Consider the (non-Hermitean) phase observable,

= In>< n + li, (5)
fl

given by Ldvy-Leblond, In > denoting the number states[10]. Not only is it incompatible with ri,

but the pair forms _ perfect analog of the position-momentum pair, cf.

eim_e mN= e'aNe,m_e 'm_, rn E 2_, a E J[_. (6)

Next consider a second (ancillary) system, being in state _', and having similar observables ¢'

and ri' defined on its Hilbert space "H'. Then the composite observables

e_' := e;_e -'/_', rit := ri + ri' (7)

are compatible, as evaluation of their Weyl commutation relation, using (6), shows. Hence, rit

and $, can be measured jointly. Then the POVM {._/(¢,n) = Tr_,(_'[¢,n >< ¢,n[))z [¢,n >

being the common eigen-states of St and rit, describes a joint non-ideal measurement of ¢ and ri.

Indeed, for the relation between the probability distributions of rift, ri, and N' we find

_t

= n'l 'ln' > • (8)
n=O

Comp_ing this with (2) we see that the ri_ measurement is a non-ideal measurement of ri, i.e.,
_ Nt, the stochastic matrix AI_ being given by Pl_,(nt - n). Therefore the inaccuracy of the

non-ideal tit'-measurement is determined by the spreaxl in the number n' present in the state _' of

the ancillary system. Similarly the Ct-measurement can be seen to be a non-ideal measurement

of ¢ : ¢ ---* Ct, the inaccuracy being determined in an analogous way by the phase sprea£1 of

the ancillary system. As a measure /_ of the inaccuracy of the _measurement we may take

[8] /5_ = -1 + I<ef*'> 1-2. In this way we have a formal scheme of generating joint non-ideal
measurements of incompatible observables. Indeed for position-momentum this scheme has long

been known (e.g. [11]). From an uncertainty relation derived for observables ri' and ¢_ in state

_' [8, 10], the following inequality now straightforwardly follows for the inaccuracies of the jointly
performed ri-and C-measurements:

1
6N6, _> _. (9)

This relation is of the same kind as (1). These were termed inaccuracy relations in [7]. In this

special case this relation is a consequence of the restrictions in preparing the ancillary object state.
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4 Prom Inaccuracy to Disturbance

Neither the 7-microscope nor the QND measurement referred to in sect. 1 are joint measurements:

in the first momentum is not actually measured; neither is phase in the second. Yet, with however

good a measuring instrument we try to measure the signal's initial phase, we can never quite

remove the inaccuracy from this measurement. It appears that there is a limiting inaccuracy

present already in the outgoing signal beam in the form of a phase disturbance caused by the
presence of a measurement _rangement for measuring photon number. In order to be able to

obtain a quantitative expression for this phase disturbance we first consider the general description

of measurements once again. In sect. 2 we saw that the outcome probabilities of measurement
results (i.e., the determinative aspect of measurement) in general are described by POVM's. Now

we also need to take into account the object state after the measurement i.e., the preparative
aspect of the measurement. In the van Neumann framework a measuremeni transformation of

the first kind leaves the object in an eigenstate of the measured observable. In realistic cases this

should be generalized to operation valued me, urea (OVM's) [5]. If a measurement yields outcome

k, the output state will be/_k(p), given that the object started out in state _. The probability of
k is then given by Tr[/_h(_)]. Accordingly, the mapping _ --_/_k[p] should satisfy

Tr[/_(_)]= Tr[_],_ > 0 --*/_k(_)_>O. (10)
kEIC

The POVM vie( = {/14k} corresponding to the OVM {/_} is therefore given by

V_Tr[/_(_)] = Tr[_.l(4k] _ ./_h = _[i]. (11)

For everyOVM thereis0nly one POVM, whereasmany measurement transformationsmay realize

a given POVM. Now considerthe outgoingobject.Suppose we measure some POVM 'O = {(_}

on it.Then the probabilitiesaregiven by

eo(1) = Tr[_K(_)0,]= Tr[_(bt)], _K = _ _. (12)
kE/("

Hence a measurement of O in the final state can be seen as a measurement of O - ((_l) --

{/_t(Ot)} in the initial state. Moreover, every repetition of the experiment yields values for both
I and k. Therefore we have a joint measurement, characterized by the bivariate POVM {_t(Ot)},

of which O is one marginal and .M is the other one. Summarizing, we see that consecutive

measurements of .A4 and O may be seen as joint measurements of .M and O.

Let us apply this to the QND scheme. Suppose we want to look at the outgoing signal beam S'

in order to find out the initial signal phase. Then we must not measure the phase of the outgoing

state :s,, i.e., not _s, -" O in/_s,, but we must have @s -* _) in :s. We should build the O-device

such that O is related to @s by (2), rather than that O itsellls _US connected to @s,. In this way

possible distortions in the medium are compensated for. Since SPM has the effect that @s and

Cs, are incompatible [2], this difference is not quite trivial here.

If @s -" O, however, we have a joint measurement of Ns and @s. The former, the QND POVM,
measures Ns, the latter we must choose so as to measure _s. Accordingly, (9) is applicable. The

phase inaccuracy thus achievable is limited by (26Ns) -_.
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Note thatwe have made no assumption about the natureofPOVM O whatsoever.The above

reasoningholdsquitegeneraJly.Definetherefore

e_s:= infc_(6_s), (13)

where the infimum istaken in the setofallPOVM's O satisfying_s -'*(_. Assuming _s to be

optimal,for allsuch POVM's O the bound (9)must hold,so that [12]

1

_,6Ns > _. (14)

The quantity (13) d_s not depend on O (which is a variable in a set of POVM's), but on the

meter's transformation _K, which is implicitly contained in the condition @s --* _. Thus _*s is

a property of the ]Vs-meter, known once the OVM {t2k} has been calculated from the device's

blueprint. _*s characterizes how much initial phase information can be retrieved from the outgoing

signal. In that sense the term dLsturbance is apt [12]. If all phase information is lost (e.g., if {/2k}
is a measurement of the first kind), the disturbance e,s is maximal. If, on the other hand, the

meter measures nothing (e.g.,if_K(_) = _ forall_),thereisno disturbanceat all,and e_s = 0.

5 Phase Disturbance in the QND-Scheme

Finally,we study the phase disturbanceinthe Kerr-setupoffig.l.Definegeneralizedphase states

l_;v >:= _(2=)-_/2eC_*"+½'"C"+z))ln>. (15)

For v = 0 these reduce to the eigenstates of (5). Then it can be shown that we need to measure

the POVM {1_;-½X, >< _;-½X, I) on S' in order to get information on _s • In fact, [2, 13]

_K(l_;-½x, >s.<_;:!_,l)= J'-'._,(_- _')1_'>s< _'ld_', (16)

thelatterapproximationbeingvalidforlow photon numbers. Here Os denotesthethirdofJacobi's

O-functions.The smearing function/_isplottedin fig.2.Note that the convolutionform of (16)

0.4

0..1

0.2

0.1

FIG. 2 Polar plotof the phase smearing function#(_) (linearregime,l_l_x_= 8),
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is in agreement with.(2). We have discarded an uninteresting phase bias term in (16).
1 2 2

Calculating 6,s from (16), we get 6_s _ -1 + exp(ilj31 X_), implying (cf. (4)):

1
2 ,,_ (17log (1 + 6,s)6Ns -- _.

This is only slightly worse than the bound set by the uncertainty principle (14), indicating thai

the measurement procedure described by (16) is optimal in the sense that 6,s -_ e,s.

As said before, the disturbance concept evades distortions in the medium, and therefore phase

disturbance is unaffected by SPM, contrary to photon number inaccuracy (but see [9]).
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