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Abstract

The quantum description of ligth pmpagmJon inside a planar waveguide is

given , looking in particular at the behaviour of the field inside a directional

coupler. Nonclassical effects are presented and discussed.

Introduction

Electromagnetic fields in optical guided wave systems are usually

described simply by using classical Maxwell's equations, but there are cases in

which a quantum treatment is necessary.Three purely quantum phenomena are

known having no classical analogous; namely photon antibunching,

sub-poissonian photon statistics, and squeezing of optical fields. If problems
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connected with these phenomena or the evolution of photon statistics are to be

dealt with,a quantum mechanical treatment must be used.

Of course a in(mr system is not able to produce or change these

properties but a nonlinear one is. For this reason,in the following the

Harniltonian for a nonlinear optical wavaguide will be derived,and its application

to some propagation problems will be considered.Although the Hamiitonian is

quite ganerai,emphasis is given to planar structures only and a more suitable

approach to descdbe propagation fenomene is discussed.

One of the results of having the propagation problem treated in quantum

mechanical form is to allow for the possibility of studying how purely quantum

effects propagate in linear systems.We will show ,for example,that a quantum

effect as squeezing is affected by the operation of switching in a linear structure

because of the phase changes involved in the operation.

2. Ouantization of the radiation field

The recent expadments on nonclassical states of light have called for a full

quantum analysis of the electromagnetic field [1] especleJly in the cases of

propagation of the fields inside dipersive media.

We remember that the standard quantization method consists of writing the

Hamiltonlan in a given volume V , demanding periodicity in space. For

propagating fields, the space evolution is then replaced by a time evolution, by

linking the space and time variables by the equation z,, ct. The length of the

nonlinear medium is then replaced by an effective interaction time. Of course this

method has two main imitations. The flrt one is that, by identifying the space

evolution with time evolution we lose one vadable and this formalism can

descdbe only c.w. operation : the second problem is that this procedure cannot
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be applied rigorouslyto a dispersive medium, where each frequency propagates

with different velocity.

However we remember that by using the Hamiltonlan formaJism and working in

the Heisenberg picture, the time evolution of _z,t) operator is given by

at =

(1)

SO that the aeneratar for time evolution is tha Harniltopiarl _-/_

_aenerator for soace omoa_aation is tha momentum oDemtor

(2)

The _; operator is related to the wave flux of the PoyntJng vector [2].

Therefore a suitable way to quantize the radiation field to describe the

propagation fenomena is the one starting from the flux of the Poynting vector.

This leads us to the rearBation that the important quantity is the flux and not ,

as usuaJly is assumed with the Hamiltonlan formalism, the energy density.

In this way Instead of quantizing the field in a large volume and demanding for

spatial periodicity, it is necessary to assume a time periodicity T of the field,

with the requirement that T must be large with respect to any relevant time.

Then instead of writing the field in term of spatial modes ( thus performing a

Fouder analysis of the space variable z into the wave vector K m ) it is possible

to write it in term of temporal modes ( thus performing a Fourier analysis of the

time variable t into discrete frequencies (o m ) and space dependent

operators. The advantage is that the temporal modes remain the same inside

and outside the dielectric medium [3] and the space evolution of the mode

operator can now be obtained by means of the momentum operator; moreover

dispersion of the material can be included.
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By the help of this formulation the expression of the ek)ctrk::field is ( Inside a

dielectric )

E (z,t) - _" (z,t) + E (z,t),

where the cross stands for c.c. and

_'+ (z,t) = m_[ 2_c'_(o)hO)m ]1_ [_(z,(_n)eXp(-/O_m_] (3)

being _ (z,(om) and their conjugates form a set of localized creation and the

annihilation operators ,eOm the field fmquancy, n(o)) the refractive index at the (o

frequency, e 0 the dielectric constant and c the iigth velocity.

The number operator for the field becomes

A A

N(z0, o)m)- a+ (z0,o)m) a(z0,mm) (4)

which represents the number operator of the photons of frequency o) m

passing through the plane z,, z0 during a period T , and the commutation

rules now become commutation at "equal space':

+ . si d :) (5)

and the _; operator is detined as

A A

/11

(6)

(Dm

where kin,= n (O_m)_ is the wavevector of the field.
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3. Quantum mechanical deecripUon of propagation In a planar

wavegulde

A planar dielectric waveguide is a medium whose dielectric permittivity

depends on one diraction,paraliel to which we shall assume the x-axis (s.F,g.1).

If this medium does not contain absorbing centers,if there is no

amplification of radiation,and if the permittivity is weakly dependent on the field

frequency (o i ,the electromagnetic field inside the guide is expressed in terms

of normal modes in the following form [4,5]

A (r) = _ 0 f (x) exp( I _ .r), (s)

where _ I is the wave-vector with components y and z (_ j.r= ky y + kz z) of the

j-th mode propagating inside the waveguide and f (x) is a function dependent

only on x, defined over all space, and determined by the waveguide structure.

Therefore each guided mode is defined by a _ vector at each col frequency.

From the quantum then/ point of view ( as pointed out in the previous

paragraph ,if the operator describing the field mode in a free space is given by

( note the operator is the one thai obeys at the equal space commutation rules)

(7)

in a guided strucure it can be described as

(8)
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and eq. (6) written in oper_orial form becomes

exp(- t) +c.c.]
J

where A 0 is a constant.

(9)

t

1.. t/

_ft

Rg. 1 A planar waveguide

We would like to remark that in the case of dispersionless material the time

evolution of the field operators( Heisenberg equation) is the same as the one in

space , i.e. the Hamiltonian operator and the momentum operator

approach provide the same results. This remark is particularly important when

we consider the quantum treatmen of a guided mode inside a guiding

structure, due to the fact that in general we propagate different spatial modes

of equal frequency and we are not obliged to take into account dispersion of the

medium if weassume a c.w. propagation.

The same kind of considerelion is still valid if we study the propagation of single

or more modes inside a nonlinear planar waveguide with third order nonlinearity.

These cases have been extensively studied in the paper [5].

In the following we analyze the case of propagation in a directional coupler,

which is one of the most interesting guiding devices , very important from the

point of view of its switch properties.
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4. Behaviour of a linear dlrecUonal coupler when nonclassical staWs are

involved (squeezing)

The directional linear coupler consists in two adjacent and parallel

waveguides [ 5,6 ](channels ).When radiation goes through the

structure,exchange of power between the channels is possible because of the

evanescent field which is present in the region between them.

In the frame of classical theory the coupler is studied by using the

[5,6 ],in which a perturbation polarization responsible for the

coupling contains the refractive index of the guides. Complete power transfer

occurs in a distance L - ( x/2)K , where K is the coupling constant

determined by the refractive indices of the structure: if the detuning parameter 5

is zero,that is in the case of complete phase matching [6 ] ,being
I

s= (13a- (lO)

where _a and 13o are the wavevectors of two modes of equal frequency

propagating in channel a and b respectively .If 8 is not zero the maximum

fraction of power that can be trasferred is proportional to

 +82"

From the classical equations for the complex amplitude for the directional

coupler, in the frame of the couplad-mode theory,with obvious generalization we

have the following Heisenberg equations for the operators,

f da/dz - -iKbexp(i2 8z),
db / dz - -il_ exp(-N 6 z), (11)
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where _ and _ are the field annihilation operators in channel a and b

respectively .For the sake of simplicity we neglect damping terms because we

are interested in the coupling effect only,this is a good approximation in the

region of low temperature and optical frequencies. Wfthout taking into account

dispersion the set of eqs. ( 11 ) is the same that we can write startling from the

momentum operator with the substitutions t -> z/c and _./-> c _;.

In this way we get the following solutions of eqs.(11)

t,= t,o. (12)

where a0 and _x) are the input annihilation operators and

C== eBJ[cos(yz)- i5ITsin(¥z)]

Cu= e- BZ[cos(yz) + i 8/-f sin(yz)]

Ga = - i _ sin(yz) • _z

G_ = - i K/-fsin(yz) e- ,6z

where y2 = /_2 + 82.

To study the propagation of nonclassical field through the structure we use the

following characteristic function

CN(13) = Tr{pexp[_a + ] e_o[-13"_] = exp[- MII31 2+ _(S'132 + Sl3°2)+13 Wr-13" W]

(13)

which is able to describe a field which is not a pure coherent or squeezed

state,but has simultaneously squeezed ,coherent and chaotic features [ 7 ].In

eq.( 13 ) W ,, W exp(i 0 ) is the coherent signal,and M and S are related to the
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noncoherentpart of the field.So for the vacuum state we have M-S,, W-0

;in the pure coherent state M=S=0, and for the chaotic field W-S-0.

The state is a pure squeezed state if

M- O= 0.5((4 S + 1) -1)

S,= exp(i _ ) cosh(r) sinh(r) (1.4)

r being the squeezing parameter [13 ].

A mixed state is given from a superposition of a pure squeezed state with

coherent signal W and a cahotic field described by the normally ordered

characteristic function given by eq.( 13 ) if

M= Q+ N,

where N is the noise photon number.

(15)

We shall suppose that the input statistics of light in both modes can be

described by the normally ordered characteristic function ( 13 ).Putting solutions

(12) into eq.(13 ) we can see that the truncated normally ordered output

characteri- stic functions will have the same functional form as the input ones with

new terms

s,.  0)Gt

W a = I_ O) Ca + H_oO) Ga (16)

where the superscript (o) labels the input quantities,and similar expressions can

be found for the b-mode,by interchanging the subscripts a and b.
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We are interested in finding expressions for the variances < ( A Q ) 2 • and
A A

A p)2 • ,(where _= _+a+ and J>= -i(a-_ +)).lnmf.(14)it

is shown that

=I+2M+S+S'

=1+2M- S- S' (17)

Several interesting cases can be considered which depend on the way the

coupler is feeded.

Let us suppose first that a pure squeezed state enters channel b and a

coherent state (or vacuum) channel a. It can be shown in this case that for

L- x /2K and 8- 0 we have

< (A_)2> a = < (A_ z>_o. < (A_')2>a =

< (Ab)2>, = < (A_ e.. 1.
(18)

This means that at the output of channel a we have an opposite squeezing than

at the input of channel b,while the output in channel b shows no squeezing.

A relaIed situation is obtained when two opposite squeezed fields enter the

two channels in the same conditions as in the previous case.In this case

squeezing is preserved in both channels because the field entedng channel a

comes out of channel b with opposite squeezing and the same happens with

field entedng channel bat intermediate lengths of the coupler the squeezing is

not completely preserved.

A very interesting role is played by the detuning parameter. In general [14]

if 8 _, 0 some noise is added to both channels and squeezing is reduced, and

for some special values of 8, noise is absent. Let us consider for example

the case in which 8 = _ K.. In this case ¥ - 2k and for the same coupler

isngth I.-Tl'/2k if a squeezed field entered channel b and a coherent or vacuum

field channel a then we have at the output
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< (Ab)2>a = < (A_)2>a= 1.

< (Ab)2> b = < (_% eo.

< (A_')2>_ = < (_)% bo. (19)

We can see that changing the detuning parameter from zero to '_/'3"K

switches from one channel to another.This result is rather interesting for the

purpose of measurement.The squeezed state is detected by interfering it with a

coherent reference light and looking at fluctuations.The switching behaviour just

described allow to preserve both the squeezed state and its reference beam.

5 Dlrectiorml and contradlrectiorml coupler with modes with small

different frequency propagating Inside

We have studied the problem of propagation of radiation in a coupler

assuming two different frequencies inside the channels, with the hypothesis that

each channel can support one only guided mode : this is possible if the two

frequencies am quite similar. In general for a coupler the more realistic

description of the field propageting inside all the structure is the one which takes

into account the superposition of the single modes propagating in each channel

( so called supermodes); in the case of different frequencies this approach is

particularly convenient and it is the one that we have adopted but in its

quantum analogous, i.e. introducing this concept in the statistical dependence of

the modes supported by the structure.
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The motion equation of the operator describing the

structure is given by ( Heisenberg form)

a__ i ^
az - ,

I:)ropagation inside the

(20)

where j is the index corresponding to the mode ( j,, 1,2) and this equation is

related to the momentum operator G, that for this case is given by

where k)= _/= -_, is the mode wave vector, 7. is the coupling constant, which

depends on the refractive index n((o/) distributJon inside the coupler. It is very

interesting fo observe that the G operator looks like the one of a second order

nonlinearity for a bulk material.

Using the approach of the supermodes we can descdbe the two fields of

different frequency supported by the strucure as

I1> = 2-_(111n >+ Ull Ilou¢> + _112ou¢> )

12> = 2-_(12in >+ u_211ou_> + ¢¢z212ou¢> ) (22)

being Uj,k a function related to the transformation law of the coupler ,

containing all the informations about the structure , such as the coupling

constant, the datuning parameter, etc. ( see functions C a,b and G a,b of the

provious paragraph ).

To follow the statistics of the field we start from the characteristic function ( the

antinormal one) from which It is possible to derive all the factorial moments and

the photon counting distnbution. As in the previous paragraph we suppose the

input staIe is a superposition of a coherent state and noise , including

squeezing.
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Due to to the hypothesisof the supermode we can write the charaIedstic

function for all the fields _1 and _ , CA (1_1,_), but we can follow also the

behaviour of each separate mode CA (_) [ 8 ] :

t..
c_. (_1._ = exp{Z, [- Bj. I _Jl2+

).1

(noise) (squeezing)

+ (- B12_; _2 + C_2in _1_4Z + c.c.)]}.

1
#. c.c.)+ - c.c.)+

(coherent)

( interference of noise ) (23)

The output characteristic function is of the same form as the input, where all the

features of the coupler are inside the B and C coefficients of the eq.(23).

Several cases of inputs states have been studied, such as coherent, two-photon

coherent , two-mode squeezed states and all factorial moments have been

calculated [8] finding as the detuning pammetr plays a very important role on the

evolution of the flisds : it adds eddidional noise if it is non zero [8].

It is interesting also to follow the photon counting distribution which put into

evidence the switch properties of the structure 81ways starting from the hypotesis

of supermode supported by the coupler. An example is shown in Rg.2, where

the detuning parameter 8 is zero, the input state in the first channel is a two

photon coherent state in the tirst mode , with 8 " smaJl amount of

squeezing" ,and a coherent state in the other mode. The picture shows the

marginal photon number distribution in the channel 2 ; at a suitably distances the

sub-Poissonlan behaviour turns super-Poissonlan, which characterizes the field

in the squeezed vacuum state: this confirms the switching of ligth of certain

photon statistics from one mode to the other one.
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Fig.2 - The marginal photon number distribution for 8 -0 and K -i for the

channel 2

Conclusions

The propagation of ligth in a linear directional coupler can be studied without

taking into account the dispersion of the dielectric constant until c.w. field

propagation is considered; of course dispersion must be taken into account in

non stationary cases and when the structure of the propag_ng device supports

different frequencies.

The ability of the coupler to switch from one channel to the other by introducing a

phase lag allows to change the squeezing directions, until the _ parameter

is of suitably values; in general a detuning different from zero reduces the switch

properties of the coupler and adds additional noise to the propagating fields. This

effect is in turn evident also on the photon counting distribution.
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