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Abstract

The completeness properties of the Schr6dinger minimum uncertainty states (SMUS)
and of some of their subsets are considered. The invaziant measures and the resolution

unity me_asures for the set of SMUS are constructed and the representation of squeezing and

correlating operator and SMUS as superpositions of Glauber coherent states on the real line
is elucidated.

1 Introduction

In the present paper we consider the completeness properties of the set (and some subsets) of the

states, which minimize the Schr6dinger-Robertson uncertainty relation [1]

1

2 2> 4(1+4c2),O'q O'p --

where crqand _p are the dispersions of the quadrature operators Q and P ([Q, P] = i ),

a, = (X 2) - (X) 2, X = Q, P,

(1)

and c is their covariation,

c - (1/2)(QP + PQ) - (Q)(P).

We call such states SchrSdinger minimum uncertainty states (SMUS). In fact they were intro-

duced by Dodonov, Khurmyshev and Man'ko [2] and studed as correlated states (see Ref. [3]

and references therein). When the covariation is zero, c = 0, one gets the Heizenberg minimum

uncertainty states (HMUS) and when in addition to this the dispersions are equal, a, = crp, the

corresponding MUS are the Glauber coherent states (CS) [4].

From the group-theoretical point of view SMUS are equivalent [5] to the group-related CS [6]

with maximal symmetry [7], the group in this case being the semidirect product H,_g_ SU(1,1)

(see also [8]) of the Heizenberg-Weyl group H,, and the quasiunitary group SU(1, 1) ,_ Sp(2, R).

Up to a phase factor they coinside [5] with the Stoler states [9], known also as squeezed states

or two-photon CS [10] widely used in quantum optics (see for example the review papers [11, 12]

and references therein). The stable time-evolution of SMUS, which is important for the squeezing

euad correlating processes, is considered in [5]. In other notations it was in fact obtained in [13].
SMUS are continuous set of states, which is clear from the definition. For such sets of states

the completeness properties (in the Hilbert space 7t) are very important for the applications in
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mathematical and theoretical physics. In the weak sense [6] the completeness of a continuous

set of states Ix) is defined as a dense subset in _/, while in the strong sense it is defined as the

(integral) resolution of the unity opera_or

1 / 1=)(=[ d_(x), (2)

where dr(z) is a positive measure in the label space X _ z. Such complete set of states ]z) is called

(in general sense) CS [6]. The group-related CS are always complete in the weak sense, while the

resolution of unity has to be proved in every case. A sufficient conditions is the square integrability

of the corresponding representation of the group involved against the invariant measure.

In this paper we consider the resolution of unity (2) for the set of SMUS and for some of

their subsets. First we construct the corresponding invaria_t measures and check the square

integrability against them. Since the latter failed to be _did we look and find the noninvariant

measures, which provide the-resoiution (2). We call such measures the resolution unity measures

(RUM). In other notations (i.e. in no relation to SMUS) for the H_ SU(1, 1)-CS RUM were

considered in [8],

According to the definition of CS they are always over complete (at least in the weak sense

[6]) in 74 family of states. Then it Worthiooking for a more sl-mp|e subset of CS which is also

complete in 74 or in some subspace (or even subset) of 74. We consider this problem in the last

section. In particular we construct the squeezing and correlating operators as integral along the

real line of projectors on the Glauber CS and reproduce the result of Janszky and Vinogradov [14]

for the superpositions of Glauber CS along the real axis.

2 The Invariant Measures and RUM for SMUS

Up to a phase factor SMUS can be written in the form [5] of the H_D SU(1,1)-CS with maximal

I{;r/) = N(,t;r/)exp[_atU+T/a t] I0),

[ 11,71 1- (1-1 12)'/4exp 2 1-1 l 2 J'

symmetry

(3)

where at ffi (1/vt_)(Q - iP) is the boson creation operator, [a, at] = 1, ,7 is arbitrary complex

number and _ belongs to the unit disk, [_1 < 1. One also has the relation to the Stoler states

[z; a) (i.e. the squeezed states or the two-photon CS)

,_;_) = 'z;a) =exp [_ (zat'- _a')] la),

where [a) is the Glauber CS and

_ = eiCtanh Iz[, r/= a'- _6/, a'facoshlzl+'fei_sinhlzl.

The second momenta aq, ap and c are expressed in terms of _ in [5, 15] and in terms of z in [8].
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The H_D SU(1, 1)-CS (3) are related to the representation T(g), generated by the semidirect

sum algebra h,_ su(1, 1) (known also as the one mode two-photon algebra)

h_ = lin. env. {l,a,at},

su(1,1) = lin. env. K_=-_a, K+= (a|) 2, K0=_(a a+ ) ;

T(g) = exp(TK+ - "_K_ + iwKo) exp(it + aa t - &a)

=_ T(7,w)T(t,a), g - g(7,w;t,a). (4)

In terms of the above group parameters the invariant measure is a product of the SU(1, 1)- and

the H_-invariant measures,

sinh 2 h AS 1 2
d_(7,_;t,_) = A-----v-d27d_,,,d_adt, = 41712- _,. (5)

But the representation (4) is not square integrable against the invariant measure (5) on the group
manifold. Then we have to look for the invariant measure d#(_; r/) on the factor space G/K _ (_; r/),

which is a label space for the SMUS [_; r/), Eq. (3),

d_d_ (6)
d_(_;_) = (1 - I_l_)3"

This measure is not a product of the SU(1,1)-invariant measure on the label space ID1 9 _ and

the H_-invariant measure d2_ on the label space C 9 T/. And we still do not have the square

integrability, i.e. the right hand side of the Eq. (2) with Ix) = 1_;7) and d#(x) = dp(_; r/) goes to

infinity.
Let us now look for the noninvariant resolution unity measure (RUM). The noninvariant RUM

if exists is highly nonunique. It is clear from the definition of RUM as a measure providing the

resolution (2), that if d#(x) is a RUM for a group--related CS Ix) then

dog(z) = du(g" x), (7)

where g • x denotes the action of the group element on z G X, is a set of RUM. It is an open

problem whether the noninvariant RUM exists simultaneously with the invariant one. For the

Glauber CS la/ the invsriant measure d2a is the only RUM. In our case of SMUS the simplest

noninvariant RUM reads (in Stoler parameters)

d_o(z,,_)= _e-"d2z ,Po, (8)

which can be expressed in terms of _, r/ by means of the relations obtained above. The other

measures dpo(_; T1),F_,q.(7), are obtained by means of the group action

(__:_, _-&_ +o)g.(_;_)=\___ __.f_ , (9)

where g = g(7,w; t, a) and u, v are the new SU(1,1) parameters,

iw 27 sinh As 1 2
u = cosh A - _-_ sinh A, v=--_ A, =41712-'_w.
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As wehavealready noted the RUM for the H_g) SU(1,1)-CS were constructed in Ref. [8].

With the Note added in proof in [8] their measure should read (however we were not able to obtain

the resolution of unity by means of this measure)

22r(2)exp[R_(_)I(I-l_l_)]d_ d_.
dr (_;7) = (1 - 1_12)s/2

3 Completeness of Some Subsets of SMUS

The two parameters subset I_o; T/}of SMUS with fixed _0 (i,e, with fixed second momenta of the
quadrature operators) forms a strongly complete system in _/

1 (1 -1_012)-' d_, (10)d.(_) I_0;7)(7;_01-- 1, d_(_) = ;

which in Stoler parameters is known [16] and corresponds to the generalized Glauber CS (i.e.

to the H_-CS with the squeezed and correlated vacuum as the initial vector ). Such resolution

of unity was used in [16] for construction of new quasi probabilities "based on squeezed state".

Note that the RUM in (10) is H_-invariant and is obtained (up to a constant factor) from the

H_,g) SU(1, 1)-invariant measure (6) by fixing _ = _0. If we fix the other complex parameter

r/-- _ we get the subset {l_;r/0)} (this is SU(1,1)-CS with Glauber CS as initial vedtor) which

however is not complete even in the weak sense in _/since the SU(1, 1) representation involved

here is not irreducible. If we put ,7o = 0 we obtain the complete (but only in the weak sense)

set of even SU(1, 1)-CS i_; +1 [15] in the subspace _/+ of even functions. The state I_; +) is in

fact squeezed (and/or correlated) vacuum. In the subspace 7__ of odd states we have the strongly

complete system of the odd SU(1,1)-CS I_;-) [15],

[_;-> = (1 -l_12)3/'exp [_(at)2/2]li), (11)

fD 1 d_,d_({)l{;-)(-;{l= 1_, d_({)= 2.(1- I{12)_' (12)

where [1) is the first exited state and dv(_) is the SU(1,1)-invariant measure. The state 1_;+) is

the squeezed vacuum, and I_;-) is the squeezed one-photon state. Note that I_; -) is not SMUS.

The second momenta _q, _ and c in this state obey the equality

2 2 I (1+4c _+8) (13)

i.e. [_;-) is another type of MUS. As in the case of squeezed ground state it is correlated when

Im _ _ 0 and cq --. 0 when _ -_ 1. In the subspaces _± there are also strongly complete sets of

even and odd CS la)_ [17], which axe linear combinations of two Glauber CS ]c_) and I - c_).

Let us consider the subset of SMUS [_; r/) with fixed _ ffi _0 and Im r} = r/2,0, that is with fixed

second momenta cq = _.o - #0 and c = Co and fixed first momentum (P) = p = po. This is

the one parameter set of states [q; _0,Po), q "_ Rer/_ _. It is the set of CS for the commutative

subgroup generated by the unit operator and by P. It is also the subset of general Glauber CS
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alongthe real axis, the initiaJ vector being the squeezed and correlated vacuum, displaced by
po. The unitary representations of the group of translations (by q along the real line) are highly

reducible thereby the set {[q; _o, _) } is not complete in _/even in the weak sense. Let for simplicity

po -- 0 and consider the operators

=/la Iq; _0}(_0; ql dq. (14)B(_0)

B(_o) is an unbounded (Hermitean) operator, well defined in the Hilbert space _ with the following
property: it leaves the set of SMUS stable, that is the states [_b') = B(_o)[_/ is SMUS if kb)

is. Moreover if [q) is the Glauber CS on the real line then (one can calculate that) B(_.o)lq)

is an arbitrarily squeezed and correlated state. Thus B(_o) is an (one dimensional) integral

representation of the squeezing and correlating operator. One can also get an arbitrary SMUS by

means of a fixed operator

B -/,_ Iq)(ql dq - B({0 -- 0),

P

but acting on different states [_b). The obtained state BI¢> is clearly a superposition of the CS

Iq> with the weights _b(q) = (ql_). If (but not only if) I_b>is SMUS then Bl_> is also SMUS with
arbitrary c and aq > 1. The representation of squeezed states as superpositions of Glauber CS on

the real line was recently considered by Janszky and Vinogradov [14] in the form fla Iq)G(q)dq,

G(q) being the Gaussian weight function.
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