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Abstract

According to Heisenberg's uncertainty relation, in quantum mechanics it is not possible
to determine simultaneously exact values for position and momentum of a material system.

Calculating the mean value of the Hamiltonian operator with the aid of exact analytic Gans-

sian wave packet solutions, these uncertainties cause an energy contribution additional to

the classical energy of the system. For the harmonic oscillator, e.g., this nonclassical energy
represents the ground state energy. It will be shown that this additional energy contribution

can be considered as a Hamiltonian function, if it is written in appropriate variables. With
the help of the usual Lagrange-Hamilton formalism known from classical particle mechanics,

but now considering this new Hamiltonian function, it is possible to obtain the equations of
motion for position and momentum uncertainties.

1 Introduction

According to quantum mechanics it is in principle impossible to simultaneously determine the ex-
act values of two canonically conjugate variables like position and momentum. These values can
be given only with a finite uncertainty, a mean square deviation or fluctuation (}2) = (z2) _ (z)2
and (_2) = (p2) _ (p)2, where the brackets (...) denote quantum mechanical mean values. The
lower bound of these uncertainties, the minimum uncertainty product is defined by Heisenberg's
uncertainty relation

= T (1)

In this paper the most simple but also most important one-dimensional problems, the free motion
and the harmonic oscillator (HO) will be discussed in detail (the results for the free motion can
be obtained in the limit w --*0, where w is the frequency of oscillation). The corresponding
time-dependent Schr6dinger equation (SE) (in position space),

o _,(x,t)= no, ,I,(::,t)= {
h 2 02

2_0_, + v} ,_(_,t), (2)

has exact analytic Gaussian-shaped wave packet-type (WP) solutions ¢(x,t). The uncertainty of
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position, reflecting the wave aspect, causes the finite width of this function, which can be time-
dependent as it is known from the spreading of the "free-particle _ WP. The particle aspect is
expressed by the fact that the maximum of the WP follows the trajectory of the corresponding
classical problem.

Calculating the mean value of the Hamiltonian operator Hop with the help of the Gaussian
WPs to obtain the energy of the system,

<E) I Trt h°2

1 rn j(z)_) + I= (YJ + W

=

m ¢_2
+__ (._2)) (3)

the uncertainty of position and momentum causes, that in addition to the classical energy Ed, a
contribution/_ occurs.

In classical mechanics, the (conserved) energy Ect of the system is equivalent to the Hamilto-
nian function, Ect = H, which also determines the dynamics of the system via the Hamiltonian
equations of motion.

In this work, it will be shown that in analogy to classical particle mechanics, the additional

contribution/_ in (3) can be considered as Hamiltonian function for the position and momentum
uncertainties. Therefore, the dynamics of these properties reflectin_g the (nonclassical), wave
aspect, i.e. the equations of motion, can be obtained from this Hamiltonian function in exactly
the same way as it is known from the formalism for classical particles.

For this purpose, E has to be expressed in terms of appropriate variables and corresponding

canonically conjugate momenta to provide the Hamiltonian "HL.

2 Appropriate Variables for the Uncertainties

Using the Gaussian WP-solutions of the SE, exact analytic expressions for Ect and/_ can be ob-

tained. In the case of the HO E just represents the groundstate enerj_;y, usually given in the form
,

Eas = _?go. However, there is much more information contained in E, especially connected with
the dynamics of position and momentum uncertainties. In order to extract this information, the
Gaussian WP used to calculate the mean values shall be given in the form

{ 1 }@n(z,t) = N(t)ezp i[y(t)_2+ _(p)_ + K(t)]
, (4)

where :_ = x - (x) = z - _(t) (the explicit form of N(t) and K(t) is not relevant for the following
discussion). The maximum of the WP at position x = (z) follows the classical trajectory r/(t).

The WP width v/_ is connected with the imaginary part Yl of the complex coefficient of i2 in
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the exponent, y(t), via

2h h I

--r._' = 2m(_2) = _2(t----_" (51

Insertingthe WP intothe SE provesthat (z) = t/(t)obeys the classicalNewtonian equation for

a correspondingpoint particle,

+ _2 ,i = 0. (6)

To determine the time dependence of the WP width, the complex (quadratically) nonlinear equa-
tion of Ricatti-type,

2h w22h _ + (_ y)2+ o, (7)
1TL

has to be solved. With the help of the new variable a(t) introduced in Eq.(5), the complex Ricatti
equation can finally be transformed into the real (nonlinear) Newton-type equation

1
+ _2a =--. (8)

In contrast to the equation for the WP maximum, Eq.(6), the equation for the QP width, Eq.(8),
contains an inverse cubic term on the rhs.

Additional insight into the dynamics of the investigated systems can be obtained by linearizing
the Ricatti equation (7) with the help of

2h
__y = -, (9)
m A

introducing a new complez variable A = fi + i_. = ae i_, to provide the complex linear equation of
motion

+ _2A = 0, (I0)

which has exactly the same form as Eq. (6), but now for a complex variable.
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It can be shown [1-3] that in cartesian coordinates, _ is directly proportional to the classical
trajectory,

_a0P0
= (z) = 17(t), (11)

and in polar coordinates, the absolute value tr is identical with a(t) = (2m(_2)/h)½ from Eq. (8),
and thus directly proportional to the WP width.

Furthermore, fi and _ (in cartesian coordinates), or a and _o (in polar coordinates), respec-
tively, are not independent of each other, but coupled via the relation

_fi - t_ = ct2_ = 1 . (12)

The physical meaning of this relation is that _(t) moves in the complez plane like a particle in a
real two-dimensional plane with conserved angular momentum. Therefore, the 1/trS-term in Eq.
(8) represents the "centrifugal force" for this motion in the complez plane.

3 Lagrange and Hamilton Functions for Uncertainties

In Eq. (5) it is shown how the mean square deviation of position, (_2), is connected with Yl or a

(and thus $), respectively. In a similar way the momentum uncertainty (/_2) is connected with YR

and yl or & and _, (and thus _, respectively, via

2 Yl = _ __ (_2 + a2_b2). (13)

Therefore, the energy contribution/_ can be written as

h _#2 _2) (14)= (_" +_2 _-) = _ (_2 + +

Assuming that c, and _o are the required appropriate generalized coordinates, still the canonically

conjugate momenta have to be determined in order to express E in a proper Hamiltonian form. In
analogy to classical mechanics, a Lagrangian function for the position and momentum uncertain-
ties can be obtained by simply changing the sign of the potential energy contribution into minus,
leading to

(15)
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Thus, the generalized momenta axe given by

a_ a • (16)
_:--Ct : p:,
ad 2

O_L _ CX2_ p_

o_ 2
(17)

With the help of these definitions, the energy fluctuation _? can be written in the correct Hamil-
tonian form

p_ h w2aZ (18)

This Hamiltonian function "_z, provides the equations of motion for the variables describing the
wave aspect in exactly the same way as the classical Hamiltonian function of particle mechanics
yields the equations of motion for the variables describing the particle aspect.

In addition, an interesting consequence follows from Eq. (17), defining the angular momentum

tPl_eAs mentioned in the previous section, this is an angular momentum property connected withmotion of A in the complez plane under the additional condition, that the "conservation law"

_b: _ is fulfilled.
However, inserting this into (17) shows that the conserved angular momentum-type quantity

p_ has the constant value

h (19)

a value that usually does not describe an orbital angular momentum but the nonclassical angular

momentum-type property spin!
Furthermore, it should be mentioned that the uncertainty product (1), if it is written in terms

of the new coordinates and momenta, takes the form

u(o = p_+ (Opo):• (20)

From Eq. (19) follows that p_ - Ii2/4, i.e. it is just the (constant) minimum uncertainty. The

second term, however, represents the square at the position-momentum correlations, as

h c9 (AAo)fhac_ = 2 (ap=,) (21)
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is valid.

For po = 0 and thus d = O, i.e. the WP width is constant and no correlations between position
and momentum exist.

4 Conclusions

The information on the dynamics of the consider_ systems contained in the time-dependent SE
can also be obtained from a corresponding Newtonian equation for these systems, ira complex
variable is used, where the imaginary part of this variable is proportional to the classical trajec£bry _
and the real part is uniquely connected with the imaginary part. The connecting relation expres_
a kind of conservation of angular momentum for the two-dimensional motion in the complex plane.

In polar coordinates, the absolute value of the complex variable, a(t), is directly proportional

to the WP width _, and:thus t°the uncertainty (za)_.

It is possible to express the difference between the mean value of the Hamiltonian operator,
(Hop), and the classical energy, Ed, in terms of the coordinates a and ¢ and the corresponding

canonically conjugate momenta. Thus, it is possible to write E in the form of the Ha_ltonian

function 74L, where from the correct equations of motion for-tIie-awaveproperties '_ (uncert_ntles)
can be obtained in exactly the same way as the equations of motion for the particle properties
can be obtained from the classical energy, respectively Hamiltonian function.
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