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Abstract

The close relationship between the zero point energy, the uncertainty relations,

coherent states, squeezed states and correlated states for one mode is investigated. This

group-theoretic perspective enables the parametrization and identification of their multimode

generalization. In particular the generalized SchrSdinger-Robertson uncertainty relations are

analyzed. An elementary method of determining the canonical structure of the generalized

correlated states is presented.

1 Introduction

Advances in atomic physics and quantum optics have made it possible to examine and verify

many of the immediate predictions of quantum mechanics. The most celebrated of these is the

Heisenberg [?] uncertainty relation

(Aq) 2 (Ap) 2 > (1)

where

(2)

(3)

are the dispersons in the coordinate and momentum variable. The Heisenberg uncertainty relation
in the form

h

Aq. Ap >_ _ (4)

has been verified in gedanken experiments like the Heisenberg microscope and in the simple pic-

tures of de Broglie waves.

Since Aq and Ap have different dimensions their individual magnitudes cannot be compared

without choosing units for length and momentum. By a suitable scale change we could scale

them inversely as long as the unit of action is fixed; in this case the change is in the unit

of {mass2/(time) 2} or equally well in the unit of length since action has the dimensions of
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{mass× (length))2/time}. Having fixed any such choicewe can talk of the numerical values
of Ap and Aq. Another and earlier result of quantum theory is the existence of zero point energy

[?]. If p and q are canonical operators satisfying the commutation relations

qp - pq = ih

then the "energy" ½(p_ + w2q2) has a nonzero minimum value:

l (p2 +w2q2 ) = w{wq- ip_ . wq + ip_/_j > hw/2.hw

(5)

(6)

Since the first term is non negative, w ata, there is the zeropoint energy hw/2 for the ground state

which is annihilated by the operator

a = (wq + ip)/_. (7)

While the notation is new, the zeropoint energy is as old as quantum theory!

It is well known that there is an immediate connection between the two relations. For every

w, --oo <w <_ Oo

E(w) = (wq- ip)(wq + ip) >_ 0 (8)

but this implies

w2(q2) + (p2) + iw(qp - pq) (9)

= w2(q 2) -wh + (p2) >__O. (10)

Hence the discrirninant of this quadratic form should be negative: that is,

4 (q2)(p2) >_ h 2. (11)

Noting that the deviations from the mean

Q = q- (q), p = p- (p) (12)

also satisfy the canonical commutation relations we, derive

1 h2 (13)
(Q2)(p2) >_

which is Heisenberg's uncertainty relation.

We may therefore say that the zeropoint energy relation (6) was not invariant under the linear

(14)

(15)

canonical transformation
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nor under

q---.Q=_½q (16)

-* (17)p-----*P=w 2p.

Imposition of these canonical transformations on the Planck zeropoint energy inequality (6) gives

the Heisenberg uncertainty relation.

But there are yet other linear canonical transformations: the simplest one is

q----* qcos 0- w-tpsinO (18)

p _ wqsin 0 + pcos0. (19)

While the Planck zeropoint inequality is invariant under this transformation, the Heisenberg

uncertainty relation is not. We get, for any 0,

{ (q2)cos 2 0 + (p2)sin s 0 - (qp + pq)cos 0 sin 0}. (20)

h 2

{ (q2) sin 2 0 + (p2) cos 2 0 + (qp + pq) cos 0 sin 0} >__-_-. (21)

By an elementary rearrangement this gives

{(q2)+(p2)}2-{((q2)-(p2))cos20-(qp+pq)sin20}2>_h 2. (22)

By choosing

we get the inequality

tan 20 = -(qp + pq)/ {(q2)_ (p2)} (23)

h 2
(q2)(p2) (qp + pq)2 > --. (24)

4 -- 4

This is the SchrBdinger uncertainty relation provided we replace q and p by q - (q) and p- (p).

It was derived by Schrgdinger and by Robertson[?]. It is stronger than the Heisenberg uncertainty

relations and reduces to it in the special case of "uncorrelated states" for which

((q- (q))(p- (p))+ pq)= o (25)

or equivalently

(qp + pq) = (q)(p)+ (p)(q). (26)

Even for a harmonic oscillator of frequency u this is not in general true and the correlation

oscillates with twice the frequency. So a Heisenberg minimum uncertainty state is not canonically
invariant. For the harmonic oscillator this has been known for decades. Dodunov and Mafiko

[?] have given a general systematics of such a derivation. The clue to the Schr6dinger-Robertson

generalization of the Heisenberg uncertainty relations is the requirement of invariance under the

group of linear canonical transformations. The state of the minimum energy for the harmonic

oscillator with Hamiltonian

H=l(p2+q2)=(a'a+_) (27)
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is the vacuumstate 1_) satisfying

with the associatedwavefunction

al ) =0 (28)

¢(x) = (_r) -'/4 exp(-x_/2) • (29)

This is a state of the minimum uncertainty. But the minimum uncertainty class is wider, among

these are

alz ) = z Iz) ,z complex number (30)

with wave function

¢(x) = ('n') -'/4 exp {--(x -- z)2/2} . (31)

These are the "coherent states" introduced by Schrbdinger [?] and rediscovered decades later

in the context of quantum optics by Glauber [?] and by Sudarshan [?]. They constitute an

overcomplete family of states in terms of which every state can be expressed in infinitely many

ways; further in terms of them every density matrix can be exhibited as a sum of projectors ]z){z[

to the coherent states with distribution valued weight [?] and [?].

But the coherent states are not a canonically invariant set. The scale transformation ("squeez-

ing")

q----*exp(w½) q, p----_exp(w-½)p (32)

takes a coherent state into a new class of [?] states which are now called squeezed states. In terms

of a, a t these are the Bogoliubov - Vaiatin transformations [?]. The unitary transformation

• •
V = exp {-,w2(qp + pq)/2} (33)

accomplishes the squeezing: and thus the one parameter family of overcomplete sets of squeezed

coherent states with wave functions.

¢(x) = Qr)-_ exp {-w(x - F2z)2/2} (34)

labelled by 3 parameters w, Re z, Im z. For each w we have an overcomplete family of states.

This is still not general enough. There are still more canonical transformations that can be

performed which will make the state no longer a minimum uncertainty state in the Heisenberg

sense but which would be minimum Schrbdinger uncertainty states. These are the correlated

states whose wave functions have been obtained by Dodunov, Kurmyshev and Mafiko [?]. A

simpler version of this is as a complex Gaussian:

where a, fl,? are complex parameters satisfying (_ + _*)2/(a + a*) = 7 + "_'. The imaginary part

of 7 is arbitrary. These therefore contain two complex parameters

1
(Aq) 2 -

2or 1

(Ap)2- a12+ (a2")_-

(qp + pq) - (q){p) - (p)(q) = - 2°_----12. (36)
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Making use of the appealing phasespacepicture introduced by Planck [?] for the quantum
oscillator, the ground state with the zeropointenergy (for to = 1) has a phase space patch which

is a circle with unit radius and an area zr which is (2zr) times the uncertainty. The mean value of

_I (p2 + q2) within this circular disc is _ which satisfied Planck. So his picture of the ground state2
is a circle of unit radius centered at the orgin. By

P

q

Fig.1. Planck's picture of the minimum energy state and the coherent states. The

coherent states are centered at the point (_2"' _)"

displacing the origin to v_ z we get the two parameter (one complex parameter) family of coherent

states.

Squeezed states are obtained by area preserving deformations of the circles into ellipses with

major (minor) axis along the coordinate directions.

0
Fig.2. Planck pictures for squeezed states.
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When the ellipse is tilted we get the more general family of correlated states discussed by

Dodunov, Kurmyshev and Marlko. Of course this tilting alters things only for the squeezed states
but not for the coherent states.

Fig.3. Planck pictures for correlated states.

2 The Group Theoretic Significance of the States Which

Have Minimum Schrhdinger Uncertainty.

The linear canonical transformations on a pair of canonical variables form a group SL(2, R) _ T(2),

the semidirect product of the special linear group with translations. The minimum uncertainty

state of Planck are invariant under the harmonic SO(2) subgroup of this group; this is its stability

group. So the quotient of the canonical group by the harmonic stability group the correlated

states are in one-to-one correspondence with the elements of the coset of dimension 5 - 1 = 4.

These states are realized by single mode lasers and states with substantial squeezing and/or

correlation have been generated and identified.

It is a natural question to ask whether these notions and correspondences can be generalized

to n-degrees of freedom and multimode laser beams. Group theory can be invoked to get a general

answer to the problem.

3 Multimode Correlated States and Their Group-
Theoretic Relevance

Consider a system of n canonical pairs {qr,Pr}, 1 <_ r,s <_ n. The homogeneous linear trans-

formations are Sp(2n, R) and the translations are T(2n). So the linear canonical group is the

semidirect product Sp(2n, R) _ T(2n) with n(2n + 1) + 2n(2n + 3) parameters. We seek canon-

ical invariants bilinear in the 2n canonical variables and look for the appropriate conditions to

get the minimum generalized Schr6dinger uncertainty. We expect this to come from the ground
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state 1_) annililated by all annililation operators (q_ + ip_)/v[2 and states obtained from I_) by
the action of the linear canonical group. Since these involve individual harmonic SO(2) elements

for each degree of freedom and any O(n) rotation between the various degrees of freedom the

stability group of [ft) has n + _ = _n(n + 1) parameters, we expect a family with ½n(3n + 5)2
parameters corresponding to the dimension of the coset space.

Even for small values of n this dimension grows rapidly; we adopt a more elementary method

to obtain the generalized correlated states. We describe in detail the case for n = 2 and remark

that the method generalizes for arbitrary n. The multimode coherent states are 2n parameter

states obtained by T(2n) acting on Ift). Let us consider the group Sp(4, R) which is a double

covering of SO(3,2) and has the same Lie algebra of dimension ten. This algebra can be obtained

by the three (prp,), the three (q, qo) and the four _(qrp° + Poq_) which close under commutation.

The generic SO(3,2) algebra has two invariants, one of the second order and one of the fourth

order. If we consider the expectation values of the ten quantities (p_po), (qrqo), _ (q_po + p°q_)

they furnish a 4 x 4 symmetric non negative matrix which is bounded below by the zero point

energy

1. Let this matrix be denoted by:

ell e12 a b )
Tu_= e12 e22 c d

a c /11 /12 "
b d f12 f22

By suitable harmonic SO(2) transformations in (qx,p_)

form

el 0 a' b'

0 e2 c' d'

a' e' £ 0
b' a' 0 f_

(37)

and in (q2,P2) this can be reduced to the

. (38/

By scale transformations independently for the

form

0 e

a" c"

b" d'

Now harmonic SO(2) transformations in (ql

other diagonal blocks to get
e

0

a t

two degrees of freedom we can reduce this to the

a" b" )

d' d" (39)
f 0 "
0 f

,Pl) and in (q2,p2) can be used to diagonalize the

0 a' 01

e 0 d'

f 0 "o f

(40)

Now the SO(2) rotation between the two degrees of freedom can be used to transform this into

0 e+d' 0 0 (41)
0 0 f+a' 0 "

0 0 0 f+d'
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Further scaletransformations in the two degrees

0 gx 0 0

0 0 g2 0 "

0 0 0 g2

Thus there are two invariant quantities gl,g2

of freedom can render this to the final form

(42)

which maybe recognized as the uncertainties in
1

the two natural modes . Note that gl,g2 are both positive and not less than _h.

Naturally the minimum uncertainty state must have degenerate structure with

ga = g2 = _-h.
t

(43)

This is the vacuum state If/) in the natural modes. The correlated states are obtained by the action

of the group Sp(4, R) [_] T(4). The T(4) action demands that we replace q, p by q - (q), p - (P/,

after which we may ignore them. Since the state Ill) has a 3-parameter stability group we may

restrict attention to the quotient manifold of cosets.

This construction can be immediately generalized. We take the 4 x 4 diagonal block of the

2n x 2n matrix and carry out the transformations outlined in the previous scheme and then take

the bordering 4 x 2, 2 x 4 and 2 x 2 blocks. Now make orthogonal transformations between

the modes to make the 6 x 6 block diagonal with possibly unequal diagonal elelments. Scale

transformations independently in the three modes will make them diagonal with pairs of values

equal. Now the process can be repeated with the bordering 2 x 6, 6 x 2 and 2 x 2 blocks; and

repeating the procedure we can diagonalize the 8 x 8 matrix with

(p_) = (q_), (p_) = (qg),...,(p_)= (q_). (44)

This can be done with the 2n x 2n has matrix is fully diagonalized with adjacent pairs of diagonal

elements equal; that is the eigenvalues are

gl, gl, g2, g2, g3, g3,. .. , gn, gn . (45)

1
This is the canonical form with n invariants gl, g2,..., g, with each gr >_ ]h. The distinguished

generalized correlated states have degenerate eigenvalues

1

gl = g2 = "'" = g. = _ h. (46)

This is the multimode vaccum state! We can get the multimode coherent states by displacements

which are the real and imaginary parts of zl,z2,..., z,. Squeezed states are obtained by scale

transformations in each mode independently so that the diagonal eigenvalues became

Alga, Allgl,..., A,,g,, )_Xg,_. (47)

The displacements and squeezings introduce 2n + n = 3n parameters. But the generalized corre-

lated state is obtained by the full coset of the linear canonical group Sp(2n, R) _ T(2n) by the

stability group of the N-mode vacuum state [f_).

These correlated states maybe displayed explicitly but are too cumbersome. The multimode

correlated states have wave functions which are displaced Gaussians with phase factors. Depending

upon the experimental requirements we may obtain intensity correlations, photocount statistics

etc. directly. The number of parameters describing such correlated states are enormous and would

be restricted by the method of generation of such states.
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4 Discussion

Some remarks are in order about the correlated states in quantum field theory. As long as the

number of excited modes is finite, however many, there exists a unitary transformation from the

multimode vacuum state to the multimode correlated state. These unitary transformations are

generated by a quantity bilinear in the canonical variables. These operators are unbounded but

do generate unitary transformations. When the number of modes became infinite, the generic

correlated state cannot be obtained form the vacuum state they would be in a different Hilbert

space from the Fock vacuum. [?]

It was the purpose of this paper to demonstrate the close relation between the correlated

states and the linear canonical group; and to show that the correlated states which minimize the

SchrSdinger uncertainties is related to the canonical multimode vacuum which is invariant under

linear unitary transformations of the modes. The generic wave functions are Gaussians with a

determined number of independent parameters.

The one and two-mode analysis is equally applicable to the propogation of the Gaussian Schell

mode paraxial wave fronts through a system of thin lenses which are, respectively, isotropic and

nonisotropic. This has been carried out elsewhere [?].

Correlated states are the generic family which include squeezed states and coherent states as

special cases. For each value of the complex parameter a, we have an overcomplete family of

states in the case of one degree of freedom. For the multimode case the parameter defining the

generic form (37) from the canonical form (42) are such labelling parameters.
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