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Abstract

We introduce a new set of squeezed sates through the coupled two-mode squeezed opera-
tor It is shown their behaviour is simpler than the correlated coherent states introduced by

Dodonov, Kurmyshev and Man'ko in order to quantum mechanically describe the Landau
system, i.e. a planar charged particle in a uniform magnetic field. We compare results for

both sets of squeezed states.

A planar charged particle moving in a uniforn magnetic field is a very interesting quantum

mechanical system. It is not trivial, needs the two spatial dimensions to describe it, it has some

reminiscence of the two dimensional oscillator, but requires in addition the peculiar presence of

the angular momentum operator which play a role as important as the hami]tonian. As recently

it has been pointed out [I], the system has an Osc(1) dynamical degeneracy group. It seemed to

us the system has a physics rich enough and mathematically particularly well understood in terms

of the holomorphic (and antiholomorphic) coordinates that deserved to be revisited.

A planar particle of charge e, mass m, moving in a uniform magnetic field "_ = Bk can be

described by tire classical first order action

S =< T" "_ - (2m)-l[T - 2-1eB(i"_)] 2 > _ < T" "F* - H >. (1)

'_ is the two-dimensional vector position of e, _ its canonical momenta (which in the presence

of the vector potential _ = 2-IB(i-_) does not coincide with roT), and the linear operator i

indicates a positive r/2 rotation, i.e. (i'-_)j = -e,vt. We choose B such that eB_-rru.o is always

positive, without losing generality.

The Landau system _c--_'{"_, "_-', If, A=-_ -(i--_).-_} is quantized by imposing

[ri,p_] = ih60 i,j = (1,2). (2)

[I] it is convenient to introduce two sets of additional, momentum-likeAs shown in ref.

variables

- -"-'--' 2-lw = p + mw(i"_). (3)

"F' is the q-operator representing the observable m T_. In terms of these quantities the hamiltonian

and the angular momentum take the form

..__2 ._,2
tI = (2m)-I{ p +4-l,n2w 2 r +m_A} = (2m)-l'F '2, (4)
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A= (-i7') •g = (2too,)-' {_" - _, }.

Observe the interesting chiral aspect of A in terms of "_ and _4.

It is inmediate to notice that wi commutes with a'j,

[o.,,,,'y] = O.

Consequently _ and A commute with H. Since

[A, wi] = -ihe,iw j = ih(i _"),

[wi, wj] -- --ilirnwclj.

(5)

(6)

(7a)

(7b)

we see that {1, _, A} constitute a dynamical symmetric group (which will be easily recognized,

when represented by its holomorphic components w,, wr to be Osc (1)), i.e. commutes with H.

It is convenient to introduce holomorphic dimensionless variables z,_, p,,pr, x,, rr, w,,wr to

analyze tile system,

z_-(2-1h-lmw)'12(, + iy), p, = (2hrtu_)l/2(p, - ip,) = -ii), + c.c.

Tile two momentum-like set of variables take the form

(8)

while H and A become

r, = p, + 2-1ire , lrr ffi Pr - 2-tiz (gab)

w,=p,-2-1iY , wr=pr+2-_iz (10ab)

H = ?*w{p, pr + 4-tz'i + 2-1A} -_-"_,_h,

A = ih{_r,, - zp,}wh_ = hi,a, - z0.].

tleinsenberg commutation relations eqs. (2) change to

(11)

(12)

(13)[,,p,] = i = [,,,,] = [,._,,l + c.c..

The two main physical observables h, _ have a very simple structure

h = n,r_- + 2-I -_"nl +2 -t, A = x, rr - ¢a_-w,-_-'nl -n_ (14ab)

where rr, w,, r,,wr can be regarded as two sets of decoupled annihilation and creation operators

[,,,,,1 = 1 = b',_], (15)

since [w,.r, r,.T] = 0. We emphasize the fundamental role of the both h, ,_(H, A) in determining the

two-mode quantum structure of the system, The energy degeneracy is broken by the presence of

n_, the second fundamental quantum number. These two series of discretes numbers will become

the origin of the two couplex parameters labelling the coherent Landau states dicovered long time
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ago [2] by Mal'kin and Man'ko. (Incidentally our a'r coincides with a of ref. [3] and our oJ, equals

-iao. To introduce coherent Landau states we introduce the state 10,0 >= ¢'oo

¢,0o(z_)= _-½e-ta. (16)

_oo belongs to the ground subspace, i.e. a',{0,0 >= 0 and is unitary (using the natural measure

2-'idzd7 = dxdy. The ground subspace is determined by the orthonormal set _bov = (p!)-,/a

_-lO,O>= lO,p >
{0,p >= (pl)-½(iz)PlO, O >. (17)

Each level-n energy eigenspace has the discrete orthonormal basis

_]. _Z n P¢,., = (,!) ,(p!) ,_.._10,0 >.

Equations (14) tell us H_b,p = hto(n + 2-')_b,,p and A_b,,v = h(n -p).

We define the coherent Landau states [2] by

[w, s > -=*e'''-''r+'_r'l'_" 10, 0 >

(18)

(19a)

w,s E _. They constitute an over complete unitary system of the Hilbert space {_b,,p,n;p E

0, 1,..-} in the usual sense (for coherent states)

(19b)< wtst 1w2s2 >= e-½l'2-w'l_-l'3-sal3+il'211'''Isin(_-_*')+il.211"tlsin(6_-¢'')

w = {w{_',•= l,{,"_.
They have three basic properties: i. They are x, eigenstates with eigenvalue w, ii. they also

_o.{ws>= slws >, (20)

If one starts on {ws > leaving the system to

are eigenstates of to,with proper value s

xrlws >= wlw, s > ,

and iii. they propagate remaining in the family.

evolve, at time t _t_ will be described by

e-ih_'lw5>= Iwe-_"_',5> . (21)

Eqs. (20) suggest a way to compute q-mechanical expected values for physical observables

F(p,p,z,'_). One has to transform them to their representation in terms of the new variables

(r,_r,w,_), then normal ordering in both types of variables and finally taking into account eqs.

(20).

In this way we obtain:

< z >eL=< wslzlws >=< wsl(irr- itor)lw,5 >= i(w -_) (22a)

< Z 2 >CL----" --(W -- _)2 , < Z_ >= (W -- _')(W" -- 5) + 1 (22b, c)

plus their respective complex (hermitian) conjugates. We also obtain

< p, >CL = 2 -1 < _, "t" OJ, >eL-" 2-1( W -t- 5) + c.c. (23a)
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< p2 >eL= 4-' < (_, + _,)_ >= 4-'(W + _)2 + h.c., (23b)

< P,Pr >CL = 4 -1 + 4-'(w + _)(W + s) (23c)

< h >eL=< wslhlws >= wW+ 2-' , < ,_ >eL= wW-- s_, (24a, b)

<h _ >eL =(ww+2-_) 2+wW , <A 2>cL=<A>_L+wW+s_. (25a, b)

Recalling definitions (8) relating z,_ and real dimensionless variables z,y we can calculate

physical uncertanties, which are defined for canonical sets of variables in terms of holomorphic

variances Az, Az'_ =< zF > - < z >< • >, Ap,, Ap,pr. they turn out to be

(zxx)_L = 4-'(zxz)tL + 4-'(ZX_)tL + 2-'(azr)CL = 2-' = (ZXy)tn,(ZXXy)CL= 0. (26,_)

In a similar way, we find for the physical momenta

(zXp,)_L= 2-' = (Apw_)cL = 0. (27abc)

Consequently both uncertanties attain lowest bound

(Ax)cL(Ap:)cL = 2-' = (Ay)cL(Apv)c L. (28)

Coherent Landau states are minimun uncertanty states (MUS).

Squeezing can be now analysed, since the standard procedure to consider this type of states

involves the squeezing of associated coherents states. Complexive decoupled squeezed Landau

states have been introduced in ref. [3], Where they have been called c0rreIated coherent states.

Since squeezing is not that intuitive We face in principle four different types of squeezing:

partial squeezing in rrr,, partial squeezing in w,a_-, or full, complexive squeezing in both sets of
variables.

The complexive squeezing might be either decoupled or coupled in both set of variables. One

,night think that it could be enough to squeeze just in the dynamical constituents of the hamilto-

nian rrrr_ in order to obtain physically appealing results. This primary type of "squeezing" can

be shown to lead to states which are irrelevant, since they are neither minimun uncertainty states

nor the variances of any canonical variable can tend to zero.

We are obliged to turn our interest to more radical way of squeezing. As we said above, we

must try complexive squeezing, i.e. to introduce squeeze operators which squeeze both type of

quanta, the r and the w-ones.

Let us first consider what we call "decoupled" squeezing, as it has been done in ref. [3]. The

squeezing operator is defined as

I 2 2 -2 2 1 2 _ I--3 3

S(q,, q,) = e 2q, ".-½,,';+ ,':'_r-2q2_: = S"(q] )S'(q2). (29)

We consider the squeezed states

Iws,qt,q2 > _-S(q,,q2)lw,s >. (30)

where both w and s are distorted.

=
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Both the r and w variables transform non trivially here,

(wr,)¢,_--S+w, Sq, = w, chr2 + e2i¢'shr2o.'r. + h.c.

(31)

(32)

Tile squeezed transformed of the tIeinserberg canonical variable z zq,q2 _--S_ _ zSq,_ becomes

in the present case

zqt q2 = i ( lrrchr t + e2i_*'shr xlr , -a_rchr2 -e-2i_nshr2w,). (33)

The complexive squeezed expectation values of z and p, are therefore

< z >,,n=< z,,. >cL= i[s,,(w)- 3"_(s)], (34a)

< p, >,,,,=< (p,),,_ >cz.= 2-*[3,,(w) + %,(s)], (34b)

where subindex CL indicates the coherent Landau state ]w,s > and sq(u)_=chru + e2i_*shr_.

Quadratic complexive squeezed expectation values become

< Z 2 >q|q_= __[SqI(W ) -- _q2(S)] "/ -- shrlchrle 2i_.1- shr_chr_e -2i_'2 (35a)

< z_ >,,_=< r >,,,=< z >,,¢2 +chr_ + shr], (35b)

< p2 >q,,2= 4-t(_q,(w) + s,,Cs)) 2 + 4-'shrtchr, e-2i_' + 4-'shr2chr2e 2i_, (36a)

<p.pr>,,_=4-'[_,,(w)+s,,(s)l[s,,(w)+_,2(s)]4-'ch2r,+4-'sh2r2. (36b)

From this expressions for the holomorphic variables we can evaluate physical uncertanties to

see how they behave for complexive decoupled squeezing. They are

(Ap_)q,q_2 = (Az)q,q;2 = 2-tchrl(chrt - shrlcos2_pl) + 2-1chr_(chr_ - shr2cos2_2) - 2-l, (37)

= A 2(Ay)_,q; ( P=)q,q2 = 2-tchrl( chrl + shrtcos2cpt) + 2-1chr2(chr_ + shr_cos2_p_) - 2 -_. (38)

For ¢_ = 0 = ¢_ Az and Ap_ are squeezed since:

= = 4-re -_'' + 4-_e -_'_ _ 0 + rt, r_ _ e¢ (39)

while, of course Apt and Ay increase according to eq. (38). The partial uncertanties get closer

to their lowest bound,

A 8-'= = = (40)= ( [i + -

This result indicates that physical squeezing, in the sense that the squeezed states are also

minimun unccrtanty states, is obtained just for r; - r_. Complexive decoupled squeezing leads

to physical squcezing inodes, but the two indepcndent "a priori" parameters q_ and q_ have to

coincide.

A nicer solution to finding squeezed states of q_ arises by considering the fact that we have

two modcs in the system. For this situation a more natural squeezed operator can be defined,
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similarly to what has been done for the two photon case in ref. [4]. The "coupled" squeezing

operator we postulate is given by

8_ -----'e½q'''_'- ½_y'_'° • (41)

It naturally depends upon only one parameter. It is straighforward to show that the squeezed

?alues of 7rr and w, respectively are

r 2;_ r
s,+_rs,= _h_ +e sh_,, (42)

S+w,S, - w, ch 2 + e'i%h 2x,. (43)

As expected this type of squeezing makes 1r-variables to have w-components and viceversa.

The new associates squeezed states are defined by

]ws,q > _-Sqlw, s > (44)

where S_ has been introduced in eq. (41), It is inmediate to perform in this case similar calculations

to what has already been done for the previous case. Results turn out to be mathematically simpler

and physically interesting. We get

< ,,>,=< ,_,>c,,=i(w- _)ch2+ i,,h2(_e''- w_-"'), (45)

< p, >,= 2-'(W + s)ch 2 + 2-'sh2(We"" + se-"'). (46)

In addition one finds that (A,)_ = (A,.)I = 0. Finally the variances of the canonical variables
attain the respective forms.

(A_r)_ = 4-'e"(1 -cos2@) + 4-'e-"(1 + cos2_) = (Apt,)_, (47a)

(Ap,)_ = 4-'e'(1 + cos2_o) + 4-'e-'(1 --cos2_o) = (Ay)_, (47b)

Both uncertanties coincide, their value being

2 2 2 2
(Ax)q(Apr)q -- (Ay)e(Apv), r -" 4-1(chr 2 -- shr_cos22_). (48)

For _ = kr/2 we obtain squeezing and minimun uncertainty.

In conclusion we feel these coupled squeezed states (44) are the natural ones for introducing

squeezing in the Landau system. We have shown they behave in a simpler way then those defined

in ref. [3] while they also lead to physical squeezing.
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