WAVE AND PSEUDO-DIFFUSION EQUATIONS FROM SQUEEZED STATES

Jamil Daboul
Physics Department, Ben Gurion University of the Negev, Beer Sheva, ISRAEL. Bitnet:DABOUL@BGUVMS

Abstract

We show that the probability distributions $P_n(q,p;y) := |\langle n|p,q;y \rangle|^2$, which are obtained from squeezed states, obey an interesting partial differential equation, to which we give two intuitive interpretations: as a wave equation in one space dimension and also as a pseudo-diffusion equation. We also study the corresponding Wehrl entropies $S_n(y)$, and show that they have minima at zero squeezing, $y = 0$.

1 Introduction

This talk is based mainly on a work which was done in collaboration with Salomon Mizrahi from Brazil.

Squeezed oscillator states are defined in terms of the bosonic creation and annihilation operators, $a^\dagger := \frac{1}{\sqrt{2}}(x - \frac{p}{\hbar})$, and $a := \frac{1}{\sqrt{2}}(x + \frac{p}{\hbar})$, as follows:

$$|z;\xi\rangle = |p,q;\xi\rangle := \mathcal{D}(q,p)S(\xi)|0\rangle, \text{ where } z := (q + ip)/\sqrt{2},$$ \hspace{1cm} (1)

and $|0\rangle$ is the ground state of the harmonic oscillator. Both \mathcal{D} and S are unitary operators. \mathcal{D} creates the coherent state, and is defined by

$$\mathcal{D}(q,p) := \exp[z a^\dagger - z^* a] = \exp[ipx - q \frac{\partial}{\partial x}],$$ \hspace{1cm} (2)

and $S(\xi)$ is the squeezing operator:

$$S(\xi) := \exp[\frac{1}{2}(\xi a^2 - \xi^* a^2)],$$ \hspace{1cm} (3)

where ξ is a complex variable. For $\xi = 0$, we recover the ordinary (unsqueezed) coherent states. The squeezed states satisfy the completeness relation, $\int |p,q;\xi\rangle \langle p,q;\xi| \frac{dp dq}{2\pi} = 1$, for every ξ. Therefore,

$$\int P_n(q,p;\xi) \frac{dp dq}{2\pi} = 1, \text{ where } P_n(q,p;\xi) := |\langle n|p,q;\xi|n \rangle|^2,$$ \hspace{1cm} (4)

where $|n\rangle$ is the number state. If we interpret the real parameters q and p as the position and momentum variables, then (4) allows us to interpret the non-negative functions P_n as probability distributions in the (q,p)-phase plane, for every n and ξ.

377

PRECEDING PAGE BLANK NOT FILMED
In this talk, I shall consider these \(P \) for real values of the squeezing parameter \(\xi \), which will be denoted by \(y \). In particular, I shall show that the \(P_n(q, p; y) \) satisfy the interesting partial differential equations (9) and (12), to which two intuitive interpretations can be given. Finally, I shall show that the Wehrl entropy \(S_n(y) \) of the \(P \) must have their minima at zero squeezing, \(y = 0 \).

2 Explicit Form of the Distributions \(P_n \)

The distribution \(P_n(q, p; \xi) := |\langle n|p, q; \xi \rangle|^2 \) gives the probability of finding \(n \) bosons (photons) in the squeezed states \(|q, y; \xi \rangle \). It is a physically important quantity, and it has been calculated by different methods. The dependence of \(P_n(q, p; \xi) \) on \(n \) was studied by Schleich and Wheeler [2]. For \(\xi = y \), the \(P_n \) is given by the following complicated expression [1,3,7]:

\[
P_n(q, p; y) := |\langle n|p, q; y \rangle|^2 = \frac{2\sqrt{\gamma}}{2^n n!(\gamma + 1)} |\tilde{H}_n(2, \eta; w)|^2 \exp \left[-\frac{q^2 + \gamma p^2}{1 + \gamma} \right], \quad n \geq 0,
\]

where

\[
\gamma := e^{2y}, \quad \eta := \frac{1 - \gamma}{1 + \gamma}, \quad \text{and} \quad w := \frac{q + i\gamma p}{\gamma + 1},
\]

and where \(\tilde{H}_n(2, \eta; w) \) are the generalized Hermite polynomials (\(\mathcal{GHP} \)), which are defined in terms of the raising operators \(R(\alpha, \beta; x) = \alpha x - \beta \frac{\partial}{\partial x} \), as follows [1]:

\[
\tilde{H}_n(\alpha, \beta; x) = R^n(\alpha, \beta; x) \cdot 1 = \sum_{s=0}^{[n/2]} \frac{n!}{(n - 2s)!s!} \left(\frac{-\alpha \beta}{2} \right)^s (ax)^{n-2s}.
\]

These polynomials are equal to the standard Hermite polynomials for \(\alpha = 2 \) and \(\beta = 1 \). In the limit, \(\beta \to 0 \), these \(\tilde{H}_n(x) \) becomes simple powers of \(x \): \(\tilde{H}_n(0, 0; x) = \alpha^n x^n \). Therefore, in the limit of zero squeezing, \(\gamma \to 1 \), we have \(\eta \to 0 \), so that the above \(\mathcal{GHP} \)'s become simple powers of \(w \). Thus, for \(y \to 0 \), equation (5) gives the following well-known Poisson distribution of the unsqueezed coherent states:

\[
P_n(q, p; 0) = \frac{\rho^{2n}}{2^n n!} \exp \left[-\frac{\rho^2}{2} \right], \quad n \geq 0, \quad \text{where} \quad \rho^2 := q^2 + p^2,
\]

When discussing probability distributions, it is useful to think of the regions that are surrounded by the equipotential curves, \(P_n(q, p; y) = \text{const.} \); I shall call these regions potential regions. Thus, the potential regions of the above Poisson distribution \(P_n(q, p; 0) \) are concentric circles in the \((q,p) \)-plane. But for \(y \neq 0 \), these regions will have approximately elliptical shapes, whose the major axes lie along the \(p \)-axis for \(y < 0 \) and along the \(q \)-axis for \(y > 0 \). These regions become more elongated in one direction and narrower in the other, as \(|y| \) increases.

3 The Partial Differential Equation for the \(P_n \)

Since the integral (4) of the distributions \(P_n(q, p; y) \) over the whole \((q,p) \)-space remains constant under squeezing, it is useful to think of the change of \(P_n(q, p; y) \) as functions of \(y \) as a
redistribution of probability densities in phase space, which maintains the positivity condition \(P_n(q,p;y) \geq 0 \) for all \(y \). This redistribution of the \(P_n(q,p;y) \) is governed by the following interesting and amazingly simple partial differential equation:

\[
\frac{\partial}{\partial \gamma} P_n(q,p;y(\gamma)) = \frac{1}{4} \left(\frac{\partial^2}{\partial q^2} - \frac{1}{\gamma^2} \frac{\partial^2}{\partial p^2} \right) P_n(q,p;y(\gamma)) , \quad \text{where} \quad \gamma := e^{2\nu} .
\]

(9)

This equation was originally obtained [1] by straightforward but lengthy differentiation of the expression (5), and by using the following property of the \(G_P \) [1]:

\[
\frac{\partial}{\partial \eta} \tilde{H}_n(\alpha,\eta,w) = -\frac{1}{4} \frac{\partial^2}{\partial w^2} \tilde{H}_n(\alpha,\eta,w) .
\]

(10)

However, we can now derive it by two other more general methods [5], as reported in the summary section.

4 Interpretation as Wave and Pseudo-Diffusion Equations

I shall now present two possible intuitive interpretations of the above differential equation:

(I) D'Alembert or Wave Equation: The following is a new interpretation, which was not discussed in [1]: For a fixed squeezing parameter \(y \), equation (9) looks like the wave equation for one space dimension \(q \), if we think of the \(p \) variable in (9) as the time variable \(t \):

\[
\left(\frac{\partial^2}{\partial q^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) \Phi(q,t;y) = -4\pi \rho(q,t;y) , \quad \text{where} \quad \rho(q,t;y) = -\frac{1}{\pi} \frac{\partial}{\partial \gamma} P_n(q,t;y(\gamma)) .
\]

(11)

In this interpretation, the parameter \(\gamma \) would then play the role of the speed of light \(c(n) \) in matter, which depends on the parameter \(y \), similar to the dependence of \(c(n) \) on the index of refraction index \(n \). If the \(P_n \) are thought of as electromagnetic potentials \(\Phi(q,t;y) \), then \(4\frac{\partial}{\partial \gamma} P_n(q,p;y(\gamma)) \) will play the role of a time-dependent charge distributions \(-4\pi \rho(q,t;y)\).

(II) Pseudo-Diffusion Equation: By substituting \(\frac{\partial}{\partial \gamma} = 2e^{2\nu} \frac{\partial}{\partial \gamma} \) into (9), we obtain a more symmetric differential equation for the \(P_n \):

\[
\frac{\partial}{\partial y} P_n(q,p;y) = \frac{1}{2} \left(e^{2\nu} \frac{\partial^2}{\partial q^2} - e^{-2\nu} \frac{\partial^2}{\partial p^2} \right) P_n(q,p;y) .
\]

(12)

This equation is also new and permits a more pertinent intuitive understanding of the redistribution process of the \(P_n \), by comparing (12) with the diffusion equation in two dimensions [6]:

\[
\frac{\partial}{\partial t} T(q,p;t) = \sigma \left(\frac{\partial^2}{\partial q^2} + \frac{\partial^2}{\partial p^2} \right) T(q,p;t) ,
\]

(13)
where σ is the diffusion coefficient. Equations (12) and (13) are similar, if we interpret the squeezing parameter y as the time variable. However, the two equations differ in two interesting aspects:

1. The sign in front of $\frac{\partial^2}{\partial y^2}$ in (12) is negative rather than positive. Such a "negative diffusion coefficient" leads to "infusion" rather than diffusion in the p-direction. Consequently, as y increases, the equi-probability curves, $P_n(q,p;y) = \text{const.}$, move towards the origin along the p-axis, but away from the origin along the q-axis. Therefore, we expect the probability regions to be concentric elongated "quasi ellipses" which are extended along the p-axis for $y \to -\infty$. They become more and more circular as y approaches zero, and then stretch outwards along the q-axis, as $y \to \infty$. For the above reasons, we shall call equations (9) and (12) "pseudo diffusion equation".

2. The "diffusion coefficients" $\exp[2y]/2$ and $-\exp[-2y]/2$ and in front of $\frac{\partial^2}{\partial y^2}$ and $\frac{\partial^2}{\partial p^2}$ in (12) depend on y. For $y \to +\infty$, the term $\frac{1}{2} \exp[2y]/2 P_n$ dominates the r.h.s. of (12), whereas for $y \to -\infty$, the second term dominates. This dependence on y can be given an interesting intuitive explanation: Let us consider the redistribution process when y is very large: In this case the probability densities $P_n(q,p;y)$ are extended in the q-direction and tightly squeezed or compressed in the p-axis, which makes it difficult to compress them further along the p-axis. For this reason the "infusion coefficient" becomes so small, namely $\propto \exp[-2y]$. In contrast, the diffusion along the q-axis must become faster and faster, in order to diffuse all the incoming density flux from the other orthogonal p-direction, which is entering the cigar-shaped potential regions through their lengthy boundaries.

5 The Wehrl Entropy for the P_n

A useful measure for the information content of the probability distributions $P_n(q,p;y)$ is the Gibbs or Wehrl entropy $[7]$, which is defined by

$$S_n(y) := -\int P_n(q,p;y) \ln P_n(q,p;y) \frac{dp dq}{2\pi}.$$ \hspace{1cm} (14)

Because of the symmetry $P_n(q,p;-y) = P_n(p,q;y)$, the entropy (14) is even in y: $S_n(-y) = S_n(y)$. Therefore, at $y = 0$ each $S_n(y)$ must have either a maximum or a minimum. We shall now argue that $S_n(0)$ should correspond to a minumum: We assume that $S_n(y)$ does not oscillate as a function of y. Therefore, it is enough to argue that $S_n(y)$ grows with $|y|$ for large values of $|y|$. For large positive y, equation (12) behaves essentially like a one-dimensional diffusion equation in the q-variable. But it is well-known that the solutions of diffusion equations lead to entropies which increase with time $[6]$. Therefore, the $S_n(y)$ must increase as $y \to \infty$. But since the $S_n(y)$ are even in y, they must also grow as $y \to -\infty$. Hence, the $S_n(0)$ must lie at the bottom of the curves $S(y)$ vs. y.

Finally, we note that the von Neumann entropy $S_{vn}(\rho) := -\text{Tr}(\rho \ln \rho)$ for the pure states $\rho := |n\rangle \langle n|$ must vanish. In contrast, explicit calculations of the Wehrl entropies of the Poisson
distributions (8) shows that $S_n(0) \geq 1$ for all n, in accordance with a conjecture by Wehrl [7], which was proved by Lieb [8].

To summarize this section: in contrast to diffusion equations, where the entropies of their solutions always increase with time, the entropies $S_n(y)$ for the solutions of the above pseudo-diffusion equation first decrease monotonically as y grows from $-\infty$ to zero, but then increase monotonically as y grows from zero to $+\infty$.

6 Summary and Outlook

Two equivalent partial differential equations (9) and (12) were presented and then interpreted, as wave and as pseudo-diffusion equations. The probability densities $P_n(q, p; y)$ (5) provide an infinite number of their solutions.

By the time of writing the present lecture notes, we succeeded in proving, by two general methods, that the expectation values $\langle q, p; \xi | O | q, p; \xi \rangle$ of an arbitrary operator O, satisfy a generalized version of the above partial differential equations, which also include rotations, i.e., for the general squeezing $\xi = re^{i\phi}$. Interesting examples of O are the number operators N and N^2; their expectation values provide the simplest solutions of (9) and (12). Also the projection operator $|q, p; \xi \rangle \langle q, p; \xi |$, and consequently its Wigner function, satisfy these equations.

References

