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Abstract

Finite difference schemes for the evaluation of first and second derivatives are presented.

These second order compact schemes were designed for long-time integration of evolution equa-
tions by solving a quadratic constrained minimization problem. The quadratic cost function

measures the global truncation error while taking into account the initial data. The resulting

schemes are applicable for integration times fourfold, or more, longer than similar previously

studied schemes. A similar approach was used to Obtain improved integration schemes.
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1 Introduction

The simulation of hyperbolic partial differential equations often requires long-time integration.

The physical phenomena described by these equations typically possess a range of space and time

scales, turbulent fluid flow is a common example. Accurate numerical simulation of this type o_

processes requires proper representation of all the relevant physical scales in the numerical model.

These requirements lead recently to new interest in Pade approximations also known as compact

finite difference schemes [7].

Compact finite difference schemes had long been known and used in numerical analysis [1, 2, 3].

They offer a means of obtaining high order approximations to differential operators using narrow

stencils. This is achieved by treating the sought derivatives as unknowns and solving a system of

equations for them. Typically, the resulting matrices are tridiagonal or pentadiagonal, which can

be efficiently solved .

In [7] a class of highly accurate compact schemes for first, second and higher derivatives were

presented and analyzed. A notion of resolving ej_iciency was introduced which should measure

the accuracy with which the finite difference approximation represents the exact solution over

the full range of length scales that can be realized on a given grid. This criterion was then used

to compare various schemes and motivated the design of a new class of schemes, the so-called

schemes with spectral like resolution. These are fourth order pentadiagonal systems with seven

points stencils. Their improved resolution characteristics were obtained by giving up on high

formal accuracy; instead, requiring that the symbol of the discrete difference operator should

agree with the differential operator at three prescribed high frequencies. However, the resolving

efficiency is a too crude measure as it assumes that all frequencies occur with similar magnitude in

the initial data. In the present paper it is shown that for problems with various initial conditions

these schemes are far from optimal.

A different measure for evaluating finite difference schemes is the L2 norm of the local trunca-

tion error. This measure which takes into account the Fourier components present in the solution

and their amplitude was applied in [9] to design explicit time marching schemes (i.e., discretiz-

ing time and space simultaneously) by solving analytically constrained minimization problems

with quadratic cost. This error measure seems more adequate for comparing difference schemes.

However, the simultaneous treatment of time and space results in very complex optimization

problems. The generalization of the approach of [9] to problems in higher dimensions requires

solving nonlinear constrained optimization over a large set of parameters. It is also hard to apply

that approach to compact schemes. This complexity and the use of analytic rather than numerical

methods makes the suggested approach impractical.

In [4] a heuristic derivation was done by minimizing the weighted error (in the Fourier space)

of the discrete and continuous operators.

The present paper uses the same cost function as [9] with several important differences. First,

improved bounds on the truncation error weie derived. These enabled us to treat time and

space discretizations separately. This greatly simplifies the minimization problem by reducing

it to two lower dimensional problems. Further simplification is obtained by optimizing each

partial derivative separately, instead of approximating the whole differential operator as was done

in [9]. These reductions of problem complexity resulted in a simple and general approach to

synthesis of discretization schemes. It enabled us to design highly accurate compact difference

schemes and integration formulas for various operators and initial data. The resulting second



orderapproximationsprovedto be robust to perturbationsin the spectrumof the initial data,
exhibiting .,resolution superior to other known schemes.

The organization of the paper is as follows. In Section 2 Fourier analysis is used to obtain

bounds on the truncation error. In section 3 approximations to derivatives are presented, for the

first and second derivatives and first derivative at mid cell points. Appendices A-C list coefficients

for these derivatives for various stencils and initial conditions. Improved time integration schemes

are developed in section 4, and their coefficients are listed at Appendix D. Section 5 discusses

generalization of the present approach to more complex problems. Numerical results are presented

in section 6. Concluding remarks are made in section 7.

2 Bounds on the truncation error

The application of Fourier analysis for the design and evaluation of finite difference schemes can

be found in many sources, e.g., [9, 10]. In [12] the use of Fourier analysis in the numerical

approximation of hyperbolic problems is extensively discussed.

In the following section bounds on the L2 norm of the error in the discrete solution are derived,

accounting for the effect of discretization both in space and time. These estimates are used in

subsequent sections to design highly accurate schemes.
Consider a linear constant coefficient partial differential equation with periodic boundary

conditions of the form :

cOu = Lu (2.1)
0t

u(x,o) = uo(x) (2.2)

Further assume that the solution of equation (2.2) does not grow in time.

The discrete analog of this equation can be written as :

u_ +' = P(h, At)u_ (2.3)

u_, = uo (2.4)

where h is the meshsize in space, and P(h, At) is a stable finite difference approximation.

We would like to bound the L2 norm of the error in the discrete solution, for the initial value

Uo, given by :

e2(,,At;-o) = _112 -Ile_"m',,o- P"(h, At)uoll 2 (2.5)

In the sequel t will be used instead of nAt to simplify notation. The Fourier transform of eq.

(2.5)yields

Where L h is the discrete operator approximating L, and L, _h are their corresponding symbols.

Thus, the space and time discretizations errors can be bounded separately.



DenoteL(wh) = Ln(wh) + L,(wh) for the real and imaginary parts of L(wh), respectively;

and use a similar decomposition for Lh(wh). Then

eL(_h)t--eLh(_h)*--eL6'h)t(I- e(L_('_h)-L*('_h))te(g_(_h)-LR(_h))0 (2.8)

The assumption that the solution does not grow in time implies that

leL(c°h)q < 1 t >__0 (2.9)

Assume that the discrete solution does not grow in time, either. That is

leLh(_'h)tl <_ 1 t > 0 (2.10)

For real numbers 6, a with a < 0, simple geometric considerations yield the following bound

ll - eiae_[ <__[O]+ [1 - e_[ (2.11)

Combining bounds (2.9) and (2.11) and assuming ]_,h(wh)- LR(wh) < 0 results in :

[eL("_h)t- eL%'h)t[ < [Zh(wh) - Z,(wh)lt+ il- e(L%(_'h)-t'_('_h))*i(2.12)

_< ILh(wh)- Lt(wh)lt + IL_(wh)- LR(wh)lt (2.13)

If L_(wh) - LR(wh) > o, this bound can be obtained using the same argument when factoring

eLh(_h)t in (2.8).

Denote by _(t; u0) the error due to spatial discretization only, when the initial data is u0. For

a final time T, using (2.13) yields :

_'=(T; uo) _ r =/__ (IL_h(_oh)- LK_h)[ + ]L}_(oah)- LR(_oh)[) 2 I_o(.,h)l=d_ (2.14)

Therefore, a difference scheme minimizing the integral (2.14) with respect to initial value uo

will better resolve, in the L2 norm sense, the frequencies occurring in the solution.

The time integration operator satisfies :

eLh(wh) TM - Pn(wh)= (e Lh(_h)at- P(_h)) E eLh("_h)JatPn-'-J(wh) (2.15)
j=l

Under the previous assumptions

Therefore

where C = O(1). Hence

leL_(_h)h*I < 1 (2.16)

IP(.,h)l _< 1 (2.17)

n-i

I__, eLh(_h)F't P'_-'-J(wh)[ < Cn (2.18)
j=l

CT [eLh(_h)at _ p'(wh) I[eU'(_h) ' -- Pn(_h)l _ -_" (2.19)



Denoteby _'(t;uo) the error due to time discretizati0n only, when the initial value is uo. For a

final time T, the bound (2.19) implies :

(2.20)

Combining of these estimates yields a bound on the L2 norm of the global truncation error :

e2(T; uo) _< T 2 f__ []-,hi(wh) - L,(wh)] + ILh(wh) - LR(wh)] + _..CAteLh(_h)a' -- P(wh)] ]fi0(wh)]2dw

(2.21)
These estimates will be used in the following sections to design improved compact schemes and

integration formulas.

3 Approximating derivatives

3.1 Approximation of the first derivative

Consider a uniformly spaced mesh whose nodes are indexed by i and its meshsize is given by

h = :_, where N + 1 is the number of grid points. The wariable at node i is xi = ih and the

function value at the nodes, fi = f(xi), are given for 0 < i < N. An approximation f" to the first

derivative _(xi) should be computed as a linear combination of the function values at neighboring

grid points. Compact finite difference schemes regard the approximation f_ as unknown and a

system of equations is solved to approximate the first derivative at all nodes, simultaneously.

Thus, unlike in finite differences, the derivative at node i depends on function values at all other

nodes.

Following [7] we use approximations of the the form :

flf_-2 + _f_-I + f_ + c_f_+l + flf_+2 = cfi+3 6h- fi-3 + b f_+2 4h- fi-2 + afi+l 2h- fi-1 (3.1)

A second order approximation can be obtained by adding a constraint that the Taylor expansion

on both sides should agree until the second order term. The following relation must hold :

a +b+c= l + 2a+ 2fl (3.2)

Higher order schemes may be obtained by further matching the next terms in the expansion [7].

However, in this paper merely second order accuracy is enforced.

The symbol of the differentiation operator is given by :

].,(wh) = iwh (3.3)

Whereas the symbol of the discrete approximation (3.1) is

L_(wh) = iasin(wh ) + b sin(2wh)=+ _ sin(3wh)
1 + 2a cos(wh)+ 2fl cos(2wh)

(3.4)



In view of the bound (2.14), define the following constrained minimization problem which its

solution should yield a compact scheme with improved resolution properties :

rain [_ Lh(wh)- L(wh)[ 21¢z(wh)12&.o
_,b,_,_,_ 3-[

(3.5)

under the constraint

a+b+c= l + 2a+ 23 (3.6)

where L(wh) and Lh(wh) are given by (3.3) and (3.4), respectively.

Although the problem was formulated as a constrained minimization problem, it can be trans-

formed by substitution to an unconstrained minimization problem on a reduced set of parameters.

Moreover, setting some of the parameters to zero further reduces the dimension of the problem.

Since tridiagonai systems of equations are more amenable to numerical solution than pentadi-

agonai ones, setting 3 = 0 seems a plausible choice. Similar considerations might suggest using

a narrower stencil obtained by setting c = 0, as well. All those possibilities are presented in

Section 6, and several sets of coefficients for different initial data are listed in Appendix A.

3.2 Approximation of the second derivative

The derivation of compact schemes for the second derivative proceeds in an analogous way to the

first derivative. The starting point is an approximation of the form

3tH ±a¢, +¢,,+ClCH =Cfi+ 3-2fi+fi-3 _.bfi+2-2"f_+fi-2 a f_+l-2fi+fi-1
Ji-27- .q-1 Ji Ji+l +/3f[+2 9h 2 4h 2 + h 2

(3.7)

where f[_ is the approximation to the second derivative at node i. Matching the Taylor series

coefficients on both sides of (3.7) yields condition (3.2) for the second order accuracy.

The symbol of the second derivative is given by :

i(wh) - -w2h 2 (3.8)

The symbol of the discrete approximation (3.7) is :

Lh(wh) _ 2a (cos(wh)- I)+_ (cos(2wh)- I)-{-_ (cos(3wh)- I) (3.9)
1 + 2acos(wh) + 23 cos(2wh)

The constrained minimization problem which solution is the sought scheme can be formulated

as -'

min [_ I].,h(wh)- L(wh)] 2 ]_(wh)12dw (3.10)

under the constraint

a+b+c= 1 +2a+23

Now, however, ]_,(wh) and Lh(wh) are given by (3.8) and (3.9), respectively.

(3.11)



3.3 Approximating first derivative on a cell centered mesh

The approximation of the first derivative at the cell centered mesh is of the form :

fi+} - fi-} + b fi+_ - f_-_ + f_+½ - fi-½
/_f_-2-Fc_f:_1-Ff_+ c_f_+1-]-flf_+2= e 5h 3h a h

The second order ofthe approximation isguaranteed by condition(3.2).

The symbol of the differentiation operator is :

(3.12)

L(wh) = iwh (3.13)

While the symbol of the discrete approximation (3.12) is :

Lh(wh) = "2a sin(-_h) + _ sin('_'h) + _ sin(_--q) (3.14)
1 + 2_ cos(wh)+ 2fl cos(2wh)

A constrained minimization problem of the same type as in the previous sections was formulated

and solved for these symbols.

4 • Approximation of the integration operator

The design of integration schemes is substantially limited by the stability requirement which

renders high order schemes computationally costly. It is well known [5] that an explicit k th order

Runge-Kutta method, with k > 4, should employ at least k+ 1 stages or function evaluations. This

large number of function evaluations makes high order schemes impractical. Therefore, efforts
have been made to obtain schemes of lower order with improved characteristics. Within this

approach, the free variables in the Runge-Kutta schemes were set to yield better truncation error

[5] or extended stability region [6]. A generalization of this idea is to give up on formal accuracy

in order to obtain better approximation of the wavenumbers relevant to the problem solved.

The discrete time integration of linear constant coefficient partial differential equation

_U

O--i= Lu (4.1)

amounts to approximation of the exact discrete solution eLhtuo. Therefore, the integration scheme

may be written as
?%

p,_(LhAt) = _ai(LhAt) i (4.2)
i----O

where ai may depend on L h. The order of the integration scheme is determined by the number

of first terms ai which agrees with the Taylor expansion of e_.

The derivation of the integration schemes is similar to that of derivative discretization, i.e.,

a constrained quadratic optimization problem is formulated based on the error estimate (2.20).

The solution of this minimization problem yields an improved integration scheme. However, the

derivation of integration schemes is more involved than the generation of compact schemes since

the stability condition leads to a nonllnearly constrained minimization problem.

6



Following(2.20)the nextoptimizationproblemis defined:
_r

min le - Lh(oah)At)12la( oh)12 
ai

(4.3)

subject to the constraints

1 (4.4)
a_ = i'_ O<i<p

(4.5)IP (Lh(wh)At)l 2 < 1 e

where L h is the discrete approximation of L and p is the order of the n stage formula. Condition

(4.4) can be treated by substitution, but the stability condition requires an explicit treatment.

In accordance with our general approach, we believe that second order formal accuracy suffices.

It remains to determine the number of stages in the integration formula. This should be chosen

to assure that the error in space and time discretizations (2.14) and (2.20), respectively, will be

of similar magnitude. In the present work five stage schemes of second order were investigated,

i.e., n = 5 and p = 2. Integration formulas were obtained for optimized seven point tridiagonal

compact schemes approximating the first derivative, and were tested for the advection equation

in one and two space dimensions.

An important feature of the present approach is that once a feasible minimum has been found

for a prescribed initial value and a given CFL number, the generated scheme will be stable for

this data. This might enable the use of somewhat larger time steps.

5 Approximation of differential operators

The method introduced in the previous sections for generating optimal finite difference approxi-

mations for derivatives and time integration schemes for linear constant coefficient equations can

be extended to more general equations. These ideas can be easily adapted to handle with similar

efficiency more involved problems.
The error bounds derived in Section 2 can be generalized for d dimensional problems; noting

that the same proof holds for the d dimensional case after changing the integration over [-_, _]

to multi integration over the box [__,_]d. This suggests that approximation of the differen-

tial equation should be obtained by solving constrained optimization problems in d dimensional

Fourier space for a large set of parameters. For some equations, solving this large minimization

problem might be essential to achieve accurate schemes. Quite often, though, a set of simpler

minimization problems can be obtained by optimizing each partial derivative separately, resulting

in highly accurate approximations.

The approach, which was successfully tested in the present paper, divides the optimization

process into two stages. In the first stage a set of schemes are designed for a large enough

variety of typical initial data (e.g., Gaussians with different parameters, in our examples). This

precomputation is performed once and its results are used in subsequent simulations. In the

second stage, the actual simulation, the initial data uo is Fourier transformed to obtain _o.

The discretization of the partial derivatives is determined by approximating fie as a product of

one dimensional functions for which optimized schemes wore (losigne(I. Eac'h partial derivative



is discretizedusingthe correspondingonedimensionaloptimized scheme. The time marching

scheme is selected from the set of scheme corresponding to the approximating one dimensional

functions. In the present work the selection was done by computing the L2 error norm of each

candidate integration scheme when applied to the approximate initial data with the already

determined discretizations, and selecting the minimum norm scheme. This computation, too, can

be done prior to the actual simulation for a large set of approximated initial data. Thus, the

marching scheme selection can be done by looking up in a precomputed table. The robustness of

the proposed schemes to perturbations in the initial data yields this optimization very efficient;

as can be seen in the numerical results presented in Section 6. It should be noted that the

time required to obtain an appropriate scheme using this approach is negligible relative to the
simulation time.

When the frequencies present in the solution change with time, e.g., due to time dependent

source term, the computation of the optimized schemes should be repeated once a large cumulative

change has occurred. Still,.the relative cost of of this computation is minimal.

The Fourier transform gives the energy content of the whole initial data. It may occur, that

the initial data is smooth at some regions of the computational domain and oscillatory in others,

in which case the designed approximation will give good performances over the whole domain.
One can do better by computing a different scheme for each region and using a weighted sum

of the resulting schemes near region boundaries. This requires computing the Fourier transform

locally in each region. The localization to a particular region can be achieve by multiplying u0 by

a C °O function with a compact support which encloses the region.

In some cases, systems of equations may be treated in a similar way. Look first at a one

dimensional first order system

ut = Au_ (5.6)

u(x,0) = u0(x)

where A is a p × p symmetric matrix. Let A = p-1AP be a diagonal matrix, and denote v = Pu.

The discretization of the system

vt = Av, (5.7)

v(x,O) = Puo(x)

can be done in an analogous way to the scalar case, except for the time marching scheme which

should be chosen from a set of candidate schemes (as for the multidimensional scalar equations).

Thus, highly accurate discretization of the system (5.6) can be achieved by first discretizing (5.7)

and using the identity u_ = p-1 v_. For systems in higher dimension

fi Ou (5.8)
u_ = Ai-_x i

i--'--1

u(x,0) = no(x)

each partial derivative should be optimized separately. In this case, we require that all Ai will be

symmetric, but it is not necessary that they are simultaneously diagonalizable.

The proposed schemes might be useful for nonlinear equations,-as well. There, one should

design the schemes for the linearized equation; and will be obliged modify them once a large

change in the amplitude of the wavenumbers appearing in the solution occur.



6 Numerical results

6.1 Approximation of derivatives

The constrained minimization problem (3.5) for the space discretization can be easily solved by

substitution using (3.2). Differentiation of the resulting quadratic form provides a set of necessary

conditions holding at the minimum. This nonlinear system can be solved using Newton method,

yielding a local minimum. Since the schemes obtained using this process significantly improve

previously known schemes [7], no attempts were made to find the other zeroes of the nonlinear

system, searching for better minima.

Three types of schemes were studied : (a) tridiagonal with five points stencil, i.e., fl = c = 0 ,

(b) tridiagonal with seven points stencil, i.e., fl = 0, (c) pentadiagonal with seven points stencil.

The initial approximation to the Newton iteration was, typically, a compact scheme with the same

structure, taken from [7].

It can be observed, in figures 1 and 5, that the modulos of symbol of the optimized penta-

diagonal scheme for the first and second derivative is larger then the modulus of the differential

symbol. This error is exceedingly larger for schemes generated to approximate narrower spectra.

The overshooting occurs in the highest end of the spectrum for wavenumbers not appearing in

the solution. However, since the stability of a scheme is determined by the values assumed by

Lh(wh) [11], this type of scheme is applicable only with small CFL. Moreover, the desired ro-

bustness is limited by this phenomenon. Therefore, this behavior of the approximation can not

be ignored. A possible remedy can be found in searching for other minimizers of the quadratic

form. Using the tridiagonal scheme as initial approximation for the Newton process converged

to solutions without this limiting property but with reduced resolution, similar to the tridiago-

hal schemes. Other possible directions, e.g., further looking for other minima or penalizing in

the cost function for this behavior were not explored. This is since we believe that for practical

applications pentadiagonal systems are too costly to solve, whereas the tridiagonal schemes offer

similar resolution characteristics, are easier to solve and do not suffer from this deficiency. The

pentadiagonal scheme are given mainly for theoretical reasons as a counterpart to the spectral-like

approximations.

A proper appreciation of the superiority of the proposed schemes can be gained by integrating

with them hyperbolic equations for long time, provided the integration process introduces only

negligible numerical errors. This requirement necessitates either using high order integration

schemes or employing exact integration, as was done in the present work. The experiments

described in next subsections clearly demonstrate the superior behavior of the proposed optimized

schemes.

6.1.1 Approximation of the first derivative

Compact finite difference schemes were designed and tested for initial data of the form e -a_'2 for

several values of _. In Figure 1, the symbols of schemes corresponding to a = 2 are plotted, as

well as the weighted error

]L(wh)- Lh(wh)]l_(wh)[ (6.9)



forthemoreaccurateschemes.Thecoefficientsoftheoptimizedschemescanbefoundin Appendix
A. Thecoefficientsof the otherschemesweretakenfrom [7]. Forscheme(a) thecoefficientswere

a = _,_ = 0, a = ,b = _,c = 0 (6.10)

The coefficients of scheme (c) were

25 1 1= 0,a=

The coefficients of the spectral-like scheme (e) were

(6.11)

a = 0.5771439, fl = 0.0896406, a = 1.3025166, b = 0.99355, c = 0.03750245 (6.12)

It can be seen that each optimized scheme better approximates the differential operator than

its non-optimized counterpart. In Figure l, one can observe that although the symbol of the

spectral-like pentadiagonal scheme follows the differential symbol for more wavenumbers than the

tridiagonal scheme, the L2 norm of truncation error of tridiagonal scheme is somewhat smaller

for this data. This can be explained by noting that the error of the tridiagonal scheme is mainly

in the high frequencies while the spectral-like scheme has large error at the smoother Fourier

components where the present initial data has more energy. The spectral-like scheme attains

better resolution at the expense of larger error in lower frequencies. The error in the optimized

schemes is significantly smaller than in their counterparts. More precisely, computing the error

norms reveals that the error in the tridiagonal scheme is about six times larger than in the

optimized tridiagonal scheme while error norm of the spectral-like scheme is about seventeen

times larger than in the optimized pentadlagonal. The plot of the absolute value of the error
also reveals that the L2 norm was used as a minimization criteria. This can be seen from the

several sign changes of the error of the optimized schemes, being in accordance with the averaging

property of the chosen norm.

Figure 2 demonstrates the better resolution of the optimized scheme by exact integrating in

Fourier space on a 32 points grid with the pentadiagonal spectral-like scheme and the pentadiag-

onal optimized scheme the equation
OU OU

_ (6.13)
Ot Ox

a = 0.8 (a being the CFL number) was used. It is shown that at time T = 10000, the error in the

solution using the optimized scheme is smaller than the error at time T = 1000 when using the

spectral-like scheme. This suggests that the optimized scheme can be used for integration time

at least ten times longer than the spectral-like scheme, in close accordance with the ratio of the

error norms.

Figure 3 displays the scheme's robustness to perturbation in initial condition. The solution

integrated with the optimized scheme far better approximates the exact solution than the one

employing the spectral-like approximation, even for initial data different from the one it was

designed to resolve. This holds for both smoother and more oscillatory initial data. Although

those examples do not give a quantitative view on the relative efficiency of the schemes for those

initial data, one can see in both figures that by the time the solution with the optimized scheme

developed significant error the error in the one corresponding to the spectral-like scheme is so

large it no longer approximates the exact solution.

10



Figure4 showsatwodimensionalequationwhichdemonstratestherobustnessof theproposed
schemes.In this examplethe initial datawastakento be the Gaussiane -(°_+5_) rotated at an

angle of _. Then the program searched for initial data of the form e,(_'l_'_ +n2_]), for the integers

1 < nl,n2 _< 7 which yielded the best approximation to the initial data. The pentadiagonal

schemes optimized for initial data e -'_2 and e -'_2_'_ were then used to compute ux and uv,

respectively. In this example nl = 3 and n2 = 2. The resulting semi discrete system was solved

by exact integration in Fourier space on a 32 x 32 grid. The plot shows a cut through the solution in

the x direction containing the maximum point of the solution. While the solution corresponding

to the optimized disretization closely approximates the exact solution, the solution discretized

with the spectral-like scheme bears very little resemblance to the exact solution.

6.1.2 Approximation of the second derivative

The coefficients of compact schemes for various initial conditions of the form e -a_'2 can be found

in Appendix B.

Figure 5 plots absolute value of the symbol of the second derivative and the weighted error,

for a = 2. The parameters of the optimized schemes can be found in Appendix B. The coefficients

of the other schemes were taken from [7]. Scheme (a) is given by :

2 12 3

c_ = _-,/_ = O,a = _-,b = _-,c = 0 (6.14)

The coefficients of scheme (c) are :

9 696 - l191a 2454a - 294 1179a - 344 (6.15)
a = -_,_ = O,a= 428 ,b = 535 ,e = 2140

The coefficients of the spectral-like pentadiagonal scheme (e) are :

a = 0.50209266,fl = 0.05669169,a = 0.21564935,b = 1.723322, e = 0.1765973 (6.16)

It can be seen that the error in the non optimized schemes is significantly larger than in the

optimized ones. It is interesting to note that, again, for this specific data the L2 error norm of

the spectral-like scheme is about an order of magnitude larger than the non optimized tridiagonal

scheme. This phenomenon suggests that the resolution efficiency is a poor estimate for discretiza-

tions evaluation. Computing the error norms reveals that the error in the optimized tridiagonal

scheme is about seven times smaller than in the non optimized scheme, whereas the error in the

optimized pentadiagonal scheme is seventy times smaller than the spectral-like scheme, for this

given data.

The efficiency of the pentadiagonal schemes was compared by integrating the wave equation :

02 U 02 U
_ (6.17)

Or2 Ox 2

This equation was put in a system form :

(0--- 02

v t _

11



This systemwasexact integratedon a 32points grid and the resultsaregivenin Figures6-7
demonstratingthe improvedaccuracyof the optimizedschemeandits robustness,respectively.
Figure6 demonstratesthat the optimizedschemecanbeusedfor integrationtime 37 times,or
more,longerthan thespectral-likescheme.In Figure7the schemerobustnessisclearlyshownfor
initial datasmootheror moreoscillatorythan thedatafor whichtheschemewasdesigned.In both
cases,by the timea significanterroroccursin the solutiondiscretizedwith theoptimizedscheme
the solutioncorrespondingto the spectrallike schemetotally differsfrom theexactsolution.

Theinitial solutionand its approximation,for the twodimensionalproblemin Figure8 were
obtainedsimilarly to thoseof the examplein Figure4. While the solutionintegratedwith the
optimizedschemecloselyapproximatesthe exact solution, it is hard to seethat the solution
correspondingto thespectral-likeschemeindeedapproximatesthe sameproblem.

6.1.3 Mid cell approximation of the first derivative

Appendix C lists the coet_cients of schemes designed for various initial data. The coefficients of

the schemes taken from [7] are listed below. Scheme (a) is given by :

a = -_2,_ = O,a = 3 (3- 2ct),b= l (22a-1),c = O (6.19)

The coefficients of scheme (c) are:

75 37950 - 39725a, b 65115a - 3350 25669a - 6114
a = _-_, fl = 0, a = = , c = (6.20)31368 20912 62736

The coefficientsofthe tenthorderpentadiagonalscheme (f)are :

9675 683425 b 505175 69049a- '_- 577058 'a- 865587' 577058 'c- 11731174 (6.21)

The standard compact schemes give very good resolution in this form (see Figure 9), thus,

the improvement introduced by the optimized schemes is smaller. Optimizing the tridiagonal

scheme yields a 6.5 smaller error norm while optimizing the pentadiagonal scheme yields a 2.5

times smaller norm. In this case, the error norm of the optimized tridiagonal scheme is very close

to that of the non optimized pentadiagonal scheme.

An interesting option suggested by this approach was to optimize the _ operator in order to
d 2

get the best approximation for _-FJ, for given initial values. This has been done for the tridiagonal
scheme which was used to integrate equation (6.17). It was compared, in Figure 10, to the

tridiagonal scheme from [7] where both are used to approximate the second derivative in solving

the one dimensional wave equation in the system form (6.18). Again, the optimized scheme gives

significantly better approximation.

6.2 Approximate time integration

The constrained minimization (4.3)-(4.5) was solved by requiring that the solution will touch

the stability constraint at one point while maintaining global stability and and minimizing the

functional. The point which gives best result was found by exhaustive search. This straightforward

approach yielded the local minima reported in this paper. Somewhat better integration schemes

might be achieved by using more advanced optimization techniques [8].
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Accordingto the generalapproachoutlined in Section 5, one should choose an integration

scheme which yields truncation error of similar magnitude in time and space. Since the stability

region for several fifth order six stages explicit Runge-Kutta schemes intersects the imaginary

axis only in a small neighborhood of the origin [5, 6] disabling time marching with large CFL, the

optimized scheme was compared with the four stage fourth order Runge-Kutta. We preferred this

five stage scheme which has an error norm about five times larger than the space discretization to

the seventh order scheme which yields an error norm about eleven times smaller than the space

discretization because of its lower computational cost.

The analysis performed in Section 2 suggests that the integration operator should be opti-

mized with respect to the spatial discrete operator employed, i.e., to minimize I[p(Lh(wh)At) -

eLh(wh)atllL2 In the following examples L h is the tridiagonal approximation for _,d when initial

data is e -2W2 and _r = 0.8. Appendix D contains the coefficients of integration schemes for various

initial data when L h is the tridiagonal scheme optimized for the same initial data and a = 0.8.

Figure 11 plots the real and imaginary parts of e Lh(Wh)At versus the four stage fourth order

Runge-Kutta and the improved scheme. The norm of the imaginary part of the error was reduced

by a factor of 31 while its real part was reduced by merely a factor of 2.3.

Figures 12-13 shows the integration of the advection equation with those scheme on a 32 points

grid, demonstrating the superior efficiency and robustness of the proposed schemes. In Figure 12

one can see that the optimized scheme can be used for at least three times longer integration time

than the Runge-Kutta scheme applied to the tridiagonal scheme from [7]. The computed error

norms suggests the time marching error is dominant in all examples.
The two dimensional example in Figure 14 summarizes the approach suggested in this work.

It compares the optimized tridiagonal scheme combined with the appropriate integration formula,

to fourth order Runge Kutta applied to non-optimized tridiagonal discretization. Although the

analysis in Section 2 applies only to constant coefficient problems, this example shows it holds,

heuristicly, to variable coefficient equations, as well. The initial data for this problem was obtained

in a similar manner to that in example 4. However, instead of comparing the solutions computed

on the 32 x 32 grid to the exact solution, they are compared to the solution on a 64 x 64 grid

which was integrated with the optimized scheme designed for the narrowest computed Gaussian

(a = 7). The initial data for the finer grid was obtained by bilinear interpolation from the coarser

grid. It can be seen that the optimized scheme yields significantly more accurate solution.

7 Conclusion

A simple and general approach for the design of finite difference approximation of derivatives

and integration formulas was introduced. It was used to design compact finite difference schemes

for derivatives evaluation; and the resulting schemes were compared to previously known similar

schemes. The guiding line has been to improve the representation of the range of wavenumbers

appearing in the physical problem being solved, taking into account their relative amplitudes.

This lead to an L2 measure of the approximation. The resulting schemes combined adaptivity to

the specific initial data by the nature of their design and robustness to perturbations in the initial

data. The improved resolution had been demonstrated for several problems.

A similar approach was used to design improved integration schemes, taking into account the

spatial discretization as well as the initial data.
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Theapproachsuggestedin thispaperfor optimizingdiscreteoperatorscanbesimilarlyapplied
to higher:derivatives.Its applicabilityto moregeneralandcomplexoperatorsshouldbe further
investigated.

The useof theseideasto designboundaryconditionswill bepresentedelsewhere.
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A Coefficients of first derivative approximations for various ini-

tial conditions

e-W_

e-2W _

e-3W z

e_SW_

e-6_2

e- 7W2

schemes with/3 = c = 0

a = 0.3793894912, a = 1.575573790, b = 0.1832051925

a = 0.3534620453, a = 1.566965775, b -- 0.1399583152

= 0.3461890571, a = 1.5633098070, b = 0.1290683071

c_ = 0.3427812069, a = 1.5614141543, b = 0.124148259

c_ = 0.3408027739, a = 1.5602604992, b = 0.121345048

a = 0.3395099051, a = 1.5594855939, b = 0.119534216

= 0.3385987444, a = 1.5589295176, b = 0.1182679712

schemes with/3 = 0

e-w_ a = 0.4303030674, a = 1.5567577428, b = 0.3451622238, c = -0.0413138317

e -2_ a = 0.3991476265, a = 1.5636386371, b = 0.2563784492, c = -0.0217218334

e -3__ a = 0.3904091387, a = 1.5638887738, b = 0.2348222711, e = -0.0178927675

e -4_" a = 0.3863287472, a = 1.5637497712, b = 0.2252138483, c = -0.0163061252

e -5_" a = 0.3839604005, a = 1.5635937780, b = 0.21976694619, c = -0.0154399233

e -6_ a = 0.3824122042, a = 1.5634617985, b = 0.21625718276, e = -0.0148945794

e -v__ a = 0.3813206436, a = 1.5633544597, b = 0.21380659696, c =-0.0145197694

general schemes

e -_ a = 0.577940367i_ fl = 0.0890143475

a = 1.3030269541, b = 0.994883769, c = 0.0359987066

e -2_2 a = 0.5801818925, fl = 0.0877284887

a = 1.3058941939, b = 0.9975884963, c = 0.0323380724

e -3__ a = 0.5821143744,/_ = 0.0867224075

a = 1.3086733956, b = 0.9990906893, c = 0.0299094788

e -4_ _ = 0.5831688320,/_ = 0.0862000893

a = 1.3102698137, b = 0.9997174262, e = 0.0287506026

e -s_'_ a = 0.5838221871, _ = 0.0858844217

a = 1.3112828763, b = 1.0000513827, c = 0.0280789585

e -_ a = 0.58426518608, _ = 0.0856735831

a = 1.31197935750, b = 1.00025665126, c = 0.02764152958

e -v_ a = 0.58458494112, fl = 0.08552292859

a = 1.31248665912, b = 1.00039487751, e = 0.02733420278
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B Coefficients of second derivative approximations for various

initial conditions

schemes with _ = e = 0

e -_ a = 0.2285657609, a = 1.0139538409, b = 0.4431776810

e -_°_ a = 0.2028150072, a = 1.0598135170, b = 0.3458164974

e -3¢J_ _ = 0.1952770765, a = 1.0716695072, b = 0.3188846458

e -4w_ a = 0.1917151916, a = 1.0770076313, b = 0.3064227519

e -SJ" a = 0.1896428309, a = 1.0800332355, b = 0.29925242633

e -6JT a = 0.18828772017, a = 1.0819792783, b = 0.29459616204

e -TJ_ a = 0.18733255632, a = 1.0833354275, b = 0.29132968512

schemes with/3 = 0

e -W_ a = 0.3125176074, a = 0.7701351999, b = 0.9469577413, c = -0.0920577265

e -2_ a = 0.2702488609, a = 0.8863525584, b = 0.7065172637, c = -0.0523721002

e -3w2 oL = 0.2580699r54, a = 0.9170322739, b = 0.6425330979, c = -0.0434255409

"e _:-a_/" a = 0.2523894606, a = 0.9308701065, b = 0.6135153110, c = -0.0396064963

e -s°J_ a = 0.2491062584, a = 0.9387256232, b = 0.5969863585, c = -0.0374994649

e -6ta_ a = 0.2469677390, a = 0.9437849227, b = 0.5863166347, c = -0.0361660793

e -r-_7 .... a = 0.2454642305, a = 0.9473144209, b = 0.5788609571, c = -0.0352469171

general schemes

e -°/_ a = 0.5024750577,/3 = 0.0554440666

a = 0.2150536435, b 1.7246523136, c = 0.1761322914

e -2_2 a = 0.5041582074, _ = 0.0527585356

a = 0.2120465713, b = 1.7488409942, c = 0.1529459205

e -3°_2 a = 0.5053986368,/3 = 0.0512444502

a = 0.2112256102, b = 1.7609579037, e = 0.1411026601

e -4_" a = 0.5061009898,/3 = 0.0504756862

a = 0.2110263782, b = 1.7667867767, c = 0.1353401973

e -5__ a = 0.5065435817,/_ = 0.0500170894

a = 0.2109783634, b = 1.7701652358, e = 0.1319777431

....e -6°_ a = 0.5068465815,/_ = 0.0497133535

a = 0.2109761550, b 1.7723629924, c = 0.1297807226

e -r_" a = 0.5070666579/3 = 0.0494975852

a = 0.2109890794, b = 1.7739051293, c = 0.1282342776 E

L
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C Coefficients of mid cell approximation of the first derivative

for various initial conditions

e-wZ

e--2w2

e-3wZ

e-4Wz

e-5Wz

e-6Wz

e - 7w2

schemes with _ = c = 0

= 0.1824466564, a = 0.9847348088, b = 0.3801585039

= 0.1621215357, a = 1.0026558711, b = 0.3215872003

= 0.1560892225, a = 1.0076143702, b = 0.3045640747

a = 0.1532174394, a = 1.0099120548, b = 0.2965228240

= 0.1515399131, a = 1.0112348225, b = 0.2918450036

a = 0.1504402935, a = 1.0120939889, b = 0.2887865980

= 0.1496639344, a = 1.0126967653, b = 0.2866311035

schemes with _ = 0
i

e -_ a = 0.280353199½, a = 0.8656018611, b = 0.7202754832, c = -0.0251709460

e -2_ a = 0.2421691108, a = 0.9108711860, b = 0.5897758895, c = -0.0163088538

e -3_ a = 0.2311768224, a = 0.9233491904, b = 0.5531540626, c = -0.0141496081

e -4_ a = 0.2260281312, a = 0.9290969691, b = 0.5361564844, c = -0.0131971911

e -s_ a = 0.2230456380, a = 0.9323967450, b = 0.5263571378 ,c = -0.0126626068

e -6_ a = 0.2211004185, a = 0.9345368034, b = 0.5199847302, c = -0.0123206966

e -T_ a = 0.2197316282, a = 0.9360368674, b = 0.5155096846, c = -0.0120832956

general schemes

e -_ a = 0.3392424034, fl = 0.0126851467

a = 0.7880308119, b = 0.8956208871, c = 0.0202034010

e -2_2 a = 0.3364203680, _ = 0.0159838314

a = 0.7894607720, b = 0.8790559502, e = 0.0362916767

e -3w_ a = 0.3359766282, _ = 0.0164557610

a = 0.7895453413, b = 0.8768367139, c = 0.0384827231

e -4_2 a = 0.3358345755, _ = 0.0166014190

aO.78955615727, b = 0.87616875736, c = 0.03914707436

e -s_ a = 0.33577201042,_ ='0(0i666433833

a = 0.78955722003, b = 0.87588406207, c = 0.03943141540

e -6_ a = 0.33573907328,_ = 0.01669706335

a = 0.78955658369, b = 0.87573722427, e = 0.03957846531

e -7_ a = 0.33571963682, _ = 1.67162152050

a = 0.78955572985, b = 0.87565178238, c = 0.03966419181

17



schemes with/_ = O, designed to approximate

e -w_'_ a = 0.2949304593, a = 0.8473898079, b = 0.7718938474, c = -0.0294227367

e -2_ a = 0.2482825125, a = 0.9037600128, b = 0.6104318128, c = -0.0176268008

e -3_ a = 0.2349387889, a = 0.9190859222, b = 0.5656763757, c = -0.0148847202

e -4_ a = 0.2287385754, a = 0.9260661646, b = 0.5451127700, c = -0.0137017838

e -5_ a = 0.2251628777, a = 0.9300484196, b = 0.5333228985 ,c = -0.0130455627

e -6w2 a = 0.2228371850, a = 0.9326209622, b = 0.5256822919, c = -0.0126288841

e -7__ a = 0.2212037269, a = 0.9344193325, b = 0.52032910793, c = -0.0123409866

Coefficients of time integration scheme

third order schemes designed for a = 0.9 having ao - i, al = 1, a2 =

e -2W_ a3 = 0.166281 , a4 = 0.0397196, as = 0.0076705

-3u_2 a3 = 0.166407, a4 = 0.0409525, a5 = 0.0074510

-e -4w'_ a3 = 0.1664488, a4 - 0.04111513, a5 = 0.00739737

e -Sw'_ a3 = 0.1664805, a4 -- 0.04121264, as = 0.00736302

e -6w2 a3 = 0.1665028, a4 = 0.04128218, a6 = 0.00733301

e-7__ a3 = 0.1665207, a4 -- 0.04133150, as = 0.00731074

D
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Figure 1: Symbols (left) and absolute value of error (right) for d Uo e-2W2"_r_. = (a) Sixth order

tridiagonal scheme (8 = c = 0) (b) Second order optimized tridiagonal scheme (_ = c = 0) (c)

Eighth order tridiagonal scheme (8 = 0) (d) Second order optimized tridiagonal scheme (_ = 0)

(e) Spectral-Uke pentadiagonal (f) Optimized pentadiagonal. (g) Exact symbol. Schemes were
optimized for Uo = e-2W2.
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Figure 2: Long time integration of the equation ut = u_, uo = e-2_2, a = 0.8. (a) Pentadiagonal

scheme optimized for fi0 = e-2_2 (b) Spectral-like pentadiagonal scheme (c) Exact solution.
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T - 1800. T = 15000.
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Figure 3: Long time integration of the equation ut = u_:, cr = 0.8. Initial solution on the left
--022figure was Uo e ; on the right figure it was u0 = e -4°J2.

(a) Pentadiagonal scheme optimized for _20 = e -:_2 (b) Spectral-like pentadiagonal scheme (c)

Exact solution.

21



T = 6500.
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Figure 4: Integration of the equation u, = ux + uu, cr = 0.8 using pentadiagonal schemes. Initial

solution was rio e-(_+sw_ ) rotated at an angle of _ This data was approximated by unrotated-- _.

gaussian e -(3°j_+2w_). (a) Optimized pentadiagonal scheme (b) Spectral-like pentadiagonal scheme

(c) Exact solution.
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Figure 5: Symbol (left) and absolute value of error (right) for _ . _o = e -2_2. (a) Sixth order

tridiagonal scheme (/3 = c = 0) (b) Second order optimized tridiagonal scheme (j3 = c = 0) (c)

Eighth order tridiagonal scheme (/_ = 0) (d) Second order optimized tridiagonal scheme (/3 = 0)

(e) Spectral-like pentadiagonal (f) Optimized pentadiagonal. (g) Exact symbol. Schemes were
optimized for _0 = e -2_2.
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Figure 6: Long time integration for utt = u_=, Uo = e -2W2, cr = 0.8. (a) Pentadiagonal scheme

optimized for fi0 = e -2_= (b) Spectral-like pentadiagonal scheme (c) Exact solution.
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T = 3200. T -- 16000.
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Figure 7: Long time integration for utt = u_, a = 0.8. Initial solution on the left figure was

uo = e-_2; on the right figure it was _20 = e -4_'2 • (a) Pentadiagonal scheme optimized for

fi0 = e-2_2 (b) Spectral-like pentadiagonal scheme (c) Exact solution.
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T = 6500.
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Figure 8: Long time integration for utt = u** + uuu, a = 0.8 using pentadiagonal schemes.

'_ This dataInitial solution on the left figure was fi0 = e -(_+s_]) rotated at an angle of 7"

was approximated by unrotated gaussian e-(3_+2_] }. (a) Optimized pentadiagonal scheme (b)

Spectral-like pentadiagonal (c) Exact solution.
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d2

scheme (b) Tridiagonal mid-ceU discretization scheme of d optimized to approximate _ when

rio = e-2_' (c) Exact solution.
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of the tridiagonal scheme for _ optimized for u0 = e-2_2 and a = 0.8. (a) Five stage scheme

optimized for the same a (b) Fourth order Runge-Kutta (c) Exact time integration.

T - 150• T " 450.

0.20

0.15

0.10

0.05

0.00

-0.05

' I ' I ' II

• .... 'b

_..r m. •

• I • • • I

0 2 4 6

0.20

0.15

0.10

0.05

0.00

-0.05
0

' I ' j%l ' I
=_.. i A

i
B*e %1 _' w

\ /
I1o _ =

,,1 ! i I , I

2 4 6

X X

Figure 12: Integration of ut = u=, _o = e -2_'2, a = 0.8. The space derivative is computed using

the tridiagonal compact scheme optimized for the same initial date and a. (a) Five stage scheme

optimized for this scheme and CFL (b) Fourth order Runge Kutta (c) Exact time integration
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T= 45. T = 1000.
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Figure 13: Integration of ut = u,, a = 0.8. Left: rio = e ; Right: rio = e-4_2. (a) Five

stage scheme optimized for this scheme and CFL (b) Fourth order Runge Kutta (c) Exact time

integration.
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T = 400.
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Figure 14: Integration of ut = u= + 0.5(1 + 0.6sin(2ry))uy, a = 0.8 using tridiagonal schemes.

Initial solution was rio e-(_+5_ ) rotated at an angle of _ This data was approximated_'.

by unrotated gaussian e -(3_+2_]). (a) Optimized tridiagonal scheme and optimized marching

scheme (b) Tridiagonal scheme integrated with fourth order Runge-Kutta. (c) A fine grid solution

(practically exact)
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