
NASA Contractor Report

ICASE Report No. 93-30

191479
i7_ _

/C S 20
Years of

Excellence

LOW LATENCY MESSAGES ON DISTRIBUTED

MEMORY MULTIPROCESSORS

Matthew Rosing

Joel Saltz
Z _ 0

NASA Contract Nos. NAS1-19480, NAS 1-18605

June 1993

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

wI, p
l,-z

.JO
w

O_

i_ J,.4

_Z
_0
I

0

u.

0

g

..J t.l

_--L _FT r

LOW LATENCY MESSAGES ON DISTRIBUTED
MEMORY MULTIPROCESSORS

Matt Rosing 1

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681

and

Joel Saltz)

Department of Computer Science

A.V. Williams Building

University of Maryland

College Park, MD 20742

ABSTRACT

This paper describes many of the issues in developing an efficient interface for comnau-

nication on distributed memory machines and proposes a portable interface. Although the

hardware component of message latency is less than one microsecond on many distributed

memory machines, the software latency associated with sending and receiving typed mes-

sages is on the order of 50 microseconds. The reason for this imbalance is that the software

interface does not match the hardware. By changing the interface to match the hardware

more closely, applications with fine grained communication can be put on these machines.

Based on several tests that we have run on the iPSC/860, we propose an interface that

will better match current distributed memory machines. The model used in the proposed

interface consists of a computation processor and a communication processor on each node.

Communication between these processors and other nodes in the system is done through a

buffered network. Information that is transmitted is either data or procedures to be executed

on the remote processor. The dual processor system is better suited for efficiently handling

asynchronous communications compared to a single processor system. The ability to send

data or procedure invocations is very flexible for minimizing message latency, based on the

type of communication being performed. This paper describes the tests performed and the

proposed interface.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract Nos. NASI-19480 and NAS1-18605 while the authors were in residence at the Institute for Computer

Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681

1 Introduction.

The goal of this paper is to discuss many of the issues involved in developing a highly

efficient, portable software interface for sending messages on distributed memory machines.

Our interest in this area stems from the fact that even though hardware latencies (the time

for the hardware to send an empty message between two nodes) are on the order of lOOns on

newer machines, the software component of the message latency is on the order of 50us when

using a send/receive model of conlmunication. By reducing this large discrepancy between
hardware and software it will be possible to efficiently execute applications with fine grained

communications and parallelism. Examples of applications that have these characteristics

include unstructured mesh solvers, molecular dynamics codes, and some sparse iterative

linear system solvers. These applications are characterized by having a large number of

small messages. Because of this, the time to initiate messages becomes disproportionately

dominant in the overall cost of the program.

One reason that it will be possible to specify a more efficient communication interface

is that current message based libraries, although conceptually quite simple, provide a large

amount of generality that in many cases is not needed. An example of this, that will be

described in much more detail below, is pipelining. This technique costs a few thousand

assembly instructions per element transmitted to implement on the iPSC/860 when using a

library based on sends and receives. However, it is possible to implement this with only a

few instructions when programming the hardware directly.

Thus, a new interface should be designed to take advantage of the hardware that is

typically found in newer machines and allow the use of application specific knowledge to

use this hardware more efficiently. This can be done by making the interface look more

like the underlying hardware, which in turn will give the user more control of the hardware.

An extremely low level interface like this will probably not be of interest to a broad range

of users because of the added complexity that it will have when compared to the simple

semantics of sends and receives. However, there are many users that will be able to take

advantage of a lower level interface. Compiler writers, library writers and other tool builders

that understand the hardware on these machines would be typical users. In this research,

we are only interested in developing an interface for commercially available machines and do

not address the multitude of research machines that exist.

A useful performance goal for such an interface would be to match the software component

of the latency to the hardware component. That is, the time it takes to transmit data from

a register on one processor to a register on another processor, including synchronization,

should be roughly equal to the hardware latency. On a hypothetical machine with lOOns

hardware latency and a 50Mhz clock this corresponds to roughly five instructions. This is an

extremely aggressive goal and it is unlikely that a library can be used with these constraints.

Possibly, some form of macros or pre-processor could be used.

In the next section we will give a very brief description of hardware trends and how this

effects programming ttmse machines. In section 3 we describe related work. In section 4

we describe the hardware of the Intel iPSC/860 and give a detailed example of implement-

ing a pipeline algorithm when programming the hardware directly. In section 5 we describe a

typically difficult problem to implement on distributed memory machines. Finally, in section

6, we propose an interface that could efficiently support communications on many distributed

memory machines.

2 Hardware Trends

Tile major trends of all distributed memory machines is that message latencies are going

down and bandwidths are going up. The iPSC/860 has a bandwidth of 2.8 Mbytes per

second and hardware latency of about 25#s between neighboring nodes. The Paragon will

have a bandwidth per link on the order of 200 Mbytes per second and a hardware latency on

the order of lOOns between neighboring nodes. The CM-5 has point to point communication

as high as 20Mbytes per second and hardware latency roughly around l#s. On the AP1000

[IHI+90], the network bandwidth is 25Mbytes per second with a hardware startup latency

of 160ns between neighboring nodes.

A inore interestlng trend in the development of distributed memory machines is the ad-

dition of a processor on each node to handle communication. The Paragon has a general

purpose processor to handle data transmission while the Meiko CS-2 has a custom processor

for handling communications. A' communication processor has the benefit of overlapping

communication with computation. Another more important benefit of this is that an in-

: coming message can be handled asynchronously with respect to the main processor without

- incurring an interrupt and paying the cost of disrupting the instruction and data cache on

the main processor.

A vaguely similar idea to that of a communication processor is that of specialized packet

types on the EM-4 [KSY90]. The EM-4 is a coarse grained data flow machine that supports

different message types in hardware. These different types of packets include remote write,

remote read, and remote process invocation as well as others. This is an example of a

specialized communication processor that, if made more general, could greatly aid in reducing

message latencies.

Another interesting development is the combination of distributed memory machines with

more traditional shared memory technology. One example of this is the Cray-MPP that has

local memory for each processor and a global address space [MPM92]. Although this is a

distributed memory machine it will have very low message latencies for word size messages.

The net effect of these developments is that message latencies are becoming very small.

This includes the time to create a message, transmit it, have another processor synchronize

with that message, and put it in a useful form before using it. Whether or not it is possible

to develop a portable interface that can be efficiently used for all of these hardware platforms

is an interesting research question.

3 Related Work

Recently, a simple interface, Active Messages [vECGS92] has been developed that is more

efficient than sends and receives on distributed memory machines. An Active Message is

essentially an asynchronous Remote Procedure Call [Nel81]. That is, the calling end of the

2

RPC doesnot wait for the remoteprocedureto completebeforeit continuesexecutingfrom
the call site.

Onereasonthat Active Messagesaremoreefficient than sendsand receivesis becausean
active message,upon arrival at a processor,is processedimmediately by a specifiedroutine
that wasdesignedexplicitly for that message.Therefore,the operating systemhasvery little
to do with the messageand latenciescanbe controlled by the specifiedroutine.

Although Active Messageswill probably operatemore efficiently than the send receive
model, it is not clear that there is not a moreefficient model to use. The overheadrequired
to select,verify, and call the correct routine to use, along with effectsof in.terrupting the
processorand the cache,will probably be considerablymore than the hardware latency, a
time that wewould like to match with the softwarelatency. An exampleof wheresuch fine
grained communicationwould be required is a pipeline algorithm that will be describedin
more detail in the next section. In this algorithm, a messageconsistsof a single floating
point valueand the number of operations betweencommunication is very small. A critical

aspect of making the pipeline version run efficiently is that the communication channel was

treated as part of the pipeline, i.e., values were read and written directly from and to the

channel from the computation. In this case, a comnmnication coprocessor would have slowed

down the communication considerably because of processor synchronization and the loss of

memory bandwidth in doing extra, unnecessary reads and writes.

4 Low Latency Messages on the iPSC/860

To study how latencies associated with messages can be reduced on distributed memory

machines we modified the NX/2 operating system on the iPSC/860 and ran various tests.

In this section we describe the underlying hardware and operating system on the iPSC/860

as well as the tests we ran.

The hardware associated with communication consists of the network, an input and

output FIFO, status and control registers, and interrupt logic. The FIFOs and registers

are memory mapped. In NX/2, these locations are accessible only by the operating system.

Both of the FIFOs are each 4k bytes long consisting of 1024 4 byte words. The status

register describes the state of the FIFOs. There are flags indicating such things as empty,

full, and partially empty or full. The control registers, among other things, controls when

interrupts associated with the FIFOs occur. This could be never, at the beginning or end of

an incoming message, or when a FIFO becomes half full.

A message consists of, essentially, a header word and data words. The first word contains

the route the message is to take and thus describes the destination node. The rest of the

message contains data. The last word has a special end of data mark associated with it for

use by the hardware.

Therefore, a message can be generated quite easily. This can be done with two writes to

naemory. The first contains the destination address and the second contains data. It may be

possible to send a single word message but we have not tried this. If the receive interrupt

logic is not enabled a receive consists of reading the status register to check that a message

is in the input buffer and then reading the message out of the buffer. In the case of receiving

a two word message this essentially consists of three memory reads.

The interrupt logic on the 860chip, usedto handle asynchronouscommunicationevents,
is a very large componentof the messagelatency. It shouldbe noted, however,that in the
test that is usually performed to measurelatency, bouncing messagesbetweenneighboring
nodes, interrupts will not occur. In this test each of two nodes repeatedly waits for an
incoming messageand then immediately sendsa messageto the other processor. When a
processorwaits for a messageto arrive the interrupt logic is turned off and the processorsits
in a very tight loop waiting for the status register to changebeforepulling the messagefrom
the input buffer. In a more realistic situation where a messagearrives before it is needed,
causingan interrupt, the messagelatency canincreasefrom 70usto 130us.(The higher time
was measuredwhen eachprocesswould wait for a messageby continuously executing the
probe function until a messagearrived.)

The causeof interrupts being so expensiveon the 860 chip is mostly due to the large
state of the processor.This includes32 floating point registers,32 integer registers,an add,
multiply, and load pipeline, and fairly complexinstruction modesthat all must besavedand
reconstructedbefore resumingnormal processing.The result of this is that it takeson the
order of 1000instructions to handle an interrupt. This doesnot include any of the time to
processa message.

Other sourcesof increasedlatency include the time to doa trap into the operating system
and the effectson the cacheof messagesasynchronouslyarriving at a node. The time to
executean operating system call, although not as severeas communication interrupts, is
roughly 50 instructions. We havenot measuredthe cost that an interrupt will haveon the
instruction and data cachesbut we expect that it would be substantially more than the
hardwarelatency.

The operating system on the iPSC/860 (NX/2) controls the communication hardware
and interrupt mechanisms. The communicationmodel is basedon sendingand receiving
contiguousblocks of typed messages.NX/2 must handle the general caseof having any
messageof any sizearrive at any time without the operating systemcrashing. This requires
a complexsystemthat handlesbuffer management,handshakeprotocols, interrupts, security
and other issues.The operating system,although quite complex, handlesthis generalcase
very well.

Another aspectof the operatingsystemthat addsto the latencyof communicationis that
the operating system usesthe samecommunicationnetwork as the applications. Because
of this, NX/2 must be reliable and secure: This requirement adds to the overall message
latency. Outgoing messagesmust be checkedfor valid addressesand the processormust
assumethat any systemmessagecan arrive at any time and must be handledproperly.

This aspectof using the samehardware for both the operating system and userappli-
cations,and not hav!ng hardwaresupport for messagesecurity is a problem that will make
the goal of reducing the latency to a few instructions very difficult if not impossible. The
only good solution for theseproblemsare to handle thexnin hardware. It shouldbe noted
that the CM-5 is onemachinethat doesnot havetheseproblems. We will not considerthis
problem any further and will assumethat a singleuserhascontrol of the entire machine.

The software latency associatedwith sending messagesis primarily due to a complex
general purpose operating system that can handle any situation. However, most of the
time an application doesnot need tile power of a generaloperating system. Many times
the application writer has specific information that can be used to take advantageof the

hardware. Examplesof this include the knowledge of how large a buffer is required, that

only a single type of message will be sent, that the data from a message will always be placed

in a specific location, etc. Thus, we want to give the user more control of the hardware to

take care of these special cases. This is done at the risk of adding complexity to the send-

receive model but we feel that this added complexity will be worth the added potential for

writing efficient programs.

In order to test this idea we modified the NX/2 operating system to give the user more

control of the hardware. It should be noted that the modifications made were done quickly

as a "hack" just to test our ideas. The resulting code is clumsy to use and does not provide

security between users. The modified operating system, called MX, executes in one of two

modes. Tile first is identical to NX/2 and must be used whenever any system generated

communications occur (file IO, prints, process control, etc). Tile second essentially removes

the operating system. It is important that a message intended to be handled by one mode not

arrive at a node while it is in the other mode, otherwise MX will crash. It would be possible

to circumvent much of this problem by rewriting all of the system generated communication

in terms of the non-NX/2 mode. It might also be possible to use the diagnostic network for

the operating system to communicate across the machine. We have not made any of these

changes.
The MX interface consists of a call to switch between MX and NX/2 modes, a call to

set the receive and send interrupt handlers, and a call to set the control register. In MX the

input and output FIFOs and the status register are mapped into user space so there are no

calls to access these objects, the user can do this directly.

We have written several programs to study how message latencies could be reduced.

The first test is similar to many of the tests used to measure message latency, a short

message is bounced between two neighboring nodes. In this program it is not necessary to

use interrupts to notify the processor that a message has arrived, the processor has nothing

to do and will block until the message has arrived. Therefore, the interrupt mechanism is

turned off and each processor waits until the status register indicates that a message has

arrived before the processor reads the value from the input FIFO. A message send consists

of writing two words to the output FIFO. The resulting time to execute a message send and

receive is approximately 25us. As the number of assembly instructions to execute this loop

is approximately a dozen, we believe that this time reflects mostly the hardware latency.

Although reducing the latency from 70us to 25us is not tremendously important, on future

machines this type of programming may reduce the latency from around 40us to less than

lus.

The rest of the examples in this section are based on a pipelined solve of a linear system

of equations involving a banded, lower triangular matrix of the type that arises in pre-

conditioning Krylov linear solvers with incompletely factored matrices [MvdVS1] [TDJ68].

These matrices arise in the five point discretization of partial differential equations on two

dimensional,lgxN grids. The matrix consists of the main diagonal of IgN ones (which are not

stored); a diagonal immediately below the main diagonal with Igl,I - 1 elements, of which

each Nth element is zero due to the border effects of the grid; and a diagonal lg rows be-

low the main diagonal with lgN - N elements. Due to the zeroes in the first off diagonal, a

pipelined type of parallelism can be used to perform the solve. At step 1, yo is computed.

At step 2, Yl and YN are computed. At step 3, y2, YN+I, and Y2N are computed, at step

4, Y3, YN+2, Y2N+I, and Y3N, and so on. There are a variety of ways this problem can be

mapped ohto multiprocessors, [SCMB90]. We choose a cyclic mapping that optimizes load

balance at the expense of increasing both communication volume and number of messages.

We map the two diagonal vectors cyclically onto the machine. Each y_ is computed by

rhsi - Yi-1 * ali-1 - Yi-N * ani-N. The first and third terms are computed locally since the

processor that contains yi aiso contains rhsi, Yi-N, and ani-N. The product Yi-1 * ali_l is

received from the neighboring processor by blocking until a message has arrived and then

reading this value. This product is sent to the neighboring processor via some form of

message. This algorithm, although messy, is typical of fine grained applications.

Sparse triangular solves arising from incompletely factored matrices pose challenging

performance problems for distributed memory architectures. Our particular model problem

is particularly challenging as we have set M equal to the number of processors we use and N

equal to 2048. Therefore, each processor, except the first and last, receives and sends 2048

messages consisting of one floating point value each. In between each data transmission,

each processor carries out at most four floating point operations.

All of the times described below are the times for the last processor to complete. As a

reference point, this algorithm was encoded with the NX/2 send and receive library. The

time to do the computation was 5us. The time to do the communication was 474us.

In the first version of the pipelined solve routine using MX, the interrupts were disabled

and each send and receive was implemented in a manner similar to the bounce program

described above. By doing this, the software component of the latency was reduced to

the bare minimum. By leaving the incoming messages in the input FIFO until they were

required, this also reduced the memory traffic. The resulting communication time for this

version was 89us. The computation time was still 5us. Thus, the bulk of the 89us was the

time to set up the channel.

In the next version of the solve routine, the hardware latency time was circumvented by

just opening the channel once at the start of the loop and leaving it open for the duration of

the iterations, after which point it was closed. By doing this a send consisted of writing one

word to memory and a receive was done by reading the status register until something was in

the input FIFO, and then reading the value into a register where it can be used immediately.

The large savings, however, has to do with leaving the channel open for the duration of the

computation phase. By doing this the communication time was reduced to 4us while the

computation time was still 5us.

Although this technique of leaving the channel open will not be as useful on future

machines that have very low hardware message latencies, it will still be useful in that a send

has been reduced to a single write and a receive has been reduced to two memory reads.

This is accomplished by not having to add control information to the message. In this case

a message is just data and the overhead of figuring out what kind of data is not required.

As a final test, the code was written as if the communication pattern could not be pre-

determined. Although this is not the case for this program, it is for many irregular problems,

as will be described in the next section. In this version of the program each node, instead of

waiting for a value to arrive, will send a fetch request to the node that contains the value.

The request is handled by an interrupt routine that ig called whenever a message has arrived

in the input FIFO. The communication component of this program executed in 385us. While

this is not nearly as good as the previous program, it is still better than the program written

usingthe Intel primitives. In the modified versionthe bulk of the time spentwasin the trap
handler savingand restoring the processorstate.

This final program is much more complicated than the other programs becauseof the
complexnature of how the processessynchronize.In the other programstile synchronization
is donebasedon the FIFOs while the synchronizationinvolved in tile last program is similar
to that found in sharedmenaorysystems. Although it wasnot measured,we also expect
that the time required to handle the synchronizationis significantly more than that in the
other programs.

In summary, these tests imply severalcharacteristics for any proposedcommunication
system. Firstly, interrupts are very expensiveand should be avoided. This will become
more important asthe sizeof the processorstate that nmst besavedand restoredis growing
with the complexity of the microprocessorsused. Second,the operating system shouldbe
minimally involved with communications, As seenabove where communications can be
generatedwith oneor two assemblyinstructions, any interaction with the operating system
will be very expensive.This removalof the operating system implies that issuestypically
handled by the underlying system,suchas security and IO, should be handled elsewhere.
Finally, many numerical algorithms have a repetitive communication pattern, such as a
pipeline, and the ability to setup the communication paths once and then reusethem can
makevery efficient useof the hardware.

5 Implementing a Sparse Matrix Solve

In this section we discuss some of the issues in implementing a more complex, fine grained

problem, a lower triangular sparse matrix solve. Although simple, this problem illustrates

many typical problems in implementing sparse problems.

A code segment that describes the basic computation is shown below.

do i=l,n

y(i) _ rhs(i)

do j=col(i),¢ol(i+l)-I

y(i) = y(i) - a(j)*y(col(j))

end do

end do

In this example, the dependency pattern is determined by the integer array col. We can

determine, at runtime, which row substitutions (i.e. iterations of the outer loop) can be

carried out independently. This leads to a natural way of parallelizing the code; we can

simply carry out the computation as a sequence of parallel loops. Edges in this dependency

graph that cross processor boundaries correspond to communication between different loops.

Unfortunately, this process typically creates a large number of parallel loops so startup

latencies tend to have a serious performance impact.

This is a very difficult problem to efficiently implement on machines with high message

latencies because of the small message size inherent in this problem (each y(i) that is needed

on multiple processors). This is compounded by the fact that, in general, the values assigned

to the col array are not determined until runtime and the corresponding communication

patterns can therefore also not be computed until runtime. Thus, the technique of opening

up a channel and leaving it open for the duration of a computation, as used in Section 4,
will not be useful in this situation.

In situations where the above section of code is repeatedly called, it is possible to compute,

once before the first iteration of the loop, schedules that are used to combine messages that

are transmitted between the same nodes [SCMB90]. This technique was implemented using

sends and receives and should benefit from a more efficient communication mechanism as

described in Section 4. The main savings would be to remove the cost of interrupts by

disabling them. This can be done because, by precomputing the communication schedules,

there is no need for generating asynchronous communications. It will be important however,

to add additional communications in the schedule for the purpose of flow control; it is

preferable that the receiving FIFOs will always have room to store incoming data, otherwise

an interrupt will be required to spill data from the FIFO into memory.

There are situations in-which it is not feasible to carry out the kind of preprocessing

described above. When a computation such as the sparse triangular solve is carried out only

a small number of times, it may not be possible to amortize preprocessing costs. Furthermore,

there are a number of computations in which the data access patterns cannot be known in

advance. An example of this is sparse factorization with pivoting. In this case, a processor

A needs to be able to fetch data from processor B, after processor B has calculated values

required by processor A. In the example of the sparse lower triangular solve, processor A

needs the value of y(i) from processor B only after processor B carries out the forward solve

for y(i). The asynchronous and fine grained nature of these problems make it impractical to

implement using typical sends and receives.

To implement these types of problems, it is critical to have the ability for one processor

to affect the memory of another processor with a minimum of effort. In the above example

this requires the ability to fetch data from a processor once a specific condition has been met

on that processor. To model this using NX/2 is difficult and the resulting costs associated

with this are extremely high. Even using the modified operating system, it is doubtful if

all efficient implementation can be built because it will be difficult to avoid the cost of an

interrupt, as was required in the final experiment described in Section 4. On a machine such

as the Paragon where it is possible to have no interrupts associated with such a memory

fetch, it may be possible to have an efficient implementation.

6 A Proposed Interface

In this section we propose a machine model and an interface for generating low latency

messages in a distributed memory environment. The machine consists of a set of nodes that

are connected via a low latency network. Figure 1 describes the hardware of a single node.

Each node contains a main processor for handling computation and a second processor for

handling communication. The reason for having two processors is to eliminate interrupts

and to support the overlap of communication and computation. Hiding communication in

this manner is important when developing efficient programs. In this model, both processors

Network

Input

Buffer

I

I Computation _Processor

I Communic ation
Processor 1

Buffer

__q LocalMemory

Figure 1. Hardware model for communication interface

9

aregeneralpurposeprocessorsbut in reality the communicationprocessorcould bea custom
processor.forhandling communications.

An interestingproblem with usingtwo processorsasopposedto oneis the effectof cache.
If a singleprocessorhandledboth communicationand computation and the data to besent
wereresidingin the cacheat the send,then therewouldbeno traffic betweenthe memoryand
the processor;the processorwould sendthe data directly to the network. If two processors
areusedthen the data will haveto first be flushedfrom the main processor'scacheso that
the secondprocessorcanuseit. For small messagesit will probably bemoreefficient to have
the computation processorsendthe data.

The processorscommunicatewith other nodesby receivinginformation from the network
using the input buffer or by sending information to other nodes by writing directly to the

network. The two processors can also communicate with each other through an internal

buffer. The buffers are an important aspect of the model because they preclude the need

for interrupts when data asynchronously arrives before it is needed. The buffers contain

either of two types of information. The first is a pointer to a procedure that should be

called when this information is "received" by either of the two processors. This is similar to

an Active Message and efficiently supports application specific communications more than

typed messages.

The second type of information is data composed of a sequence of bytes. It is intended

that this type of data is sent between processors only when the two processors are cooperating

with each other. In such a case the added complexity of calling a procedure to remove the

data from the buffer and place it in memory where it can then be used by the local processor

is cumbersome and inefficient. This type of communication is designed to support iterative

communication patterns, such as the pipeline example described in section 4, by allowing

incremental pieces of data to be sent as they become ready.

The network in the proposed model is similar to many current machines and has the

following characteristics. It can send information packets with very little startup latency.

The packets consists of procedure calls or blocks of data. Furthermore, information can

be broadcast to a subset of nodes. This is done to minimize traffic in the network on

machines that support broadcasts. Another important characteristic is that the network

will ensure that information can not be sent to nodes that belong to other users. This is

critical in order to remove the need for having the operating system involved with generating

communications. Furthermore, packets are guaranteed to arrive in the order they are sent

when multiple packets are sent between two nodes. This is important to prevent the receiving

node from having to reconstruct the information before using it. Finally the network supports

the ability for a processor to retain a path in the network and send several packets to another

processor without packets from any other processor to arrive in mid stream. This makes it

easier to send data that is not contiguous in memory or information that is spatially separated

in time, such as the intermediate stages in a pipeline.

The interface to this model consists of three types of routines for generating communi-

cations. A conceptual description of these routines are given in figure 2. These include

routines to send information, to receive information, and to see if there is information that

can be received. This last type is needed because the receiving routines block until infor-

mation has been received. The sending routines never block unless the network becomes

full.

l0

The three type of rountines include:

send(destination, information, is_more)

receive(source, information)

is_information(source, information_type)

where

destination ::= internal I node [node_list I previous_chain

information ::= function_pointer I (location, number_bytes)

source ::= internal_buffer I network_buffer

is_more ::= boolean

Figure 2. A Description of the Interface Routines.

The send routines have three parameters. The first describes the destination of tile

information, the second describes the information being sent, and the third is used to chain

together several sends so as to send multiple packets of information separated over space or

time. The destination parameter can indicate that the information is sent to a buffer on one

or more nodes, the internal buffer on the present node connected to the other processor, or

the same location that a previous chain of messages has been sent to. For example, data can

directly be sent to another node (corresponding to a csend on the iPSC/860), or a procedure

can be sent to the communication processor that will in turn send the data (corresponding to

an isend on the iPSC/860). The final parameter is a boolean variable that indicates whether

this message corresponds to a chain that will continue at a later time. This is essentially

a mechanism to allow a channel to be opened between the current processor and another

processor (or set of processors). The ability to create a channel and send multiple packets

of information through it has two advantages. The first is that the cost of setting up the

channel can be spread out over multiple messages and the second is that it can be used to

ensure that multiple messages will arrive without interruption by messages from other nodes.

A similar mechanism exists in hardware on the iWarp machine, developed at Intel. In the

iWarp, a channel can be created between two nodes in the machine and data can then be

sent through the channel with very low latency.

The receive routines consist of two types of functions. The first describes where the

information will come from and is either the network buffer or the internal buffer. The

second describes the type of information that is to be received. This can be either data or

a procedure. If it is the former, then a pointer to where the data should be stored, along

with the number of bytes that are to be read, is also in the parameter. If the information

is a procedure then there is no additional information. In this case the receive call will not

return until after the procedure has been received. Note that procedure messages can have

parameters following immediately after the message using the chaining facility described in

section 6.

The final type of routine is used to see if there is information of the correct type in one

of the two buffers. There are two types of parameters in this call. The first describes which

buffer is to be examined and the second describes the type of data that is expected. The

output of this routine describes the state of the specified buffer to be one of the following:

there is information of the correct type, there is no information, or there is information but

ll

it is the wrong type.

6.1 Examples

In this section we give a brief description of how the described model can be used to build

higher level communication models. The first example is to add asynchronous capabilities to

the Active Messages model. The primary reason for adding asynchronous communications

is to support the ability to overlap'communications and computation. To do this, the

communication processor on each node continuously looks for tasks to perform from both

buffers on the node. The main processor asynchronously sends a task to a remote node

by sending a message to the communication processor, which in turn sends the task to

tile remote processor. By having tile communication processor handle tile messages, the

messages will be handled.immediately and the main processor will be able to proceed doing

something else. If the task is to be synchronously sent, then the main processor waits for a

reply from the communication processor.

The asynchronous version of this interface can be built with four functions and is shown

in figure 3. The first function, Abl_asynch, is called by the user to initiate an asynchronous

active message. The parameters include the destination node, a procedure to load data into

the network and a procedure to unload the network. The procedure just transmits this data

to the communication processor via the internal buffer. The procedure to load the network

can load contiguous blocks of memory into the network using the Abl_data_put routine. The

channel is created before the routine to load the network is called. The AM_data.get routine

is used on the receiving end to unload tim data from the network. The fourth function is

not called by the user but continuously runs on the communication processor. It looks for

requests from both the local computation processor and remote communication processors.

If a request is made from the local processor to send an active message then the three

parameters are first received from tile internal network. The data is sent to the reInote node

by opening a channel to it and placing the address of the procedure to receive the data,

calling ProcSend so as to fill the channel, and finally closing the channel. (It is assumed that

all nodes have an identical text image so the pointers to the functions are identical.) If a

communication processor receives a request from a remote processor on the network buffer,

the COlmnunication processor receives the pointer to the procedure to unload the network

and then calls it.

The second example is to support the pipeline described in section 4. In this problem

the communications processor would not be of any benefit so it would not be used. The

programming of the hardware would therefore be very similar to what was done in section

4. The main processor would send data by using the send option with tide flag set indicating

that there will be more data in this message. This ensures that tile remote node will not have

other messages arriving in the middle of the sequence of data flowing through the pipe. By

ensuring this exclusive use of the communication link, each packet of data can be reduced to

the bare minimum. A send will consist of writing to the network and a receive will consists

of a read from the network buffer. The four functions required to implement this are shown

in figure 4. It should be noted that the sends and receives in this example work on such

small data sizes that, for optimal efficiency, tide put and get routines are defined as macros.

Furthermore, tile Send and Receive functions should also be implemented using some form

12

AM_asynch(int node, void (*ProcSend)(), void (*ProcRecv)()){

Send(internal, node, 1);

Send(internal, ProcSend, 1);

Send(internal, ProcRecv, 0);

}

AM_data_put(char *buf, int count){

Send(previous_chain, buf, count, I);

}

AM_data_get(char *bur, int count){

Receive(network, bur, count);

}

AM_comm_proc(){

int node;

void (*ProcSend)(), (*ProcRecv)();

for(;;)

if(IsInformation(internal)){ /*request to send*/

Receive(internal, &node, sizeof(node));

Receive(internal, &ProcSend, sizeof(ProcSend));

Receive(internal, _ProcRecv, sizeof(ProcRecv));

Send(node, ProcRecv, sizeof(ProcRecv), 1);

(*ProcSend)(); /*fill channel*/

Send(previous chain, 0,0, 0); /*close channel*/

}

if(IsInformation(network)){ /*incoming message*/

/*get pointer to function*/

Receive(network, &ProcRecv, sizeof(ProcRecv));

(*ProcRecv)(); /*get parameters*/

Figure 3. Example Interface for Asynchronous Active Messages.

13

pipe_create(int node) {

Send(node, 0,0, 1);

}

#define pipe_put_float (x)

#define pipe_get_float (pt)

Send(previous_chain, &x, sizeof(float),

Receive(network, pt, sizeof(float))

pipe_kill 0 {

Send(previous_chain, 0,0,0);

}

I)

Figure 4. Example Interface for Pipelined Communication.

of preprocessor to avoid the overhead of the function call.

The next example is to support the example described in section 5. In this example, each

communication processor must do remote reads and writes. To handle a remote write, the

main processor sends a task to the designated processor that contains the address to write

to and the data to be written. A remote read can either be asynchronously or synchronously

done. The asynchronous version can be done if multiple remote reads and writes can be

done in parallel. To do this, the main processor sends a task to the appropriate processor

that will do a remote write back to the main processor, and set a flag, indicating that the

value has been received on the original processor. The main processor can then block on the

flag until the value has been received. As remote writes are handled by the communication

processor, this will be an efficient use of the processors. The interface to this is shown in

figure 5. In this example a remote read or write sends the information to the communication

processor, which in turn sends the information to the appropriate node. A remote write is

implemented by the communication processor and a remote read reads the value and then

does a remote write back to the original processor. In both cases a flag is set indicating that

the operation has completed.

A final example is to implement sends and receives of buffered typed messages. A send

consists of sending to packets of information. The first is a header describing the message

type and length, and the second is the data itself. To ensure that these two packets arrive

consecutively, the two are chained together using the mechanism described in section 6. The

communication processor is programmed to receive these packets and place the data in a

hashed buffer, based on the message type. A receive is then performed by the main processor

by looking to see if a message of the appropriate type has arrived.

6.2 Implementation

The efficient implementation of this interface depends on several issues. The first of these is

the ability to do some form of preprocessing on the calls described in section 6. To illustrate

this, if the calls to the interface were in the form of a library then the overhead of making

a library call would, in some cases, be more expensive then the actual action done by the

14

Remote_read_asynch(int node, float *remote, float *local, int *flag){

/* Send to internal the values node, remote, local, flag, and that*/

/* this will be a remote read */

}

Remote_write_asynch(int node, float *remote, float value, int *flag){

/* Send to internal the values node, remote, value, flag, and that*/

/* this will be a remote write */

}

comm_proc(){

int node;

float *remote, value, *local;

int *flag;

int type;

for(;;){
if(IsInformation(internal)){

Receive(internal, &type, sizeof(type));

if(type==READ)

/*receive node, remote, local, flag *I

/*transmit this to processor node along with this node number*/

else /*type == WRITE*/

/*receive node, remote, value, flag *I

/*transmit this to processor node

}

if(IsInformation(network)){

Receive(internal, &type, sizeof(type));

if(type==WRITE){

/*receive remote, value, flag*/

*remote = value;

*flag = I;

}

else /*type==READ*/{

/*receive remote, local, flag, and source_node*/

value = *remote;

/*transmit WRITE, source_node, value, local, flag*/

}
}

Figure 5. Example Interface for Asynchronous Remote Reads and Writes.

15

communication system. For example, if a single four byte word were to be sent to another

processor then the implementation could take the form of a single write to the network.

However, if this were handled with a library, then there would be overhead associated with

the function call, determining that only a single word is to be sent, and probably moving

the data from memory to the network instead of directly from a register. Because of this,

it would apparently be more efficient to implement this system using a preprocessor that

would translate the calls into more precise code.

The second issue concerning efficiency is security. On machines like the Intel Paragon and

the Intel iPSC]860, the same network that is used for applications is used for operating sys-

tem calls. Therefore, in order to ensure the integrity of the operating system, the application

must first make a trap into the operating system before using the communication hardware.

There are three potential solutions to this problem. The first is to ignore this problem when

an application has sole use of the machine. In this case, if the operating system is corrupted

it will have to be reboote_t. The second is a more general solution and simply requires the

trap handler to be reduced to minimize the overhead associated with traps. The current

overhead of doing a trap on the iPSC/860 is roughly 50 instructions. This could possibly be

reduced to 15 or 20. This woulcl still be too large to send a large number of single words at

a time. Therefore, to send noncontiguous data, there would also need to be commands to

send multiple blocks of contiguous data and data separated by a fixed stride.

Another problem with implementing this interface efficiently has to do with the types of

networks found on some distributed memory machines. In order to transmit large blocks of

data with a high bandwidth, the data must arrive in the order in which it is sent. On the

CM-5 this is not guaranteed in hardware and must therefore be handled in software. This

has two consequences. The first is that the data must be handled an extra time, which uses

memory bandwidth, and the second is that the data can not be left in the buffer until it is

needed. This also causes extra memory traffic.

The final issue is implementing this interface on a system that has no form of communi-

cation processor. In this case the second processor must be emulated on the first processor

using interrupts. Assuming that the cost of interrupts is not very expensive this would be

a valid solution. However, on a machine sucil as the iPSC/860, where interrupts are very

expensive, this would not be practical.

7 Conclusion

As the communication hardware improves on distributed memory machines it is important

that the software improve equally as well. Bandwidth and latency improvements will make it

possible to efficiently implement more fine grained applications, such as those found in sparse

matrix computations. Currently, these applications are difficult to implement because the

software associated with the usual send an d receive model of communication is preventing

the efficient use of the hardware. While send and receive libraries must handle the most

general case, often it is possible to use application specific knowledge that allows for better

use of the hardware.

It is clear that certain hardware configurations can greatly aid in supporting low latency

messages. It is important that the operating system not be required when sending and

16

receiving data. This implies that there must be hardware support for isolating usersfrom
eachother. Further, it is important that messagescanbeprocessedwithout interrupting the
computation processor.This suggestssomeform of processorbe usedfor handling commu-
nication. Finally, there must be relatively fast synchronizationbetweenthe communication
system and the computation processor.

Basedon this hardware model we have defined a low level interface that more closely
approximatesthe hardwarefound in many distributed memorymachines.

17

References

[BSGg0]

[IHI+90]

[KSY90]

[MPM921

[MvdV81]

[Nel81]

[SCMB90]

[TDJ68]

[vECGS92]

H. Berryman, J. Saltz, and W. Gropp. Krylov methods with incomplete factor-

ization preconditioners on the cm-2. Journal of Parallel and Distributed Com-

puting, 8:186-190, Feb 1990.

H. Ishihata, T. Horie, S. Inano, T. Shimizu, and S. Kato. Cap-ii architecture.

Technical report, Fujitsu Laboratories LTD, Kawasaki Japan, 1990.

Y. Kodama, S. Sakai, and Y. Yamaguchi. A prototype of a highly parallel

dataflow machine em-4 and its preliminary evaluation. In Proceedings of the Int.

Conf. of information Technology, Japan, 1990.

T. MacDonald, D. Pase, and A. Meltzer. Addressing in cray research's mpp

fortran. In Proceedings of the Third Workshop on Compilers for Parallel Com-

puters, Vienna, July 1992.

J. A. Meijerink and H. A. van der Vorst. Guidelines for the usage of incomplete

decompositions in solving sets of linear equations as occur in practical problems.

Journal of Computational Physics, 44:134-155, 1981.

B. Nelson. Remote Procedure Call. PhD thesis, Carnegie-Mellon Univ., 1981.

J. Saltz, K. Crowley, R. Mirchandaney, and Harry Berryman. Run-time schedul-

ing and execution of loops on message passing machines. Journal of Parallel and

Distributed Computing, 8:303-312, 1990.

Richard P. Kendall Todd Dupont and H. H. Rachford Jr. An approximate fac-

torization procedure for solving self-adjoint elliptic difference equations. SIAM

Journal on Numerical Analysis, 5:559-573, 1968.

T. von Eicken, D. E. Culler, SIC. Goldstein, and K. E. Schauser. Active messages:

A mechanism for integrated communications and computation. In Proceedings

or the 19th Annual International Symposium on Computer Architecture, pages

256-266, Gold Coast, Australia, May 1992.

18

Form Approved
REPORT DOCUMENTATION PAGE OMeNo_oTo_-o,ss

f r h II I n f nformaDor_ _s £_tlmatecl to average hour ioer re_oor_e _ncluding the time for reviewing ifl$trgctlOt_$, _at'chlng exl_tif_g data sources.
PuDIK repor_ing burden o .tl J$¢O ectlo_l 0 tln--'and re lewln_ the "0 e_lon of information 5end commen_s re_arding tht$ burden estimate or any other a.sJ_ of th_$
oatherln_ and maintaining _ne oa_a needed, ang _.u,,,_= _ v _ -. • c-?w._ r_ re.orate Tor Information Operations ana Reports, IL I_ Jefxec_on

(O1 ec_,or_ of informa¢lon. _ncluding suggest,ons for reduong th_s burder_ [O.__asnmg_ _.e_u_e_=_a_rwo;_ Reduction Pro e_ (0704-0188). WashingtOn, DC 20503.
Davis Highway. Suite 1204, Arlington, VA 22202"4JU_ z. ano tO the U_r ce o. ,_d,,ev_-.c,,_ =,,_ _ _ . _

1. AGENCY USE ONLY _eave _ank) 2. REPORTDATE
June 1993

4_TITLE AND SUBTITLE

LOW LATENCY MESSAGES ON DISTRIBUTED MEMORY MULTIPROCESSORS

_.AUTHOR(S)

Matthew Rosing

Joel Saltz

7. PE_ORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science

and Engineering

,_all Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSOmNG/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

3. REPORTTYPE AND DATES COVERED

Contractor Report
s. FUNDING NUMBERS

C NASI-19480

C NASI-18605

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 93-30

10. SPONSORING/ MONITORING
AGENCY REPORTNUMBER

NASA CR-191479

ICASE Report No. 93-30

11, SUPPLEMENTARYNOTES

Langley Technical Monitor:

Final Report

Michael F. Card

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 60, 61

Submitted to Scientific

Programming

12b. DISTRIBUTION CODE

15. ABSTRACT(Maximum 200 words)

This paper describes many of the issues in developing an efficient interface for communication on distributed

memory machines and proposes a portable interface. Although the hardware component of message latency is legs

than one microsecond on many distributed memory machines, the software latency associated with sending and re-

ceiving typed messages is on the order of 50 microseconds. The reason for this imbalance is that the software interface
does not match the hardware. By changing the interface to match the hardware more closely, applications with fine

grained communication cam be put on these machines. Based on several tests that we have run on the iPSC/860, we
propose an interface that will better match current distributed memory machines. The model used in the proposed
interface consists of a computation processor and a communication processor on each node. Communication between

these processors and other nodes in the system is done through a buffered network. Information that is transmitted
is either data or procedures to be executed on the remote processor. The dual processor system is better suited for

efficiently handling asynchronous communications compared to a single processor system. The ability to send data

or procedure invocations is very flexible for minimizing message latency, based on the type of communication being

performed. This paper describes the tests performed and the propc_ed interface.

14.'SUmECTTERMS

parallel computers,

message latency

distributed memory, communication,

17. SECURITYCLA_
OF REPORT

Unclassified J

NSN 7540-01-280-5500

18. SECURITYCLASSIFICATION
OF THIS PAGE

Unclassified

lg. SECURITYCLASSIFICATION
OF ABSTRACT

I_U.S. GOVERNMENT PRINTING OFFICE: 1993 - 728-064/86025

15. NUMBER OF PAGES
20

16. PRICECODE
A03

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Prescribed by AN_| _,td Z3g-lg

2g_- 102

!

