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ABSTRACT 

Perpendicular blade vortex interactions are a common occurrence in helicopter rotor flows. 

Under certain conditions they produce a substantial proportion of the acoustic noise. However, 

the mechanism of noise generation is not well understood. Specifically, turbulence associated with 

the trailing vortices shed from the blade tips appears insufficient to account for the noise 

generated. In this report we examine the hypothesis that the first perpendicular interaction 

experienced by a trailing vortex alters its turbulence structure in such a way as to increase the 

acoustic noise generated by subsequent interactions. To investigate this hypothesis a two-part 

investigation has been carried out. 

In the first part, experiments were performed to examine the behavior of a streamwise 

vortex as it passed over and downstream of a spanwise blade in incompressible flow. Blade 

vortex separations between ±½ chord were studied for at a chord Reynolds number of 200,000. 

Three-component velocity and turbulence measurements were made in the flow from 4 

chordlengths upstream to 15 chordlengths downstream of the blade using miniature 4-sensor hot-

wire probes. These measurements show that the interaction of the vortex with the blade and its 

wake causes the vortex core to loose circulation and diffuse much more rapidly than it otherwise 

would. Core radius increases and peak tangential velocity decreases with distance downstream 

of the blade. True turbulence levels within the core are much larger downstream than upstream 

of the blade. The net result is a much larger and more intense region of turbulent flow than that 

presented by the original vortex and thus, by implication, a greater potential for generating 

acoustic noise. 

In the second part, the turbulence measurements described above were used to derive the 

necessary inputs to a BWI noise prediction scheme. This resulted in significantly improved 

agreement between measurements and calculations of the BWI noise spectrum especially for the 

spectral peak at low frequencies, which previously was poorly predicted. 

ii



ACKNOWLEDGEMENTS 

The authors would like to thank NASA Langley, in particular Tom Brooks and Mike 

Marcolini, for their support under grant NAG-1-1119. The assistance of Mark Engel, Chris 

Schively and Lee Fugelstad in taking many of the measurements presented here is also gratefully 

acknowledged.

111



PART I - EXPERIMENTS 

'V



Perpendicular BVI Part I 

CONTENTS 

1. INTRODUCTION	 1-1 

2. APPARATUS AND INSTRUMENTATION 	 2-1 

2.1 Wind Tunnel 	 2-1 
2.2 Wing models 	 2-1 
2.3 Hot-wire anemometry	 2-2 

2.4 Helium Bubble Flow Visualizations	 2-6 

3. RESULTS AND DISCUSSION	 3-1 

3.1 Coordinate System, Flow Conditions and Table of Measurements 3-1 

3.2 Summary of relevant flow-visualization results 3-2 

3.3 The approach vortex 3-3 

3.4 Flow over the blade 3-7 

3.5 Flow downstream of the blade as a function of A. 3-13 

3.5.1 Velocity grids 3-13 
3.5.2 Velocity profiles 3-16 

3.5.3 Velocity autospectra 3-19 

3.6 Flow downstream of the blade as a function of x. 3-20 

3.6.1 Velocity grids 3-21 
3.6.2 Velocity profiles 3-22 

3.6.3 Velocity autospectra 3-24

4. CONCLUSIONS	 4-1 

5. REFERENCES	 5-1 

APPENDIX. BETZ'S THEORY APPLIED TO AN ARBITRARY LIFT DISTRIBUTIONA-1 

V 



Perpendicular BVI Part I 

1. INTRODUCTION 

When a helicopter blade passes through or near the tip vortex shed by a previous blade, 

noise is generated. When the vortex is approximately parallel to the blade (figure 1.1a), noise is 

generated as a consequence of the unsteady lift produced by the blade as it passes through the 

steady swirling flow of the vortex. When the vortex is more or less perpendicular (figure l.lb), 

the noise is generated by the blade passing through turbulence associated with the vortex (Brooks 

et al. (1987), Glegg (1989)). Most research in rotor aerodynamics and acoustics has focussed on 

parallel interactions. Perpendicular interactions (also known as Blade Wake Interactions or BWI5) 

have received relatively little attention, despite the fact that they are the most important 

contributor to helicopter noise during level flight and mild climb conditions (Brooks and Martin 

(1987)).

One of the difficulties of BWI noise prediction is that it requires knowledge of the 

turbulence structure and spectrum of the vortex as it passes the blade (Glegg (1989)). Devenport 

et al. (1992) attempted to provide this knowledge by studying the turbulence structure of trailing 

vortices in isolation. The assumption here was that the impact of the blade would not 

significantly alter the turbulence structure from the point of view of noise prediction. However, 

upon incorporating their results into the BWI noise prediction method of Glegg (1989) they found 

the turbulence structure of the isolated vortex to be insufficient to account for all the BWI noise 

generation. There are two possible explanations for this result; either changes in the flow structure 

during the interaction strongly effect the noise produced or the vortex structure is significantly 

altered by its encounter with the blade, changing the nature of all subsequent interactions. In 

either case a study of the details of the interaction and the flow it produces is required. 

With the exception of the present investigation there has been surprisingly little research 

into the fluid mechanics of BWI. What has been done has concentrated primarily on the 

aerodynamic characteristics of the blade rather than on the vortex itself.
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Perpendicular blade vortex interactions at transonic speeds have been studied by 

Kalkhoran et al. (1992) and Phillipe and Armand (1978). Kalkhoran et al. examined the influence 

of a trailing vortex on a rectangular NACA 0012 section blade at zero angle of attack for Mach 

numbers between 0.7 and 0.8 (figure 1.2). They took total pressure surveys of the vortex at the 

leading and trailing edge of the blade as well as pressure measurements on the blade surface 

under the vortex for blade-vortex separations A of 0.3, 0.2 and 0.1 chordlengths (figure l.lb). 

They found the vortex to significantly affect the pressure distribution on the blade especially 

upstream of its maximum thickness. The magnitude of this disturbance increased with reduction 

in A. Their total pressure measurements show unsteadiness in the approaching vortex and some 

gross mean-flow features of the interaction, such as the relative location of the vortex and blade 

and vortex-generator wakes. In particular they observe a spanwise drift of the vortex as it passes 

over the blade under the influence of its image in the blade surface. Phillipe and Armand (1978) 

studied the influence of a trailing vortex on the integrated lift and drag characteristics of also 

used a rectangular NACA 0012 blade for M=0.6 (configuration shown in figure 1.3). They varied 

both the blade angle of attack and vortex strength while apparently holding the nominal 

blade-vortex separation constant. They found the vortex reduced the blade lift coefficient by a 

fairly constant amount over the angle of attack range of the blade (figure 1.4a) as though a 

negative camber had been added to the blade. They also found the blade drag coefficient to be 

increased by as much as 40% in the presence of the vortex (figure 1.4b). 

Incompressible perpendicular blade vortex interactions have been studied by Seath and 

Wilson (1986), Muller (1990) and Ham (1975). Seath and Wilson used a rectangular NACA 

64A015 blade (figure 1.5) at zero angle of attack for a chord Reynolds number of 417,000. They 

considered a range of trailing vortex strengths F 0 and of blade vortex separations L. Like 

Kalkhoran et al. they observed significant changes in the pressure distribution on the blade in the 

vicinity of the vortex and the spanwise drift of the vortex over the blade surface. The spanwise 

drift reached a maximum for i.7% chord and increased with vortex strength. They also present 

a flow visualizations performed on the blade surface which show three-dimensional separation 

and reattachment lines induced by the nearby vortex. Muller (1990) used laser Doppler 
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anemometry to examine the mean flow structure immediately downstream of a blade-vortex 

interaction for a chord Reynolds number of 100,000. He used a blade with a varying twist angle 

to simulate the lift distribution on a helicopter rotor (figure 1.6). He considered only one vortex 

strength, blade angle of attack and blade vortex separation, for which the vortex passed close to 

the pressure side of the blade near its tip. His mean velocity vectors downstream of blade show 

the trailing vortex and blade tip vortex. He postulates, based on his measurements and theoretical 

considerations, that the disturbance of the vortex to the blade lift distribution causes the local 

shedding of a 'mid-span' vortex from the blade with a strength of one quarter to one third of that 

of the blade tip vortex. Ham (1975) measured blade surface pressure distributions in the 

configuration shown in figure 1.7. He considered a range of vortex strengths and blade pitch and 

yaw angles. Rather than fixing the blade vortex separation distance he oscillated the vortex 

generator to move the vortex periodically across the blade leading edge. Ham concluded that the 

disturbance to the blade pressure distribution cannot exceed a certain peak value, beyond which 

the flow under the vortex stalls. He argues that this peak value is dependent on the two thirds 

power of the vortex circulation but is largely independent of blade pitch or yaw angle. 

Overall very little is known about the influence of a perpendicular blade on a trailing 

vortex. The work described above includes only a few mean flow measurements and flow 

visualizations. Nothing is known about the turbulence structure or the development of the flow 

for any significant distance downstream of the blade. There is therefore little to base predictions 

of BWI noise upon. 

The aim of the present investigation is remedy this situation. Specifically, to document 

the details of perpendicular blade vortex interactions and the flows they produce over a range of 

conditions and then incorporate that information into a theoretical BWI noise prediction method. 

The experimental investigation was performed at Virginia Tech in two parts; 

(i) helium-bubble flow visualizations to examine the nature of the interactions and the 

gross features of the resulting flows, and 

(ii) detailed three-component hot-wire velocity and turbulence measurements. 

The theoretical work was performed at Florida Atlantic University. 

1-3



Perpendicular BVI Part I 

This report describes the results of the velocity and turbulence measurements and of the 

theoretical investigation. Flow visualizations results, already presented by Rife et al. (1993), are 

only summarized here.

1-4



Perpendicular BVI Part I 

a parallel 

b perpendicular 

Figure 1.1	 Two types of blade vortex interactions. 
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Figure 1.2	 Configuration studied by Kalkhoran et al. (1992). 
Figure from Kalkhoran et al. (1992). 
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Figure 1.3	 Configuration studied by Phillipe and Armand (1978). 
Figure from Phillipe and Armand (1978). 
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Figure 1.6	 Configuration studied by Muller (1990). 
Figure from Muller (1990).
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Figure 1.7	 Configuration studied by Ham (1975).
Figure from Ham (1975). 
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2. APPARATUS AND INSTRUMENTATION 

Much of the apparatus and instrumentation has already been described in detail by 

Devenport et al. (1993). Only brief descriptions of these items are therefore included here. 

2.1 Wind Tunnel 

Experiments were performed in the Virginia Tech Stability Wind Tunnel (figure 2.1). It 

is a closed-circuit tunnel powered by a 600 horsepower axial fan. The test section is square with 

a cross section of 1.83m X 1.83m and a length of 7.33m. Flow in the empty test section is 

closely uniform with a turbulence intensity of less than 0.05% (Choi and Simpson (1987)). For 

speeds between 6 and 30 m/s there is a slight favorable pressure gradient along the test section 

ac,ia= -0.003/rn as a consequence of the growth of the side-wall boundary layers (Reynolds 

(1979)). This acceleration causes some convergence of the streamlines. Choi and Simpson (1987) 

showed the convergence, illustrated in figure 2.2, to be centered roughly in the middle of the test 

section at speeds of 15 and 37.5 m/s. Flow angles produced by the convergence are small near 

the middle of the test section but increase to about 2° near the walls. 

During operation of the wind tunnel the free stream dynamic pressure and flow 

temperature are monitored continuously. The former is measured using a pitot-static probe located 

at the upstream end of the test section connected to a Barocell electronic manometer. The latter 

is sensed using an Omega thermocouple located within the test section boundary layer, there 

being no significant temperature gradient across the boundary layer. 

2.2 Wing models 

• Mason and Marchman's (1972) wing model was used along with a copy produced on a 

numerically controlled milling machine. Both models have a rectangular planform, NACA 0012 

airfoil section and a blunt wing tip. The chord and span are .20 m and 1.22m respectively. 
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Mason and Marchman's wing is made from solid brass while the copy is made from solid 

aluminum. Surfaces of both wings are accurate to within ±.25mm. 

The aluminum model was used as the vortex generator. It was mounted vertically as a half 

wing at the center of the upper wall of the test section entrance (figure 2.3). Its root was held 

cantilever fashion in a turntable and cable assembly (figure 2.4), this allowing the wing to be 

rotated to angle of attack about its quarter chord location. In this arrangement 0.88m of this wing 

protruded into the test section flow. The brass model, used as the interaction blade, was mounted 

in a similar manner 14 chord lengths downstream (figure 2.3), its effective span being 1.0m. Here 

the mount consisted primarily of two large aluminum beams resting on the tunnel superstructure 

(figure 2.5). These allowed the angle of attack and lateral position to be independently adjusted. 

The wing models were initially placed at zero angle of attack, with an accuracy of ±0.2° 

by using a removable wing tip holding 48 static pressure ports. The tip was first placed on the 

rear wing and used to position it at zero angle of attack by equalizing the static pressures on both 

sides. The forward wing was then put in place and zeroed in a similar manner. 

To eliminate possible unsteadiness and non-uniformity that might result from natural 

transition, the boundary layers on the wings were tripped. Glass beads with a diameter of 0.5 mm 

were glued to the wings in a random pattern in a strip extending between 20% and 40% chord 

locations. Average density was 200 beads/cm2. The resulting turbulent boundary layers were 

documented for a range of angles of attack by Devenport et al. (1992). 

2.3 Hot-wire anemometry 

An Auspex Corporation four-sensor hot-wire probe, type AVOP-4- 100, was used to make 

three-component velocity measurements. The probe, shown in figure 2.6, consists of two 

orthogonal X-wire arrays with each wire inclined at a nominal 450 angle to the probe axis. Eight 

prongs, 7 5g in diameter at their tips, position the wires some 40mm upstream of the main part 

of the probe. Each wire is 0.8mm long and 5im in diameter. The total measurement volume is 

roughly 1.1mm3.
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The probe was operated using four Dantec 56C17 bridges and four 56C01 constant 

temperature anemometer units mounted in a Dantec 56B12 main frame. The output voltages 

from the anemometer bridges were recorded by the IBM AT compatible computer using an 

Analogic 12 bit HSDAS-12 AID converter having an input voltage range of 0-5 volts and 12 bit 

resolution. The HSDAS-12 can sample up to four of its sixteen channels simultaneously at a 

maximum rate of 100 kHz per channel. In addition to those channels used for hot wire signals, 

two other channels of HSDAS-12 were used to measure flow temperature and free-stream 

pitot-static pressure. Raw hot wire signals were linearized and processed in the computer using 

an 18-8 laboratories PL1250 array processor. Optical disc cartridges were used to store the raw 

and processed data. 

A nominal overheat of 1.7 was used. The wires were calibrated frequently by placing the 

probe in the free stream and comparing the wire output voltages (E) with cooling velocities (Ueff) 

determined from the velocity sensed by the pitot-static probe located at the test-section entrance 

and the wire angles. The absolute wire angles were determined in advance by pitching and 

yawing the probe in the uniform potential core of a jet. The absolute flow direction at the 

calibration location was determined in advance using a 7-hole yaw probe. King's law 

E 2 = A +BU7 

was used. The exponent n was taken as 0.45 the constants A and B were determined via linear 

regression from 10 to 20 calibration points. Root mean square errors between the points and the 

King's-law fit were typically less than 0.5% in velocity. Flow temperature in the stability wind 

tunnel was found to drift by typically 1 to 2°C per hour. Hot wire signals were corrected for 

temperature changes using the method of Bearman (1970). The anemometer bridges were 

balanced to give a frequency response of better that 20kHz. 

A probe holder, shown in figure 2.7 was used to attach the to the wind-tunnel traverse 

gear. The holder was designed to position the measurement point of the probes 0.84m upstream 

of the leading edge of the traverse. It consisted of a 23.6mm diameter steel tube aligned with the 

free stream and two 6.2mm diameter rods normal to it. The purpose of the rods was to offset the 
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axis of the probe from that of the tube by 114mm. Thus the tube did not have to be placed in 

or near the vortex core for measurements to be made there. For all measurements the axis of the 

probe and tube were held parallel to the test section axis and thus free-stream flow direction. The 

probe was not pitched or yawed to face the local mean flow direction since, as demonstrated by 

Mason and Marchman (1972), this can seriously disrupt a trailing vortex flow. 

To turn the four effective velocities obtained simultaneously from the hot-wire probe into 

velocity components the following analysis was used. Consider the velocity components and wire 

angles defined in figure 2.6. Following Jorgensen (1971) we would expect the effective velocities 

to be related to the velocity components through the relations, 

= (Using, + vcose 1)2 +k(ucos6 1 - Vsin6 )2 +1j1 W2 

= (UsinO2+WcoO2)2+k(UcosO2WsinO)2+h2V2 	
(2) 

U = (Usine3 _vc0s03)2 +k32(uccse3 +Vsjn3)2+Jj3J372 

= (Usin04 - Wcos 6)2 +k(Ucc64 + WsinO4)2 +h4V2 

where k and h refer to the axial and pitch sensitivity of each wire. Splitting velocity components 

into mean and fluctuating parts, taking the square root and ignoring second order terms leads to 

the expressions
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Uç117 =

FA I 

UcD2 =
FA 

=
FA 

u,4 =
FA

(3) 

where

A1 = 

A2 = sin2e2+4cos202 

A3 = s0e3+4ca6203 

A4 = Sjfl2O+k228

DI = -s1n201(1-k) 

D2 = -sin2O2(1-k) 

D3 = -sin2O3(1 -k) 

D4 = -1s1n204(1 -k4)

(4) 

rearranging equations 3 gives, finally,
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= A1AU-A3JXU 
AA AD, 

= AU-A4AU 
A2D4 -A4D2	 (5) 

U= ---v 
FAI Al 

FA A 

The above analysis treats the probe as two orthogonal X-wire arrays and thus gives two estimates 

of U. As discussed by Devenport et al (1992) measurements of axial velocity U with X-wire 

arrays can be contaminated by streamwise vorticity because of the finite size of the probe. 

However, the two X-wire arrays of the present probe are influenced by streamwise vorticity to 

in an and opposite fashion. Averaging the two estimates of U therefore tends to eliminate this 

contamination, i.e. U is calculated as

U D U D 
U = !	 (6) 

2 A 1 jA2 

the above equations were used to determine the instantaneous velocity components from the 

instantaneous effective velocities. Averaging was then used to determine mean velocities and 

Reynolds stresses, fast Fourier transforms were employed to compute velocity spectra. 

2.4 Helium Bubble Flow Visualizations 
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The helium bubble flow visualization system used by Rife et al. (1993) was used in 

setting up the blade position, see section 3.1. For a full description of this system see Rife et al. 
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Figure 2.4	 Top view of vortex-generator mount. 
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Figure 2.5	 Schematic of interaction blade mount 
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Figure 2.6	 Schematic of quad hot-wire probe showing dimensions, wire configuration and 
velocity components used in analysis. 
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Figure 2.7	 (a) Diagram of the probe holder. (b) View of the probe holder and quad-hot 
wire attached to the wind-tunnel traverse gear. 
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3. RESULTS AND DISCUSSION 

• 3.1 Coordinate System, Flow Conditions and Table of Measurements 

The wind-tunnel fixed coordinate system shown in figure 2.3 will be used in presenting 

results. The direction of the free stream flow is along the X axis, Y is parallel to the wing spans 

and, Z is opposite to the direction of lift. The origin of the coordinate system is the leading edge 

of the tip of the vortex-generator. In this system the leading edge of the blade is at X/c = 14 and 

its tip is at Y/c = -0.613, where c is the chord length. Mean velocity components U, V, W and 

fluctuating components u', v' and w' are defined in the X, Y and Z directions respectively. 

All velocity measurements were performed at a Reynolds number based on chord c 

(Rec=Uretc/v) of 260,000, corresponding to a free-stream velocity U f of 20 m/s. The free stream 

velocity U f was monitored using a pitot static tube placed at (3.9c, 2.8c, 3.0c). Both blade and 

vortex generator were fixed at 5 degrees angle of attack, measured according to the right-hand 

rule for the negative Y axis. The vortex was therefore rotating according to the right hand rule 

in the positive X direction. Measurements were made for several lateral (z) positions of the blade 

measured in terms of the blade-vortex separation distance i, defined in figure 2.3'. Zero L 

corresponds to the blade position where the streamline marking the vortex center stagnates upon 

the blade leading edge. This blade position was determined at the start of the hot wire 

measurements by using helium-filled soap bubbles to visualize the vortex core. A is negative 

when the vortex passes to the pressure side of the blade and positive when it passes to the suction 

side.

Table 3.1 lists all the conditions and locations at which velocity measurements were made. 

Measurements were made upstream of the blade location, at X/c=10 (for which the blade was 

actually removed), and downstream of the blade at X/c=30 (15c downstream of the blade trailing 

edge) for A/c = -0.125, -0.0625, 0, 0.0625 and 0.125. For the closest pressure-side passage, A/c 

'Note that Rife et al. (1993) used z, to denote blade—vortex separation. i=-z. 
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= -0.0625, measurements were also performed at XIc=15.33 (0.33c downstream of the blade 

trailing edge) and X/c=22.6 (7.6c from the blade trailing edge). For the closest suction side 

passage additional measurements were made only at X/c=22.6. At most locations and conditions 

grids of mean velocity and turbulence stress measurements were made to reveal the overall flow 

structure, detailed profiles were measured through the core center(s) and velocity spectra were 

measured at representative locations. Note that in presenting many of these data we shall use for 

convenience the coordinates y and z, identical to Y and Z, except measured relative to the center 

of the largest measurement grid at each streamwise location. In the text below positions will be 

referred to in coordinate pairs, for example, (1,2) R will refer to a (y,z) position and (1,2) A a (Y,Z) 

position. Uncertainty estimates for velocity measurements are listed in table 3.2. 

3.2 Summary of relevant flow-visualization results 

Rife et al. (1993) performed helium bubble visualizations to reveal the gross features of 

the blade vortex interaction. Visualizations were performed for a number of vortex 

generator/blade angle of attack combinations and a range of blade-vortex separations A. 

For the conditions of interest here (i.e. vortex generator and blade at 5° angle of attack) 

a range of phenomena were observed depending on A. For i greater than a few percent chord 

(figures 3.1 to 3.4) the vortex was deflected as it passed the blade under the influence of the local 

streamline curvature and its image in the blade. During a pressure side passage (figures 3.1 and 

3.2) the image deflected the vortex inboard as it passed the blade. The reverse occurred for 

suction-side passage (figures 3.3 and 3.4). Initially the interaction appeared to have no influence 

on the core. Downstream, of the blade however, the vortex core began to diffuse and grow, 

presumably as a consequence of its interaction with the blade wake. The core also interacted with 

the blade tip vortex, the two rotating slowly about each other with distance downstream. The 

magnitude of these effects increased with reduction in A. For i near zero the form of the 

interaction changed. With both vortex generator and blade at 5° angle of attack (figure 3.5) the 

vortex appeared to split into two filaments at the leading edge of the blade, one passing on the 

pressure and one passing on the suction side.
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Table 3.3 and figures 3.6 and 3.7 present quantitative data taken from the flow 

visualizations and relevant to the present velocity measurements. Figure 3.6 presents 

measurements of the spanwise drift of the vortex over the blade as a function of A. Figure 3.7 

gives estimates of the divergence angle of the bubble stream marking the core downstream of the 

blade. These data are also listed in table 3.3 along with estimates of the maximum amplitude of 

any vortex wandering motions observed in the flow visualizations. Wandering is often a serious 

problem when tip vortices are generated in wind tunnel test sections. As discussed by Devenport 

et al. (1992) wandering motions in the present flows are small (a few percent chord), when 

compared to those present in other studies. However, they should be taken into account when 

interpreting velocity measurements made in and very close to the vortex core. Note that the 

estimates in table 3.3 are very definitely upper limits on wandering motions. Velocity 

measurements presented below suggest that in many cases the actual amplitude of wandering was 

considerably smaller than these values. 

3.3 The approach vortex 

The overall structure of the approach vortex is shown in figures 3.8 to 3.12 in terms of 

mean cross flow velocity vectors and contours of axial mean velocity U/U ref, mean vorticity 

2 
O)xc/Urei, normal stress u-'2/U 1 , and turbulence kinetic energy kfUf 2 . Here

ay az 

determined by linear central difference, and k = 	 Results are presented on two scales 

reflecting the coarse and fine measurement grids. The vectors, figure 3.8a and b, show the strong 

rotational flow associated with the vortex, the vortex center appearing at (O'O)R. Its absolute 

location (0•18'-0058)A somewhat inboard of the generator tip, as one would expect (see table 

3.4).

The structure of this rotating flow, most clearly shown in figures 3.9-3.12, consists of a 

central core of high axial vorticity (figure 3.10), where there is a significant axial velocity deficit 

(figure 3.9) and turbulence levels appear high (figure 3.11 and 3.12). Spectra to be presented 
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below show the high turbulence levels within the core to be a consequence of core wandering 

motions rather than true turbulence. Surrounding the core there is no substantial region of 

axisymmetric turbulent flow. Instead the wake of the vortex generating wing wake is wound in 

a loose spiral. This wake contains the un-rolled-up portion of the vortex sheet shed by the 

generator and thus has a significant streamwise vorticity (figure 3.10). This, and the curvature 

and straining of the wake in the rotational velocity field of the vortex, have a significant 

influence on its turbulence structure. 

Far from the core the turbulence structure of the wake is presumably much like that of 

a two-dimensional wake (see for example Wygnanski et al. (1986)). Approaching the core peak 

turbulence levels first rise as the wake begins to curve (figures 3.11 and 3.12) reaching a 

maximum of 7/U 
ref 0.00035 and k/U 2 0.0005 near (0.2,0.4)R. They then fall by more than 

a factor of two as the wake wraps 180° around the core to a minimum near z/c = -0.15. It is 

unclear whether the fall continues from this point on or not because of the possible influence of 

wandering on turbulence levels closer to the core. 

A plausible explanation of the decrease in wake turbulence levels is that the vorticity, 

rotational rate of strain and axial vorticity inhibit the formation of large scale coherent structures 

in the wake. There is no equivalent explanation of the initial increase in turbulence levels. This 

phenomenon has been seen before by Zsoldos and Devenport (1992) who found increases of up 

to 50% in peak turbulence levels in the spiral wakes of a pair of interacting trailing vortices. One 

possibility is that this effect has nothing directly to do with the influence of the vortex but is a 

consequence of initial non-uniformity in the wake produced by the three-dimensionality of flow 

over the generating wing. Alternatively it may be that the lengthening of the wake as it is wound 

into a spiral initially causes some stretching and intensification of its spanwise turbulence 

structures. 

Mean-velocity and normal turbulence stress profiles along the line y=O are presented in 

figures 3.13 and 3.14. Near the vortex center (figure 3.14) the mean V profile shows a core radius 

of 3.8%c and peak tangential velocity of 27% U re implying a core circulation of 27%170, F0 

being the root circulation of the wing calculated using lifting line theory. The axial velocity 
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profile shows a deficit of 15% U f at the core center - presumably a consequence of the drag of 

the generating wing and the gradual decay of the vortex (see Batchelor (1964), Moore and 

Saffman (1973)). The normal stresses, especially Va and w', reach fairly substantial maxima 

in the core of about 0.006 Uref Spectra presented below show these maxima to be primarily a 

consequence of the wandering motions, even though the implied magnitude of these motions is 

small. Cbré motions of an r.m.s. amplitude of only 0.005c (7% core diameter) would be sufficient 

to produce these entire stresses given the steep tangential velocity gradient in the core. In reality 

the motions were probably smaller than this since some of these stresses would have been 

produced by true turbulence. 

Looking at these profiles on a larger scale in figure 3.13 we see the regions where they 

cut the spiral wake. The wake produces shallow dips and inflections in the U and V profiles 

respectively (at z/c=-0.2 and 0.35) and local maxima in the turbulence stresses. Overall the wake 

structure seen in these profiles appears much like that observed and discussed by Devenport et 

al. (1992). 

Figure 3.15 and 3.16 compare mean tangential (V) velocity and circulation profiles 

deduced from the above measurements with predictions from Betz's theory. Measured circulations 

were calculated by assuming axisymmetry, i.e. as 2icrV. Betz's theory, described by Donaldson 

and Bilanin (1975) and others, relates the spanwise distribution of circulation on a wing to the 

radial distribution of circulation and tangential velocity in the tip vortex it sheds. It was applied 

using the equations derived in appendix 1 and a lifting line theory calculation of the vortex-

generator circulation distribution. Wall interference effects were ignored in this calculation since 

they should have been negligible. Betz's theory assumes potential flow and thus cannot account 

for the presence of the core. It also assumes axisymmetry and so does not model the spiral wake. 

of the vortex. Given these limitations it does a remarkably good job of predicting the tangential 

velocity profile all the way in to the edge of the core (figure 3.15). The agreement is not as good 

in the circulation profile (figure 3.16) primarily because of the large deviations in measured 

circulation around i/c = 0.35 and -0.2 produced where the spiral wake cuts the profile. The 

3-5



Perpendicular BVI Part I 

non-axisymmetry of the real flow may also explain why the measured circulation profile falls 

some 4 to 10% below Betz's at large radius. 

Velocity autospectra were measured at a number of locations along the center of the spiral 

wake and on a radial profile into the core, see figure 3.17(a). The spectra, normalized as 

G Gw G	 ft 
U, c' Uc' U,c 

where G is the power spectral density per Hertz and f is frequency in Hertz, are plotted in figure 

3.17b through g. Furthest from the core, at point A the spectra look qualitatively like those of 

a two-dimensional turbulent wake (see Wygnanski et al. (1986), Antonia and Britz (1989)). The 

U spectrum (figure 3.17b), fairly constant at low frequencies, begins to roll off near fcfUref = 2. 

The roll off shows a clear inertial subrange (-513 slope) between fcfU f = 2 and 20 and the 

beginnings of a dissipation range (-7 slope) thereafter. The V and W spectra (figures 3.17d and 

f) are similar except that they show a peak near fcftJ f = 3.4. This peak, strongest in W, 

presumably marks the typical passage frequency of large scale structures in the wake. Assuming 

Taylor's hypothesis gives these structures a characteristic length scale of c/3.4, almost exactly the 

width of the wake at this location. 

Moving inward along the wake towards y/c = -.02, z/c = -.13 U spectral levels at low 

frequencies, fc/Uref<10, fall monotonically (figure 3.17b). This tends to confirm our hypothesis 

that the additional strain rates, curvature and embedded vorticity experienced by the wake nearer 

the core center inhibit the formation of larger scale structures. At frequencies above fc/UreF 10 

spectral levels remain almost unaltered, however. This is a little surprising and difficult to 

explain, especially when one recalls that those parts of the wake near y/c=-.02, z/c=-. 13 and near 

y/c=0.41 and zic=0.40 have developed under quite different conditions. Intuitively one would 

expect the suppression of low-frequency motions to produce a drop in the amplitude of 

high-frequency motions through the energy cascade. Obviously, this does not happen. Similar 

effects are seen in the V and W autospectra (figures 3.17d and f). Here the loss of low-frequency 

energy is closely associated with the flattening and eventual disappearance of the peak at fcfUref 

3-6



Perpendicular BVI Part I 

= 3.4. The development of this peak is obscured to a certain extent by the rotation of the wake 

with respect to our rectangular coordinate system, which has a tendency to shift the peak from 

the W to the V component over this range of positions. 

Fairly dramatic changes are seen in those spectra measured in the final tail of the wake 

and in the core region. At low frequencies fcIU f < 10 spectral levels increase, especially in the 

V and W components, because of the coherent wandering of the core (figure 3.17e and g). 

Because these motions are small the velocity spectrum they produce at different locations has 

more or less the same shape. At higher frequencies, spectral levels fall by as much as an order 

of magnitude. Within the core there is little sign of an inertial subrange in any of the components 

but a dissipation range is clearly visible extending to relatively low frequencies. The implication 

is that any turbulence inside the core is of low effective Reynolds number. 

A striking feature seen in those spectra measured in or near the core center is a fairly 

sharp spike at a frequency of about fCfU f = 5. In U this spike is strongest at zic=.02. In V it is 

clearest at the core center and edge; z/c=0.0 and 0.04. In W the peak at fcIU=5 only appears 

at the core center (point P) - at the core edge (point N) a spike is seen but at approximately 

double the frequency. After having considered many possibilities we are still mystified as to the 

fluid mechanics producing these features, though we suspect that they are generated by some kind 

of core wave. The frequency doubling in the W component would seem to rule out any type of 

probe or sensor vibration as the source. 

3.4 Flow over the blade 

The leading edge of the blade was positioned 4 chordlengths downstream of the above 

measurement location. The flow visualizations of figures 3.1 to 3.4 show the vortex center 

passing the blade leading edge 85%c 2 from the tip (YIc = 0.21), this distance varying by no 

more than ±3%c with A. We therefore conclude there was an inboard movement of the vortex 

of about 10%c between X/c=10 and this location. 

'This distance was mis—stated by Rife et al. (1993) at 92%c. 
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Figures 3.18 and 3.19 show the probable structure of the flow over the blade and 

immediately downstream as a function of A. With the vortex passing to the pressure side of the 

blade (A<O figure 3.18) it drifts inboard under the action of its image in the blade surface. The 

rotational flow of the vortex has a strong influence on the local angle of attack of the blade a. 

Outboard of the vortex center cx is increased, inboard it is decreased. Judging from the tangential 

velocity profile at X/c=10 (figures 3.13a and 3.14a) the effect could be as much as 15° close to 

the vortex core, and about 2° at the blade tip. Bearing in mind the geometric angle of attack of 

the blade of 5°, cx could be large enough outboard of the vortex center to cause local stall or at 

least a substantial thickening of the suction side boundary layer. The changes in a with spanwise 

distance Y along the blade should cause the shedding of streamwise vorticity from the blade 

trailing edge. Outside the immediate vicinity of the core awaY is positive and thus positive 

vorticity is shed. Only close to the core is negative vorticity shed. Downstream of the blade 

trailing edge we would expect the vortex to interact with this shed vortex sheet and the blade tip 

vortex. The flow visualizations showed the vortices to rotate about each other as a consequence 

of their mutual induction. The influence of the vortex on the blade boundary layer is not limited 

to angle of attack effects. Between its center and the pressure side of the blade the vortex induces 

a spanwise flow that runs counter to the natural outwash on the blade. The negative streamwise 

vorticity produced by the friction between this flow and the blade surface is the same as that 

inferred from changes in the local angle of attack. Inboard of its center the vortex is tending to 

lift this spanwise flow away from the blade surface. This would be likely to produce some 

thickening of the pressure-side boundary layer here. 

With the vortex passing the suction side of the blade (figure 3.19) its effects on the local 

angle of attack and thus the shed vorticity distribution are qualitatively the same as those 

described above. Other aspects of the flow structure, however, are not the same. First, the vortex 

drifts outboard under the action of its image. Second, the spanwise flow that it generates is found 

primarily on the suction side of the blade and is outward towards the tip (though this is still in 

opposition to the natural inwash that would otherwise be found here.) Third, and perhaps most 

significant, the vortex is rotating so as to lift the flow outboard of its center away from the 
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suction side surface of the blade. In contrast to the pressure side case, the outward flow generated 

by the vortex and the variations it produces in local angle of attack therefore act together here 

to thicken the boundary layer and promote separation. 

With .the vortex stagnating on the blade leading edge it would still have the same effects 

on local angle of attack and shed vorticity described above. Its other effects on the boundary 

layer structure are hard to predict without detailed knowledge of the fate of the vortex core. 

Assuming the flow visualizations are accurate in this respect and the vortex core splits in two, 

one would expect the flow structure to be a combination of that drawn in figures 3.18 and 3.19. 

No measurements were made over the blade surface to confirm the above discussion. 

However, measurements were made just (0.33c) downstream of the trailing edge with the vortex 

passing the pressure side of the blade. The blade-vortex separation for this case was A/c =

-0.0625. Measurements made in grids at this station are presented as vectors and contours in 

figures 3.20 to 3.27. In addition to those properties plotted for the approach vortex contours of 

turbulence shear stresses ;/UJ and tJtJ 2 and of turbulence kinetic energy production PcftJref3

are presented 3. 
'Ca represents the magnitude of the shear stresses associated with the axial velocity 

component U 'v"2 u 'w"2 , this quantity being invariant under rotation about the X axis. 'r 

represents the cross flow shear stress v'w' rotated such that v' lies in the local mean cross-flow 

direction and w' normal to it. P is turbulence kinetic energy production neglecting streamwise 

derivatives,

=wfaw+av	 (8) 
Otv	 az az 

Note that all quantities except P are plotted on two scales corresponding to the coarse and fine 

grid measurements. The coarse grid spacing was too large for accurate estimates of P. 

Note that, due to a computer programming error, shear stress measurements were not 
recorded for the inflow plane.
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The contours of turbulence quantities and streamwise vorticity (figures 3.22 to 3.27) show 

the blade to have cut the spiral wake of the vortex generator in two, the core lying just to the 

pressure side of the blade wake. Due to the influence of its image in the blade surface the core 

has indeed drifted inboard. The mean velocity vectors (figure 3.20a and b) show the core to be 

centered at (0.02 '0.04 )R (0.330.02 )A 94%c inboard of the blade tip. This indicates a total 

spanwise (Y) drift over the blade of 9%c inboard, in approximate agreement with the flow 

visualizations, see table 3.3. 

The flow structure in this plane may be split into three fairly distinct regions; the spiral 

wake, the blade wake and the vortex core. Qualitatively the spiral wake appears little different 

than at X/c=10, except for having been cut in two. Turbulence kinetic energy and axial normal 

stress levels still fall with distance along the spiral towards the core (figures 3.24a and 3.23a). 

Axial and cross-flow turbulence shear stress magnitudes (figures 3.25a and 3.26a) also drop. 

Overall turbulence levels in the spiral are lower than at X/c=10, but this is probably due to the 

natural decay of the turbulence rather than any effect of the blade. 

By contrast, flow properties in the blade wake reveal much about the flow over the blade 

surface and the influence of the vortex upon it. The blade wake is, not surprisingly, a region of 

intense turbulent activity where k, ii , axial shear stress magnitude 'ta and turbulence production 

P reach relatively large values (3.23, 3.24, 3.25 and 3.27). It is also a region of substantial 

cross-flow shear stress ; (figure 3.26) presumably associated with a significant amount of 

streamwise vorticity embedded within it (figure 3.22a) and of significant axial velocity deficit 

(figure 3.21). As might be expected from our arguments above, the properties of the wake appear 

quite different inboard and outboard of the vortex core. Most obvious is the fact that the wake 

is thicker and more turbulent outboard of the vortex center than inboard. This thickening is 

presumably due to the predicted effects of the vortex on the local angle of attack. Lifting of fluid 

away from the blade surface by the rotational motion of the vortex may also increase the wake 

thickness inboard of the vortex center, but this effect is clearly smaller here. Both inboard and 

outboard of the core the positive streamwise vorticity shed from the blade is visible in its wake 

(figure 3.22a). This vorticity is associated with significant negative cross-flow shear stress (figure 
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3.26a). Interestingly there is also a thin region of positive cross-flow stress on the suction side 

of the outboard part of the wake (figure 3.26a, zic=-0.12 y/c<O). We speculate that this may be 

due to early separation of the boundary layer from the blade surface under the influence of the 

vortex. The negative vorticity shed in the vicinity of the core is also visible, near (0. iO)R in 

figure 3.22. This negative region appears to form part of a tongue of relatively turbulent fluid that 

extends around the periphery of the core from the wake on its inboard side (figures 3.23, 3.24, 

3.25, 3.26). The implication is that this fluid in the process of being ingested into the core. 

Turbulence levels in the core center appear somewhat lower than at its edge, presumably 

because of the stabilizing effects of rotation. Production here is also strongly negative, there being 

a strong positive region between the core and blade wake at (0.02-0.02)R' figure 3.27. Note that 

a portion of this production could be due to coherent motions of the core rather than true 

turbulent motions. 

A Z-wise profile of mean velocity and Reynolds stress components measured through the 

vortex core blade wake and vortex core at ylc=0 is plotted in figures 3.28 and 3.29. The U-profile 

(figure 3.28a and 3.29a) shows the axial velocity deficit in the core which occupies the region 

between z/c=-.01 and .12. At most locations within this region the deficit is larger than in the 

approach vortex (figure 3.14a). The maximum, of about 19% U f occurs off center, near 

z/c=-.025. This same profile also show a substantial dip, near z/c=-.045 associated with the blade 

wake and lesser minima centered at z/c=0.5 and -0.25 associated with the vortex generator wake. 

Corresponding maxima are visible in the turbulence stress profiles. 

The tangential velocity profile, visible in the V component shows a peak tangential 

velocity ye1 of 0.19U f (compared with 0.27 Uref upstream) and a core radius r 1 of 3.1%c 

(compared to 3.8%c upstream). The apparent decrease in core radius may be due to the core 

having become non-circular as a result of interaction with its image. Trailing vortex pairs do tend 

to develop elliptical cores, see Zsoldos and Devenport (1992) and references therein. The implied 

core circulation 21cr 1 v01 is only 16% of the root circulation of the vortex generator F'0, compared 

to 27%F'0 upstream. This low value implies that some of the negative vorticity produced on the 

blade surface and shed into its wake has become ingested into the core, even at this early stage. 
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Many previous authors have observed the loss of core circulation that results from 

vortex/boundary layer interaction, see for example Shabaka et al. (1985). 

Figures 3.28b and 3.29b show the region of elevated turbulence stresses around the core 

to be significantly broader than at X/c=10. However, peak W and V normal stresses (.0047U[ef2 

and .003U,, respectively) are lower. In making this comparison it should be remembered that 

almost all the normal stress in the core at X/c=10 was attributed to coherent vortex wandering 

motions, based on autospectra and the fact that the variations in normal stresses here are similar 

to those of the mean velocity gradient. This may not be the case here where the normal stresses 

reach broad maxima and are approximately constant in the core region, despite the fact that the 

mean-velocity gradients vary substantially. Furthermore u2/U reaches approximately the same 

maximum value as v/U and w/U although the crossflow gradients of V and W are much nf 

larger than those of U. 

U, V and W autospectra measured at representative locations over the cross section are 

presented in figure 3.30. Figure 3.30a shows the locations. Figures 3.30b, d and f show those 

spectra measured furthest from the vortex core. These fall into two groups depending on whether 

they were measured in the vortex generator or blade wakes. Spectra from the generator wake 

(points A,B,D,E,F, and G) are very similar to those measured in this wake at X/c=10. Their shape 

is the same and they show the same fall in low-frequency spectral levels as the core is 

approached. The only difference is that these spectra are shifted to slightly lower frequency and 

energy as a consequence of the growth and decay of the wake between these two locations. The 

peak in the V and W spectra attributed to the typical passage frequency of large scale structures 

is centered at fC/Urei=2.7 compared to fc/Ure 	 at X/c=10. 

The two spectra from the blade wake (points C and H) are of much higher characteristic 

frequency and energy because of the much shorter distance over which this wake has grown. This 

distance, 0.33c, is probably not sufficient for the transition from boundary layer to wake to have 

been completed which may explain why these spectra have a more rounded appearance than those 

of the generator wake. Both W autospectra show peaks that can be attributed to large-scale 
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structures. Outboard of the vortex core, at point C, the peak lies at a frequency fcfU-5. Inboard, 

at point H, it occurs at fc/Uref=6.7. This difference is consistent with the wake being thicker on 

the outboard side due to the effects of the vortex on the local angle of attack. Assuming Taylor's 

hypothesis is valid these frequencies imply length scales of 0.c and 0.1 5c respectively. The ratio 

of these is close to the ratio of blade wake thicknesses at these two locations, as judged from the 

turbulence kinetic energy contours. 

Figures 3.c, e and g show those spectra measured in the vicinity of the vortex core. Points 

I through L appear to be associated with the inner part of the vortex generator wake. The peak 

in the V and W spectra shows a slight shift to higher frequencies as the core is approached and 

a peak appears in the U spectrum. Similar effects were observed in the vicinity of the core at 

XIc=10. The spectra at points M and N have the more rounded appearance of the blade wake 

spectrum (see especially G, figure 3.30e). These points presumably lie in the ring of blade wake 

fluid apparently entrained by the core that was observed in the contour plots of turbulence 

stresses. The only point lying within the core is point 0. At (0, 0.02c) it is 2.8%c from the core 

center, the core radius being 3.3%c. Unlike the spectra measured inside the core upstream of the 

blade this spectrum has a clear -5/3 region in all components. Also, spectral levels at high 

frequencies are either of similar to or greater than those measured outside the core. The 

implication here is that the blade vortex interaction substantially alters the turbulence structure 

of the core, increasing true turbulence levels and the effective turbulence Reynolds number. At 

low frequencies spectral levels are at least slightly lower than those at corresponding locations 

in the approach vortex, suggesting some reduction in the amplitude of wandering motions. 

3.5 Flow downstream of the blade as a function of A. 

In this section we present and discuss the measurements made at X/c=30 for A/c -0.125, 

-0.0625, 0, 0.0625 and 0.125. These measurements reveal not one the structure of the primary 

vortex following its interaction with the blade but also that of the tip vortex shed by the blade. 

3.5.1 Velocity grids
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Figures 3.31 to 3.38 show cross sections through each of these flows in terms of velocity 

vectors and contours'. These figures show both the primary vortex and the blade tip vortex. The 

mean velocity vectors (figures 3.31) show the sum of these two secondary flow velocity fields, 

and are thus are not useful for distinguishing the vortices. However, the contours of streamwise 

vorticity (figure 3.33) clearly show the locations of the primary and blade tip vortex cores. In all 

these figures the blade tip vortex core is located towards the top left hand corner and the primary 

vortex core towards the center. The relative and absolute locations of the core centers are listed 

in table 3.4 and plotted in figure 3.39. This figure shows the movement of the vortices as A was 

varied by moving the blade. In the absence of any interaction the blade tip vortex would move 

exactly with A and the primary vortex would remain fixed. Instead the blade tip vortex core 

moves considerably less than the blade, by O.lc for a change in ,± of 0.25c. Presumably this is 

because of the rotation of the blade tip and primary vortices about each other. Rotation apparently 

plays a large part in determining the location of the primary vortex as well. For L<O (pressure 

side passage) the core ends up at a substantially lower Y than if &=O. This is exactly the 

opposite of the situation at the blade trailing edge, as seen in the flow visualizations and 

illustrated in figures 3.18 and 3.19. Here the position of the primary vortex core is determined 

by its drift across the blade under the action of its image. The drift is inboard (+Y) for zzO and 

outboard (-Y) for &O. 

The vorticity contours also give some idea of the degree of organization in the primary 

vortex core. Following the impingement of the vortex on the blade leading edge (LVc=O, figure 

3.33c) the vorticity in its core is relatively weak and is spread out over a non-circular region 

aligned approximately with the blade wake. With the vortex passing just to the pressure side of 

the blade (iVc=-0.0625, figure 3.33b) it is only slightly more organized, the peak vorticity at its 

center being about 50% greater than for Nc=O. A more substantial change is seen between 

&c=-0.0625 and -0.125 (figure 3.33a) where the vorticity of the core is much more intense and 

'Contours of turbulence kinetic energy production are only plotted for z/c=-0.0625 
since in all other cases the grid resolution was too coarse for the appropriate derivatives to 
be estimated accurately.
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axisymmetric. With the vortex passing to the suction side of the blade (figures 3.33d and e) a 

similar but more rapid change is seen. The core appears as organized and intense for A/c=0.0625 

(figure 3.33d) as with the vortex passing twice the distance from the pressure side of the blade. 

In none of these cases is the region of negative vorticity produced by the blade-vortex interaction 

visible, suggesting that it is quickly cancelled by positive vorticity in the core. (Note that some 

small regions of negative vorticity are seen adjacent to the blade vortex core in some of the 

figures, but these appear to be a consequence of the limited grid resolution.) 

The contours of u /2 and k (figures 3.34 and 3.35) show a similar effect in the turbulence 

distributions. For Nc=O turbulence levels are elevated over a large non-circular region in the 

vicinity of the primary vortex core. With increase or decrease in i the region shrinks but 

turbulence levels at the core center rise, presumably as a consequence of the steeper 

mean-velocity gradients in the more organized core coupled with coherent wandering motions. 

The flow structure around the core is in all cases quite different then for the approach vortex. 

Gone is the loose spiral of the vortex generator wake and, if anything, the core appears well 

imbedded in the blade wake. The two wakes may be most easily distinguished inboard of the 

core. For all values of A the vortex generator wake appears below the blade wake, though the 

distance between the two shrinks with increase in A. For Jc>=O they are close enough to 

overlap.

Outboard of the primary vortex core a highly curved section of blade wake connects it 

to the blade tip vortex. Qualitatively the turbulence structure of this section of wake and the blade 

tip-vortex core is similar to that seen in the spiral wake and core of the approach vortex. 

Turbulence kinetic energy and axial normal stress levels fall with distance along the wake 

towards the core presumably because of the suppression of large scale turbulent structures by the 

greater curvature and straining of the mean-velocity field. In the vicinity of the core they then 

increase as a consequence of coherent wandering motions. Quantitatively, however, turbulence 

levels in this part of the flow are a strong function of i, increasing monotonically with this 

variable. Consider, for example, u a levels in the most elevated (i.e. most negative z) section of 

3-15



Perpendicular BVI Part I 

the blade wake. For i.Vc=-0.125 (figure 3.34a) U'2 reaches a peak value of about 1 x 10 4 here. 

For zVc=0.125 (figure 3.34e) the peak value is about 3.5 times greater. Effects of similar 

magnitude are visible along this entire section of wake and in the blade tip vortex core. The only 

satisfactory explanation of this effect appears to be in the influence of the primary vortex on the 

blade boundary layer. As discussed above, with the vortex on the pressure side of the blade 

(negative A) "local angles of attack outboard of its core are increased and therefore so is the 

thickness and intensity of the blade wake. As A is increased to zero the magnitude of this effect 

should increase producing the more turbulent section of blade wake seen here. For positive 

(vortex passing to the suction side of the blade) the lifting of fluid away from the blade surface 

by the vortex acts in concert with the increase in angle of attack to further thickening and 

intensifying the blade wake. 

The contours of axial and cross-flow shear stress are more difficult to interpret (figures 

3.36 and 3.37) since in most cases the grid resolution is really not sufficient to reveal the detailed 

spatial variations of these quantities. At most one can infer that; and; reach large magnitudes 

in the vicinity of the vortex cores. For the most part ; is negative but some intense positive 

regions are visible near the vortex cores, especially for >O. One exception to this limitation is 

the case i.Vc=-0.0625 for which a fine grid of measurements were made in the vicinity of the 

primary vortex core (figures 3.36b(ii), 3.37b(ii) and 3.38). Here we see the core to be bordered 

above and below by strip shaped regions of high shear stress and turbulence kinetic energy 

production aligned approximately with the blade wake. This may be an effect of the primary 

vortex stretching the blade wake as it rolls it in. Stretching would tend to intensify any spanwise 

structure remaining in the wake and turbulence levels associated with it. 

3.5.2 Velocity profiles 

Z-wise profiles of mean velocities and Reynolds stresses measured through the primary 

vortex core for AIc=-0.125, -0.0625, 0.0625 and 0.125 are shown in figures 3.40 and 3.41. The 

arrows in these figures mark the core center locations. Detailed views of the core regions are 

shown in figures 3.42 and 3.43.
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The axial velocity deficit in the primary vortex core is clearly visible in these figures. Its 

dependence on A is illustrated in figure 3.44. Between A/c=-0.125 and -0.0625 the deficit at the 

core center falls from 10.2%U f to 6.3% but the size of the region affected by the deficit grows. 

The reverse occurs for AIc>0, the peak deficit rising from 7.2%U f at Nc=0.0625 to 13.8%U1Cf 

at /c=0.125. These observations are consistent with a lower blade-vortex separation resulting in 

a more diffuse and less organized core. Note that the peak axial velocity deficit for the approach 

vortex was 15%Uf. 

Far less clear in these plots is the tangential velocity profile of the primary vortex. The 

V component profile, where it should be visible, also contains substantial contributions from the 

velocity field of the blade tip vortex. Assuming this superposition to be linear the influence of 

the blade tip vortex may be subtracted out. All that is required is an independent estimate of its 

velocity field. We used Betz's theory to provide this estimate, applying it to the theoretical 

circulation distribution on the blade. Out of necessity the influence of the primary vortex upon 

the blade circulation distribution was ignored. The estimated velocity field, centered at the 

measured location of the blade tip vortex, was then subtracted out of the V profile. Figures 3.45 

and 3.46 show the results of the subtraction in terms of measured tangential velocity profiles and 

circulation profiles estimated from them assuming axisymmetry. All profiles are compared with 

the measurements and Betz's theory estimates for the approach vortex. 

These figures show the peak tangential velocity of the primary vortex to be substantially 

lower and the core radius to be greater at X/c=30 than upstream of the blade. Peak tangential 

velocity V OIJlJref, core radius r 1 /c and core circulation F11T0 are plotted as functions of A/c in 

figure 3.47 and listed in table 3.5. Consistent with our observations above v 81 falls and r1 

increases as the blade vortex separation falls. The magnitude of these changes is larger for 

pressure side passage. Despite the substantial changes in v 81 and r 1 the core circulation remains 

surprisingly constant at 15-17%F0 between A/c = -0.125 and 0.0625, rising to 23%170 at 

LVc=0.125. These compare with 27%I' for the approach vortex. It may be that there is a 

substantial range of blade vortex separations over which the amount of negative vorticity shed 

by the blade and ingested into the core is roughly constant. 
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The agreement between these profiles and the prediction from Betz's theory is, on the 

whole, very poor even at large radius. At first we were concerned that this poor agreement was 

due to inaccuracies in the procedure used to subtract the influence or the blade tip vortex. To test 

this hypothesis we varied the root circulation used in calculating the blade tip vortex and repeated 

the subtraction process. As can be seen from a comparison of figures 3.46 and 3.48 this had little 

effect. The poor agreement with Betz's theory has two explanations. Firstly, it is quite possible 

that the interaction with the blade causes a change in the overall circulation distribution of the 

vortex - lines of vorticity associated with the trailing vortex could join to some of those 

associated with the bound vortex on the blade (the loss of core circulation is direct evidence of 

this). Secondly, even with the velocity field of the blade tip vortex subtracted, flow downstream 

of the blade is unlikely to have been very axisymmetric and thus cannot really be compared with 

Betz's results. This second suggestion appears to be supported by the measured circulation 

profiles of figure 3.46. These profiles, calculated assuming axisymmetry, show erratic and 

unlikely variations in the total vortex circulation, from 35%170 at ,Vc=-0.125 to 70%170 at 

Nc=O.125. 

Figures 3.41 and 3.43 show the turbulence stress distributions in and around the vortex 

core. Consistent with the contours, peak stress levels in the core rise with blade-vortex separation 

while the region within which the stresses are elevated shrinks. The rise in stress levels with 

separation is most likely a consequence of coherent wandering motions, the motions becoming 

more important as the core becomes more organized and the velocity gradients within it increase. 

Figures 3.49 to 3.52 show Z-wise velocity profiles through the blade tip vortex core for 

all values of A. The z locations of the core centers are marked by the arrows in these plots. In 

the vicinity of the core these profiles are qualitatively are very similar to those of the approach 

vortex. Quantitatively some small differences are apparent. The peak tangential velocity is 

33±2%Uref compared to 27%U f in the approach vortex. The core radius is 4.5%c compared to

3.8%c, the rms amplitude of coherent core motions implied by the peak normal stresses in the 

core center 0.8%c compared to 0.6%c and, the peak axial velocity is 11±2% compared to 15%.

The '±' sign here indicates the range of variations with A. Most of these are small enough to be 
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a result of differences in the exact path of the profile through the vortex core. As is evidenced 

by the relatively large W component velocities seen in the core in some of the cases (especially 

Nc=±0.0625) not all the profiles passed exactly through the core center. 

In figure 3.50 regions where the profiles cut through parts of the surrounding blade wake 

may be seen (at zJc=-.9 in figure 3.50a, for example). Comparing these regions clearly shows the 

increase in blade wake turbulence levels with i observed in the grid measurements above. 

Between Nc=-0.125 and 0.125 the increase in both normal and shear-stress levels is as much as 

a factor of three. 

3.5.3 Velocity autospectra 

Autospectra normalized on Ufef and c are presented in figures 3.53 to 3.57. As indicated

in part 'a' of these figures a majority of the spectra were measured either in parts of the vortex 

generator or blade wakes and thus are similar in form. All show inertial subranges in the U

component near fc[Ure  = 5 and peaks in the V or W components depending on the local

orientation of the wakes. At higher frequencies fC/Uref > 20 the beginnings of a dissipation range

can also be seen. While the blade and vortex generator wakes are very similar in shape they have 

different characteristic frequencies, defined by the location of the peak in the V or W spectrum. 

This difference is most clearly seen by comparing the W spectra measured at points A and I for

A/c=-0.125 (figures 3.53f and g). The frequencies are fcfTJF 1.8 in the vortex generator wake and 

on fC/UreF2.8 in the blade wake. The difference is smaller than at X/c=15.33 because the

frequency scale of a wake develops as the square root of the distance over which it as grown. 

In contrast to the undisturbed vortex, spectral levels at nearly all frequencies are higher

in the primary vortex core than in the surrounding flow (e.g. point H, figure 3.53). Except for

iVc=0.125, the core U spectra also show substantial inertial subranges suggesting the presence 

of a well developed energy cascade. Some of the V and W autospectra even show peaks like

those seen in the surrounding blade wake (see point H in figure 3.54f, point E in figure 3.55d

and point G in figure 3.56d). For Nc=0.125 the core spectra (figure 3.57 point H) lie somewhere

between those seen at lower A/c and in the approach vortex. No -5/3 region is visible and spectral 

3-19



Perpendicular BVI Part I 

levels at high frequencies fC/U ref>20 are lower than in the immediately surrounding flow, although 

by not as much as in the approach vortex. The behavior of the core spectra at very low 

frequencies fcIU f<2 shows the degree to which core which core wandering contributed to the 

Reynolds stresses. For zVc=0.125, -0.125 and, to a lesser extent 0.0625 (figures 3.53, 3.57 and 

3.56) low-frequency spectral levels rise much more than high-frequency spectral levels as the core 

center is approached, indicating core motions to be important in these cases. For iVc=-0.0625 and 

0, however, the increase in spectral levels at low and high frequencies is of the same magnitude. 

As already noted core wandering is likely to be have been less important in these cases because 

the core was larger and the mean-velocity gradients within it weaker. 

Parts c, e and g of these figures show the development of the velocity spectrum along the 

blade wake and into the blade tip vortex core. The increase in blade wake turbulence levels with 

A appears to be accompanied by some change in the spectral shape, see point M in figures 3.53 

and 3.57. At high frequencies fC/U ref>50 spectral levels are almost the same at these two points. 

At low frequencies, however, spectral levels are as much as an order of magnitude lower at 

Jc=-0.125. At low frequencies the spectra for &c=-0.125 also have more rounded appearance 

and show no clear peak in either the V or W components. The implication is that with increasing 

this part of the blade wake becomes more organized and its large scale structure more 

important. Moving on into the blade tip vortex core (e.g. figures 3.53 and 3.54 points 0 and P) 

the velocity spectrum develops in much the same way it did in the approach vortex. Spectral 

levels at low frequencies increase dramatically due to core wandering. Spectral levels at high 

frequencies fall due to spin stabilization and a large dissipation range appears extending down 

to relatively low frequencies. Note that for AIc=0 none of the spectrum measurement locations 

fell within the blade tip vortex core. 

3.6 Flow downstream of the blade as a function of x. 

In this section we present measurements made at X/c=22.6 for A/c = -0.0625 and 0.0625 

and use them along with the data presented above to discuss the streamwise development of the 

vortex downstream of the blade.
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3.6.1 Velocity grids 

Figures 3.58 through 3.65 show the velocity vectors and contours of turbulence quantities 

measured at XIc=22.6. The locations of the vortex cores are most clearly seen in the streamwise 

vorticity (figure 3.60). The core locations are listed in table 3.4 and plotted in figure 3.66 along 

with data from other streamwise stations. This figure reveals the rotation of the blade tip and 

primary vortices about each other and the approach of their cores. For zVc=-0.0625 (figure 3.66a) 

the line joining the vortex centers rotates some 49° and shortens from 0.75c to 064c between 

X/c=22.6 and 30. For LVc=0.0625 (figure 3.66b) this line rotates only 32° and shortens from 0.73c 

to 0.72c over the same distance. These differences are probably due to the vorticity distribution 

around the primary vortex core. For Nc=-0.0625 (figure 3.60) this is considerably weaker and 

more spread out indicating a less organized core, much as at X/c=30. As illustrated by Rossow 

(1977) the vorticity distributions of vortex cores can exert a strong influence over how they 

interact.

The contours of vorticity and turbulence quantities reveal flows much more like those seen 

at X/c=30 than at X/c= 15.33. The vorticity contours show no sign of the region negative vorticity 

shed from the blade. The turbulence contours show the primary vortex core to be surrounded by 

the blade wake, apparently disconnected from the vortex generator wake. Between the primary 

and blade tip vortices, turbulence levels in the blade wake are a function of A, increasing by 

about 30% between iVc=-0.0625 and 0.0625. Overall turbulence levels are higher at this location 

than downstream, but this is simply because of the shorter distance over which the flows have 

developed. 

Perhaps the clearest views of the streamwise development of these flows are given in 

figures 3.67 and 3.68. Here all the contours of turbulence kinetic energy measured between 

X/c=10 and 30 in each flow are plotted together. This figure highlights the dramatic enlargement 

of the region of high turbulence levels around the vortex core as a consequence of its interaction 

with the blade. Also visible is the interaction between the vortex, blade wake and blade tip 

vortex, and the changes in blade wake turbulence levels with A. 
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3.6.2 Velocity profiles 

Z-wise profiles of mean velocities and Reynolds stresses measured through the primary 

vortex core for zVc=±0.0625 figures 3.69 and 3.70. The arrows in these figures mark the core 

center locations. Detailed views of the core regions are shown in figures 3.71 and 3.72. 

The core axial velocity deficit profiles are similar in form to those measured under the 

same conditions at XIc=30. The deficits are, however, larger by about 50% and confined to a 

smaller radius. Comparison with profiles measured at other streamwise locations (figures 3.73a 

and b) shows these differences to be part of the rapid diffusion of the core downstream of the 

blade. For /c=-0.0625, for example, the peak deficit is 19% at X/c= 15.33, 10% at X/c=22.6 and 

6.3% at X/c=30. Despite this rapid change the axial velocity profiles retain a remarkably 

self-similar form, as illustrated in figure 3.74. This figure also shows close similarity among 

profiles measured at other blade-vortex separations and upstream of the blade. 

As before the tangential velocity profiles in the core are obscured by the super-imposed 

velocity field of the blade tip vortex. Subtracting out that velocity field using the procedure 

described above gives the tangential velocity and circulation profiles shown in figures 3.75 to 

3.78. These figures include tangential velocity profiles from other streamwise locations as well 

as our Betz's theory estimates and measurements for the approach vortex at X/c=10. 

These figures show the rapid growth of the core and decay of the peak tangential velocity 

caused by the blade. For Nc=-0.0625 v 01 decays from 27.2%U f at X/c=lO to 19.4% at 

X/c=15.33 and then 6.1% and 4.5% at X/c=22.6 and 30 respectively. A similar but slightly 

slower change is seen for Nc=0.0625. Despite these variations, the tangential velocity profiles 

remain remarkably self similar, like those of axial velocity deficit, see figure 3.79. Figure 3.80 

shows the corresponding variations of core radius and circulation (see also table 3.5). The effects 

of the blade on the core radius appear consistent with what was observed in the flow 

visualizations; i.e. in the immediate vicinity of the blade the interaction appears to have little 

effect on the core radius, it is only downstream, when the vortex encounters the blade wake that 

the core growth rate increases. For LVc=-0.0625 the radius initially falls slightly from its upstream 

value. It then begins a rapid growth, however, quadrupling its size by X/c=30. There is no sign 
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at this point that the growth has stopped. For AJc=0.0625 the rapid growth does not appear to 

begin until later (somewhere near X/c=22.6), reducing the size of the core seen at X/c=30. 

Obviously more data is needed to establish a useable functional relationship between the 

parameters of the blade vortex interaction and the resulting core radius at a given streamwise 

station. However, a hint as to the form of such a relationship is apparent in the flow visualization 

results of figure 3.5. Replotted in figure 3.81 these data show an approximately inverse 

relationship between 'divergence angle of bubble stream marking the core' (hopefully indicative 

of average core growth rate) and A. 

Bearing in mind the rapid variations in peak tangential velocity and core radius, the core 

circulation (figure 3.80b) is remarkably constant downstream of the blade. In both cases it 

remains close to 16%. Along with the lack of variation in core circulation with A, these results 

suggest the possibility of a simple method for accounting for the effects of the blade on core 

circulation in a calculation, viz, if the core passes closer than a certain distance from the blade, 

the core circulation is reduced by a fixed amount. 

As before the agreement between the circulation and velocity profiles and the prediction 

from Betz's theory is very poor even at large radius. Changes in the circulation distribution of 

the vortex as it passes the blade and non-axisymmetry of the flow again seem to be the most 

likely explanations. 

Figures 3.70b and 72b show the turbulence stress profiles in the core at X/c=22.6. For 

AIc=0.0625 peak stress levels in the core are substantially higher than for A/c=-0.0625 but are 

concentrated over a smaller region, consistent with what was seen at X/c=30. A comparison with 

core profiles measured at other locations shows a general reduction in peak levels downstream 

of the blade. For example, for AIc=-0.0625 the peak	 is .009 at XIc=lO, .0047 at 

X/c=15.325, .0013 at X/c=22.6 and .0007 at X/c=30. In considering these numbers it should be 

remembered that almost all the normal stress at X/c=10 was attributed to coherent vortex 

wandering motions, based on autospectra measured in the core. The reduction in peak stress 

levels with x therefore probably has more to do with the rapid diffusion of the core mean-velocity 

gradients than with true turbulence levels. In fact, spectral measurements presented above and 
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below suggest that true turbulence levels within the core may have been substantially larger at 

X/c=22.6 and 30. 

Figure 3.82 to 3.85 shows mean velocity and turbulence stress profiles through the blade 

tip vortex core at X/c=22.6 for i.Vc=-0.0625 (profiles were not measured for Nc=0.0625). 

Qualitatively these are very like those of the blade tip vortex core at X/c=30. Quantitatively some 

small differences are apparent. The peak tangential velocity slightly higher, at 36%U f . The core 

radius and apparent rms amplitude of coherent core motions are a little smaller, at 4.3%c and 

0.56%c respectively. 

3.6.3 Velocity autospectra 

Autospectra are presented in figures 3.86 and 3.87. As at other locations the majority of 

the spectra were measured either in parts of the vortex generator or blade wakes and thus are 

similar in form. All show inertial subranges in the U component near fcftJ f = 5 and peaks in the 

V or W components depending on the local orientation of the wakes. The characteristic 

frequencies of the blade and vortex generator wakes are most clearly seen in the W spectra 

measured inboard of the primary vortex core, at points A and I in both cases (figures 3.86f and 

g for zVc=-0.0625 and figures 3.87f and g for &'c=0.0625). The frequencies are fC/Ure 2 .3 and 

3.5 for the vortex generator and blade wakes respectively. These are, as one would expect, higher 

than the corresponding frequencies at X/c=30. The flow structure in and around the primary 

vortex core (points F, G and H figure 3.86, points E and F figure 3.87) is similar to that seen at 

X/c=30. Spectral levels at all measured frequencies are higher in the core center than in the 

surrounding flow and the spectra here show substantial inertial subranges suggesting the presence 

of a well developed energy cascade. The behavior of these core spectra at very low frequencies 

fcIUref<2 shows the degree to which core wandering contributed to the Reynolds stresses. For 

AIc=0.0625 (figure 3.87) low-frequency spectral levels rise much more than high-frequency 

spectral levels as the core center is approached, indicating core motions to be important in this 

case. For /c=-0.0625, however, (figure 3.86) the increase in spectral levels at low and high 
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frequencies is of the same magnitude. Core wandering is likely to be have been less important 

in this case 

Those spectra measured in and around the blade tip vortex and wake are similar to those 

seen here at X/c=30. Approaching the core (points J to M figure 3.86, points M to 0 figure 3.87) 

the blade wake spectra show a gradual loss in energy at low frequencies, presumably because of 

the suppression of large scale structures in the straining and highly curved flowfield of the vortex. 

Entering the core (points N to P figure 3.86, and point P figure 3.87) spectral levels at low 

frequencies greatly increase because of coherent wandering motions. At high frequencies, 

however, spectral levels fall and a large dissipation region appears. 
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A/c x/c Measurements	 j 

10 a,c,e 

-0.125 30 a,c,d,e 

-0.0625 15.33 a,b,c,e 

22.6 a,b,c,d,e 

30 a,b,c,d,e 

0 30 a,d,e 

0.0625 22.6 a,c,e 

30 a,c,d,e 

0.125 30 a,c,d,e

Key: 

a - Grid of mean velocity and turbulence stress measurements to show overall flow structure 

b - Refined grid in vicinity of primary vortex core 

c - Detailed z-wise profile through the primary vortex core 

d - Detailed z-wise profile through the blade tip vortex core 

e - Spectra in blade and vortex generator wakes and vortex cores 

Table 3.1 Conditions, locations and types of velocity measurements made. 
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Wake regions Core edge Core center	 j 

UIUref 0.015 0.015 0.014 

V/U f 0.025 0.025 0.024 

W/Uref 0.025 0.024 0.023 

T	 2 
/Uref

3.1x106 1.4x105 4.3x105 

2 9.5x106 1.5x105 1.7x104 

9.9x10 6 2.0x105 1.6x 10-4 

7	 2 
u v/U 4.3x106 1.4x105 1.2x104 

W71 2 4.5x106 2.3x105 5.2x105 

2.9x10 6 8.5x106 1.0x104

Table 3.2 Typical uncertainties in hot-wire measurements. 
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A/c 1 2 3 4 

-0.125 0.031 0.031 0.05 0.23 

-0.063 0.031 0.047 0.08 1.50 

0.0 0.016 0.031 - 3.15 

0.063 0.023 0.031 -0.09 0.81 

0.125 0.031 0.031 -0.05 0.41

Table 3.3. Table of flow properties compiled from flow visualizations of Rife et al. (1990) for 

cases in which hot-wire measurements were made. (1) maximum amplitude of core wandering 

in y direction (chords) (2) maximum amplitude of core wandering in z direction (chords) (3) total 

spanwise drift of vortex between leading and trailing edges of blade (chords) (4) Divergence 

angle of bubble stream marking vortex core after encountering blade (degrees). 
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(a) Primary vortex core 

A/c X/c y/c z/c Y/c -F 1/c 

- 10 0.0 0.0 0.18 -0.06 

-0.125 30 -0.36 0.05 -0.18 0.36 

-0.0625 15.33 0.02 0.04 0.33 0.02 

22.6 0.12 0.1 0.11 0.28 

30 -0.29 0.06 -0.18 0.36 

0 30 0.01 0.16 0.07 0.40 

0.0625 22.6 0.30 -0.03 0.23 0.15 

30 -0.07 0.10 0.11 0.41 

0.125 30 0.05 0.16 0.11 0.40

Table 3.4 Relative and absolute locations of vortex core centers 
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(b) Blade tip-vortex core 

A/c X/c ylc i/c Y/c Z/c	 j 

-0.125 30 -0.32 -0.64 -0.14 -0.33 

-0.0625 22.6 -0.34 -0.49 -0.35 -0.31 

30 -0.28 -0.58 -0.17 -0.28 

0 30 -0.24 -0.49 -0.18 -0.25 

0.0625 22.6 -0.32 -0.42 -0.39 -0.24 

30 -0.38 -0.55 -0.20 -0.24 

0.125 30 -0.32 -0.48 -0.26 -0.24

Table 3.4 Relative and absolute locations of vortex core centers 
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A/c
j	

X/c r1Ic vejfUr 1'i/T'o (UrefUO)IUref 

- 10 3.8% 27.2% 27.0% 15.3% 

-0.125 30 6.6% 8.8% 15.1% 10.2% 

-0.0625 15.33 3.1% 19.4% 15.7% 18.7% 

22.6 10% 6.1% 15.9% 10% 

30 14.5% 4.5% 17.1% 6.3% 

0.0625 22.6 4.2% 13.2% 14.5% 14.7% 

30 9.3% 7.0% 17.0% 7.2% 

0.125 30 5% 17.7% 23.0% 13.8%

Table 3.5 Parameters of the primary vortex core; core radius r 1/c, peak tangential velocity 

vo l /Uref, core circulation r' 1ir'0 , axial velocity deficit (UrefUO)fUf. 
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Figure 3.8	 Mean cross-flow velocity vectors, approach vortex, X/c=10. 
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Figure 3.10 Contours of axial mean vorticity UXCIUf, approach vortex, X/c=10. Upper 
figure - positive vorticity, lower figure - negative vorticity. 
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Figure 3.13 Velocity profiles along the line ylc=O, approach vortex, X/c=10. (b) Turbulence 
normal stresses.
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Figure 3.14 Core region velocity profiles along the line y/c=O, approach vortex, X/cj .O. (a) 

Mean velocity.
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Figure 3.15 Comparison of measured mean tangential velocity profile at X/c=10 and Betz's 
theory. (b) Core region.
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Figure 3.16 Comparison of circulation profile, estimated assuming axisymmetry, at 
X/c=10 and Betz's theory. (a) Whole vortex. 
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Numbers in legend represent the y / c and z / c locations respectively 

Figure 3.17 Velocity autospectra at X/c=10. (d) G,. 
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Numbers in legend represent the y / c and z / c locations respectively 

Figure 3.17 Velocity autospectra at X/c=10. (e) G contd. 
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Figure 3.20 Mean cross-flow velocity vectors, vortex passing to pressure side of blade LVc 
= -0.0625, X/c=15.33. (a) Coarse grid. 
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vorticity, lower figure - negative vorticity. 
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Figure 3.23 Contours of axial normal turbulence stress u '2/U, vortex passing to pressure 
side of blade /c = -0.0625, X/c=15.33. (b) Fine grid. Upper and lower figures 
show different contour ranges.
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Figure 3.24 Contours of turbulence kinetic energy k/U 2, vortex passing to pressure side of 
blade A/c = -0.0625, XIc=15.33. (a) Coarse grid. Upper and lower figures 
show different contour ranges.
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Figure 3.24 Contours of turbulence kinetic energy kfIJ f2 , vortex passing to pressure side of 
blade A/c = -0.0625, X/c= 15.33. (b) Fine grid. Upper and lower figures show 
different contour ranges.
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show different contour ranges. 
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Figure 3.25 Contours of axial shear stress magnitude T./U,, ', vortex passing to pressure side 
of blade A/c = -0.0625, X/c=15.33. (b) Fine grid. Upper and lower figures show 
different contour ranges.
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Figure 3.26 Contours of cross-flow shear stress tJU, vortex passing to pressure side of 
blade A/c = -0.0625, X/c=15.33. (a) Coarse grid. Upper figure - positive stress, 
lower figure - negative stress. 
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Figure 3.26 Contours of cross-flow shear stress tJU, vortex passing to pressure side of 
blade A/c = -0.0625, XIc=15.33. (b) Fine grid. Upper figure - positive stress, 
lower figure - negative stress.
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Figure 3.27 Contours of turbulence kinetic energy production Pc/Ui, vortex passing to 
pressure side of blade A/c = -0.0625, X/c=15.33. Fine grid. Upper figure - 
positive production, lower figure - negative production. 
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Figure 3.28 Velocity profiles along the line y/c=O, A/c = -0.0625, X/c=15.33. (a) Mean 
velocity.
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Figure 3.30 Velocity autospectra, X/c=15.33, A/c = -0.0625. (a) Locations of spectral 
measurements relative to turbulence kinetic energy contours. 

3-80



Perpendicular BVI Part I 

Numbers in legend represent the y / c and z / c locations respectively 

Figure 3.30 Velocity autospectra at XIc=15.33, A/c = -0.0625. (b) 
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Figure 3.30 Velocity autospectra at X/c=15.33, A/c = -0.0625. (d) 
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Numbers in legend represent the y / c and z / c locations respectively 

Figure 3.30 Velocity autospectra at X/c=15.33, Nc = -0.0625. (e) G contd. 
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Figure 3.30 Velocity autospectra at X/c=15.33, A/c = -0.0625. (f) 
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Figure 3.31 Mean cross-flow velocity vectors at X/c=30. (a) A/c=-0.125. 
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Figure 3.31 Mean cross-flow velocity vectors at X/c=30. (b) Nc=-0.0625. (i) Coarse grid. 
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Figure 3.31 Mean cross-flow velocity vectors at X/c=30. (b) Nc=-0.0625. (i) Fine grid. 
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Figure 3.31 Mean cross-flow velocity vectors at XIc=30. (c) Nc=O. 
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Figure 3.31 Mean cross-flow velocity vectors at X/c=30. (d) L/c=0.0625. 
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Figure 3.31 Mean cross-flow velocity vectors at X/c=30. (e) Nc=0.125. 
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Figure 3.33 Contours of axial mean vorticity wcfU 1 at X/c=30. (b) A/c=-0.0625. (i) Fine 
grid. Upper figure - positive vorticity, lower figure - negative vorticity. 
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Figure 3.33 Contours of axial mean vorticity WXCIEJr at X/c=30. (d) Nc=0.0625. Upper
figure - positive vorticity, lower figure - negative vorticity. 

3-103



Perpendicular BVI part I 

-1 

-0.8 H 

-0.6 H 

1H 
1	 111111111111.11111111.11111111111111.1111111 III,. 

-0.8 - 

-0.6 

-04 - 

-0.2 - 

C-) 

-	 0-

0.2 - 

0.4 - 

0.6 - 

0.8
:	 •	 • 

-1 -0.8 -0.6 -0.4 -0.2 0 	 0.2 0.4 0.6 0.8 
y/c

• 

I

9.0e-1 to 1.OeO
8.0e-1 to 9.0e-1
7.0e-1 to 8.0e-1
6.0e-1 to 7.0e-1
5.0e-1 to 6.0e-1
4.0e-1 to 5.0e-1
3.0e-1 to 4.0e-1
2.0e-1 to 3.0e-1
1.0e-1 to 2.0e-1
0.Oe0to 1.0e-1 

-1.Oe-1+ 
-2Oe-1 to -1.0e-1 
-3.0e-1 to -2.0e-1 
-4.0e-1 to -3.0e-1 
-5.0e-1 to -4.0e-1 
-6.0e-1 to -5.0e-1 
-7.0e-1 to -6.0e-1 
-8.0e-1 to -7.0e-1 
-9.0e-1 to -8.0e-1 
-1 .OeO to -9.0e-1 
-1.1eO to -1.OeO 
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figure - positive vorticity, lower figure - negative vorticity. 
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Upper and lower figures show different contour ranges. 
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Figure 3.34 Contours of axial normal turbulence stress 	 at X/c=30. (b) /c=-0.0625. 
(i) Coarse grid. Upper and lower figures show different contour ranges. 
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Figure 3.34 Contours of axial normal turbulence stress 	 at XIc=30. (b) LVc=-0.0625. 
(i) Fine grid. Upper and lower figures show different contour ranges. 
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Figure 3.34 Contours of axial normal turbulence stress 	 at XIc=30. (d) /c=0.0625. 
Upper and lower figures show different contour ranges. 
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Figure 3.34 Contours of axial normal turbulence stress 	 at X/c=30. (e) /c=0.1 25. 
Upper and lower figures show different contour ranges. 
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igure 3.35 Contours of turbulence kinetic energy kfU 2 at X/c=30. (a) Nc=-0.125. Upper 
and lower figures show different contour ranges. 
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Figure 3.35 Contours of turbulence kinetic energy k/U 2 at X/c=30. (b) &c=-0.0625. (i) 
Coarse grid. Upper and lower figures show different contour ranges. 
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Figure 3.35 Contours of turbulence kinetic energy klUref2 at X/c=30. (b) &c=-O.0625. (i) 
Fine grid. Upper and lower figures show different contour ranges. 
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Figure 3.35 Contours of turbulence kinetic energy kIlJ ref at XIc=30. (c) Jc=O. Upper and 
lower figures show different contour ranges. 
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Figure 3.35 Contours of turbulence kinetic energy k/U 2 at XIc=30. (d) &c=0.0625. Upper 
and lower figures show different contour ranges. 
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Figure 3.35 Contours of turbulence kinetic energy kIU ref2 at X/c=30. (e) Nc=0.125. Upper 
and lower figures show different contour ranges. 
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Figure 3.36 Contours of axial shear stress magnitude ;/U f2 at XIc30. (a) Nc=-0.125. 
Upper and lower figures show different contour ranges. 
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Figure 3.36 Contours of axial shear stress magnitude tJU 2 at X/c=30. (b) LVc=-0.0625. (i) 
Coarse grid. Upper and lower figures show different contour ranges. 
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Figure 3.36 Contours of axial shear stress magnitude ;fU f2 at XIc=30. (b) i/c=-0.0625. (i) 
Fine grid. Upper and lower figures show different contour ranges. 
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Figure 3.36 Contours of axial shear stress magnitude ta/Uref2 at X/c=30. (c) zVc=O. Upper 
and lower figures show different contour ranges. 
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Figure 3.36 Contours of axial shear stress magnitude tjUf 2 at X/c=30. (d) zVc=0.0625. 
Upper and lower figures show different contour ranges. 
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Figure 3.36 Contours of axial shear stress magnitude ;fU 2 at X/c=30. (e) z/c0.125. 
Upper and lower figures show different contour ranges. 

3-122



Perpendicular BVI part I 

-1 

-0.8 

-0.6 

-0.4 

-0.2 

0 I0 

0.2 

0.4 

0.6 

0.8 

1 

-0.8 

-0.6 

-0.4 

-0.2 

0

0.2 

0.4 

0.6 

0.8 

I

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

ylc

1.Oe-4+ 
9.0e-5 to 1.0e-4 
8.0e-5 to 9.0e-5 
7.0e-5 to 8.0e-5 
6.0e-5 to 7.0e-5 
5.Oe-5 to 6.Oe-5 
4.0e-5 to 5.0e-5 

. 3.Oe-5 to 4.Oe-5 
2.0e-5 to 3.0e-5 
1.0e-5to2.0e-5 
0.OeO to 1.0e-5 

- 1 .0e-5+ 
-2.0e-5 to -1.0e-5 
-3.0e-5 to -2.0e-5 
-4.0e-5 to -3.0e-5 
-5.0e-5 to -4.0e-5 
-6.0e-5 to -5.0e-5 
-7.0e-5 to -6.0e-5 
-8.0e-5 to -7.0e-5 
-9.0e-5 to -8.0e-5 
-1.0e-4 to -9.0e-5 
-1.1e-4to-1.Oe-4 

Figure 3.37 Contours of crossflow shear stress tJU 12 at X/c=30. (a) A/c=-0.1 25. Upper 
figure - positive stress, lower figure - negative stress. 

3-123



Perpendicular BVI part I 

-1 

-0.8 

-0.6 

-0.4 

-0.2 

C)

0.2

0.4

0.6

0.8

1

-0.8

-0.6

-0.4 

-0.2 

C)

0.2 

0.4 

0.6 

0.8

•
9.0e-5 to 1 .0e-4 
8.0e-5 to 9.0e-5 
7.0e-5 to 8.0e-5 
6.0e-5 to 7.0e-5 
5.0e-5 to 6.0e-5 
4.Oe-5 to 5.Oe-5 
3 Oe-5 to 4 Oe-5 
2 Oe-5 to 3 Oe-5 
1.0e-5 to 2.Oe-5 
0.OeO to 1.0e-5 

-1.0e-5+ 
-2.0e-5 to -1.0e-5 
-3.0e-5 to -2.0e-5 
-4.Oe-5 to 

I

-5.0e-5 to -4.0e-5 
-6.0e-5 to -5.0e-5 
-7.0e-5 to -6.0e-5 
-8.0e-5 to -7.0e-5 
-9.0e-5 to -8.0e-5 
- 1 .0e-4 to -9.0e-5 
-1.1e-4 to -1.0e-4 

1111111111 lIIIIIIIliIiiiiIiiiiIi ii tIii.iIii iii 11111 

-1 -0.8 -0.6 -0.4 -0.2 0 	 0.2 0.4 0.6 0.8 
ylc 

Figure 3.37 Contours of crossflow shear stress T,/U'2 at X/c=30. (b) A/c=-0.0625. (i) 
Coarse grid. Upper figure - positive stress, lower figure - negative stress. 
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Figure 3.37 Contours of crossflow shear stress tJU 2 at XIc=30. (b) Nc=-0.0625. (i) Fine
grid. Upper figure - positive stress, lower figure - negative stress. 
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igure 3.37 Contours of crossflow shear stress tJU 2 at XIc=30. (c) iJc=O. Upper figure - 
positive stress, lower figure - negative stress. 
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Figure 3.37 Contours of crossflow shear stress tjU 2 at X/c=30. (d) Nc=0.0625. Upper 
figure - positive stress, lower figure - negative stress. 
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Figure 3.37 Contours of crossflow shear stress TX,,f 2 at X/c=30. (e) Nc=0.125. Upper 
figure - positive stress, lower figure - negative stress. 
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Figure 3.44 Axial velocity deficit profiles in the primary vortex core at X/c=30 as a 
function of A/c. Core axial velocity profile at X/c=10 included for comparison. 

3-147



Perpendicular BVI Part I 

0.40  

0.30 

0.20	 - 

0.10 

-	 000 

-0.10 

-0.20	 -
-0.30	 -  

-0.40  

-1.0	 -0.8	 -0.6	 -0.4	 -0.2	 0.0	 0.2	 0.4	 0.6	 0.8	 1.0 

nc
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Figure 3.48 Circulation profiles for the primary vortex at X/c30 as a function of A/c after 
substracting effects of blade tip vortex taking the blade angle of attack as 7°. 
Note that 'r' is radial distance from core center. (a) Whole profile. 
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Figure 3.48 Circulation profiles for the primary vortex at X/c=30 as a function of A/c after 
substracting effects of blade tip vortex taking the blade angle of attack as 7°. 
Note that 'r' is radial distance from core center. (b) Core region. 
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Figure 3.49 Mean velocity profiles through the blade tip vortex core at X/c=30. (c) A/c=O. 
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Figure 3.49 Mean velocity profiles through the blade tip vortex core at X/c30. (e) 
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Figure 3.50 Turbulence stress profiles through the blade tip vortex core at X/c=30. (d) 
Nc=O.0625.
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relative to turbulence kinetic energy contours. 

3-139



Perpendicular BVI Part I 

1.0E-02 

IOE-03
L 

L 1.OE-04 \SSSS4\\ 

c.1.0E-O5.

_________ 

1.0E-06

• A: 0.97, 0.47 

B: 0.76, 0.47 

1.0E-07 • C: 0.52, 0.45  

) 0: 0.32, 0.39 -7 

• E: 0. 17, 0.29 

1.OE-08 ._-_ 0 F: 0.03, 0.20  

' AG:-0.08,0.13 

. H:-O.18,0.04 

1.OE-09  

1.OE-02 1.OE-01 1.OE+00	 1.OE+01	 1.OE+02 

fc/Uref

Numbers in legend represent the y i c and z / c locations respectively 

Figure 3.55 Velocity autospectra at XIc=30, A/c = 0. (b) G11 

3-190 



Perpendicular BVI Part I 

1.OE-02 = 

1 OE3

 

1.OE-04

El 

o 1 OE-05

,KM48
h1 

1 0E08	 O4O 

1.OE-09 

1.OE-02	 1.OE-01	 1.OE+00	 1.OE+01	 1.OE+02	 1.OE+03 

fc/Uref 

Numbers in legend represent the y / c and z / c locations respectively 

Figure 3.55 Velocity autospectra at XJc=30, A/c = 0. (c) G uu contd. 

3-1911



Perpendicular BVI Part I 

1.OE-02 

1.0EO3' - 

1.0E-O6

A 0.97, 0.47 

[ B: 0. 76, 0.47 

1.OE-07 • C: 0.52, 0.45  

D: 0.32, 0.39 

SE:O.17,0.29 

1.OE-08 - 0 F: 0.03, 0.20
 

A. G:-O.08,0.13 

H:.18,0. 

1.OE-09-

1.OE-02 1.OE-01	 1.OE+00	 1.OE+01 1.OE+02	 1.OE+03 

f c / Uref

Numbers in legend represent the y / c and z / c locations respectively 

Figure 3.55 Velocity autospectra at X/c=30, /c = 0. (d) G1., 

3-192 



Perpendicular BVI Part I 

1.OE-02 

1.0E3  

1 .OE-04	 - - 

ii::: 

 

•I:-0.32,-0.08 

1 .OE-07 - E J: -0.49, -0.26	 $i-

E • K: -0.54,-0.48 

L: -0.50,-0.56 

1.OE-08 -	 • M: -0.40,-0.63	 ------------

N:-0.31,-0.64 

1 . OE-09	 ------------ ------------ -----S-. 

1.OE-02	 1.OE-01	 1.OE+00	 1.OE+01	 1.OE+02	 1.OE+03 

fc/Uref 

Numbers in legend represent the y i c and z / c locations respectively 

Figure 3.55 Velocity autospectra at XIc=30, A/c = 0. (e) G contd. 

3-193



Perpendicular BVI Part I 

1.OE-02 

1.0E3 

L 

I .OE-04
-

A	 ' *	 4S 

- 

1.OE-05 
I.)

1.OE-06  

• A: 0.97, 0.47 

L	 B: 0.76, 0.47 

1.0E-07 -	 • C: 0.52, 0.45  

0 D: 0.32, 0.39 

• E: 0. 17, 0.29 

1.OE-08 -H	 F: 0.03, 0.20	 '1 

AG:-0.08,0.13 

H:O.18, 0.04 

1.OE-09 

1.OE-02	 1.OE-01	 1.OE+00	 1.OE+01	 1.OE+02	 1.OE+03 

fc/Uref 

Numbers in legend represent the y / c and z / c locations respectively 

Figure 3.55 Velocity autospectra at X/c=30, /c = 0. (f) 
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Figure 155 Velocity autospectra at X/c=30, A/c = 0. (g) 	 contd. 
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Figure 3.56 Velocity autospectra, X/c=30, A/c = 0.0625. (a) Locations of spectral 
measurements relative to turbulence kinetic energy contours. 
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Figure 3.56 Velocity autospectra at XIc=30, A/c = 0.0625. (e) G, contd. 
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Figure 3.57 Velocity autospectra, XIc=30, A/c = 0.125. (a) Locations of spectral 
measurements relative to turbulence kinetic energy contours. 
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Figure 3.57 Velocity autospectra at X/c=30, A/c = 0.125. (e) G contd. 
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Figure 3.58 Mean cross-flow velocity vectors at XIc=22.6. (a) Nc-0.0625. (i) Coarse grid. 
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Figure 3.58 Mean cross-flow velocity vectors at X/c=22.6. (a) i.Vc-0.0625. (i) Fine grid. 
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Figure 3.58 Mean cross-flow velocity vectors at XIc=22.6. (b) &c=0.0625. 
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Figure 3.59 Contours of axial mean velocity U/U f at X/c=22.6. (a) AIc=-0.0625 . (i) Coarse grid.
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Figure 3.61	 Contours of axial normal turbulence stress 	 at XIc=22.6. (a) 
Nc=-0.0625. (i) Fine grid. Upper and lower figures show different contour 
ranges.
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Figure 3.61 Contours of axial normal turbulence stress 	 at XIc=22.6. (b) 
Jc=0.0625. Upper and lower figures show different contour ranges. 
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Figure 3.62 Contours of turbulence kinetic energy k/U f2 at X/c=22.6. (a) &/c=-0.0625. (i) 
Fine grid. Upper and lower figures show different contour ranges. 
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Figure 3.63 Contours of axial shear stress magnitude ;/U 1e12 at X/c=22.6. (a) LVc=-0.0625. 
(i) Coarse grid. Upper and lower figures show different contour ranges. 
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Figure 3.63 Contours of axial shear stress magnitude tJUf 2 at X/c=22.6. (a) iVc=-0.0625. 
(i) Fine grid. Upper and lower figures show different contour ranges. 
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Figure 3.63 Contours of axial shear stress magnitude ;m f2 at X/c=22.6. (b) Vc=0.0625. 
Upper and lower figures show different contour ranges. 
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Figure 3.64 Contours of crossflow shear stress TXef at X/c=22.6. (a) A/c=-0.0625. (i) 
Coarse grid. Upper figure - positive stress, lower figure - negative stress. 
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Figure 3.64 Contours of crossflow shear stress tJU 2 at X/c=22.6. (a) Nc=-0.0625. (i) Fine 

grid. Upper figure - positive stress, lower figure - negative stress. 
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Figure 3.64 Contours of crossflow shear stress tJU 2 at XIc=22.6. (b) &c=O.0625. Upper 
figure - positive stress, lower figure - negative stress. 
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Figure 3.65 Contours of turbulence kinetic energy production PcIU rer3 at X/c=22.6. 
Nc=-0.0625. Fine grid. Upper figure - positive production, lower figure - 
negative production.
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Figure 3.66 Locations of the primary and blade tip vortex centers as functions of X 
(a) A /c = -0.0625, (b) A/c = 0.0625. 
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Figure 3.69 Mean velocity profiles through the primary vortex core at XIc=22.6. (a) 
Nc=-0.0625.

3-235 



Perpendicular BVI Part I 

1.10 

1.00	

CPO 0 

 —aL"D--	
0 0 

1 
= 10 0.90- 

0.80 - 

0.70- 

0.60  

0.50 -

DU/Uref 
0.40

•V/Uref 

0.30	
•W/Uref 

0.20 

0.10 

0.00 

-0.10 - _____ 

-0.20  

-0.30  

-0.40 - 

-1.0	 -0.8	 -0.6	 -0.4	 -0.2	 0.0	 0.2	 0.4	 0.6	 0.8	 1.0 

z/c 

_	 _	

0 

• IthI4L j: __	 ••••• • LIXITEIIII 
_ _I "I	 It - tl • III	 I I 

Figure 3.69 Mean velocity profiles through the primary vortex core at X/c=22.6. (b) 
A/c=0.0625.
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Figure 3.70 Turbulence stress profiles through the primary vortex core at X/c=22.6. (a) 
iSJc=-0.0625.

liii 4JP.IL 
____________________

3-237



Perpendicular BVI Part I 

1 .OE-02

H
0 !1iJL ..•

Du/Uref2 

•v2/Uref2 

•w2/Uref2 

1.OE-06

-1.0	 -0.8	 -0.6	 -0.4	 -0.2	 0.0	 0.2	 0.4	 0.6	 0.8 

z/c

1 .OE-03 

1.OE-04 

1.OE-05 

1.0 

-0.0004	 - 

-1.0	 -0.8	 -0.6	 -0.4	 -0.2	 0.0	 0.2	 0.4	 0.6 

z/c 

0.0004

rn 

- 

Lj
 -E 

•

• 1.-

I.

0.8	 1.0

o uv/Uref3 

•	 /Uref2 

•uwlUref2 

0.0002 

0.0000 

-0.0002 

Figure 3.70 Turbulence stress profiles through the primary vortex core at X/c=22.6. (b) 
Nc=0.0625.
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Figure 3.71 Mean velocity profiles in the vicinity of the primary vortex core at X/c=22.6. 
(a) &'c=-0.0625.
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Figure 3.71 Mean velocity profiles in the vicinity of the primary vortex core at X/c=22.6. 
(b) &c=0.0625.
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radial distance from the core center. (a) A/c=-0.0625.0625. 
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Figure 3.73 Development of the core axial velocity profile with X. Note that 'r' represents 
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Figure 3.75 Tangential velocity profiles for A/c=-0.0625 as a function of X/c after 
substracting effects of blade tip vortex. Note that 'r' is radial distance from core 
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Figure 3.75 Tangential velocity profiles for A/c=-0.0625 as a function of X/c after 
substracting effects of blade tip vortex. Note that 'r' is radial distance from core 
center. (b) Core region.
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Figure 3.76 Circulation profiles for i.Vc=-0.0625 as a function of X/c after substracting 
effects of blade tip vortex. Note that 'r' is radial distance from core center. (a) 
Whole profile.
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Figure 3.76 Circulation profiles for &c=-O.0625 as a function of X/c after substracting 
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Figure 3.77 Tangential velocity profiles for /c=0.0625 as a function of X/c after 
substracting effects of blade tip vortex. Note that '? is radial distance from core 
center. (b) Core region.
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Figure 3.78 Circulation profiles for iVc=0.0625 as a function of X/c after substracting 
effects of blade tip vortex. Note that 'r' is radial distance from core center. (a) 
Whole profile.
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Figure 3.78 Circulation profiles for i.Vc=O.0625 as a function of X/c after substracting 
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Figure 3.84 Mean velocity profiles in the vicinity of the blade tip vortex core at X/c=22.6. 
&'c=-0.0625.
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Figure 3.86 Velocity autospectra, X/c=22.6, A/c = -0.0625. (a) Locations of spectral 
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Numbers in legend represent the y / c and z / c locations respectively 

Figure 3.86 Velocity autospectra at X/c=22.6, i.Vc = -0.0625. (c) G,, contd. 
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Numbers in legend represent the y / c and z I c locations respectively 

Figure 3.86 Velocity autospectra at X/c=22.6, &c = -0.0625. (d) G 
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Numbers in legend represent the y / c and z / c locations respectively 

Figure 3.86 Velocity autospectra at XIc=22.6, /c = -0.0625. (f) 
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Numbers in legend represent the y I c and z / c locations respectively 

Figure 3.87 Velocity autospectra at X/c=22.6, A/c = 0.0625. (c) G. 0 contd. 
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Numbers in legend represent the y / c and z I c locations respectively 

Figure 3.87 Velocity autospectra at X/c=22.6, A/c = 0.0625. (f) 
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Numbers in legend represent the y / c and z / c locations respectively 

Figure 3.87 Velocity autospectra at X/c=22.6, /c = 0.0625. (g)	 contd. 
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4. CONCLUSIONS 

The flows produced by several different perpendicular blade vortex interactions have been 

studied in detail. Interactions were produced using two rectangular NACA0012 half wings 

separated by 14 chordlengths (c) in the streamwise (X) direction. The first wing, set at 50 angle 

of attack was used to generate the vortex. The second wing, also set at 5° was used as the 

interaction blade. Velocity measurements were made upstream and downstream of the blade for 

several different blade-vortex separations (s). All measurements were performed at a chord 

Reynolds number of 260,000. In all cases the vortex passed over the blade about 0.85c from its 

tip the axis of the vortex being approximately normal to the blade span. 

The measurements made upstream of the blade, at X/c=10, show the approach (primary) 

vortex to have a core 0.076%c in diameter containing 27% of the total circulation. Measured 

turbulence levels in the core are large, but this is mostly due to coherent wandering motions of 

the core which have an r.m.s. amplitude of about 7% of the core diameter. Judging from core 

velocity spectra, true turbulence levels in the core are very low, much lower than in the 

surrounding flow. These spectra show a large dissipation range of -7 slope extending to 

comparatively low frequencies and almost no inertial subrange, suggesting that the effective 

Reynolds number of core turbulence is low. The core is surrounded by the unrolled-up portion 

of the vortex generating wing, which forms a loose spiral. Moving along the wake toward the 

core, turbulence levels increase, reaching a maximum at the point where the wake begins to 

curve. Velocity spectra measured in this region appear similar to those of a two-dimensional 

wake. After the maximum turbulence levels fall, apparently because of a loss of energy at low 

frequencies. This may indicate that the formation and development of large scale structures is 

suppressed by the wake curvature and local straining of the flow field. Mean circulation and 

tangential velocity distributions outside the core are described well by Betz's theory. 
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The measurements made downstream of the blade, combined with information from prior 

flow visualization work give a detailed view of the effects of the blade vortex interaction. We 

regard the following observations derived from these results, as the most significant. 

1.The nature of the blade vortex interaction depends upon the blade vortex separation (s). 

With the vortex passing on the pressure side of the blade (<0) it drifts inboard under the action 

of its image in the blade surface. The drift is outboard with the vortex passing on the suction side 

(&0). With the vortex impinging on the blade leading edge (i=0) it appears to split into two 

filaments, each passing on the opposite side of the blade. 

2. Regardless of A the vortex becomes embedded in the blade wake downstream of the 

blade. Its interaction with the wake results in a region of turbulent flow of much greater cross-

sectional area and intensity than that presented by the original vortex. 

3. Perpendicular blade vortex interaction causes a loss in core circulation. This loss occurs 

because the vortex core entrains blade boundary layer and wake fluid containing negative 

streamwise vorticity. Both positive and negative streamwise vorticity are produced and shed by 

the blade because of the disturbance produced by the vortex on its spanwise lift distribution. The 

amount of the loss in core circulation appears approximately the same (40%) for a range of blade 

vortex separations (at least for Nc=-0.125, -0.0625c and 0.0625). It therefore seems likely that 

a simple model or correlation could predict this effect. 

4. Perpendicular blade vortex interaction appears to alter the entire circulation distribution 

of the vortex outside its core as well. Comparisons with the same Betz's theory calculations 

described above showed very poor agreement downstream of the blade. Note, however, that some 

of this disagreement could have been due to inaccuracies in the methods used to determine the 

circulation distribution. 

5. Perpendicular blade vortex interaction initiates a rapid growth of the vortex core. The 

point where the growth begins is a function of A. For AIc=-0.0625 rapid growth in the core began 

between 0.33 and 7.6c downstream of the blade trailing edge, the core more than trebling in size 

by 15c downstream. For iVc=-0.125, 0.0625 and 0.125 this growth began between 7.6c and 15c 

downstream. The rapid core growth is probably a consequence of the mixing of core and blade 
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wake fluid promoted by the turbulent structures of the wake. The delay in the onset of growth 

may simply reflect the distance take for the core and blade wake to meet and begin mixing. 

6. Perpendicular BVI changes the spectral signature and turbulence structure of the core. 

Downstream of the blade true turbulence levels in the vortex core (judged from high-frequency 

velocity autospectra) were larger than in the surrounding wake flows, regardless of A/c and 

distance downstream. In addition almost all velocity autospectra measured in the vortex core 

downstream of the blade displayed substantial inertial subranges, suggesting the effective 

Reynolds number of core turbulence was much higher than in the undisturbed vortex. In some 

cases, especially A/c=-0.0625 and 0 at X/c=30 the core spectra had almost the same shape as 

those of the surrounding blade and vortex generator wakes. 

7. In all cases perpendicular BVI was observed to accelerate the decay of the core axial 

velocity deficit. 

8. Perpendicular blade vortex interaction has surprisingly little effect on the non-

dimensional form of the core tangential and axial velocity profiles. This may indicate that 

turbulent vortex cores very rapidly achieve mean-velocity similarity - an fact that could be useful 

in the general modelling of these flows. 

9. The properties of the blade wake near the vortex core are significantly altered by the 

blade vortex interaction. Firstly, the wake is significantly thicker outboard of the vortex core than 

inboard. Secondly, turbulence levels in the wake outboard of the core increase monotonically with 

over the measured range from A/c=-0.125 to 0.125. These effects are all due to the local 

influence of the vortex on flow over the blade. As already mentioned, streamwise vorticity is 

shed from the blade because of the disturbance of the vortex to its lift distribution. Specifically, 

the vortex increases the local angle of attack outboard of its core, and reduces it inboard. Thus 

the blade wake tends to be thicker outboard of the core. Finally, the rotational motion of the 

vortex lifts boundary layer fluid away from the blade surface. This, in combination with the local 

angle of attack changes, is responsible for the increase in outboard turbulence levels. 

4-3



Perpendicular BVI Part I 

Perhaps the most important conclusion of this work is that, at least for the blade-vortex 

separations studied here, perpendicular blade vortex interaction substantially alters the flow 

structure in and around a trailing vortex. The nature of its interaction with all following blades 

is therefore likely to be altered. The effects of perpendicular blade vortex interaction are therefore 

likely to have a significant influence on helicopter noise. 

The above conclusions do not address the effects of the blade tip vortex. The structure 

of the blade tip vortex appeared very similar to that of the primary vortex before it encountered 

the blade. Its principle effect downstream of the blade was to impose a secondary velocity field 

on the remainder of the flow, causing drift of the primary vortex core and distortion of the blade 

wake that would not have otherwise occurred. While these effects are themselves interesting they 

are not of great practical relevance, since the vast majority of perpendicular blade vortex 

interactions in helicopter rotors occur well inboard of the blade tip. In future work we recommend 

the use of a blade spanning the wind tunnel test section so that the effects of perpendicular blade 

vortex interaction can be studied in isolation. Such an investigation could examine with better 

accuracy and in more detail the functional form of the variation in vortex parameters with blade 

vortex separation, downstream distance, blade angle of attack and vortex strength. Empirical 

correlations of this type would be of great value in helicopter flow and acoustic noise 

computations.
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APPENDIX.
BETZ'S THEORY APPLIED TO AN ARBITRARY LIFT DISTRIBUTION 

Consider a wing with a general circulation distribution 

r =f(Z
	

(9) 
'S 

Here y is spanwise distance measured from the root and s is the half span. Suppose the 
circulation shed by the wing rolls up into a single trailing vortex. Betzs theory implies that this 
vortex will have a variation of circulation with radius (see Donaldson and Bilanin (1975)) given 
by

r=f()	 (10) 

where

(11) 

and y(y) is the centroid of the shed circulation distribution outboard of y. In general, therefore, 

f dr q dTi 
- , dti 

1 

f
dr
- dt 
dii

1 

1df 
= --J—idti

r ,1 dti
(12) 

where 1 = yis. We may solve this integral by expressing the circulation distribution as a fourier 
sine series,

r=EAsinn4,	 (13) 

where i = -cos(4) and the summation includes only odd terms (i.e. the circulation distribution 
is symmetrical about the root). This gives 

dii =	 d4 = -E A n cos(n4) cos4 d	 (14) 
dii	 d4)	 n=1 

and so
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1 

f
dT 

il dii = _EAnfcos(n4)cos4 d4 
dii 

Using standard integrals the right hand side of this equation may be rewritten as 

EA (
sin(n1) + sin(n+1)4 + A (._!.+!sin24 

2(n-1)	 2(n+1) )	 '2 2 4	
) 

We therefore have 

-	
EA (sin(n-1)4 + sin(n+1)4) + A,(! 

Y(0) = n=3	 2(n-1)	 2(n+1)	 2 2 

S	
-EAs1n4 

n=1 

This expression, along with equations 11 and 13 give, implicitly, the circulation distribution in 
the vortex. The coefficients A in the lift distribution may be calculated using, for example, lifting 
line theory.

(15)

(16) 

(17) 
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PART II: NOISE PREDICTIONS 

1. INTRODUCTION 

Broadband noise from helicopter rotors is generated by the interaction of the 

blades with turbulent flow. At high frequencies the noise can be caused by the interaction 

of the blade boundary layers with the trailing edges of the blades, but this mechanism 

does not generate much power at the low or mid frequencies which have a major impact 

on the EPNL levels used for noise certification (Brooks et al (1987)). Mid frequency 

broadband noise was found by Brooks et al (1987) to be a strong function of the rotor tip 

path plane angle and this lead to the conclusion that noise was generated by the 

interaction of the blades with rotor wake turbulence. This was classified as Blade Wake 

Interaction (BWI) noise. Glegg(1991 ) showed how BWI noise could be correlated with 

the interaction of the blade tip vortices with the following blades and developed a noise 

prediction method based on a turbulent tip vortex model (Phillips and Graham(1983)). 

However measurements of the spectral characteristics of the turbulence in a tip vortex 

were not available in the literature and this lead to the study by Devenport and Glegg 

(1992) on the unsteady flow in a blade tip vortex, and its relevance to BWI noise. It was 

found that the largest velocity fluctuations in a tip vortex relative to the stationary frame 

were a consequence of the unsteady motion of the vortex core. Small lateral motions of 

the vortex can cause large apparent turbulent velocity fluctuations at a fixed point due to 

the large velocity gradients in the core. However these motions are not important for 

sound production when the vortex core is aligned parallel to the blade chord and normal 

to the blade span. This is the type of blade vortex interaction which causes BWI noise 

(Glegg(1991 )), and it was shown by Devenport and Glegg (1992) that core motion in this 

configuration was not an efficient mechanism for sound generation since it gives a source 
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which was of quadrupole order. This concurs with Howe(1990) who demonstrated that it 

is only the spanwise component of the vorticity that can radiate sound in a blade vortex 

interaction (this analysis is based on low frequency Greens functions and discards sources 

of quadrupole order). 

Devenport and Glegg(1992) also showed that the turbulent flow in the wake of the 

blade evolved into a spiral region around the vortex, and the turbulence in this spiral was 

self similar. However there were some problems in modeling the extent of the turbulent 

flow for BWI noise prediction purposes, and in that study the turbulence was assumed to 

be confined to a small region of the wake close to the vortex. However noise predictions 

using this model were unsuccessful and it was concluded that some other mechanism 

such as vortex bursting was responsible for BWI noise. The study described in this report 

has considered the interaction of a tip vortex with a following blade and has given much 

better insight into the BWI noise mechanism. Firstly, flow visualizations have shown that 

vortex bursting only occurs when the vortex core is aligned very precisely with the 

downstream blade. Given the stochastic nature of the blade tip vortex paths close to a 

helicopter rotor, this precise alignment probably only occurs at discrete locations in the 

rotor disc plane, if at all. The noise generated by such an interaction would be intermittent 

or impulsive in nature and BWI noise does not have these characteristics. Secondly the 

interaction of the tip vortex from a blade with the wake of a downstream blade has been 

found to cause a region of turbulent flow which is significantly more dispersed than in the 

tightly wound spiral found in the isolated tip vortex. These observations have lead to the 

conclusion that it is the turbulence in the wakes of the blades which is the origin of the 

unsteady flow which causes BWI noise and this part of the report will describe how 

models of this wake turbulence can be used for noise prediction. First a discussion of the 

blade wake interactions which occur in different flight regimes will be given in section 2. 

Then in section 3 the noise prediction method and the scaling of the turbulence spectra 

will be described. Finally in section 4 the measurements described in part I of the report 
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will be used to predict measured levels of BWI noise (Brooks et al (1991 )) for 21 

different flight regimes at two positions in the far field of the rotor. 
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2. WAKE INTERACTIONS CAUSING BWI NOISE 

BWI noise has been shown experimentally to be caused by the interaction of 

helicopter rotor blades with turbulence generated by the blade wakes. The results 

presented in Part I of this report show that this can be separated into "wake turbulence" 

which is the blade boundary layer turbulence shed from the trailing edge of the blades 

and "vortex instabilities" which cause large velocity fluctuations at a fixed point due to 

unsteady motions of the vortex core. It is important to separate between these two 

mechanisms because in BWI vortex interactions, the vortex is aligned with the direction 

of blade motion and this causes a relatively weak noise generating mechanism. This 

argument suggests that it is the wake turbulence which is responsible for BWI noise. 

However the wakes shed from the trailing edge of the blades form a thin sheet which is 

both unstable and of limited extent in the axial direction. Calculations show that rotor 

blades interacting with this sheet only do so over a relatively small range of rotor tip path 

plane angles for a given advance ratio (-2.5 °.cza,1,1,<2.5 ) whereas noise measurements 

show that BWI noise is significant over a much larger range of angles. In contrast the 

BWI noise prediction method developed by Glegg (1991 ) assumed that the turbulence 

responsible for BWI noise was associated with the trailing tip vortices. The model 

assumed a uniform distribution of turbulence over a circular region which was centered 

on the vortex core and scaled with the vortex core size. This gave reasonably good 

predictions of the measured noise levels, and especially for the dependence of the noise 

levels on tip path plane angle. However the measurements of Devenport & Glegg (1992) 

showed that this model was not a good description of the flow for an isolated trailing tip 

vortex. It was found that the vortex tended to wrap the wake turbulence into a spiral and 

reduce it's intensity close to the vortex core, which is completely contrary to the model 
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used for the BWI noise predictions. The results presented in Part I of this report however 

give new insight into this phenomena, because they show that when a trailing tip vortex 

(the primary vortex) passes in the vicinity of a second blade a strong interaction takes 

place between the vortex and the wake turbulence of the second blade. The vortex acts as 

an attractor for the wake turbulence and distributes it over a region which surrounds the 

vortex core. The turbulent flow region therefore has strong similarities to the flow 

assumed in the original BWI noise predictions, providing that only interactions are 

included for which the vortices have passed close to a secondary blade. 

In calculating the noise produced by a BWI type vortex interaction it is necessary 

to specify the unsteady flow velocity encountered by the blade. However it is also 

essential to distinguish between the unsteady flow associated with streamwise 

components of vorticity and those associated with spanwise components of vorticity, 

because the generated noise is only associated with the later. When a streamwise vortex 

interacts with the boundary layer on a downstream blade the resultant region of flow will 

include significant components of both unsteady streamwise vorticity (from the primary 

vortex) and spanwise vorticity (from the wake/boundary layer turbulence). Separating 

these two parts of the flow is not possible using existing technology but some fairly 

general conclusions can be drawn from the measurements which have been made. First 

we note that the streamwise vorticity is concentrated in a small region around the vortex 

core. In an isolated vortex (before interaction with a secondary blade) the spectra of this 

type of velocity fluctuation has large low frequency components, and less energy than 

wake turbulence at high frequencies. As this vortex progresses more wake turbulence is 

wrapped around the core, but it is also laminarised and looses it's high frequency content 

as it enters the core region. Spectra taken in the core of the vortex after an interaction 

with a secondary blade however show higher levels than the surrounding wake 

turbulence at high frequencies as well as the expected high levels at low frequencies. This 

suggests that the wake flow adds to and is uncorrelated with the streamwise vorticity, and 
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consequently can be treated as a separate component of the flow. Measurements of the 

wake turbulence in a isolated vortex have shown clearly that the wake flow maintains its 

self similar nature in spite of being stretched and wrapped around a developing vortex. 

The flow scales on the wake width which increases with the square root of the distance 

from the trailing edge where the wake was generated, and this rather than the stretching 

of the flow by the vortex appears to be the controlling feature. This leads us to suggest a 

flow model in which the turbulence in and around a trailing vortex which has passed 

close by a second blade has spanwise vorticity components which are solely determined 

by the wake turbulence of the secondary blade and scales with the distance from the 

second blade. The unsteady velocities associated with this spanwise vorticity have spectra 

which are self similar and can be modeled by the wake turbulence spectra found close to 

an isolated vortex. This model enables us to extract the component of the flow which is 

important for noise generation from the complex unsteady flow which has been 

measured. 

We must also consider the size of the region in which this wake turbulence is 

significant. In the previous model (Glegg(1991 )) it was assumed that the region was 

circular and that the turbulence intensity decreased linearly from the center of the vortex 

to the outside edge of the vortex. The measurements however suggest a slightly more bell 

shaped distribution of turbulence intensity (notwithstanding spurious peaks in the vortex 

core). This model will is discussed in more detail in section 3. 
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3. THE NOISE PREDICTION METHOD 

3.1 The Acoustic Field 

The noise prediction method developed by Glegg (1991 ) assumes that BWI noise 

is produced by turbulence in the vicinity of trailing tip vortices interacting with the rotor 

blades. To evaluate the noise radiated to the acoustic far field it is first necessary to 

calculate the loci of the blade vortex interactions and their axial displacement from the 

rotor disk plane for a given flight condition 1 . These loci give lines on the rotor disk plane 

where noise is generated by blade turbulence interaction, and each of these lines are 

broken down into short linear segments of length LI J'A . To obtain the - acoustic power 

spectrum in the far field of the rotor, the contribution of each linear segment is summed 

with a weighting which is proportional to the amount of time (in observer co-ordinates) it 

takes for the blade to move across the segment (Glegg(1991)). The power spectrum, at 

the angular frequency co, of the acoustic pressure from each linear segment is calculated 

using

S ,(z,co) r
03 i- 21t 3Ub	 2 

=J	 I 
L 4c0r;] (1M)' 

P33 (k1 ,k2 )	 ( 1) 

where z=(zJ,z2,z3) defines the relative location of the blade to the observer, r 0=IzI is the 

distance between source and receiver, z2 is in the spanwise direction and z3 is the 

distance of the observer below the blade. In this equation c is the blade chord, Po is the 

density of the fluid, U is the blade speed at the vortex interaction, Mr is the Mach 

number of the blade in the direction of the observer, co is the speed of sound and X3 is 

The vortex locations are calculated using a method developed by Egoif and 

Landgrebe(1983).
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the blade response function for an upwash gust (Amiet (1975))1 The wavenumber 

spectrum of the upwash components is given by I-'33(k],k2) where kJ =W (JMr)/U and 

k2 = - .0 z21coro . All the parameters required to calculate the noise are defined by the rotor 

design apart from the wake width be and the wavenumber spectrum of the turbulence. In 

the following sections we will discuss how these parameters can be calculated from the 

measurements given in Part I of this report. 

3.2 Modeling the Turbulence in the Vortex 

As was discussed in section 2 we will assume that only vortices which have 

passed close to a downstream blade have sufficient turbulence associated with them to 

generate noise. Consequently the first time that a vortex interacts with a blade, it's 

interaction is eliminated from the noise calculations. This is a relatively simple 

modification to the method outlined in section 3.1. The wavenumber spectrum of the 

turbulence however is more difficult to estimate. 

In previous studies it has been assumed that the wavenumber spectrum of the 

turbulent flow can be modeled using the Von Karnian interpolation formula. This gives 

for the wavenumber spectrum of upwash fluctuations 

2 4	 (k2 +k2)	
(2) J'33 (k1 ,k2) w	

2 9 inc. (1+ £2 + k )h13 

where	
3 

k1 - and	 ke — 
ke =4L 

1 Glegg (1991) included an unsteady thickness noise source in the BWI noise prediction 
scheme, but this has not been included here since it has a negligible effect on the predicted noise 
levels at the angles of interest.

3-2



Perpendicular BVI Part II 

and w is the rms turbulence velocity fluctuations and L is the integral lengthscale of the 

turbulence. For measurements of turbulence at a fixed point the spectral density (per Hz) 

for upwash fluctuations is given by this model as 

2L (3+8k12) 
G(f) = w2

3Urt.jr (1+k12)"6 

where kj=271f/Uref and Uref is the mean flow velocity. The noise predictions require 

f'33 but it has only been possible to measure G, H,. To overcome this problem in the 

past, measurements of the spectrum at a point have been used to estimate the lengthscales 

and the turbulence intensity as a function of position in the flow, so that they may be used 

in formulae of the type given in equation (2) to obtain the wavenumber spectrum for 

noise calculations. However difficulties arise, as in this case, when the measured 

spectrum does not approximate to the Von Karman model given by equation (3). In these 

situations a relationship must be assumed between 'F33 and G,, and it is customary to 

write this in the form

1 
'I'33 (k1 ,O) = (27r)2 G .w(f)/J (ki)Urcj 

where AU is the spanwise coherence lengthscale which, for the Von Karman interpolation 

formula, is given by

128,rL 

27 (3+8k12)jl+k12
	 (5) 

At high frequencies the coherence Iengthscale p is given by 21rU,-ej/90. which is 

independent of the integral lengthscale of the flow and is inversely proportional to the 

frequency. The maximum value of p is given by 0.37rL and so this model specifies the 

coherence lengthscale as always being less than the integral lengthscale of the turbulence.

(3) 

(4) 
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In the absence of two point measurements an estimate has to be used for the coherence 

lengthscale of the upwash velocity fluctuations and consequently we will assume that 

equation (5) may be used for this purpose. This is probably not a bad assumption since it 

gives a smooth interpolation between the largest lengthscale which we can expect p=L 

which occurs when WL/Ure0.75 and the coherence lengthscale at high frequencies 

which is independent of the turbulence scale. 

3.3 Scaling the Turbulence Measurements 

First we will consider the turbulent flow in an isolated vortex and show how the 

turbulence spectra evolve as the wake is wrapped around the vortex core. Figure 3.1 

shows the turbulence intensity in the region around the vortex core at a location which is 

10 chord lengths downstream from the leading edge of the primary blade. Four regions 

have been identified on this plot, a wake region which is that part of the flow dominated 

by the turbulent wake shed from the trailing edge of the blade, an outer spiral region 

where the wake is being wrapped around the vortex core, an inner spiral region which is 

close to the vortex core and the core region itself. The spectra of the upwash fluctuations 

in each region are plotted in figure 3.2. These show that the spectra in the wake region 

have a distinct peak which occurs at a non-dimensional frequency offc/UrerZand that 

the energy in that peak is significantly greater than in other parts of the flow with the 

exception of the core region which has large amounts of energy at very low frequencies. 

In the spiral regions the spectra show a steady reduction in energy as the core is 

approached especially in the frequency range around fc/Urej1O . The peak in the wake 

region spectra is very similar to the spectral peak in turbulent boundary layers in adverse 

pressure gradients ( Brads haw(1967)). This feature is attributed by Bradshaw to coherent 
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structures in the flow and may be indicative of spanwise vorticity. It is interesting to 

compare the upwash spectra in the wake region with the Von Karman interpolation 

formula given by equation 3. This comparison is shown in figure 3.3 using an integral 

lengthscale of L=0.2 L0 where L. is the wake width at this location. This result shows 

(in contrast to earlier measurements Devenport & Glegg (1992)) that the Von Karman 

spectrum does not give a good fit to the measurements. The peak in the spectrum is not a 

feature of the Von Karman interpolation formula and the discrepancies at high 

frequencies are due to the effect of viscous dissipation (which is not been included in 

equation (3)). For BWI noise production the most important part of the spectrum is for 

non-dimensional frequencies which are close to the spectral peak and so it appears that 

the Von Karman formula is not a suitable model in this case, since any variation of the 

turbulence lengthscale will not give the measured spectral peak. 

Next we consider the spectra in the wake after the primary vortex has passed a 

second blade. Figure 3.4 shows the distribution in turbulence intensity for a typical case 

where the vortex has passed a distance 0.125c above the secondary blade located 11'.r-

downstream of the primary blade. The measurement location is a further 15c downstream 

of the secondary blade. The upwash spectra are again considered in four separate 

regions, a primary wake region (see figure 3.5) where the spectral shape is similar to the 

spectra in the wake region of the isolated vortex, a primary vortex core region where the 

low frequency vortex core motions are the dominant feature, a mixing region between the 

two vortices which has a dominant spectral peak similar to the wake region, and the 

secondary vortex core region with large low frequency motions. It was argued in the 

pervious section that BWI noise is primarily caused by the turbulent velocity fluctuations 

in the mixing region between the two vortices and that this would have the characteristics 

of the wake turbulence from the secondary blade and the results in figure 3.5 concur with 

this suggestion. To further test this hypothesis we will first scale the spectra in the wake 
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region of the isolated vortex into a self similar form and use these results to predict the 

spectra in different parts of the vortex after it has passed the second blade. 

Wygnanski et al (1986) have shown that the turbulence in the wakes of many 

different types of body can be scaled on the wake width L0 which can be defined in terms 

of the momentum thickness e (see footnote 1 ) of the wake as L0=0.3219V(x1e+380). 

Consequently we can expect the spectra measured in the blade wakes to collapse when 

plotted as a function of JL0/Uref . Further equation (3) shows that the spectrum of the 

velocity fluctuations scales in magnitude as Gww(f)'2L1Uref and Wygnanski et al 

(1986) also show that the turbulence intensity scales as wiUret v'( O/x) . For a given drag 

coefficient e is proportional to the blade chord and, with L--L0 , the magnitude of the 

spectrum can be expected to scale as Gww(f) cLo Uref /x. Figure 3.6 shows the collapse 

of the Gww(f) spectra from the wake region of the isolated vortex (figure 3.3) when they 

are normalized as G ww(f)x/CLo Uref and plotted against fLo/Uref . A tenth order 

polynomial, least squares fit to these spectra has been obtained (and is also shown in 

figure 3.6) using the function 

xG,(f)	 N 

- exp( c,X"")	 X>0.05	 (6) 
CL0 Uref -	 11=0 

where X=ln(JL01Uref) , N=10 and the coefficients are given by 

co =-4.094107911604283e-04 
c =-3.355736105268570e-03 
C2 =-9.101826421288446e-05 
C3 = 5.121995406807923e-02 
C4 = 4.419066392372003e-02 
c =-3.168685739499785e-01 
C6 =-2.193413116108480e-01 
C7 = 9.060883193917536e-01 
C8 =-2.801734323812800e-01 
C9 =-2.119234822914640e+00 
C lO=-6.608767720927401e+OO 

1 The momentum thickness is defined as e= ccD12 for these calculations which differs 
from the value assumed by Glegg (1991) which was based on an estimate of the boundary layer 
thickness.
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To check the validity of this model the predicted spectrum has been compared with the 

measured spectrum at other locations. Figure 3.7 shows the fit to spectra measured at 

different locations after the vortex has passed by the second blade at a miss distance of 

0.125c. The flow is dominated by the wake from the second blade and so the x location 

has been taken relative to the trailing edge of the second blade. In general this scaling 

appears to give a good fit to the upwash spectrum in the wake region (see figure 3.4) but 

tends to underpredict the turbulence levels in the mixing region between the two vortices 

by as much as 10 dB. However the spectral shape is reasonably well modeled by the 

curve fit given in equation (7), and so this equation appears to be appropriate providing 

that a correction is applied to allow for the change in absolute level of the spectrum in 

different parts of the flow, and this will be discussed in more detail in the next section. 

Finally in order to use equation (4) to obtain the wavenumber spectrum we need 

to estimate the integral lengthscale of the flow so that the coherence lengthscale can be 

obtained from equation (5). The peak in the measured spectrum occurs atJLo/Urp-0.5 

which suggests that the coherent Structure in the flow has a scale which is of order L=2L0. 

However as the wake is wrapped around the vortex core the turbulent eddies or coherent 

structures will be stretched and re-oriented relative to the spanwise direction. This will 

reduce the spanwise lengthscale. If we assume that the eddy stretching occurs at the same 

rate as the rate of flow development then we can expect the effective integral lengthscale 

to be reduced as lIi/x while the wake scale increases as x. These two effects will cancel 

and so the eddy lengthscale will be independent of the downstream location and can be 

estimated as twice the wake width at x=O. (This correction has a small effect on the final 

results but tends to improve the low frequency fit to the spectrum). 
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3.4 The Size of the Turbulent Region 

To predict the radiated noise using equation (1) we also need to specify the 

spanwise extent of the turbulent region which is defined by the effective span be . This is 

depends on the distribution of the mean square turbulence intensity over the region of the 

flow which interacts with the blade and is given by 

be	 2 fw2(z2,z3)dz2 
wmax 

In the previous study of BWI noise it was assumed that w was a maximum at the center 

of the vortex and decreased linearly to a zero value at the edge of the vortex core defined 

as ao=0.15 /(xcCL) . The measurements given in Part I of this report have shown that 

there is a significant variation in turbulence levels across the flow, as discussed in the 

previous Section. Reviewing the turbulence measurements given in figure 3.41 of Part I 

suggests that it is more realistic to consider a distribution of turbulence which is of 

constant intensity in the vortex core region (providing that the peak associated with the 

core motions is disregarded) rather than the triangular shaped distribution which was 

assumed previously. The effect that these two alternatives have on the value of be are 

illustrated in figure 3.8 and can be compared with the measurements shown in figures 

3.41 in Part I of this report. To estimate the size of the vortex the lift coefficient has been 

taken as the root circulation CL=O.S and the downstream location x as the distance from 

the primary blade. The measurements show that the turbulent region extends over a 

region of -1.2 c in the spanwise direction and the model seems to estimate this quite 

well. The measurements also show that the levels on either side of the vortex core can 

differ by as much as a factor of two, but that they are constant in either region. Taking the 

(7) 
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average between these two extremes would appear to be the best way to proceed in order 

to estimate the value of the effective span. 

For a constant distribution of turbulence intensity we can define the effective span 

as

be =2;a.,  -z	 (8) 

The linearly decaying model of the turbulence intensity considered by Glegg(1991) 

defines

be =2a0 [h 2S+! -h 
3	 H/iI)J 

S3	 , In ( 
1+S\l 

I	 II
	

I 

where h=z3/a0 and S= 1(1-0). A comparison between these two different models is 

shown in figure 3.8(b) and we see that the major difference between them is maximum 

magnitude of be and the extent over which be remains significant. 
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4. COMPARISON OF MEASUREMENTS WITH PREDICTIONS 

The noise prediction method described in the previous section has been compared 

with the data collected in the DNW anechoic wind by Brooks et al (1989). This data set 

comprises of 21 different flight conditions (including 3 different advance ratios and - 7-

10 different tip path plane angles) and gives noise spectra at two different angles to the 

rotor axis in the acoustic far field. The predictions given are based on the theory 

described in the previous section using the blade design parameters as inputs (see Glegg 

(1991)). However the blade lift and drag coefficients are not known exactly and have to 

be estimated. The blade lift coefficient is required to estimate the vortex core size and in 

the previous study the lift coefficient was estimated from the rotor thrust coefficient as 

a0=J3R('I(7ryICTB) where R t is the rotor diameter, CT is the thrust coefficient, VW is 

the wake age, and B is the number of blades. The coefficient /3 is -0(1) and was 

evaluated to give the best fit to the noise measurements as 13=0.8 for the effective span 

given by equation (9). In this study the effective span is based on equation (8) and the 

data is matched better by using a value of /3=0.5. The blade drag coefficient is required to 

determine the momentum thickness of the wake, but this is also not known, and may 

change with flight condition. To show the importance of this parameter predictions have 

been made using drag coefficients of C(/=0.04 and Cd= 0.02 for a sample set of the data 

at three different advance ratios and two different tip path plane angles, as shown in 

figures 4.1 to 4.6. These results show three important features of the prediction method. 

At the lowest advance ratio a good fit to the data is obtained using a drag coefficient of 

0.04, but at the higher advance ratio of 0.174 the spectral shape is predicted more 

accurately by using a smaller drag coefficient. This suggests that the drag coefficient a 

function of flight speed and is reduced as the advance ratio increases, as might be 

expected. At the highest advance ratio (figures 4.5 and 4.6) the scaling of the predicted 

spectrum with changes in tip path plane angle is not good and this is attributed to the 
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calculation of the vortex loci for this case, which has always been found to be inaccurate 

at high advance ratios. 

To give an overall view of the results a complete set of spectra and comparisons 

with the predictions are shown in figures 4.7-4.28 for two different microphone locations 

using a drag coefficient of 0.04. (microphone 19 is at 1 . 5 and microphone 21 is at 27.7* 

to the rotor axis). In general the predictions shown here compare well with the data, and 

some marked improvements over the previous prediction method (Glegg(1991)) are 

apparent. In the previous study the spectral peak in the measurements at low frequencies ( 

see for example figure 4.10 or figure 4.18) could not be identified in the predicted spectra 

which were based on the Von Kanrian interpolation formula. The new predictions given 

here clearly identify a spectral peak, which can be associated with a spectral peak in the 

turbulence spectrum (see figure 3.3). However as noted above, the best prediction of this 

peak at the advance ratio of 0.174 (see figures 4.18 and 4.4) is obtained with a smaller 

drag coefficient. 

We conclude that by using the measured turbulence spectrum in the prediction 

method rather than assuming a spectrum given by the Karman interpolation formula, a 

significant improvement to the prediction method has been achieved. However the 

specification of the blade drag coefficient and the loci of the tip vortices as a function of 

the flight condition are important features of the prediction scheme and the method used 

here to obtain these appears, at present to be the limiting factor in improving the 

prediction of BWI noise. Further, but of less significance is the estimates which were 

made of the spanwise coherence lengthscale. The assumptions concerning this parameter 

affect the spectral shape and may warrant further investigation in the future. 
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