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STRATIFIED SHEAR LAYERS

Nicholas Blackaby, Andrew Dando _ Philip Hall l

Department of Mathematics

Oxford Road

University of Manchester

Manchester, M13 9PL

UNITED KINGDOM

ABSTRACT

The nonlinear development of disturbances in stratified shear flows (having a local Richard

son number of value less than one quarter) is considered Such modes are initially fast grow-

ing but, like related studies, we assume that the viscous, non-parallel spreading of the shear

layer results in them evolving in a linear fashion until they reach a position where their

amplitudes are large enough and their growth rates have diminished sufficiently so that am-

plitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer

theories. Four different basic integro-differential amplitude equations are possible, including

one due to a novel mechanism; the relevant choice of amplitude equation, at a particular

instance, being dependent oll the relative sizes of the disturbance amplitude, the growth rate

of the disturbance, its wavenumber and the viscosity of the fluid. This richness of choice of

possible nonlinearities arises mathematically from the indicial Frobenius roots of the govern-

ing linear inviscid equation (the Taylor-Goldstein equation) not, in general, differing by an

integer. The initial nonlinear evolution of a mode will be governed by an integro-differential

amplitude equations with a cubic nonlinearity but the resulting significant increase in the

size of the disturbance's amplitude leads on to the next stage of the evolution process where

the evolution of the mode is governed by an integro-differential amplitude equations with a

quintic nonlinearity. Continued growth of the disturbance amplitude is expected during this

stage, resulting in the effects of nonlinearity spreading to outside the critical level, by which

time the flow has become fully nonlinear.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-

tract No. NASl-19480 while the three authors were in residence at the Institute for Computer Applications

in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.
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1 Introduction

This paper extends the theories of Churilov & Shukhman (1988) and Goldstein & Leib

(1989) to the case of (non-marginally) unstable stratified flows. Such flows, in which the

vertical density variation is insufficient to overcome the strongly destabilising effects of the

vertical velocity variation, occur naturally in many situations. The mathematical formulation

of this problem has great similarity with, amongst others, that for the related problem of

buoyancy-driven instabilities above a heated plate and with the, at first sight, less physically

related problem of vortex disturbances driven by wall curvature occurring in 3D boundary

layers. Thus, whilst here we concentrate solely on a particular model stratified shear flow, the

mathematical theory has much wider applications to both geophysical and aerodynamical flow

situations.

The stratification of a shear flow is usually characterised by a physical parameter called the

Richardson number (herein after denoted J); it is a measure of the ratio of vertical density

variation to the scale of vertical velocity shear. The Richardson number can be both positive

and negative; the former case corresponding to lighter fluid lying above heavier fluid, and the

latter case corresponding to the lighter fluid lying below. The stability of a stratified shear flow

was first considered independently by Taylor (1931) and Goldstein (1931). They concluded that

a multi-layer system of homogeneous fluids can not be used to approximate the stability of a

heterogeneous fluid, and that for the flow models considered, the flow is stable for Richardson

numbers greater than one quarter.

The flow model adopted in this paper was introduced by Drazin (1958); the vertical ve-

locity and density distribution are represented by hyperbolic tangent and exponential profiles,

respectively. This model enables an exact solution of the governing linear stability equation,

the Taylor-Goldstein equation, for neutral disturbances and the same upper bound on the

Richardson number is found. Soon after Drazin's paper appeared, Miles (1961) presented

several theorems concerning properties of solutions to the Taylor-Goldstein equation. In par-

ticular, he proved the two important results that in general flows are stable for J > 1/4 and

that neutral modes are proportional to just one of the associated Frobenius series near the

critical level. The continuation of the linear eigenfunctions in the neighbourhood of the critical

levels was considered by Koppel (1964).

Several linear results for the alternative Holmboe model were computed by Hazel (1972),

for a variety of boundary conditions; however, our interest herein is in the nonlinear critical-

layer theory and not with a discussion about which model is superior. Around the same time,

nonlinear studies started to appear eg. Maslowe (1972) using the equilibrium critical layer

theory of Benney & Bergeron (1969). Subsequent nonlinear studies were also mainly for the

marginal instability case (0 < 1/4 - J << 1) eg. by Maslowe (1977) who considered a viscous

critical layer, and by Brown & Stewartson (1978) who considered a time-dependent critical

layer for small time. These two theories were unified by Brown, Rosen & Maslowe (1981). The

latter paper was corrected to some extent by Churilov & Shukhman (1987); soon after, Churilov

& Shukhman (1988) essentially extended and corrected the work of Brown & Stewartson (1978)
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and Churilov & Shukhman (1987). Recently, Troitskaya (1991) has considered nonlinear effects

for J > 1/4. "

There have been many more studies of (non-stratified) shear layers, in which there is no

vertical density variation. The linear stability of such flows is, in general, governed by the

familiar Rayleigh equation, to which the Taylor-Goldstein equation reduces for zero Richard-

son number. The nonlinear stability of such flows has received much attention over the past

couple of decades. Benney ,_ Bergeron (1969) developed the so-called equilibrium critical layer

theory; here the mode is treated as 'quasi-steady' inside the critical layer as well as outside

it. Nonlinearity affects the jump imposed across the critical layer and hence leads to modified

results for the neutral (equilibrium) modes. Haberman (1972) extended the theory to include
critical layers where viscosity is also significant. The first studies of non2equilibrium critical

layers include the papers by Stewartson (1978), Warn L; Warn (1978), Hickernell (1984) and

Gajjar & Smith (1985). The key paper by Hickernell (1984) concerned a shear layer affected

by Coriolis (rotational) effects; here the weakly nonlinear theory leads to an integro-differential

equation rather th_n, the (previously) more familiar Landau equation with 'polynomial' non-

linear terms. In fact, such integro-differential equations result naturally from non-equilibrium

nonlinear critical layer theories when the shear layer is coupled with other physical factors such

as, for instance, Coriolis effects (eg. Hickernell, 1984; Shukhman, 1991); compressibility effects

(eg. Goldstein & Leib, 1989); three-dimensionality effects (eg. Goldstein & Choi, 1989; Wu

et aI, 1993); and buoyancy effects (eg. Churilov & Shukhman, 1988). Moreover, in a related

paper (Blackaby, Dando _z Hall, 1993), we demonstrate that such an integro-differential type

of equation can be derived to describe the nonlinear evolution of the inviscid GSrtler modes

studied by Bassom & Hall (1991). However, the case of a 'simple' shear layer, not affected

by any additional physical factors, is a special case in the sense that it does not lead to an

integro-differential equation; instead, Goldstein &5Leib (1988), found that the nonlinear evolu-

tion of a disturbance was governed by the full unsteady nonlinear crltical-layer equations. This

difference is due to the additional physical factors, of the former cases, resulting in stronger

singularities of the inviscid disturbance quantities at the critical level.

At first sight, it appears that weakly nonlinear theories can only be usefully applied to

marginally unstable flows; they rely on small growth rates and so the unstable disturbance of

concern must be near to a neutral state. Thus, it was believed that such theories are of no

use in describing the initial evolution of 'far-from-neutral' unstable modes. However, several

recent studies have derived integro-differential equations, using weakly nonlinear theories, to

describe the nonlinear evolution of (general) unstable modes on a variety of shear layers (see the

previous paragraph). These studies are based on the assumption that, in actual physical flow

situations, shear layer spreading or other external changes/effects would result in the otherwise

relatively unstable modes having their growth rates diminished in real terms, so that a weakly-

nonlinear critical-layer theory becomes appropriate; in fact, we adopt the same argument for

this present study. The general proposal/argument is supported by the findings of Michalke

(1964), Crighton & Gaster (1976) and Hultgren (1992).

In this study, we use the unsteady critical-layer and weakly-nonlinear theories to describe

the nonlinear development and evolution of unstable linear disturbance modes on stratified

shear flows where the Richardson number J takes values less than one quarter. In particular,
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weconsiderthe temporal evolution of two--dimensional(2D) modeson Drazin's (1958)model
flow; we note howeverthat the analysiscan easily be modified for the spatial evolution case
and/or a different choiceof model flow. In addition to not complicatingthe analysis,the choice
of consideringonly 2D disturbancesis justified by noting (i) the model flow is alsoonly 2D, and
(ii), that Squire'stheorem holds for such flows whereBoussinesq'sapproximation is used (see
Koppel, 1964).Perhapsthe main assumptionmade,in this first suchstudy for J < 1/4, is that

the Reynolds number of the flow is large enough such that the critical layer is not significantly

affected by viscous effects to the orders considered. Such an assumption appears justified based

on our results.

Although this paper is solely concerned with the nonlinear evolution of (non-marginally)

unstable stratified shear flow which has important geophysical applications, the actual initial

motivation for the study was the authors' desire to develop a theory to describe the nonlinear

evolution of the inviscid GSrtler modes considered initially by Bassom & Hall (1991), and lately

by Dando (1992), Blackaby & Choudhari (1993). The first two of the above papers demonstrate

that in the presence of a relatively weak cross flow, longitudinal vortex disturbances of all

wavelengths are stabilised such that the inviscid modes possess some of the largest growth rates

whilst also being neutral at" certain other wavenumbers. Their governing equation is similar

to the Taylor-Goldstein equation which, as mentioned earlier, governs the linear stability of

stratified shear flows. In fact Blackaby & Choudhari (1993) have illustrated the close connection

between the two problems and propose a definition of a generalised Richardson number for

such centrifically-driven instabilities. The ideas developed here in this paper also have obvious

applications to inviscid modes in flow above a heated plate, similar to those considered by Hall

& Morris (1992).
Whilst different from the approach adopted in this study, there are alternate/complementary

nonlinear theories that have been developed recently in which two or more of the flow distur-

bances mutually interact. Such theories generally require smaller disturbance amplitudes but

may also need the disturbances to exist in specific 'configurations'. These other theories are

generally referred to as wave/wave and vortex/wave interactions. For a discussion of wave/wave
interactions and resonant-triads the reader is directed to the book by Craik (1985) and the pa-

pers by Goldstein & Lee (1992), Wu (1992). Strongly nonlinear vortex/wave interactions were

first looked at by Hall & Smith (1991) and their ideas were clarified and extended by Brown,

Brown, Smith & Timoshin (1993). Dando (1993) has looked at this type of interaction in a

heated boundary layer where both streamwise vortices and inviscid travelling waves are present.

The format of the rest of the paper is as follows. In the next section we present some

background details of the ftow concerning us in this paper, namely the stratified shear flow

model due to Drazin (1958), as well as introducing some notation and concepts ready for the

proceeding sections. In §3 the flow outside the critical layer is considered; whilst in §4 we

consider the flow inside the critical layer. In §5 we discuss the range of validity and solution

properties of the evolution equations. Finally, in §6 we draw some conclusions.
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2 The stratified shear flow model

Following Churilov & Shukhman (1987,88) we choose to consider the simple but realistic

stratified shear flow model of Drazin (1958), where the unperturbed velocity in the x direction,

u0, and the density, p0, are dependent on the vertical coordinate y (in fact u0 = tanh y and

p0 = poc - y). The governing equations of motion in the Boussinesq approximation can then
be written in the form

_tA¢ - J_ + {A¢,¢} = r]_A2¢,

ap
0"'t + {p' ¢} = _¢Ap, (2.1a, b)

where {a,b} - (OalOx)(Ob/O_)-(OalOy)(Ob/Ox); ¢ is the stream function; p is the density;

the Prandtl number; _ the thermometric conductivity and J the Richardson number,

The shape of the stream function of a two-dimensional disturbance mode of the inviscid

linear problem, denoted ¢_1) say, is found to satisfy a Taylor-Goldstein equation of the form

L1¢_1) = 0, (2.2)

where the operators Ll have the form

Li =--- (lk) 2 _ 2 sinh ysech3y J
Oy 2 (tanh y - c) - (tanh y - c) 2 " (2.3)

Here k and c are respectively the wavenumber and wavespeed of the infinitesimal distur-

bance, whilst the index l corresponds to the harmonic being considered (see later). Note that

the Lt are singular where tanh y = c; at such locations, usually referred to as critical levels, the

assumptions employed in the linear inviscid approach are no longer valid and special attention

must be paid. Thin regions around such levels, usually referred to as critical layers, must be

introduced into the mathematical model; such layers are generally the first to 'feel' the effects

of increasing disturbance amplitude.

Drazin (1958) found neutral eigensolutions of the form

¢_1) = B:t:¢a(y), Ca(Y) = sinh 1-k2 ]Y] sech y,

with c=0 and J=k2(1-k2), (2.4a-d)

satisfying (2.2) coupled with the boundary conditions ¢_1) ---, 0 as y ---, 4-c_. Here the 4- on B

are related to vertical position with respect to the critical level at y = 0 i.e. y > 0 and y < 0

respectively. The relationship between the amplitudes B+ and B_ will follow from matching

to the inner problem (cf. Miles, 1961). In fact, in §4 we shall find that B_ = i-l-2'_B where

we have written B _-_B+ and the Frobenius root v is defined below.

For later convenience, we introduce the quantity

v = 4-_v/1 -4J; (2.5)
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note that, unlike Miles (1961), we chooseto include the ":t:" in our actual definition of v

this is also done for convenience. It easily follows from (2.4,5) that for Drazin's model flow

v = 1/2 _ k 2 and thus the appropriate root is immediately determined. However, for general

flows, an analytical solution is not possible and the relevant choice of sign for given k, c and J

can only be determined by inspecting the shape of the eigenfunction obtained from a numerical

solution; however, there does appear to be a common pattern between location on neutral curve

and which sign in (2.5) is appropriate (see Blackaby & Choudhari, 1993). Note that 'half' of

Drazin's neutral curve corresponds to the positive choice of sign and the other 'half' to the

negative choice (see Figure 2.1); moreover, note that Drazin's solution is also valid for J < 0

which corresponds physically to buoyancy driven flows. For J < 0, it appears that the "-"

option is always relevant; thus the eigenfunction also is singular at the critical level.

A study of the fundamental and other low harmonics outside and inside the critical layer

is necessary to derive the desired amplitude equations; in the next section we consider the

flow outside of the critical layer. Here the details are dependent on the flow model under

consideration, but the method is quite general and can be applied to other flows. In §4 we shall

see that the critical-layer analysis is almost entirely independent of the stratified shear flow

being considered.

3 Outside the critical layer

We consider a wave of sufficiently small amplitude in the neighbourhood of a general point

(J, k) on the neutral curve of Drazin (1954) (see Figure 2.1). Note that, since we are not

considering the initial evolution of a mode on a marginally unstable flow, we are not restricted

to the sole case J _- 1/4. In fact, we begin by allowing J to take any value < 1/4 (i.e. we choose

to exclude the special case J= 1/4), and then see which values of v -= v(J, k) require special

attention later. Note that J -fi 1/4 for all but one point on each of Drazin's and Hazels' (1972)

neutral curves; moreover, the generalised Richardson number is always negative for neutral

inviscid longitudinal vortices in 3D boundary layers. In fact, the theory of this and the next

section can be regarded as the extension of the work of Churilov _: Shukhman (1988) to the

case v # 0, i.e. to a far wider range of problems. At the outset, we also choose to exclude the

special case J = 0, which corresponds to a flow with no stratification (this case is considered

by Goldstein & Leib, 1988).

Following Churilov & Shukhman (1988), we introduce the small parameter e, characterising

the magnitude of the mode. It is also necessary to introduce the 'slow' evolutionary time r = #t,

with # also small i.e. the amplitudes B+ appearing in (2.4a) are considered to be functions of

r. Note that although the time-scale r is slow with respect to the inviscid timescale t, it is

still much 'faster' than the timescale t ,,_ t¢-1 of the viscous spreading of the base shear flow,

provided
<< (<<1);

this restriction is not severe due to the large size of the Reynolds number Re ,-_ _;-1 for flows of

practical interest. Later we shall have to relate the small parameters to, e and # to one another
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sothat wecanbalancethe linear terms of the amplitude equation with possible nonlinear ones.
We write

J = Jo + pJ,, (3.1)

where J0 corresponds to a general point On the neutral curve and J,< 0 is order one. The

streamfunction and density are expanded as Fourier series in x,

¢ = ln(coshy) + _ ¢l(r,y)e ik'x, p = Poc- Y + Y_ Pl(r,y)e ikt=, (3.2a, b)
l=-oo l=-oo

|

with boundary conditions

Ct, pt--*O as y_+oo. (3.3)

In the present study, we need to consider the fundamental, the zeroth harmonic, the second

harmonic and the third harmonic. Equations (2.1a,b) are solved both outside and inside the
Critical layer and then these solutions are matched to obtain the evolution equations. Outside

the critical layer the fundamental harmonic dominates the perturbation and has an amplitude

of order e. The other harmonics are the result of self-interactions, with the zeroth and second

having amplitudes of order e2 and the third of order e3.

3.1 The fundamental harmonic

In order to derive the evolution equation, the following terms of the expansion

¢1 --" £¢_1) ___ £/2¢_2) .31_£/_¢_3) JF "'', (3.4)

need to be considered. Here ¢_1) is the neutral mode of the inviscid linear problem; ¢_2) takes

into account the r-dependence of the solution; and ¢_3) is a correction to ¢_1) for dissipative

(viscous) effects. The corresponding pl expansion includes analogous terms. Thus

¢_')=B+(r)¢_(y) where ¢,(y)=sinh½+_]y]sechy; (3.ha, b)

we note that

¢[a)~ B+(T)lYl½+",

The second term:in:the:expansion (3.4) satlsi_es

LI¢_ = Q,, ¢[_ -, 0

where

as y _ O. (3.6)

as y --_ =1=o% (3.7a)

J1B±¢, 2i¢, 0B+( 1 J0 ) (3.7b)Q1 = tanh2y ktanhy 07: c_sh_y + tanh2y "

....... .t,(_) _ ./,(2) ,/,(2) of a particular integralThe solution Can be considered to be the sum, wl - WlPt + wwf,

'/'(2) say. As y _ 0, it follows from Taylorof (3.7), waplr"1'(2)say, and the complementary function, _"lVf

(1931) that

¢(2) Bia(2) y _+v(10(ly[-')) Jr B+b_ly[½-v(1 + O([yl-1)), (3.8)ICF= .-II +

=

:i



where .(2) and b_ are constants as yet undetermined. Note that if the Frobenius roots { -4-I.I

differ by an integer then (3.8) is no longer appropriate (logarithms are needed). As such cases

(v = _m; m integer) are isolated, we choose not to concern ourselves with them (and their

immediate neighbourhood) in this paper.

A solvability condition for the above boundary-value problem (3.7) is required. Note that:

(i) the operator L1 is self-adjoint away from the critical level y = 0, a_d (ii) the right-hand side

is singular at y = 0. Rather than closely follow the method of Churilov & Shukhman (1987)

for deriving the modified solvability condition, for J0 # 1/4 it is more convenient to adopt the

related approach employed by, for instance, Hickernell (1984).

The solvability condition is derived by multiplying both sides of equation (3.7a) by ¢, and

integrating over all y, excluding the (sole) critical layer at y = 0. After integrating by parts;

imposing the boundary conditions at y = 4-00; and the asymptotic forms of ¢, and ._.(2)W1CF as

y _ 0, we find that

r.,.(2).,.. 1°÷Q1 dy = - [WlC'fwa -- WlVrWaJo_ -- B \_+Vl+ + _-Vl-) '

where the bar through the integral sign indicates that the finite part of the integral should be

taken. After substituting for Q1 and using the relations B_ = i-l-U'B, B+ - B (to be derived

in the next section), the solvability condition becomes

4i1+2_I 1 lOB JlI2k ] ;-'u'I,(2)_ (3.9b)

where

-f °°sinh2_y / 1
II=j0 ¢--_sh_kcosh:y Jo ) dy and /2 = ]osinh 2'_-1 ydy. (3.9c, d)+ tanh 2 y

Four relations involving b_ and d2)_1- are determined from the inner problem considered in

the next section, thus determining the possible evolution equations for the wave amplitude

B(_-).

3.2 The zeroth, second and third harmonics

The presence of these terms is due to the process of harmonic generation, i.e. due to

nonlinearity the fundamental of O(e) generates the zeroth and second of O(c 2) and so on. The

zeroth and second harmonics are expanded in the form

¢o = e25 '(') + e2p_,(2) -k e2,¢_/,(3) +'", (3.10)

¢2 = £2¢_1) .3t__2_t¢_2) .__ _2t¢_3) + "'', (3.11)

and similarly for p0 and p2. It is only necessary to consider the first term of the third harmonic,

namely
¢_ = _3¢(,)+..., (3.12)



and the similarly for p3. The resulting sets of equations from expansions (3.10-12) do not have

simple exact solutions when J0 # 1/4; however it is, in general, a relatively simple process,

if a little tedious, to deduce their asymptotic forms as the critical level is approached. The

significant terms of these asymptotes are quoted in the next subsection.

However, the first term of the second harmonic requires extra attention as it can lead to the

largest nonlinearity in certain circumstances when v is positive (see §4). The necessary analysis

is simply the generalisation of that for the case v = 0 (J = 1/4) presented by Churilov &

Shukhman (1987) in their unpublished Appendix B. Since this important work is unfortunately

not readily available for reference, we take the liberty of presenting, in Appendix A of this

paper, more details of their method than we would otherwise.

3.3 The asymptotic expansions as y---, 0

In terms of the new variable Y = #-Xy and the functions

Ct = ¢+- (1 + 2v)p,, (3.13)

where p_ = -20pl/Oy, the asymptotes for the fundamental, second, zeroth and third harmonics

as y _ 0 are

¢1 = e_u½+" [B:t:[Y[½ +'_ i(l + 2v) OB_: [Y[-y+" ] e#]-"b_B+- 2k " -'b-Tr + IYI½-"

3 [ JIB+ In ]_,YI]JYI½+"+_,++" a_B+ 2v

+ex _}+ ,,i(1-4v 2)48k {r/(5 - 2v) + (1 - 2v)} B±[v[½+"Y3

+d+lY[½+" +...,

+ext_}+,, [i(r/- 1)(18k-4v2)B_ IYI½+"'Y3-[- • • • , (3.14a, b)

¢2= e_/-t-t+2''[(1+2v)B:]:[YI'+2" a.__, (iYi½_,, .2,,q+ly[½+v) +t _(_=z-;5) v' +...+,, c_ + ...

e2 ½-,.',',2 h ,y,½-_+e2_½+"B2, g2+iY[½+" + tt _+ 2::el I +'",



¢2=,_/z-t+2,,O _e2#2,, J1B_ IYI _÷2_
• 2v(3-2v) y2

IYil+2_
_e2_ _,+2_i(_- 11(1-4v 2)B_: y54k

+ .... #½__, 4vc± iyt{_,,
(1- 2v)

2 t+v 2 4v
-e _2 n_h2_(l_2v)lY[½-_ +..., (3.15a, b)

O¢oo_._-= e2ju_,+2,,[(1 +22v) OlB+I=Or IYI'+2"]Y-_J +'"'

O¢o e2f,-1+2_0 2 2_Jx 01B+I2 IYI_+2_
0--_-- . -e_ _ Or y2

+_2"_-'+2_ [_(1- 4_2)(1- 2_)(_- 1)IB_I2 y, j + ..., (3.16a, b)

¢8 = -ca/_-]+3"(1 + 2v)(1 - 2v) B_:
2(3+2v) 2 IYI]-3_ +'"'

¢8 = ea,u-_+8".O +"" ,

(3.17a, b)

Note that above, for the sake of brevity, we have only included the more important and

illustrative terms with regard to our aim of deriving amplitude-equations for B. It should be

noted that the above asymptotes, in general, only contain the leading term (for Y ---* oo) at each

order. Further, it should also be noted that these (incomplete) asymptotes may, depending on

the relative sizes of e, _; and #, be disordered as written; it is sensible to postpone a discussion

concerning the relative sizes of these quantities until §5, when the sizes of the competing nonlin-

earities are known. Here d±, c+ and q+ are constants, as introduced by Churilov &: Shukhman

(1988); the first two are in fact expansions, each term of an order yet to be determined, The

constants g2+ and h2+ are defined in Appendix A of this paper.

It is worthwhile to consider these asymptotes a little further. We see that the leading terms

in the C-expansions are all zero; in fact, such behavior is in full agreement with the theorem

of Miles (1961). In the next section, we shall see that this fact results in the 'biggest' cubic-

nonlinearity not contributing to the amplitude equation; the same result is also found when J =

1/4 (v = 0) and is responsible for the quintic nonlinearities occurring in the evolution equations

9
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derived by Brown & Stewartson (1978), Churilov & Shukhman (1988) and in this paper. As

pointed out by these previous authors, for a 'contributing' jump, it is in general necessary for the

e-asymptotes to be non-zero. They note that this condition is satisfied if the complementary-

function terms in the ¢_ asymptote are non-zero (thus resulting in a 'contributing' quintic

nonlinearity). Churilov & Shukhman (1988) also note that if viscosity effects are included in

in the original formulation of the problem, then the aboVe condition is satisfied as long as the

Prandtl number 77 # 1 (thus resulting in a 'contributing' cubic nonlinearity). In addition to

these two so-called symmetry breaking mechanisms, it is clearly obvious from the third term

of (3.14b) that we have an additional mechanism for non-zero v, namely non-zero 3"1. This

novel mechanism is made possible by the two Frobenius roots, 1/2 + Ivl, not differing by an

integer. As far as the authors are aware, such a nonlinear, non-equilibrium critical-layer has

not been the subject of any previous studies. This 'new' mechanism is essentially responsible

for the 'non-viscous' cubic jump term in our later amplitude equation when v is negative (later

referred to as the 'Jl-cubic' term).

The fourth symmetry-breaking mechanism possible here corresponds to that cleverly identi-

fied by Churilov & Shukhman (:1.987) in the unpublished Appendix B of their paper. Ironically,

there is no mention of it in the sequel paper (ChuHiov &-Shukh-man, 1988); however, it is of

lesser importance for disturbances of marginally unstable flows (see later for an extended dis-

cussion on Where each of the four possible nonlinearities in the evolution equation for B are the

most Significant)' The importantthlng to note at this'=s_age_is that the term involving h2+ in

the ¢2 asymptote is not at one of the orders to be considered, in §4, for the preceding term in-

volving c2_-. In the next section, we shall see that this symmetry-breaking mechanism provides

the 'non-viscous' cubic jump when v is positive (later referred to as the outer-complementary-

function [OCF] cubic term).

4 The Critical Layer

As Usual in such nonlinear studies, the main purpose of this section is to calculate the

second relations between b_2+) and b_ (the first beinggiven _y the=soivability condition, (319b))

and th-erebyobta_n_the desired nonlinear eVo|ut]on_equation(s) for the disturbance amplitude

B(r). FollowingBroWn_ &-Stewartson (i978) and Churilov & Shukhman (i988), we define new

functions _I', P and _ where

1 2- 2 .........

¢='_ Y +_, P=PO'PY 2# -iPY, ¢=_-(l+2v)P. (4.1a-c)

Inserting these into theg0verning equations (2.1), (2.2) gives

2gJl:: :_

=
2.J,

i +   -3¢yyy + (71_ 1) #-3 yry, (4.2b)

10



where {a, b}* = a_:by - arbx, the operator

0 yO) 0 0N,,= _+ _ -_-×_, (4.3)

and it is assumed that _¢tt-3 << 1 i.e. viscous effects are not large enough to affect the operator

N x at leading order.
In the rest of this section we proceed to solve equations (4.2) for the relevant lower order

terms of the lower harmonics. In fact, we need to consider the cases v > 0 and v < 0 separately;

this is because the largest 'non-viscous-in--origin' cubic term in the corresponding evolution

equations is different in these cases. When v < 0, this term is proportional to 3"1; but when

v > 0, this term is related to the complementary function of the second harmonic of the inviscid,

outer problem. Note that when v > 0, the second and third terms of the ¢1 asymptote (3.14a)

ave ordered and thus the c.ubic nonlinearity proportional to J1 would be insignificant compared

to that proportional to b_. Note that the other two significant nonlinearities (a cubic, due to

viscosity, and a quintic, due to complementary function terms of the critical layer solution for

the second harmonic) are possible in either case.

(i) The case t_ < 0

The solution is again constructed in the form of a Fourier series in x; we expand the

fundamental, zeroth, second and third harmonics, respectively, as follows

_, = _½+_11 +... + _3,-}+3_2)+... + _ _÷_,_3o)+... + _,___3b) +...

+_3,-}+_) + ... + _-_+_) + ... + _3___+3_,_sl+ ... + _ _÷+_) + ...,

*o= +... +'''

1,[,/3 ...- (_3/,/-_.+3v,_,/_1) _1_., ,,

(4.4a-d)
and similarly for the _'s. These expansions are not necessarily completely ordered (depending

on the sizes of e, _¢and g); moreover, only those terms crucial to deriving the evolution equations

have been included. The scalings follow directly from the outer asymptotes (3.14-17) and/or

by considering the process of harmonic generation.
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4.1 O(e#½ +_) of the fundamental

Upon writing

(o )oNl,x -- -_r + iklY -._ - ikl X ,

we find that at this order equations (4.2a,b) give

N1 ,r,0) = 2,(½+_)_1 (1 - 2v)ik(I)_ 1), Nl,(½_u)(Xq 1) = 0

A solution of these equations which matches to the outer solution (3.5) is

_i')- w(_,Y)-

(4.5)

(4.6a, b)

(1 + 2v)r(_4_rk½+_+g)i] -3_ fc t-_-3 ,B(r - t)e-'kYtdt, (4.7a)

where the contour C is shown in Figure 4.1a. The function W(r, Y) has a single asymptotic

representation in the lower half-plane (-r < argY < 0)

W(r,Y) = B(r)Y½ +'_ + O(Y-½+"), as IYI _ _. (4.8)

Later we derive evolution equations for the amplitude B(r) but for the moment we can regard

it as an arbitrary function that satisfies the requirement B(r) _ 0 as r ---* -oo. Matching with

the 'outer' asymptote (3.14a) yields

B_ = i-l-2"B+ (B+ -= B); (4.9)

this result has already been referred to and used in the previous sections.

4.2 O(e2# -1+2_) of the zeroth harmonic

At this order equations (4.2a,b) yield

_r 0 ¢_,), = 0, (4.10a, b)_(o_)'= _k(ww'- ww')',

where the overbar again denotes the complex conjugate and prime denotes differentiation with

respect to Y. A solution of the above which matches to the outer solutions is

1i/(01 ) -- 2 IW'l_, (I)O) = 0. (4.11a, b)
(1 + 2u)

12
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4.3 0(_2# -1+2v) of the second harmonic

At this order equations (4.2a,b) yield

N2.(½+_)@_ 1) = ik(1 - 2V)(I)_ 1) -_- ik(WW"- W '21 and _,2.(½__)_2 = 0. (4.12a, b)

We note that, as the right-hand sides of (4.12a,b) do not involve W, @_1) and (I)_1) have

unique asymptotic representations as IYI _ oc (in the lower half plane of complex Y) of the

form

(1 + 2v)B2y_,+2_, (m_l)y}_v + n_,)y½+_ ) +..., (I)_,) ,,_ 4vm_ 1)
_1) ,,_ 2(3 - 2u) + (1 - 2u) Y½-_ +'""

(4.13a, b)

Matching with the asymptotes (3.15a,b) requires that c+ = e2/_-]+3"c_4-, so that cx+ = m_ x),

cl- = i-1+2"m_1), /z2"cl+q+ = n_ 1) and p2vcl_q_ = i-1-2"n_1). These lead to the relation

Cl-(q- - i-4,,q+) = 0. However, as the adopted model flow is symmetric, q+ = q_ and so, for

v ¢ O, c,_ = 0 = m_ 1)= nl 1). Thus

¢_1) _ 0 (4.14a)

and the solution to (4.12a) is

_1) il-6vkl-2v( 1 + 2v)2F2(_ -{- v) oo

3 v

B(r-t-t2)(ht2)-_- (tl-t2)2(t,+t2)½+_(2t+h+t2) -]-_ e-'kY(2'+t'+t_). (4.14b)

4.4 O(e3#-_ +3v) of the fundamental

From (4.2a,b),

gl ffl(2) 1 ---" '---',(1.i.v)_ 1 ---- ik (l - 2u)(I)_ 2) -{- ik(xiJ(01)'W - II/(01)tW' -{- 21I/_ 1)W - II/_ 1) W - xI/_l)'tw),

N1 ¢(2) (4.15a, b),(½-_) 1 = 0.

Due to the earlier ¢ terms being zero, the right-hand side of (4.15b) is also zero. Thus

e_2)V, where e_2) is a constant and V satisfies N_,(½_,,)V = 0 with the asymptotic representation

V ,-_ Y½-_ as [Y] ---* c¢. Any non-zero choice of e_2) in (4.15a) results in a Y½-_ term in the

asymptotic representation of _2) and this contradicts the theorem of Miles (1961), from which

we know that the expansion of Ca as y --* 0 cannot involve a term proportional to y½-". Thus

it follows that (Iq 2) = 0.

13



We also note that the right-hand side of equation (4.15a) contains W and so _2) does

not have a unique asymptotic representation as IYI _ _. However, because the asymptotic
!-Vrepresentation of _2) does not contain a term proportional to Y2 , it is impossible to obtain

non-zero b_ at this order. Thus the strongest nonlinearity does not contribute to the evolution

equation.

The solution for _2) is needed for later calculations regarding the quintic nonlinearity; the

solution of (4.15a) is

B(T - t - t,)B(_- - t - t_)_(_- - t - t_)(t,t_t_)-_ (t_ - t, - t_)½+"(t_- t - t, - t_)-_-"×

(t3[tx(tx - t3)2 + tz(t2 - t3)2 + t,tz(2t3 - t, - tz)]-t_+z=tz(t,+ tz)-_-=×

!_v ((t,-t2) 2 (t,+tz+t3)(2t3-t,-tz)F 1 14 _;-_-_; t,-t_)

(4.16)

Here H(x) is the so-called Heaviside function:

l:x>0H(x)= 0:x<0,

and F(a, b; c; z) is the hypergeometric function (see Erd_lyl, 1953; Abramowitz & Stegun, 1964).

4.5 O(ep_ +") of the fundamental

A major difference of our problem for general u, compared to the u = 0 case considered by

Churilov & Shukhman (1988), is that there is no linear contribution to the evolution equation

from the critical layer. This can be seen from the analysis of this and the next subsection.

At order ett] +v terms proportions! to ,/1 first enter; equations i4.2a,b) yield

2ikJ1N_,_½+_°_= (1 - 2u)ik¢__°_ (1 + 2_)W'

N_ .,.(3o) _ 2ikJ_

'(½-O_'1 (i q- 2u) W, (4.17a, b)

• _°_= J' W ln(_Y), _°_= J,W
- 2--'_ u(1 + 2u)" (4.18a, b)

which have solutions

Note that for definiteness, we choose to include the complementary function alongside the

nonl{near term which is going to be balanced with at this order.
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4.6 O(e#2 ) of the fundamental

Here we find that (4.2a,b) yield

NI_ ,T,(3b),(_+0.1 (I 2v)ik¢_ 30, ,,T _(30"-- -- I V 1,(}_u) 'i"l -- O.
(4.19a, b)

These have solution

_?_)= 0, ,?_)= o, (4.20a,b)
where once again we shall include the associated complementary function alongside the non-

linear term which is going to be balanced with at this order. The solutions (4.20) imply that

the whole of the linear contribution to the evolution equation comes from outside of the crit-

ical layer; note that the logarithm occurs in (4.18a) and not in (4.20a) i.e. any jump induced
3__,

by the presence of the logarithm does not occur at the desired order, O(_#_ ), necessary to

affect the relationsMp between b(2)1-and b_. The authors have verified that this is in fact the

case by computing 'near-neutral' linear growth rates from a numerical solution of the Taylor

Goldstein equation (2.2) and comparing them with those predicted analytically by equating the

right-hand side of expressiori (3.9b) to zero.

4.7 O(e2# 2_) of the zeroth harmonic

At this order we only need to calculate (I)(02);(4.2b) gives

0__+<5), ikJ1 (w_ - Ww')',
Or o = v(l+2v)

with solution

2J1 iw,12= gl ¢(ol).¢(°5)= .(1 + 2.)5 .(1 + 2.)

(4.21)

(4.22)

4.8 O(e2# 2_) of the second harmonic

Equations (4.2a,b) yield

"3a.ii

_,5,(½+_)._2_,T,(5)=ik(1 _ 2.)(I)_ 5) + ik(W"¢_ 3_) _ 2W'_a_)' + WqJ_ ')

N , (I)(5)=- Jlik 4ikJ1 i,i/_1)

5,(5-_) 5 .(1 + 2.)(WW"- W'W')- (1 + 2u)
(4.23a, b)

For further calculations only (I)_5) is needed; using the identity N2,(½+_ ) -= N2,(½__) - 4ik, and

comparing the right-hand sides of (4.12a) and (4.23b) it is easy to deduce that

gl _,) (4.24)¢_5)=-_(i+2.)

15



4.9 0(63p -a+3v) of the fundamental .......

At this order the cubic-jump proportional to J1 emerges. The governing equations yield in

concise form

2ikJ1 kV_2) R_4)Nl,(½+.)_4)= (1 - 2v)ik¢_ 4) (1 + 2u) + '

N, a_<4) 2ikJx q/12) Ri4)
,(+-_,)'_'x = (1 + 2v) + '

(4.25a, b)

where, in p_rticular,

Ri 4) = ik(-_13a)'OJil)"_-2_13a)"_ 1) - _l_(3a)tlD(1)t_t0 -_- _(0 2)",W -- (T_i 2)'W -- 2(I)_ 2)'W')

ikJi (2W,,,il)W,,(ol), W_(oO,, ,il),,W ,li),W') (4.26)
- u(1 + 2v) - + - + +

To derive an evolution equation the asymptotic representation of tIt_4) is needed. This is

_4) = C(4)y}+_ + D(_)y½-_ + O(y-½+_) as Y --_ 4-oo , (4.27)

where, in particular,
,1 1

,,:,_,:.,: j_':;)io _,,
Note that the term proportional to _2) in (4.25b) only contributes to the jump C(+4) - C(J ).

After substituting for R_ 4) and some calculation, we find that

D(_)_D(__4 ) _ il-a_k3-4_Jl(1 + 2v)F3(½ + v) dt3(tlt2ta)_ 2 ×

B(r + tx - t,)B(v + t. - t,)-B(v + t× + t2 - 2ta)t2t,(t, - tz)(ta + t. - tz)×

(t3 -- tl -- t2)½-_H(t3 - tl - t2)

(1 + 2v) Z_dtB(r + t_ + t - t3)B(r + t2 + t - t3)B(r + tx + t2 + 2t - 2t3)×+ 4

-_-v -- t2)x(ta - t2)2(q + t2)_+"(2t + tl + t2) . (2t3 - 2t ta -

1--v )
(2t+ tl + t2+ t3)(t3- 2t - ta- t_). H(t3- 2t - tl - _2) (4.29)

Matching the qnner' asymptote (4.27) with the %uter' asymptote (3.14a) leads to the rela-

tions

D (4) I.(2)/_ D(_4) il-2%(2) B= tPl+a-_+, = 1- -_

which combine to give

D_ ) - D(4)= B(b_2)+ -i-4%12))a,, (4.30)

where the subscript J1 denotes the cubic part Of the total jump which is proportional to Jl-

16



4.10 O(e3#-} +3_) of the third harmonic

At this order the governing equations yield

N3 ,r,(') 3: 2v)_ 1) ik(qJ_')"W 3_Z)'W'+2_I,_l)w"),,(½+_)=3 = _(1+ + -

N _(1) = 0. (4.31a, b)
3,(½-v) 3

The right-hand sides do not contain W and so have a unique asymptotic representation. Match-

ing with the solution outside the critical layer gives ¢(31) = 0, whilst solving (4.303) gives

_,)=i]-U"k_-3"(l+2v)2F2(]+v)°°drfo°° /cdr2 t,6_r(_-_) ]o at, ]_at_B(_- -tl)×

B(r t t2)B(r t ts)t_+vt; t-v-_-_ 3 _ ,___.... 2 t32 (tl + t2)-_- (tl - t2)2 ×

_-_ t3)(tl + t2 2t3)×(tl Jr t2 Jr/3)_+v(3/ Jr tz Jr t2 Jr t3) -2 (tz Jr t2 --

F--,,, _ _;_-E;q)
(4.31c)

4.11 O(E4_ -4+4v) of the zeroth harmonic

At this order it is only necessary to determine _(7). Equation (4.2b) gives

_--_(I)(J)' = 0, (4.32)

which has the solution O(J )' = f(Y). However, choosing a non-zero I(Y) is merely equivalent

to taking a different density profile for theu..nperturbed flow and thus, without any loss of

generality, we choose to take f(Y) = 0 and (I)_'J = 0.

4.12 O(e4ft -4+4v) of the second harmonic

At this order the equations (4.23,b) can be written in the form

N2 ,-r,(7) ik(1 - 2v)¢_ T) = ikRN =- ik(Rlz + R02 -_ R31),,(½+_)_2 -

N, _(_)2,(½-_) 2 = O, (4.33a, b)
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where
n,, = (w<_''- 2w'<_)'+w"_,i_)),_no__ 2i_o')"_'_- ..o'_'(')''c')"-_, '

and R31 -- (3W"_i 1) - 2W'k 0(')' - WkgO)"). (4.34a - c)

Following Churilov & Shukhman (1988), @_r) is written as the sum _7) re(r)= _ +¢_ o_
a particular solution (N:,(t+_)_ = ikRN) and a general solution, _2L'T'(r),of the associated -

homogeneous equation. Defining

Coo(x, k) - xk'×F(X) ia('-x)
27r

we find that

(i)_r) = #-2_Coo(1/2 - u, 2k) Iv t-}+'C(r - t)e-2'k'Y dt'

• _ = Coo(1/2 + v, 2k) L t-}-_D(r - t)e-2ik'Vdt

2u)
Coo(1/2 - u,2k) lc t-}+_C(r - t)e-2ikW dt' (4.35a, b)-# 4u

where C(r) and D(r) are arbitrary functions which tend to zero as r _ -_, and the/_-2_

factors have been added for later convenience. As Y=--_ -l-cxD,

where

tO(r) = M+Y½ +" + O(Y-½+_),2N

M+-M-=(l+2.)r(½+v) oodY d*RN(r-t,Y)t}+"e-=_k*r_ #0. (4.36)

Thus the asymptotic representations of _r) and _r) have the forms

= [D(r) + M+(r)IY} +_ -/,_=_ (1 42.) C(r)Y½_ _ +'",_)

¢_')= _-_c(_)y½-_ + ....
(4.37a, b)

To match with the solution outside the critical layer, in (a.15) it is necessary to set c+ =

e4/, -}+3_c_+, leadlng to the relations

i 1-2_c2- C(r), c2+q+ D(r) + M+(r) and c2-q- il+2_[D(r) + M_(r)].C2+ = _ --. =

Upon setting q+ = q = q_,we find that : _ : i _ ,,

C(r) = i-'-_csc(2)(M+2q - M_), _ (4.38)

and, as M+ - M_ _ 0, this fully determines (I)_r) _ 0. Thus, the symmetry (I) = 0 has been

broken and a 'jump' will occur at the next order in which (I)_r) appears in the right-hand side

of the equations. The explicit form of M+ - M_ is given in Appendix B of this paper.
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4.13 O(e5#-_ +5_) of the fundamental

At this order, the governing equations are

N, ,T,c,) _-ik(1-2v)_') + R__),(½+0,_I =

The asymptotic representation of _r) has the form

¢_) -- c£,)r_+v + D_)Y½ -v + o(r-_+_),

(4.39a, b)

where, in particular,

= 2.r( 1 -.1 oo
dv Jo°°dtt½-_R_'_(_- t,V)e-'_Y' (4.40)

From (4.7a) and (4.35a),

[l_7) i-2t'k(1- 4u2) c°s(_'u)/c dr1/c=- 2"_r

and simple manipulations give

oo 1

D(_) - D(--7) = ca _o t_-_'C(r - t)-B(z - 2t)dt,

-l-+v -_-v

dt2tl 2 t2 _ (t_ t2)e-°'r(2t_-t2)C(r - tl)B(r- t2),

(4.41)

2i}-3_k]-V(1 - 2v)x]
b' 1 _ v "_ _r(½- v)r(¼+ _)r(__)

(4.42a, b)

The quintic contribution to b_ is found by matching the above asymptote with the outside

expansion of the fundamental near the critical layer. This process yields

D(_ ) - D(__"0 = B(b_ _ ,;-4u/_(2)_,l_jq, (4.43)

where the subscript q denotes the 'quintic' part of the total jump. From (4.38),(4.42) and (4.43)

we obtain

B{l_(2 ) i_4Vb_2))q__ i-l-UCq ?I'V _o°°t½+,,[M+(r t) M_(r t)]B(r 2t)dt. (4.44)\Vl+ -- - 2q csc (_-) ....
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4.14 The cubic nonlinearity due to viscosity

The remaining terms in the expansions (4.4), proportional to _, are driven by dissipative

(viscous) effects. They are not of major concern in this paper but are included for completeness;

the equations which they satisfy, their solutions and further analysis can be found in Dando

(1993) (see also Churilov & Shukhman, 1988). Providing the Prandtl number is not unity, a

non-zero jump, D(_) _ D_) = [D(_) _ D?)]0 + [D(_) _ _,_n(sh12say, arises at O(e3t¢#-_ +3_) where

,n16__16_1 i'-'_kh-4-(_- 1)r3(½+ .)(1 + 2.)_[ [ f

_3-_ v i _, _:'B(r - t_+ t:)(txt_t3)_ (t, - t_- t_)_- (t, - t_)_ dtjg(r 2t_+ t_+ t_- t,)×

BO - t, + t_- t_)((1+ 2.)(t_+ t_)- 2(3- 2.)_t_(t_- t,)_)

+ t2 + t3)B(r - tl + t3)txt2((tx - t2)3 - 2t3(ts - t_) 2 + 2t_)]H(tl - t2 - t3),

and

i'-4"ks-4"(_ - 1)r3(_ + .)(i -I-2.) 3 oo

B(T -- 2t, -4-t2 + t3 + 2t)B(r - tl + t3 + t)B(T -- t, + t2 + t)(tit2t3)-]-"x

(tl -- t2 -- t3-- 2t) _- _' 3 v2- (t3--t2)2(t2 + t3)½+_'(2t + t2 + t3)-_- (2tl --t2- t3 --.2t)x

(2t_ +(2t +t2+ t3)l+_(t_--t3)_(t_+ t3) _-_ +(2t +t_+t3)_)H(tl-t_-t3 - 2t). (4.45a, b)

Matching with the outer inviscid solution requires that

D(_) D(__s) Bib (_) i-4t, b(2)'_-- _- k 1+- l-/v, (4.46)

where the subscript v denotes the cubic part of the total jump which is due to dissipative effects.

It is worthwhile to consider the effects of viscosity a little further at this point. At the start

of thissection_, itwas pointed out that we assume t¢ << tt 3, so that the effects of viscosity do

not enter the crucial critical-layer operator N x at leading order, instead, the effects of viscosity

occur as inhomogeneitieS at certain lower orders o{the hierarchy of critical-layer equaiions.

This approach is entirely rational as long as _/#3 << 1. However, to derive amplitude equations

valid over a larger range of _¢ values, one must follow the approach, introduced by Haberman

(1972), of introducing a new parameter, "_H say, where

AH = a/t_ _, (4.47)
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is taken to be order one during the critical-layer analysis. The operator N x would need modi-

fying: 0 3

N× ------, N× - _,kn or 3 (4.48)

and hence all the critical-layer solutions would be modified. We have chosen not to adopt this

approach here as it would complicate the presentation of our theory and analysis; whilst it is

not really necessary so long as ,kH is reasonably small (see Goldstein & Leib, 1989).

(ii) The case v > 0

Clearly the viscous-cubic and the quintic nonlinearities are still possible when v is positive.

Moreover, the analysis and the evolution equations are exactly the same as for the negative v

_--_ _#_+_case. However, when v is positive _tt2 > and the ordering of terms in expansion (4.4a)

strictly needs to be changed so that the term _a_) is lower order than the term _3_). It is now

no longer rational to balance the cubic term formed from the _a,) term, with the _3b) term.

Thus, the Jl-cubic nonlinearity considered for negative v is no longer a possibility.

There are two other possibilities that we can consider for positive _,. Firstly there is the

cubic formed by the _3_) term, balancing with the _ab) term. However, this among other

things, necessarily leads to the fully nonlinear critical layer problem. Alternately, there is

another cubic nonlinearity ( referred to here as the outer-complementary-function [OCF] cubic

term) similar to that considered by Churilov & Shukhman (1987) (for unity Prandtl number)

in the unpublished Appendix B of their paper. This cubic nonlinearity was not considered for

negative v as the Jl-cubic nonlinearity is always larger. It arises from considering the part of

the complementary function term in the asymptote of the second harmonic outside the critical

layer (equation (3.15a)) to be at an order fixed by the outside, inviscid problem; rather than

just considering it at orders fixed by the process of harmonic generation inside the critical layer.

It is necessary to consider two additional terms in the (slightly re-ordered) expansions

(4.4), namely terms c2#½-_(_ s), O_s)) in the expansions of the second harmonic and terms

ea#-i (_s), ¢_s)) in the expansion of the fundamental.

4.15 O(e2#½ -_) of the second harmonic

At this order equations (4.2a,b) yield

g_,t½+v)_ 8) = (1 -2v)ik_ 81 + ik(WW"- W'2), and Y_,(t_v)_g s)

The solution for ¢_a) is written

¢_s) = Coo(1/2 - r,, 2k) fc t-]+_n2(T -- t)e-2i_trdt'

=0. (4.49a - b)

(4.50)
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wherethe function n2(r) is determined below. For large ]YI,

#_s) ,,, n2(r)Y½-", _s) m2(_.)y½+,, (1 - 2v) ,"" - 4v n2(r)Y_- , (4.51)

where ra:(r) is a suitable arbitrary function. Matching with the expansions outside of the

critical layer yields

(I - 2v) (4.52a - c)
92- = i1+_g2+, h__ = il+Svh2+ and B2h2+ = - 4v n2.

From the relations (4.523-c) and (A.5d), it follows that

4i½-3_v(cxfl, - f_a.) sin[r(1 +

n2(r) = (1 - 2v)_ sin(rv) 2v)/4] B2(r)' (4.53)

and thus as (I)_s) is non-zero, it will lead to a 'contributing' nonlinear jump.

4.16 O(e3_ -1) of the fundamental

The governing equations at this order are

N1 ,T,(S) 1 2v)ik(i)_s) ik(2W"_s) W'_?)' W_S)"),.(½+_)_,_ = (1- + - -

NI.(½__) (I)(18)= _ik(W¢_S) '' + 2W s(I)_S)') - _ikR_ s). (4.54a, b)

The asymptotic representation of _s) as Y _ 4-0o has the form

_s)= C(s)y½+, + D(_)y½-_ + O(Y-½+,),

where, in particular, D(_ ) - D(-s) is given by the right-hand side of equation (4.40) but with

R_ s) replacing R_ 7). Simple manipulation gives

R_S) = 2_+_ik(1 - f_ [_ • _-_k( 2t_-_l)Y_-½+_-_-_(_- - t2)
4V2)COS(7_V) j_,l J_'2"B(T--'I)n2(T-- 1,2)_ I'1 _'2 k _',

(4.55)
and we find that

D(_) _ n(_8) = 64i[+"k]-"(1 - 2v)r( 1 + v)rr½ J0OOt½__(r _ 2t)n2(_" - t)dt..r(¼ ' +

Matching with the outer, inviscid solution requires that

D(_) D(_s) ntt.(B) .-4Ub(2)x-- = Jt.JkVl+ -- Z 1--)oct,

(4.56)

(4.57)

where the subscript oct" denotes the cubic part of the total jump which is due to the outer-

complementary-function terms.
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5 The Evolution Equations

The four possible forms of the evolution equation for B(_-) simply correspond to matching

the solvability condition (3.9b) with each of the four jump expressions (4.29), (4.43), (4.45) and

(4.56) in turn; for the sake of succinctness, we do not explicitly quote these evolution equations.

Instead, it is more beneficial to the discussion here to form one 'composite' evolution equation

2_I1 (1 + i4_) [OB__T+.__lJlI2ktan(_rv)B]=_2vB(b_:)+_i-4,b_)

_2vB_e2#-a+4_,(b__ .-4_, (2) _+_,1_,(2) :-4,,_.(2)_ Hrv_z bl_)j1H(_v ) + _2#-. _,,1+ -_ ul_)oc! _, j

} (5.1)+e2p-_'+4_ g(b_ -- _ Vl_]v JV -- _ 1-)q ,

where the explicit forms of the nonlinear quantities appearing on the right-hand side of this

equation have been derived, and are quoted, in §4; again H denotes the Heaviside function. As

the composite equation (5.1) contains the sum of the four (individual) nonlinearities, it has the

advantage of being valid for all values of _¢,e and # that lead to an unsteady (weakly nonlinear

and weakly viscous) critical-layer.

In this section we shall discuss the parameter ranges of validity of each of the four possible

forms of the individual 'base' evolution equations for B(r), before presenting some numerical

results for the 'Jl'-nonlinearity case. This section is concluded with a discussion of the expected

solution properties of the other (base) evolution equations. Further conclusions are drawn in

the next section.

5.1 Parameter ranges of validity

The range of validity/application of each of the possible base evolution equations is sum-

marised in Figures 5.1a,b, for v < 0 and v > 0 respectively; the governing balances determining

the dashed curves separating the three parts of region III follow immediately by comparing the

sizes of the four terms on the right-hand side of equation (5.1). As an example, we note that

(when v < 0) the nonlinearity proportional to J1 is equal in size or larger than the quintic

nonlinearity if e2# -3+4_ >_ e4/_-7+6_ i.e. if e < #2-_. We see that in each case, depending on the

relative sizes of g, e and #, three of the four base evolution equations are applicable. Als0 plot-

ted are the expected evolutionary paths of the disturbance for each case; this shall be discussed

in more detail later but at present it suffices to note that, based on our assumptions concerning

viscous-spreading effects resulting in an unstable linear disturbance mode approaching a later

neutral state, initially our disturbance will lie in the bottom right-hand corner of region IIIb

in each case. This partly justifies our relegation of viscosity to lower order effects, as well as

indicating that the base evolution equations with the Jl-cubic and the OCF-cubic nonlineari-

ties deserve the first attention. In the next subsection we present numerical calculations for the
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former case(v < 0); the evolution equation with OCF-cubic nonlinearity (v > O) is discussed

in the final subsection.

5.2 Numerical results for the Jl-cubic

Recall that if, and only if, v < 0 then a cubic nonlinearity proportional to ,/1 is possi-
t

ble. In fact it is the largest nonlinearity in the (composite) evolution equation when # >> t¢4

and _ << #2-_; thus, as mentioned in the previous section, it corresponds to the first nonlin-

ear evolutionary stage for an unstable linear disturbance whose growth rate is diminished by

viscous-spreading effects. In this subsection we present some numerical results for this case.

To ease numerical calculations the jump expression (4.29) is transformed into kernel form,

D(_)_D_) = i'+2_ka-4_jl_r(l_ - _")'+2v) _o dss2-4_= _o'daal-2_G(a)B(r-s)B(r-as)B(r-(l+a)s)

-- _ 1-)J_ (5.2a)

where

[F:(½-v)(1-Fa)-½-"{ (_ 3 1 a )a(:)= [

-(l+a+a2)(3-2v)F1 -v,_+v,_+v,2-2v;a;

+a(1 + a)(5- 2v)(3 - 2v)_,/'7 3 1 a ) }8(1 - v) _'[,-2-v'2+v'2+v'a--2v;a;(l+a)

-F(I -F o')(i - a)-2Vx

fo dtt : (l-t): (Z-at)-z: +3v i v 3 v(l+at)_+_(l_a:t)_+ _ (2-a+at-2a2t)F--v, _ _;_-_;o'2t 2 .

(5.2b)

Here Fl(a, b, c, d; x, y) is the hypergeometric function of two variables (see Erd$1yi, 1953; Churilov

& Shukhman, 1988). The evolution equation for this case can then be written in the form

-_--r = 71B + ,'/2 dss 2-4_ a a'-2_(_(a)B(r- s)B(r-as)-B(r- (1 + a)s),
(5.3)

where

"/1 "--

-JlI2k tan(_rv)

2I_

Jl k4-4v_r]l -4- 2v I

' = s r (½ -
and G(a) = -sgn (1 + 2v)G.

(5.4a - c)
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Let us considerthe range -2 < v < 0; in Figures 5.2a,b -711J1 and -'721J1 are plotted

versus v for this range. These figures illustrate that both 71 and 72 are positive in this range

(recall that, since we are considering unstable modes, 3"1 < 0). The lower value u = -2 chosen

here for this numerical investigation has no special significance, it was principally chosen so

that we calculate numerical results for a complete period of the trigonometric functions present

in the analytical expressions. Note though that, for their study of the related neutral inviscid

GSrtler modes in a three-dimensional boundary layer, Blackaby & Choudhari (1993) find that

this range of u-values is appropriate. Moreover, it may also be argued that for increasingly

negative values of u (corresponding to the Richardson number becoming increasingly negative)

the now destabilising effect of stratification means that the growth rates of the more unstable

linear inviscid disturbances are just too large for viscous-spreading effects to damp significantly,

thus rendering the weakly-nonlinear theory inapplicable.
It is convenient for numerical calculations to introduce a so-called 'logarithmic time' (see

Churilov & Shukhman, 1988; Shukhman, 1991)

7_ B012J_l r (5.5a)
T- (2./1)4_4v

having set
B(T) = B0b(r)e _1", (5.5b)

where the constant B0 is chosen such that b(r) ---* 1 as r ---* -c_. This is done in order to

reduce the number of parameters in the evolution equation. Equation (5.2) now has the form

(95 1 co

-_ = fo daK(a) fo dxx2-4_'e-%(Te-_/O+"))b(Te-_:_/O+"))-b(Te-::)' (5.6a)

with initial condition

where the kernel

b(T = 0) = 1; (5.6b)

o-l--2v

K(a)- (1 + a) 3-4_(a)' (5.6c)

In Figure 5.3 K(a) - K(a; u) is plotted, versus a, for a few representative u values. It is

interesting to note that K(a) is always negative (0 __ a < 1); this appears to be the case for all

-2 < u < 0; cf. the viscous-jump kernel for the u - 0 (J = 1/4) case considered by Churilov &

Shukhman (1988) which changes sign. Thus it is possible to deduce all the qualitative results

of the solution properties of the evolution equation (5.6) from results plotted in this figure (see

the discussion in §5.2). However, we still chose to solve the integro-differential equation (5.6)

numerically for completeness, as well as to obtain actual quantitative results.

In Figure 5.4, we present the results of a numerical solution of the evolution equation (5.6)

for two representative u values. The results show that b(T) oscillates with a fast rising amplitude

as T increases. The period of these oscillations is seen to depend strongly on u: for u values

corresponding to the smaller x2-4%-_K(a) values (i.e. u = -0.4) the time T for b to attain a

given large value is longer than for u values corresponding to the larger x2-4ve-::K(a) values

(i.e. u = -1.4). In summary, the numerical calculations indicate that, for all 0 < u < 2, the
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amplitude B(r) will oscillate, with its magnitude rising sharply after a few oscillations; our

results indicate that no 'finite-time' singularity of the evolution equation (5.6) occurs, instead

the oscillations become increasingly wilder.

5.3 Discussion

We begin this discussion by continuing to consider the evolution equation (5.6) with non-

linearity (solely) due to 3"1; later in this subsection we consider the other (base) evolution

equations. In the last section we reported that our numerical computations show that K(a) is

everywhere negative (0 < a _< 1) for all -2 < v < 0. It was remarked that from these facts

(and the magnitude of K = K(a; v)) it is possible to deduce all the qualitative results of the

solution properties of the evolution equation (5.6), without needing to perform the numerical

integration. To illustrate that this is so, let us consider the right-hand side of equation (5.6).

Initially b(T) > 0 and thus the right-hand side of equation is clearly negative (as K(a) < 0);

thus this equation tells us that b(T) will decrease in value until such time when the right-hand

side of equation (5.6) is positive. The latter condition cannot be reached until b(T) becomes

negative. However as the right-hand side of equation depends on all previous b(T) values, there

is a delay until the right-hand side of equation is actually positive; during this period b(T) has

becomes more negative. Once the right-hand side of equation is positive, b(T) grows until it

becomes positive. Again there is a delay until the right-hand side of equation is negative, at

which time b(T) starts to decrease again, and so on. It is clear that the larger the typical

magnitude of the overall kernel x2-4% -_ K(a), the more effect we can expect the nonlinearity

to have i.e. larger oscillations at earlier T-values. Note that we would not expect a singularity

to develop because of the smooth mechanism underlying the behavior of b(T), as described

above. In fact, it is possible to show analytically that the solution of the evolution equation

(5.6) can only develop a singularity if f_ g(a)da > 0 (see Churilov & Shukhman, 1988).

Thus, disturbances initially governed by the evolution equation (5.6) would soon become

so large in magnitude that their evolution would move into its second stage (region IIIc of

Figure 5.ia) where the largest (leading order ) term in the composite evolution equation (5.1)

is the quintic nonlinearity. We note that this result is not at all Surprising and could have been

deduced as soon as the scales and terms of the critical-layer expansions (4.4a-d) were deduced:

as viscosity does not enter our analysis at leading order, the base evolution equations due to

Jl-nonlinearity, the OCF-nonlinearity and the quint_c-nonlinearity will all lead to unbounded

amplittide growth, whether by increasing disturbance oscillations or by a singularity occurring

(they do not permit so-called equilibrium solutions). As viscosity does not enter at leading

order it certainly cannot damp out the amplitude growth. We note that even with stronger

viscosity effects, equi!ib_r_iumstates may still not necessarily be reached (see Goldstein & Leib,

1989). Moreover, we note that for the marginal instability case considered by Churilov &

Shukhman (1988), the nonlinearity due to viscosity permitted singular solutions in which the

amplitude became unbounded at a finite T.
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6 Conclusion

In this paper we have considered the nonlinear development of unstable disturbances in
stratified shear flows where the Richardson number J is less than one quarter in value. Although

such modes are initially fast growing, we have assumed that viscous-spreading effects result

in them evolving in a linear fashion until they reach a state where their amplitudes are large

enough but their growth rate have diminished significantly so that amplitude equations are

derived using weakly nonlinear and unsteady critical layer theories. We have found that four

different (base) integro-differential amplitude equations are possible, including one due to a

novel mechanism (the 'Jl'-cubic nonlinearity). The relevant choice of amplitude equation, at

a particular instance, being dependent on the relative sizes of the disturbance amplitude, the

growth rate of the disturbance, its wavenumber and the viscosity of the fluid. This richness of

choice of possible nonlinedrities arises mathematically from the indicial Frobenius roots of the

governing linear inviscid equation (the Taylor-Goldstein equation) not, in general, differing by

an integer. The initial nonlinear evolution of a mode will be governed by an integro-differential

amplitude equations with a cubic nonlinearity but the resulting significant increase in the size

of the disturbance's amplitude leads on to the next stage of the evolution process where the

evolution of the mode is governed by an integro-differential amplitude equations with a quintic

nonlinearity. Continued growth of the disturbance amplitude is expected during this stage,

resulting in the effects of nonlinearity spreading to outside the critical level, by which time the

flow has become fully nonlinear.

We finish by mentioning some further points that may be worthy of investigation; mainly

these are related to the relaxation of the assumptions made here in this paper. Obviously,

the inclusion of viscosity at leading order in the critical layer (i.e. treating /_H "_ O(1)) would

answer the questions posed in the previous section as to whether it can damp down the unlimited

growth in the magnitude of the disturbances, allowing equilibrium solutions to exist. Another
obvious extension of this work is to three-dimensional disturbances; then it may be possible

to consider interactions between two or more disturbances. Comparision of our theory with

experiments or large--scale numerical simulations is necessary at some point. As mentioned

in the introduction, as well as geo-physical flow applications, the theory has applications to

aerodynamical flow situations. In fact, in a related paper Blackaby, Dando &: Hall (1993)

apply the ideas contained in this paper to the problem concerning the nonlinear evolution of

inviscid GSrtler vortices in a three-dimensional boundary-layer; their problem is more complex

than that for the model stratified flow considered here, as the longitudinal vortex Problem

is necessarily three-dimensional. The theory developed in this paper can also be applied to

a nonlinear study of the inviscid vortex instabilities in the three-dlmensional boundary-layer

flow above a heated plate.
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Appendix A

This appendix contains some additional results, concerning the outer inviscid problem for

the second harmonic, needed for the case v > 0. It is merely a generalisation of the unpublished

Appendix B of Churilov & Shukhman (1987) to the case _, _ 0.

Outside the critical layer, the first term of the second harmonic, ¢_1), satisfies

2 3J0 ] (A.1)L2¢_ 1) = Q2 = B_: sinh 2_+' lYl + 2sinh' y '

We introduce the functions f_ and fb which satisfy the homogeneous equation Lz¢_ 1} = 0, such

that

f_ = e-kV_'_lvl(1 + O(e-2bl)), fb = ekVffrT_lul(I + O(e-2bl)), as y --+ =l:cx_.

The solution of (A.1) is then written in the form

¢_1) = B_(f(y) + C+ f_(y)), (A.2)

where C+ are constants and f is a particular solution of equation (A.1) that does not contain

e ik_bl as y _ =t=c_. As y _ +0,

(1 + 2v)

f = 2(3 - 2_,)lYl-l+2"(1 + O(Y2)) + c_lyl½+_(1 + O(y)) + fllyl½-_(1 + O(y)); (A.3)

where c_ and/3 are to be determined. Also

1 IJf ,b "_  o,blyl½+"(1+ O(y)) +/ o,blyl (I+ O(y)), as y --. ±o, (A.4)
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wherethe a,,b and fl,,b are fully determined by the definition of f_.b i.e. they are determined

solely from the outer, inviscid problem. Thus, we can write

_)_1) BI(1 -4-2v)= 2(3- 2.) lY1-'+2"(1÷ O(Y_))+ B_ (g2±lYl_+_+ h2±lYli-_) (1+ O(y)),
(A.5a)

as y _ +0, where

g2± = a + Ciaa,

It is easy to show from these relations that

h2_ = fl + C+fl,.

[1 - (g2+/g2-)]

h2+ = (h2+/h2-)(afl_, - fla¢,) aa[(g2+/g2-) - (h2+/h2-)]"

(A.5b, c)

(A.5d)

To evaluate a and fl, we subtract the singular term in (A.3) by introducing

(1 + 2v) sinh_l+2,,
](v) = f _(3---_-;) lylcosh-_y,

(A.6a)

so that

]= _lylk+_+ _lyl_-_+..., as y _ +o, (A.6b)

and ](y) satisfies

(1 - 2v) sinh_,+2_ (8tanh 2 (1 + 2,))
L2] = 02 =- 2_3 --2--_v) IV[ c°sh-2 y Y - "

(A.6c)

Then

:=/[oo - (A.7)
wheretheWronskianW = f:f,- fof_= 2.(,_o/_,- ,_/_o)= -2kv/-g+ 3.ConsideringV--,0,
we see that

= foOO _2 ooW(abf,,--a.fb)dZ and fl=fo Q2a _(flbf_- fl.h) dz. (A.8)

Appendix B

Again following Churilov & Shukhman (1988), in accordance with (4.34), we write

M+ - M_ = (M+ - M_)n + (M+ - M_)o2 + (M+ - M_)31,

and after extensive calculations we obtain

(B.1)
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+ + d,,(M+-M_)I1 _r(½ - _) _o

fc dt3B(7 - t - t4 - t_)B(7 - t - t4 - tz)B(r + t + t_ + t2 + t, - t3)B(r - t - t, - t3)×

_3__ v _+v -_--v -_--v 1
(tlt2t3) 2 t4 (t3-t-tl-t2-2t4) 2 (t3-t-tl-tz) 2 (t3-tl--t2)_+"×

(t3[ta(tl - t3)2 + t2(t2 - t3)2 + txt2(2t3- h - tz)]-t:+2_t2(tl+ t2)-_-_ ×

____ ( 1 1 v 3 v t_(tl-t2)2 (tl+t2+t3)(2t3-tl-t2)F_--v, 4 2'4 2;t_J] ×

H(tl - t2)H(t3 - t - ta - t2 - 2t4), (B.2)

2½+_i½-5"k_-Z"(1 + 2v)F(_ + v) _dt fo _ fc dt2(M+ - M-)o2 = rF2(½ - v) fo dtx

Iv dt3B(7 - t - t_)B(r - t - t2)B(r + t + tl + t2 - t3)"B(l" - t - t3)(ttl)_+_×

-_.-v -l-v "!--v -s--v
(t2t3) _ (t3-2t-tl-t2) 2 (tl-t2) 2 (tl+t2) 2 (2t+tl+t2)×

1 1 v 3 2; ";-i_H(tltl/ -t2)H(t3 - 2t- tl - t2),(t + t, + t_)F - _, _; (B.3)

2-½+_i½-_k]-3"(1+ 2v)_r(] + v) _dt fo ¢¢ oo

/ dt,,B(r - t - t_ - t,)B(r - t - t_ - ti)B(_- + 2t + t, + t_ + t_ - t,,)_(r - t_ - t,) x

i v -l-v -s--v -_--v -_-v i _,(t,t_)_+t_ t,_ (t,-3t- -tI- t_- _t_)_ (ti+ t_)_ (t,- t_)_-×

(t,- 3t- 2t_)½+"(t,- 2t_)r (t,- 3t- 2t,- 2t_ 2t_)(2t,-6t- 3tx- 3t_- _t_)×

'_ - t])F 1 1 2; 3 2; H(t, - tz)H(t4 - 3t - t, - tz - 2t3) (B.4)[t 4 ---_ -- v,- 4 -4 --
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Figure 2.1. Drazin's neutral curve, J = k2(1 - k2), with the thick line denoting the part of

the neutral curve with v +re and the thin line that part with v -ve.
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Figure 5.1a A diagram of the various regimes of the critical layer for u < 0.

I: viscous, steady critical layer; Landau-Stuart-Watson equation.

II: strongly nonlinear, equilibrium critical layer; Benney & Bergeron theory.

IIIa: unsteady critical layer; largest term in integro--differential equation (IDE) is cubic and

due to viscosity.

IIIb: unsteady critical layer; largest term in IDE is cubic and due to 3"1.

IiIc: unsteady critical layer; largest term in IDE is quintic.

The thick line on the diagram indicates the expected evolutionary path of the disturbance.
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Figure 5.1b A diagram of the various regimes of the critical layer for v > 0.

I: viscous, steady critical layer; Landau-Stuart-Watson equation.

Ih strongly nonlinear, equilibrium critical layer; Benney & Bergeron theory.

IIIa: unsteady critical layer; largest term in IDE is cubic and due to viscosity.

IIIb: unsteady critical layer; largest term in IDE is cubic and due to OCF.

IIIc: unsteady critical layer; largest term in IDE is quintic.

The thick line on the diagram indicates the expected evolutionary path of the disturbance.
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Figure 5.2b The constant -'72/JI for -2 < u < 0.
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Figure 5.3 The kernel K for various values of u.
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