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ABSTRACT

Jiang,‘ Yi-Tsann. Ph.D., Purdue University, Mdy 1993. ADevelopment of an Un-
structured Solution Adaptive Method for the Quasi-Three-Dimensional Euler and
Navier-Stokes Equations. Major Professor: Dr. William J. Usab, Jr.

A general solution adaptive scheme based on a remeshing technique is devel-
oped for solving the two-dimensional and quasi-three-dimensional Euler and Favre-
averaged Navier-Stokes equations. The numerical scheme is formulated on an un-
structured triangular mesh utilizing an edge-based pointer system which defines the
edge connectivity of the mesh structure. Jameson’s four-stage hybrid Runge-Kutta
scheme is used to march the solution in time. The convergence rate is enhanced
through the use of local time stepping and implicit residual averaging. As the
solution evolves, the mesh is regenerated adaptively using flow field information.
Mesh adaptation parameters are evaluated such that an estimated local numer-
ical error is equally distributed over the whole domain. For inviscid flows, the
present approach genéfates a complete unstructured triangular mesh using the ad-
vancing front method. For turbulent flows, the approach combines a local highly
stretched structured triangular mesh in the boundary layer region with an un-
structured mesh in the remaining regions to efficiently resolve the important flow
features. One-equation and two-equation turbulence models are incorporated into
the present unstructured approach. Results are presented for a wide range of flow
problems including two-dimensional multi-element airfoils, two-dimensional cas-
cades, and quasi-three-dimensional cascades. This approach is shown to gain flow
resolution in the refined regions while achieving a great reduction in the computa-
tional effort and storage requirements since solution points are not wasted in regions

whére they are not required.
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1. INTRODUCTION

The flow in axial and radial compressors and turbines is complex both in terms
of the geometry of advanced designs and in terms of the flow structures that are en-
countered. New designs incorporating radically shaped blades, splitter plates, and
even multi-element blade configurations lead to even more complex flow problems.
Early analysis of these flow problems was done mainly by experimental methods.
Modern experimental facilities utilizing advanced measurement techniques can pro- |
vide detailed flow information for these flow problems. However, it is costly to
perform experimental studies in the design process. On the other hand computer
technology has seen a rapid developmeﬁt and the cost has decreased dramatically
over the last two decades. This has led to significant developments in the area of
computational fluid dynamics (CFD). A variety of solution procedures have been
proposed for the solution of the Euler and Navier-St9§& equations. Many of these
methods are restricted to relatively simple geometries and are difficult to employ in
turbomachinery applications. It is therefore of prime interest to establish a general
solution scheme for turbomachinery applications.

The present research develops a general solution adaptive method for geomet-
rically complex domains and complex flow structures. This approach provides a
flexible framework for turbomachinery applications. It is important that this ap-
proach is accurate, efficient, and easily applicable to a wide range of designs. A
general solution adaptive method involves a combination of mgsh generation tech-
niques, solution a.lgo;ithms, and solution adaptive techniques. In the following

section recent developments in these key areas are reviewed.



1.1 Background

In the area of CFD a majority of the flow solvers have been developed for body-
fitted structured meshes. Efficient algorithms can be achieved using the -body-
fitted mesh line information. Many fagtr and efficient solution procedures have
been -proposed to the solution of flow for Euler [2, 14, 33, 37, 38, 65] and Navier-
Stokes [19, 23, 53, 92] equations on structured meshes. However, applying these

- schemes to turbomachinery applications is difficult due to the problem of generating
a structured mesh within a complex domain. The problem lies in the generation of
a global body-fitted mesh which maps to a logical rectangle in computational space
while satisfying a complex set of conflicting constraints in physical space. -

Two approaches have been proposed to alleviate this difficulty. One is to keep
the structured solver and simplify the mesh generation problem. Proposed tech-
niques include the use of Cartesian meshes [11, 12], overlaid or composite meshes [5],
7' 'ar.ndri)artzﬁédftﬁéshés 68, 72].1Tfﬁégéiofa' Cartesian mesh simplifies the problem
of mesh generation by abandoning the requirement that mesh boundaries conform
to bddy surfaces. This however ihcréé.s;;f.heicr:omplekity of boundary condition
formulations in the flow solver. It can also lead to clustering of mesh in uniform
flow regions. In the overlapping approach several subdomain grids are overlaid
together reducing the problem to a simpler mesh generatlon problem within each
subdomain. The necessary 1nterpolat10n between overlald meshes requires a special
data structure and increases the computing time. It is also difficult to automate
such a procedure. In a patched approach the flow field is subdivided into a se-
ries of simpler subdomains with mesh generatlon performed on each block. This
rmsxmphﬁes the mesh g;e;x(;r;tlon problem for pa.rtxcular geometries, “but it does not
eliminate the problem and is difficult to automate. The final mesh depends on the
user’s experience and skill. The work of planning block subdivisions becomes a
major obstacle in the development of computational design tools. Although these

techniques have been successfully used in many applications, for the complex flow
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structures encountered in advanced turbomachinery they are difficult to generalize
and add to the complexity of the flow solver.

A second approach is to totally abandon the structured mesh and to formulate
the problem using an unstructured triangular mesh. Since any dlstnbutlon of pomts
can be meshed with a triangular mesh, this approach eliminates any conflict be-
tween constraints 1mposed to implement boundary conditions and those required to
resolve the complex flow structures. Two approaches are most commonly used for
generation of unstructured meshes: Delaunay tria.ngulation methods [31, 58, 87, 88]
and advancing front methods [48, 64, 67]. Delaunay triangulation begins with a few
super-large triangles covering the domain of interest. Mesh points are then added,
one by one, with a retriangulation of the mesh. Retriangulation is performed using
the criterion that any point can not fall inside of a circle determined from any
other three points of the existing mesh. This particular method results in an “op-
timal” triangulation. However, the work to perform the mesh generation requires
O(N?) operations [87] because the sorting process for the triangulation is usually
performed over all points. In addition, this method does not provide control over
the mesh point distribution.

In the advancing front method, the mesh point locatlons are determined as part
of the mesh generation process. Starting from an initial front deﬁngd by boundary
segments, new points are added and triangulated into the front. This process is
repeated until the complete domain is triangulated. Mesh parameters, such as
mesh size, aspect ratio and stretched direction, can be specified over the domain
in this approach. Triangles are genera.ted usxng the criterion that a new triangle
should not cross any given facé of the front. This method provxdes a great deal
of control over the resulting mesh distribution. For turbulent flow calculations a
hxghly stretched mesh is used to achieve computing efficiency. Recently, Hassan
et al. [30] noted that the advancing front method can only produce a maximum

allowable mesh stretching of about 10 in order to preserve mesh quality.



Initial algorithm work for solving flow problems on unstructured meshes was
done in the finite element community. In the finite element approach, numerical
schemes are formulated on an element basis, with the element formulation generally
re(jﬁifing no information from other elements. Aﬁgra.nd et al. [3] and Morgan et
al. [51] have demonstrated the use of unstructured finite-element flow solvers for
two-dimensional flow problems. These schemes use a finite difference scheme in the
temporal discretization and a finite element formulation in the spatial discretization.

A second approach to solving these equations; finite-volume methods, is based
on a discrete approximation of the integral form of the governing equations. Jame-
son and Mavriplis [36] have demonstrated the extension of Jameson’s multi-grid
Runge-Kutta scheme [33] on regular triangles over a airfoil. Both finite-element
and finite-volume approaches have been successfully demonstrated for the solution
of the Euler equations using unstructured triangles in two dimensions [58, 64, 8, 90]
and tetrahedras in three dimensions [35, 49, 66, 78]. Extension of unstructured
schemes to the Navier-Stokes equations has recently been done for two-dimensional
turbulent flow problems [7, 56, 59]. Finite-volume methods solve the physical con-
servation laws directly. For turbomachinery applications the a.céurate prediction of
the mass flow is critical to obtaining an accurate solution. Therefore, a finite-volume
formulation is more appropriate. Although the unstructured approach provides a
simple and flexible framework for solving complex flow problems, it is computa-
tionally inefficient because of the need for the mesh connectivity information and
they are very difficult to vectorize. It is also very difficult to implement solution ac-
celeration methods because these techniques often assume a structured connection
between mesh points. |

* Viscous flow problems are difficult to solve on an unstructured mesh due to
the turbulence models by which closure of Favre or Reynolds averaged Navier-
Stokes equations is achieved. For structured mesh solvers, algebraic or zero equation
models are the simpliest and easiest models to implement. Algebraic models do not

have numerical stability problems and work well for a wide range of engineering

¥ 3%



Xl

applications. Unfortunately, algebraic models require length scale information to
compute turbulence quantities. The lack of body-fitted mesh line information on
unstructured meshes makes it difficult to implement algebraic turbulence models.
An overlaid mesh technique has been proposed to overcome this difficulty [56, 71].
In"this approach local structured meshes are overlaid with a global unstructured
mesh. The algebraic turbulence model is then solved on the structured mesh. The
necessary interpolation between overlaid meshes requires a special data structure
and increases the computing time. Moreover the use of local structured meshes
restricts the flexibility of the method. In order to remove the structured mesh
dependence, more complicated turbulence models which solve ohé or more transport
equations for turbulence quantities can be used. Recently, Barth [7] has successfully
demonstrated the Bladwin-Barth one-equation turbulence model [6] on a wide range
of turbulent flow problems using the unstructured mesh approach. Among two-
equation models, Chien’s low Reynolds k — ¢ turbulence model [17] has been widely
used in engineering applications [42].

Without a priori knowledge of the flow structure, neither the structured ap-
proach nor the unstructured approach can accurately and efficiently resolve the
flow. While in principle a global fine mesh can be used to accurately resolve any
flow structure, such an approach is impractical and computationally expensive.
This has led to the development of solution adaptive methods. Solution adaptive
methods can be divided into three general approaches: mesh refinement or enrich-
ment, mesh movement, and mesh regeneration. Each type has advantages and
disadvantages associated with it. ‘

In the mesh refinement approach mesh points are added or removed from the
solution domain either by::sgbdivisipn or absorPtiqn of mesh elements. Dannenhof-
fer [21] has demonstrated this approach for a series of airfoil problems using quadri-
lateral unstructured meshes. Starting with an initial structured mesh, irregularly-
shaped embedded mesh regions are generated by subdividing the cells in high gradi-

ent flow regions. This approach has been very successful in resolving complex flow



structures. Although it is not necessary to have a good initial mesh, the use of a
structured initial mesh constrains the problem. If skewed cells appear in the initial
mesh, such properties will remain in the refined mesh. Lohner [47] on the other
hand used mesh refinement on unstructured triangular meshes. This approach lo-
ca?lly enrichs the mesh by subdividing triangular mesh elements. After refinement,
any badly-formed cells are removed to improved the resulting mesh. The mesh
refinement approach is very eﬂic1ent but it has the disadvantage of the significant
bookkeeping involved in keeping track of modifications to the mesh. In addition,
in both of the above formulations the adapted mesh has discontinuous variations
in cell length scale since subdivisions are integer divisions of the original mesh.

In the solution adaptation method based on mesh movement, the mesh point
connectivity is ﬁxed a;nd the points are moved as the solution evolves. This has
the advantage that any existing solver can be applied with minimal modification.
To move mesh points in the structured mesh Gnoffo [29] uses an equivalent spring
analogy, in which the mesh edges are replaced by Sbﬁﬁgs'With a stiffness based on
the local gradient of some flow property. Lohner [50] and Batina [9] extended this
approach to unstructured meshes. The disadvantage of this technique is that the
final mesh depends on the initial mesh connectivity.

In the mesh regeneration method, the mesh is regenerated periodically as the
solution evolves. This may be expensive due to work required to generate the mesh
but has many advantages. For structured meshes, mesh points are redistributed
using structured mesh generation techniques as the solution evolves [22, 82]. In
practice, the number of mesh points may be fixed so it has the same advantages
as the mesh movement technique. This technique provides smooth distribution of
mesh lines, but it is difficult to use on complex geometries. In the unstructured
approach, Pera.ire et al. [67] introduced a remeshing process in which an unstruc-
~ tured mesh is regenerated us1ng ‘mesh parameters determined from the most recent
‘solutlon This approach prov1d&e smooth variation in mesh length scale and al-

lows dense points to be placed in-high gradient flow regions. Mavriplis [57] and
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Holmes [31] demonstrated the use of Delaunay triangulation with mesh point inser-
tion. Since Delaunay triangulation needs to search a retriangulation region when
a new point is inserted into domain, for efficiency it requires special data structure
to perform local retrianghla.tion ' |

- The preceding review shows that mesh generation for complex domains can
be easﬂy obtained through the use of unstructured meshes. An accurate predic-
tion of complex flow problems can be effectively achieved using solution adaptive
methods. Even for problems which can be solved using structured meshes (e.g.,
patched or overlaid meshes), there is often a signiﬁcant reduction in the human
effort required using unstructured meshes. An additional advantage of the unstruc-
tured approach is that it provides a convement framework for implementing solution
adaptive methods. This leads to a great reduction in the computational effort and
storage requirements since solution points are not wasted in regions where they are

not required.
1.2 Present Approach

The solution adaptive approach used in the present work is based on mesh regen-
eration, where the mesh is periodically regenerated as the solution evolves. While -
this is a2 more computationally intensive approach, it also has many advantages.
There is very little bookkeeping required since the mesh structure is not being
modified. Regeneration of the mesh results in a smoothly varying distribution of
mesh points, which in turn should give better numerical solutions. Remeshing al-
lows the opportunity to align the mesh with flow structures which, in turn, makes
it possible to use different mesh scalings tangent and normal to a given flow struc-
ture. A shock wave is a good example of such a ﬂo§v structure, since to accurately
capture a shock wave the mesh scale normal to the shock wave must be small. The
ability to align the mesh will also be very important in the extension of the present
approach to viscous flow where the mesh may also be aligned with viscous shear



layers and in the incorporation of flux splitting for improved resolution of shock
waves.

For turbulent flow calculations the level of complexity of the models determines
computing expense, so the turbulence models used are the one-equation and two-
eqixation models. Incorporating such models in an unstructured approach is still
a very new topic and only a few approaches have been proposed [7, 59]. In those
proposed approaches, turbulence models are solved using an implicit scheme which
usually requires an inversion of a large matrix system of equations. In the present
study, the one-equation and two-equation turbulence models are discretized using
the same explicit scheme employed on the mean flow equations.

In summary, the key elements in the present approach are the unstructured
flow solver, the mesh generation scheme, and the adaptive remesh algorithm with
associated refinement criteria. Jameson’s four-stage Runge-Kutta cell-vertex finite-
volume time-marching scheme [37] is used to solve the quasi-three-dimensional
Favre averaged Navier-Stokes equations and turbulence transport equations. The
convergence rate is enhanced through the use of local time stepping. The quasi-
three-dimensional equations are chosen here because they provide a better approx-
imation to the three-dimensional flow while retaining a two-dimensional form. In
addition, quasi-three-dimensional equations can be simplified into standard two-
dimensional equations. This provides a more universal and convenient model for
general flow problems. The mesh generation method with which unstructured trian-
gular meshes are generated is the advancing front scheme first formulated by Peraire
et al. [67]. This particular approach has the advantage of being computationally
efficient and also provides a convenient way of adapting the mesh distribution to

the flow solution. For viscous flows in the present work local structured triangular
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meshes are generated around bodies to relieve the stretching limit on the unstruc-
tured mesh generator.

The quasi-three-dimensional flow model, the governing equations, and the Baldwin-
Barth [6] one-equation and Chien’s [17] two-equation turbulence models are intro-
duced in Chapter 2. The unstrﬁctﬁied flow solver using a multistage Runge-Kutta
finite-volume time-marching scheme is described in Chapter 3. The stability crite-
ria, local time-stepping, and implicit residual averaging are developed. A modified
version of artificial dissipation for highly stretched meshes and boundary conditions
for two-dimensional airfoil and quasi-three-dimensional cascade ﬁow problems are
also discussed. The mesh generation procedure for both 1nv15<:1d and viscous flow
problems is presented in Chapter 4. The solution remeshing scheme and mesh
adaptation criteria are described in detail in Chapter 5. In Chapter 6 the numeri-
cal results of inviscid flow problems are presented.

Unstructured solution adaptive results for the two-dimensional Euler equations
are presented for a model multi-element airfoil, a Sanz’s supercritical compres-
sor blade, and a Sanz’s turbine blade. Computed solutions are compared to the
analytic solutions. Quasi-three-dimensional Euler solutions are illustrated for the
NACA Rotor 67 transonic fan operating at peak efficiency and the Allison tandem
blade cascade. In Chapter 7 unstructured solution adaptive results for turbulent
flow problems are presented. Two-dimensional turbulent flow solutions for a sub-
sonic flat plate, a RAE2822 airfoil, a NLR two-element airfoil, and a VKI turbine
blade configurations are presented. Numerical results are compared to the available
experimental data. A quasi-three-dimensional Favre averaged solution is presented

for the Allison tandem blade cascade.
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- 2. GOVERNING EQUATIONS

This chapter reviews the quasi-three-dimensional flow approximation for turbo-
machinery applications. The governing equations are derived from the conserva-
tion of mass, momentum, and energy for viscous flows on a blade-to-blade stream
surface. The mean flow equations and turbulence rhodels for turbulent flow cal-
culations are also presented. With the use of the equation of state, the constant
Prandt]l number approximation, and viscosity models, the complete set of govern-
ing equations is obtained. Initial and physical boundary conditions for the flows of

interest are also described. o
2.1 Quasi-Three-Dimensional Flow Model

In general, the flows in axial, radial, and mixed-flow turbomachinery designs
are highly three-dimensional. In order to solve these three-dimensional flows in a
relative simple manner, Wu [91] proposed the following simplification which allows
these types of flows to be analyzed two dimensionally, but with more information
provided. In this model, the three-dimensional flow field is described by the combi-
nation of two separate two-dimensional flow fields as sketched in Figure 2.1. These
two separate flow fields a.ré composed of surfaces located in the blade-to-blade di-
rection (S1 surfaces) and surfaces lying in the hub-to-tip direction (S2 surfaces).
In practice the flow is further assumed to follow an axisymmetric streamsurface
as shown in Figure 2.2. The solution to the coupled two-dimensional flow fields
requires iteration between the solution of the throughflow problem on a mean S2
streamsurface and several quasi-three-dimensional solutions on axisymmetric S1

streamsurfaces, since the solution for either surface requires the knowledge of the
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shape of the other surface. In the present research, only the flows within the quasi-
three-dimensional S1 surfaces are investigated. The radial location and thickness
of a streamsurface is assumed to be known as a function of streamwise distance
along the surface. This ihformation is obtained from an axisymmetric through-flow

analysis (see [41] ).
2.2 Quasi—Three-Dimensional Navier-Stokes Equations

The quasi-three-dimensional viscous compressible flow along the S1 streamsur-
face is expressed in terms of an axisymmetric coordinate system (m, 8) (see Fig. 2.2)
which rotates with the blade row and is given by

dm? = dz2* +dr* (2.1)
and
6=0 -0t (2.2)

where @ is fixed in space and Q is the angular velocity of the blade row. In this
coordinate system, with radius r and streamsurface thickness h taken as known
functions of m, the Navier-Stokes equations may be expressed in the following

form [18}:

a(rkl) 8(rhF) | (hG) a(rhR) (S, _ ., =
ot + v + 90 ( - + 50 y=rh K (2.3)
where
4 PVm . pWa
. Vin . 1% - Vi We
it = p  F= pVm +P  G= P (]
pVer PV Vor (pVaWs + p)r
pE Vi (PE + p) Wo(pE + p) +Qp
0 0 0
5 _ on ’ § — 712 ’ I? — K,
o127 02T 0

Ry ' Sa 0
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Figure 2.1 S1 and S2 streamsurfaces for Wu’s quasi-three-dimensional flow model
(Wu [91]).

Fiéure 2.2 Quasi-three-dimensional coordinate system (m,§) and streamsurface
(Katsanis [41] and Wang [86]).
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where
We=Ve— rl

1d 1 dh
K, = (Vi +P- an)(——’—)+(p o5)(5 3

In these equations p, P, E, V., and Vj are den51ty, pressure energy, m- and 9- ab-
solute velocity components, respectively, and W, is the relative tangential velocity.

The pressure p is defined by the equation of state for a perfect gas
1
= (71— DplE — 5(Va + V)l (24)

where 7 is the ratio of specific heats. The viscous terms in the energy equation are

defined as follows:

Ry = (K'famT 4+ Vmon + VaGlz)
S = (LT + Vo + Veom) (2.5)

The coefficient of thermal conductivity, &r, may be expressed as:

Copt
Pr

Ky =
The shear stress terms are given by:

[+ 2% B 2}16me + A V ‘7

0 = 2#(39‘/0 Vm—é,-.-)/r + A v ‘7

1dh .
0ss = 26Vm (—-——)+Av ¥

o1z = p(OmVe— Vo(;m) + ;aon)

In the above expressions, A and p are the two coeficients of viscosity which based
on Stokes’ hypothesis, A = —2p/3 T is the static temperature, C, is the specific

heat at constant pressure, and p, is the Prandt] number. The dilitation is given by

1d
gV = —-[a Vi + Vin(= d" - dm) + -aavd (2.6)



14

The molecular viscosity is obtained using Sutherland’s viscosity law [76]:

_ ari
T+ C;

where the constants pr, Cy and C, for air at moderate temperature are:
P =072, i =1458x10"%kg/(m — s — K¥/2), C: = 110.4K

The governing equations may be nondimensionalized with respect to chosen ref-
erence quantities. In this work a reference length, L, and reference flow properties,
Poos Voo, Too, and peo, are used to define the nondimensional parameters. The

normalized variables will be expressed here as bar variables, which are

7 t _m AT I-z—h

TLV, T TSp h=g
ﬁ=—p'7 V’m=£, -0=&7 rh:ﬂ

p@ o0 o0 oo
p=—L2_ LT .__e _ _u
p"'poovz’ T-Too, e—poovozo’ B = foo

The nondimensional equations resulting from substituting the above nondlmen-
sional variables into Eq.(2.3) are similar to their original dimensional form except
a constant, Rey, appears in the viscous terms. Dropping the bar notation, we may
rewrite the governing equations as:

A(rhl) N O(rhF) + d(rG) a(th) 6(hS)

E o 50 L(——= ——%) =rhK (2.7
where the reference Reynolds number, Re;, is defined as:
Rep, = Poo Voo L
Hoo

and the coefficient of thermal conductivity, ., is given as:

7]
Pr(y -1)MZ,

Ky =
Also note that the source term, K, now becomes

1.y 1d - 1 dh
Ko = (V4 p = Relon)(2 200 + (p — Rejlow) (7 o)

11; 20 Shhd
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For quasi-three-dimensional i_nviscid flow problems the governing equations are
obtained by dropping the viscous terms in the Navier-Stokes equations. These
equations reduce to the standard two-dimensional Navier-Stokes equations in con-
servation form by setting r and h equal to constants. In the present work, the

two-dimensional flow problems are solved using these equations with r = h=1.
9.3 Favre-Averaged Navier-Stokes Equations

The full Navier-Stokes equations provide the mexact” transport equations for-
compressible turbulent flows. With specification of appropriate initial and bound-
ary conditions the equations may be solved directly. Unfortunately, turbulent flows
always contain fluctuations at a wide range of frequencies and in three-dimensional
applications it requires O(Re2/*) grid points [45] to resolve all the flow scales. Even
with modern supercomputers direct numerical simulation of the full Navier-Stokes
equations is still restricted to low Reynolds flows and to very simple boundary
conditions. In most engineering applications, the mean flow properties are of pri-
mary interest. As a result, a modified form of the Navier-Stokes equations derived
through averaging techniques is adopted for engineering calculations.

In the present work, the Favre-averaged technique is used to obtain the mean
flow equations. The Favre averaging is a hybrid averaged method which uses den-
sity weighted averaging on all fluid properties except pressure and density. For
compressible flows this averaging results in a simpler form of the mean flow equa-
tions than the Reynolds averaging. Performing the Favre averaging the quasi-three-

dimensional Navier-Stokes equations (see appendix B) are

a(rh(T)) . B(rh(F)  ARE) _ p a(rh(R)) a(h(S)) ”
s+ i+ =g 2 ) =rh(K) (2.8)
where _
() (P)Vm
a-| 9% |, - PV + (5)
(p)Ws (P)VimVer

(E | Va(()E + (p))
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() We
(P VmWs
({p)VaWe + (p))r
- We((0)E + (p)) + rQ¥(p)

0
. 011 ~ (PVm)
(&5 — (VeI
V(531 = (PVi2) + Vo353 =~ (oVIVI)) + 5 BE — (V")

] 0
) 75 — (PV2VY)
@ - (Vi)
V(352 = (V2VI)) + VoG - (pVi?) + = G — oV B")

0

(&)= | [OVF+ 8 - Rez' @ - V] G5) + ((8) - Rei? (5 - (0W2) (1)
0
0

The equation of state for perfect gas is
e 1l ~ —
o) = (r=1)(0) [B - 5 (VE + V7 + V2 + V77|

The Favre-averaged equations are similar in form to the full Navier-Stokes equa-
tions except for the presence of unknown stress terms in the mean momentum and
energy equations. Among these new terms, (PVR2), (pVaVy"), and (pV,?) are the
so-called Reynolds stresses and (pV; H") and {pV;"H") are the turbulence heat flux.

These terms must be modeled to provide closure.

HE "3 1
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9.4 Turbulence Models

The Favre-averaged equations contain correlations of turbulence quantities. In
order to solve for the mean flow properties these terms must be modeled. Vari-
ous approaches for modeling the correlated terms have been reviewed in the lit-
erature [44, 85]. Although the Reynolds stress model provides general one-point
correlation approach for turbulence quantities, it increases the level of complexity
of equations and still additional unknowns need to be modeled. In the present work
an eddy viscosity model is adopted. Using an eddy viscosity model the averaged
equations are identical in form to the full Navier-Stokes equations, with the viscos-

ity and thermal conductivity replaced with the corresponding effective values, jie

and (ji/p;)e, respectively.
2.4.1 Eddy Viscosity Hypothesis

In the eddy viscosity hypothesis turbulence quantities are related to mean flow
properties through the use of the Boussinesq assumption, which assumes that the
Reynolds stress tensor is linearly proportional to the mean strain rate tensor. In
Cartesian coordinates this gives ~~— -

(—pV'V]) = [(g{; + %) - %5-'1'%1%] - -256.-,- (p)k (2.9)
In the above expression, i is the turbulent viscosity, &; is the Kronecker delta
function, and k is the mean turbulent kinetic energy. Analogous to the Boussinesq
assumption, a linear relationship between the turbulent heat flux and the enthalpy

gradient is also adopted:

(pV"H") = —%—g—ﬁ—{ = —%g—:—'_ - (2.10)
where p,, is the turbulent Prandtl number, which is assumed to be 0.91 in the
present work. Thus, the mean flow equations for turbulent flow can be expressed
in a form similar to the original equations of motion by replacing the viscosity

and thermal conductivity with the corresponding effective value defined as the sum
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of laminar and turbulent parts. The effective viscosity and conductivity may be
written as:

Be = PBlaminar + #mbulenz

(ﬂ/Pr)e - (”/pr)hmmn + (I‘/pr)turbulent (2.11)

The remaining turbulence closure problém is then to model the turbulent viscosity,
pe, andfor the mean turbulent kinetic energy, k.
Eddy viscosity models employing the mixing length theory [81], which is anal-

ogous to the molecular kinetic theory, give the turbulent viscosity, i, as
pe=C(p)ql (2.12)

where ¢ and [ represent the velocity and leﬁgth scales of the turbulence. Depending
on the type and the number of equations employed to evaluate these turbulence
scales, the modeling equations are classified as algebraic, one-, and two-equation
models. Although algebraic models are difficult to implement using unstructured
meshes, the Cebeci-Smith [16] algebraic model is described here for complete-
ness. In the present work, the Baldwin-Barth [6] one-equation and Chien [17]

low Reynolds number two-equation models are employed.

2.4.2 Algebraic Turbulence Models

In algebraic turbulence models the turbulent velocity and length scales are mod-
eled algebraically. The Cebeci-Smith [16] model is one common example. In the
Cebeci-Smith [16] model, the velocity and length scales of turbulence are deter-
mined using a two-layer model. In the inner layer where y < Y., the required scales

and turbulent viscosity are obtained as:

= (o2l (2.13)

l=KyD

9., sz 9% _ou,
=G - T2 -0y (BT TR,

|1 S
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where & = 0.41 is the von Karman constant and D is the van Driest damping

function which is used to account for near-wall viscous ¢ffects on turbulence.
D=1-—exp(-yt/A*), AT =26

The product of |}] gives the velocity scale of turbulence. The wall distance unit,

yt, is defined as:
+— Aywdl\/ Twall/ Pwall - (2.14)

Vwall

y

where Aywan is the minimum physical distance from an interior node to the wall,
Twall, Pwall 3D Vyall aTE the wall shear stress, density and kinetic viscosity at the
corresponding wall location, respectively.

In the outer layer, y > ¥., the turbulence quantities are given as:
B2 = Ca(p)Uebr

7.6, = [’ (1 - a/0.)dy (2.15)

where C, = 0.0168, 6, is the displacement thickness, and U, is the edge velocity.
The condition which defines y. is the continuity of the turbulent viscosity. In
practice, the turbulent viscosity is determined as the minimum of the inner and

outer turbulent viscosities. That is
i, = min(E, ) @)

Algebraic models do not require any transport equation for turbulence prop-
erties and therefore are the simpliest and easiest ﬁi;dels to use. However, it has
been noted [69] that algebraic models do not account for any transport and history
effects of turbulence and hence are not adequate for complex separated flow prob-
lems. Incorporating zero-equation models into a unstructured approach requires
a locally structured mesh to provide the length scale information (e.g., 61 in the
Cebeci-Smith model).
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2.4.3 One-Equation Models

Early one equation models, including those of Bradshaw et al. [13], Rubesin [73],
and Mitcheltree et al. [62], were based on the transport equation of the turbulent
kinetic energy, k, from which the velocity scale is evaluated. The turbulent length
scale is then determined using an empirical description. Although the transport
equation of the turbulent kinetic energy provides transport and history effects of
turbulence, a length scale specified algebraically is not adequate for general flow
problems. In the past these models have been more difficult to code and often only
marginally better than algebraic models [69]. Further, the need of algebraic length
scales limits the applicability of these models to unstructured meshes.

Recently, Baldwin and Barth [6] proposed a one-equation model which involves a
transport equation for a turbulence field variable. Except in the near wall region this
variable is proportioﬁal to the turbulent viscosity so algebraic length scales are not
required for the evaluation of the turbulent viscosity. This model has been shown to

be a significant improvement over algebraic models. Although this model accounts

for near-wall viscous effects on turbulence it does not require a very fine mesh

spacing for resolving the viscous laj.rer. Baldwin and Barth noted that their model
only l;equira a wall mesh spacing of y* < 3.5, which relieves the numerical stiffness
problem. In addition, since this model does not require an algebraic specification
of the turbulent length scales it is applicable to unstructured meshes. A complete
derivation and discussion of this model can be found in Reference [6]. The resulting
model is summarized below.

The turbulent viscosity is modeled as:
= C,D\D,v Ry (2.17)

In Reference [6] the transport equation for the turbulence variable, 7Ry, is given

as:

__- VR o ~, Y . 1 L~
D(Zt T) = (szfz-Cu) VRTP-'{‘ (V+ ;) v2 (VRT)— a_vuf'V(VRT) (2.18)

- BT i st

"
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where P is the production of the turbulent kinetic energy.

=n 3:1:]‘ 6.’17.' 31:,' 3 : 61:1;

The corresponding nondimensional quasi-three-dimensional form is obtained as

a(rhv Br) o7 a(rhuRT) W B(Ier) Res? { (“ 5 )

ot om 00
[a(ﬂ;(f)) a(hga))] - [3"‘( rh(Rg)) + a”‘(h(sa»] + rh(KB)}
(2.19)
where
a(VRT) 19(vRr)
(Rg) = “om (SB) = T 00

(Kg) = (Ce, Fa — C., WiRrP

The following functions are employed to account for near-wall viscous effects on

turbulence.
1
— = Ca=CaVCIE
Dy = 1-—exp(-y*/AY)
D, = 1—exp(- y+/A+)
Cel ¢1
7Y = Gr0og =) + D22 [V2rDs
DD D, 7
m( 2+ D1 )]
~' A W,
D= exp( —yt/AY), 17=—-exp( y*/A3), y+=,/ Twall DYwall
(P)wdl Vwall

where the modeling constants are given as:
KXx=041, C, =12, C,=20

c, =009, At=26, A} =10



2.4.4 Two-Equation Models

In most one-equation models the length scale of turbulence is described alge-
braically. It has been recognized that the use of an algebraic length scale is not
adequate for general flow problems [44, 85]. In order to eliminate an algebraic dé-
scription for the turbulence length scale, an additional transport equation for the
length scale of turbulence has been proposed. A variety of two-equation models can
be found in review articles [44 85]. The most popula.r model among them is the k—e¢
model. Both hxgh Reynolds number and low Reynolds numbér foxzms of this model
have been used successfully in engineering applications. The high Reynolds number
k — ¢ model is not valid in near-wall regions, so instead of integrating the mean
flow and k — ¢ equations up to the wall, wall functions are employed to estimate
near-wall flow properties. A detailed numerical implementation of this approach
can be found in References [46, 59]. This approach removes the need of extremely
fine meshes near the wall and has been applied to a large class of flows. It is only
appropriate to use wall functions on flows where the logarithmic law of the wall
region exists.

In complex flow problems the near-wall distribl;ltion of mean flow and turbulence
properties might be different from the logarithmic law. To accurately predict the
near-wall viscous effects on turbulence, it is necessary to integrate the mean flow
and turbulence equations to the wall. Chien [17] modified the standard k — e model
by accounting for the near-wall viscous effects and proposed a low Reynolds number
k — ¢ turbulence model which is valid up to the wall. Although this model requires
a mesh wall spacing (y* < 1), it is coarser than the spacing (y* < 0.2) that the
Jones-Launder [39] low Reynolds number k — ¢ model requires. Chien’s model has
been widely used in engineering applications. This model is outlined below.

The nondimensional turbulent viscosity is expressed by

- k?
fir = Rey C,F,u(p) = (2.20)



23

where k is the turbulent kinetic energy and Zis the isotropic dissipation rate of the

turbulent kinetic energy.

= %(pV.-”V.-") 2 a(ﬂ".{,’-".—",ﬁ-)
(o (p)

The averaged transport equations for k and € quantities in quasi-3D compressible

flows are described by

8(rh(Ti)) . Orh(Fi)) , 8(h(Gid) _ p.1 a(rh(Ru)) | 8(h(Sk)) >
ot om a8 ’R"L( ot o8 +”h(K‘“))

(2.21)

where

(Oe) = ( (”)]f,) . (R = ( "’”f"‘li) , (G = ( (”)Y‘lf,)
(p)e A (it

. = 4 B3k . ~ . Bry1dk
(ch) = ((/‘+ ag)am ) , (Skc) = (("'*'ay);zg)

(7 + '.ff):a% (B+2)r5

o . P —Rer(p)e+&
(Bx) =] -
£ (FiCiP — Rer Fola(p)E) + &

In Reference [17], Chien proposed the following constants and functions for this
model:

o,=10, o.=13
C“ = 009, Cl = 1.35, Cg = 1.8

Fu=1- exp(—0.0115y%), Fi=1, F=1- %exp(—-Rf/36)

_(av av\ oV, 2_(a%\' 2, -9V
em () (5r) -0z,

dz; Oz ) Oz; - 5“‘ Oz
2%k 2piE
g = ——— gg —_— e —0.5 +
g Ayi,n Ay?..n exp( y )

- a
R, = JILL S \/—T-ﬂ AYwa
€ (P)wall Vwa

The extra terms, & and &, are used to account for near-wall viscous effects on
tuibulence. Because near-wall effects needs to be resolved, this model requires a

wall spacing y* < 1.
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2.5 Initial and Boundary Conditions

The mean flow and turbulent transport equations presented in the preceding sec-
tions represent an initial-boundary value problem. In order to solve these equations
it is necessary to impose initial and boundary conditions. Numerical implementa-
tion of these conditions will be given in the next chapter. Since only steady state

solutions are of interest in the present work, initial conditions are not relevant to

the solutions.

2.5.1 Physical Boundary Conditions

In the present work solutions for 2-D airfoils, 2-D and quasi-3D cascades are
presented. For these cases the boundaries are either inflow/outflow or solid wall
type. On solid walls the physical boundary conditions are the same for all problems.

For inviscid flows the solid wall boundary condition is flow tangency condition.

~ Vat) - Fowan = 0 | (2:22)

<ut

(

For viscous flows the physical boundary condition is the no-slip condition with

either specified wall temperature or heat flux. That is,

‘:} = “:}wa.ll
= or  oT
T = T.,n or 3_11 = [E{]',n (2.23)

At inflow /outflow boundaries the physical boundary conditions are dependent
on the type of problem solved. For the 2-D airfoil problem, the inflow/outflow
boundary is the far field boundary at infinity. The corresponding physical bound-
ary condition is the asymptotic state of a uniform freestream condition for either

‘ inviscid or viscous flow. For the 2-D or quasi-3D cascade case, the physical bound-
ary conditions at the inlet are specified total pressure, total temperature and whirl
speed rV,. The physical boundary condition for the outflow boundary is specified

static pressure.
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2.5.2 Turbulence Transport Equations

When a turbulence model based on differential equations of turbulence quanti-
ties is used, it requires additional boundary conditions for each equation. The phys-
ical boundary conditions are determined by the type of turbulence model used. For
the Baldwin-Barth one-equation modelw, fhe physical boundary conditions are [6]:

e Solid Walls: Specify Br =0
o Inflow (V -7t < 0): Specify Rr = (E)w <1
e Outflow (f/" -7t > 0): Extrapolate Ry from interior values

For Chien’s low Reynolds number k — e model, the physical boundary conditions
required for k and € are [43]:

o Solid Walls: Specify k=0,and€=0
¢ Inflow (f’" -7t < 0): Specify k = koo, and €= €
e Outflow (‘7 -7t > 0): Extrapolate k and € from interior values

It is important to realize that the total dissipation rate is not negligible at walls,
even thought the isotropic dissipation goes to zero. The extra terms in the Chien

k — € equations can be used to account for a nonzero dissipation rate near the wall.
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3. UNSTRUCTURED FLOW SOLVER

This chapter presents the spatial and temporal discretizations of the govern-
ing equations. The Jameson’s four-stage Runge-Kutta cell-vertex finite-volume
time-marching scheme is used to solve the governing equations. The stability re-
quirements for this scheme are reviewed along with some convergence acceleration
techniques. Finally the boundary conditions are formulated for two-dimensional
airfoil and quasi-three-dimensional cascade cases. Initial conditions used in the

quasi-three-dimensional cascade cases are also discussed.
3.1 Finite-Volume Spatial Discretization

For turbulent flow calculations the turbulence transport equations and mean
flow equations may be solved in either a coupled or a decoupled manner. Although
the coupling approach gives a single system of equations which simultaneously
governs the mean flow and the turbulence properties, it is noted in Reference [42]
that there is no advantage to numerically coupling these equations in terms of
either convergence rate or accuracy. On the other hand, the decoupled approach
allows the two set of equations to be treated separately using different numerical
schemes. In addition, different turbulence models can be easily incorporated into
the mean flow solver without major program modification. Since the objective
here is to develop a flexible and robust solution scheme for complex flow problems,
the decoupled approach is employed. With the decoupled approach the mean flow
equations are marched in time using turbulence qha.ntiti&s frozen from last time
step. The turbulence transport equations are then integrated in time using frozen

mean flow properties.
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Figure 3.1 Control volume for the cell-vertex scheme.

Both the unsteady quasi-three-dimensional mean flow equations and turbulence
transport equations are solved on an unstructured triangular mesh using Jameson’s
four-stage Runge-Kutta finite-volume time-marching scheme [58]. In the present
work, the cell-vertex finite-volume spatial discretization for triangular meshes [36,
55] is used. The truncation error of this formulation has been shown to be second

order for smooth grids and first order for general irregular meshes [70].

3.1.1 Mean Flow Equations

The quasi-three-dimensional mean flow equations can be expressed in an integral

form for control volume V with a boundary surface gV as follows:

3 (][ (B )Rt (B, G = [ Ry @

In the cell-vertex finite-volume formulation flow properties are stored at the mesh
points (triangle vertices) with the control volume for each point  being the union of
all ‘triangles with a common vertex at point i as shown in Figure 3.1. The volume

integral is then approximated using the mean value theorem, and the boundary
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integral is approximated using trapezoidal integration over the bounding surface.

This process results in the follow system of semi-discrete equations for each point ¢

d(T;)

U A (32)
where R((U)) is the residual ]
Ry = LED ) 83)
and
N; N;

v.' = E(Thm)kAak = - Z(rho)kAmk

N; - .
QU = 3 [(rh(F)udd = (H(E))emi]

N;
— Rep' Y [(rh(R))xA6: — (h(S))rAmy] (3.4)
k=1

In the above expressions the subscript k refers to the k** segment of line bounding
the control volume, N; denotes the total number of vertices of the control volume,
V; is the area of the control volume, A, and Am, are the increments along segment
k, and the components of flux vectors, (F}), (Gx), (Ri) and (%), are taken as the
average of the nodal values for each end of the segment. An entire flux balance
throughout the flow field can be computed in one simple pass over all edges using
an edge-based data structure. The velocity gradient in (R;) and (S,) are computed

using Gauss’s theorem [61):

/v Védy = }g  $iids (3.5)

where 1i is the unit outward normal vector to dS. Using the same control volume

V, the above equation can be expressed as:

9 1 & 196 1 &
T = g(rhqs),,ao,,, = Rt g(heﬁ)mmk (3.6)

Replacing ¢ with V,, and V; gives the velocity gradient at each node. This completes

the discretization for the mean flow equations.

Tl B



3.1.2 Turbulence Transport Equations

Differenﬁal transport equations are integrated in time using the same explicit
finite volume Runge-Kutta time integration scheme as the mean flow equations.
This is accomplished by first taking a volume integral of the t;ransport equations.
Where possible the divergence theorem is then used to transform volume integrals
into corresponding boundary integrals. The resulting integral equations are then
discretized in space using the same cell- vertex finite-volume approximation as used

for the mean flow equations.

3.1.2.1 Baldwin-Barth One-Equation Model

The finite-volume discretization of the Baldwin-Barth one-equation model, Eq. (2.19),
involves two gradient operators, v(ﬂﬁ;) and U, which results in a complicated
discretization. In order to simplify the discretization for the one-equation model,
the last two terms on the right-hand side of the equation are reformulated using

vector identities. This yields

(5+ Z) v 6B - 5, v VR = (5+22) v*6Fr) - 5. v 59 Fa)

, (3.7)
Substituting Eq. (3.7) into Eq. (2.19) and integrating over volume V gives the
following integral form:

/=50 D(VRT)‘“’ * fe —V("RT) s = (ﬂzi) § v@Rn) - 7ds

/ [ j (Ce,Fz — Co) )W Rz P AV (3.8)

Using the mean value theorem for the volume integrals and trapezoidal integration

for the boundary integrals yields
dFRT): | p=o
(thT) + R(VRT).' =0 (3_9)

where the residual, R(PRr); is expressed as:
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R@Rr): = (Vm(Rs) + Wi(SB)), - (Co; Fz ~ Coy)\/C. D1 DS (57

1 AR
~Fev. {(ﬁ + 2;) . z: ((Rg) rhA8 — (Sp) hAm),

$ k=1

_1 i P ((RB)ThAB — (Sp)hA m)k} (3.10)

- Te 11
= C,DyDy(VR7)
In the above expression the production term, ’P, is simpliﬁed usixrlgra.n ra.pproxirna.-

tion suggested in Reference [26]. In Cartesian coordinates, it is described as

Ou Jv
P=9S= u,(ay + an:) (3.11)
In the quasi-three-dimensional coordinate system (m, 9), S is given as
oV, 148V, 1dr
§= om a0 Ve (;dm) (312)

The values of (Rs) and (Sp) are computed by replacing ¢ with (7R7) in Eq. (3.6).
For the Baldwin-Barth one-equation turbulence model, wall units or wall dis-
tance is used to account for near-wall viscous effects on turbulence. In addition
to employing mean flow quantities, the wall distance, Ay, or wall units, y+, on
which damping functions depend have to be evaluated in order to compute the
turbulence quantities.
The definition of the wall units is given by

Ay, Tw. w.
y* = Ywally/ all / Preall (3.13)

Vwall

where Ayyan is the minimum distance from a vertex point to the wall. Other
properties are evaluated at the nearest wall location. Based upon the procedure

sﬁggested by Barth [7], the evaluation of y* is implemented as follow:

Step 1. Compute the minimum distance from each vertex point to boundary edges.

Ste;p 2. Store information concerning the corresponding boundary edge and weight

factor for interpolation of the physical quantities on the boundary edge.
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The local wall shear stress, density and viscosity can be interpolated using informa-
tion stored in step 2. From this information and the minimum distance obtained

in step 1, y* can be evaluated at each point.

3.1.2.2 Chien Low Reynolds Number k — € Model:

In a similar xﬁanner, the finite-volume discretization of Chien’s k — ¢ equations,
Eqgs. (2.21), gives .
d U e/
KOt R(hep)s =0 (3.14)

where R((ﬁkc))i is the residual of the k — € equations
- O )i s
R((G); = 2Dk Reph i) (3.15)

and

N; o -
QT): = 3 [(rh(Fu)etsbs — (W(Guc))utsmy]

k=1

N;
— Rej! Z [(rh(Ruc))e 20 - (A(Sec) el (3.16)

The definitions of (Ukt)., (Fkg)k, <ch)k, (Rk:)k, (Sh)k, and (ch).' can be obtained
in Egs. (2.21). The wall distance, Ay..n, and wall units, y*, which are used to
account for the near-wall viscous effect on turbulence are evaluated using the same

procedures described for the Baldwin-Barth one-equation model.
3.2 Artificial Dissipation

The finite-volume spatial discretization used here is equivalent to a central dif-
ference scheme. As with other central difference schemes applied to inviscid flow
problems, additional artificial dissipation is required to damp out the high fre-
quency error modes. In viscous flow computations, artificial dissipation is required
in convective dominated regions of the flow field. Even though the viscous terms
provide physical dissipation in the viscous flow regions, a small mesh length scale is

required in all directions to provide enough resolution for the shear stress terms. In
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practical applications fine mesh spacing is only employed in the direction across to

the boundary layer, so the artificial dissipation is still necessary in the streamwise

direction for viscous flows.

In inviscid flow calculations, the adaptive artificial dissipation introduced by
Jameson and Mavriplis [36, 58] is used to suppress odd-even point decoupling.
This model is composed of a blend harmonic(Laplacian) and biharmonic operators
which provide a weak but sufficient dissipative term throughout the smooth regions
of the flow and a stronger dissipation to suppress oscillations in the regions near
shock waves.

For the control volume shown in Figure 3.1 the conservative form of the dissi-

pation operator is given by

N; - - - -
D((T) = Y )i [f?(—(Uj)—(U-'))+€?(V2(Uj)—V2(Us))] (3.17)

.
AT = g((U,-)—(U,-))
Aii = (A +X)/2, /\e=AL;',

2 €,4‘3§V=‘1((1’J')—(Ps')) o
7 Ty +(m))”

In the above dissipation formula, Aj;, the average spectral radius of the Euler Jaco-

max(0, €’ — ¢7)

bian matrix at the cell face is estimated using the value of V/At*, V; is the volume
of the control volume, At* is the time step limit for a Courant number of unity, and
€' and ¢" are constants. \;; is chosen to provide a proper scaling in these equations.
¢} is proportional to a Laplacian of the pressure. ¢} and ¢! provide the desired
switch between the harmonic and biharmonic operators.

In viscous flow computations, high aspect ratio meshes are usually used to re-
solve shear layers. Because the mesh length scales in the normal and tangential
directions to the body are so diﬁ'érent, the nearly isotropic scaling, Aji, used in
) inv'is}éid' flow calculations may produce excessive dissipation in the fa.ngential di-

rection and therefore reduce accuracy of the viscous calculations. To alleviate this
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problem, an anisotropic scaling has been introduced to provide different scales for

different mesh coordinate directions on high aspect ratio cells.

3.2.1 Eigenvalue Scaling

_ For structured mesh calculations, the eigenvalue scaling approach [15] gives

A = { A¢, for ¢ — direction (3.18)

),, forn — direction

where )¢ and A, are the maximum eigenvalues for the Euler Jacobian matrices in

each mesh coordinate direction:
Ae = ([Vel + @)An,  Aq = (IVal + a)A¢ (3.19)

Since there is no apparent mesh coordinate direction for unstructured meshes, a
scaling is performed on each edge of a control volume in order to extend this ap-
proach to the present unstructured scheme. Consider a local coordinate system
(n,s) on which s is tangential to the edge (ji), and n is normal to the edge. Then

the directional eigenvalue along edge (ji) direction can be estimated as:
X, = (|Vi| +a)An (3.20)

In the above expression, V, is the s-component velocity, An is the length scale in
the tangential direction to edge (ji), and @ is the sound speed. Using information
at points i and j we can estimated all the required parameters in Eq. (3.20) except
for An. Further information is required to estimate An.

In the edge-based data structure, an additional triangle on either side of the
edge can be constructed. the distance between centroids of these triangles is used
to estimate the normal length scale An. Replacing the \j; with the directional
eigenvalue A, gives the anisotropic scaling for large aspect ratio unstructured mesh
cells.

-Although the anisotropic scaling gives appropriate dissipation on large aspect

ratio meshes, various investigators have found that such a scaling may not produce
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enough dissipation when mesh becomes highly stretched. This leads to slow con-
vergence. To overcome this problem, a new scaling based on the combination of
isotropic and anisotropic scaling was introduced by Martinelli [52]. On a structured
mesh, the scaling becomes - -

o de = A (1 + (:\\—:)a) , A=A, (1 + (-}f)a) (3.21)

On the present unstructured mesh, it is modified as

Aji = A, (1 + (%) a) | (3.22)

In the above expression, a is a constant. A, is the eigenvalue in the direction normal
to the edge and is given as

An = (|Va| + @)As (3.23)
where V, is the n-component velocity and As is computed as the distance between

points i and j.
3.2.2 Local Velocity Scaling

For viscous computations, the physical dissipation in near wall regions produces
enough dissipation in the direction normal to a surface, because a fine mesh spacing
is used in this direction. This allows the artificial dissipation term in the normal
direction to be reduced. In the present approach, a local velocity scaling is incor-
porated into the directional eigenvalue scaling. That is

Aji = [q2 sin’ @ + cos® 0] A, (1 + (-f\‘—") ) (3.24)

where ¢ is the local total velocity and 8 is the angle between edge (ij) and a vector
tangential to the nearest wall location. ,
Adding the modified artificial dissipation to Egs. (3.3), (3.9), and (3.14) results

in the final form of the finite-volume spatial discretization:

R((T) = 51QUTY) = DUTN] - K(T) (325)

E g

i
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The dissipation term adds a third-order error in smooth regions of the flow, and a
first-order error near shock waves, so a second-order accurate finite-volume scheme
is preserved except in regions close to shock waves.

The implementation of the dissipative terms requires two loops over all the' edges
xnthe domain. In the first loop a harmonic (Laplacian) operator is computed at each
node. In the second loop the blended adaptive artificial dissipation is obtained by
simultaneously collecting the Laplacian terms needed for the biharmonic operator

and the terms for the harmonic operator.
3.3 Runge-Kutta Time-Integration Scheme

The semi-discrete equations are integrated in time using the following g-stage

Runge-Kutta scheme:

([7)(1) = ((j)(o) _ alAtR((ﬁ)(°))

(3.26)
(YD = (YO — ag AR((T))
(YO = (DY — agAR(THE) = (O

where the superscripts in parentheses represent the particular stage of the scheme.
(ﬁ ) denotes the value of (U) at time step n, a1," -, Qg ar€ the coefficients of the
particular multi-stage scheme, and R((ff‘ }) is the residual of the spatial discretiza-
tion as given in Eq. (3.25). Runge-Kutta schemes were originally developed for
high temporal accuracy. However, for steady-state problems, time accuracy is not
as important as efficiency of the scheme. This has led to the use of hybrid mul-
tistage schemes which allow the convective and dissipative terms to be evaluated
separately. ‘

For the results presented here a standard four-stage Runge-Kutta scheme with
coefficients a; = 1/4, az = 1/3, a3 =1/2and ey = 1 is used. The viscous operator

((R), (S)) and the artificial dissipation operator D((U:)) are evaluated in the first
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stage step and frozen for subsequent stages. In this way the CPU time required for
the evaluation of the dissipative term is reduced by a factor of four.

3.3.1 Stability Criteria

. The time step for all explicit time marching schemes is restricted by some sta-
bility limit usually expressed in terms of the CFL number. For the Euler equations

the maximum allowable time step is described as:
At = CFL- At, (3.27)

where At, is the convective time step. For the Navier-Stokes equations the time
step limits [54] due to both convective and diffusive effects must be considered,
which may be expressed as:

At. - At,
At=CFLZ= S (3.28)

where CFL is the Courant number and At, is the diffusive time step.
The Courant number for the multi-stage scheme is obtained by performing the

von Neumann stability analysis for the one-dimensional model problem:
U+ Uz + pAruz =0 (3.29)

The stability region for the hybrid multi-stage scheme depends on the discrete spa-
_ tial operator, the coefficients, o, the number of stages, ¢, the manner of evaluations
of the artificial dissipation, and the smoothing coefficient, u. Although for a m-stage
scheme a maximum allowable stability limit, CFL < m —1, can be obtained through
optimizing the coeflicients, a;, such a scheme is not necessarily optimal in terms
~of computational effort or accuracy. The present four-stage Runge-Kutta scheme,
using the centered difference operator with the dissipation computed in the first
stage and frozen for subsequent stages, has been shown to be stable with a Courant

number CFL < 2.6 for the one-dimensional model problem with 4 = 1/32. Note

that this analysis only provides a reference value of the maximum Courant number
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for the present scheme. In practical applications values less than the maximum
Courant number might be needed to assure stability.

The values of At. and At, are obtained by performing the von Neumann sta-
bility analysis on the finite difference equations. Since it is not possible to perform
a stability analysis directly on the present unstructured scheme, the stability limit
for the multi-stage scheme will be inferred from the corresponding structured for-
mulation. The time steps At. and At, for a general two dimensional structured
mesh [43] are given as:

At, = __V.-___, At, Y
ACe + AO,, Avg + A'lq

(3.30)

where

b= (Vel + )20, Aoy = (il + )

1 4y pe 7,
e = By [<,,>(p,) AL+ <> aca "]
_ 1 47Fe 2
Mo = Ty [<p>(p,>,A 35 ‘A"]

Af=\[zi+y;, AOn= VI +¥E

Although the edge-based approach provides local mesh coordinate information for
evaluating the above equations, it is expensive to compute all the information for
each edge. In order to reduce the work of evaluating the time steps in the present
unstructured scheme, the above equations are simplified using time steps in the ¢

and 7 directions.
At. = min{At,,, Ate,}, Aty = min{At,,, At,, } (3.31)

After neglecting the cross terms in )., the time steps in the { and 75 directions

might be described as:

A€ An
, At, =
Vel + @ 7 Vol +a

Aty =

At')‘ — R A 2(p>(Pr)c Atv., - RCLAéz (P)(I:r)e
4ypi. 4vp.
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For the cell-vertex unstructured scheme, it is not necessary to compute the time
steps in both tangential and normal directions for every edge, because the tangential
direction of an edge can be approximated by a normal direction of another edge
when looping over all the edges of a control volume. In the present work, the
time step on the direction normal to a edge is used. Therefore, the time steps

corresponding to unit Courant number on each edge may be rewritten as:

Ar, Rer(p)(p,).Ar}
At = {—=—2—};, A, = Pr)e"Ts 3.32
AT =R (3:32)

In the above expression subscript k denotes the k** edge surrounding the control
volume, Ar, is the normal distance from interior point i to the edge, Ar, is the
distance between two end points of the edge, velocity V and speed of sound a are
taken as averaged values along edge k, @ is the unit vector normal to the edge, and
(V-7 + a) is the maximum wave propagation speed along the direction normal
to the edge.

In order to advance the solution in time with the maximum allowable speed,

the maximum CFL number is always applied in the estimation of time steps.

3.3.2 Local Time-Stepping

If only the steady state solution is of interest, convergence to the steady state
solution may be accelerated by sacrificing the time accuracy and marching the equa-
tions at each node in time by the maximum permissible time step, as determined by
a local stability analysis. Based on the above edge-based approach the permissible
time step at node i may be taken as the minimum of the allowable time steps from

all surrounding edges to that node.

Aty = pin{Ata), At = mip{At,)

Aty = CFLpuDla Aty

AT (3.33)

1 25 B
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3.3.3 Implicit Residual Averaging

Another simple method of increasing the allowable time step is implicit residual
averaging. The concept of implicit residual averaging is to increase the stability
limit of the basic time-integration scheme by implicitly smoothing the residuals.

The implementation is performed by implicitly solving the equation:
Ri=Ri+eV’ R (3.34)

where R's are the smoothed residuals, and €is a smoothing coefficient. The stability
limit of the smoothed scheme can be estimated using the following inequality [34}:

e ('c%fl_’ _ 1) (3.35)
where CFL is the Courant number of the unsmoothed scheme.

For the unstructured formulation, a Jacobi iteration method has been sug-
gested [58] for solving the implicit residual smoothed equation. Due to the fact
that the computational work involved in solving Eq. (3.34) should not outweight
the gain in convergence rate, two iterations were employed. With the same Lapla-
qia.n operator as in the artificial dissipative term, the Jacobi iteration scheme gives

. N p
-Rl + € Ek:l R: ’ (3.36)

Rl =
! 1 + N;e

It is important to note that the Jacobi iteration method converges slowly unless
the matrix is strongly diagonally dominant. This implies that a small value of € is
required and this restricts the increase of the stability limit. In the present work,
it has been found that using two Jacobi iterations with € = 0.5 saves about 20 %
in CPU time.

" In order to improve the performance of the residual averaging method, an alter-
pate iterative method using an approximate factorization is employed to enhance

the convergence in solving Eq. (3.34). In matrix form, Eq. (3.34) gives

[Mi;]R: = R; , (3.37)
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[M;;] can be factorized using the corresponding diagonal lumped mass matrix [63],
that is -
[Mi;] = [Di;] + ([Mi;] - (D)) (3.38)

where

N
: Dij = ) |Mi;| &;

=1

Substituting Eq. (3.38) into Eq. (3.37) gives
[Di;] §R; = R — [My;) R}
RM' =R 4+ 6R; (3.39)

The above equation can be simplified as:

R:'+6N.'R?+€E£—i1m

B = By i (3.40)

This method requires about the same computing work as the Jacobi iteration
method. The advantage in this iteration scheme is that the value of € can be
increased up to 1.0 with a resulting 40 % savings in CPU time. This method is

used in the present work.
3.4 Initial Conditions

As mentioned previously, the mean flow equations and turbulence transport
equations represent an initial-boundary-value problem. Appropriate initial and
boundary conditions are needed to solve these equations. For steady state solutions,
initial conditions are used only as a starting point for time-marching and only affect
the convergence rate to the steady state solution. However, the imposed conditions

should not be so inconsistent that the time-marching scheme diverges.
3.4.1 Mean Flow Equations

-For external flows initial conditions are not critical to the iteration, and uni-

form freestream conditions are generally imposed. For turbomachinery applications,

Yy
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there is usually high loading and high turning of the flow. It is not generally pos-
sible to start a solution with constant initial conditions. In the present work the
quasi-one-dimensional solution introduced by Chima [18] is imposed to provide a
smooth variation of initial flow conditions.

" For quasi-one-dimensional flows with area change the continuity and energy

equations which state the conservation of mass and rothalpy are
h = prhAGW cos a = constant (3.41)

I = Cpl" — rQVy = CpT" — -;-rzﬂz = constant (3.42)

where ()’ and ()" values denote absolute and relative total conditions, respectively,
Ad is the blade spacing, and I is the rotbalpy. For flow outside the blade row the

free vortex flow assumption gives
rVs = constant (3.43)

From Eq. (3.41) the relative total velocity can be described as

w?= h b (3.44)
From the isentropic relations we have
_ -fl_l -7-1
_TL 1o
T - 2CPT"
So,
” W2
Using these relations Eq. (3.44) may be rewritten as
w?
- (1 - 5 CpT")"' -Wi=0 (3.46)
where
m
b=

'rhAf
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Within the blade row the free vortex assumption is replaced with the assumption

that the flow angle a varies linearly through the blade row. The relative total

velocity can be described as

w2 |
2 _ (1 — = =
i w ¢(1 2CPT”) 0 (347)
where -
b= m
" p'rhAbcosa

After the inflow conditions and the relative flow angle at the trailing edge are
specified, the solution of the quasi-one-dimensional flow can be obtained from up-
stream to downstream. For each point upstream of the blade the relative total
velocity is obtained using a Newton iteration method to solve Eq. (3.44). Other
flow properties are then obtained thru Eq. (3.43), constant rothalpy, and the isen-
tropic relations. Within the blade row Eq. (3.47) is solved for W. Once the flow
condition are computed at trailing edge, Eq. (3.46) is used again for the downstream
region.

The quasi-one-dimensional solution is not necessarily consistent with the flow
tangency or the no-slip condition. To avoid an abrupt change of flux at a near wall
cell, the flow tangency or no-slip condition is enforced at the blade surface and a

smoothing operator is then used to smooth the flow quantities near blade edges.

3.4.2 Turbulence Transport Equations

For the Baldwin-Barth one-equation model, the turbulence field variable is inij-

tialized using specified freestream turbulent viscosity:
Rr=Fr.<1

For the Chien low Reynolds number k — ¢ model, the initial distribution of k and
are based on specified freestream turbulent viscosity and turbulence intensity. The

turbulence intensity is defined as

"~

@i
8

T = (3.48)

Vo

TETET
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In the present work, the values of T, and 7%, are specified as
To < —0.1%, Vi<l (3.49)

Substituting Eq. (3.49) into Eq. (3.48) yields the freestream turbulent kinetic en-
ergy. Then, the freestream dissipation rate can be obtained as

-~ o0
€ = cp:_
Vto

3.5 Boundary Conditions

For a cell-vertex scheme flow properties are required at boundary nodes. In
the two-dimensional or quasi-three-dimensional mean-flow equations four bound-
ary conditions are required along each boundary of the domain. In addition to the
physical boundary conditions mentioned in the previous chapter, additional nu-
merical boundary conditions might be needed to close the set of equations. When
differential turbulence transport equations are used for the closure of the Favre-
averaged Navier-Stokes equations, additional boundary conditions are required on
each differential transport equation. The boundary conditions depend on the type

of turbulence models used.

3.5.1 Inﬂov?/ QOutflow Boundary Conditions

At inflow and outflow boundaries, a nonreflecting or radiation boundary condi-
tion based on a characteristic analysis i3 implemented to allow the numerical errors
to propagate out of the domain. The idea of a characteristic formulation is try to
correctly capture the physics of the flow in terms of a wave propagation problem by
considering the characteristic waves in incoming and outgoing directions separately.
For the incoming waves, the characteristic variables are held at prescribed values,
while for outgoing waves the variables are extrapolated from the interior.

_ The characteristic formulation is derived in a local coordinate system tangential
and normal to the boundary. Assuming the normal variation to be much larger than

the tangential variation of state variables U, the Euler equations may be expressed
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ow oW
e + A—a-TT =0 (3.50)
where

A = Diag{/\l, AQ, A3, A4}

‘w ] [ - (] [ @ |
- W [l A -n
w=| *|= 1 , = ¢ (3.51)
W, (gn + p/P8)/V2 A3 In+a
Wi | | (—g.+p/P8)/V2 | M| | @—a ]

where W; is the characteristic variable, ); is the associated wave speed, n is the
local unit inward normal vector to the boundary, and ¢, and g, are the normal and
tangential velocities, respectively. Barred values are evaluated using values frozen
from the last Runge-Kutta stage step.

Along each characteristic line deﬂilgéi')y the wﬁeépoﬁ&ing wave speed, Eq. (3.50)
reduces to a set of ordinary differential equations. That is,

daw;
o = 0, along

dn

= =X (3.52)

Employing Eq. (3.52) along the boundaries of the computational domain gives
characteristic formulations for solving for the flow properties at boundary nodes.
The discrete form of Eq. (3.52) involves the characteristic variables propagating
from outside the domain as well as from the interior. The characteristic variable
W; must be specified if the corresponding wave speed )\; originates from outside
the domain. Otherwise, it is extrapolated from the interior. Based on the local
velocity normal to the boundary (see Figure 3.2), there are four possible boundary
formulations summarized as follows:

 For subsonic inflow (0 < §, < @ ), there are three incoming waves corresponding
to A1, A2 and Ag, and one outgoing wave corresponding to A\. Therefore, the char-
act:erist.ic variables, W;, W;, and W3 are prescribed and W, is extrapolated from

the interior. This leads to the following system of equations.
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14 t
Subsonic Inflow g, Eubsonic Outflow
_qn+a gn n—8 {n :a gn qn+a
: n n
4 t _
Supersonic Inflow §, bSupersonic Outflow
g, +a n | ¢n— G _ Gn—a dn [ Gn]T G
_ n n .

Figure 3.2 Characteristics at far field boundaries.

Po —Pb/‘_'2 = Ppr —p,,,/&z
s, = ope
ny + Po/P8 = Gnp t Poc/PE
—Gne. + Pex/ PG (3.53)

—n, + Pb/ﬁa

where the subscripts b, pr, and ex represent the boundary, prescribed, and extrap-

olated values, respectively. Solving Eq. (3.53) for the boundary values gives

qs, = qur
1 .
h = § [Pex + ppr t+ Pa(qnpr = nex )]
po = Pot (P —Pp)/@
Gny = Gnpe + (Por—Pb)/PE (3.54)

For supersonic inflow (0 < @ < @»), all four waves (A:) come inward, so all four

characteristic variables (W;) are prescribed. This is equivalent to prescribing all
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four flow properties.

9sy, = Qap,

Po = Por

. Po = Ppr
» Gny = Gnp (3.55)

For subsonic outflow (—a < g, < 0), there is only incoming wave corresponding
to A3, and thus the corresponding characteristic variable W; is prescribed. Using
the same procedure as for the subsonic inflow case the boundary values are obtained

as

q‘b = q’pr

i

Py % [Pex + Poe + 58(gnpe — )]

Po = pex+ (Pp— pea)/a

9y, = Gnex +(Po — pex)/P (3.56)
For supersonic outflow (¢, < —a), all four waves ); propagate from the interior,

therefore all four characteristic variables W, are extrapolated from the interior.

This is equivalent to extrapolating all flow properties from the interior.

Do = Goes

Po = Pex

Po = Pex

Iy = Gnes (3.57)

When the prescribed and the extrapolated values are given, these relations, Eqgs. (3.54)
to (3.57), determine the primitive variables p, ¢,, ¢,, and p at the boundary. Energy
is obtained from the equation of state.

For the two-dimensional airfoil case the far field boundary is, in practice, placed
at a finite distance from the airfoil. In order to accurately approximate the asymp-

totic state of a uniform freestream condition the far field boundary must be placed

1 N
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at a distance of 0(100) airfoil chord lengths from the airfoil. For subsonic flows the
distance from the outer boundary of the domain to the airfoil can be reduced by re-
placing the uniform freestream far field condition with the vortex far field boundary
condition. Based on the work of Usab [83] the vortex far field boundary condiﬁon is
deﬁned by the combination of freestream and a compressible point vortex centered

at the airfoil quarter chord. Use of the point vortex correction allows a reduction
in the distance to the far field boundary by a factor of 10 [21].

For turbomachinery applications the total pressure, total temperature and whirl
Vi are specified at the inlet with exit pressure imposed at the outlet. In order
to explicitly prescribe these quantities, an alternate boundary formulation based
on Riemann invariants is used at the inlet boundary. At the outlet boundary a
characteristic formulation is used.

The Riemann invariant formulation is based on the work of Chima [18]. In
this formulation, an upstream-running Riemann invariant is extrapolated from the

domain interior:

3,,.R’=-—V [(V,+aV)(— )+aV(hd )] (3.58)

m

where
2a

R =V, - ;—_—1
is the upstream-running Riemann invariant.

For subsonic flow at the inlet the Riemann invariant is extrapolated using
backward-differencing in Eq. (3.58). Based on R-, the isentropic relation, the
specified total temperature and whirl rVj, the velocity V.. at the boundary is given

by:

- 1)R‘ + \/(7 +1)(4CpT" — 2V3) — 2(y - 1)(R7)?
" - (v+1)
Density and pressure are computed using the isentropic rela.tlons and the specified

(3.59)

inlet conditions. The nondimensional specified total pressure and total temperature
yield the total density:
pl
= (M)
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From R™, V,,, and rV,, the total velocity and speed of sound at inlet boundary are

found:

@ = VWtV

7—;-1-(‘/;,, - R‘) (3.60)

ay

Then, the isentropic relations and equation of state give:

—_ 7-1 Q ;:-:f
no= e 25 (2)]

ay
— / 22
o= p [#]
e = 7—’;*’—1+%(V,§+%’) (3.61)

For supersonic inflow all four quantities are specified.
At the outlet, the characteristic formulation with prescribed exit pressure are
used for subsonic flow, while all four variables are extrapolated from the interior

on supersonic flow.

3.5.2 Solid Wall Boundary Conditions "

The cell-vertex scheme flux balance is evaluated using flow properties at node
points. This requires boundary values to be updated at each time step. For inviscid
flow calculations, the flow tangency condition is enforced at wall. Along solid wall
boundaries the imposition of the no flux condition in flux balance calculations
does not guarantee that the flow tangency condition will be satisfied. To enforce
the flow tangency condition the solid wall boundary conditions are implemented
in a predictor-corrector manner using a characteristic analysis. With ¢, = 0 in
Eq. (3.51) the characteristic formulation shows one outgoing wave requiring one
prescribed condition.

The state variables are first predicted based on the Runge-Kutta scheme:

U,=0"+a0 (3.62)
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Substituting the condition g, = 0 and the other variables from the predicted state
into Eq. (3.51) results in a characteristic formulation of the solid wall boundary

conditions. The boundary values are then corrected using the following formulation.

] gn. = 0
QG = oy
Pc = Pptdn,Pa
pe = Pp+dn,Pla (3.63)

where the subscripts p and c represent the predicted and corrected values, respec-
tively. Again energy is computed using the equation of state.

For viscous flow calculations, the no slip condition with either adiabatic or
isothermal wall condition is specified at the wall. For the cell-vertex scheme an
additional numerical boundary condition is required to update all boundary flow
properties. In practice a zero normal pressure gradient is imposed at the wall. The
boundary conditions imposed at the wall are

-

Vvall

<4
I

orT
T = Tean, —)wan =0
a,  of an) all
(3 en = 0 (3.64)
Density is computed using the isentropic relations and equation of state.

3.5.3 Periodic Boundary Conditions

For a single-blade-passage a spatial periodic boundary condition is imposed on
the upper and lower boundaries between which an equal pitch spacing is maintained
from inlet to exit. In the present approach the points are placed on boundaries
and no imaginary cells are placed outside periodic boundaries. Along the periodic
boundaries the flux balance is performed in the same way as at the interior points.
The net change at a boundary point is simply the sum of the partial sums from the

corresponding points on the upper 'and lower boundaries (see Figure 3.3).
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Figure 3.3 Flux balance implementation for periodic boundary points.

3.5.4 Special Boundary Conditions

For turbomachinery applications special boundary conditions are required. Blades
designed on an analytical basis provide good test cases for the validation of numer-
ical methods. Many of these cases have an open profile at the blade trailing edge.
Changing the blade shape to close the trailing edge often results in a very different
solution. In order to obtain an accurate numerical solution, the nonclosed trailing
edge needs to be correctly modeled. One example of a nonclosed profile is the "vis-
cous” blade profile obtained by adding the boundary layer displacement thickness
to a physical blade. The inviscid solution computed using this ”viscous” profile is
equivalent to an inviscid solution about the true blade with surface injection used
to account for the boundary layer displacement effects. Based on this analogy the
nonclosed trailing edge is modeled as a free jet which accounts for the boundary
layer displacement inviscidly.

" In the present work, the nonclosed trailing edge is modeled as a uniform free
jet at the blade trailing edge. The uniform flow properties are evaluated using the
averaged values of the upper and lower blade surface properties at the trailing edge
(see Figure 3.4): '

Y
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pi = (o +0")/2

w = (ub+ uv)/2

v = (v +vY)/2
- e = (el + e)/2 _ (3.65)
where the subscript j denotes the jet flow and the superscripts L and U represent

the lower and the upper end points, respectively. Pressure is obtained from the

isentropic relations and equation of state.

Figure 3.4 Uniform jet assumption at the nonclosed trailing edge.

For turbomachinery applications the exit pressure is set or measured in an av-
eraged (mass- or area-averaged) sense. For a uniform outlet flow this is numerically
equivalent to specifying a constant pressure at the exit. However, there are situa-
tions in which the exit flow is not uniform. For example, a turbine blade operating
at a high speed it is likely to have oblique shock or expansion waves which propagate
to the exit boundary. If the axial exit velocity is subsonic, one boundary condition
is still required. Because the exit flow is not uniform, in is physically inappropriate
to specify a uniform exit pressure at the exit. Therefore, nonuniform exit boundary
conditions are required. 7

In order to account for the nonuniformity the exit pressure is imposed in a
predictor/corrector fashion. In the predictor step the state variables are extrap-
olated from the interior and a mass- or area-averaged exit pressure is evaluated

using the extrapolated value. The exit pressure is then corrected by subtracting
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the difference between the specified and the predicted averaged exit pressure from
the extrapolated value:

AP = Pexit = Ppue
P = pp+Ap (3.66)
where the subscripts c and ez denote the predicted and corrected state, respectively,
b.,,e is a predicted averaged value, and exit represents the specified exit value.

A variation of this boundary condition is that the exit pressure is only known at
one boundary point. Since there is no averaged exit pressure available, the nonuni-
form exit pressure is imposed using a slight modification of the above procedure. In
Eq. (3.66), the averaged pressure difference is replaced with the pressure difference

computed at one boundary node.

3.5.5 Boundary Conditions for the Turbulence Transport Equations

For the Baldwin-Barth one-equation model, the boundary conditions stated in
Reference [6] are used.

e Solid Walls: Specify E; =0
o Inflow (V-7 < 0): Specify Ry = (Rr)oo < 1
e Outflow (V-7 > 0): Extrapolate Ry from interior values

For Chien’s low Reynolds number k — ¢ model, the boundary conditions listed in

" Reference [43] are used.

~® Solid Walls: Specify k = 0, and € = 0
e Inflow (V. -2 < 0): Specify k = koo, and € = €,

.o Outflow (V-7 > 0): Extrapolate k and ¢ from interior values

T i1 3G i



53

4. MESH GENERATION

In the present work an adaptive remeshing procedure is applied to the resolution
of complex flow problems. With a solution adaptive method based on remeshing,
the mesh is recomputed periodically as the solution evolves. Therefore, the speed
at which a mesh can be generated is critical to the overall performance. For this
reason both the initial and adapted triangular meshes are generated using the
advancing front method developed by Peraire et al. [67). This particular scheme also
allows a significant amount of control ovér local mesh properties with specification
of the local length scale, aspect ratio and orientation of triangles. As shown in
Reference [67] these mesh parameters provide a means of directionally adapting
the mesh. The present unstructured mesh generation scheme follows the work

described in References [67] and [48].
4.1 Advancing Front Method

The advancing front mesh generation scheme begins with the specification of
the domain boundaries and a background mesh on which nodal values of mesh
parameters 6, a and s are prescribed. Referring to Figure 4.1, these mesh pa-
rameters define the characteristics of the elements to be generated: & defines the
node spacing; s defines the stretching or aspect ratio; and « defines the direction
of stretching. These three mesh parameters are assumed to have piecewise linear
spatial distribution over triangular elements of the background mesh. When a new
triangle is formed, the mesh parameters are first evaluated through interpolation

from the background mesh. Initially, the background mesh is constructed using a



Figure 4.1 Definition of mesh parameters.

very coarse hand triangulation of the domain (e.g. see Figure 4.2). If the domain
is being remeshed the last mesh is used.

The first step of the mesh generation process involves generation of mesh points
on the boundary of the domain. This step is done in a predictor/corrector fashion
with a spline-fitting technique providing the boundary surface location. The two-
step process is described below with the example problem shown in Figure 4.3.

Assume background mesh information along the boundary of interest is known
(see Figure 4.3). The spline function is given in terms of an arc length tangent
to the boundary ranging from 0 to rm,. The coordinates (z,y) and the mesh
parameters are expressed as function of r. Marching around the boundary, a new
list of boundary points with spacing based on the local value of § is generated

iteratively. The iteration process is described as follows.
Tl =Ti+ 6412

Starting with initial guess &7, = &, r%,, is computed. The local value of 841

is interpolated from background mesh. Then new value of 6:‘_.'_"11/2 is computed as a

111 I
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Figure 4.2 Boundary information and background mesh for NACA0012 airfoil.

— : Initial distribution
o :Predictorstep <—
e :Corrector step —

y node generation using predictor-corrector process.
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n

mean of §; and 67,
5?431/2 = 0-5(8?+1 + &)
The above iteration is continued until convergence. In order to generate a smooth

distribution the following restriction is imposed:

6% = min(1.156;, 674!

Then, if a local minimum é éxfsts within node 7 and i + 1, the location r and the
value § replaces the values at point 7 + 1.

The above procedure produces a smooth mesh spacing distribution if the value of
6 is in ascending order corresponding to the marching direction. In order to obtain
a smooth variation for a general distribution of &, the boundary points and mesh
parameter distribution are first predicted marching backward around the domain
boundary using the above iterative scheme. Then, the boundary points dist'ribution
is corrected marching forward around the domain boundary placing points on the
boundary using the mesh parameters obtained at the predictor step. There is no
need for iteration in the corrector step, because the predictor step provides a good
prediction of the boundary mesh space distribution §.

These boundary points define the initial front list, a set of straight line segments
which connect consecutive boundary points as shown in F igure 4.4. Step by step
new triangles are then added alone the front and then absorbed into the front.
Starting with the shortest segment of the front, a new node is added within the
domain at a point determined by the local values of the mesh parameters and

specified mesh quality constraints (see [67]).

(4.1)

{ max (0;, 0.750¢) if 0; < og
g =

min (o;, 1.30¢) if 0; > o
where o represents the mesh parameters, 4, s, and a, and the subscripts i and fr
denote local value and value of the active front, respectively.
Based upon the local values of the stretching parameter, the Cartesian coordi-

nates (z,y) are transformed into elliptic coordinates (z.,y.), in which the triangles

Rt i e
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Figure 4.4 Initial front set up.

satisfying the stretching conditions will look "equilateral”. This transformation is

described as
z. 1/s 0 cosa sina z
= (4.2)
Ye 0 1 —sina cosa y

where s and a are the local values of mesh stretching and mesh orientation. In

elliptic space, a list of candidate nodes for the triangulation is created searching
the front nodes which lie inside of a circle formed by the new point and a specified
radius. The radius used in the present work is set equal to 1.66. The candidate
points are then sorted in ascending order according to their distance from the new
point. The new point is placed at the first place in the list if the distance from the
new point to the end points of the active front are less than 1.66. Otherwise, it is
placed at the end of the list.

-A new triangle is formed using the active front face and the first node from
the candidate list which satisfies a criterion that any face of the new triangle can

not cross any existing front segment. The front list is then modified to include the
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faces of the new triangle in the front, while removing the triangle face adjoining
the previous front. After the new triangle is created the elliptic coordinates are
transformed back to the Cartesian coordinates. This process is repeated until there
are no segments in the front list, at which time the domain has been completely
filled with triangular elements (e.g., see Figure 4.5). A

To improve the quality of the flow solutions computed on the new mesh the
following three additional operations are performed in the present implementation.
First each node within the domain which is a vertex for less than 5 triangles is
removed and the mesh is retriangulated in the region of the removed node. Second,
diagonal swapping is performed to remove any obtuse triangle. If the angle between
any two sides of a triangle is greater than some specified angle agw the diagonal
of two adjacent triangles aré to be swapped. In the present work‘ agw = 170deg is
used. Last, the mesh is smoothed to remove any nonuniformities in the mesh using

a Laplacian type operator:

X4t = X 4+ = (X - A7) (4.3)
=1

where X™+1 is the new location of the point X;, n is the number of the neighboring
points and ¢ is the smoothing coefficient. In the present work two smoothing passes

with € = 1 are used.
4.2 Structured Triangular Mesh Algorithm

The advancing front techﬁique provides a flexible way to generate unstructured
triangular meshes for complex geometries. However, Hassan et al. [30] have recently
noted that the advancing front technique can only produce a maximum allowable
mesh stretching of about 10 in order to preserve mesh quality. In a preliminary
study of the directional mesh generation for viscous flow problems it has been
found that the unstructured mesh generation scheme used here can not produce
a good quality mesh when mesh stretching is greater than 20. For turbulent flow

calculations highly stretched meshes, where aspect ratios are on the order of 100

MY



Figure 4.5 Intermediate and final mesh of NACA0012.
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to 1,000, are usually employed to resolve the shear layers. It is obvious that a

stretching of O(10) is not sufficient.

In the present approach a structured triangular mesh is generated around bodies
to_achieve high aspect ratio meshes within the boundary layer. Depending on the
shape of the trailing edge two types of meshes are used in the present work. A
C-type mesh is used if a blade has a wedged or cusped trailing edge and an O-type
mesh is employed when the blade has a rounded trailing edge.

4.2.1 O-Mesh Approach

For bladc's with rounded trailing edges, once the blade boundary nodes have
been determined the normal vector at every boundary node is defined. Radial
running mesh lines are generated using these normal vectors. A fixed number of
mesh points are then placed along each mesh line based on an algebraic stretching
algorithm. That is

AS;=5;,—-S;.1 = by+ T:;_l, i=1, N (4.4)

where S; indicates the normal distance from point i to the solid surface with the

initial value So = 0, and r, and N denote the algebraic stretching factor and total

number of points in the normal direction, respectively. The minimum normal mesh
scale, 8.+, is defined as

by = Aywan y, (4.5)

In the above expression Ayway is the physical wall distance corresponding to y* =1
and y}. represents the allowable y* value at the first layer off the wall.

~ The value of N is specified such that the aspect ratio of all cells in the outer

layer are in the range of 10 to 20. The total thickness of the structured mesh at

each station can be computed as:

riv -1
AYmax = b4+ — (4.6)

The above mesh is usually referred as an O-type mesh.

TRy
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422 C-Mesh Approach

Ata wedged or cusped trailing edge the normal vectors on both upper and lower
surfaces are different. It is appropriate to use the corresponding normal vector to
construct mesh lines on the upper and lower surfaces. This leads to a C-type mesh.
The mesh point location is determined using the same procedure as for the O-mesh.
In order to reduce the aspect ratio off the trailing edge, this mesh is extended in the
near-body wake region. First a mesh line is constructed along the bisector vector
of the trailing edge in the downstream direction. Then a number of grid points are

placed on this line using the algebraic stretching distribution

r—1

AS., = AXo min{AXpar, =—},  i=1L M (4.7)

-1
where AXp is the streamwise mesh size at the trailing edge, and AXpmax and M
are user-specified constants which are in the range of 4-8 and 15-20, respectively.
The value of AXmax is specified to limit the growth of the streamwise mesh size at
wake regions.

After grid points are placed on the bisector line, mesh lines are generated on the
upper and lower sides of the bisector line at each node. The following distribution

is employed to smooth the angle between the bisector vector and the upper or lower

mesh line:
- AR
= brg + (931 - o'm) M (4.8)
oF = 0% + (agl - 9!1"5) ';7 (4.9)

In these expressions, the superscripts U and L represent the upper and lower sur-
faces, respectively, the subscripts TE and BI denote the trailing edge and the bi-
sector line, respectively, the subscript i denotes the ¢ — th mesh line, M is the total
aumber of mesh lines, and 4 is the orientation of mesh lines.

‘Mesh points are then placed on these mesh lines using a distribution defined as:

o1
ASy; = min{AYmax, %er_y-i}v i=1L N (410)
v —
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Yo, =67l i=1, M (4.11)

where Yo, is used to reduce the mesh aspect ratios on the wake regions. The stretch-
ing factors, r; and r,, are in the range of 1.1-1.35. Notice that the cornbma.tlon of

Eq. (4.10) and Eq. (4.11) might produce a different number of mesh points on the
adjacent mesh lines. The use of quadrilateral meshes can only connect part of the
mesh points. Additional triangles are therefore placed to connect the remaining
mesh points.

After the quadrilateral meshes are constructed a strﬁctured triangular mesh
is generated by diagonally dividing each quadrilateral mesh cell into two triangles
(e-g., see Figure 4.6 and Figure 4.7). The initial front list is then updated to include
the faces of the outer layer of structured triangles in the front, while removing
the previous fronts which connecf consecutive body boundary points. With the
new front list, the advancing front method is used to mesh the remaining domain.
Because the algebraic stretching algorithms, Egs. (4.4), (4.10) and (4.11), relieve

the stretching ratio on the outer layer of the structured quadrilateral meshes, the

advancing front method can be employed without difficulty.
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5. SOLUTION ADAPTATION ALGORITHM

Thls chapter pr&sents a solutxon adaptxve algonthm for both inviscid and tur-

a.daptatlon 'pa.ra.meters, the convergence criteria for the ﬂow solver and the con-

vergence criteria for the overall adaptatlon loop 7The m&sh adaptation parameters
are defined in terms of geometric and flow field information. For turbulent flow

problems additional length scale information is used to define the local structured

meshes.
5.1 Adaptive Remeshing Algorithm

In the present work, the flow solver and the advancing front mesh generator are
coupled together using a solution adaptation scheme which periodically remeshes
the solution domain to resolve the flow etmctpre as the solution evolves. The
basic remeshing algorithm is shown schematically in Figure 5.1. The initialization

step generates an extremely coarse “hand-triangulation” of the solution domain

to be used as the initial background mesh. Mesh adaptation parameters are then
computed at nodes on this background mesh. Since no flow field information is
available at this point, the mesh adaptation parameters are set to constants or are
computed based on geometric information. With this information, a coarse initial

mesh is generated and the flow solver is called. - - . -

The solution is marched in time on the initial mesh until a prescribed steady-
state convergence criteria is met. Based on this initial solution, the solution adap-
tation parameters are computed using flow field and geometric information on the

initial mesh. The mesh is then regenerated and a new solution is computed. The

i

e
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Figure 5.1 Flow chart of adaptive remeshing algorithm.
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current solution is then compared to the solution on the previous mesh to check
for overall convergence of the adaptation cycle. The adaptation cycle (outer loop
in Figure 5.1) is repeated until the difference between the current and previous

solutions drops below a prescribed convergence criterion.
5.2 Maesh Adaptation Parameters

In the advancing front method, the mesh adaptation parameters required for
generation of a new mesh are the mesh length scale, §, the stretching parameter,
8, and the stretching direction denoted by a. These mesh adaptation parameters
are computed using one or more chosen refinement parameters determined by the
current solution and the geomefry of the problem. The mesh length scale parameter,
4, is defined in terms of two refinement parameters, one based on surface geometry
information and the second based on flow field information. Combined, these two
refinement parameters define the variation of § throughout the solution domain.
The mesh stretching parameter, s, and the stretching direction, a, are defined
in terms of additional flow field information such that the mesh orientation and

stretching align with detected flow features.

5.2.1 Geometric Refinement Parameter

Along solid boundaries of the solution domain a refinement parameter based
on the local surface curvature is used. This parameter has been found to be very
important in transonic fan and compressor applications, where an accurate repre-
sentation of the blade geometry is critical to accurately setting up the flow structure
within the solution domain. This in turn improves the overall convergence of the
solution adaptive method. The geometric length scale parameter, d,, is defined in

terms of the local radius of curvature of the surface, R;, as

27R;
(6s)i = AR (5.1)

where N, is the number of points equally spaced on the arc, and (8,); is the distance

of the arc length between any two neighboring points on the circumference of a circle

1) S e
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with radius R;. For the solutions presented in the following sections, N, is chosen

in the range of 10 to 40 depending on the resolution desired.

5.2.2 Flow Field Refinement Parameter

" The goal of a solution adaptive scheine is to achieve an optimal mesh on which
the numerical error is uniformly distributed. Because the flow solution is not known
in advance, a quantitative estimate of numerical errors must be developed. These
errors can be estimated in many different ways. A review of various approaches is
given by Morgan and Peraire [63]. Morgan and Peraire note that solution refine-
ment parameters based on either first- or second-derivatives work well and are very
economical. In the present work two sets of solution refinement parameters have

been investigated.
52.2.1 Second-Derivative Refinement Parameters

In Reference [63] Morgan and Peraire introduce refinement parameters based
on a local interpolation error analysis for a piecewise linear discrete approximation.

In one dimension, the interpolation error is estimated by
62104/ 02|

where & is the mesh spacing and ¢ is some flow variable. An optimal mesh is
determined by the requirement that the distribution of local numerical errors is
uniform. This gives

&
2 — =
& 61:2‘ constant (5.2)

For two-dimensional problems, the discretization errors are represented by the

tensor of second derivatives which is given by
3*¢/0z* 3%¢/0z0y
3%¢/0z8y 3*¢/0y’

This is a real symmetric tensor. For a real symmetric tensor, it can be shown that

the eigenvalues are all real and the corresponding eigenvectors are orthogonal [4].
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The coordinates parallel to the eigenvectors are referred to as the principal axes.
Morgan and Peraire invoke the orthogonality of the principal axes and introduce
refinement parameters based on the second derivatives computed along the local
principal directions, X, and X,. Tﬁi; is équivaiéxﬂ to computing the eigenvalues of

the local second derivative tensor. e

5? 5?
A\ = .(9%;, Xg = a_)::z’ Al > Al (5.3)

To achieve an optimal two-dimensional mesh, the requirement of uniform dis-

tribution of local numerical errors is applied to all directions. This leads to
62\ = 62|1Az| = 62, Amax = constant (5.4)

where é; and §; are the mesh spacings in the local principal directions X; and
Xa, respectively, émin is an user-specified minimum mesh spacing, and Ama, is the
maximum value of |A;| over the whole domain. The aspect ratio of mesh cells is

determined as the ratio of the two mesh spacings:
s =&/6 = \/Il/| e (5.5)

The mesh orientation is simply defined as the angle between the principal axes and
the Cartesian coordinates. That is

1, (., 0 (0% &
a =3 tan™ (Zaxay/ (63:2 - W)) (5.6)

The advantage of this approach is that the discretization error is evaluated on
a theoretical basis and all three mesh parameters are uniquely defined. However,
the second derivatives tend to produce large errors when there is a perturbation
in the solution domain. For exa.xﬁplé, for transonic iiow préblerﬁs, ;1 s;a;dard flow
solver smears shock waves over several points and also produces Gibbs phenomena
near shock wave locations. Computing second derivatives based on this solution
gives the largest value of A, on either side of the shock wave and a small value at

the center of the shock wave. When a new mesh is generated, small mesh cells are

[Tt W
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constructed on either side of the shock wave and bigger mesh cells are constructed
at the center of the shock wave. Thus, the new mesh fails to accurately resolve the
shock wave. This problem can be alleviated by using either a high resolution flow
solver or a refinement parameter based on lower-c;rder derivatives. In the present

work, the latter is used.
5.292.2 First-Derivative Refinement Parameters

For the present adaptive solution method, a refinement parameter based on the
gradient of a certain flow property is developed. The refinement parameter, the
absolute value of the gradient of a specified flow property, ¢, is computed at every
node.

= oé = 965 (9¢\2 ‘
=l vo 1= [+ (5 )
A quantitative local numerical error is estimated by

§|v él=4g

The variation of § within the solution domain is defined such that the above quantity

is constant over the whole domain:
6| 7 ¢| = 6 gi = Smingmax = constant (5.8)

where 6in is a user-specified minimum mesh spacing, and gma, is the maximum

value of | 7 #| over the whole domain. The mesh orientation is computed based on

a = tan™! (—g%/—gg) (5.9)

¢ only is used to define two mesh parameters. Although second-order derivative

the gradient direction.

terms can be used to estimate the mesh stretching parameter, s, this leads to the
original problem addressed in the previous section. For complicated flow structures
the. combined effect of the mesh stretching parameter and stretching direction can
produce very distorted meshes. To eliminate the potential for such highly distorted

meshes, only the mesh length scale, §, is used. The stretching parameter, s, is set
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to one and the stretching direction « is taken as the direction perpendicular to the
generating segment. Specifying s and a in this fashion results in grids composed of
roughly equilateral triangles with varying length scales.

_ The computed g; is smoothed to remove numerical noise and spread the high
gradient regions. Even with this smoothing, it is necessary to limit the allowable
range of g;. A cutoff level for g; is determined as follows. First a referenced value of
the gradient of ¢ is defined by the diﬁ'eregcebetv@veen the maximum and minimum
@u&s of ¢ divided by the minimum length scale of the previous mesh. That is

Gret = %‘i‘ﬂ (5.10)

where 6/ is the minimum length scale of the previous mesh. The cutoff value for

g is then set at
C N 'f / min > C E .
eut = { 9eet/Cr, i gt/ g 2 (5.11)
Gref, otherwise
where C; and C; are constant, typically in the range of 10-30 and 50-100, respec-

tively. Finally, the limited value of the gradient at each point is given by

- ImaxGcut Ji
gi = 5.12
Gmaxgcut + (Jmax — Jut )9 ( )

This function has a maximum value of g, and limits ¢ in a smooth fashion. The

mesh length scale is now determined by
§; = min(émax, 95“‘5 ) (5.13)

The minimum and maximum values of § must be specxﬁed for each xﬁ&sh The
maximum length scale, max, defines the size of the largest triangles in the domain.
Within the solutxon domam, the minimum length scale, 5,,,,,, 1s sequentially de-
N creased from 6,,“, on the initial mesh down to a value Whlch leads to a solution
sa.tlsfylng the adaptlve convergence criteria. The goal is to refine subsequent meshes
as qulckly as possﬂ)le, without introducing wasted points as the solution evolves.
Currently, this sequence is set in terms of the ratio of ég;, of the last mesh divided

by &min of the new mesh.
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5.2.2.3 Flow Feature Indicator

Without a proper choice of the flow feature indicator, neither the second-order
nor the first-order error estimator can accurately and efﬁciently resolve thé flow.
The location of flow structures is not known in advance. An indicafor related
direcfly to an earlier solution must be developed. The performance of various
indicators for inviscid transonic flows has been investigated by Dannenhoffer [21].
With the inclusion of viscous flow features in his results, the performance of different
indicators for viscous flows is summarized in Table 5.1. Although a combination of
different indicators have been proposed for the resolution of viscous transonic flow
features [40], in the present work, an indicator based on the local flow speed has
been found to be sufficient.

5.22.4 Refinement Parameters for Local Structured Mesh

The mesh spacing, §, computed from Eq. (5.4) or Eq. (5.13) depends on a single
mesh scale 6gin. For inviscid flow cﬂculations, the singlé length scale criterion is
sufficient for resolving all flow features. Viscous flows generally involve two or more
different length scales. For example, for turbulent transonic airfoil calculations the
length scale required inside the boundary layer is usually on the order of O(Rez'),
while outside the boundary layer the length scale is on the order of the chord.
Although one may argue that since the thickness of shock waves is on the order of
a molecular free path, it should be reasonable to use a viscous length scale in the
region of the shock wave. ‘However, such a length scale increases the computing
expense and is not required in practice.

For the turbulent flow calculations presented here, the mesh scales for inviscid
and viscous regions are considered separately. In the inviscid flow region the mesh
spacing is computed using Eq. (5.13). In the boundary layer the mesh scale in the
normal direction to the wall is based on the wall distance or wall units, y*, while the
mesh spacing in the tangential direction to the wall is estimated using the inviscid

mesh scale. These two mesh scales usually results in a highly stretched mesh. In
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Table 5.1 Expected performance of different indicators for viscous transonic flow

problems.
” Feature Type
Feature || Shock | Expansion | Stagnation Slip | Viscous Shear
Indicator | Wave Wave Zone Line Layer

P O O ® O O
ve o [ ® ® ®
AL h ® ® ©@ e @

P O O o O O
vp ® @ o O O
v | ® e lo| o

P O O O O ®
vVh | @ O O ° ®

vk | @ O ) ® ®

7 O O O O ®
V4 ® ® o ® @
Vv | @ ® ® e | o
Note: @ = Flow feature is well detected.

@® = Flow feature is somewhat detected.
O = Flow feature is not detected.
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order to achieve such high aspect ratio mesh cells, a structured triangular mesh
is employed in the present work. For the structured triangular mesh algorithm,
Eq. (4.4), the streamwise and the normal mesh scales are specified along the wall.
Then, a number of layers of structured mesh are generated from the wall boundary
to the interior. The use of a structured mesh simplifies the multiple length scale
problem in that the streamwise mesh scale specified on the wall surface is sufficient
to define the streamwise mesh scale in the boundary layer.

For the initial mesh the wall distance is estimated using the local skin friction
for a turbulent flat plate flow [76]. |

:Fwdl -
=l 0.0296 Re;'/* 5.14
e (5:14)

The wall distance corresponding to y* = 1 at the end of the plate is then obtained
as
Aywan = 5.81 Rez™ ™ (5.15)

Specifying the wall units y7, gives the wall distance of the first structured mesh line
off the wall:
by+ = AYwan Yo (5.16)

where the value of §,+ is specified in the range of 2.5-3.5 for the Baldwin-Barth
one-equation model. The streamwise mesh scale is taken directly from the initial
mesh scale distribution on the background mesh. From these two mesh scales, the
structured mesh is then constructed.

As the flow solution evolves, the local wall distance is recomputed at each bound-
ary node using Eq. (2.14) and the minimum value of the local wall distance is used
to estimated the new §,+. The local rstréra.mwise mesh scale is then estimated from
the inviscid flow information. In the inviscid flow fegion the Bernoulli equation
gives

dp Jq

3, a5, =0 (5.17)

where ¢ is the flow speed, s is in_the streamwise direction, and p is the static

pressure. After extrapolating the inviscid flow speed from the boundary layer edge
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to the wall, the streamwise gradient of the flow speed at the wall is obtained as
l | === (518)

where s is now replaced with the arc length scale along the wall. Employing
Eq. (5.12) to smooth the distribution of [8q/ds| gives the streamwise mesh spacing
along the wall.

8, = min(bpax, 9;" Smia) (5.19)

5
In the present work two additional mesh scales are used to define the surface
mesh scale:
’ b, = min{é., &,;, (6,+ Au), (6,+ TV 1 A.)} (5.20)

where A, is the mesh aspect ratio along the wall and A, is the mesh aspect ratio
along the outer edge of local structured meshes. The value of A,, is in the range of
300-3,000 and A, is in the range of 10-20. From the mesh scales é,+ and §,,, the

local structured mesh is regenerated.
5.3 Convergence Criteria

To complete the description of the present adaptive remeshing scheme the con-
vergence criteria for the solver and adaptlve remeshmg cycle must be defined. Con-
vergence for the ﬁow solver is based on three propertles of the solutxon the average

of the absolute value of the local cha.nge in pV divided by the local tlme step,
which is a measure of the convergence of the solutlonitoi sgea;i; state a.nd two
global norms defined by the difference between the highest and lowest values of the
normal force coefficient, C,, and the tangential force coefficient, Cj,, over the last

50 iterations divided by reference quantities, K; and K3, respectively. That is

ACs = [(Cro)omas = (Craial/ Ko (521)
and
ACs = [(Cr)mms = (Crmal/ K2 62
-2
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with the reference quantities K; and K3 defined as
K; = max(1, (Cf.)max), and Kz =max(l, (Cf)max) (5.23)

The first quantity, 8(pVm)/6t is inversely proportional to the local time step. As
the mesh is refined 6t decreases which makes this norm more restrictive as the
mesh is adapted. The reference quantities Ki and K, are used to normalize the
global norms. Since the flow properties are normalized with freestreamn values in
the present calculations, it is appropriate to normalize the integral quantities with
a value of 1 if the integral quantities are much less than 1. The use of windowing of
integral quantities to define convergence of the force coefficients was developed by
Dannenhoffer [21] for an unstructured quadrilateral based adaptive mesh scheme.
When any one of these three coefficients drops below the user defined constant, €,
the solution on the current mesh is converged.

Convergence for the adaptive solution cycle is based on the change in force
coefficients from one mesh solution to the next. When the relative change in Cy, is
less than ¢, and the relative change in Cy, is less than €3 the adaptive mesh cycle

is converged. The relative change is defined as
AC; = |(Chast = (C)newl/ max (1, max(|(Cohrastls |(Clnewl)) (5.24)

The values of &, €, and e; are user specified constants. Specifying smaller values
of €; and €3 will increase the number of mesh adaptation cycles. This in turn leads
to a smaller mesh scale and improves the accuracy of the solution. Therefore, by
choosing these constants a user can specify the accuracy of computed solution. Note
the value of ¢; should be at least one-order less than the values of €; and €3. In the
préent work, €, is set to 0.0001 for both inviscid and turbulent flow problems. For
inviscid flow problems, both €; and 3 are set to 0.002. For turbulent flow problems,

these values are raised to 0.005 to reduce the number of mesh adaptations.
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T _ 6. INVISCID FLOW RESULTS

The present adaptive solution scheme has been formulated to solve both two-
dimensional planar flows and quasi-three-dimensional axial-, radial- and mixed-type
flows. In the development of this approach a range of inviscid problems has been
solved. To validate the present approach the test cases presented here include a
two-dimensional multi-element airfoil, the Sanz supercritical compressor and sub-
critical turbine cascades, and the Denton supersonic staggered wedge cascade. Each
of these test cases is two dimensional and has a known analytic solution. These test
cases cover a wide range of Mach numbers and each has different flow structures
which must be resolved for an accurate solution. To demonstrate the adaptive solu-
tion scheme in practical turbomachinery applications, the quasi-three-dimensional
analysis has been used to ana.lyze the NASA Rotor 67 low-aspect-ratlo transonic

fan and the Allison tandem blade cascade.

6.1 Multi-Element Airfoil Case

The ﬁrst ca.se isa model three-element a.xrfoﬂ opera.tmg 1n a hxgh lift oonﬁgura-

tlon Thxs case 1llustrates the ease mth whlch ﬁow problems in a.rbltra.ry multxply-

an "analytlc“mcompressxble petentla.l ﬂow solu ion oria,n a.ngle of attac of 20°. In

order to ma.ke a dxrect companson w1th the a.na.lytlc solutlon, thls test case should

be run thh a very low fre&stream Ma.ch number Slnoe the sta.bxhty cntena for the

scheme 1s mversely proportlona.l to tbe speed of sound whlch will

PR S & St

be’ very large, Tow Mach ‘number flows require very sma.ll time steps Furtber, very

low Mach number flows imply very small convection speeds. Both these conditions
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result in a very slow convergence rate to the steady state solution and in turn large
computation time. As a compromise between the computation time and the com-
pressibility effects, this test case was run with freestream Mach number of 0.125.
The flow conditions and airfoil characteristics are summarized in Table 6.1. The
far field and near field meshes are shown in Figures 6.1 and 6.2, respectively. The
far field boundary is set at a radius of 5 chords from the airfoil. At this boundary
the vortex far field boundary condition [83] is used.

The initial mesh is refined near the airfoil through the specification of the length

scale parameter along the surface (N, = 40). In the far field the mesh is uniform

with a length scale of Smax= 0.5 chord. Within the solution domain the minimum
length scale min is sequentially decreased, from Smax ON the initial mesh, down to
a value which leads to a solution satisfying the adaptive convergence criteria. The
refinement sequence is set in terms of the ratio of 8min of the last mesh divided by
Smin Of the new mesh. For the airfoil case presented here this ratio equals 32 for
the first adaptation, 4 for the second and the third adaptations and 2 for the last
refinement. The sequence of solution adapted meshes are shown in Figures 6.2 to
6.6. Mesh statistics and force coefficient information for each mesh are summarized
in Table 6.2.

Mach number contours for the final solution are shown in Figure 6.7. Note
that the maximum surface Mach number on fhe leading edge slat is about 0.6,
which is well out of the range of what can be considered incompr&ssible.' Figure 6.8

compares the converged surface pressure coefficient distribution over each element

Table 6.1 Flow conditions and airfoil characteristics for the three-element airfoil.

M a buar | Omap Clexact
0.125 | 20.0° | 45.0° | 15.0° 5.136

Note: Incompressible analytic solution

is available in Reference [80].
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with the incompressible analytic solution. Although the flow structure of this test
case involves high gradients in flow properties, they are only concentrated in small
regions where the surface curvature is high. Therefore, plots of intermediate mesh
solutions are almost exactly the same. Most of the error in the initial solution is
concentrated in the region of the suction peak on the slat.

To illustrate the importance of compressibility in this case, a compressibility
correction to the analytic solution using the Karman-Tsien rule is considered in
Figure 6.9. The compressible presure coefficient using the Karman-Tsien rule is

given as:

Cp = Cro
V1=-MZL+ M2/ (1+/1-M2)]Cpo/2

where Cy0 is the incompressible pressure coefficient, M., is the freestream Mach

(6.1)

number, and C; is the corrected pressure coefficient. Since the high Mach number
flows are concentrated in the suction surface of the slat portion and the leading
edge suction surface of the airfoil, the corrected surface pressure coefficients are
lower than the incompressible values in these regions. Otherwise, the corrected
surface pressure coefficients are essentially the same as the incompressible values.
Figure 6.9 shows a slight difference between the computed pressure coefficient and
the corrected pressure coefficient in the high Mach number flow regions. This is
due to the extremely high flow gradients in these regions. These regions can be
accurately resolved with further mesh adaptation.

Figures 6.10, 6.11, and 6.12 show the surface total pressure errors for the initial,
3 adapted, a.xid final meshes, respectively. The total pressure error is defined as
the difference between local total pressure and the upstream value. That is,

Pr,
Pry.=1- Pr.
Since this flow is isentropic the total pressure error should be zero. These plots
clearly show a reduction in error as the mesh is refined in the slat region. There is
a 40 % reduction in the peak total pressure error in the final mesh solution relatjve

to the 3rd adapted mesh solution. The final mesh length scale in the slat leading

3% el S e
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edge region is about 60 % of the 31 adapted mesh length scale in the same region.
This indicates that the present scheme is first-order.

The computed lift coefficient is 3 % less than the Karman-Tsien corrected lift
coefficient which is about 5.279. It is believed that part of this error is due to the
location of the far field boundary. Based on the results of Usab [83] and Dannenhof-
fer [21), the lift coefficient increases about 1.5 to 2.0 % as the far field boundary is
moved from 5 chord to 50 chord. It should also be noted that for low Mach number
flows, the total pressure error has a significant effect on the pressure distribution.
Even though the total pressure error in the final rh&h is very small, if all the total
pressure error is assumed to reduce the surface static pressure this would lead to a
5 % error in the predicted lift coefficient. Although a direct relation between the
lift coefficient and total pressure error is not known, it is reasonable to expect a 1
to 2 % reduction in the lift coefficient due to this total pressure error.

Finally, the convergence histories for the lift coefficient and average residual,
|6(pu)/6t|, are shown in Figures 6.13 and 6.14, respectively. Note the reduction in
the convergence rate of the flow soiver on the latter meshes. This is due to the
decreasing mesh length scale in the fine mesh region where the explicit time step is

very small.

Table 6.2 Three-element airfoil: My = 0.125, a = 20°, and (C)incomp = 5.136.

MESH 0 1 2 3 4
nodes 2,034 |2,092 |2,911 |4,643 8,506
clements | 3,769 | 3,888 |5517 |8,927 | 16,567
Ci 49892 | 4.9847 | 5.0630 | 5.1061 | 5.1165
Cq 0.0570 | 0.0444 | 0.0286 | 0.0201 | 0.0145
Smax/ chord | 0.5 0.5 0.5 0.5 0.5
Omax/Omin 1 32 128 912 1,024
Total CPU: 1,307 sec in Cray-YMP.




Figure 6.1 Multi-element a.irfoil initial mesh: far field view.
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Figure 6.2 Multi-element airfoil initial mesh: 2,

034 nodes and 3,769 elements.
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Figure 6.3 Multi-element airfoil 1* adapted mesh: 2,092 nodes and 3,888
elements.
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Figure 6.4 Multi-element airfoil 9nd adapted mesh: 2,911 nodes and 5,517
elements.
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Figure 6.5 Multi-element airfoil 3™ adapted mesh: 4,643 nodes and 8,927
elements.
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Figure 6.7 Multi-element airfoil Mach number contours on the final mesh:
cmin = 0.0, cmax = 0.60, and inc = 0.02.
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Figure 6.8 Multi-element airfoil surface pressure coefficient for the final mesh:
solid line - numerical solution and symbol - analytic solution.
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Figure 6.9 Multi-element airfoil surface pressure coefficient for the final mesh:
solid line - numerical solution and symbol - compressibility correction using the
Karman-Tsien rule.
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Figure 6.10 Multi-element airfoil surface total pressure error: initial mesh.
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Figure 6.11 Multi-element airfoil surface total pressure error: 34 adapted mesh.
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Figure 6.12 Multi-element airfoil surface total pressure error: final mesh.
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Figure 6.13 Multi-element airfoil: C, verses iteration.
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6.2 Sanz Supercritical Compressor Cascade

This case is a shock free supercritical compressor cascade designed by Sanz [75]
using the hodograph method. This case is described in the AGARD report [25]
as"test case A/CA-1. The hodograph method used to design this cascade results
in a blade section with a nonclosed trailing edge. As noted in Reference [25], any
attempt to close the blade trailing edge changes the blade section, resulting in
a different solution. The flow conditions and blade characteristics are listed in
Table 6.3. M.y is the specified isentropic exit Mach number which sets the ratio

of the exit static pressure to the inlet total pressure. This ratio is given as

exi -1 —;3'_
I;%- ¢ (1 1 Mfm) : (6.2)

The ratio is 0.8177 for the current value of M.,;;. The inflow and outflow boundaries
for the mesh are placed one half an axial chord from the blade leading and trailing
edges, respectively. At the inflow boundary total pressure, total temperature, and
absolute flow angle are specified. At the outflow boundary the exit pressure is set.
Flow tangency is enforced on the blade surface and periodicity is imposed at the
upper and lower boundaries of the domain. At the open trailing edge a uniform jet
flow condition is specified.

The sequence of solution adapted meshes is shown in Figures 6.15 to 6.16.

Because the flow structure for this test case does not involve high gradients it only

Table 6.3 Flow conditions and blade characteristics for the Sanz supercritical
compressor cascade.

Min Mexit ﬁin .Bexit P itCh / ChOl' d
0.711 | 0.544 | 30.81° | —0.35° 1.034

Note: e Hodograph solution is available
in Reference [25].
¢ Nonclosed trailing edge present

in the physical profile.
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Table 6.4 Sanz supercritical compressor cascade: My = 0.711 and fBin = 30.81°.

MESH 0 1

nodes 820 947

) clements | 1,469 1,717
Cr. 0.9044 0.9039

Cs, -0.2817 -0.2825

5ona/ pitch |0.095 | 0.095

Sone/bmin | 1 4

Total CPU: 34 sec in Cray-YMP.

takes oxrlrgrremesh cycle to converge. The mesh and loading coefficient information
are given in Table 6.4. Mach number contours for the final solution are shown
in Figure 6.17. A comparison of the converged Mach number distribution over the
blade with the hodograph solution is shown in Figure 6.18. The agreement between
the numerical and analytic solutions is excellent except in a small region near the
sonic boint on the suction surfa.ée. Note that the supercritical blade geometry is an
isolated shock free design and that very small variations in the geometry will lead
to the formation of shock waves. Since the blade coordinates given in Reference [25]
have gaps in the sonic regions of the blade, the blade geometry in these regions is
defined through interpolation. The difference between the computed solution and
the analytic solution is the result of the difference between the interpolated and
the unknown correct blade geometry in these regions. Convergence histories for the
normal force coefficient and average residual are shown in Figures 6.19 and 6.20,

respecﬁvelj.
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compressor cascade initial mesh: 820 nodes and
1,469 elements.

Figure 6.16 Sanz supercritical compressor cascade 1% (final) adapted mesh: 947
nodes and 1,717 elements.
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Figure 6.17 Sanz supercritical compressor cascade Mach number contours on the
final mesh: cmin = 0.0, cmax = 1.30, and inc = 0.05.
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Figure 6.18 Sanz supercritical compressor cascade surface Mach number for the
final mesh: solid line - numerical solution and symbol - analytic solution.
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_ Figure 6.19 Sanz supercritical compressor cascade: Cj, verses iteration.
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Figure 6.20 Sanz supercritical compressor cascade: average [6(pu)/6t| verses
" iteration.
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6.3 Sanz Subcritical Turbine Cascade

This subcritical turbine cascade, AGARD test case A/CA-3 [25], was also de-
signed using a hodograph method. The blade section has a nonclosed trailing edge.
The flow conditions and blade characteristics are tabulated in Table 6.5. The up-
stream and downstream mesh boundaries are placed one half an axial chor.d from
the blade edges. The numerical boundary conditions are the same as those used in
the supercrif.ical compressor cascade case. The ratio of the exit static pressure to
the inlet total pressure is 0.6788 for the present value of M.,,;.

Figures 6.21 to 6.24 present the sequence of solution adapted meshes. Since the
gradients are higher in this case due to the rapid acceleration of the flow through
the turbine blade passage, it takes three mesh adaptation cycles to converge. Mesh
properties and force coefficients for this case are summarized in Table 6.6. Mach
number contours for the final solution are shown in Figure 6.25. Figures 6.26 and
6.27 compare the computed surface Mach number distribution with the hodograph
solution for the initial and final meshes, respectively. These plots clearly show the
improvement in the numerical solution as the mesh is refined.

For inviscid flows, the total pressure error is also a good indicator of numerical
error in the solution scheme. Since this flow is isentropic the total pressure error

should be zero. The plots of surface total pressure error shown in Figures 6.28

Table 6.5 Flow conditions and blade characteristics for the Sanz subcritical
turbine cascade.

My | Moo | B Bexit Pitch/chord
0.343 | 0.765 | 36.0° | —57.35° 0.566

Note: e Hodograph solution is available
in Reference [25].
e Nonclosed trailing edge present

in the physical profile.

Iy ¥
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and 6.29 demonstrate the improved accuracy of numerical solution as the mesh is
refined. The maximum surface total pressure error is decreased from 4 % on the
initial mesh down to 2 % on the final mesh. Convergence histories for the normal

force coeflicient and average residual are given in Figures 6.30 and 6.31, respectively.



_ Table 6.6 Sanz subcritical turbine cascade: Mi, = 0.343 and Bin = 36.0°.

] MESH 0 1 2 3
nodes 722 1,018 | 1,620 | 2,336
elements 1,244 | 1,799 2,962 | 4,367
Ci. 1.9172 | 1.9239 | 1.9260 | 1.9279
Cy, 1.7264 | 1.7218 | 1.7212 | 1.7216
Smax/pitch | 0.075 | 0.075 | 0.075 0.075
Smax/Omin 1 2 4 8
Total CPU: 181 sec in Cray-YM?.

Figure 6.21 Sanz subcritical turbine cascade initial mesh: 722 nodes and 1,244
elements.

1 B
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Figure 6.22 Sanz subcritical turbine cascade 1** adapted mesh: 1,018 nodes and
1,799 elements.

Figure 6.23 Sanz subcritical turbine cascade 2" adapted mesh: 1,620 nodes and
2,962 elements.
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Figure 6.24 Sanz subcritical turbine cascade 3™ (final) adapted mesh: 2,336
nodes and 4,367 elements.

Figure 6.25 Sanz subcritical turbine cascade Mach number contours on the final
mesh: cmin = 0.0, cmax = 0.80, and inc = 0.05.
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Figure 6.26 Sanz subcritical turbine cascade surface Mach number for the initial
mesh: solid line - numerical solution and symbol - analytic solution.
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Figure 6.27 Sanz subcritical turbine cascade surface Mach number for the final
mesh: solid line - numerical solution and symbol - analytic solution.
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6.4 Denton Supersonic Staggered Wedge Cascade

The Denton wedge cascade, AGARD test case A/ CA-2 [25], is a compressor
cascade operating in a fully supersonic flow. This staggered wedge cascade has
been ca.refully designed so that the reflected oblique shock wave is exactly cancelled
resulting in an uniform flow between the two parallel surfaces. In order to close
the cascade profile, another wedge is introduced on the pressure side resulting in
an expansion off the downstream corner. Figure 6.38 presents the exact solution
derived from shock/expansion theory. This test case illustrates the capability of the
present solution adaptive scheme in capturing complicated shock wave structures.
The flow conditions and blade characteristics are listed in Table 6.7.

The initial mesh is shown in Figure 6.32. The upstream and downstream mesh
boundaries are located one half an axial chord from the blade leading and trailing
edges, respectively. At the inflow boundary total pressure, total temperature, and
absolute flow angle are specified as boundary conditions. At the outflow boundary
the nonuniform static pressure boundary condition is imposed (see section 3.5.4).

Figures 6.32 to 6.35 present the mesh sequence during the solution adaptation
process. The mesh characteristics are summarized in Table 6.8. Comparing the
initial mesh Mach number contours shown in Figure 6.36 with the final mesh Mach

pumber contours in Figure 6.37 shows an improved shock wave resolution for the

Table 6.7 Flow conditions and blade characteristics for the Denton supersonic
staggered wedge cascade.

My | Mexit | B | Bexic Pitch/chord
1.6 | 1.401 | 60.0° | 60.0° 0.47985
Note: o Analytical solution is available
in Reference [25).

¢ Nonuniform pressure present

at th_e exit.
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Table 6.8 Denton supersonic staggered wedge cascade: Mi, = 1.60, B = 60.0°,
(Cj,)m = 0.03774, and (Cf..)exuct = —0.0654.

MESH 0 1 2 3

. nodes 1,231 {1,982 | 3,625 7,526
elements 2,196 | 3,562 | 6,762 14,440
Cs. 0.0411 | 0.0375 | 0.0384 | 0.0382
Cy, -0.0722 | -0.0647 | -0.0667 | -0.0664
Smax/ pitch | 0.08 0.08 0.08 0.08
Smax/Omin 1 3.1 12.5 25
Total CPU: 880 sec in Cray-YMP.

adapted solution. Mach number contours for the final and theoretical solutions are
shown in Figures 6.37 and 6.38, respectively. Even though the shock wave sfructure
is complex, the remeshing procedure accurately resolves the flow. The computed
surface Mach number distributions on the initial and final meshes are compared
with the theoretical solution in Figures 6.39 and 6.40, respectively. These plots
show a great improvement in the accuracy of numerical results. Since the present
scheme is not a monqtonic scheme, overshoots are shown in the shock wave regions.
Comparing the computed loading coefficients C;, and Cj, to the analytical values
in Table 6.8 shows a reduction in the error as the mesh is refined with the exception
of the 1* adapted mesh solution. This indicates that it is difficult to determine the
improvement of solution based on the loading coéfﬁcients only. Since the loading
coefficients are integral quantities, numerical errors may cancel after integrating
over the blade surface.

" Convergence histories are given in Figures 6.41 and 6.42. It is noted that the
CPU time this case requires is five times longer than that of the Sanz subcritical
turbine cascade case. This is due to the increasing number of mesh points and

decreasing mesh length scale as the mesh is adapted to the solution.
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Figure 6.32 Denton supersdnic staggered wedge cascade initial mesh: 1,231 nodes
and 2,196 elements.
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Figure 6.33 Denton supersonic staggered wedge cascade 1* adapted mesh: 1,982
nodes and 3,562 elements.
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Figure 6.35 Denton supersonic staggered wedge cascade 3™ (final) adapted mesh:
7,562 nodes and 14,440 elements.
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Figure 6.36 Denton supersonic staggered wedge cascade Mach number contours
on the initial mesh: cmin = 1.17, cmax = 1.62, and inc = 0.03.

1"



107

Figure 6.37 Denton supersonic staggered wedge cascade Mach number contours
on the final mesh: cmin = 1.17, cmax = 1.62, and inc = 0.03.
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Figure 6.38 Denton supersonic staggered wedge cascade Mach number contours:
analytic solution (Denton et al. [25]).
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Figure 6.39 Denton supersonic staggered wedge cascade surface Mach number for
the initial mesh: solid line - numerical solution and symbol - analytic solution.
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Figure 6.40 Denton supersonic staggered wedge cascade surface Mach number for
the final mesh: solid line - numerical solution and symbol - analytic solution.



110

0.050

L ‘W\MM
e
|

0.020 -
0. 1000. 2000. : 3000. 4000.

ITERATION

Figure 6.41 Denton supersonic staggered wedge cascade: Cy, verses iteration.
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Figure 6.42 Denton supersonic staggered wedge cascade: average |6(pu)/6t| verses
 iteration.
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6.5 NASA Rotor 67 Transonic Fan

NASA rotor 67 is a low-aspect-ratio transonic axial-flow fan rotor. Laser anemome-
ter surveys of the flowfield were made for operating conditions near peak efficiency
and near stall by Strazisar et al. [79]. The fan tip relative Mach number is 1.38. The
experiments were conducted in a rotor-only configuration making them good test
cases for the three-dimensional flow solver. Only the near peak efficiency test con-
dition will be considered here. Since the flow in this machine is three-dimensional,
axisymmetric through-flow information is required as input to the present quasi-
three-dimensional analysis. The streamsurface location and thickness data used in.
the present calculations were obtained from Reference [60]. It is important to note
that the accuracy of the present results depends on the accuracy of the streamsur-
face data, which is difficult to validate. This test case is important in illustrating
how the adaptive solution procedure resolves realistic flow structures.

The adaptive mesh solution is computed for the 30 %-span streamsurface (mea-
sured from the shroud). In this case the inlet boundary for the mesh is placed
three quarters an axial chord from the blade leading edge, and the exit boundary
is located half an axial chord from the blade trailing edge. At the inflow boundary
total pressure, total temperature, and absolute flow angle are specified as boundary
conditions. At the outflow boundary the exit pressure is imposed. Since there is
high turning involved in this flow, it is not possible to start a solution with constant
initial conditions. Therefore, the quasi-one-dimensional solution is used to provide
a smooth variation of initial flow conditions (see section 3.4). The inflow and out-
flow condition as determined from the through-flow analysis are summarized in
Table 6.9.

This span station is particularly interesting because the upstream relative Mach
number is 1.20. With a blunt leading edge, a bow shock wave stands away from the
blade leading edge. To accurately predict this flow the leading edge must be well

resolved. Referring to Figures 6.50 and 6.52 it is clear that a refinement parameter
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Table 6.9 NASA Rotor 67 far field flow conditions.

Case P (psi) | Tua (R) | 7o | Pexie/ P,
30 % span | 14.7 518.7° |0 1.21

] 50 % span | 14.7 518.7° |0 1.25
70 % span | 14.7 518.7° |0 1.16

based on surface curvature does a good job in resolving the leading edge region.
Even on the initial mesh the bow shock wave is located in the proper location.
Without this refinement the adaptive procedure improperly locates the bow shock
wave. This changes the flow conditions within the blade passage, resulting in a very
poor initial solution. It then takes many mesh adaptation cycles to converge to the
correct solution. The present adaptation criteria leads to a converged solution after
three remeshes (see Figures 6.43 to 6.46). Mesh properties and force coefficients
are summarized in Table 6.10.

The relative Mach number contours for the final mesh are shown in Figure 6.47.
The bow shock reflection on the blade suction surface is not well resolved, because
the shock strength is much weaker than the normal shock. Figure 6.48 presents
contours of the experimentally measured relative Mach number for the 30 %-span
station. Even though a very large amount of ex