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SUMMARY

The perfluoropolyether (PFPE) class of liquid lubricants has been used for space applications for
over two decades. At first, these fluids performed satisfactorily as early spacecraft placed few demands on

their performance. However, as other spacecraft components have become more reliable and lifetimes have

been extended, PFPE lubricant deficiencies have been exposed. Therefore, the objective of this paper is to

review the PFPE properties that are important for successful long term operation in space.

INTRODUCTION

The purpose of lubrication is to separate surfaces in relative motion by a material which has a low

resistance to shear, so that the surfaces do not sustain major damage. This material can be a variety of

different species (e.g., adsorbed gases, reaction films, liquids, solid lubricants, etc.).

Depending on the type of film and its thickness, a number of lubrication regimes can be identified. A

classical way of depicting these regimes is by use of the Stribeck curve (fig. 1). Stribeck (ref. 1) performed

comprehensive experiments on journal bearings around 1900. He measured the coefficient of friction as a

function of load, speed, and temperature. Some years later, Hersey (ref. _) performed similar experiments
and devised a plotting format based on a dimensionless parameter. The Stribeck curve takes the form of

the coefficient of friction as a function of the viscosity (Z), velocity (N), and load (P) parameter, ZN/P.

At high values of ZN/P which occur at high speeds, low loads, and at high viscosities, the surfaces

are completely separated by a thick (>0.25 pro) lubricant film. This is the area of hydrodynamic lubrica-

tion where friction is determined by the rheology of the lubricant. For nonconformal, concentrated con-

tacts where loads are high enough to cause elastic deformation of the surfaces and pressure-viscosity

effects on the lubricant, another regime, elastohydrodynamic lubrication (EHL) can be identified. In this

regime, film thicknesses (h) may range from (0.025 to 1.25/Jm).

As film thickness becomes progressively thinner, _urface interactions start taking place. This regime

of increasing friction, in which there is a combination of asperity interactions and fluid film effects, is re-

ferred to as the mixed lubrication regime. Finally, at low values of ZN/P, one enters the realm of bound-

ary lubrication. This regime is characterized by the following (ref. 3):

1. It is a highly complex regime involving metallurgy, surface topography, physical and chemical

adsorption, corrosion, catalysis, and reaction kinetics.

2. The most important aspect of this regime is the formation of protective surface films to minimize

wear and surface damage. (for space mechanisms, AISI 440C steel is the most common bearing material).

3. The formation of these films is governed by the chemistry of both the film former as well as the
steel surface and other environmental factors.



4. Theeffectivenessof thesefilms in minimizingwearis determinedby their physicalproperties
whichinclude:shear strength, thickne_, surface adhesion, film cohesion, melting point or decomposition
temperature, and so_:bi]ity.

The pedluoropolyether (PFPE) class of liquid lubricants has been in use for over 25 years for many

spacecraft applications. These commercial products are made by polymerization of perfluorinated mono-

mers. The first member of this class was made by CsF catalyzed polymerisation of hexafluoropropene

oxide (HFPO) yielding a series of branched polymers desisnated as Krytox (ref. 4). A similar polymer is

produced by the UV catalyzed photo-oxidation of hexafluoropropene (Fomblin Y) (rsf. 5). A linear poly-

mer (Fomblin Z) is prepared by a similar process but utilizing tetrafiuoroethylene (ref. 6). Finally, a

fourth polymer (Demnum) is produced by polymerization of tetrafluorooxetane followed by direct fluori-
nation (ref. 7). Structures for these fluids appear in table I. Table II conU_ns property data for some
members of the PFPE class of lubricants.

In addition to these commercially available PFPE fluids, a new series of structures are being pre-

pared by direct fluorination technology (refs. 8 to 10). Some of these structures appear in table III.

Of the above PFPE fluids, only Krytox and Fomblin Z have been extensively used as liquid lubri-

cants and greases for space applications (ref. 11). Recently, a Dernnum fluid has been li_e tested for use as
a shutter mechanism lubricant for the SOHO mission.

The objective of this paper is to review some of the properties of the PFPE class of lubricants that

are important for long term operation iu space. The_e include: boundary and EHL lubricating ability,
vapor pressure char_cteris¢ics, creep properties, optical properties, and resistance to radiation and atomic

oxygen. This is not intended to be an extensive review of all PFPE properties, only those related to space
requirements. For example, thermal and thermal-oxidative stability properties important for terrestrial

application_, (refs. 12 to 17) wi]l not be covered. In addition, many other classes of liquid lubricants are

being used in space. These classes will not be discussed since adequate reviews already exist (ref. 18).

PERFLUOROPOLYETHER PROPERTIES

As indicated in the introduction, a liquid lubricant has to possess certain physical and chemical

properties to function properly in a lubricated contact. In addition to good boundary and EHL film form-

ing capabilities, these lubricants must possess the following attributes for consideration in a space appli-

cation: vacuum stability (i.e., low vapor pressure), low tendency to creep, high vi_osity index (i.e., wide
liquid range), resistance to radiation and atomic oxygen, and optical transparency.

Volatility

Although labyrinth seals are extensively used in space mechanisms, lubricant loss can still be a

problem for long term applications (7 to 30 years) (ref. 19). For a fixed temperature, and outlet area,

lubricant loss is directly related to vapor pressure. For a similar viscosity range, the PFPE fluids

(Fomblin Z and Krytox) are particularly good candidates compared to conventional lubricants (fig. 2)
(ref. 11). Vapor pressure data also appear in table II.
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CreepBehavior

Thetendencyof a liquid lubricant to creep or migrate is inversely related to its surface tension.

Therefore, the PFPE materials which have unusually low surface tensions ('1LV, 17 to 25 dynes/cm at
20 °C) are more prone to creep than conventional fluids. However, these fluids can effectively be con-

tained in bearing raceways by using low surface energy fluorocarbon barrier fdms on bearing lands (hav-

ing critical surface energies of less than 11 dynes/cm) (ref. 20). However, PFPE fluids may dissolve these

barrier films with prolonged contact (ref. 19).

Viscosity-Temperature Properties

Although liquid lubricated space applications do not involve wide temperature ranges, low tempera.

tures (i.e., -I0 to -20 °C) are sometimes encountered. Therefore, low pour point fluids that retain low

vapor pressure and reasonable viscosities at temperatures to 50 or 60 °C are required. The viscosity-

temperature slope (ASTM) of PFPE unbranched fluids is directly related to the carbon to oxygen ratio

(C/O) in the polymer repeating unit, as shown in figure 3 (ref. 21).

In addition, branching, such as the trifluoromethyl pendant group in Krytox, causes a deterioration

in viscometric properties. Comparison of ASTM slopes for three col.unercial PFPE fluids appears in fig-
ure 4. Here the low C/O ratio fluid, Fomblin Z, has the best viscometric properties. Denmum with a C/O

ratio of 3 has intermediate properties, while the branched fluid, Krytox, has the highest ASTM slope.

Elastohydrodynamic Properties

The operation of continuously rotating, medium to high speed bearings relies on the formation of a
elastohydrodynarnic (EHL) film. This regime was briefly described in the introduction. A more detailed

description appears in reference 22. The two physical properties of the lubricant that influence EHL film

formation are: absolute viscosity (_) and the pressure-viscosity coeflScient (c_).

Viscosity is influenced by both molecular weight and structure. Except for low molecular weight

fluids, a values are only related to structure (ref. 23). a values can be measured directly with conven-

tional high pressure viscometers (refs. 24 to 29) or indirectly from optical EHL experiments (refs. 23, and

30 to 32). Conventional viscometry normally uses the E_rus equation (ref. 33) for correlations.

_p -_ /ZoeaP (I)

where

IZp absolute viscosity at pressure, p

Po absolute viscosity at atmospheric pressure, and a = constant (temperature dependent but pressure
independent)

This implies that a plot of log _,_ versus p should yield a straight line of slope o. Unfortunately, this
simple relationship is seldom obeyed. The pressure-viscosity properties that are important in determining

EHL film thickness occur in the contact inlet. Therefore, the slope of a secant drawn between atmos-

pheric pressure and 0.07 GPa is typically used.
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Wirier (ref.24)hasadvocatedthe useof anotherpreesure-viscosityparameter,the reciprocal
asymptoticisoviscouspressure(o*) basedonworkby Roelands(ref. 34). a values (re/. 24) for three tern-
peratures (38, 99, and 149 "C) are tabulated in table IV for Fomblin Z-25 and Krytox 143AB. Values for

several other non-PFPE fluids are shown for comparison.

Fisure 5 contains a values for the branched PFPE (Krytox 143AB). Data obtained by conventional
(low shear) pressure-vlscosity measurements are denoted with open symbols. Indirect measurements from

EHL experiments (effective a values) are shown with solid symbols. There is good agreement comparing
the different sources as well as different measurement techniques. Figure 6 contains similar data for the

unbranched PFPE (Fomblin Z-25) as a function of temperature. Here, there is a definite grouping of the

data with effective a values being substantially lower than values from conventional measurements.

Two possibilities exist for this discrepancy. First, inlet heating can occur, thus leading to lower vis-

cosities, lower film thicknesses, and resulting in lower effective a values. The second possibility is a non-

Newtonian shear thinning effect. Shear rates in EHL inlets can range from I0 s to 107 sec -1 (ref. 30).

However, the EHL measurements do reprewat actual film thicknesses that can be expected in practice.

From EHL theory, the greatest film thickness should be obtained with a PFPE fluid having the

largest o value. However, for many applications, lubricants must perform over a wide temperature range.
In this case, the EHL inlet viscosity can be the overriding factor if the temperature coefficient of viscos-

ity is high. This can cause a cross-over in film thickness as a function of temperature as shown by Spikes
et al. (ref. 23) in figure 7. However, for most space applications, bearing temperatures are typically in the

range of 0 to + 40 °C. Therefore, lubricants possessing high a values (i.e., Krytox) in this range would
be preferred, when only considering EHL.

BOUNDARY LUBRICATION PROPERTIES

As described in the introduction, boundary lubrication is the regime where surfaces are not com-

pletely separated which results in continuous surface asperity interactions. The most important aspect of

this regime is the formation of protective surface films to minimize wear and surface damage. The forma-

tion of these films is governed by the chemistry of both the film former as well as the contacting surfaces
and other environmental factors.

Nonadditive hydrocarbons, mineral oils and esters will react in a boundary contact to produce "fr; .-

tion polymer" (ref. 35). Except for electrical contacts, this material is beneficial but does represent loss of

lubricant which requires replenishment. But these conventional lubricants are never required to act alone.

Almost all are formulated with antiwear, anticorrosion, extreme pressure, or anti-oxidant additives to en-
hance their performance.

Contrast this with a PFPE boundary lubricant. Here we have a relatively inert, very pure fluid with

no additives. If these fluids were totally inert, they should not provide any surface protection except for

some fluid film effects (micro-EHL), removal of wear debris, and possibly some local cooling. Actually, in

boundary contacts, PFPE fluids do react with bearing surfaces producing a series of corrosive gases

which, in turn, react with existing surface oxides producing metal fluorides (refs. 36 to 38). These fluo-

rides are effective solid lubricants which reduce friction and wear (ref. 36).

Unfortunately, these fluorides are also strong Lewis acids (electron arceptors) which readily attack

and decompose PFPE molecules (refs. 38 to 40). This causes the production of more reactive species

which, in turn, produce more surface fluoride, resulting in an sutocatalytic reaction. Therefore, the very



reactionthat allows the use Gf pure PFPE fluids in boundary contacts, eventually leads to their destruc-

tion and accompanying bearing failure. Of course, the progression of this mech_ism is highly dependent

on the local contact conditions (i.e., degree of passivation, type and thickn_s of surface oxide, amount of

surface contaminants, temperature, load, speed, etc.).

A preliminary boundary lubrication study of three cotmuerical PFPE fluids (ref. 41) under sliding
conditions in air and vacuum has been conducted. Wear rates for these fluids appear in figure 8. The

following order of lubricant lifetimes was obtained: Krytox • Fomblin Z > Demnum (air) and Krytox

• Demnum >> Fomblin Z (vacuum) (fig. 8). Although Demnum has no space heritage, both Krytox and
Fomblin Z have been used extensively and successfully (GOES, TIROS, ERBE, NOt, A, LANDSAT,

etc.). Space experience has indicated that, in general, Krytox yields longer lifeOmes than Fomblin Z for
similar applications. Therefore, the vacuum four-ball results correlate with results from space experience.

A classical way of representing wear as a function of reactivity is shown in figure 9. Obviously, for

any particular system, one would like to be at the minimum of the curve. Normally, this minimum is

perturbed by the presence and concentration of lubricant additives. However, as previously indicated,
boundary additives are not yet available for PFPE fluids. However, active research (ref. 42) is now taking

place in this arena.

OPTICAL CHARACTERISTICS

There is always the concern that liquid lubricants used in space mechanisms may contaminate sen-

sitive optical components (mirrors, windows, etc.) and render certain measurements useless. Although

great care is taken to minimize this problem, the possibility still exists. Therefore, lubricants that are

optically transparent in the various sensor wavelength regions are obviously preferred. Many of these

regions are in the infrared region. Since PFPE lubricants do not contain hydrogen, they are relatively
transparent over most of this region (as shown in fig. 10) for a Krytox fluid. Spectral regions of interest

for two Earth Observation Satellites (CERES and MODIS-N) are also shown.

RADIATION RESISTANCE

PFPE fluids are susceptible to degradation from low energy electrons (ref. 43), high energy electrons

(ref. 44) and ion beams (ref. 45). Mori and Morales (ref. 46) have reported the degradation of several
PFPE fluids (Demnum S-200, Fomblin Z-25, and Krytox 16256) by x-rays. X-rays were generated by a

AI Ka source in a commercial XPS spectrometer. Thick PFPE layers were swabbed onto 440C steel sub-

stratus and exposed to x-rays for 3 hr. Degradation was measured by changes in chamber pressure as a

function of time. Pressure changes for three fluids appear in figure 11. First order rate constants calcula-

ted from these slopes indicated that Fomblin Z-25 and Krytox 16256 had degradation rates approxi-

mately twice that of Demnum S-200. These data indicate that PFPE materials are very susceptible to

degradation by x-ray irradiation.

RESISTANCE TO ATOMIC OXYGEN

In low earth orbit (LEO), the principle chemical species is neutral atomic oxygen. In LEO, 4.25ev

atomic oxygen will impact spacecraft surfaces. Although space mechanism liquid lubricants are not

directly exposed to this particle flux, it has been shown by Gulino and Coles (ref. 47) that of several can-
didate radiator fluids, the PFPE class was less affected by atomic oxygen than silicone based materials.
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However,Krytox 143AB and Fomblin Z-25 did show small weight losses (fig. 12) as a function of oxygen

plasma exposure time.

CONCLUSIONS

The fol]jwing conclusions can be stated for the use of perfluoropolyether (PFPE) liquid lubricants

for space _pplications.

1. The PFPE lubricant class can still provide adequate performance for less demanding spice appli-

cations (i.e., pure EHL or low load, low cycle boundary contacts).

2. For more demanding applications (i.e., high load, high cycle or for contacts having high sliding

components), additive technology (antiwear, EP, anticorrosion, antidegradation) will be mandatory.

3. Although active research is now taking place for the development of PFPE boundary additive

formulations, they are not yet available commercially.

4. In the interim, the use of alternative bearing materials (i.e., ceramics) or steel surface treatments

(i.e., ion implantation, phosphating, acid passivation) will be necessary for extension of lifetimes.
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TABLE L--NAMES AND PRIMARY CHEMICAL

STRUCTURES OF COMMERCIAL PFPE FLUIDS

Vemnum

Krytox

Fomblin Y

Fomblin Z

Structure

C3F ,O(CF 2CF _CF _O)xC2F s

CsF_O[CF (CF3) CF_O]xC_F s

m ,

CsF_.O[CF (CF3)CF_O]x(CF20)yC3F s

CFaO(CF=CF20)x(CF20)vCF z

Lubricant

TABLE II.--PFPE PHYSICAL PROPER']

Average
molecular

weight

Viscosity

at 200 °C,
¢S

Viscosity
index

'IES

Vapor pressure, Torr

20-c t"''  oo:c
Fomblin 9500 255 355 -66 2.9x10 -12 IxlO-8

Z-25

Krytox 3700 230 113 -40 1.5xlO -e 3xlO -4
143AB

Kry_ox 6250 800 134 -35 2x10 -8 8xlO -_

143AC

8400 210 -53 lxlO -l° lxlO -75OO
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TABLE III.--NAMES AND PRIMARY CHEMICAL STRUCTURES

OF CUSTOM SYNTHESIZED PFPE FLUIDS (REF. 10)

Perfiuoropoly- Structure

(methylene oxide) (PMO)

(ethylene oxide) (PEO)

(dioxolane) (DIOX)

(trioxocane) (TRIOX)

CFzO(CF2G)xCF3

CFzO(CF2CF20)xCF3

CF30(CF2CF2OCF20)xCF 3

CF30[(CF2CF20)zCF20]xCF 3

TABLE IV.--PRESSURE VISCOSITY COEFFICIENTS AT THREE

TEMPERATURES (REF. 24)

[_*, pa-lxlO 8.

I
38 "C 99 "C [ .149 "C

Ester 1.3 1.0 0.85

Synthetic Paraffin 1.8 1.5 1.1

Fomblin Z-25 1.8 1.5 al.3
• , ., . ,

Napthenic Mineral Oil 2.5 1.5 1.3

Traction Fluid 3.1 1.7 0.94

Krytox 143AB 4.2 3.2 3.0

aExtrapolated.
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Figure 1.--Coefficient of friction as a function of viscosity-
velocity-load parameter (Stribeck curve)(Ref.1).
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unbranched perfluomalkylethem (RM. 21).
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Figure 4.--Viscolity-temp.tature _ (ASTM) as a function of
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Z fluids (Ref. 21).

12



4.8

4.4

4.0
X

3.6

-- 2-4

• WesUake (30)

• Foo_l (29) 2.0eNA._
Z_ _ et_ (24)

A, ct Dupont _1,6
-- O /Ul_r (2"r)

l O Solid wml_04s denote "_ 1.2

LO effective a values

O .8

O ,4
A

d

2.8
2O

I I I I I I I

Temperatum,_

Figure 5.--Pressure-viscos_ coefficients for Krytox 143 AB as a
function of temperature.

"-Ll

O Bait and Wirier
• Wodeven

O Co_ and S_w_M(Ret 29)
& Ver_r_e (Ref 26)
t_ Ca_ow (l:k_ 2e)
• Sl=kel(1:_2S)
r_ Twm_ (F_f25)

Soad symbols denote
eflocti_ - _dues

O t,
O

_8_ ° o

m

I I I I I 1 I
0 20 40 60 80 100 120 140

Temperature, °C
I_lure 6.--Pressure.viscosity coefl_ents for Fomblin

Z-25 as a function of temperature.

I 1000
5OO

! i°
100

|
10

I i i I I I1
20 40 60 80 100120 140

Temperature, _C

Figure 7.--.Lube%;ant I_rametem for
Fomb(in Y _ Z fluids (Fief 23).

'//J
'//

-- ,//j
0

Demnum Fomblin Z

Figure 8.--Compadson of wear rates in air end vacuum for
K_ox, Fomblin Z, and D_nnum in • vlctmm four-ball appa-
ratus.

K_tox

13



Test

condition

A B

1.251"50_ I i_.__. I l------ICecas

1.00

i .75

Adhesive wear _ wear

0
Lubdcant or additive reactivity _ 4800 4300 3800 3300 2800 2300 1800 1300 400

Wavenumbe¢. cm -1
Figure 9._Relationship between wear and lubricant reac-

tivity.
Figure lO.,--Inhamd spectrum of KWtox.

A

E
O.
<1

_¢

-.5

-1.0

-1.5

Figure 11 .---Semilogadthmlc relation of pressure change with

irradiation time. Substrate, 440C Itainkml _eel (Ref. 46).

Fluid

O Demnum S200

[] Fomblin Z25

A l<.,'ytox 1_..'_

b

I_ SO =C' SO I'I

_ , __ _ Krytox143AB

-5 "-- "_' --"O--- Fomblin 7.25

-10 --

0 _ -15

-20 _ _

-2s i I I I I I I
50 100 150 0 80 160 240 320 400 480

Irradiation time, rnin Plasma exposure time, hr

Figure 12.--Mm change u • function of oxygen _ exposure

.me (Ref47).

14



FormApproved
REPORT DOCUMENTATION PAGE OuB No.oTo_-o;se

,v-,,,q. _ m,,. ,_,_xm. v_ _.,-,_-4_r,_. am to me _.m,:o a; Management tact auctgm.Pmcmmd¢ ReductionProject(0704-01118).Washingtm. IX::

1. AGENCY USE ONLY (Leave blank)

4. %lil.E AND SU_i-iVI.JE

2. I:IEP_¥ DATE

July 1993

3. FI&PORT TYPE AND DATES COVERED

Technical Memorandum

5. FUNDINGNUMBERS

The Properties of Perfluoropolyethers Used for Space Applications

s. A_S)

WiUiam R. Jones, Jr.

7. _;,_ O_.,_Mzt'nON tuuv_(s) ,,,NO,U)mr._SS(ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

9. ,_=O__lqrroRING AGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration
Washington. D.C. 20546-0001

11. SUPPLEMENTARY Nu_I=S

WU-505-53--IA

8. PERFORMINGORGANIZATION
REPORTNUMBER

E-8010

10. SPONSORINGR_ONITORING

AGENCY REPORT NUMBER

NASA TM- 106275

Responsible person, William R. Jones, Jr., (216) 433--45051.

12a. DI_t_DUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 27

12b. DISTPJBUTION CODE

13. AB_I_-UkCT (M_xirnum 200 words)

The perfluoropolyether (PFPE) class of liquid lubricants has been used for space applications for over two decades. At

first, these fluids performed satisfactorily as early spacecraft placed few demands on their performance. However, as
other spacecraft components have become more reliable and lifetimes have been extended, PIPE lubricant deficiencies

have been exposed. Therefore, the objective of this paper is to review the PIPE properties that are important for
successful long term operation in space.

14. SUBJECT _,NMS

Perfluoropolyethers; Tribology

_. uct_-i-_ CLtii_ATmN _s.SECtm.V CLASmF_AnoN
O4;REPORT OFTHISPAGE

Unclassified Unclassified

NSN 7540.01-280-6500

19. SECURfTY CLASSIFICATION
OF ABSTRACT

Unclassified

lS. NUMBER OF PAGES

16
16. PRICE CODE

A03
20. LIMiTATiON OF ABSTRACT

Standard Form 2ge (Rev. 2-89)

Pm_dtmd ev ANSi 9td. Z._I_ _ll





Association for Information and Image Management

1TOO Wayne Avenue, Suite ! 100

Silver SDnng. Maryland 20910

301/587-8202

%'_//Z/, ' _ 2

IIII1_IIIll_lln_

mm

MANUFACTURED TO AIIM STANDARDS

BY APPLIED IMAGE. INC.

. am __


